

SYNOPSTS OF BIOLOGICAL DATA ON THP PRRCH
Perca fluviatilis Linnaeus, 1758 and Perca flavescens Mitchill, 1814

FAO Fisheries Synopsis No. 113 (Distribution restricted)

SAST - Perca fluviatilis - $1,70(14) 002,01$ and P. flavescens - 1,70(14)002,02

SYNOPSIS OP BIOLOGICAL DATA ON THE PERCH
Perca fluviatilis Linnaeus, 1758
and
Perca flavescens Mitchill, 1814

Prepared by

John Thorpe
Freshwater Fisheries Laboratory Department of Agriculture and Fisheries for Scotland

Faskally, Pitlochry, Perthshire PH16 5LB
Scotland, U.K.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

$$
\begin{gathered}
M-42 \\
\text { ISBN } 92-5-100504-4
\end{gathered}
$$

The copyright in this book is vested in the Food and Agriculture Organization of the United Nations. The book mav not be reproduced, in whole or in part, by any method or process, without written permission from the copyright holder. Applications for such permission, with a statement of the purpose and extent of the reproduction desired, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy.

PREPARATION OF THIS SYNOFSIS

This synopsis of biological data on the perch has been prepared to fulfil part of the programne of work established at the Seventh Session of EIFAC, Amsterdan, May 1972.

The author has pleasure in acknowledging the help of the following people, who supplisd data and assisted in many ways:
A. Allison, Nature Conservancy Council, Edinburgh, Scetland, U.K.
G. Aneer, AskÖ Laboratory, Trosa, Sweden
K. Apostolski, Agricultural Faculty of University, Skopje, Yugoslevia
T. Baciriel, Instytut Rybactwa Srodledowego, Olsztyn-Kortowo, Poland
R.M. Bailey, University of Michigan, Museum of Zoology, Arn Arbor, Michigan, U.S.A.
J.W. Banks, Freshwater Fisheries Unit, University of Liverpool, Liverpool, U.K.
R.E. Boltt, Department of Zoology, Rhodes Uriversity, Grahamstoun, South Africa
G. Chervenkov, SEB Ribno Stopanstvo, Bourgas, Bulgaria.
P.J. Colby, Ontario Ministry of Natural Resources, Box 2089 Thunder Bay, Ontario, Canada
B.B. Collette, NOAA/MMFS Systematics Laboratory, National Museum of Natural History, Washington, D. C . 20560, U.S.A.
J.F. Craig, Freshwater Biological Association, Ferry House, Ambleside, U.K.
J. Dakl, Darmarks Fiskeri og Havunders申gelser, Charlottenlund, Denmark
E. Donaszy, Fish Culture Research Station, Szarvas, Hungary
P. Fitzmaurice, Inland Fisheries Trust Inc., Balnagowan, Mobhi Boreen, Glasnevir, Dublir, Eire
J.L. Forney, Department of Natural Resources, Cornell University, Briageport, N.Y., U.S.A.
E. Grimaldi, Istituto Italiano di Idrobiologia, Verbania Pallanza (NO), Italy
J. Hartmann, Institut für Seenforschung, Langenargen, West Germany
J. Hemsen, Burdesinstitut für Gewässerforschung und Fischereiwirtschaft, Scharfling, Austria
J. Hoľik, Laboratorium Rybarstva a Hydrobiologie, Bratislava, C.S.S.F.
M. Wuet, Station de Recherches des Eaux e Forêts, Groenendaal-Hoeilaart, Belgium
B. Eutchison, Cornell University Field Station, Bridgeport, N.Y., U.今.A.
K. Jensen, Department of Fisheries, Vollebekk, As. Norway
J.S. Lake, Department of the Northern Territory, P.0.Box 231, Darwin. Australia
M. Leopold, Zaklad Ekonomiki, Instytut Fybactwa Srodladowego, Olsztyn-Kortowo, Poland
E.A. Lind, Departmer.t of Zoology, University of OuIu, OuIu, Finland
D.D. Lynch, Inland Fisheries Commissicn, l2" Davey Street, Hobart, Tasmania
R. MeDowall, Fisheries Research Division, Box 19062, Wellington, New Zealand
I. Miron, Statiunea de Cercetari Stejarul, Pingarati, Neamt, Romania
B. Miller, Federal Office for Enviromental Protection, Bern, Switzeriand
E. Neuman, Statens Naturvårdsverk, Öregrund, Sweden
J.C. Schneider, Institute for Fisheries Research, Ann Arbor, Nichigan i8104, U.S.A.
W.B. Scott, Department of Iehthyology, Royal Ontaric Museum, Toronto, Ontario, Canada
D.F. Smith, Jonkershoek Fishery Station, Stellenbosch (Cape), South Africa
L.L. Smith Jr, Department of Entomology, Fisneries and Wildise, University of Minmescta, St. Paul, Minnesota, J.s.A.
O. Sumari, Riista-ja Kalatalouden Tutkimuslaitos Laukaen Keskuskaienviljelyiaitos, Valkola, Finland
F.W. Tesch, Biologische Anstalt Helgoland, Zentrale Hamburg-Altona, 2 Hamburg 50, Palmaille 9, Germany
R.D. Tilzey, Chief Secretary's Department, Fisheries Eranch, Box 30, Sydney, Australia
B.R. Tunbridge, Arthur Rylah Tastitute of Ervironmental Research, Neidelberg, Victoria, Australia
G. Tuffery, Labcratoire Central de Recherches Veterinaires, Maisons-Alfort, France
\bar{u}. Vostradovsky, CAZ, Vyzkumy ustav rybarsky a hydrobiologicky, illo00 Praha i, Zitna 13, c.s. B.R.
$\bar{\iota}$. Willemsen, Rijksinstituut voor Visserijonderzoek, Ijnuiden, The Netherlands

Distribution:

FAO Department of Fisheries
FAO Regionai Fisheries Cfficers
Regional Fisheries Councils anâ Commissions
Selector SI
Author

Bioliograghic entry:
Thorpe, $\overrightarrow{0}$. (1977)
FAO Fish.Synop., (1.3): 238 p .
Synopsis of biological data on the perch Perca fluviatilis Linnaeus, 1758 and Ferca flavescens Mitchill, 1814

Synopsis. Biological data. Freshwater fish. Taxonomy. Identification keys. Vernaculax names. Morphology (organisms). Geographical distribution. Hybridization. Sexual reproduction. Life cycle. Dove. lopment (biological). Autecology. Population characteristics. Indend fisheries. Fishing gear. Fishing grounds. Fishery reculations. Habitat improvement. Stocking (orgenisms). Fish culture. Freshvater aquaculture. Perca fluviatilis. Perca flavescens. Eurasia. North America. South Africa. Australia. New Zealand.

CONTENTS

Page
1 IDENTITY 1
1.1 Nomenclature I
l.l.l Valid names 1
1.1.2 Objective synonymy 1
1.2 Taxonomy 1
1.2.1 Affinities 1
1.2.2 Taxonomic status 4
1.2.3 Subspecies 4
1.2.4 Standard common names, vernacular names 4
1.3 Morphology 6
1.3.1 External morphology 6
1.3.2 Cytomorphology 8
1.3.3 Protein specificity 8
2 DISTRIBUTION 8
2.1 Total area 8
2.2 Differential distribution 11
2.2.1 Spawn, larvae and juveniles 11
2.2.2 Adults 11
2.3 Determinants of distribution changes 1.1
2.3.1 Temperature 11
2.3.2 Currents 12
2.3.3 Waves 12
2.3.4 Depth 12
2.3.5 Light 12
2.3.6 Turbidity 13
2.3.7 Substratum 13
2.3.8 Shelter 13
2.3.9 Ice 13
2.3.10 Dissolved gases 13
2.3.11 Dissolved (inorganic) solids 13
2.3.12 Pollutants 14
2.3.13 Vegetation 14
2.3.14 Fauna 14
2.4 Hybridization 14
3 BIONOMICS AND LIFE HISTORY 15
3.1 Reproduction 15
3.1.1 Sexuality 15
3.1.2 Maturity 15
3.1.3 Mating 16
3.1.4 Fertilization 16
3.1.5 Gonads 16
3.1. 6 Spawning 19
3.1.7 Spawn 23
Page
3.2 Pre-adult phase 24
3.2.1 Embryonic phase 24
3.2.2 Larval phase 25
3.2.3 Adolescent phase 33
3.3 Adult phase (mature fish) 33
3.3.1 Longevity 33
3.3.2 Hardiness 33
3.3.3 Competitors 35
3.3.4 Predators 36
3.3.5 Parasites, diseases, injuries and abnormalities 36
3.4 Nutrition and growth 45
3.4.1 Feeding 45
3.4.2 Food 49
3.4.3 Growth rate 50
3.4.4 Metabolism 73
3.5 Behaviour 78
3.5.1 Migrations and local movements 78
3.5.2 Shoaling 79
3.5.3 Responses to stimuli 79
4 POPULARION 82
4.1 `Structure 82
4.1.1 Sex ratio 82
4.1.2 Age composition 84
4.1.3 Size composition 84
4.2 Abundance and Density (of population) 84
4.2.1 Average abundance: estimation of population size 84
4.2.2 Changes in abundance 90
4.2.3 Average density 90
4.2.4 Changes in density 92
4.3 Natality and recruitment 92
4.3.1 Reproduction rates 92
4.3.2 Factors affecting reproduction 98
4.3.3 Recruitment 98
4.4 Mortality and morbidity 98
4.4.1 Mortality rates 98
4.4.2 Factors causing or affecting mortality 99
4.4.3 Factors affecting morbidity 99
4.5 Dynamics of population (as a whole) 99
4.6 The population in the community and the ecosystem 102
4.6.1 Physical features of the biotope of the community 102
4.6.2 Species composition of the community
102
102
4.6.3 Interrelations within the community 106
FIR/Sll3 Perca fluviatilis and P. flavescens vii
5 EXPLOITATION 106
5.1 Fishing equipment 106
5.2 Fishing areas 106
5.2.1 General geographic distribution 106
5.2.2 Geographic ranges 106
5.2.3 Depth ranges 106
5.3 Fishing seasons 106
5.3.1 General pattern of seasons 106
5.3.2 Dates of beginning, peak and end of seasons 106
5.3.3 Variation in date or duration of season 1.10
5.4 Fishing operations and results 110
5.4.1 Effort and intensity 110
5.4.2 Selectivity 110
5.4.3 Catches 110
6 PROTECTION AND MANAGEMENT 110
6.1 Regulatory (legislative) measures 110
6.1.1 Limitation or reduction of total catch 110
6.1.2 Protection of portions of populations 110
6.2 Control or alteration of physical features of environment 113
6.3 Control or alteration of the chemical features of the environment 113
6.4 Control or alteration of the biological features of the environment 113
6.5 Artificial stocking 115
6.5.1 Maintenance stocking 115
6.5.2 Transplantation, introduction 115
7 POND FISH CULTURE 116
8 BIBLIOGRAPHY 117

1 IDENTITY

1.1 Nomenclature

1.1.1 Valid names

Perca fluviatilis Linnaeus 1758 Ref: Systema naturae, ed. X, p. 289 and Perca flavescens Mitchill 1814 Ref: Report in part of Samuel L. Mitchill M.D. on the fishes of New York.

1.1.2 Objective synonymy

a) Pofluviatilis

Earlier names:

Perca major Schonevelde 1624
Perca fluviatilis major Aldrovandus 1638
Abbor suecorum Artedi 1738

Junior synonyms:

Perca vulgaris Schaeffer 1759
Perca helvetica Gronovius 1763
Perca italica Cuvier and Valenciennes 1828
Perca fluviatilis intermedius Svetovidov and Dorofeeva 1963
b) P. flavescens

Junior synonyms:
Perca americana Schrank 1792 (name preoccupied in Morone)
Centropomus luteus Rafinesque 1814
Perca notata Rafinesque 1818
Perca serro-granulata Cuvier and Valenciennes 1828
Perca granulata Cuvier and Valenciennes 1828
Perca acuta Cuvier and Valenciennes 1828
Perca gracilis Cuvier and Valenciennes 1828

1.2 Taxonomy

1.2.1 Affinities

- Suprageneric

Kingdom Animalia
Phylum Chordata Subphylum Vertebrata Superclass Gnathostomata Class Osteichthyes Subclass Actinopterygii Division Teleostei Cohort Acanthopterygii. Order Perciformes Suborder Percoidei Family Percidae Subfamily Percinae Tribe Percini

- Generic

Genus: Perca Linnaeus 1758
Ref: Systema naturae, ed. X, p. 289 (based
on Artedi's description of 1738)
Diagnostic characters:
Refs: Berg, L.S. (1965): Freshwater fishes of the USSR and adjacent countrios. Isr. Progr Sci Transl Jorusalem. Collel, and Benarescu (1977): J. Fish. Kes. Board Can. 34 .

Body laterally compressed, ovate, covered with small scales. Cheeks scaled entirely. Opercular bone with a single flat spine; preopercular serrated posteriorly, with uncinate spikes below. Premaxillaries protractile. Setiform teeth set in multiserial bands on the jaws, vomer, palatines, and ectopterygoids. No canines. Branchiostegal membranes not grown together. Branchiostegal rays 7. Anterior most interhaemal bone greatly enlarged. Two dorsal fins, meeting or set slightly apart with XII-XVII, I--III $12-16$ rays. Anal fin short with II $7-10$ rays: anal spines large and well developed. Caudal fin emarginate. Pectorals almost symmetrical, with $11-17$ rays. Ventrals behind the pectoral base, set close together with a distinct spine. Lateral line not continued on the caudal fin. Pseudobranchiae present. Sensory canal cavities on the head developed slightly. Swimbladder well developed. Breeding tubercles absent. Vertebrae $36-43$.

> - Specific

Artificial key to the identification of all species of Perca:

1(2) First dorsal fin markedly higher than the second. Not less than 54 scales in the lateral line. A dark spot at the posterior of the dorsal fin. 3 .

2(1) First dorsal fin usually not higher than the second sometimes slightly higher. Not more than 55 scales in the lateral line. No dark spot at the posterior ond of the dorsal fin.

D1 XII-XIII D2 II-III/12-13; A II/(7)8-9. Lateral line scales 41-54; Vertebrae 36-40. Asiatic highlands of eastern Kazakh S.S.R.: Balkhash and Alakul Lake systems.

> P. schrenki Kessler

3(4) Base of dorsal fin in front of base of pectoral fins, above, or rarely behind them. Cranium wide. Supraoccipital crest usually low, its upper edge directed upward, and rear edge as a rule not projected backward to the end

Fig. 1 a. top: \underline{P}. flavescens from Lake Tadenac, Ontario bottom: P. fluviatilis from Loch Leven, Scotland

b. P. flavescens from Lake Tadenac, Ontario

Fig. 2 a. Perca fluviatilis vulgaris from Lake Syabersk (after Pokrovskii, 1951)
b. Perca fluviatilis gracilis from Lake Lyubivo
of the basioccipital．Interocular width $20.6-29.0 \%$ of head length．First spine of dorsal fin $370-94 \%$ of length of second，and 33－149\％of length of first anal．Predorsal bone extends anterior to the first neural spine；pterygiom phore supporting the first dorsal spine extends between the first and second neural spines．

D1 XII－XVIII，D2 I－III／13－15； A II／（7）8m9（10）．Lateral line scales 56－77；Vertebrae 18－22 and 19－23， total $(39,40) 41-42(43,44)$. Europe， Siberia east to Kolyma basin．

P。 fluviatilis L．

4（3）Base of dorsal fin behind base of pec－ torals or rarely above them．Cranium narrow．Supraoccipital crest low， upper edge in straight line with top of skull，near edge projected beyond end of basioccipital．Interocular width 17．9－24．6\％of head length．First spine of dorsal fin $35-69 \%$ of length of second， and $36-83 \%$ of length of first anal． Predorsal bone extends between the first and second neural spines；pterygiophore supporting the first dorsal spine extends between the second and third neural spines．

D1 XIII－XV，D2 II／12－15；A II／7－8； Lateral line scales 54－62；Vertebrae （18） 19 （20）and（20）21－22，total 40－41．Canada，U．S．A．，east of Rocky Mountains．

> P。 flavescens Mitchill

1．2．2 Taxonomic status

A morpho species，not established by breeding data．Fast－growing and slow－growing morpha are recognized occurring within the same population． Small morpha may occupy shore areas，are gregam rious，and feed on invertebrates；large morpha occupy open water，are solitary and feed on fish． Examples，and a list of references to Russian populations is given in Berg（1965）．

1．2．3 Subspecies

Taxonomists have disagreed on the status of the Eurosian perch（P。fluviatilis L）and the American perch（ㅇ．flavescens Mitchill）as valid separate species．Svetovidov and Dorofeeva（1963） argued from comparisons of morphological charac－ teristics that intraspecific variation in P ． fluviatilis showed a continuous directional trend from Europe eastward to the Kolyma area of Siberia， and that $P_{\text {．}}$ flavescens was the easternmost expres－ sion of this range of variation．Bailey et al． （1970），however，recommended that P_{0} flavescens

Mitchill should be retained as a good species，on the grounds that Svetovidov and Dorofeeva＇s data． was inconclusive，distribution was discontinuous， and there were differences in growth－rate and colour．No definitive genetic experiments have been undertaken to test the separate identity of these fish．Thorpe（1977a）has compared biological characteristics of the two forms，and as the range of expression of these in P ．flavescens falls wholly within the range of P ．fluviatilis，inclu－ ding growth－rates，he concluded that the two species are biologically equivalent．However，Collette and Banarescu（1977）have discovered that the pre－ dorsal bone extends between the first and second neural spines in P．flavescens but is anterior to the first neural spine in P．fluviatilis．This osteological character separates the two species definitively．

Pokrovskii（1951）reviewed data on intram specific variation in perch，and，defining a type－ form from Lake Onega，he supported the subspecific． status of P．f．vulgaris Schaeffer 1759 （Fig．2a）， a faster－growing deep－bodied form of relatively high fecundity from lakes with a good food base． Similarly，he supported subspecific status for the contrasting $P_{\text {．}}$ f．gracilis Cuvier and Valenciennes 1828 （Fig．2b），a $\frac{\text { slower－growing slender form from }}{}$ poorer lakes．He also suggested that the forms described by Smitt（1893）as P．f．var．maculata and by Grimm（1899）as P．f．var．macrophthalma， should be considered to belong to the subspecies gracilis．Further，Dianov（1955）described the form P．f．zaissanica from Lake Zaisan，and Karaman（1924）the form P．f．macedonica from Lake Dojran．However，these variants are now considered to be growth forms only（collette，pers．comm．）and not subspecies．

1．2．4 Standard common names， vernacular names

Standard common names：

Australia	Redfin，English perch
Austria	Barsch，Flussbarsch
Belgium	Perche commun，Baar
Bulgaria	Kostur
Canada	Yellow perch
Czechoslovakia	Okoun Y̌ľnI，Ostriez
Denmark	Aboree
Estonia	Ahvena
Finland	Ahven
France	Perche fluviatile
Germany	Barsch
Greece	Perca
Hungary	Sügér，Csaps Sïger
Ireland	Perch
Italy	Pesce persico
Latvia	Asers
Lithuania	Eszerýs
Luxembourg	Pisch
Netherlands	Baars
Norway	Abbor
Poland	Okón

Portugal	Perca	Buljesh	Yugoslavia
Romania	Biban	Burschig	Germany
Spain	Perca	Buirschling	Germany
Sweden	Abborre	Birstel	Switzerland
Switzerland	Barsch, Perche, Perca	Burstla	Austria
Turkey	Tatlisulevregi baligi	Butz	Switzerland
United Kingdom	Perch	Butzen	Switzerland
U.S.A.	Yellow perch		
U.S.S.R.	Okun	Centin	Switzerland
Yugoslavia	Gregeč, Ostriz̈, Perkija	Cent-inmbocca	Switzerland
		Chretzer	Switzerland
The name	($\Pi \in p r i n)$ was first used by	Cocassette	Switzerland
Aristotle (Seel	886), a word signifying the	Cochonnet	France
dusky colour of	ening grapes, and is thought	Common perch	U.S.A.
to refer to the	ded marking of this fish. The	Costes	Romania
name has been	duced to many European langua-	Costras	Romania
ges, sometimes	the Latin form perca.	Costrasul	Romania
		Costrus	Romania
Vernacular name		Creagag	Ireland
		Crutchet	England
Abbor	Norwey	Csap6 süger	Hungary
Abborre	Sweden	Draenog	Wales
Aborre	Denmark	Ditiber	Hungary
Ahon	Finland		
Ah-sah-waince	U.S.A. (Chippewa)	Egli	Austria, Germany, Switzerland
Ahun	Estonia	Egling	England.
Ahven	Finlend	English perch	Australia
Ahvena.	Estonia	Eszerys	Lithuania
Alabuga	Kazakhstan		
Alygar	Yakut	Ferskvandsaborre	Denmark
American perch	Canada, U.S.A.	Flussbarsch	Austria, Germany
Anbeiss	Netherlands		
Asers	Latvia	Gheub	Switzerland
Asprisor	Romania	Ghibanul	Romania
		Grgee	Yugoslavia
Baars)	Netherlands,	Grundaborre	Denmark
Beas)	Belgium	Guelb	Italy
Baboi	Romania		
Baes	Belgium	Hurlin	France
Bandar	Yugoslavia	Hurling	England
Bandirolo	Switzerland, Italy	Hiirling	France, Switzerland
Bars	Germany		
Barsch	Austria, France, Germany, Switzerland	Jôlerie	France
Barsch	Germany	Khakhynai	Yakut
Bärschling	Austria, Germany	Kostresh	Yugoslavia
Barse	England	Kostriz	Poland
Barster	Germany	Kostur	Bulgaria
Base	England	Krabegli	Switzerland
Beerschke	Germany	Krätzer	Austria, Germany, Switzerland
Bersh	U.S.S.R.		
Bersich	Germany	Lake perch	Canada, U.S.A.
Bersig	Switzerland	Lutz	Switzerland
Bersing	Germany		
Berster	Austria, Germany	Méché	Bulgaria
Berton	Switzerland, Italy	Mesce	Bulgaria
Bertonscello	Switzerland	Meshé	Bulgaria
Bertsch	Germany	Milcanton	Switzerland
Bertuscell	Italy		
Biban	Romania, Bulgaria	Okon	Poland
Bibanul	Romania	Okoun fichif	Czechoslovakia
Boillat	Switzerland	Okun	U.S.S.R., Poland
Bors	Germany	0stresh	Yugoslavia
Börs	Germany	Ostriez	Czechoslovakia
Bules	Germany	Ostrizh	Yugoslavia.

Paidleach	Ireland	Red perch	U.S.A.
Pasghen	Italy	Rehling	Austria
Pas perseg	Italy	Rerlig	Switzerland
Pèirse	Ireland	Rerling	Germany
Perc	Wales	Ring perch	U.S.A.
Perca	France, Greece, Portugal,	Ringed perch	U.S.A.
	Spain, Switzerland	River perch	U.S.A.
Perch	Canada, U.K., Ireland	Rødaborre	Denmark
Perchat	France, Italy	Rode baars	Netherlands
Perchaude	France, Canada	Rohrbarsch	Austria
Perche	France, Switzerland		
Perche commune	Belgium	Salmerino	Italy
Perche de riviere	France	Schratz	Austria, Germany
Perche fluviatile	France	Schrazen	Germany
Perchette	France	Seebarsch	Austria
Perchia	Italy	Seidthar	Ireland
Perchiné	Ireland	Sildingjager	Denmark
Percho	France	Singer	Flungary
Perchot	France	Slipek	Poland
Percig	France	Steargan	Ireland
Perco	France, Belgium	Stichling	England
Percot	France	Strandaborre	Denmark
Perdrix de riviere	France	Streifbarsch	Germany
Pergo	France	Striped perch	U.S.A.
Perki	Greece	Suger	Hungary
Perkija	Yugoslavia	Siurger	Germany
Persch	Germany		
Perschke	Germany	Tatlisulevregi	
Persec	Italy	baligig	Turkey
Persegein	Italy	Trasling	England
Persego	Italy	Trauling	England
Persic	Italy	Tryte	Norway
Persich	Italy	Tusindbr¢dre	Dermark
Persico reale	Italy		
Persighin	Switzerland	Warschieger	Austria
Persing	Italy	Warschinger	Germany
Pes pasi	Italy		
Pes persach.	Italy	Yellow Ned	U.S.A.
Pes persec	Italy	Yellow Perch	Canada, U.S.A.
Pes persegh	Italy		
Pes persich	Italy	Zängel	Germany
Pes persog	Italy	Zboras	Romania
Pes persogh	Italy	Zebra	Ireland
Pesc persi	Italy		
Pesce persico	Italy	1.3 Morph	
Pesce perso	Italy		
Pess persech	Italy	1.3 .1	mal morphology
Pess persigg	Switzerland		
Pess perssi	Italy	Some morph	cal data are show
Pesse persego	Italy		
Piche	Belgium, France	Gaschott	distinguished col
Pichette	Belgium	of perch in Eur	those from rivers
Pierche	France	of North Germany	ng brightly colou
Pirsholz	Switzerland	pectoral, ventral	nd anal fins, and
Pisch	Germany	subalpine and al	lakes being gene
Pisch	Luxembourg	He acknowledged	neider's observati
Pisci persicu	Italy	1923) that fin	uration is related
Precchia di sciumni	Italy	those fish feedi Astacus fluviati	on crustaceans (es having the redde
Raccoon perch	U.S.A.	Schiemenz (1909)	tinguished three
Raspar	Romania	groups which he	ed weed-perch, de
Rattel	Switzerland	perch, and preda	perch: These th
Raubfisch	Switzerland	were progressive	ess strikingly co
Rechling	Switzerland	brassy with deep	fins to generall
Redfin	Australia	no red pignent.	fins to generaly

TABLE I
Meristic data for Perca fluviatilis

COUNTS								
D1	D2	P	V	A	C	L L Scales	Vertebra	Author
XIV-XV	1-11/13-14	14	1/5	11/8-9	18	55-60	41-42	Day (1880) (Europe)
XIII-XIV	1-11/13-15	-	-	11/6-7	-	55-70	-	Day (1880) (America)
XIII-XVI	1-11/13-15	14-17	1/5-6	11/8-9	17	54-72	-	Seeley (1886)
XIII-XV	1/13-14	14	1/5	11/8-9	17	60-68	-	Kammerer (1907)
XIIII-XVI	1/13-15	-	1/5	11/8-9	-	58-67	-	Smolian (1920)
XIII-XVI	1-11/13-16	14-16	1/5	11/7-10	17	53-74	-	Chevey (1925)
XIII-XVII	11/13-15	14	1/5	11/8-10	17	58-67	-	Gaschott (1928)
XIII-XV	1-111/13-15	-	-	11/8-9	-	57-77	-	Staff (1950)
-	-	-	-	-	-	-	39-42	Bailey and Gosline (1955)
XIII-XVII	1-11/13-15	14	1/5	11/8-10	17	58-68	-	Schindler (1957)
XIV-XV	11-111/12-15	-	-	11/7-9	-	. 60-66	40-42	Serov (1959)
XV	11/14	-	-	11/9	-	63-65	41	Shilenkova (1959)
XIII-XVI (XVII)	1-11/13-16	14-16 (17)	1/5(6)	11/(7)8-9(10)	17	(53)60-70(74)	41-43	Spillman (1961)
XII-XVII	1/14-15	-	1/4-5	11/8-9	-	57-72	-	Suskiewicz (1961)
-	-	-	-	-	-	-	38-43	Collette (1963)
XII-XIV	11-111/12-13	-	-	11/7-8	-	57-62	-	Herman et al. (1964)
XIII-XVII	1-111/13-15	11-17	-	11/(7)8-9(10)	-	57-77	39-42	Berg (1965)
XIII-XV	11-111/13-15	13-15	1/4-5	11/7-8	-	55-60	40-41	McPhail and Lindsey (1970)
XIII-XV	1-11/12-15	13-15	1/5	11/6-8	-	51-61	38-41	Scott and Crossman (1973)
XIII-KV	1-111/14-15	12-15	1/5	11/8-10	16-18	56-68	38-43	Thorpe (unpublished)

Crossman (1962) describes a single specimen from Lake Erie which was bright orange in ground colour and lacked dark vertical bars. The cheek and lower operculum were a brilliant metallic silver. In all other respects, this fish was normal and was therefore regarded as a colour mutant. Completely black perch are sometimes found in Lake Ladoga (Vologdin, In Berg1965), but the normal colouring of perch is usually very stable. Dymond (1932) reported a blue perch from Lake Erie. When fresh, this fish was otherwise typical except for a lack of yellow colouration. Dymond regarded this as a physiological variation. Hubbs (In Dymond 1932) also reported blue perch from Saginaw Bay, Michigan.

Driver and Garside (1966) investigated the effects of salinites of up to 10300 ppm in Manitoba lakes on meristic characteristics and concluded that perch were structurally rather stable; the slight differences of vertebral counts and anal fin-ray counts between lakes were not related to salinity differences.

During development, many body proportions alter, and Repa (1973 a) has shown that the relative size of several skull bones especially the frontal bone is related to body length and the changes continue gradually throughout life. Repa (1973 a) also showed that the number of rakers on the anterior and posterior edges of the first gill arch increased as the fish grew from 70 to 90 mm in length: The definitive number of rakers was higher in reservoir fishes than elsewhere, and he attributed this to differences in nutrition.

1.3.2 Cytomorphology

Nygren et al. (1968) showed that in perch gonadal tissues, there were 48 small acrocentric chromosomes, but that there was some variability in chromosome numberin somatic tissues. Such constancy in gonadal tissue and variability in somatic tissue is typical of teleosts examined (Post 1965), Lieder (1963) found in 4 male perch a satellite attached to a rod-shaped chromosome. This satellite was absent in 5 female perch exam mined, and Lieder suggested tentatively that this was a definitive sex chromosome (Y). By comparison with similar bodies in eels (Angrilla anguilla L) and ruff (Gymnocephalus cernua L), he suggested that sex-determination should be considered as of the Yo type, the Y element not requiring a distinctive homologue.

Ohno and Atkins (1966) found that the DNA content of the nucleus in Percidae was $30-35 \%$ that of the mammalian nucleus as compared with 20% in Cyprinodontidae, 40% in Clupeidae, 50% in Cyprinidae and 80% in Salmonidae. Hinegardner (1968) showed that highly specialized fishes tend to have less DNA per cell than more generalized ones of the same phyletic grouping, and Hinegardner and Rosen (1972) found perch to have
1.2 picograms haploid DNA content. This was more than the average of 1.1 for generalized species of the Percoidei.

1.3.3 Protein specificity

Nikkila and Linko (1955) analysed proteins from the skeletal muscle of perch by paperelectrophoresis and found characteristic patterns distinguishing the fish from 9 other species (see Fig. 3).

An exploratory study of serum proteins of a range of poikilotherms by Deutsch and McShan (1949) included samples from 25 yellow perch. The relatively complex eletrophoretic pattern included 12 component proteins, and was quite distinct from that of walleye (Stizostedion vitreum) (Fig. $3)$.

Nyman (1965, 1965 a) compared electropherograms of serum proteins and esterases, and liver proteins and esterases between perch and 5 other freshwater fish. He reproduced only drawings from his data so that there is no real means of assessing its validity but what is shown is as follows:

Serum proteins:	polymorphic variations in 2 band systems. clearly distinct from pike (Esox lucius L.).		
Serum esterases:			variable pattern but spe-
:---			
cies specific and distinct.			

2 DISTRIBUTION

2.1 Total area

(See map, Fig. 4.) Perch are found throughout Europe except the Iberian Peninsula, southern Italy and the western part of the Balkan Peninsula (Berg 1965); they occur in Turkey, ir. the Istanbul area and in lakes close to the Black Sea coast of northern and north western Anatolia (Kosswig 1952); throughout the U.S.S.R. eastward as far as the Kolyma River except for the Caspian Sea and the river basins of the Crimea, Turkmenia, Balkhash and Tarim, the Pacific Ocean basin, Anadyr, Kamchatka, Amur, Sakhalin and rivers south of the Amur (Berg 1965); in North America from Nova Scotia (except the Cape Breton Islands) south along the Atlantic coast as far as Florida, Alabama, to the west of the Appalachian mountains from Pennsylvania to Missouri, Kansas to Montana, northward to Great Slave Lake and thence southeast to James Bay, Quebec and New Brunswick (Scott

Fig. 3 a. Paper-electrophoretic diagrams of extracts of fish skeletal muscle in sodium phosphate buffer, at $I=0.05, \mathrm{pH} 7.55$. The dextran line represents the starting-point after allowing for electroendosmosis and the solid line the point of protein application (from Nikkila and Linko (1955))

b. Electrophoretic diagrams of blood serum proteins of perch (above) and walleye (Stizostedion vitreum) (from Deutsch and McShan, 1949)

Fig. 4 Distribution of P. fluviatilis (from Thorpe in press a)
and Crossman 1973). They range from altitudes of over 1000 m to sea-level and enter brackish water in the Baltic Sea (Ehrenbaum 1905-09), the Arctic Ocean (Chevey 1925, Dryagin 1948) and the Atlantic seaboard of North America (Muncy 1962, Keup and Bayless 1964 and McKenzie 1959).

From the fossil record P. fluviatilis $^{\text {fl }}$ known from Miocene deposits in the Zaysan basin of Kazakhstan (Lebedev 1959), the middle Irtysh area of western Siberia (P. f. lepidoma Yakovlev 1960) and also possibly from the far east and from Olkhon Island in Lake Baikal (Svetovidov and Dorofeeva 1963). In Mio-pliocene, middle and upper Piocene, it occurs in the Altai
(Sychevskaya and Devyatkin 1960) and has been found in pliocene remains in Austria (P. edlaueri, Weinfurter 1950) and Belgium (Newton 1908). In the Pleistocene deposits, it has occurred at Willershausen, Germany (Weiler 1933), at Billstedt, Hamburg (Gripp and Beyle 1937), at Chaunsk Bay on the Kyrchak peninsula (Svetovidov and Dorofeeva 1963). These later fossils lend support to Yakovlev's (1961) hypothesis that perch entered North America in Late Tertiary times via a land bridge in the Bering area. Banarescu (1960, 1973), however, maintains that the route was via a North Atlantic land bridge, a view which Svetovidov and Dorofeeva (1963) reject on the gricunds that a long narrow isthmus of this type does not constitute a suitakle dispersal route for freshwater fishes (of Fanama).

Spillman (1961) states that perch probably arrived in northern France in Tertiary times after the elevation of the Pyrenees but before that of the Alps as the fish is found naturally in the basin of the Po in Italy. It has spread into southern France in recent times probably entering the Garonne basin in the early nineteenth century and that of the Hérault by means of the Canal du Midi about 1850 (Moreau 1881 in Chevey 1925).

In North America, Metcalf (1966), arguing from fossil evidence, claims that perch were dism tributed well to the south in the Great Plains in Illinoian time (c 300000 BP) later disappearing from the western part probably due to periods of extreme aridity. McPhail and Lindsey (1970) classify perch with 17 other species which spread into northwestern Canada from the Mississippi refuge after the Wisconsin glaciation (c 10000 BP), and Bailey and Allum (1962) suggest that perch moved westward into the middle Missouri basin from this same refuge. The present day distribution of perch in North America is influenced by introductions into many western and southern states from which it has extended locally. Its occurrence in British Columbia, for example, is probably by dispersal from plantings in Washington State. (Scott and Crossman 1973).

The distribution in the southern hemisphere in South Africa, Australia and New Zealand is
entirely due to introductions, (see section 6.5.2).
Throughout its range, the perch occurs in lakes and the slower reaches of rivers, and by virtue of its relatively high fecundity and unspecialized spawning requirements, populates new reservoirs, impoundments and canals very rapidly.

2.2 Differential distribution

2.2.1 Spawn, larvae and juveniles
(See sections 3.1.6, 3.2.2 and 3.2.3.)

2.2 .2 Adults

(See section 3.5.1.)

2.3 Determinants of distribution changes

2.3.1 Temperature

Weatherley (1963) discussed the temperature tolerances of perch and concluded from his own experiments (1963 a) and those of Hart (1952) that the fish could not survive for more than a few hours at an upper limit of $31^{\circ} \mathrm{C}$. Weatherley (1963) showed that the natural range of perch extended southward in North America to a boundary corresponding closely with the summer $31^{\circ} \mathrm{C}$ isotherm and that in introduced populations in Australia, the limit of colonization also corresponded closely with the same isotherm. However, Lake (1967) has suggested by analogy with native Australian species that high minimum temperatures during the pre-spawning period may damage the oocytes and thus be an effective limiting factor controlling perch distribution there. Weatherley had found no perch in the Darling River north of Wilcannia where summer temperatures were $31^{\circ} \mathrm{C}$, but Lake found them at Narrandera on the Murrumbidgee River at similar summer temperatures. At Wilcannia, the minimum winter temperatures were $12^{\circ} \mathrm{C}$; at Narrandera, perch spawned at $11.5^{\circ} \mathrm{C}$. Thus the winter minimum at wilcannia was above the spawning temperature for perch, however, see section 3.1 .6).

McPhail and Lindsey (1970) suggest that northerly distribution is limited by low temperatures since only one population has been found north of the $60{ }^{\circ} \mathrm{F}$ July isotherm in Ontario, and the most northerly population in Canada lives in the Rae Arm of Great Slave Lake at $63^{\circ} \mathrm{N}$.

Alabaster and Downing (1966) found 1000 minute lethal temperatures for perch of $26^{\circ} \mathrm{C}$ and $29.5^{\circ} \mathrm{C}$ at acclimation temperatures of $15^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ respectively (see also section 3.3.2). Horoszewicz (1973) found that lethal temperature (L) was correlated with acclimation temperature (a) $(r=0.98)$ and that the relationship could be expressed by the linear formula; $L=26.16+$ 0.358a. In the field, he found no correlation between lethal temperature and maximum lake
temperature during the previous 24 h suggesting that young perch did not stay in the regions of the highest temperature (in this case $31^{\circ} \mathrm{C}$). ${ }^{\text {T}}$ Disturbing ${ }^{\prime}$ temperature at which fish first showed accelerated respiratory movement occurred between $30.5^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$ after acclimation temperatures of $19.8=27.8^{\circ} \mathrm{C}$. At the disturbing levels, the fish died within 100 h . When given the choice, perch avoided water at temperatures above $28^{\circ} \mathrm{C}$ and did not acclimate to these.

Ferguson (1958) found that in Lake Nipissing, perch preferred temperatures of $19-21^{\circ} \mathrm{C}$, whereas, in his laboratory experiments, they preferred 21$24^{\circ} \mathrm{C}$. As young perch were found in warmer water than adults, he concluded that the discrepancy between field and laboratory data was due to the age of the fish studied. Herman et al. (1964) found that perch aggregated at a temperature stratum of $21^{\circ} \mathrm{C}$ in summer and Neuman (1974 a) recorded the highest catches in gillnets on the Swedish Baltic coast at $18-21^{\circ} \mathrm{C}$ (see also section 3.3.2).

2.3.2 Currents

Weatherley (1963) concluded that mountain ranges prevented the natural extension of perch westward in North America and southward in Burope since the fish was unable to live in streams with a rapid flow. Kreitmann (1932) established that the limiting watermelocity (V) that the perch could resist was $10-15$ times the square root of its length (L) in his case $V \geqslant 45-60 \mathrm{~cm} / \mathrm{sec}$, but he noted that perch flourished in the Danube at places where velocities were greater than $60 \mathrm{~cm} /$ sec. Ohlmer and Schwartzkopff (1959) found V/ \sqrt{L} values of c 24 for individual undisturbed wild perch swimming through a measured section of the outflow of the Seeburger See, Germany. Hergenrader and Hasler (1967) using sonar in Lake Mendota found that swimming speeds increased linearly with temperature, the maximum sustained level being $54 \mathrm{~cm} / \mathrm{sec}$ at $20-25^{\circ} \mathrm{C}$. Fish size is not stated, but Bardach (1951) gave mean length of Mendota perch as 24.3 cm in 1948: Using this value, $\mathrm{V} / \sqrt{\text { L }}$ is about 11, corresponding closely with Kreitmann ${ }^{1}$ s values. Ohlmer and Schwartzkopffis value probably represents a burst speed rather than a sustained value or else small fish. Houde (1969) found that perch larvae of 8.5 mm could sustain swimming against $2.5 \mathrm{~cm} / \mathrm{sec}$ current speeds: this is equivalent to a V / \sqrt{L} value of about 85. Hoľik (1966) found perch present in tributaries of the Orava River, Czechoslovakia, at slopes ranging from $0.2-1.2 \%$, but absent in streams whose lowest slope was $>0.4 \%$. Gee et al. (1974) have shown experimentally that perch are capable of small adjustments to flow changes, being just negatively buoyant in still water (mean flotation pressure $0.977 \mathrm{ml} / \mathrm{g}$), but reducing buoyancy to $0.500 \mathrm{ml} / \mathrm{g}$ at $40 \mathrm{~cm} / \mathrm{sec}$ flow.

In extreme cases, waterfalls present barriers to distribution as at Harpefoss (Norway) and Gäddedefors (Sweden) (Ekman 1922).

2.3.3 Waves

In some shallow lakes, perch abpear to avoidic lee shores during stormy conditions: At Loch Leven, Scotland, Thorpe (unpubl。) fus carcasses of healthy perch along lee shores after rough weather during the spawning season, but not at other times of the year.
2.3.4 Depth

In general, perch occupy deep water in lakes during winter and move inshore to spawn in spring remaining in the littoral or epilimnetic waters until the autumn before returning to deep water (cf. Ferguson 1958, Carr 1962). In Wisconsin, Lakes Hile and Juday (1941) found no simple rela tion between depth distribution, temperature and dissolved oxygen and found depth distribution differed between lakes being predominantly $3-5 \mathrm{~m}$ in Nebish and Trout Lakes, and $5-7 \mathrm{~m}$ in Silver anc Muskellunge Lakes. In Clear Lake, 5 perch were caught between 19.5 m and 24.5 m in the hypolimnion indicating that they occasionally penetrate deep deoxygenated waters. Scott and Crossman (1973) state that perch are not normally found below 9.2 m , but Ferguson (1958) recorded them down to 45.7 m in May and Stone (1944) recorded them from 28 m in August and 56 m in November in Lake Ontario. In Finland, Lind et al. (1971) found perch in depths to the thermociine at 6 m and none below it. Herman et al. (1964) reported perch normally at <27 (45) mathoms in Lake Michigan and young fish occupying shallower water than adults. Carr (1962) found a similar distrim bution in Saginaw Bay and Lake Huron with fry only in very shallow ($<1 \mathrm{~m}$) water until October when they too moved offshore to the $2-7.5 \mathrm{~m}$ zone. In Australia, Tunbridge (1972) reported perch comm monly to 9 m . In the Baltic, Neuman (1974 a) found perch prefer shallow warm sheltered areas, but move out to open deeper areas in August. Peak catches were made at $2-5 \mathrm{~m}$, but fish were caught to 25 m depth. Hergenrader and Hasler (1967) recorded shoals at all depths from near the surface to close to the bottom (26 m) of Lake Mendota in all months from January to June but, with stratification in early July, the perch were found mostly in the thermocline at $10-12 \mathrm{~m}$.

Hasler and Wisby (1958) state that the older the animal, the more likely it is to be found in deep spots in a lake.
2.3.5 Light

Perch have 25 rods and 9 cones to 80μ of retinal surface (Wunder 1926) and thus were classified by Wunder as "bright-light" fish.

Hergenrader and Hasler (1966, 1967, 1968) recorded the periodicity of movement of perch in Lake Mendota and found that they remained inactive on the bottom at night and formed shoals in the morning twilight moving out into open water.

The general activity patterns are discussed in section 3.5 , but it is clear that perch are day-active in all localities and inactive at night on the bottom.

2.3.6 Turbidity

Muncy (1962) suggested that increased turbi-m dity reduced spawning success among Severn River perch, Maryland, but did not distinguish the effects of this from those of increased salinity. Scott and Crossman (1973) state that the numbers of perch decrease as turbidity increases which is consistent with a mode of life dependent primarily although not wholly on sight (Wunder 1926) (see below, section 2.3.8).

2.3.7 Substratum

Scott and Crossman (1973) note that perch are most abundant in lakes with a muddy, sandy or gravel bottom. However, they are very adaptable and their nonspecific requirements in this respect are of advantage to them, as for example, in populating new waters such as the Kliceva reservoir Czechoslovakia where the sides were steep and composed of scree material (Holc̈ik 1970).
2.3.8 Shelter

Hartmann (MS. 1974) suggests that in the Bodensee high plankton density, since eutrophication, has provided shelter for perch fry and contributed to their success in this lake in recent years. Vashkyavichyute (1963) noted that perch fry in the Kurskiy Zaliv, Lithuania occur in water of $0.2-0.3 \mathrm{~m}$ near the shore but at wind strengths of force 3-4 move out to depths of 0.6 0.8 m . Also in the Baltic, Neuman compared the catches of surface and bottom gillnets inshore and at 0.5 km offshore: 96% of the surface catch and 97% of the bottom catch was from inshore.

2.3.9 Ice

Petrosky and Magnuson (1973) subjected perch to simulated winter conditions in aquaria and noted that as the dissolved oxygen levels fell from 4.0 to 0.25 ppm , the fish rose from the lower middle depths until they were nosing at the ice. Such behaviour brought them into the water layers at which oxygen tension was highest. As noted above (Depth), Hergenrader and Hasler (1966) found perch at all depths in Lake Mendota in winter.

2.3.10 Dissolved gases

Meadows (1970) found that perch returned to a polluted area of the River Lee, England, when the oxygen level rose to 1 ppm . The concentration for perch survival is given by Jones (1964) as $1.1-1.3 \mathrm{ppm}$ at $16^{\circ} \mathrm{C}$ and he also quotes values of $0.4-0.9$ at $15.5^{\circ} \mathrm{C}$ and 2.25 ppm at $20 \mathrm{~m} 26^{\circ} \mathrm{C}$ from other workers. He points out that critical levels below which activity is restricted are more
meaningful. Fry (1957) determined this level as 7 ppm at $20^{\circ} \mathrm{C}$ and Wunder (1936) gave values of 7-10 ppm. Andreasson and Stake (1970) found perch distributed in Lake Tullingesjön, Sweden, down to depths at which the oxygen concentration was just above 7 ppm at the beginning of July ($15^{\circ} \mathrm{C}$) and at 7 pprn at the end of July $\left(19^{\circ} \mathrm{C}\right)$. At these depths, caged fish survived, but at 1 m deeper, all fish died at oxygen concentrations only just below 7 ppm. In Petrosky and Magnuson's experiments (1973) (see section 2.3 .9 , above), lethal oxygen concentrations at temperatures of $2.5-4^{\circ} \mathrm{C}$ were shown to be less than 0.25 ppm , but increased gill-ventilation rate began when oxygen tension fell from 4 to 1 ppm. Besides increased ventilation rate, Petit (1973) found that at oxygen levels below 6 ppm , the amplitude of opercular movement also increased. General activity decreased as the lethal concentration was approached and bleaching, cessation of feeding and loss of equilibrium occurred. At $22^{\circ} \mathrm{C}$, he found that the lethal oxygen concentration for perch fry was 1 ppm.

Black et al. (1954) recorded that the CO_{2} tension at which perch can utilize half the available oxygen is about 80 mm Hg and that at which no oxygen is available is 110 mm Hg .

- 2.3.11 Dissolved (inorganic) solids

Chevey (1925) described perch as occurring in weakly saline areas of the North Sea and Arctic Ocean. Dryagin (1948) recorded perch in the Obskaya Guba area of northern Siberia and large populations of perch feed in summer in the Baltic Sea (Berzins 1949, Subklew 1955, Henking 1923, Neuman 1974 and 1974 a) in areas where salinities range from $0-8 \%$. Hildebrand and Schroeder (1928) reported perch from Chesapeake Bay in salinities up to $13 \% 0$; Muncy (1962) also from Chesapeake Bay at 5-7\% ; and Keup and Bayless (1964) from the Neuse River, North Carolina at 12.2%, but preferring 1.8-3.5\% . Inland, perch are absent from the Caspian Sea (Berg 1965) although present in the inflowing rivers, but occur in the Aral Sea (Letichevskii 1946). The Caspian and Aral Seas have salinities of 12% and 10% respectively (Zenkevitch 1957). Driver and Garside (1966) found perch in a range of prairie lakes in Manitoba having salinities ranging up to 10.3%. Lutz (1972) showed experimentally that perch were able to survive in one-third strength seawater approximately isosmotic with perch plasma, but in onehalf strength seawater symptoms of muscular paralysis appeared within 24 h and the fish died soon afterwards in a dehydrated state with total body chloride rising by 73% and body sodium by 25%.

Privolnev (1970) measured the depression of freezing point of perch plasma (Λ°) for fish of $25-150 \mathrm{~g}$ kept at $0,5,10,12$ and 15% salinity for 24 h . This rose from 0.51 at zero salinity to 0.72 at 15\% . At 10%, the blood and environment were approximately isotonic. Salts entered. the blood rather slowly, 6 h being required to
reach equilibrium in water at 10%. At this salinity, the fish were maintained setisfactorily for the threewweek experiment with no abnoxmal beham viour, but did not tolerate concentrations above this level.

2.3.12 Poliutants

Härdtk (1934) found the limiting concentration of phenol for perch is about 20 ppm , and Whrmann and Woker (1950) established a relationship between survival time in minutes (t) and concentration in mg / l (C) as follows:

$$
(c-12)^{1.202}(t-3)=344
$$

Wuhrmann (1952) found the threshold concentration for toxicity of cyanide to be 0.13 ppm at $15^{\circ} \mathrm{C}$ with a reaction time of 4 min .

Christie (1974) has suggested that the recent dominance of Lake Erie by perch and smelt (Osmerus) may reflect pollution resitance by these species. The egg-strands of perch may be protected from deoxygenation by attachment to plants (Regier etal. 1969).

2.3.13 Vegetation

Herman et al. (1964) found perch most numerous in lakes with abundant open water and modest amounts of"vegetation. Larval perch are pelagic until reaching a length of c 2 cm (Faber 1967), at which stage they move inshore to littoral and take up a diet of benthic invertebrates (see below section 3.2.2).

2.3.14 Fauna

Breder and Rosen (1966) noted that perch in the New York Aquarium were the least influenced of all fishes kept in crowded conditions and were apparently uninfluenced by the presence of other species. However, in the wild, Lind and Tumunen (1971) found that perch less than 25 g weight were segregated from minnows (Phoxinus phoxinus L) in a 2 ha pond in Finland.

Many authors have recorded that perch fry form mixed shoals with other fry of springm spawning fish (e.g. Vashkyavichyute 1963, Scott and Crossman 1973).

The shoals formed by the adults in summer often appear to be predominantly of one sex and they may be occupying different habitats as Hartmann (MS. 1974) has noted that in spring, almost three times as many males as females are severely infected with Diplostomum trematodes.

2.4 Hybridization

Natural hybridization has been thought to occur between perch and ruffe (Gymnocephalus cernua L) in the Danube near Vienna (Kammerer
1907). Forty one specimens of an unusual peroit were found and Kamerer established by hybridi-. zation experiments that these were crosses with ruffe. Among the hybrids, the males showed no interest in the females at spawing cud no milt could be obtained from the males by stripping. Successful crosses were made between the female hybrids and the males of each parental type. The hybrids were intermediate in appearance between the parental species, but usually more similar to the female parent. In general, the hybrids were less active then the pure-bred fish, grew faster and were more resistant to temperature extremes, pollutants and periods of starvation. Kammerer attempted to produce hybrids as follows:

Pofluviatilis X Gymnocephalus schraetzer
 (Bmbryos developed but did not hatch.)

P。fluviatilis x Lucioperca lucioperca

(Larvae died just after hatching.)
Balon (1956) repeated this last cross using Danube fish from Czechoslovakia, but with less success: In those eggs which developed at all, development was abnormal. Segmentation was irregular beginning at the tail which developed doubled-back over the body. The heart was tube or droplet-shaped, weak and incapable of pumping blood through the vessels: only a lymphatic fluid circulated within the heart itself. With circulatory failure, the individual organs gram dually degenerated. The organism was incapable of any movement and the last embryo died 9 days after fertilization.

Schwartz (1972) lists a further 5 types of hybrid as follows:

Perca x Lina (Nikolyukin 1958)
P. flavescens x Lucioperca (Day 1886)
P. fluviatilis $\%$ x Abramis brama of (Nikolyukin 1935)

P。 fluviatilis $\% x$ Esox lucius of (Nikolyukin 1935)

P. fluviatilis x Rutilus rutilus (Kxyzanovskii 1947, 1968)

And Kryzhanovskii (1953) also records:
ϕ Pofluviatilis f x Leuciscus danilcivskii $\%$
Schwartz does not give details of the success of these crosses, but in those carried out by Kryzhanovskii (1953), only perch x ruffe was successful.

Recently, some doubt has been expressed about the identity of the wild fish reported by Kammerer as Holc̈ik and Hensel (1974) have described a new species, Gymnocephalus baloni, also from the

Danube, which possesses transverse dark bands very similar to those of P_{o} fluviatilis. It is possible that Kammerer had found this fish, but did not recognize its specific identity. However, he did nevertheless succeed in producing viable hybrids artificially.

An extensive series of hybridization experiments was carried out by Hubbs (1971) to evaluate the relationships between the tribes of North American Percidae. Crosses and reciprocal crosses were carried out between P. flavescens and the following species:

Stizostedion vitreum
Percina sciera
Etheostoma spectabile
E. blemnioides
E. caeruleum
E. tetrazonum
E. zonale
L. cyanellus
L. punctatus

Chanenobryttus coronarius
Cichlasoma cyanoguttatum
$\left\{\begin{array}{l}\left\{\begin{array}{l}\text { P. flavescens } \\ \text { only }\end{array}\right. \\ \end{array}\right.$
In all cases, the progeny either failed to develop or died before feeding. As hybrids of S. vitreum and the darters (Etheostomatini) were more successful, Hubbs suggested that the walleyes should be separated from the perch and included with darters in the Etheostomatinae.

BIONOMICS AND LIFE HISTORY

3.1 Reproduction

3.1.1 Sexuality

- Hermaphroditism, heterosexuality, intersexuality

Chevey (1922) records the occurrence of a. protandrous perch which fertilized the eggs of one female and several weeks later developed an ovary itself. It elicited courting behaviour in a true male, but the spawing was not successful. On dissection of this specimen, no trace of testicular tissue was found. Chevey reviews four previous reports of hermaphrodite perch, all from dissected material in which either testiculartissue was present on one side and ovarian tissue on the other or else a single gonad was formed partly of testicular and partly of ovarian tissue. Turner (1927) also reported a hermaphrodite specimen from America which had a 52 mm ovary to which was attached an abnormally shaped testis anteriorly. Eoth gonads were histologically normal with a sharp bcundary between them and no transition zone. Perch with an ovotestis was also reported by Brunelli and Rizzo (1928).

- Sexnal dimorphism

The males at spawning are generally brighter in colour than the females (Wunder 1936, Breder and Rosen 1966). Vladykov (1931) fe...u that the paired fins were longer in the male. Adult females are generaily larger than adult males of the same age and gravid females in spring are distinct due to their swollen appearance and slight protrusion of the genital orifice.

3.1.2 Maturity

(See Table II.) Tesch (1955) noted that sexual maturity was first achieved by males during their second summer and by females 1-2 years later. Thus, for most populations, spawning occurred first at AGI for males and AGII or III for females. However, Healy (1954) reported 5-9\% of females of AGI spawning in Lough Barnagrow, Ireland; Shilenkova. (1959) noted mature females of AGI in Kazakhstan lakes; and Lake (1959) also gave AGI as. the age of first maturity among stunted perch in Australia. In all populations studied, most females of AG III at spawning time are mature and all at AGIV.

Among males, the size at first maturity is usually quite small ($5-12 \mathrm{~cm}$), but Laskar (1943) reported 16.0 cm for perch in the Grosser Plöner (see AG II). Among females, spawning occurs first at a larger size, usually $12-18 \mathrm{~cm}$, but Thorpe (1974) found no ripe females at less tham 24.0 cm in the fast growing population in Loch Leven. Weight at first maturity ranges from $10-60 \mathrm{~g}$ in males and $20-240 \mathrm{~g}$ in females.

Alm (1953, 1959) concluded from the study of experimental populations of perch in ponds at Kälarne, Sweden, that within a year-class maturity was reached earlier by larger fish, that is, growth rate influenced maturation. Between yearclasses and populations, the age at first maturity was influenced by genetic factors and tended to be higher in faster-growing forms than in slower-growing ones. Krasikova (1958) reported an example of this from the Yenisei system where the river perch matured at AG III-IV at 12 cm and 80 g whereas those of Lake Munduyisk matured at AG III at only 7 cm and 13 g . Similarly, Dryagin (1948) quoted Tyurin and Sviderskaya concerning two growth-rate groups of perch in the Ob-Irtysh basin where the smaller form matures at AG III-IV and the larger at $A G I V-V$. First maturation may also be determined by a size threshold and thus by growth-rate affecting differentiation as well as somatic growth. Environmental conditions, especially temperature, influence maturation age which tends to be lower at higher temperatures.

Eutrophication, leading to increased growthe rate, has been suggested as the cause of the reduction in age of first maturity in recent years in the Bodensee (Hartman MS. 1974).

TABLE II

First maturation

Locality	Nales			Females			Authority	
	AG	Length (cm)	Weight (g)	$A G$	Length (cm)	Weight (g)		
East Anglia	I	5.7	-	II	8.6	-	Hartley	1947
Barnagrow Lake	I	10.4	-	I	10.4	-	Healy	1954
Ponds in Sweden	I	7.0	-	II	14.0	-	Alm	1946
Kličava Resr.	I	8.5	-	II	12.5	-	Stehlik	1968
Lake Dojran	I	9.5	-	II	15.0	-	Petrovski	1960
Loch Leven	I	10.0	-	III	24.0	-	Thorpe	1974
Lake Kiutajärvi	-	12.0	15	-	19.0	80	Lind et al.	1973
Ponds in Finland	I	-	10	II	-	20-30	Lind et al.	1971
Green Bay	I	12.7	-	III	18.5	-	Hile and Jobes	1941
Lake Manitoba	II	12.7	-	III	>12.7	-	Kennedy	1949
Gr. Plöner See	III	16.0	-	III	18-22	-	Laskar	1943

3.1.3 Mating

At mating, the female perch sheds all her eggs at once in a continuous connected strand and is attended by a 'queue' of males which all take part in fertilizing them (Fabricius. 1956, Fabricius and Gustafson 1959, Harrington 1947, Hergenrader 1969) (see section 3.1.6). Lindroth (1947) showed that perch sperm is viable for only a few minutes after shedding.

3.1.4 Fertilization

Fertilization is external, the cloud of milt being shed by the males close to the egg-strand. Kothbauer and Schenkel-Brunner (1974) have shown an anti-Hb activity of extracts of the female gonad which is inhibited by extracts of the male gonad: They suggest that the function of this mechanism is to stick the sperm to the eggs at the start of fertilization. Natural fertilization rates are high - about 95% in Belgian waters (Fuet, pers. comm, and $78 \mathrm{~m} 91 \%$ in Lake Dojran (Petrovski 1960).

3.1.5 Gonads

Le Cren (1951) described the seasonal pattern of the growth of gonad tissue and recorded an
increase from September to October of 1 to $7-8 \%$ of body weight in males at which maximum the proportion was maintained until the spawning season in April. Lind et al. (1973) found that in Finland, the male gonad increased from 0.5% body weight in August to a maximum of 4.8% in September, remained constant until April and then declined to 3.4% at spawning in June. Turner (1919) described a similar seasonal pattern for male perch in North America. The female perch possesses a single ovary. Le Cren (1951) recorded that ovaries of immature fish remain at a constant value of about 0.5% body weight but a maturing fish shows a steady increase in ovary weight from about 1% in July to about 23% body weight in April immediately before spawning. Lind. et al. (1973) found a similar steady increase from 1.0% body weight in July to 16.3% at spawning in the following June. The lower maximum sizes for gonads in Finnish fish are attributed by Lind to the shorter "resting period" for gonads (males: 1 month, females: 2 months in Finland as opposed to 3 and 4 months respectively in England) and the shorter growth season both under climatic influence. Dryagin (1948) gives values of 15.7-20.0\% for females and 0.9-6.28\% for males from Ob=Irtysh basin. Lagler, Bardach and Miller (1962) give proportions for the gonads of American perch similar to those of Le Cren's with maxima at about 20% for females and 8% for males. Female perch at

鹠BLE III

Coefficient of maturity: $100 \mathrm{x} \frac{\text { gonad weight }}{\text { body welght }}$

Locality	$\begin{aligned} & \text { Ma: } \\ & \frac{\text { Length range }}{(\mathrm{em})} \end{aligned}$	Coefficient (\%)	Females Length range (cm)	Coefficient (\%)	Authority	
Windermere L. Kiutajärvi L. Vortsjäzv	10-45	8.0	12-44	23.0	Le Cren	1951
	10-26	4.8	11-32	16.3	Lind et al.	1973
	8-10	4.19	12-14	27.8	Pihu	1964
	10-12	3.82	14-16	25.3		
	12-14	4.69	16-18	25.0		
	14-16	5.05	18-20	26.5		
	16-18	6.69	20-22	28.3		
	18-20	6.84	22-24	29.0		
	20-22	9.68	24-26	29.2		
	22-24	8.35	26-28	29.6		
	-	-	28-30	27.0		
	-	-	30-32	28.4		
	-	-	32-34	27.0		
L. Dojran	-	-	15-18.5 (AG I)	20.6	Petrovski	1960
	-	-	17-23 (AG II)	18.7		
	-	-	19.5-28.5 (AG III)	19.6		
	-	-	26.5-29.5 (AG IV)	22.6		
	-	-	28-33 (AG V)	22.8		
	10.5-23.5	5.9	15-33 (AG I-V)	20.0		
Ob-Irtysh	21 (mean)	0.9 6 .28	21 (mean)	15.7-20.0	Dryagin	1948
North America	-	\$8.0	-	>20.0	Lagler, Bardach and Miller	1962
Oneida Lake	-	-	23 (March 1968)	18.41	Hutchinson	1974
	-	-	23 (March 1971)	20.18		
	-	-	25 (March 1968)	20.73		
	-	-	25 (March 1971)	20.90		
	-	-	25 (April 1971)	29.53		
	-	-	28 (Narch 1968)	24.20		
	-	-	28 (March 1971)	21.99		
	-	-	29 (April 1971)	30.98		

Oneida Lake, New York, showed a similar increase during winter up to 31% of body weight at spawing (Hutchinson 1974): however, there are differences between years and larger females have relatively larger ovaries.

Pihu (1964) tabulated maturity coefficients (defined as weight of gonad: weight of fish
minus viscera) for perch from Lake Vortsjärv, Estonia (Table III). For males, his values were $3.66-9.80 \%$ (mean 5.91), and females 15.5-39.1\% (mean 27.3%). By this method, Le Cren's values would be at least 10\% for males and at least 30\% for females.

In all accounts, the gonads are reduced to about 1% of body weight after spawning.

TABLE IV

Fecundity of perch

Locality	Perch length L cm	Absolute fecundity	Relative fecundity eggs/g	$\begin{aligned} & \text { Hgg No }=\mathrm{bl} \\ & \text { exponent } \mathrm{a} \end{aligned}$	Authority
L. Zagliminur	9-19	950-9 100	30	2.60	Evtyukhovamekstin 1962
Baltic Sea, Askö	19-36	$6500-85000$	50-156	3.18	Aneer and Grahn (pers. comm。)
Slaptonley	10-28	$1000-30500$	52-188	2.62-2.79	Craig 1974
Baikal』 Posolsk (slow)	11-32	2 360-82 440	59-127	2.79-3.02	EvtyukhovamRekstin 1962
Mjösa	23-4.7	10 000-210 000	60-120	-	Huitfeldt-Kaas 1916
Baikal: Mukhor	18-28	$5140-37030$	62-90	2.62	Evtyukhova-Rekstin 1962
L. Dojran	15-33	$4370-81801$	70-202	3.95	Petrovski 1960
Cutfoot SiOux L.	17-29	7 353-28 944	73-125	2.34	Smith (pers. comm.)
L. Dzalangash	10-22	1 263-19 749	74-128	-	Shilenkova 1959
L. Ontario	13-26 (fork)	3 035-61 465	79-223	2.73	Sheri and Power 1969
Loch Leven	23-31	26 200-61 300	80-156	1.89	Thorpe (unpubl.)
Patuxent R.	17-29 (fork)	5 266-75 715	82-184	3.72	Tsai and Gibson (1971)
Oneida, Lake	19-36	6 500-85000	90-156	3.86	Futchinson (pers. comm)
R. Yenisei	18-35	14 918-93145	90-163	2.71	Krasikova 1958
Kličava Reservoir	12-33	$6710-144000$	91-317	2.48	Stehlik 1968
Rybinsk Reservoir	19-30	16 400-69 300	95-183	2.52	Sergeev et al. 1955
Rybinsk Reservoir	13-36	111800	-	2.69	Zakharova 1955
Baikal; N. Bay	18-27	$11650-48340$	104	2.72	Evtyukhova-Rekstin 1962
R. Ob	22-30	28 190-74 600	111	-	Dryagin 1948
Yakhromsk Reservoir	22-33	19 200-64 000	114-178	2.55	Konovalova 1955
L. Vortsjärv	12-34	6 380-93 500	118-397	2.71	Pihu 1964
Starnbergersee	12-26	3 700-30 500	121-218	2.99	Mast 1916
Volga Delta	6-35	3 100-127 700	121-281	-	Popova 1965
Ponds, U.S.S.R	17-25	11 600-32 600	130-240	2.18	Konovalova 1955
R. Rhine	15-(?)	6 100-134 000	142-300	-	Mast 1919
Dnieper Delta	19-43	12 000-199 000	147	-	Syrovatskaya 1927
Baikal; Peschanaya	15-31	7 230-110 620	310	3.61	Evtyukhovamekstin 1962
Baikal: Posolsk (fast)	$23=43$	25 750-196 710	368-419	-	Evtyukhovar-Rekstin 1962
Severn River Md.	$17=36$	4 600-109 000	-	4.00	Muncy 1962
W. Lake Erie	$18=33$	8 618-78742	-	2.79	Nepszy (pers. comm)
E. Lake Erie	=	-	-	3.18	Nepszy (pers. comm.)
Wisconsin Lakes	-	5 899-11 272	-	-	Pearse 1925
Minnesota Lakes	-	10000-48 000	-	-	Eddy and Surber 1960
Cassidy Lake	10-30	-	--	3.42	Schneider 1972
Whole Renge	6-47	950-210 000	30-419	1.89-4.00	

- Coefficient of fecundity

Fecundity relationships for perch have been calculated by several authors or can be derived from their data. Some examples are given in Table IV.

Grahn and Aneer (1975: pers. commo) have estam blished relationships for Baltic perch from the Trosa area of Sweden as follows:
($F=$ egg number)

$$
\left.\begin{array}{rl}
\log F & =0.061+3.182 \log \mathrm{~L}(\text { body length } \\
\text { in cm) }
\end{array}\right] \begin{aligned}
F & =491.31+115.43 \mathrm{~W} \text { (body weight in } g \text {) } \\
F & =5764.9+434.54 \mathrm{G} \text { (gonad weight g) } \\
F & =25031+8434.4 \mathrm{~A} \text { (age in years) }
\end{aligned}
$$

Fecundity-length reletionships vary widely between localities and also within locelities. Letichevskii (1946) noted that perch from the southern part of the Aral Sea were relatively inferm tile compared with those from the Volga Delta and attributed this to poorer feeding conditions in the Aral Sea. In Lake Baikal, Evtyukhovam Rekstin (1962) showed differences in fecundity between populations from separate habitats and within single habitats differences between fast and slow growth-rate groups (see Table IV for data). She analysed this further using comparisons between individuals of one size or one age or both between years at the same locality. Her conclusions were, that like many other fish species (see Nikolsky 1953), fecundity like growth rate depends on food supply so that when feeding conditions are secure and stakle fecundity is high whereas it is low if food supply is poor. Conditions for reproduction may also affect fecundity, as for example, in the Mukhor Zaliv of Lake Ba,ikal where growth rates and feeding for the parent perch were good but fecundity was rather low at 90 eggs per g of female. This locality is well protected from the prevailing southerly winds and allows very good conditions for the subsequent growth and development of fry. In Peschanaya Bay where feeding for the adults is good, reproductive conditions are bad since it is exposed to the full force of south and southeast winds at the spaw ning time and much spawn is washed ashore and lost. Here fecundity is high at 310 eggs per g of female.

The relationships between rate of increase of length, weight and fecundity with age were investigated and are shown in Fig. 5. Fecundity increase with age is very similar to that of weight increase in all the stocks she studied.

Tsai and Gíbson (1971) showed that for Chesapeake Bay perch, absolute fecundity increased with length, weight and age, and that in this particular case, the high exponent in the fecundity-length relationship wes probably due to
favourable feeding conditions and the large visceral space available for gonad development. They showed significant differences between the fecundity-length relationships amone their population from Paturent River and those from Lake Ontario (Sheri and Power 1969) and the Severn River Maryiand (Muncy 1962).

- Number of eggs per individual
(See Table IV.) Perch spawn only once per year, but it is not known with certainty that they spawn every year after reaching maturity. As indi... viduals are known to have survived in the wild to at least 18 years (Vostradovsky 1962) and in poniss to 27 years (Alm 1952), it is likely that the ingeg of lifetime egg-production extends from a few thousand to 500 000. However, Evtyukhova-Rekstin (1962) noted a decrease in fecundity of Baikal perch after AG VIII.
-- Variation in fecundity with health or condition

As noted above, high fecundity values are associated with good feeding conditions as evidenced from data of Letichevskii (1946), EvtyukhovaRekstin (1962), and Tsai and Gibson (1971).

- Correlation between number of eggs and nature of environment

Zakharova (1955) suggested that fecundity of perch was lower in the more northerly waters. In Fig. 6, the scatter of median values of relative fecundity derived from data of Table IV relative to latitude, shows that this relationship is not a clear one. The correlation coefficient $r=0.10$ gives no evidence of a significant relationship. As noted above, Evtyukhova--Rekstin (1962) indicated dependence of fecundity on ultimate reproductive success such that in conditions of equally good feeding for the progeny localities with high exposure were linked with higher fecundity than prom tected localities.

3.1.6 Spawning. Number of spawnings per year: one only

- Spawriing seasons

The spawning season occurs between February and July in the northem hemisphere, and August and October in the southern. Thorpe (in press a) has reviewed the timing of the spawing seasons of perch and the following conclusions were drawn: the fish spawn in the spring during a period of accelerating temperature increase, the first females spawning at an earlier date the lower the latitude of the locality, but at a lower temperature the higher the latitude. As the date of first spawning varies between years at one locality and although photoperiod will affect maturation, temperature is probably the master factor governing spawning. Since temperature at spawning

Fig. 5 Relationships between increase of length, weight and fecundity of Lake Backal perch with age. (Mean values for first mature age group taken as unity)

A: Posolsk Bay	1955	1: length increase
B: Posolsk Bay	1957	2: weight increase
C: Posolsk Bay	1959	3: fecundity increase
D: Lake Zagli Nur	1957	
E: Peschanaya Bay	1957	
F: Mukhor Bay	1958	(From Evtyukhova-Rekstin 1962)

Fig. 6 Relative fecundity and latitude
differs between locelities, other locel factors must influence the timing of this event and a major example is the occurrence of springfloods which enable the perch to use the inundation zones of large rivers (e.g. the Damube berore regulation (Balon 1963), the Volga (Popova 1965) and others). Lake (1967) noted that the onset of spawning in several native Australian fishes followed the first rains after periods of drought. He postuleted that the leading of arometic stbbtences from the parched ground (e.g. Petrochor) acted as the releaser of spawning activity. Introduced perch could be induced to spawn when such floodwater was piped into their ponds, but he regarded temm perature as the main stimulus to spaming. Selection will ensure that reproduction is timed such that the ensuing larvae enter an environment with adequate food resources for their armival. Thus no one environmental factor is likely to assert total control over hatching and even the dominant one, temperature, ranges from c $4^{\circ} \mathrm{C}$ in the Arel Sea (where the perch spawn under ice (Filatov and Duplakov 1926) to c $14^{\circ} \mathrm{C}$ in Thompson Lake, Montana (Echo 1955).

The duration of the spaming period varies also, the males arriving on the spawning grounds days or weeks in advance of the females and remaico ning behind afterwards. Kukko et al. (1972) observed males on the spawning grounds at Hildenlampi Finland from 24 May to 14 June while females were only present from $2 m 9$ June. Individual males remained on the grounds from $2-18$ days (average 8.4 ± 0.47 days) and individual females only $1-4$ days (average 1.2 ± 0.08 days). Tsai and Gibson (1971) record spawning at Patuxent River, Maryland lasting 3 days only, 23-25 March 1969. Dryagin and Muratova (1948) noted that in 1940, the perch in the Cheboksar area of the River Volga spawned from 8-10 May. Zakherova (1955) stated that spawning lasted not more then 2 weeks at Rybinsk Reservoir, the duration depending on temperature fluctuations and watermevel. In 1951, spawning was completed between 27-29 April with an early spring warmmp and high water levels: in 1952, it lasted from 4-13 May when the spring warmmup was later and the water-level rose more slowly.

Nikitinsky (1928) found ripe males 15-18 days before the females appeared and $7-10$ days bofore spawning 90% of the males but only $5-10 \%$ of the females were ripe. Spawning itself lasted only $2-3$ days.

In other populations, the spawning period may be much extended. At Loch Leven, Scotland, Thorpe (in preparation) found that ripe meles were present over a 7 -week interval from mid-April to early June and that the average duration for individuals was less then 16 days. The peaks of occurrence of successive agemgroups from AG I upward followed each other through the season such that although all agemgroups were represented all the time, the AC I group dominated at the
beginning and the Ag IV-VIIT at the end. The sequence of spaming among females was not observed. In Klic̈eva Reservoir, Czechoslovakia, Holčik (1969) noted the same sequence of young tales predominating at the beginning and old maler cos the end, but also observed thet the reverse was true for females. In American populations, Herman et al. (1964) noted that the males arrive first and stay longer than the females. Tsaj and Gibson (1971) recorded dominance of males at the beginning and end of the run with $1: 1$ sex ratio at the peak of spawing. The latter authors state that there was no size or age sequence in spawning. Hertman (MS. 1974) considers that the postponement of the spawning beyond midellay in the Bodensee since eutrophication is due to a reduction in age of spawners, thus implying that young females spawn last.

- Time of day for spawning

The time of spaming is variously reported as at night (Kammerer 1907, Eddy and Surber 1960, Breder and Rosen 1966, Lake 1967, Scott and Crossman 1973) and by day (Chevey 1925, Hergenrader 1969).

Kammerer (1907) expressed the view that intensification of colour in perch at spawning must serve an aggregating function preparatory to the act rather than a signal function at the time of egg-laying which he maintained occurred at night. Lind et al. (1972) published data on trap catches during spawning and showed that these were greatest between 21.00 and 24.00 h at a time when the light intensity was only 800 lx . (as compared with 51000 lx between 09.0012 .00 h). They state that the occurrence of spawn on the traps was also maximal at this time. However, although this may be evidence of spawning at night, it is not evidence of absence of spawning by day when the fish could have been avoiding the traps.

- Time of breeding related to that of other associated species

Konovalova (1955) observes that the early spawning season for perch ensures favourable food resources for its fry and makes it an unpopular species with fishermen as it is thus a successful competitor with other more valuable spring spawners. In many localities, spawning foldows closely that of pike (Esox lucius L_{0}) for whose fry the perch fry will form an important food. In North America, Herman et al. (1964) observed that perch spawning follows closely that of walleyes (Stizostedion vitreum) with which the subsequent perch fry are related as prey to predator. Herman also noted that perch spawning coincides with that of suckers (Catostomus sppo).

- Location and type of spawning ground

Perch spawn mostly at depths of $0.5-3 \mathrm{~m}$ in natural lakes (e.g. in the Karelian Lakes - see Belyaeva (1959), Zakharova (1955), Pokrovski and Novikov (1959) and in Oneida Lake - Formey (1971), but may also spawn at depths to 8 m in large lakes and reservoirs (e.g. Lo Onege (Iyudina 1951), L。 Ladoga (Virolyainen 1940), Pyalovsk and Yakhromsk Reservoirs (Mikheev 1953))。 Thubridge (1972) found that they chose weedy shores in Australia while Lake (1959) stated that they would spawn anywhere away from fast currents attaching their eggs to plants or logs. Scott and Crossman (1973) add to this fallen trees, submerged brush, and over sand and gravel. Ereshchenlo (1959) noted that they would also use floating debris. By experiment, Echo (1955) found that they preferred submerged fir branches. This general unspeciam lized requirement for spawning substrata allows the fish to utilize a wide variety of habitats, for example, Zakharova (1955) recorded spawning in "high-water years" at Rybinsk Reservoir on submerged vegetation in flooded meadows: in "lowwater years" spawning took place in the beds of tributary rivers and on trees in their inundation zones. Thus the fish has the chance to be successful at whatever the water level.

In Klicava Reservoir, the perch can spawn quite satisfactorily where there are steep scree slopes (Holöik 1970). Sebentsov et al. (1940) also noted that conditions for perch spawning were particularly good in the Ivankovsk Reservoir. In the Gulf of Riga, Baltic Sea, Berzins (1949) recore ded regular spawing on stony substrates where algal growth (Fucus spp.) was plentiful but that after hard winters such areas were abandoned in favour of sandy shallows where the water temperature was $5-8^{\circ} \mathrm{C}$ higher.

- Ratio and distribution of sexes on spawning grounds

Kukko et al. (1972) found $2-3$ males to every female at the beginning and end of spawning and 5-10 at the peak period: Hol\&ik (1969) found male: female ratios were 55.8:44.2 at the beginning and 69:31 at the peak, and 56.2:43.8 at the end. It is likely that all such ratios are biased by dif.ferential vulnerability of the sexes to capture at this time (see above, Spawning seasons).

- Nature of mating act

Fabricius (1956) described the spawing of perch from tank observations. The gravid female was followed closely by several males which became particularly excited as the female swam repeatedly through groups of dead tree branches on the bottom of the aquarium. Finally, the female swam in tight circuits round a barren willow branch flexing herself in a. Uwshape and expelling her egg-strand. All the males attempted to bring their anal openings close to hers and tade female
then darted through the branches to the surface and back again until the whole strand was shed and festooned the branches. The males followed her throughout this performance shedding milt close to her anal opening, but showed little interest in the eggs. After the spawning act was complete (c 5 sec), the female attecked and drove the males away from the eggs which she then patrolled for 5 h . She threatened by opening the mouth and spreading the gill-covers, arching the back and depressing the first dorsal fin. The black stripes on the flanks faded and the body became dark below the lateral line. Harrington (1947) described spawning aggregations in which the female was followed by queues of $15-25$ males, the closest prodding her belly with its snout. Hergenrader (1969) also recorded the approach of males to the female's vent and noted that they rushed to her if. she made any quick movement and then they seemed to contest for position closest to her vent. The eggestrand was completely expelled in a series of rapid movements accompanied by almost simultaneous. release of milt by the males as a cloud in the water close to the eggs. The sequence lasted about 5 sec after which the female did not protect her eggs. Her sides appeared compressed and swimming was inhibited, but when it stopped, the tail tilted toward the water surface. Disturbance of equilibrium lasted about 1 h . Fabricius and Gustafison (1959) also noted this phenomenon. Kammerer (1907) recorded that the males swam with outspread fins and convulsive, interrupted twitches of the whole body as they released milt. Loss of equilibrium probably affects both sexes as Kammerer also reported head-down postures in the males. Chevey (1925) also noted that during the pursuit activity prior to spawning, the transverse dark bands sometimes disappeared, leaving the fish uniformly greyish-green. Parker (1942) claimed that the spawn is released from the female by the rupture or a papilla which forms between the urinary and anal openings.

3.1.7 Spaw

- External morphology

Chevey (1925) described perchspawn as a hollow cylinder whose walls are formed by the eggs enclosed in a network of tissue, the thick shells connected to each other in parts at plane surfaces so that they form polyhedra rather than spheres. Worth (1892) figured 2 section of the egg-strand demonstrating that it was "accordion-folded". Mansueti (1964) described the strand as c 3.8 cm thick, slightly heavier than water and floating in the current until entangled in debris and fallen branches in shallow water. The cylinder itself may be up to 3.75 m long and 8 cm wide (Chevey 1925). Konovalova (1955) noted that the strand is already formed in the ovary and its durability is due to the individual connexions between the eggs and the thick mucilaginous sheath which protects it ageinst mechanical damage, infection by Sapmolegnia and predation by invertebrates (perch eggs are not eaten by fish - even starving ones). The strand
is resistant to desiccation and to "a range of spring temperatures". Aeration of the strand is accomplished by water circulating through spaces between the eggs (which are not completely bound to one another at all parts of their surfaces) between the central canal and the outside (Scott and Crossman 1973). Through these same holes, the milt must pass into the centre of the strand to fertilize the eggs (Fabricius and Gustafson 1959) whose micropyles face inward toward the cylinder cavity (Ranson 1855, in Chevey 1925). Lagler et al. (1962) pointed out that the advantage of the egg-rope was that the eggs were not scattered and could not fall into the mud.

The egg is a clear pale amber colour with a thick membrane consisting of an outer adhesive layer, a wide middle area composed of fine radially arranged fibres or striae and an innermost layer considered the zona radiata by Ryder (1887) (in Mansueti 1964). Laskar (1943) noted the radially arranged "needles" to which he attributed the sticky texture of the egg mass and noted that this texture is lost toward hatching as the whole mass becomes slippery and the eggs separate easily. The membrane is very strong and elastic until just before hatching. Before fertilization, there are 500-1 000 eggs to the gramme: after fertilization, 170-180 eggs per g (Sergeev et al。1955).

Before hardening, the fertilized egg had a diameter of 1.6 m 2.1 mm (Mansueti 1964) or 1.0 1.6 mm (Lake 1967, Schneider pers. comm. 1975). Within about 3 min after fertilization, the membrane swelled and after hardening lost its adhesive qualities. The mean diameter after hardening was $1.9-2.8 \mathrm{~mm}$ (Lake $1.9-2.4 \mathrm{~mm}$) and was almost entirely due to a thickening of the egg membrane which came to occupy one third to one fourth of the egg diameter.

Before hardening, the mean yolk diameter was 1.3 mm (Lake 1.2 mm) and the single oil globule 0.6 mm (Lake 0.5 mm). Schneider (pers. comm. 1975) found yolk diameters ranging from $1.0-1.5 \mathrm{~mm}$ and oil globules from $0.4-0.5 \mathrm{~mm}$ 。

3.2 Premadult phase

3.2.1 Embryonic phase

Fourteen minutes after fertilization, the oil droplet has become drawn from the centre of the yolk mass to one side and bulges out pulling yolk with it (Mansueti 1964). In about 30 min , clear colourless blastodemal tissue thickens over the oil droplet. At about 5 h , the first cleavage occurs. At about 21 h , the blastula shows a peripheral germ ring and a blastocoel, and by 29 h , the gastrula stage has been reached with a thick germ ring one third of the way round the yolk. At $3-6$ days, the embryo develops slightly offcentre of the yolk, the head proximal to the oil droplet and the tip of the tail free from the yolk which itself becomes elongate by the sixth day. From 6-11 days, the pectoral buds, auditory
vesicles, caudal finfold and some body melanophores appear with some stellate melanophores over the yolk near the embryo. From $14-16$ days, pigment. appears in the posterior and anterior quadrant of the eyes, the pectorals are now wellwdereloped, the myotomes are nearly complete, melanophores cover most of the yolk and the vent is visible at the junction of the tail and the yolk. The mouth is wide and gaping, and primitive gillmstructures are present. The internal structure of the heart and the auditory vesicles is plainly visible and the tail is extended in a curve over the head except in large eggs where the thin walls and large perivitelline space allow the tail to remain not curled back. At about 24 days, the egg case begins to soften and appears ragged. Hatching occurs at $25-27$ days after incubation at $8 \cdot 5-12^{\circ} \mathrm{C}$.

Mansueti noted that this incubation time was long for estuarine fishes (the description was made from Chesapeake Bay material). It is also unusually long for perch elsewhere as incubation time in other localities usually ranges from 120 200 degree days (see Table V) and normally takes 8-10 days in North America (Scott and Crossman 1973). Consequently, the timing of the developmental events does not correspond with other accounts such as that of Laskar (1943) who noted that 2 days after fertilization, 15 segments were formed; by 3 days, the eyes and auditory capsules were evident, the heart was pulsating and the tail is free from the yolk but does not reach the head. At 4 days, pigment has appeared on the yolk-sac and at the lower edges of the myomeres of the hind-body, there are 5 melanophores. The gut and notochord are differentiated, the vent appears just beyond the body midpoint, the pectoral buds appear and the embryo begins to move inside the shell. At this stage, the embryo is 3.6 mm in length. On the fifth day, pigmentation increases and the embryo becomes browner. On the sixth day, pigment is visible macroscopically on the yolk-sac and the eyes, and the vitelline circulation is evident. Otoliths appear shiny and refract the light. The "needles" in the gelatinous membrane of the shell disappear and individual larvae start to hatch through long splits in the shells. Most larvae hatch on the seventh day at a mean length of 5.6 mm with a maximum yolk diameter of 0.9 mm and an oil globule of 0.5 mm .

Schneider (pers. comm. 1975) found hatching at lengths of $4.1-5.5 \mathrm{~mm}$ in Michigan (Lake 1967), $4.8-5.5 \mathrm{~mm}$ in Australia and (Mansueti 1964) 5.56.0 mm in Chesapeake Bay. Konstantinov (1957) gave a range of hatching sizes encompassing all of these from $4.07-6.6 \mathrm{~mm}$.

- Predators

As noted above (section 3.1.7), spawn is not normally eaten by other fish as also noted by Sumari (1971) in Finland. Day (1880) reported that it was eaten by swans (Cygnus olor L.) in the River Thames, England.

TABLE V
Incubation

Locality	Duration (days)	Temperature (${ }^{\circ}$ C $)$	Degreemdays	Authority
Yakhromsk Reservoir	$8-11$	$11-12$	$96-121$	Mikheev 1953
Grosser Plöner See	$7-8$	14	$98-112$	Laskar 1943
Rybinsk Reservoir	$10-12$	12.5	$125-150$	Zakharova 1955
Canada	21	7.5	158	Scott 1954
New South Wales	18	10.0	180	Lake 1959
France	$14-18$	$13.5-14$	$196-243$	Chevey 1925
Eastern U.S.A.	27	8.3	224	Leach 1928
Chesapeake Bay	$25-27$	$8.5-12$	$230-300$	Mansueti 1964
Australia	$7.5-8.5$	$14.5-20.5$	$120-175$	Lake 1967
North America	$8-10$	$($ spawn at		Scott and Crossman 1973
		$8.9-12.2)$		
Northern Europe	18	$10-12$	$180-216$	Ehrenbaum 1905

- Mortality

There may be losses of spawn due to exposure when floods subside as noted by Dryagin and Muratova (1948) in the Volga River. Scott and Crossman (1973) also reported that egg masses may be cast ashore by wind, waves or currents and then lost. Also Clady and futchinson (1975) found "windrows" of millions of perch eggs washed up on beaches of Oneida Lake after severe storms and noted that there may also have been losses due to dislodgement of egg masses and transfer of these to deep unsuitable substrates. Tesch (1955) referred to destruction of spawn on shal lows exposed to storm winds at the Schweriner Aussensee, and Eivtyukhova-Rekstin (1962) to similar occurrences at Peschanaya Bay, Lake Baikal.

Swift (1965) exposed perch eggs to a range of incubation temperatures and found that hatching ranged from after 3 days at $22^{\circ} \mathrm{C}$ to after 33 days at $6^{\circ} \mathrm{C}$: optimal temperatures were around $12^{\circ} \mathrm{C}$ above and below which mortality was high (see Table VI).

Kokurewicz (1969) and Hokansen and Kleïner (1975) each confirmed Swift's findings and showed that at constant temperatures, survival was optimal between $10-16^{\circ} \mathrm{C}$. The latter authors also found optimal survival, shorter time to hatching and lower incidence of abnormalities when incubation temperatures increased by $0.5-1.0^{\circ} \mathrm{C}$ per day.

3.2.2 Larval phase

In Hokansen and Kleiner's (1975) experiments, larval swimmup occurred within 2 days of hatching (within 1 day at temperatures $13^{\circ} \mathrm{C}$) and they survived unfed for 9 days at $19.8^{\circ} \mathrm{C}$ or 21 days at $10.5^{\circ} \mathrm{C}$. These authors and Kokurewicz (1969) found that the hatching larvae were largest at the optimal incubation temperatures (5.6 m .3 mm) and that at temperatures below $7^{\circ} \mathrm{C}$, hatching was morphogenetically premature.

Konstantinov (1957) defined four prolarval stages corresponding to total lengths of $3.7-4.7 \mathrm{~mm}$, $4.7-6.0 \mathrm{~mm}, 6.0-7.0 \mathrm{~mm}$ and $7.0-9.0 \mathrm{~mm}$. The first three of these correspond to the last 9-11 days of embryonic development in Mansueti's (1964) description and only the last is comparable as a true prolarval (i.e. postmhatching) stage.

Mansueti described the prolarva as having an undifferentiated finfold, pigmented eyes and 15-20 pigment spots along the ventral surface of the tail. The mouth is fully developed and feeding starts while the vestiges of yolk remain (at c 7.0 mm). Laskar (1943) noted traces of food in the hind-gut of larvae at 6.75 mm at 18 days after. fertilization when the yolk-sac was almost completely resorbed and the oil-aglobule only 0.1 mm in diameter.

At hatching, Laskar noted that the pectorals were formed and beat, and the mouth was below the head. The gill arches and opercula were formed by the twelfth day ('5 days after hatching), the
TABLE VI

mouth was nearly terminal and the swimbladder was visible as a small oval shape covered above with pigment. By the seveinteenth day, the blood was coloured and vessels in the head and gill region were clearly visible. The nasal cavities were recognizable. On the eighteenth day, the pectorals were 0.8 mm long with pigment cells at the base.

Lake (1967) stated that the pectorals were formed at $6 \frac{1}{2}$ days and the eyes partly pigmented. Hatching occurred 1-2 days later and the larva swam straight away. At 10 days at a length of 7 mm , it fed for the first time; at 20 days was 10 mm long; and at 60 days at $15-17 \mathrm{~mm}$, the fin complement was complete. In this postolarval stage, Mansueti (1964) states that pigmentation increases over the body, the head elongates and flattens, and a few teeth protrude from the maxillary. Fin formation starts a.t about 11 mm total length with differentiation of the base of the caudal. Thereafter, the sequence of fin development is anal; second dorsal: some spines of first dorsal, pelvics; and finally the remaining spines of the first dorsal. All fins are formed by 14 mm , but not complete with all rays until $21-27 \mathrm{~mm}$. When the first soft ray of the anal fin becomes a spine, body bands begin to appear at 20 mm . The mytome number is $35-40$, most commonly 36-37; 18-21 preanal (usually 19) and $16-19$ postm anal (usually 18), which distinguishes perch from other fry. At 49 mm , fin formation is complete and the fry is fully scaled. Threnbaum (1905-9) reported body bands appearing at $12 \mathrm{~m}-13 \mathrm{~mm}$ (1 month old) and fully formed by 25 mm . At this length, the swim bladder extends almost to the anus. The sequence of scale formation was studied by Pycha and Smith (1955) whose illustration is reproduced here as Fig. 7. Pockets of scales first appear on the caudal peduncle at c 20 mm total length and scalation proceeds along the lateral line and at the same time dorsoventrally. The first scales are fully imbricated in the region ventral to the 12-14 lateral line scales by 24 mm and the fish fully scaled at $36-37 \mathrm{~mm}$. The nape and the anterior part of the belly are the last areas to be scaled. Size rather than age determines scalation. Segerstrale (1933) reported the first scales formed on perch in Scandinavia at $2.0-2.5 \mathrm{~cm}$ total length.

- Growth of fry

Tesch (1955) plotted the lengith growth of fry from the Miggelsee throughout their first growing season and compared his results with data from several other localities (Fig. 8).

Pycha and Smith (1955) noted that length growth was approximately linear from midmune until late August as the fry grew from $19=60 \mathrm{~mm}$, but that as growth was not correlated with thet of older year-classes in the same year, it depended on different factors. Since the habitat for the fry and their food differefrom that of other yearmelasses, this is not surprising. The weight-length relationship ampung these fry was:
$W=\left(0.6198 \times 10^{-5}\right) \mathrm{L}^{3.1251}(\mathrm{~g}$ and mm$)$. No corm relation could be chown between growth and yearclass strength of fry. Werd and Robinson (1974) found that from 1 July to 31 August, pewch fry tripled their length and increased their weight by a factor of 9. Growth equations were derived as follows:

$$
\begin{aligned}
& (t \text { in days) } \\
& \log _{e} I_{t}=\log _{e} I_{o}+0.022 t \\
& \log _{e} W_{t}=\log _{e} W_{0}+0.074 t \\
& \log _{e} W=3.4 \log _{e} L-2.6
\end{aligned}
$$

In experimentel ponds in Michigan, Schneider (1973 a) demonstrated inverse density dependence of growth during the first 6 months of life over a range of autum densities of $4-32400$ per ac ($10-82300$ per ha). At densities below 2000 per ac (5080 per ha), fry growth (at 11.2 cm and 15 g) became influenced by the presence of oneyearmold perch with which they were probably competing. In the absence of any older perch, growth of fry reached a maximum level at densities $\leqslant 500$ per ac (1270 per ha) at $15-20 \mathrm{~cm}$ and mean weight of 57 g .

- Survival

Noble (1972 b) found that predation on fry by older perch and walleye (Stizostedion vitreum) seldom occurred before the perch fry were 1.8 cm long. However, Menshutkin et al。 (1968) found fry in the stomachs of 2% of adults in Lake Razdelnyy, Karelia, on 24 May, 6% of adults on 30 May, 24% on 3 June and none on 6 June. This period corresponded to the first two weeks after hatching. Despite this evident cannibalism, the authors argue that the catastrophic decline in numbers of survivors from 13.4×10^{6} on 30 May to 2.3×10^{6} on 6 June can be accounted for by food-shortage alone. They base their conclusions on plankton density measurements which indicate a sharp decline in available nauplii for the perch fry over this same two week interval. Cerny and Pivnicka (1973) also found high daily mortality rates at this stage (10.7% per day). Tarby (1974) also claimed that predation was insufficiently intense to account for high fry mortality rates in Oneida Lake where he reported 25% of the June population of fry were eaten by adult perch in the period Junemoctober. However, as his estimates of evacuation rate were made from force. feeding experiments, it is likely that his estimates of food-turnover are too small (see Thorpe 1974 and in press b). Hence, cannibalism could account substantially for the high fry mortality.

Holčik (1969) found that in Klicava Reservoir in 1960, the survival of perch fry in the absence of adult perch was very high. Thorpe (1974) found that adult perch of Loch Leven consumed 88.6% or their own wet weight of perch fry between June and September.

20 millimeters

22 millimeters

24 millimeters

28 millimeters

32 millimeters

35 millimeters

26 millimeters

scales forming
scales fully imbricated

Fig. 7 Scale formation in O-group yellow perch (From Pycha and Smith 1955)

Fig. 8 Growth of young perch in Mizgelsee (after Tesch 1955)

Houde (1967) found that walleyes of 9 mm total length were feeding on $0+$ perch and that these perch became more important as a food item as the walleyes reached 19 mm in length.

Parsons (1971) found that $0+$ walleyes fed primarily on O+ perch in Lake Erie until July when the surviving perch grew out of the length range of fry preferred by the walleyes. In June, they made up to 93% of the identifiable food in walleye stomachs. By September or October, they were reaching the size preferred by $1+$ walleye (see Fig. 9). Smith and Pÿcha (1960) noted that $0+$ perch were the major food of post-pelagic $0+$ walleyes and Eschmeyer (1950) estimated that 68\% of the O+ walleye diet in Lake Gogebic consisted of $0+$ perch. Many authors report movement of post-larval perch offshore to the epilimnion for the first part of the summer (e.g. Schneider 1908, Alm 1922, Chirkova 1955, Konovalova 1958, Forney 1971, Ward and Robinson 1974). The fry mingle with those of other spring-spawning species in open waters where there are fewer predators than in the vegetated zone (e.g. Zakhromsk Reservoir, Konovalova 1958). Steinmann (1950) found perch fry to be epilimnetic until they reached a total length of 2 cm and during this phase, they were the favoured food of Blaufelchen (Coregonus) in Swiss lakes. Frey (in Tesch 1955) noted that coregonids in such lakes were full of young perch in July, one fish containing 47 fry of $3-4 \mathrm{~cm}$ length.

In the case of the central basin of Lake Erie, Regier et al. (1969) have suggested that together with smelt (0smerus mordax), the perch fry are probably protected from walleye predation due to hypolimnial oxygen depletion which excludes the walleye from their foraging base. Ward and Robinson (1974) also note heavy predation of perch fry by walleyes in West Blue Lake, Manitoba, in midsummer. Parallel fluctuations in year-class strengths of perch and walleye have been recorded in many American lakes (e.g. Heyerdahl and Smith 1971, Forney 1965, Hartman 1972) and Forney (1965) showed that density of young perch fluctuated in the same sense as growth increments of walleye - thus the latter depended on the former. In Rybinsk Reservoir, Romanova (1955) found that perch fry from 1.7$8.3 \mathrm{~cm}(75 \%$ of these were $4.1-4.7 \mathrm{~cm})$ formed the major, food of pikemperch, Lucioperca lucioperca, almost all being eaten between June and September with a maximum in July. Chirkova (1955) had found these fry on the littoral just after hatching in early June and then distributed mainly pelagically until October when they were again found in the shallows. At all times, spatial distribution of fry was clustered and not uniform.

Allison et al. (1974) found perch fry in the stomachs of goosanders (Mergus merganser) during the winter months on Loch Leven, Scotland. Forney (1971) calculated instantaneous daily mortality
rates of fry in Lake Oneida at $0.30-0.56$.
Le Cren (1955) suggested that survival of perch fry was influenced by weather conditions. Such factors probably operate throus. faeir influence on the abundance of zooplankton (cf. Menshutkin et al. 1968). In experimental ponds, Schneider (1973 a) showed that survival rates were higher in ponds rich in plankton than in those with extensive stands of Typha latifolia which were less turbid, independent of the density of fingerling perch present in the ponds. However, although fry surrim val was reduced only at fingerling densities <800 per ac (1975 per ha) in the Typha ponds, it was reduced at densities <500 per ac (1 234 per ha) in the planktonwrich ponds. In these experimental ponds, survival from egg to October of the first year of life was $4.7-32.4 \%$. In the wild, Schneider (1972) has found much lower values from $0.02-12.4 \%$.

- Type of feeding

Kammerer (1907) found that perch larvae of 7 mm started to feed on infusoria and diatoms. Chevey (1925) recorded Ostracoda and Cladocera taken on the first day of feeding and Nikitinsky (1929) stated that the first foods of perch (1+ and older) in Zarizino Lake near Moscow were Rotatoria and Copepoda. Rogowski and Tesch (1960) from a comparative study of the first feeding of fish fry also found Rotatoria and Copepoda taken by perch from 6 mm total length. Teodorescu (1943) reported rotifers as the first food. Siefert (1972) showed that Polyarthra was selected by fry from $5.4-9 \mathrm{~mm}$ total length and cyclopoid copepods from about 6 mm onward (see Fig. 10). He noted that the fry had small mouths and were weak swimmers and therefore the food had to be small enough to be ingested and slow enough to be caught. Chevey (1925) divided a group of freshly hatched alevins into two offering one group Cladocera and the others nothing. After 5 h both groups had completed yolk absorption, but the group offered food still had an oil globule of 10 in diameter. The group without food had an oil globule of 4-5 μ diam meter and at this stage attempts to feed them failed and they died. He described the method of food capture as follows: the prey is stalked by swimming in which only the pectorals are used for propulsion and the tail held still; when the prey is within $1-2 \mathrm{~cm}$, the body is slowly curved at right-angles and suddenly straightened, the animal flicking forward in the process and grabbing the prey. This method is used until 2-21 2 months old, the fish gradually taking larger and larger particles up to larval Diptera.

Pycha and Smith (1955) found that the main food of post-larvae was small entomostraca, the fish utilizing larger forms as available by the time they reach 30 mm total length and then beginning to take benthic invertebrates. Wong and Ward (1972) showed that the gape of perch fry less than 1.8 cm total length was too small to take Daphnia with a body-depth greater than 0.7 mm , but

Fig. 9 Selective size preference of yellow perch as prey by walleyes. Length distribution (vertical lines) and modal groups (ver cal bars: maximar chasses of yellow perch and 1900 year clach 1929-60; the numbers of fish of the 1959 year class that were measured are given along the upper border and those of the 1960 year are given along the lower border (from Parsons, 1971)

Fig. 10 Electivity indices (\mathbb{E}) for major food organisms of larval yellow perch of different size, Greenwood Lake
as jaw growth was differentially greater than total length growth, the fry were able to utilize the Daphnia quickly. Even at this early stage, the perch is an opportuniselfeeder as Ilina (1973) showed experimentaily. The progeny of individual pairs of perch occupied three separate food niches in ponds during their first summer such that three ecological groups formed feeding on plankton, benthos and fish respectively.

Cannibalism in perch seems to be universal and also starts very early. Smyly (1952) found 2.1 cm fry eating their own kind in Windermere and Clemens et al. (1924) 2.5 cm fry as cannibals in Lake Nipigon. Pekav (pers. comm. 1970) found that in experimental ponds in Czechoslovakia, fry which hatched early started to feed on their latehatching fellows very quickly.

Lane and Jackson (1969) estimated the rate of passage of a single meal through perch fry of $3.5-4.8 \mathrm{~cm}$ as $36-60 \mathrm{~h}$ at $12^{\circ} \mathrm{C}$. However, Noble (1973) fed perch, hatched in the laboratory with Daphnia and estimated rates of passage by staining the plankton periodically to act as an indicator. In single meal experiments, perch of 60 mm evacuated a meal of 170 Daphnids in just less than 12 h at $15^{\circ} \mathrm{C}$: if the meal was $150-250$ Daphnids followed immediately by excess food, the evacuation was completed in 6.1 h . Similarly, a single meal of 10 daphnids fed to $30-40 \mathrm{~mm}$ perch fry at $22^{\circ} \mathrm{C}$ was evacuated in 6.5 h whereas if excess food was fed immediately after the experimental meal, the passage time was only 1.5 h . As Noble (1972) noted that perch fry fed continuously during daylight hours under natural conditions, therefore the higher evacuation rates are more realistic.

In a range of experiments using perch of $5.2-23.7 \mathrm{~g}$ at temperatures from $9.4-30.6^{\circ} \mathrm{C}$, Schneider (1973 b) found that maintenance ration, appetite and growth were optimal at about $23^{\circ} \mathrm{C}$. These small perch grew best on a diet of fish (Pimephales promelas) and required such a meal equal to 2% of their body weight per day for maintenance. When fed "to excess", they consumed a daily ration of 7.6% of their body weight of fish or 6.6% of redworms (Helodrilus foetidus). On the former diet, they grew at a rate of 1.95% body weight per day, but on the latter not at all. The highest conversion rate, 26%, occurred at $22.9^{\circ} \mathrm{C}$, but a level of $13-18 \%$ was found at other temperatures. Thus, the qualitative composition of the diet affects growth very markedly and food conversion efficiency is low compered to other warm-water fish of comparable size.

3.2.3 Adolescent phase
 - General development

The young perch begin to resemble the adults toward the end of their first summer when pigmentation is complete and the dark spot at the posterior end of the first dorsal fin has appeared.

3.3 Adult phese (mature fish)

3.3.1 Longevity

Herman (1964) considered that perch in North America were relatively short-lived, seldom exceeding 7 years and in Lake Mendota, few lived beyond 5 years. Further north, the life-span was longer. For Canadian populations, Scott and Crossman gave $9-10$ years as the normal span, but one of $11+$ had been taken from Lake Erie. Muncy (1962) figured examples of up to 12 years old from Chesapeake Bay. Eurasian populations show a wider age range. Backiel (1971) found perch up to 13 years old in the Vistula River and Vostradovsky (1962) reported one of $18+(1.43 \mathrm{~kg}$, 38 cm) from Mseno Reservoir. Neuman (1974) found perch. up to $18+$ in populations on the Baltic coast of Sweden. Alm (1952) recorded perch of 27-28 years from pond populations in Sweden. In dystrophic lakes, he noted that rich yearmclasses could dominate the slownowing populations for up to 15 years, implying a maximum age greater than 15 years: in oligotrophic and eutrophic lakes, rich year-classes dominated the better growing populations for a much shorter period and lifemspan was shorter.

Nevertheless, he found no correlation between life-span and growth since rapidlymgrowing fish in ponds lived to a great age. He concluded that long life-span in stunted populations was related to low predation pressure. In a later paper, Alm (1959) recorded 1:1 sex ratios in pond populations of 9 -year-old perch and suggested that the observed longer life of females (e.g. Eschmeyer 1937, 1938; Hile and Jobes 1942; Carlander 1950) in the wild was a consequence of higher activity in the males exposing them to greater risk of predation. There was no evidence of physiological mortality being higher in males.

3.3.2 Hardiness

(See also section 2.3.)

Alabaster and Downing (1966) investigated ,the possible effects of heated effluents on fish in rivers in which temperature changes could occur rapidly. Tests included perch (mean length 8.4 cm) which were acclimatized in groups at a range of temperatures. The test temperatures at which 50% of the fish survived for 100 and 1000 min were as follows:

	Acclimatization Temperature				
	6	15	20	25	
	1000 min	24.0	28.0	29.7	31.4

From this, it is clear that perch are tolerent of sudden temperature increases of up to $8^{\circ} \mathrm{C}$ for short periods even when the normal environmental temperature is $25^{\circ} \mathrm{C}$. However, such an increase would be lethal if maintained for $16-17 \mathrm{~h}$ when the normal environmental temperature was $22^{\circ} \mathrm{C}$. Fig. 11 shows the actual increases observed at seven generating stations and the 100 and $1000=$ minute lethal values for perch obtained from the tank experiments, assuming the acclimatization temperatures are the same as normal mean river temperature.

Perch were also subjected to fluctuating temperatures and were observed to begin to move when the temperature had risen to a few degrees above their acclimatization value. Thereafter, they tended to remain in that area of the gradient, continually avoiding further temperature change (no temperature values were given). When tested under constantly rising temperatures to establish at what point the avoidance started, the perch which selected $15.6^{\circ} \mathrm{C}$ as their preferred temperature initially responded to a steadily increasing temperature of 1.7 or $4.7^{\circ} \mathrm{C}$ per h only after a change of $5-7^{\circ} \mathrm{C}$ (average $6.4^{\circ} \mathrm{C}$) and then selected a new level at $17.9^{\circ} \mathrm{C}$. Neill and Magnuson (1974) commented that lit matters little whether in the laboratory yellow perch... can grow at $30^{\circ} \mathrm{C}$ or can survive $33^{\circ} \mathrm{C}$ for 1000 min if yellow perch never occur in an outfall area where temperatures exceed $29^{\circ} \mathrm{C}$. The more important question is whether yellow perch given a choice will invade waters of a particular temperature, and if so, for how long and for what reasons, ecologically prudent or otherwise". (For data on tolerance to current speed, turbidity, dissolved gases, dissolved solids and pollutants, see section 2.3.)

Lake (1959) regarded perch as "reasonably hardy and not as prone as native Australian species to fungal infections." Andre (pers. comm.) has found that transporting perch for stocking purposes can only be done satisfactorily in the winter months at low temperatures when the fish are relatively inactive: at other times, high losses occur. Breder and Rosen (1966) found that of all North American freshwater fish kept in the New York Aquarium, perch were the most apt to spawn in a crowded aquarium and the presence of many fish seemed to have little inhibitory influence on them.

3.3.3 Competitors

Perch have no competitors for spawning area since, as pointed out in section 3.1.6, their site requirements are not restricted and more or less any submerged object will suffice for the attachment of the egg-strand.

For food, perch may compete with any or all other predatory fishes present in the same water. Scott and Crossman (1973) include among these potential competitors brook trout (Salvelinus
fontinelis), ciscoes (Coregonus spp), lake whitefish (Coregonvs clupeaformis Mitchill), basses (Morone spp. Micropterus spp.), crappies (Pomoxig sppo) and bluegill (Lepomis macrochirus Refinesque). They also noted that intaspecific competition may lead to stunting (see section 3.4.3). Potential competitors in the Bodensee (Hartmann Ms. 1974) are roach (Rutilus rutilus L) and Coregonus lavaretus since both these fish feed on the seme apectrum of planktonjc organisms as does the perch there. However, open and effective competition is avoided through spatial segregation vertically and seasonally, and hence the similarity of food preferences has no apparent effect on growth. In 1971, for example, perch and its competitors showed very good growth. In Junemoctober, perch dominate in the bottom areas of the sublitoral while $\mathrm{C}_{\text {o }}$ lavaretus is concentrated in the upper water layers. Ivanova (1969) found that the larger perch of Rybinsk Reservoir shared the same principal diet components with pike (Esox lucius L), pikemperch (Lucioperca lucioperca L) and burbot (Lota lota L) namely, roach, small perch, ruff (Gymnocephalus cernua L_{0}) and smelt (Osmerus eperlanus). However, she claims that competition is not evident since the periods of intense feeding are separated, that is, seasonal segregation of feeding as Hartmenn suggests for the Bodensee fish. In Loch Ľeven, Thorpe (1974) found that the spectrum of organisms in the diet of perch $>20 \mathrm{~cm}$ fell almost completely within that of adult trout, the food--turnover of the two species being estimated simultaneously. However in this instance, concentration of predation by the two potential competitors on a single prey species occurred at different times of day so that a diurnal rather than seasonal segregation of predatory activity took place.

Regier et al. (1969) reported an increase in the perch stocks of Lake Erie after the collapse of the blue pike (Stizostedion vitreum glaucum) and they regarded this as a response to increased food resources freed by the decline of blue pike. Similarly, Christie (1973) suggested that the increase of perch in the eastern outlet of Lake Ontario was due to improved littoral food resources after the collapse of whitefish stocks. However, in a subsequent paper, Christie (1974) also noted that perch had increased in Lake Ontario around the dense beds of Cladophora which had appeared with eutrophication at the same time as whitefish had disappeared. Thus the improvement for perch may have been due to the creation of new habitats for food organisms in the weed beds rather than the removal of competition. Muncy (1962) also quoted Roccus saxatilis Walbaum, Roccus emericanus Gmelin and Esox niger Le Sueur as competitors for invertebrates in the shallow water areas of the Severn River estuary, Chesapeake Bay.

Sumari (1971) found that among 32 ponds in Finland, the biomass of perch was usually very small when there was a reproducing roach
population present which utilized the rood supply of the perch and also preyed on the perch fry. The average biomass of perch in ponds without roach was $14.3 \mathrm{~kg} / \mathrm{ha}$ (Range $3.8-41.3 \mathrm{~kg} / \mathrm{ha}$): in ponds with roach, it was $11.9 \mathrm{~kg} / \mathrm{ha}$ (Range 1.8 . $23.4 \mathrm{~kg} / \mathrm{ha}$), a difference which was signisicantly less $(t=2.39, d r=30)$.

Rudenko (1967) listed roach, ruffe (Gymnocephalus cermaz L), rudd (Scardinius erythrophthalmus L), tench (Tince tince L), crucian carp (Caressius carassius L) and pond loach (Misgurnus fossilis L) as competitors of benthom phage perch in Lake Somino.

3.3.4 Predetors

As Scott and Crossman (1973) pointed out for North American perch, almost all werm to cold water predatory fish will eat perch. They listed the following as predators: basses (Morone,
 (Pomoxis spp:), walleye (stizostedion vitreum), sauger (Stizostedion canadense), perch pike (Esox lucius), muskellunge (E. masquinongy) and lake trout (Salvelinus namaycush). To this list should be added pike perch (Lucioperca lucioperca) and burbot (Lota lota) (e.g. Ivanova, 1969) and brown trout (Salmo trutta) (e.g. Thorpe 1974). Perch were one of the main foods of burbot in the river months of Lake Simcoe (MacCrimmon and Devitt 1954) and Clemens (1957) noted that burbot of over 30 cm length ate much perch of marketable size.

In Heming Lake, Manitoba, Lawler (1963) found perch in about every fourth stomach of burbot sampled, and it was the second most frequent prey species from a sample of almost 30000 pike (Lawler 1965). Allen (1939) and Frost (1954) found perch to be the most important prey of pike in Windermere. Holčik (1968) found that pike preferred perch as prey rather than roach. Ward and Robinson (1974) found perch to be an important food for walleyes in West Blue Lake, Manitoba. Ivanova (1969) calculated the consumption of perch by the four main predatory fish in Rybinsk Reservoir and her findings are reproduced in Table VII. Consumption was estimated by Fortunatova's method (Fortunatova 1940, 1961) and the differences between the two years are attrim buted to the water regime: in 1960 (and winter 1960-61) the water level was low while in 1961 (and winter 1961-62), it was high. The mechanism of influence of the water regime on predator food consumption was not defined, but changes in foram ging conditions with changes in level were implied. In Chesapeake Bay, Maryland, Muncy (1962) included Roccus samatilis, Ro americanus and Esox niger as predators of perch.

Zadulskaya (1960) also gives consumption of perch by fish predators in Rybinsk Reservoir as follows:

Percentage of annual diet consisting of perch

pike	17.2%
pike-perch	10.0%
burbot	44.9%

The reasons for the discrepancies witn Ivanove's data are not clear. Among the 32 Finnish ponds studied by Sumari (1971), it weas possible to distinguish the effectis of predation on perch in one pair which were very similar in all eaviron mental respects except that Koukkulampi I conteined $3.6 \mathrm{~kg} / \mathrm{ha}$ of burbot and $10 \mathrm{~kg} / \mathrm{ha}$ of perch whereas Koukimlampi II contained $26 \mathrm{~kg} / \mathrm{he}$ of perch only.

Herman et al. (1964) commented that perch were not readily available to shore birds and mammals, but that herring gulls and mergansers would take them. Coots (1956) also mentions mergansers as predators of perch on the Klamath River, Califomia. Salyer and Lager (1949) reported kingfishers (Megaceryle alcyon alcyon Linnaeus) eating perch from streams and lakes, and to this list of birds, Scott and Crossman (1973) added loons. Allison (1972) reported perch of 24.9 cm mean length from the stomachs of 14 cormorants (Phalacrocorax carbo) shot on Loch Leven, Scotland and the remains of several perch were found at the nest of a Tawny Owl, Strix aluco near Tring, England (Glue 1969).

In Finnish lakes, Lind (1974) calculated average annual production of perch as $5.6 \mathrm{~kg} / \mathrm{ha}$ of which 1.3 kg was taken by fishermen and 4.3 kg eaten by predators, the most important being pike and other perch.

- Defence reactions

Lake (1959) observed that the dark transverse bars disappear from the flanks and the general colour fades giving the fish a "negative" appearance when frightened. Lagler et al. (1962) stated that there was a concomitant slight increase of body temperature. Kammerer (1907) described threat postures in which the back was arched slightly, all fins and the opercula were spread out, the latter at right-angles to the body revealing the bright red gills and projecting the opercular spines outward.

3.3.5 Parasites, diseases, injuries and abnormalities

A checklist of parasites recorded from perch is given in Table VIII. Where parasites have been recorded from both Euresia and North America, two authorities are quoted. It is thus clear that the majority of parasite species are not found in perch of both areas, the widespread ones being:

Trypanosoma percae
Bunodera Iuciopercae
Crepidostomum farionis
Diplostomum spethaceum

Cyathocephalus truncatus
Diphyllobothrium latum
Triaenophorus nodulosus
Neoechinorhynchus rutili

MSBLS TIT
Ivanova (1969) Predation on perch in Rybinsk Reservoir
(Measured using Fortunatova ${ }^{8}$ s Method (1940, 1961))
(Table extr. from data in paper)

Period 1960 (including winter 1960-61) was one of low water level in Rybinsk: 1961 (including winter 1961-62) was high water.

TABIT VIII

Checklist of parasites recorded from perch

Phylum	Species	Authority	Phylum	Species A	Authority
Protozoa	Apiosoma sp.	6		Bolboforus confusus	1
	Balantidium sp.	5		Bucephelopsis pusillum	5
	Dermocystidium percae	1		Bucephalus elegens	5
	Eimeria laureleus	7		Bucephalus polymorphus	1
	Eimeria percae	1		Bunocotrle cingulata	1
	Glossatella campanulata	1		Bunodera luciopercae	15
	Glossatella sp.	2		Bunodera nodulosum	5
	Henneguya doori	5		Bunodepa sacoulata	5
	Hennegrya percae	5		Centrovarjum lobotes	5
	Henneguya psorospermica	1		cleidodiscus sp.	5
	Henneguya wisconsinensis	5		Clinostomum complanatum	1
	Henneguya zschokkei	1		Clinostomum margiatum	5
	Henneguya sp.	6		Cotylurus pileatus	1
	Ichthyophthirius			Crassiphiala bulboglossa	5
	multifiliis	5		Crepidostomum cooperi	5
	Myxidium percee	5		Crepidostomum rarionis	5,6
	Myxobolus dispar	1		Crepidostomum laureatum	5
	Myrobolus ellipsoides	1		Crepidostomum solidum	5
	Myxobolus minutus	1		Crowcrocoecum skrjabini	1
	Myxobolus mưleri	6		Cryptogonimus chyli	5
	Myxobolus percae	5		Cyrodactylus longiradix	1
	Myxobolus phyriformis	5		Dactylogyrus tenuis	1
	Myxobolus wegeneri	1		Diplostomulum clavatum	1
	Myxobolus sp.	5		Diplostomulum huronense	5
	Myxosoma anurus	1		Diplostomulum scheuringi	5
	Myxosoma neurophila	5		Diplostomulum sp.	5
	Myxosoma scleroperca	5		Diplostomum spathaceum	1, 7
	Spironucleus sp.	7		Diplostomum volvens	4
	Thelchanellus piriformis	5		Diplostomum sp.	6
	Trichodina domerguei	1		Distomum nodulosum	5
	Trichodina meridionalis	1		Echinochasmus donaldsoni	5
	Trichodina nigra	1		Euclinostomum heterostomum	m 1
	Trichodina urinaria	1		Euparyphium melis	5
	Trichodina sp.	5		Gyrodactylus sp.	5,6
	Trichodinella epizootica	1		Hemiurus appendiculatus	1
	Trichophyra intermedia	1		Hysteromorpha triloba	1
	Trichophyre piscium	5		Ichthyocotylurus cucullus	6
	Trypanosoma percae	1, 5		Ichthyocotylurus sp.	6
Trematoda				Leuceruthrus sp.	5
	Allocreadium isoporum	1		Maritrema medium	5
	Ancyrocephalus paradoxus	1		Metagonimus yokogawai	1
	Ancyrocephalus sp.	5		Microphallus medius	5
	Apophallus americanus	5		Microphallus opacus	5
	Apophallus brevis	11		Neascus brevicaudatus	1
	Apophallus itascensis	5		Neascus ellipticus	5
	Apophallus mi̛hlingi.	1		Neascus longicollis	5
	Apophallus venustas	5		Neascus oneidensis	5
	Apophallus sp.	5		Neascus pyriformis	5
	Ascocotyle coleostoma	1		Neascus sp.	5
	Aspidogaster limacoides	1		Paracoenogonimus ovatus	1.
	Asymphylodore sp.	5		Petasigex nitidus	5
	Azygia acuminata	5		Phyllodistomun anericanum	5
	Azygia angusticauda	5		Phyllodistomum angulatum	1
	Azygia longa.	5		Phyllodistomum folium	1
	Azygia lucii	1		Phyllodistomum	
	Azygia sebago	5		pseudofolium	1
	Azygia sp.	5		Phyllodistomum superbum	5

FTR/S113 Perca fluviatilis and Po flavescens

Phylum	Species Aut	Authoritty	Paylum	Species A	Authority
Trematoda	Posthodiplostomum outicola 1		Porrocaecum reticulatum		
	Posthodiplostomum minimum	5		Raphidascaris acus	1
	Ptychogonimus fontenis	5		Raphidascaris cristata	6
	Rhipidoootyle illense	6		Rhabdochona ovifilamenta	5
	Rossiootrema, donicum	1		Rhabdochona sp.	5
	Sanguinicola oooidentalis	5		Spinitectus carolint	5
	Sphaerostoma brame	1		Spinitectus gracilis	5
	Stephanophiala farionis Tetracotyle diminuta	5 5		Spinitectus sp.	5
	Tetracotyle echinata			Spiroxis contortus Spiroxis sp.	7
	$\begin{aligned} & \text { Tetracotyle } \\ & \text { percafluviatilis } \end{aligned}$	1	Acanthocephala	Acanthocephalus anguillae	5 1
	Tetracotyle variegatus	6	Aoanthocephala	Acanthocephalus clavula	6
	Tetracotyle sp. Tylodelphys clavata	5,6		Acanthocephalus jacksoni	5
	Tylodelphys clavata Tylodelphys podicipina	6		Acanthocephalus lucii	1
	Urocleidus adspectus	5		Corynosoma semerme	1
	Uvulifer ambloplitis			Corynosoma strumosum Echinorhynchus coregoni	1
Cestoda	Bothriocephalus cuspidatus			Echinorhynchus lateralis	5
	Bothriocephalus sp.	6		Echinorhynchus salmonis	5
	Corallobothrium sp.	7		Echinorhynchus truttae	2
	Cyathocephalus truncatus	1,3		Echinorhynchus sp.	6
	Cysticercus Gryporhynchus oheilancristrotus	1		Leptorhynchoides thecatus	5
	Diphyllobothrium latum	1, 5		Netechinorhynchus salmonis	1
	Diphyllobothrium sp.	6		cylindratus	5
	Eubothrium crassum	1		Neoechinorhynchus rutili	1, 10
	Eubothrium sp.	6		Pomporhynchus bulbocolli	
	Ligula intestinalis	5		Pomporhynchus laevis	6
	Proteocephalus ambloplitis	5		Pseudoechinorhynchus	
	Proteocephalus cernuae Proteocephalus dubius	1		clavula	1
	Proteocephalus pearsei	5	Hirudinea	Actinobdella sp.	
	Proteocephalus percae	1		Hemiclepsis marginata	1
	Proteocephalus pinguis	5		Illinobdella alba	5
	Proteocephalus spo	6		Illinobdella moorei	5
	Schistocephalus solidus			Illinobdella sp.	5
	Triaenophorus nodulosus	1,5		Piscicola geometra	1
	Triaenophorus tricuspidatus	5		Piscicolaria sp.	5
Nematoda	Camallanus lacustris			Placobdella piota	5
	Camallanus oxycephalus	5	Mollusca	Anodonta anetina	2
	Camallanus truncatus	1		Anodonta sp.	9
	Camallanus sp.	5		Elliptio complenatus	9
	Capillaria catenata	5		Lampsilis radiata	8
	Capillaria salvelina	6		Glochidia	5
	Contracaecum aduncum	1		(Unionidae)	1
	Contracaecum brachyurum	5			
	Contracaecum spiculigerum	5	Crustacea	Achtheres lacae	
	Contracaecum squalii	1		Achtheres percarum	1
	Contracaecum sp.	5		Argulus appendiculosus	5
	Cucullanus truttae	6		Argulus biramosus	5
	Daonitoides cotylophora	5		Argulus catostomi	5
	Desmidocercella sp.	1		Argulus foliaceus	1
	Diohelyne sp.	10		Argulus stizostethi	5
	Eustrongylides excisus	1		Argulus versicolor	5
	Eustrongylides mergorum	1		Caligus lacustris	1
	Eustrongylides sp.	5,6		Ergasilus briani.	
	Gnathostoma sp.			Ergasilus caeruleus	5
	Ichthyobronema gnedini			Ergasilus confusus	5,9
	Philometra cylindracea	5		Ergasilus sieboldi	1

Phylum	Species	Authority
Crustacea	Lernaea cyprinacea	1
	Lernaea esocina	1
	Thersitina gasterostei	1
Arachnida	(Hydrachnellae)	1

Where perch were recent entrants in the Klamath River, California, Coots (1956) found that they were without parasites.

In other areas, the intensity of infestation has been examined for a number of parasite species as follows:

Eimeria laureleus: Molnar and Fernando (1974) found high infestation in the intestine of 70% of perch in Laurel Creek, Ontario.

Henneguya doori: Sixteen out of 44 perch in March and May from northern Green Bay, Lake Michigan, had this parasite incysted in the gill filaments (Guildford 1963). The parasite was not present in 29 fish in August nor in fish from the summer or autumn in southern Green Bay.

Myxobolus sp.: This sporozoan was thought to be the cause of high annual summer mortalities of perch in Lake Mendota, Wisconsin (Herman et al. 1964).

Myxosoma neurophila: Eighteen out of 40 perch $5-25 \mathrm{~cm}$ in length from southern Green Bay, Lake Michigan, were infected while 29 perch from northern Green Bay were unaffected. The myxosporidian occurred in the optic tectum (Guildford 1963).

Myxosoma scleroperca: The parasite develops throughout the summer, large inflammatory cysts being evident in the eyes of 12 out of 107 perch from southern Green Bay in October. No cysts were apparent among 167 other perch examined from the same areas in spring and summer. Infections were restricted to fish over 10 cm long (Guildford 1963).

Spironucleus sp.: In Laurel Creek perch, high infestation in the intestines of 20% (Molnar and Fernando 1974).

Trichodina sp. i: High infestation on gills and fins of 85% 。

Trichodina sp. ii: High infestation in urim nary ducts of 75% of Laurel Creek perch (Molnar and Fernando 1974).

```
Authoritios
```

Authoritios
1. BykhovskayamPavlovskaya ot alg (1964)
1. BykhovskayamPavlovskaya ot alg (1964)
2. Campbell (1974)
2. Campbell (1974)
3. Dechtiar \& Loftus (1965)
3. Dechtiar \& Loftus (1965)
4. Deufel (1961)
4. Deufel (1961)
5. Hoffman (1967)
5. Hoffman (1967)
6. Kennedy (1974)
6. Kennedy (1974)
7. Molnar \& Fernando (1974)
7. Molnar \& Fernando (1974)
8. Tedla \& Femnando (1969b)
8. Tedla \& Femnando (1969b)
Tedla\& Fernando (1969b)
Tedla\& Fernando (1969b)
10. Bangham (1955)
10. Bangham (1955)
11. Noble (1970)

```
11. Noble (1970)
```

Azygia angusticauda: One in the stomach of each of 20% of perch at Laurel Creek (Molnar and Fernando 1974). In Lake Huron, Bangham (1955) found only 2% incidence and in Algonquin Park, Bangham and Venard (1946) found only 1\% infected.

Bucepholus elegans: Less than 2% of Lake Huron fish were infected (Bangham 1955).

Bunodera luciopercae: Campbell (1974) found a regular cycle of incidence, this trematode being common in the guts of all Loch Leven perch during autumn and spring with a rapid decrease of incidence in early summer. The variation of intensity of infestation was similar. Year to year variability ranged over a factor of 10. Such regularity of annual cycles was also reported by Dogiel et al. (1961), Rizvi (1964), Kozicka (1969), Cannon (1971) and Wootten (1973). Cannon (1973) found that the numbers of this parasite increase with fish size in the female perch only at Lake Opeongo, Ontario. Wootten (1973) found the mean intensity of infesm tation of perch at Hanningfield Reservoir to be maximal at a length range of $15-19.9 \mathrm{~cm}$. He also found infestations positively correlated with those of Proteocephalus percae.

Intensity of infestation of adult perch with B. luciopercae is probably increased through cannibalism: such infestation was low at Loch Leven in 1969-70 when perch fry were scarce (Campbell 1974).

Bunodera sacculata: Cannon (1973) found a seasonality of infestation similar to that of B. lucioperca. In Lake Furon, 22% were infected (Bangham 1955) and 24% in Algonquin Park (Bangham and Venard 1946).

Clinostomum marginatum: The "yellow grub" as the "black spot" (Neascus) makes the fish unsightly and leads the angler to discard infected individuals (Scott and Crossman 1973). Herman et al. (1964) found them commonly among Wisconsin fish, and Molnar and Fernando (1974) found one in the skin and musculature of each of 15% of perch at Laurel Creek. Ten percent were infected in Lake Huron (Bangham 1955) and 4% in Algonquin Park (Banghem and Venard 1946). Elliott and Russert (1949) found that numbers increased directly with the size and age of the host, but were not
correlated with the condition of the Sish. They suggested that older fish with a heavier burden of metacercariae may be more susceptible to oxygen deficiency than younger fish.

Cotylurus sp.: Campbell (1974) found metacercariae encysted on the swim-bladder of almost every Loch Leven perch ezamined including $0+$ fish in the autumn. Cysts were also found less frequently on the heart wall and the pericardium.

Crepidostomum cooperi: The highest infestations occurred at Lake Opeongo during the summer and the numbers present increased with host size (Cannon 1973). Forty-two percent of Lake furon perch were infected (Bangham 1955) and 23% in Algonquin Park (Bangham and Venard 1946).

Diplostomulum scheuringi: All Laurel Creek perch were infected with numbers ranging from $1-34$ worms (average 9) in the vitreous chamber of the eye (Molnar and Fernando 1974).

Diplostomulum spp.: Campbell (1974) reported two forms from Loch Leven perch; one from the lens and the other from the vitreous body. The former parasite decreased in intensity gradually over a period of 4 years while the latter showed an increase over the same interval. Bangham (1955) found 68% incidence of Diplostomulum spp. in Lake Huron perch.

Diplostomum spathaceum: Molnar and Fernando (1974) found 1-9 worms (average 6) in the lenses of 15% of Laurel Creek perch. Herman et al. (1964) reported Diplostomum sp. as common in the eyes of Wisconsin perch.

Diplostomum volvens: Mass deaths of perch in the Bodensee were thought to be due to infestation by this trematode (Deufel 1961). In 1972, three times as many males as females of age Group III and older died with Diplostomum infesm tations (Hartmann MS. 1974).

Gyrodactylus spp.: Herman et al. (1964) reported this parasite commonly from the fins, gills and scales of Wisconsin perch, and Campbell (1974), from the fins of two individual perch of less than 10 cm total length from Loch Leven, Scotland. Fortymine percent of Lake Huron perch carried Gyrodactyloid parasites (Bangham 1955).

Neascus pyriformis: The "black spot" param site is common in Wisconsin fish (Herman et al. 1964), and Molnar and Fernando (1974) found $6-50$ individuals on the fins or the skin of 30% of Laurel Creek perch. Twenty-one percent were infected in Lake Huron (Bangham 1955) and 56% with Neascus sp. in Algonquin Park (Bangham and Venard 1946).

Posthodiplostomum minimum: A single larval

 trematode was present in the liver of 5% of Laurel Creek perch (Molnar and Fernando 1974) and 5% were infected in Algonquin Park (Bangham and Venard1946), and 7 perch out of 201 were infected in Lake furon (Bangham 1955).

Urocleidus adspectus: 1-24 (average 7) worms on the gills of 65% of Laurel Creek 0 (Molnar and Fernando 1974).

Uralifer ambloplitis: 1-80 (average 16) worms on the fins, skin and gills of 70% of Laurel Creek perch (Molnar and Fernando 1974).

Bothriocephalus sp.: No seasonality could be identified in the incidence of this astode at Lake Opeongo, but like Bunodera luciopercat, intensity increased with size among female perch only (Camnon 1973). Fourteen percent of perch in Lake Huron were infected (Bangham 1955) and 5% in Algonquin Park (Bangharn and Venard 1946).

Corallobothrium sp.: 5-30 (average 14) worms were present attached to the intestinal serosa of 65\% of perch at Laurel Creek (Molnar and Fernando 1974).

Cyathocephalus truncatus: Twenty-seven pexch from Lake Furon were found to be infected with mature Cyathocephalus in the pyloric caeca. The intermediate host of this cestode is Pontoporeia affinis on which the perch feed in winter (Dechtiar and Loftus 1965). In Loch Leven, Scotland, Campbell (1974) found no Cyathocephalus in perch although it was present in trout particularly those which had recently entered from the inflowing streams.

Diphyllobothrium latum: Ghittino (1963) quoted Scolari (1955) as reporting 88\% of perch in the Varese lakes, Italy, infested with D. latum, such occurrences being legally notifiable in Italy due to the importance of this cestode as a human parasite. Ojala. (1963) reported that the plerocercoids showed little effect on the perch host, but that 25% of Finland's human population were infested through the habit of eating raw lightly salted fish.

Eubothrium crassum: Plerocercoids occurred occasionally in the lumen of the guts of Loch Leven perch (Campbell 1974) and from August-October 1971, 135 were recovered from 98 fish sampled. A seasonal cycle of the cestode in trout (Salmo trutta) was suspected and this increase in the autumn corresponds to that in trout.

Ligula intestinalis: Four percent of Algonquin Park lakes perch were infected (Bangham and Venard 1946).

Proteocephalus ambloplitis: Seven percent of Lake furon perch were infected with this cestode (Bangham 1955) and 19\% in Algonquin Park (Bangham and Venard 1946).

Proteocephalus pearsei: Seasonality was demonstrable for this helminth in Lake Opeongo perch (Cannon 1973) where the lowest levels of infestation occurred during the summer. The parasite was more

TABLE IX
Effect of Triaenophorus nodulosus on size and blood counts of perch fry (Data from Kuperman 1973)

Sample group	Length (mm)	Weight (mg)	Erythrocyțes $\left(1000 / \mathrm{mm}^{3}\right)$	$\begin{aligned} & \text { Leucocytes } \\ & \left(1000 / \mathrm{mm}^{3}\right) \end{aligned}$
1 Uninfected	54.5 意 0.5	1335 ± 51	2500 ± 53	76.0 ± 2.2
Infected: Parasite				
Liver $5-20 \%$	54.8 ± 1.3	1400 ± 113	2520 ± 15	60.0 ± 9.0
Infected 20, 60%	51.2 ± 0.8	1060 ± 49	2660 ± 130	104.0 ± 15.0
2 Uninfected	62.2 ± 0.2	2288 ± 101	2730 ± 46	87.2 ± 3.0
Infected: Parasite				
	61.5 ± 0.7	2116 ± 68	2537 ± 38	74.0 ± 10
Infected 20.60\%	59.8 ± 1.3	2160 ± 74	2460	116

common in female perch. It was also common in Wisconsin fish (Herman et al. 1964). Thirtythree percent were infected in Lake Euron (Bangham 1955) and Algonquin Park (Bangham and Venard 1946).

Schistocephalus solidus: A single record for this parasite exists as single worms from the abdominal cavity of 5% of perch at Laurel Creek (Molnar et al. 1974).

Triaenophorus nodulosus: Larval and adult forms are found in perch, plerocercoids in the liver ard adults in the gut usually with loss of condition in the fish (Ojala 1963). Matthey (1963) reported mass mortalities of perch in the Lac de Zoug, Switzerland, in May 1957 and January 1958 associated with heavy infestations with T_{0} nodulosus. Herman et al. (1964) found it to be common in Wisconsin perch and Lawler (1969) investigated its biology in Heming Lake, Manitoba.

Markevich (1943) reported a mass infection of perch with T. nodulosus in Lake Kandry-Kul. Kuperman (1973) noted that the apparent effect of this cestode on perch was less pronounced then in trout and suggested that this indicated an equilibrium in a longmestablished hostmparasite system which originated through prolonged mutual evolution. Experiments were carried out on $0+$ perch from Rybinsk Reservoir to test the assumption that the effect of T. nodulosus on perch fry would be severe since the young fish appeared to be less resistant to the damaging influence of the tapeworm. Infection occurred first among 8 -daymold fry through eating infected Cyclops, and the parasite then became located in parenchymatous tissue which would later become the liver. Incidence increased during the summer months to 70% and
intensity was from $1-6$ plerocercoids. In Rybinsk Reservoir, most infection takes place from late May to early July. The effects of infestation were studied during August and September using the ratio of parasite weight to liver weight as an index of degree of infection. From experimental ponds, two samples were taken and the infected fish divided into two groups having parasite/liver weight ratios of $5-20 \%$ and $20-60 \%$ respectively. The lengths, weights and blood cell counts of these groups are shown in Table IX. Length and weight showed a significant reduction in only those fish having $20=60 \%$ infection in the first sample: otherwise, size differences were not evident. Red cell counts only showed a real decrease in the heavily infected group of the second sample, but white cell counts increased notakly in both heavily infected samples. This increase is due to monocytes which increase from 9.7% in uninfected fish to 21% in infected ones.

Although little or no visible effect was caused by the parasite, there might still have been relative weakening and therefore greater risk of predation among infected fish. To test this, 2000 fry were placed in a winter pond with predaceous perch, pike-perch and pike. Seven months later, the incidence of infection was 23.2%, the same value as at the start of the predation experiment. In another experiment, the fry were held over winter without food: again the level of incidence of \underline{T}_{0} nodulosus in the survivors in the spring was unchanged. Thus the presence of the parasite did not appear to put the host at any obvious disadvantage.

However, Strazhnik and Davydov (1971) have shown that Triaenophorus nodulosus had a high vitamin B_{1} content when in the liver of its host,
and that liver from infected perch contained only
 uninfected fish.

Lien (1970) found that the plerocercoids can remain infectious for $2-3$ years in perch and if transferred to pike in the spring, the parasite can remain alive for up to 4 years before its life-cycle is completed. In this case, perch plays a role as intermediate host.

Capillaria selvelini: A single specimen of this nematode common in trout (Salmo trutta) was found in a Loch Leven perch in June (Campbell 1974).

Dacnitoides cotylophora: The highest incim dence occurred in summer in Lake Opeongo perch (Cannon 1973).

Eustrongylides sp:: Present as single individuals in the abdominal cavity of 5% of Laurel Creek perch (Molnar and Fernando 1974).

Philometra cylindracea: Twenty percent of Laurel Creek perch contained $1-3$ individuals (average 2) in the abdominal cavity or the swimbladder (Molnar and Fernando 1974). Only 1\% of Lake Furon fish were infected (Bangham 1955).

Raphidascaris acus: The highest incidence occurred in the summer months, varying from 2.5 4.5 worms per fish for mean maximal intensity (Campbell 1974). This peak occurred at times of lowest incidence of Bunodera luciopercae suggesting an antagonistic relationship between the parasites. In large perch, Raphidascaris infestations were probably acquired by eating small perch which have ingested R. acus eggs (Moravec 1970) as during June-September, adult Loch Leven perch consumed their own weight in perch fry (Thorpe 1974).

Rhabdochona sp.: Six percent of Lake Huron perch were infected (Bangham 1955).

Spinitectus gracilis: No seasonal diffem rences in incidence were recognizable for this nematode in Lake Opeongo perch (Cannon 1973). Infestation increased with increasing fish size in females only. Four percent of Lake Furon perch were infected (Bangham 1955). Ten percent of Algonquin Park perch were infected (Bangham and Venard 1946).

Spiroxys contortus: Single worms occurred in the intestinal serosa of 5% of Leurel Creek perch (Molnar and Fernando 1974). Only 1 out of 201 fish from Lake Huron carried this parasite (Bangham 1955).

Echinorhynchus truttae: Forty percent of Loch Leven perch contained this acanthocephalan in July 1967 and 10% in December 1967, but at no other time in the period 1967-73 (Campbell 1974). From the parallel decrease in intensity or
infestation in trout, it appears that this parasite belonged mainly to the inflow stream system rather than the lacustrine one.

Leptorhynchoides thecatus: As with Spinitectus, there was no clear seasonal pattern of incidence in perch from Lake Opeongo (Cannon 1973), and this parasite was commoner in female perch than in males, increasing in intensity in the former with size. Ten percent were infected in Lake Huron (Bangham 1955) but only 2% in Algonquin Park lakes (Bangham and Venard 1946).

Neoechinorhynchus cylindratus: Three percent ô Lake Furon perch were infected (Bangham 1955).

Neoechinorhynchus rutili: Ten to 20 percent of perch of over 25 cm , total length were infected with this acanthocephalan at Loch Leven (Campbell 1974) on odd occasions in the winter November 1969, February and April 1970, and January 1971. None were found at other seasons over a 7 -year period. In Lake Furon, Bangham (1955) found 11 perch infected out of 201.

Illinobdella moorei: Three percent of Lake Huron perch were infected with this leech (Bangham 1955).

Pomphorhynchus bulbocolli: Less than 2% of Lake Huron fish were infected (Bangham 1955).

Anodonta anatina: Glochidia from this freshwater mussel occurred seasonally from November to June with peak numbers in May on the gills and fins of Looh Leven perch (Campbell 1974).

Elliptio complanatus: Matteson (1948) found that perch experimentally infected with glochidia carried them for 18 days at $18^{\circ} \mathrm{C}$.

Lampsilis radiata: Glochidia were found on the gills of perch in Lake Ontario from May to October, the numbers per fish increasing rapidly to 60 in late May and then steadily to a maximum of 90 in late July. The decrease was more rapid to 4 in early September. Incidence was 100% in midsummer (Tedla and Fernando 1969 a). They state that infestations of more 200 glochidia per fish are rare. Infestation and fish size are negatively correlated ($r=0.7578$). In experimental infes tations, the parasite wes carried for $40-50$ days after exposure of the perch in May or up to 98 days after exposure in August, the experimental tempem ratures being $15^{\circ} \mathrm{C}$ in each case.

Ergasilus confusus: The occurrence of three Ergasilus species on percid fish in Lake Ontario was investigated by Tedla and Fernando (1969) who found that among 118 perch examined, 91.5% were infected with \mathbb{E}_{0} confusus with a mean intensity of 3.2 parasites per fish. None were found to carry E_{0} caeruleus although the parasite was present in 66% of pumpkin seeds (Lepomis gibbosus).

TABIE X
Sporozoan infection in Lake Mendota perch, winter 1946-47
(Data from Bardach 1951)

Age (years)	Number caught	\% infected
2	7	0
3	44	4.5
4	177	22.6
5	46	52.0
6	3	66.6
Total	277	24.6

Diseases: Epidemics among perch have been recorded from several localities. For example, Lassleben (1953) wrote of the "Krätzersterben" which accounted for the deaths of millions of young perch in the Bodensee in many years in late summer and autumn. He doubted the pathogenic origin of these mass deaths attributing them to radiation. Matthey (1963) listed mass mortalities among perch fry in Lac Léman on 6 occasions between 1867 and 1946, and in Lac de Neuchêtel in 1959/60 and 1962. The causative organisms were not identified.

In 1867, Forel called the outbreak PTyphus de la Perche" (Day 1880) on account of bacteria found in the blood of infected fish. In the Neuchâtel outbreaks, no such bacteria were present. These perch had gill anaemia, pale whitish livers with haemorrhagic spots and pronounced kidney anaemia: their intestines were nomal. In the 1960 outbreaks, many other fish were affected including trout (Salmo trutta) coregonids, roach (Rutilus rutilus) and pike (Esox lucius): in 1962, only perch and roach were affected. On account of its high fecundity, the loss of fry did not appear to affect the adult stock noticeably. Jensen (pers. comm.) noted epidemics in some Norwegian lakes in 1952 and a widespread "perch disease" appeared in England in 1970 (Bucke: pers. comm.) but its causative agents were not identified. Mass mortalities of AG I perch (12 m 19 cm), first maturation spawners, occurred in Lago Maggiore in March and April 1962 and 1967 (Grimaldi 1967). There were no obvious pathogens. Grimaldi commented that such extensive mortality (2600000 in 1962: c 60000 in 1967) must have affected the age structure of the population as loss to the 1967 population was about 8% of the annual commercial catch and the potential loss of eggs about 200×10^{6} (in 1962, the corresponding quantities would have been 20000 kg of fish and 2×10^{9} eggs). Nass mortalities in spring are now characteristic in the Bodensee (Hertmann MS. 1974) and those summer outbreaks recorded by Nimann (1939) have not occurred in recent years.

Ojala (1963) reported a "spot disease" probably of pseudomonad origin affecting perch in. Finland. This consisted of septicaemia with haemorrhagic enteritis and subcutaneous abscesses followed by deep skin ulceration. In milder forms, there were superficially inflamed areas of skin with some loss of condition.

Nordstrom et al. (1960) reported a large kill. of perch in May 1959 in Dailey Lake, Montana. Associated with this catastrophe was a gramnegative pleomorphic bacillus (probably related to Pseudomonas) on the exterior, in the muscles, kidney and liver. In experimental infections, similarities were seen between this disease and that of the nineteenth century outbreaks in Switzerland.

In Lake Mendota, Wisconsin, over 200 t of dead fish, mostly perch, had to be removed in 1884 (Bardach 1951). No causative organism for the mass deaths was found. In 1939, an infectious outbreak occurred anong perch in the summer characterized by red sores and open lesions, and attributed to a Myrobolus species. Many thousands died from it every summer from 1940-1946, the most serious outbreaks coinciding with the onset of hot weather in miduJuly. From subsequent gillnet samples, the incidence of infection was greater amongst older fish (see Tlable X).

Bardach considered that these epizootics were the most important single influence accounting for the decreased numbers and increased growth-rate of Mendota perch.

Red sores and open lesions on the flanks of adult perch have also been noted in the early summer at Loch Leven (Thorpe, unpubl.) where incim dence rose from 0.6% at the end of April to 5.0% over the next three weeks. The effect on the population is not known, but later in the year, individual perch with regenerated scales on the flanks were frequent in net catches.

The bacterium Aeromonas salmonicida, the causative organism of furunculosis in Salmonidae, has also been recorded as affecting perch in Europe (Vibert and Lagler 1961).

With regard to injuries and abnormalities, Pokrovskii (1951) published a figure of a perch from the Yenisei River described as monstrositas exocoetoides with elongate fins such that the caudal was approximately 50% of the length of the remainder of the fish and the pectoral, pelvic, anal and second dorsal fins were all approximately equal to the length from the snout to the opercular spine.

A blue variety having the typical vertical black bars but lacking all yellow colouration was caught in Lake Erie (Dymond 1932) and the captor claimed to have seen 6 during 50 years fishing there. Similar blue perch have been noted from Saginaw Bay, Lake Michigan (Hubbs In Dymond 1932). A bright orange form lacking vertical dark bars was reported by Crossman (1962) also from Lake Erie. The back sides and top of the head were a solid, bright, transparent orenge; the lower sides and ventral surface were milky white. The orange areas were speckled with black pigment which from the occiput to the first dorsal was condensed into a black line. The cheek and lower operculum were metallic silver and mirror-like. The upper operculum was orange. The pupil of the eye was black and the upper crescent section of the whitemofthe - eye was orange speckled with black.

In other respects, these blue and orenge forms appeared to be typical perch. Structural abnormalities were reported by Linnaeus from Fahlun, Sweden (Day 1880). where a hunchback form occurred, locally called Rudaborre (meaning a hybrid between perch and crucian carp, Carassius carassius). Similar forms were also reported from Wales and from England (Day 1880). Smitt (1893) published illustrations of these fish and Reichenbach-Klinke (1956) quoted Wahlgren as attributing their shortened spinal column to osteomalacia caused by a sporozoan parasite. Svob et al. (1974) illustrate a perch fry with a shortened upper jaw, a malformation which they attribute to lack of oxygen during embryonic development. Pugheadedness has been reported several times most recently by Lawler (1966) from perch in Heming Lake, Manitoba.

Schäferna (1934) reported elongated fins in perch probably resulting from a pituitary disturbance similar to that giving rise to acromegaly in man.
3.4 Nutrition and growth
3.4.1 Feeding

- Time of day

Wunder (1926) described the retinal structure of the perch eye a.s having 25 rods and 8 cones per 80μ of retinal surface, and designated the animal
as a "bright light" fish. In a later paper (1927), he demonstrated the olfactory function of the nostrils, but the degree to which this was used in prey detection and capture varied widely between individuals. Physiologically, therefore, perch appears to be adapted to daylight feeding. Lagler et al. (1962) refer to the limnodromous movement of perch: onshore with coming darkness and offshore at dawn. This activity appears to be comnected with feeding as the principal feeding periods reported are in the morning and evening (Scott and Crossman 1973). Scott (1955) recorded daily migration at sunrise from Rondeau Bay out into Lake Erie where the $2-3$ year old (mean length 13.5 cm) perch fed on Daphnia returning just before sunset and remaining inactive at night. Keast and Welsh (1968) found that in Lake Opinicon, perch of $9-13 \mathrm{~cm}(1-2$ years old) showed peaks of stomach fullness at mid-morning and dusk in June: the timing of this index could only be approximate as some of the materials used were taken from gillnets where the fish could have been entangled for up to $2 \frac{1}{2} \mathrm{~h}$. However, the general pattern agrees with that found by Manteifel et al. (1965) for planktivorous perch in Rybinsk Reservoir in July. Adult Loch Leven perch ($>20 \mathrm{~cm}$ total length) showed a similar pattern of early morning arid evening peaks of food consumption (Thorpe in press a) (Fig. 12) in June and July but consumption became concentrated into the middle of the day in September. Manteifel et al. (1965) reported that benthophage perch filled their stomachs rapidly from $03.00-08.00 \mathrm{~h}$ and then maintained full stom machs until 18.00 h after which the quantity decreased to zero by 02.00 h . Piscivorous perch in Rybinsk Reservoir showed a much more variable feeding rhythm possibly dependent on the irregular availability of perch or cyprinid fry. At West Blue Lake, Manitoba, Ward and Robinson (1974) found that perch fed in the morning and evering only during June to September.

- Place

General area: As noted above, limnodromous movements take perch offshore during the day so that feeding occurs in the open water and on the sublittoral. Klemetsen (1973) found fish in Gjökvatn, Finnmark, Norway in July feeding both pelagically on plankton and fish fry, and benthi-cally on insect larvae and molluscs. In Loch Leven, adult perch were feeding heavily in shallow littoral areas ($<5 \mathrm{~m}$ depth) all summer from JuneSeptember, but as evening catches tended to be much greater than midday ones, the bulk of the population was probably feeding in open water or on the sublittoral areas (Thorpe in press a). Hartmann (MS. 1974) found that in the Bodensee since eutrophication, perch move on to the sublittoral (at a depth of c 10 m) and into the pelagial regions where they eat Cladocera in summer. Prior to eutrophication, the adults had been restricted to the littoral areas in summer. Neill and Magnuson (1974) established experimentally that perch, given a choice of preferred temperature conditions ($23^{\circ} \mathrm{C}$) withov food and extreme

Fig. 12 Food consumption by Loch Leven perch (From Thorpe in press b)
temperatures $\left(29^{\circ} \mathrm{C}\right)$ with food, chose to live in the part of the tank at the preferred temperature and make forays out for food. Neither laboratory nor field results at Lake Monona, where fish distribution was studied in the area affected by the heated outfall from a power plant suggested that thermoregulatory behaviour was overridden by feeding behaviour even though zooplankton was more abundant in the outfall area than in unheated parts of the littoral.

Neuman (1974 a) found that perch on the Baltic coast of Sweden moved out into open water as the temperature rose in summer, but in this case, temperatures did not exceed the thermal optimum for the species of about $21-24^{\circ} \mathrm{C}$ (see sections 2.3 and 3.3.2).

In winter, perch tend to occur in deep water (Hergenrader and Hasler 1966) and although the food turnover may not be high, a low level of feeding occurs probably chiefly on benthic animals. Craig (pers. comm. 1975) has found Gammarus taken by Windermere perch in winter in deep water.

Perch appear to be reluctant to enter vegetated areas to feed and depend chiefly on open water (see next section).

- Manner

Methods of capture, selection: Deelder (1951) described the feeding behaviour of a shoal of perch held in the Amsterdam aquarium. Prey was first searched for visually and moving objects attract interest while stationary ones do not. Small roach (Rutilus rutilus L) of $1.5-10 \mathrm{~cm}$ were used as prey animals. When swimming, the roach were vulnerable and excited responses from perch several metres away. A predatory perch darting toward its prey attracted the attention of other perch, but as rather inefficient in capturing the prey fish. Characteristically, the perch attempts to approach the prey and seize it head-first so that a hunting fish has to pass its quarry and turn sharply to capture it. As healthy roach were at least as agile as perch, they escaped the initial attack frequently, but as other perch were present all around, turning away from one implied turning toward another. Thus, cooperative hunting in shoals ensured feeding success. In trials with individual perch in tanks with roach as prey, none succeeded in capturing a roach in the open water but only at the edges from which the roach could not escape. Hunting in shoals would have success in open water where the perch can keep its prey in sight, but when small clusters of floating plants were introduced to the tank, the roach moved into them and the perch did not follow but remained at the periphery of the cluster. Deelder concluded that for satisfactory growth, perch required a prey fish which remained available in open water and considered the smelt (Osmerus eperlanus L) fulfilled this role. Absence of this fish from some Dutch waters was not compensated for by the abundance of roach because vegetation
prevented the use of roach as an alternative forage resource.

Boulet (1958) examined the responses of perch to moving objects experimentally. The speed of the object on its trajectory, the form of the trajectory, the size and shape were all important in releasing responses and receptivity to the objects increased when fish were tested in groups (see section 3.5.3 for details).

Deelder (1951) also noted that in the absence of fish fry as prey, the perch searched plants growing in the observation tank and ate small animals between and attached to these plante.

Boulet (1958) had observed that white plastic balls smaller than 2 mm in diameter elicited little or no response from perch in the test apparatus. However, Daphnia-like movements were particularly attractive to the fish. Galbraith (1967) found that Daphnia were not utilized as food in a lake by perch of $7-25 \mathrm{~cm}$ total length unless the individuals were larger than 1.3 mm , and Klemetsen (1973) found that Daphnia galeata eaten by perch in Gjökvatn had a carapace length of $1.2-2.2 \mathrm{~mm}$ whereas those caught in plankton nets ranged from $0.8-1.7 \mathrm{~mm}$. Copepods were abundant in the plankton but hardly touched by perch.

In Oneida Lake, the rate of decline of Daphnia in summer was linked causally with perch food consumption (Hall 1971) and the fish selected the larger Cladocerans. In D_{0} galeata and D_{0} retrocurva, the body size was reduced after June and in D_{0} pulex, the species disappeared in mido summer.

- Frequency

Feeding frequency of individual adult perch appears to be unknown, but in a population, some individuals appear to be feeding at all times during daylight hours. Thorpe (in press a) published data on the consumption of separate taxa of food items by adult Loch Leven perch, and although concentration on particular foods was restricted to short periods of the day, at no period was nothing being eaten.

- Variation of feeding habits with availability, season, age, size, sex and physiological condition

Perch are adapted to a diet of small live animals. Backward-slanting teeth line their jaws axid the inner edges of the gills are lined with comb-like rakers. They will take whatever small animals are most available (Herman et al. 1964). Since feeding appears to depend primarily on availability of prey, seasonal changes in food eaten reflect seasonal changes in availability of foods. For example, data in Thorpe (in press a) indicate monthly differences in the intake of Daphnia, Eythotrephes, perch fry, Chironomidee and

TABLE XI
Daily food consumption by adult perch in Loch Leven. (from Thorpe in press a)

Food	$\begin{gathered} \begin{array}{c} \text { Tune } \\ (\text { O/000 }) \\ 1971 \quad 1972 \end{array} \end{gathered}$		$\begin{aligned} & \text { July } \\ & \left(\begin{array}{c} 0 / 000) \\ 1971 \end{array}\right. \end{aligned}$	August		$\begin{gathered} \text { September } \\ (1000) \\ 1971 \end{gathered}$	$\begin{aligned} & \text { Total Consumption } \\ & \text { June-September } \\ & 1971 \\ & (\% / 000) \end{aligned}$	
Asellus	208	214	233	239	176	45	22222	33.8
Daphnia	22	5	93	136	5	62	9619	14.6
Perch fry	111	5	52	46	4	83	8858	13.5
Chironomidae	142	132	100	31	191	11	8651	13.1
Hirudinae	115	76	156	7	6	-	8503	12.9
Gammarus	10	26	9	3	34	111	4002	6.1
Bythotrephes	-	-	3	53	1	2	1796	2.7
Miscellaneous	43	7	23	1	12	4	2154	3.3
Total	651	465	669	516	429	319	65805	100.0

TABLE XII
Comparison of food consumption by adult perch in
Loch Leven: 1971 and 1972 (from Thorpe in press a)
(Data in $\% / 000$ by freshweight)

Food type	Month June August Ala			
Benthic				
Crustacea	218	240	242	210
Annelida	115	81	7	6
Chironomidae	142	132	31	191
Planktonic				
Cladocera	111	5	46	4
Perch fry	22	5	189	15

leeches (Table XI). Between-year differences also occur (Table KII); in the case of Loch Leven fish, this was particularly true of planktonic prey where Anabaena blooms appeared to affect the availability of Cladocera and a poor brood year the availability of fry.

Hartmann (MS. 1974) records a change from plankton feeding in summer to benthos feeding in winter in the Bodensee. However, Brofeldt (1922) found the qualitative composition of food in stomachs of perch caught in the Mïggelsee, Germany in November, January and April to be the same as that in summer, but the quantity present in the digestive tract was less.

Scott and Crossman (1973) note that in America the perch feed actively through the winter.

It was suggested on the basis of data from Windermere that perch graduated from a diet of plankton to one of benthos at a length of c 14 cm and then to one of fish at a length of 18 cm (Allen 1935). The implication was that successful growth of larger fish depended on the intake of larger food particles. However, although this may be the case in some oligotrophic waters or in lakes where the total food supply is limiting, the provision of a predominantly fish diet is not essential for perch over 18 cm as is evident from Table XI and from Klemetsen's (1973) data on plankton eating perch which changed to a predominantly benthic diet at $c 25 \mathrm{~cm}$, and if there was a change to piscivory, it was at a length of $>40 \mathrm{~cm}$.

Nimann. (1939) described characteristic changes of diet from plankton to benthos to fish for Bodensee perch with size of fish, but by 1973, Hartmann (MS. 1974) found that fish $>26 \mathrm{~cm}$ fed partly and those $17-25 \mathrm{~cm}$ wholly on plankton in summer, and all sizemclasses eat benthos in winter. In experimental ponds, Ilina (1973) found that the progeny of a single pair of perch formed three separate ecological groups during their first summer, feeding on plankton, benthos and fish fry respectively. Thus the differences are primarily a response to availability, perch making use of any prey of a size appropriate to its gape.

In the Bodensee, Hartmann (MS. 1974) found that female perch of $17-25 \mathrm{~cm}$ ate more fish in summer than did males of the same length-range. This probably reflects a separate distribution of males and females at this time.

- Abstention from feeding

Although feeding during the winter has been shown to occur, the frequency of empty stomachs in samples does increase in some populations. Pearse (1919) (in Keast 1968) claimed that perch do not feed at spawning. In samples from Little Cataraqui Creek, Ontario, Keast showed that feeding began immediately after spawning. On 14 April at a
water temperature of $6.5^{\circ} \mathrm{C}$, all perch caught had empty stomachs; apart from 2 fish which had food in them on 16 April, the first feeding perch were 30% of the sample on 30 April at a temperature of $10.5^{\circ} \mathrm{C}$. By 2 May , all fish were feeding at 11.50 . Nikitinsky (1929), however, found that at Lake Zarizino, Moscow, feeding began actively before spawm ning such that from no feeding fish in the population 41 days before spaming, 12% were feeding 11 days before, 61% days before and $78 \% 4$ days after. Shilenkova (1959), however, found that in Lake Dzhalangash ${ }_{9}$ 92% of spawning fish had empty stomachs and only 2% had wellmfilled ones: at the same time, 64% on non-spawning perch had food in the guts, 41% beine wellwfilled. Hartmann (MS. 1974) recorded 9% or stomachs empty among Bodensee perch from June to October, 55% empty December to January and 29\% empty February to April. The increase in empty stomachs in December was attributed to a change from one diet to another. No increase in empty stomach percentage occurred during spawning.

$$
3.4 .2 \text { Food }
$$

- Types eaten and their relative importance in the diet

As mentioned above (section 3.4.1), perch will eat whatever small animals are most available. Almost every ecological study of perch populations has included a list of animals in the diet, but almost as many have based their statements on static samples, that is, on data from stomachs collected irrespective of time of day and therefore reflecting neither rate of evacuation nor diurnal rhythm of feeding. Therefore, data on relative importance in the diet from such samples is meaning less and only represents the relative numbers or weights present at that instant. Among adult fish, only one attempt to estimate relative importance of specific items in the diet has been made (Thorpe 1974, in press a) allowing for diurnal variation in intake and evacuation rate of different food items (Table XI). This showed that in Loch Leven, Asellus was the most important food component by weight during the sumner feeding period and that benthic crustacea accounted for about 40% of the diet. Planktonic crustacea, chiefly Daphnia, account for a further 17% and most of the remaining diet is made up approximately equally at 13% for each of perch fry, Chironomidae and leeches.

- Volume of food eaten during a given feeding period

Table XI shows that the estimated daily ration for adult Loch Leven perch was about 6.5% wet body wight per day in midmsummer, falling to 3.2% per day in early autumn. As pointed out by Thorpe (in press a), these values were minimal estimates, but since the calculated values of daily energy requirements of perch of this size and at these temperature intervals derived from respirometry data of Morgan (1974) were in close agreement with the food consumption estimates, they must be realistic values (Table XIII).

TABLE XIII
Food intake compared with metabolic requirements for Loch Leven perch 1971 (From Thorpe 1974)

Period	Food intake $\mathrm{kj}^{\mathrm{k} \mathrm{kg}^{-1} \text { day }^{-1}}$	Total metabolic requirenent $\mathrm{kj}_{\mathrm{*}} \mathrm{kg}^{-1}$ day $^{-1}$	Growth rate \% wet body weight day
June-July	223.8	162.0	0.19
July-Aug	186.5	174.8	0.19
Aug-Sept.	128.6	154.0	0.10

* Calculated from data of Morgan (1974)

It therefore seems unlikely that Keast and Welsh's (1968) estimates of 2% body weight per day as the ration for Lake Opinicon fish would be ade quate to maintain them, let alone for them to grow, and likewise the older estimate of 2% per day for 1+ fish of Hathaway (1927) (quoted in Belyy 1937). Keast and Welsh took diurnal periom dicity into account but did not attempt to estimate evacuation rates. Similarly, Ivanova's (1969) estimates of food turnover among predatory perch at Rybinsk Reservoir using Fortunatova's method for calculating rate of passage of food, but not apparently allowing for diurnal feeding rhythms, are probably too low, namely, total annual consumption of 1.7-2.8 times mean body weight. She comments that feeding intensity is lower than among perch in the Volga Delta (Ivanova 1956) where 50150 cm perch eat twice their own body weight in June to July. However, these values also are probably underestimates.
3.4.3 Growth rate

- Relative and absolute growth patterns and rates

The growth in length and weight of perch has been recorded from many habitats throughout its range. Numerous data on the growth of perch in North American waters can be found in papers by: Carlander (1950), Eschmeyer (1937, 1938), Hile and Jobes (1941, 1942) and Muncy (1962); in European waters in the works of Alm (1946), Chevey (1925), Deelder (1951), Hartley (1947), Holcik (1969), Le Cren (1958), Tesch (1955) and Vostradovsky (1961); and in Russian waters in Berg (1965), Ereshchenko (1959), Serov (1959), Shilenkova (1959) and others.

Fig. 13 shows a selection of data to illuse trate in variability in growth rate over a range of localities and Fig. 14-15 (from Neuman 1974) show the spread of size by age and sex in a Baltic population.

Le Cren (1958) noted that there was no sex difference in growth during the first ? years of life among Windermere perch, but that subsequently, females grew slightly faster than males (see Fig. 16). This sex difference has been reported from all parts of the range of distribution of the fish, as for example, by Alm (1946), Herman et al. (1964), Tesch (1955) and Berg (1965), and Fig. 17. Scott and Crossman (1973) quote data from several American sources showing that here females grow faster from the first year and achieve larger ultimate size. Once adult in their third or fourth year, the fish of each yearmalass in Windermere had a constant annual increment in weight regarde less of age. Such a growth pattern implied that growth could not be described by a formula of the Von Bertalanffy type where growth rate declines as the fish approaches its maximum size (see Fig. 18). However, such a growth pattern is not true of all localities. Craig (1974 a) arrived at Le values of 22.0 cm for males and 25.0 cm for females at Slapton Ley using Fordwalford plots which imply a regularly decreasing length increment in successive years. Similarly, Heyerdahl and Smith (1971) showed steadily decreasing length increments with age among perch at Red Lakes, Minnesota (see Fig. 19). A model of lengthmgrowth of perch at Loch Leven, Scotland, based on data from 1968 to 1973 is shown in Fig, 20: it is clear that annual increments are decreasing each year after the second and an Les value of 32.2 cm was calculated from data of 1968 to 1969.

In the Bodensee, Hartmann (1974) described within meason length growth as sigmoid falling into three phases (see Fig. 21). In the early and late phases, the rate was $0.01=0.06 \mathrm{~mm}$ per day while it was $0.26=0.45 \mathrm{~mm}$ per day during the main phase. At this latter time, weight growth was: males 26 g per month, females 34 g per month.

In 1972, males and fish with relatively small growth began their main growth phase $3-4$ weeks later than the females and the young fish,

Fig. 16 Lengthmormage and weight-for-age growthmecurves for male and female fish of the combined yearmclasses before 1941, and the 1944 and 1952 yearmelasses. The data have been adjusted for year-tomyear temperature variations (Lake Windermere).
(From Le Cren 1958)

Fig. 17 Comparison of length-growth of males and females

1	Severn River, Maryland	(Muncy 1962)
2	Lake Chany (fast)	(Tyurin 1935)
3	Lake Chany (slow)	(Tyurin 1935)
4	Saginaw Bay	(El-Zarka 1959)
5	Tubh Lochan, Looh Lomond	(Shafi \& Maitland 1971)
6	Yxtasg̈n	(Alm 1922)

Fig. 18 Fordwalford plots of the mean length at age $(x+1)$ against the mean length at age x: female fish of the combined year-classes before 1941, and the 1940, 1944, 1949 and 1952 year class from Lake Windermere.
(From Le Cren 1958)

Fig. 20 Model of lengthegrowth of perch in Loch Leven

TABLE XIV
Slow and fast growth among perch of the Yenisei River area
(From Krasikova 1958)

Lake	Growth Rate	Variable	Age of Fish				
			$5+$	$6+$	$7+$	8+	$9+$
Makovsk	Fast	Length cm	24.9	26.2	28.5	-	-
	Slow	Length cm	21.8	22.3	22.8	-	-
	Fast	Weight g	284	370	455.	-	-
	Slow	Weight g	175	195	208	-	-
Karasinsk	Fast	Lengrth cm	24.5	-	28.0	29.3	30.0
	Slow	Length cm	18.6	79.5	22.7	24.6	26.5
	Fast	Weight g	247	-	405	480	530
	Slow	Weight g	108	23	214	263	323
Munduyisk	Fast	Length crin	-	27.0	-	-	-
	Slow	Lengths cm	-	23.0	-	-	-
	Fast	Weight g	-	460	-	-	-
	Slow	Weight gr	-	215	-	-	

and ended 2-4 weeks earlier with their maximum growth rate also slower. With older perch, the main phase began and ended less abruptly (Fig. 21).

Many authors have noted the occurrence of separate growth-rate groups within the same waterbody, for example, Schneider (1908), Schiemenz (1919) and Röper (1936) all describe three forms of perch, "Krautbarsch" which have higher backs than "Jägebarsch" and "Tiefenbarsch". The first group live close to the weed-beds, the second are open-water piscivorous forms and the latter deepwater fish. Dryagin (1948) referred to a large form from perch-roach lakes of the Obmirtysh basin in western Siberia which utsually reach a weight of $1.0-1.2 \mathrm{~kg}$ and exceptionally 2.5 kg . Krasikova (1958) described two types from the Yenisei River region with slow and fast growths respectively: some data taken from her paper are shown in Table XIV.

Other data from: Russian and Czechoslovak waters are shown in Fig. 22.

The existence of separate growth groups is probably a reflection of the perch's ability to occupy more than one ecological niche as evidenced from Ilina's (1973) data above (section 3.4.1). Those fish which became specialist piscivores at an early age may form the high growth-rate group whereas the slower group may have
utilized the wider range of invertebrate fodder (cf. Shentyakova 1959). Experimental and field data are lacking on this topic.

The growth season is generally fairly short, lasting from May to October over most of the "geographical range but being longer in warmer waters and shorter in colder. Thus the peroh of Lake Dojran, Yugoslavia, grow actively for 8 months each year (Petrovski 1960) while those of some northern lakes in Finland grow for only 3-4 months (Lind et al. 1973). Swift and Pickford (1965) noted that the perch pituitary was adapted to a short growing season and unable to support a prolonged period of growth.

The most rapid growth of perch on record appears to be that achieved in ponds at Narrandera, Australia, where the fish reached a maximum length. of 35.3 cm in 22 months without artificial feeding (Weatherley 1967).

- Condition factors

In Windermere, England, the seasonal changes in weight-length relationships among perch of different age-groups were studied by Le Cren (1951). He found that the perch could be divided into six groups corresponding with age, sex and maturity, each group homogeneous within itself throughout the seasons but significantly different from the

Fig. 22 Comparison of fast and slow growth groups
$\mathrm{F}=$ Fast $\mathrm{S}=$ Slow

1. Rybinsk Reservoir (Svetovidova 1960)
2. L. Ubinsk (Svetovidova 1960)
3. L. Pereslavsk (Svetovidova 1960)
4. L. Chany (${ }^{\circ}$ only) (Tyurin 1935)
5. Orava Reservoir (Balon 1967)

Fig. 23 Diagrammatic seasonal curves for relative condition with and without gonads. The solid black represents the gonad weight; the upper edge of the black, the condition with gonads and the lower edge, the conditionminus gonads (from Le Cren 1951)

TABLE XV
Gondition factors in perch
(Data from Lind et al. (1973))

Fish group	Maxima		Minima	
	Q_{1}	Q_{2}	Q_{1}	Q_{2}
Small immatures	1.09	0.95	0.78	0.63
Immature females	1.12	1.03	0.86	0.74
Small mature males	1.09	0.96	0.86	0.74
Mature females	1.20	1.04	1.02	0.83
Large mature males	1.09	0.96	0.94	0.82

others. He emphasized that the condition factor $K=\frac{\mathrm{cW}}{\mathrm{L}}$ is affected by length and many environmental and genetic factors which make its interpretation difficult. The effect of length was removed by using a relative condition factor $\mathrm{K}_{\mathrm{n}}=\frac{\mathrm{W}}{\mathrm{aT}^{R}}$ derived empirically from lengthmweight data and not assuming a cube-law relation between the two. Expressing these, values as a percentage of their maxima, the curves of Fig. 23 were obtained, indicating a seasonal cycle with high values during the summer feeding period, decreasing to minima in the spring. Among mature fish, the effect of the gonad maturation cycle on condition is very clear, the "condition-minus-gonads" falling sharply over the winter months indicating gonad development at the expense of somatic tissue.

Lind at al. (1973) calculated condition factors (Q) in two ways: $Q=100 \mathrm{~W} / \mathrm{I}^{3}, Q_{1}$ where W was the intact weight and Q_{2} where W was the weight of the fish without gonads and alimentary canal. He found maximum and minimum values in August and "winter" respectively as shown in Table XV.

Among the maxima, there were no significant differences between the groups, but the differences among the minima were statistically significant. These latter were probably due to the seasonal scarcity of plankton and benthic invertebrates under the ice (the food of the smaller fish) whilst small fish remained available as food for the large perch.

Carlander (1950) tabulated data on condition indices for perch in American populations, using the formula, $K=\frac{10^{5} \mathrm{~W}}{\mathrm{~L}^{3}}$ where standard length was measured in millimetres and weight in grammes.

Mean values of K ranged from 1.43-2. 58 increasing with length, with individual ranges at particular localities from 1.10-3.94. Without data for each population on the relation between total and standard length measurements (which vary from 1.14 -1.21), it is not possible to convert K values to \dot{Q} values and vice versa. In the Klamath River, California, Coots (1956) found that $K=1.73$ on average and noted that this fell low in the range quoted by Carlander. However, Coots' fish were living in a riverine environment and the majority of Carlander's data came from lake stocks. It would not be surprising that river fish should be slimmer than those occupying the quieter waters of lakes. However, Chikhova (1973) found difo. ferences among populations of perch in the Kuybyshev Reservoir, U.S.S.R. ranging from 1.43 in Usa Bay to 1.75 in the region below the dam. She notes that those from below the dam were more fusiform than those from the reservoir itself, but they nevertheless had the highest condition factor. Hutchinson (1974) found that condition of females from Oneida Lake increased directly with total length and over the campling period from December to April (Table XVI).

Condition of spawning female perch in 1968 was significantly ($P<0.05$) higher than in 1969 or 1971. The increase in condition with season was attributed to one of the following causes:
(a) a true increase due to winter feeding;
(b) uptake of water by the ovaries;
(c) differential gear selectivity with respect to plumpness.
(Winter catches were made by gillnets, spring catches by trapnet.)

These three causes were not analysed further. On Morgan's (1974) respirometry evidence, food

> TABLE XVI
> Calculated values of condition factor $\left(10^{5} \mathrm{~W} / \mathrm{L}^{3}\right)$ (From Hutchinson 1974$)$

Total Length (mm)	Period	1968	1969	1971
230	Early March	1.64	1.50	1.65
250	Early March	1.70	1.56	1.67
280	Early March	1.79	1.65	1.70
250	End April	-	1.58	1.76
190	End April	-	1.70	1.81

intake in winter would be unlikely to allow an increase of condition during that interval.

Changes in condition with growth will be related in part to changes in body composition. Morawa (1956) measured the fat content and found muscle fat low at all seasons ($1.5-2.0 \%$): fat storage was chiefly in the visceral mass (Fig. 24 and Tables XVII-KIX). The head area appeared to be a subsidiary storage region also. Young perch were leaner than old ones and females generally contain more fat than males.

From tables XVII and XVIII, it may be calcumlated that fat accounts for 2.4% of total dry weight of perch in May, increasing to 4.0% in August and September. This is of the same order as found by Newsome and Leduc (1975) Sor mature perch in Lakes Tamaracouta and Archambault, Quebec, where mean fat composition ranged from $2.03-4.31 \%$ at the end of spawning to $4.03-7.9 \%$ in August and September. The latter authors noted that total body fat remained at an approximately constant level throughout the winter, dropped shaxply during spawning and then increased equally sharply in June and July to a peak in late summer.

Using small perch ($5-24 \mathrm{~g}$), Schneider (1973 b) found that their mean water content was 77.6% and that starved fish contained more weter than wellfed fish.

Craig (1974 a) plotted calculated weights of perch of 12.25 cm lengths on a monthly basis as a means of illustrating change in condition with season. His data are reproduced in Fig. 25.

A number of authors have considered the environmental controls on growthmate in perch. In an exhaustive review, Tesch (1955) pointed out first that the establishment of growth-rates from wild stocks depended on accurate ageing methods. He used scales and validated his methods by marking fish, confirming Van Oosten's statement (In Beckman 1943) that in winter, $a_{\text {I }}$ few incomplete circuli are laid dow followed by one or two complete but very closely spaced ones in spring. Recently, Holčik (1967) has shown that in the Klicava, Reservoir during 1964, perch of $A G I=X$ all formed the scale annulus between 23 April and 9 May at a temperature range between $8=11^{\circ} \mathrm{C}$: thus, the timing of this scale index is quite precise. Tesch (1955) found that each population required calculation of its own bodymscale relationship and he used the DalhmLea method for back-calculation of length-growth from scales; with a correction factor of 2.4 cm :

Length at age $A=2.4+\frac{\text { Oral radius (} A \text {) }}{\text { Oral radius }(t)}\left(L_{t}-2.4\right)$
He characterized five types of length growth from his own data and from the literature as shown belowa

A Vexy good AG II	fish greater than 20 cm total length		
B Good	AG III	fish greater than 20 cm total length	
C Moderate	AG III	fish greater than 16 cm total length	
D Poor	AG III	fish less than 16 cm total length	
\mathbb{E}	Very poor	All	fish less than 16 cm total length

Fig. 24 Changes in fat content of 20 cm perch from Grosser Ploiner See (From Morawa 1956)

TABLE XVII
Body composition (\%) of perch from Grosser Plöner See (From Morawa 1956)

Date Body Part	3 May 1955			4 August 1955			5 September 1955		
	Fat	$\begin{aligned} & \text { Dry Weight } \\ & \text { Remainder } \end{aligned}$	Water	Fat	Remainder	Water	Fat	Remainder	Water
Head	5.3	20.4	74.3	7.3	22.2	70.5	7.7	21.6	70.7
Flanks	1.5	22.5	76.0	1.5	23.7	74.8	1.6	22.8	75.6
Back	1.3	20.2	78.5	0.8	23.3	75.9	1.4	21.2	77.4
Tail area	1.1	22.9	76.0	0.7	24.3	75.0	1.3	23.0	75.5
Spinal column	8.8	33.9	57.3	10.3	34.9	54.8	11.4	34.8	53.8
Liver	3.0	18.6	78.4	2.6	20.1	77.3	4.7	16.9	78.4
Viscera	4.3	15.4	80.3	29.4	13.1	57.5	23.9	13.5	62.6
Fins	3.3	35.6	61.1	1.8	34.0	64.2	2.2	30.9	66.9

TABLE XVIII
\% composition of total weight of perch
(From Morawa 1956)

Part	Date		
	3 May 1955	4 August 1955	2 September 1955
Head	18.6	15.5	15.9
Flesh	71.2	73.3	73.2
Spinal Column	2.3	1.8	2.0
Liver	2.3	1.5	1.3
Viscera	3.7	6.4	6.0
Fins	1.9	1.5	1.6

TABLE XIX
Fat content (\%) of different sexes
(From Morawa 1956)

Date	Part	Ma.les	Females
4.8 .55	Viscera	24.8	34.1
2.11 .55	Viscera	18.0	30.0
2.11 .55	Head	(Range $10.5-25.4)$	$(12.7-47.3)$
		6.9	8.6
	Gonads	$(6.4-7.3)$	$(7.3-9.9)$
		$(2.3-3.4)$	$(2.1-3.7)$

Fig. 25 Plots of monthly calculated weights for 12.25 cm fish for each maturity group as an expression of condition. The weights are based on a pooled value for ' $b^{\text {' }}$ (the regression coefficient) and a monthly value for 'a' calculated from monthly mean weights and lengths: \square, Fry; \triangle, immature females; 0 , mature females; Δ, mature males (from Craig 1974 b)

Examples of each category were cited from European and American waters. Normal length growth was concluded to be as follows (taking the Schweriner Stadtsee population as his model of standard growth):

AG	Total length (cm)
O	8.0
I	12.2
II	14.8
III	18.9
IV	21.8
V	25.2
VI	31.4
VII	36.8
VIII	39.5

He noted that the growth of large perch differed very little whatever their origin among categories A.-E above.

Males grew faster than females during their first summer, but by the third summer, females were growing faster than males.

The growth categories $A-E$ were achieved under a range of environmental conditions and Tesch exemplified these as follows:

A: (1) Pond culture: the very best growth where density was low and both benthic and fish foods were plentiful.
(2) Coastal waters: density again low due to effective predation and dispersal over an almost unrestricted area of excellent feeding conditions.
(3) Very large lakes: e.g. Bodensee where conditions apart from salinity were essentially similar to those in the Baltic (A(2) above).

B:
(1) Most large non-alpine coregonid lakes and bream lakes with good food conditions, that is plentiful fodder fish and crayfish.
(2) Some more oligotrophic lakes where perch density is kept low.

C: A large group of waters:
(1) Large non-alpine coregonid lakes and bream lakes where fish yield is high.
(2) Weedy smaller lakes with low perch density.

D: (1) Lakes with moderate to poor fish yield, shallow, weedy with little open vater and high perch density.
(2) Small weed-free bream lakes.
$\mathrm{E}: ~(1) ~ A s ~ i n ~ ' ~ D ', ~ b u t ~ w i t h ~ d y s t r o p h i c ~ o r ~ o l i g o m ~$ trophic conditions as in alpine lakes.
(2) At high perch densities and poor feeding conditions.

Optimal growth conditions he defined as: mesotrophic waters of large area, not too shallow, weed-free with a food-fish stock of smelt, roach, etc. Such conditions lead to moderate growth, but high yield.

Recently, Neuman (1974) investigated the effects of temperature on perch growth at 3 sites on the Swedish Baltic coast. At each site, the mean growth was the same and the between-year variation similar. The mean annual growth of Ot and $1+$ fish was positively correlated with water temperature in August and that of older fish ($2+-10+$) with water temperature in September. In areas affected by heated effluent from a power station, the growth season of O+ fish extended longer into the autumn. The variation in growth between years increased strongly with age and its correlation with temperature increased likewise. Neuman suggested that as the unfavourable balance of anabolism and catabolism increased as the fish became older and the growth period became shorter so growth in older fish became more and more dependent on environmental factors.

Generalizations of this kind were based on population data but if individual dispersion of growth was considered, it was found to be apparently independent of temperature. In fact, this disper sion was so great that $10-33 \%$ of the individuals differed to the opposite extreme when mean growth was very good or very bad. This individual variation was not primarily genetic as particular fish seldom deviated from the yearmolass mean in the same direction for more than two years in succession. However, two successive years' deviation in the same direction was fairly frequent and usually occurred if the two years were themselves similar. Neuman suggested that if habitats favoured one individual one year and if circumstances remained the same, then they would do so again the next. Conversely, if there were a drastic temperature change, then the habitat combination might change favouring different individuals. He agreed with Le Cren (1958) that the main effect of temperature

TABLE XX

Temperature and growth of Windermere perch: correlation and regression data of weight increment on degreemays above $14^{\circ} \mathrm{C}$ (from Le Cren 1958)

| Age Group | Range of
 years | r | Number of
 observations | a | b | Regression Coefficients
 b when
 growth\% | Regression as
 \% of total
 variation |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1st year | $1939-1953$ | 0.76 | 15 | 0.68 | 0.0056 | 0.251 | 58 |
| 2nd year | $1935-1954$ | 0.79 | 20 | 3.43 | 0.0340 | 0.272 | 63 |
| 3rd year | $1936-1954$ | 0.59 | 19 | 52.52 | 0.1600 | 0.160 | 34 |
| Adults | $1937-1955$ | 0.71 | 189 | 11.84 | 0.3179 | 0.318 | 50 |

on growth was directly physiological and only effective to a lesser degree through its influence on food supply.

In Windermere, Le Cren (1958) noted that most growth took place between June and September, a period which roughly coincided with that of surface water temperatures above $14^{\circ} \mathrm{C}$. He found significant correlations between annual weight increment and the number of degreemdays above $14^{\circ} \mathrm{C}$, and that temperature had the greatest influence on the growth of adults ($3+$ and older) (see Table XX). For adults, of the 50% of the variation remaining after the regression, 23% was due to year-to-year variation in growth not attribues tabIe to temperature and 27% to variation in growth of individual age-groups within any one year. Thus, temperature accounted for about two-thirds of year to-year growth variation not attributable to chance or variation between age groups.

In Lake Huron, Coble (1966) found that annual growth increments of adult female perch were correlated with mean summer (June-October) water temperature at a depth of $20 \mathrm{ft}(6 \mathrm{~m})$.

In contrast to these findings, Grimaldi and Leduc (1973) have asserted that temperature is less important than other environmental factors in determining growthmate in some Quebec waters.

Dymond (1926), Schneberger (1935), Eschmeyer (1937, 1938) and Alm (1946) all found that length growth was inversely related to abundance. Alm (1946) experimenting in ponds and small lakes in Sweden found that in many stunted stocks; growth was normal for the first one to two years and extremely slow thereafter, resulting in populations of $10-18 \mathrm{~cm}$ fish of a wide range of ages. In one 16 -ha pond which had not been fished for twenty years, the mean length of adult perch was 15 cm in 1937. Twentymfive thousand fish were then removed and over the following six years, a further 17500 in total were taken out. Spawn was carefully removed each spring to reduce recruitment. By 1943, the average length of adults was 20 cm
with some fish up to 32 cm . This demonstration of inversely density-dependent growth has also been made among American populations, as for example, at Lake Mendota where Bardach (1951) reported increases in growth-rate following a severe reduction of the population by a Myxosporidian epizootic. In Duck Lake, Michigan, Becknan (1950) recorded growthmate increases of up to 61% after a severe winterkill. However, such increases under natural conditions are usually short--lived, as Tesch (1955) found at the Sakrower See, East Germany, where, after catastrophic fish kills in 1945 due to explosions, the perch at first showed accelerated growth-rate and then this declined due to the upsurge of strong new yearmiasses in the absence of predators. Similarly, in attempting to test the density-dependence of growth, Parker (1958) found that after removal of perch from Flora Lake, Wisconsin, for four successive years, the growthwrate, condition factor and weightlength exponent of the population were reduced rather than increased. Unlike Alm, he had not controlled recruitment and he suggested the decreased growth-rate was due to the presence of new large yearmclasses.

In Holland in the weedy inland waters, Deelder (1951) reported similar poor growth of perch after they had reached a length of 13 cm . He attributed this to the lack of an available forage fish as food for the perch at this size and larger since in lakes where smelt (Osmerus eperlanus) was present, the perch grew well and in many instances where smelt have now declined or disappeared, for example, in the Zuider Zee since its isolation from saline water, the perch have become stunted. The implication that food became limiting for further growth in highodensity populations was illustrated incidentally during a pest-control exercise in southern France (Chimits 1947). Stunted perch stocks were of common occurrence in the Landes area when Gambusia was introduced to control mosquito larvae. In ponds where perch had not been known to reach weights of more than 100 g for many years, the introduction of Gambusia provided a Porage fish which resulted in perch growth to 250 g .

Fig. 26 Changes in growth rate in Lake Windermere (from Le Cren 1958)

Fig. 27 Changes in weight growth of perch in Klicava Reservoir (Data from Holcik 1970)

Fig. 28 Weight at age

1. Vistula River (Backiel, 1971)
2. River Ob, Krivolutsk (Dryagin, 1948)
3. Lake of the Woods (Carlander, 1950)
4. Loch Lomond (+ only) (Shafi and Maitland, 1971)
5. Dubh Lochan (o oniy) (Shafi and Maitland, 1971)

Le Cren's (1958) analysis allowed him to adjust the observed values of growth increment to those expected for a given mean temperature and thus to examine trends in growth independent of temperature effects. The density of the perch populations of Windermere had been reduced experimentally from 1941 to 1944 at the rate of about 45\% per year and then at a decreasing rate until the stock fell to a steady velue ce about 3% of its initial level by 1948. The partial regression coefficients between growth, population density and year since 1941 showed that there was high correlation between growth and year, and between density and year, but no significant correlation between density and growth. This conclusion thet no direct relationship existed between density and growth was supported by evidence from the steady increase in growthmate of successive yearmclasses in the absence of decreases in density after 1948 (see Fig. 26) 。

In the Bodensee, Germany, both growth rate and population density of perch have increased during the years since eutrophication (Hartmann 1974). Two-yearmolds in 1973 were 5 cm longer than 2 -yearmolds in 1939 (data from Ni̛mann 1939). Hartmann suggested that the increased density of invertebrate organisms provided a better food supply and hence a better growth-rate, and also a buffer for the fry against heavy predation by larger fish and hence a better survival rate and increased adult density subsequently.

In Saginaw Bay, Lake Furon, El-Zarka (1959) recorded a decrease in growth-rate since the previously available data of 1929-30. Changes in limnological conditions over the interval could not be determined and there was no evidence of major climatic changes. The lake had become polluted but he claimed that this was lessening in 1959. Larger Saginaw Bay perch eat smelt (Osmerus mordax) often taking fish up to 75% of their own length. These fish first appeared in Saginaw Bay in 1928, increased rapidly in the nineteen thirties until the population crashed after an epidemic in 1942, remaining scarce until 1950. Perch growth during this time has declined steadily and does not appear to be related to the abundance of smelt. The population density of perch had increased by about 10 times so that the decreased growth was attributable to crowding rather than food limitation since the fish were generally plump (weight-length exponent was 3.262 (see section 4.1.3).

Some changes in the weight growth of perch in the Kliçava Reservoir were given by Holeik (1970) and are show graphically in Fig. 27. The reservoir was completed in 1955 and by 1957, it had become overcrowded with perch which accounted for 95% by number of all fish present. The very high growth rates evident at the time of the colonization of the reservoir by impounded perch (higher than any show in Fig. 27) had fallen by 1962 to levels below all but the stunted stocks shown on Fig. 28.

This drematic decrease was attributed to initial overpopulation and later unsuccessful competition with roach (Rutilus rutilus L) and rudd (Scardinius erythrophthelmus I). However, after reaching a size at which the fish can exploit the abundant stocks of forage fish, growthorate increases again as is clear from the curve for 1964 for the oldest age groups.

In experimental stocks, Schneider (1972) found 3 separate size groups, namely $<7.6 \mathrm{~cm}, 7.6016 .5 \mathrm{~cm}$ and $\$ 16.5 \mathrm{~cm}$. He claimed that these groups were not in competition with one another for food and that growth was dependent on density within the group only, being independent of densities in the other two groups. The biomass of each group that 2 lake could support differed, such that in Lake Cassidy, Michigan, the fry biomess in autumn could reach 35 kg per ha (7500 fry at 8.1 cm per ha), but for growth to continue in the following year, this biomass would have to be reduced to 17 kg per ha. When perch reached 16.5 cm , growth would only continue if biomass of the large fish was not more than 11.5 kg per ha. This situation was a reflection of relatively high plankton and low benthos producetivity, and a density-independent natural mortality rate after the first summer (see also section 6.4).

Some representative data on weight growth are shown in Fig. 28.

3.4.4 Metabolism

- Metabolic rate

Respiration rate of adult perch ($c 20 \mathrm{~cm}$) was studied by Morgan (1974) using a tunnel respirometer for active measurements and a chamber respirometer to evaluate routine levels. He determined metabolic rates in terms of ozygen consumption and ammonium nitrogen output (Table XXI), standard metabolic rate being calculated by extrapolation from the tunnel respirometer data and routine rate from the chamber respirometer readings. Active rates increased exponentially with swimming speed as shown in Fig. 29. Solomon and Brafield (1972) measured the separate components of the energy balance equation for juvenile perch growing in a continuous-flow respirometer. They showed that the energy content of Gemmarus was assimileted with $83.5-87 \%$ efficiency, constant for different feeding levels, and that the maintenence coefficients (energy required per granme of fish per year to maintain weight) ranged from 4.75 k cal per g per year for a fish of 18.7 g to 8.68 k cal per g per year for a fish of 7.0 g . They also showed that the oxygen consumption was correlated with food intake. Morgan (1974) considered specific dynamic action (SDA) as the compo nent of the equation related to food utilization within the body of the fish and by analogy, with measurements on other species assumed that SDA corresponded to an increase of 50% over the routine metabolic rate. Using his measured metabolic rate date and allowing for SDA, he predicted minimal food consumption 18 m 22 cm perch to be $1.7 \%, 1.2 \%$

TAABLE XẊI
Metabolic rates of adult perch (From Morgan 1974)
a) Oxygen consumption ($\mathrm{mg} / \mathrm{kg} \cdot \mathrm{h}$)

Temperature ($\left.{ }^{\mathrm{C}}\right)$	Standard metabolic rate	Routine metabolic rate $(\pm 1$ standard error $)$
5	12.8	39.1 10 15
63.5	78.2 ± 5.6	
13.7 ± 12.4		

b) $\mathrm{NH}_{3}-\mathrm{N}$ output ($\mathrm{mg} / \mathrm{kg} \cdot \mathrm{h}$)

5	2.50	1.6
10	2.29	2.8 ± 0.2
15	8.29	3.3 ± 0.3

TABLE XXII
Mean swimming speed of perch in Lake Mendota
(From Hergenrader and Hasler 1967)

Water temperature $\left({ }^{\circ} \mathrm{C}\right)$	Mean speeds				Maximum speeds of shoals
	(cm/sec)	Number of Observations (n)	$(\mathrm{cm} / \mathrm{sec})$	(n)	$(\mathrm{cm} / \mathrm{sec})$
	6.5	119	11.6	532	20
$10-15$	13.5	15	17.0	270	30
$15-20$	12.0	26	19.6	299	36
$20-25$	12.1	38	25.0	536	54

Fig. 29 Perch. Regression lines of oxygen consumption and swimming speed. Intercept on the ordinate obtained by extrapolation and is the standard rate ($\pm 1 \mathrm{SE}$).
(From Morgan 1974)
and 0.5% body weight per day to maintain the figh at 15,10 and $5^{\circ} \mathrm{C}$ respectively.

Birkett (1969) calculated the gross efficiency of conversion of nitrogen by small perch ($100-150 \mathrm{~g}$) fed live Lumbricus sp. in a $42-$ day tank experiment at $17^{\circ} \mathrm{C}$ in JunemJuly. This efficiency was expressed as:

$$
\xi \%=R /(A-A)
$$

where

> R is rate of growth
> A is rate of absorption
> A is maintenance rate of absorption
all measured in $\mathrm{mgN} / \mathrm{g}$ liveweight per day.
The values given were as follows:

$$
\begin{array}{rl}
\mathrm{A} & 0.963 \mathrm{x} \text { intake of food } \\
\mathrm{A} & 0.173 \mathrm{mgN} / \mathrm{g} / \text { day } \\
\mathrm{g} & 0.413 \\
\mathrm{R} & 0.0013 \mathrm{~m} 0.1504 \mathrm{mgN} / \mathrm{g} / \mathrm{day}
\end{array}
$$

These values of R are equivalent to daily livem weight increases of $0.01=0.56 \%$. Such increases for perch of this size in midsummer are quite small, but the size of ration that they would a.ccept in the tanks was also small ($0.99 \mathrm{~m} 3.00 \%$ body weight per day) as compared with field data for daily food intake (Thorpe 1974).

Hergenrader and Hasler (1967, 1968) measured the swimming speeds of perch in Lake Mendota using sonar (Table XXII). They found that the range of speeds was narrower in winter than in summer, that is, that the "scope for activity" was greater at higher temperatures, and that the mean speeds increased linearly with temperature from winter to summer and decreased linearly as the lake cooled in the autumn.

Schlicher (1926) had noted that there was an increase in the leucocyte count of perch blood in summer and a decrease in winter, and Veldre (1959) has found maximum haemoglobin and erythrocyte values in summer in Estonian lakes. However, Smirnova (1962) reported seasonal changes in all three blood parameters in Rybinsk perch in which they were maximal in winter and minimal in early summer. Local oxygen conditions probably influenced the pattern of haemoglobin, and erym throcyte dynamics and leucocyte dynamics coincided with feeding dynamics, the Rybinsk fish apparently feeding in winter.

Lange (1919) found significantly higher erym throcyte counts and haemoglobin content in perch taken from brackish water as compared with those taken from fresh water at the same time: he concluded that the metabolic rate of brackish water perch was higher than that of freshwater perch.

- Endocrine systems and hormones

Swift and Pickford (1965) established the seasonal potency of pituitary hormones in perch as follows:
(a) Growth hormone: Maximum accumulations were evident in the hypophysis $4-6$ weeks prior to the estimated natural growth peak in the summer and 100 pg of perch pituitary brei (lyophilized gland homogenized in $0.6 \% \mathrm{NaCl}, 10 \mathrm{mg} / \mathrm{ml}$) when injected into hypophysectomized male Frundulus heteroclitus was equivalent to 250 mg of standard beef growth hormone ($\mathrm{N} 1 \mathrm{H}=\mathrm{GH}-\mathrm{BI}$) in June. The accumulation declined in July and was near to total exhaustion of growth potency in August. During winter, the experimental fish showed that the hormone had a potency only $8-20 \%$ of its summer maximum.
(b) Gonadotrophins: Maximal at the peak of the reproductive cycle in April and severely depleted in August.
(c) Thyrotrophins: Activity cycle of these hormones was similar to but less pronounced than that of the gonadotrophic hormones; injection maintained the adrenal cortical histology near normal except in July, stimulated the restora tion of melanin pigment, the proliferation of new melanocytes and the spawning reflex response.

Bibor and Leroy (1973) investigated the thyroid function of perch using the radioisotopes Na 125 I and thyroxine 125I. They found a very rapid turnover of hormones with rapid incorporation of iodine into iodomtyrosine compounds, suggesting very impor tant biosynthetic activity. Labelled thyroxine was metabolized rapidly, confirming this view.

- Osmotic relations

It has been noted above (section 2.3) that perch occur in waters up to c 12% salinity during the feeding period, but normally spawn in fresh water. Natochin and Lavrova (1974) found that the K, Ca and Mg concentrations in blood serum were related to food intake and not to environmental levels, but that Na concentration depended on that of the water, as these ions were taken up directly via the gill chloride cells. Lagler et al. (1962) stated that perch require concentrations of more than 0.05 millimoles Cl/l before Cl ions are taken up from the water by the gills. Lutz (1972) found by experiment that perch tolerated up to one-third strength sea water, but at onewhelf strengthe they took up ions rapidly, dehydrated and died in a few days (see Table XXIII).
table XXIII

Bathing media	Na	K	Ca	Mg	C1	$\begin{aligned} & \text { Water } \\ & \text { (g water } / \mathrm{g} \\ & \text { dry weight) } \end{aligned}$
Plasma F.W. ${ }^{1 /}$	154.20 ± 2.06 (19)	$3.63 \pm 0.23(16)$	4.38 ± 0.46 (10)	$1.55 \pm 0.06(16)$	$120.30 \pm 2.69(19)$	
$188 \mathrm{S.W}$. 2/	$155.62 \pm 3.52(7)$	$3.68 \pm 0.41(6)$	$4.83 \pm 1.04(5)$	$1.50 \pm 0.13(4)$	$136.50 \pm 5.84 *(8)$	
1/3 S.W.	$155.80 \pm 2.87(8)$	$5.28 \pm 0.88 *(8)$	$3.99 \pm 0.35(6)$	$2.72 \pm 0.73^{*}(8)$	$137.92 \pm 6.12 *(9)$	
1/2 s.w.	$210.50 \pm 7.52 *(7)^{3 /}$	$5.96 \pm 0.91 *(5)$	$7.30 \pm 0.35 *(6)$	$7.68 \pm 0.72 *(6)$	195.76 $\pm 9.79 *(6)$	
Muscle F.W.	19.92 ± 1.48 (20)	$143.0 \pm 4.16(20)$	$2.65 \pm 0.18(17)$	$15.17 \pm 0.75(18)$	$10.34 \pm 0.87(15)$	$4.24 \pm 0.18(19)$
1/8 S.W.	$19.34 \pm 2.36(6)$	$148.8 \pm 7.0(7)$	$3.49 \pm 0.38 *(7)$	$16.30 \pm 0.67(6)$	$11.47 \pm 0.81(7)$	$3.91 \pm 0.17(7)$
1/3 S.W.	$20.65 \pm 2.40(8)$	$162.3 \pm 4.36 \%(9)$	$3.42 \pm 0.38 *(8)$	$16.58 \pm 0.55(9)$	$12.06 \pm 0.84(9)$	$4.05 \pm 0.12(10)$
1/2 S.W.	$47.81 \pm 4.21 *(6)$	$172.7 \pm 3.18 *(6)$	$3.75 \pm 0.26 *(5)$	$21.89 \pm 0.79 *(6)$	$32.57 \pm 3.31 *(6)$	3.45 $\pm 0.02 *(6)$

[^0]

3.5 Behaviour

3.5.1 Migrations and local movements

- Extent of movements

In large unrestricted enviroments where tagging experiments have been conducted, perch do not travel extensively. In Lake Michigan, for example (Smith and Van Oosten 1939), 122 adult perch were marked with opercular strap-tags, and recoveries were as follows:

Miles from release point	Pish
$1-10$	6
$11-25$	2
$26-50$	1
$51-75$	1

The greatest minimum distances travelled were:

Miles	Months	Days
27	1	17
57	9	2

Among perch marked in the Stettiner Haff (Henking 1923), recoveries were made up to 50 mi along the Baltic coast near Rifgen Island. In Chesapeake Bay, Maryland, perch caught in Chester River were tagged and stocked into the Severn and Magothy River estuaries, $25-30 \mathrm{mi}$ away (Mansueti 1960). Recaptures of these fish showed that their movement was randomly directed to all areas of Chesapeake Bay from Susquehanna Flats to Tilghman Island, involving greatest movements of at least 50 mi by displaced fish. Resident perch in Severn River were also tagged, and recoveries showed that these dispersed downstream from the spaming area at the head of the estuary over a range of 0.5 20 mi . Muncy (1962) reported one fish recovered 40 mi away outside the Severn River system. Mraz (1952) released over 4000 tagged perch in southern Green Bay, Lake Michigan, and recovered 108 of these. Seventymeight of these were returned from the release area, 21 from less than $20 \mathrm{mi}, 7$ from 20 m .0 mi and 2 from $40-50 \mathrm{mi}$ away.

In restricted water bodies, Kukko and Lind (1972) found "home ranges" of perch at spawning time in small Finnish ponds to be about 100 m . In the Mazurian Lakes, Poland, Kozikowska (1966). found that marked perch moved from lake to lake, the maximum distance being about 6 mi .

Daily movements have also been documented. Scott (1955) recorded regular movement from Rondeau Bay in the moming out into Lake Erie, the
perch returning in the evening. Hasler and Villemonte (1953) noted perch active by day at $15-25 \mathrm{~m}$ depth in open water in Lake Mendota, followed by premsundown inshore movement, the fish settling to the bottom with the approach of twilight.

- Function of migration

The normal pattern of migration in perch conforms to the simple model of Herdenmones (1968) in which during the course of life, fish move between feeding areas, wintering areas and spawing areas. Wintering migrations take perch into deep water where maximal temperatures (c $4^{\circ} \mathrm{C}$) occur and spawning migrations result in the aggregation of fishes back in shallow water in spring. In the case of estuarine populations, the migrations at this time are into freshwater. Berzins (1949) recorded a gradual aggregation of perch moving in from the sea into deep waters of the lower estuary of River Lielupe, Latvia, from September to November and their emigration seaward again in February and March before the spring floods.

> - Direction and mode of migratory movements

Huitfeldt-Kaas (1909) reported a mass migration of large adult perch ($30-50 \mathrm{~cm}$) from Lake Màlaren into the Baltic. Such apparently directed seasonal movements have not been reported frequently for perch whose seasonal migrations appear to have the character of kineses rather than taxes (see for example Berzins 1949, Neuman 1974 a). Daily move ments, on the other hand, possess a directed character, as mentioned above in the case of Rondeau Bay, Lake Erie and of Lake Mendota. Eriksson (1974) found that perch were active by day at all seasons, but their level of activity depended on temperature and photoperiod. Ferguson (1958) found that they preferred a temperature of c $21-24^{\circ} \mathrm{C}$; studies from the wild have shown aggregam tions of perch at this temperature range in summer. Privolnev (1953) found that in choice experiments, adult perch preferred darkened areas to light ones. Thus, temperature and light intensity, fluctuating daily, probably act as proximal determinants of distribution, maintaining daily migrations. The importance of temperature has been demonstrated recently by Neill and Magnusson (1974) who showed that perch avoided the heated outfall area from a. power-station even though food organisms were more plentiful there than elsewhere: the fish only made occasional forays into the area, returning to a. region of optimal temperature. Kelso (1976) noted that the effect of a thermal discharge from the Nanticoke generating station, Lake Erie, was to localize perch by increasing the sharpness of turns and decreasing the distance between turns. The perch were also oriented into the current, whereas those from unaffected habitats oriented in relation to the shoreline.

- Time or season of migration

Spawning migrations (see section 3.1.6) occur in spring, the male fish preceding the females on to the spawning grounds.

Feeding migrations where they are distinguishable occur immediately after spawning, as for example, in Chesapeake Bay (Muncy 1962) where the perch spawn in freshwater in late March and April, and return downstream to brackish areas of $6-10 \% 0$ salinity to feed.

Wintering migrations occur in autumn, the fish aggregating in deeper areas of lakes, or in inter mediate salinities ($4-8 \%$) in such habitats as Chesapeake Bay (Muncy 1962) or in protected waters such as the deep estuarine pools of the River Lielupe (Berzins 1949) (see above).

- Daily migrations
(See akove.)
- Changes in pattern of movements with age, etc.

Eriksson (1974) noted that daily activity was quantitatively related to water temperature, but its quality also varied seasonally. In winter, perch were active on the bottom of their test tank and in summer, they were equally active at the surface and the bottom. In August, they were more active at the surface than elsewhere. Hartmann (1974) recorded that in Lake Constance before eutrophication, the adults were limited to the littoral areas in summer, but since eutrophication, they now move out into the submlittoral and pelagial regions feeding on abundant cladoceran plankton.

Catch per unit of effort statistics for gillnets have been shown to be correlated positively with temperature by Neuman (1974 a) in the Baltic in August and September, and by Marcuson and Howse (1968) in Round Lake throughout the summer. This would imply a direct correlation between activity and temperature, assuming perch were present all the time. In Loch Leven, Scotland, Thorpe (in press a) found that peak seine catches of perch from the shore occurred in early morning and late evening in June and August 1971, but at mid-day in these months in 1972. He attributed this change between years to the occurrence during 1972 of a dense bloom of Anabaena, sufficiently thick at the surface to produce a strong shading effect below and thus to retain perch (and trout, Salmo trutta L.) in an area of low light intensity and suppress an offshore migration.

3.5.2 Shoaling

Spindle-shaped shoals of 50-200 individuals, stratified by size and age, were described from Lake Mendota by Hasler and Bardach (1949). It is likely that among adult stocks. there is also stram tification by sex as Hartmann (1974) noted that the diet of males and females differed and their growth periods also. Furthermore, mature females tend to grow faster than males (see Fig. 21) which would also lead to segregation of sexes if stratification of size and age was already occurring.

Even in small ponds, age classes are reported as circulating separately (Kukko and Lind 1972).

Werd and Robinson (1974) found from markrecapture experiments that the shoals were discrete and did not intermingle in the short term. Mixing: young perch are often found in large shoals together with minnow (e.g. Notropis Hudsonius Clinton) (Scott and Crossman 1973). In Europe, they are often associated with cyprinid fry especially roach (Rutilus rutilus L) (e.g. Vashkyavichiute 1963).

Size density and behaviour of shoals: As mentioned above, the shoals are usually composed of $50-200$ individuals. The shoal has been recorded by Siegmund and Wolff (1973) using underwater television as forming in the morning twilight and dism persing in the evening twilight. Hergenrader and Hasler (1966) also reported the dissolution of the shoals at night as have Ward and Robinson (1974) who found the fish resting at that time on the bottom among submerged vegetation.

Light transmission was positively correlateu ($\mathrm{r}=0.77$) and temperature negatively correlated ($r=-0.89$) with shoal-size in perch at Lake Mendota (Hergenrader and Hasler 1968). In summer, the individual distance of perch in shoals was less than 1.5 ft , and greater than 1.5 ft in winter. The summer shoals were smaller than the winter ones, the former were c 8.5 ft from top to bottom and the latter c 22.1 ft . In the winter, Lake Mendota water was much clearer at a given depth than it was in summer due to the absence of seston and this clarity may have allowed the operation of attraction repulsion mechanisms over a greater distance than was possible in the murky summer environment. Furthermore in winter, zooplankton was scarcer than in summer, although greater individual distance in the school allowed a greater volume of water to be searched.

Although shoals of $50-200$ perch appear to be a characteristic size, larger aggregations occur at times as was clear on 5 August 1970 at Loch Leven where one sweep of a 350 mft shore seine caught 5500 adult perch ranging in size from 18.5 to 30.5 cm (Thorpe unpubl.).

Several authors (e.g. Steinmann 1951, Neresheimer 1951) report perch shoals surrounding prey fishes and then attacking them.
3.5.3 Responses to stimuli

- Environmental stimuli

Mechanical: Although possessing no connexion between the swim bladder and labyrinth via Weberian ossicles, perch were shown by Froloff (1925) to be able to hear the ringing of a bell. Denker (1931), however, failed to elicit any response to a whistle.
(See also under optical stimuli, below。)

Chemical: (a) Smell: Pipping (1926) demonstrated the snell function of nostrils in perch which belongs to his group 4, that is, fishes in which water-flow is maintained over the olfactory epithelium both in and out of the same nostril in conjunction with respiratory currents, and an additional flow in through the anterior and out through the posterior nostril by means of ciliary movement. Wunder (1927) confirmed Pipping's findings that perch could seek food by olfactory means alone in experiments in which complementary senses were occluded.
(b) Taste: Wunder (1927) demonstrated that perch tasted food prior to swallowing it, and would reject foods made bitter with chinin. Receptors on the lips were preliminary and food "accepted" by these might yet be rejected from the mouth.

Thermal: (See section 3.3.2.)
Optical: Under (1925) categorized perch among "bright-light" fishes together with trout (Salmo trutta L) on the basis of the histology of the retina.

Herter (1929) used perch in conditioned reflex experiments to examine form discrimination and found that they could be trained to respond to the "contourmi.ch" letter R more easily than to the less structured letter L. He also tested (1948) patterns of vertical stripes and horizontal stripes against a uniform white card in choice experiments. The stripe pattern was postulated as part of the schema by which the fish recognized its conspecifics, but the results did not support this hypothesis.

Kettner (1948) established that 5-7 cm perch had a strong preference for yellow when offered a choice of red, yellow, green, blue or violet simultaneously as well as matched grey shades. Herter (1948) suggested that this may have been related to the colour of light in the weed-beds.

Herter (1948) trained 2 individual perch to choose:
(1) a black R on a white ground and reject a white L on black;
(2) the reverse of (1) (i.e. choose white L on black and reject black R on white).

When the signals were changed (i.e. white R on black, black L on white), the fish chose the signal whose intensity corresponded most closely with that to which they were trained. When the original signals had the same intensity values then the fish chose by the form of the symbol in the changed situation. Further, in choices between the original symbol and its inverted, mirror-image or sideways orientation, the fish chose the spatial arrangement of the original
symbol. Finally, they were offered a choice between two new symbols:
(1) B and K; P and λ;
(2) L and ; and 1 .

Fish 1, trained to R, chose the symbol containing the upper curved portion of the letter; fish 2, trained to L, chose the symbol containing the short right-hand horizontal.

The scores for 10 trials with each pair were as follows:

Symbol:	B	K	P	A	
Fish 1:	9	1	10	0	
Symbol:	L				1
Fish 2:	10	0		9	1

Perch were also trained to distinguish a positive red disc from negative white or black ones, and vice versa: they continued to choose the trained positive disc when shown an unfamiliarly coloured one, e.g. green.

Individual fish represent more complex visual symbols, but tests of ability of individuals to recognize' others were made by Mobius (1875) and by Triplett (1901) who claimed that perch could recognize individual prey fishes. Gimmy (1951) held single predatory perch in aquaria with a single prey fish (guppy) enclosed behind a glass screen or in a glass container floating in the tank. The perch continued to try to snap the prey fish through the glass for 3 weeks: after such attacks had ceased for several days, the guppy was released into the tank with its predator. In 5 cases out of 6 , the perch did not attempt to take its known guppy although it did take other small fish including guppies, readily.

Privolnev (1956) found that adult perch from Lake Chudskoe preferred dark areas to light ones (93% in 11 experiments on 3 successive days). Twenty-day fry moved exclusively into light and when given a choice of wavelength chose as follows:

	$\frac{(\%)}{66}$
Daylight	60
Green light	20
Blue light	6
Red light	0
Darkness	

Manteifel et al. (1965), using small groups of perch in aquaria in Moscow and at fiybinsk Reservoir, established that activity level was related closely to light intensity and their results are reproduced in Fig. 30. They classified perch as a "twilight-diurnal" animal, .showing

maximal locomotor and feeding activity when adult at a range of light intensity of $1=100 \mathrm{~lx}$.

In another experimental study of visual perception, Boulet (1958) used 1, 2 and 3-yearmold perch in an amular aquarium about which a sphem rical object was rotated immediately outside. Responses to the object were, chronologically: ocular movements, fin movements and general body movements. The most important characteristic of the object for releasing a response from the fish was its speed on its particular trajectory. Threshold speeds were about 2 cm per sec, but optimal speeds for reaction were up to 50 cm per sec, above which responses ceased. At lower intermediate speeds; responses were positive; at upper, negative. Horizontal movement was less stimulating than sinusoidal but the most effecm tive was "Daphniamlike" movement. In this, the upward component of sinusoidal movement was folm lowed by a sharp almost vertical descent. Broken horizontal movement was of little interest to the perch. Size of the object had some influence: 2 mm diameter white plastic balls were too small but $4-7 \mathrm{~mm}$ ones were stimulating. Twenty millimetre spheres induced flight which took the form of sinking to the bottom of the tank, depressing the fins, sheltering against the rear wall and even attempts to hide. Colour was not very important but blue, green and yellow objects provoked slight negative responses while red provoked a stronger positive reaction. Regular geometric shapes (spheres, cubes and tetrahedra) were not very stimulating, but angularity was, and a regular angular shape excited the perch as much as an artificial fish did. Background patm terns of black and white stripes were not appam rently important.

Perch were much more active and receptive in groups than as individuals: the larger the group ($2-8$ fish), the sooner pursuit reactions were elicited after the last meal.

When the test objects were allowed to circulate in the water instead of outside the tank, much more positive attack responses were released. At low to moderate speeds, optimal for purely optic stimulation, little notice was paid to the movement of an artificial fish, but this was attacked violently at 50 cm per sec, the speed a.t which optic stimulation had waned. The thresholds for visual and tactical stimulation therefore differed. Shock waves from the prey object stimulated a predatory response when that object was travelling too fast to elicit visual responses. Irregular movements which were of little interest optically, elicited more violent positive responses in the water than did smooth uniform or sinusoidal movements.

Chemical stimuli, such as a puree of earthworm introduced into the tank, were more stimulating than visual stimuli, as the moving bob was ignored while the source of the puree was sought.

Boulet thus concluded that the perch was "animal peu visuel".

- Artificial stimulj

Fishing gear components: von Brandt (pers. comm.) found that perch avoided light-coloured gillnets. In comparative fishing tests in north German clearwater lakes and in laboratory tests, Steinberg (1964) found that visibility of gillnets influenced their fishing success much more than softness, diameter of twine, elasticity or breaking strength. He showed that nets made of synthetic monofilaments which are transparent and give little or no contrast with the background are the type that the perch can avoid least. Using Lyon's method of observing the reactions of fish to rotating striped patterns and substituting various net materials for these patterns, he established that perch did not react to polyamide monofilament netting of diameters of $\leqslant 0.20 \mathrm{~mm}$ and made only slight eye movements in response to filaments up to 0.35 mm in thickness.

Colour of net material, especially of the framing material, was shown to influence catches. Nets with green framing caught three times as many perch as those with white.

During the spawning season, mature male perch congregate rapidly and readily in cage-traps and are thus easily caught in large quantity. This feature is exploited widely where perch are of commercial interest.

> - Electrical stimuli
(No information.)

4 POPULATITON

4.1 Structure
 4.1.1 Sex ratio
 - Sex ratio of population

Data on sex ratio of natural populations of perch are widely divergent between localities. In part, this is likely to be a reflection of sample size and gear selectivity (as for example, traps appear to catch 99% males during the spawning season at Loch Leven, whereas seinemcatches during the summer feeding period have shown sex-ratios of approximately 1:1 (Thorpe 1974)) and differential distribution of the sexes as implied from Hartmann's (1974) data on the growth periods and diet of perch in Lake Constance. Alm (1959) recorded sex ratios of c 1:1 under pond conditions in Sweden and these remained approximately constant over a period of nine years. He suggested that in the wild, early deaths of males due to predation, as a consequence

Fig. 31 Seasonal changes in the age-composition of the perch
top: trapnets, 22 mm mesh size
middle: gillnets, 30 mm mesh size
bottom: gillnets, 32 mm mesh size
The 1970 yearmclass is shaded.
of their higher activity than females may result in a preponderance of females among the older agegroups. However, such differentially greater activity has not been demonstrated experimentally although Krizenecky and Pulankova (1953) recorded a predominance of females over males appearing at AG III and increasing thereafter. In North America, Beckman (1949) noted the same phenomenon, there being 48% males in a population in Michigan at AG I, decreasing to 23% males at AG X. However, Hartmann (1974) recorded a decrease with age in the proportion of females in the catch of older yearclasses in Lake Constance during the course of the year. This anomaly was linked with gear-selectivity and the increasing girth of female perch as they matured.

In populations showing divergent growtherate groups, the sex ratios appear to differ between these groups: for example, Dryagin (1948) found that males formed only 17% of the populations of fast-growth stocks, but 58% of those of slow growth stocks.

Konovalova (1958) suggested thet in favourable ecological conditions, females flourish better than males and the rate of population increase is higher.

4.1.2 Age composition

(For data on age at maturity and maximum age, see sections 3.1 .2 and 3.3.1.)

Perch exhibit strong year-to--year variation in yearmclass strength so that age-compositions of stocks vary widely in particular localities. Le Cren (1955) recorded such between-year variations up to a factor of 100 times the minimum year-class strength, and Heyerdahl and Smith (1971) found that relative yearmolass strengths at Red Lakes, Minnesota varied 26-fold over a 19-year period. Jensen (pers. comm.) noted that in many Norwegian lakes with stunted perch stocks, there were intervals of several years between successful yearmclasses. Consequently, statements about agemcomposition of perch stocks have little meaning in the absence of environmental data accounting for success or failure of reproduction or recruitment.

Furthermore (see section 3.5.2), shoals of perch have been reported from several localities stratified by age and size, further complicating sampling problems to determine agemcomposition accurately.

Fig. 31, reproduced from data of Hertmann (1974), shows the changing age structure of catches in standard gillnets during 1972-73.

4.1.3 Size composition

(See also sections 3.1.2, 3.3.1 and 3.4.3.)

- Length composition of populations

Figs 32-33 illustrate examples of length frequency distributions within percin populations. As with estimation of sex-ratio and agemcomposition of stocks, such assessments are strongly influenced by gear selectivity and by differential distribution of sexes within populations as well as by the formation of shoals stratified by size and age (see section 3.5.2). The Loch Leven data of Fig. 32 (A-E) were obtained from the virtually nonselective seine nets which exclude only the AG O fish, but there are clear differences in the relative strengths of agemgroups at different sites. Those from Finnish Lakes (Sumari 1971) (see Fig. 33) were obtained by rotenone poisoning and are also relatively unselected.

- Maximum size

The largest recorded perch was a specimen of c 10 kg (Lake 1959) taken in Australia. Within its natural distributional range, a fish of 1.91 kg was recorded in New Jersey in 1865 (Scott and Crossman 1973), a weight regularly exceeded in some populations of the Eurasian range. Berg (1965) noted that fish of $3.5-4.75 \mathrm{~kg}$ were taken exceptionally in the U.S.S.R. up to a length of 51 cm . A perch of 53 cm is recorded by McPhail and Lindsey (1970) from North America, and one of 62 cm and 2.41 kg from Poland (Leopold 1973 pers. comm.).

- Length and weight relationship
(See section 3.4.3.)
Le Cren (1951) discussed the seasonal changes in length-weight relations of Windermere perch, and some of his data are illustrated in Fig. 34. Growth stanzas (sensu Martin 1949) are clear from this figure, and at the adult stage, the maturation cycle affects the relationship seasonally which has been discussed above (section 3.4.3).

4.2 Abundance and density (of population)

4.2.1 Average abundance: estimation of population size

Incomplete understanding of the discreteness of shoals and the degree of interchange of individuals between shoals, or of the extent of movement of individual perch makes the use of indirect methods for the estimation of perch populations an unreliable approach. However, such methods have been used, and recently, Jensen (1974) compared estimates made by multiple mark-recapture experiments during the spawning period with others made later the same year by poisoning the population. His results are reproduced in Table XXIV indicating remarkably close agreement. The similarity of these results is surprising since trap fisheries at spawning tend to catch males

Numbers of of perch are not representative.
Figure below the neme of the pond is the number of perch in the sample.

Fig. 34 The length-weight relationships of perch. The regression lines for \log weight on \log length are given for larvae, 0 and I group, mature females and mature males
(From Le Cren 1951)

TABLE XXIV
Estimates of a population of spawning perch in Norway (From Jensen 1975)

Date	Population estimate							
	c	m	r	B	N̂s	$\widehat{N}_{\text {s }}{ }^{*}$	Nिp	95\% confidence interval
4.51952	29	0	0	0	-	-	-	-
5.5	365	29	2	0	5293	5293	T	$1500-43700$
6.5	320	197	5	195	14725	14890	-	$6300-45400$
7.5	70	264	10	445	9211	9429	-	$5000-19200$
8.5	405	309	19	465	11434	11786	-	$7300-19000$
9.5	590	460	31	710	15763	16300	-	$11400-24100$
10.5	170	708	32	1040	19032	19662	-	$13500-27800$
11.5	120	757	38	1150	18417	18565	-	$13400-26000$
13.5	389	871	48	1150	21639	22465	-	$16300-29300$
15.5	203	966	51	1434	24211	25126	-	$18700-32500$
17.5	75	1013	54	1587	24273	25222	-	19000-32000
15.8	1303	1004	97	-	-	-	$15022^{\text {a }}$	$13861^{\text {a }}-16492^{\text {a }}$

c Number of perch caught on date shown
m Number of marked perch present on the day shown
r Accumulated number of marked perch recaptured
B Accumulated number of perch killed prior to the date shown
Ñs Schnabel estimator
Ñs* Modified Schnabel estimator (Robson and Regier 1968)
N $\mathrm{N} \quad$ Petersen estimator
a Includes 1662 killed in May

TABLE XXV
Numbers and weight of the perch population of Lake Tyulen
(From Zhakov 1964)

Age	Mean Weight (g)	Numbers			Ichthyomass (kg)	
		Actual numbers removed	Estimated	Actual		
$0+$	1.2	540	78	0.6	0.09	
$1+$	11.4	540	264	6.2	3.00	
$2+$	16.9	540	467	9.1	7.9	
$3+$	24.4	540	1494	13.4	36.7	
$4+$	30.4	540	528	16.4	16.0	
$5+$	47.0	300	194	14.1	9.1	
$6+$	65.0	60	133	3.9	8.65	
$7+$	87.0	15	19	1.3.	1.65	
$8+$	140.0	15	4	2.1	0.56	
TOTALS		3090	3181	67.1	83.65	

selectively, and therefore the Schnabel estimator is enumerating the population of mature males. Further, the Schnabel estimator approaches an asymptotic value which represents the maximum population trappable at any given time. In this instance, that value may approximate to the whole male population as this was a stunted stock and therefore probably made up predominantly of one age-group (see section 4.1.2). But the subsequent Fetersen estimate, derived from a sample of 1303 perch recovered after the rotenone treatment of the lake, is slightly lower than the Schnabel value. As the Petersen sample should be approximately random, it would appear that the Schnabel value is an overestimate which may have arisen because of trapshyness in newly marked fish (Lind et al. (1971) found that some perch of 30 g and over learned to avoid cage-traps).

Thorpe (1974) attempted to estimate the population of mature males in the Loch Leven popula tion by a Petersen-type mark-recapture experiment, marking adult males from traps one spawning season, and taking the recapture ratio from similar traps during the subsequent season. This method is unsatisfactory in that there may be bias in the capture technique although there is evidence of individual rather than shoal behaviour at this time which allows the mixing element necessary for the experiment.

Kozikowska (1966) used effort data to gain minimum estimates of perch stocks in the Mazurian Lakes, Poland, as Petersen markmrecapture experiments proved unreliable due to the extensive interchange of fish between lakes.

Holcik and Pivnicka (1974) used "label-models" to test the validity of estimations for perch populations in Czechoslovakia, and they concluded that multiple-sample mark-recapture methods can ${ }^{\text {b }}$ be used successfully provided that identical sampling methods are used and the agemstructure of the samples is determined. Periods of high activity, e.g. spawning seasons, increase the chances of large samples and thus increase accuracy. However, the criticisms applicable to Jensen's results would also apply here.

Estimation of the population of mature females was made in Lake Razdelnii (5 ha) by Zhakov (1964) from counts of egg-strands at spawning. Two thousand three hundred strands were removed at the first collection, and only 58 were found at the second (2.4% of the total). In a second experiment, the second collection accounted for 4.4% of the total. Zhakov concluded that the method gave estimates accurate to within about 3% of the real value. At Lake Zhemchuzhina (68 ha), Zhakov modified this method by counting egg strands over a series of sample areas, and from these calculated a mean number of egg-strands per hectare of spawning ground. The estimate of total stock was then computed using data from sample catches on sex-ratio and age-composition, and gave values of 3640 adult perch in the age groups 4-9+ for Lake Razdelnii. A minimal estimate of the total population was obtained by assuming that age groups $0-3+$ were each numerically equal to age group 4+. The total then became 12440 perch. The method was checked in a smaller lake, Lake Dyulen (1.8 ha), in which counts of egg-strands had led to estimates as shown in column 3 of Table XXV. Two months later, the lake was poisoned and the stock counted and weighed, giving results shown in
columns 2 and 4 of Table XXV. The numerical totals are remarkably close although the age composition of the immature part of the population does not show such close agreement and in consequence, the estimated value of ichthyomass is 20% too low.

With the same qualification as applied to Jensen's (1974) methods, Zhakov's method. would appearto give reasonable minimum stook estimates.

Poisoning was also used by Rudenko (1967) to remove all fish from Lake Somino, Estonia, and the total population was calculated using the counts of collections made by seining 12 sample areas of 25 m of shoreline. The stock of perch amounted to 43353 fish of over lmyear old, but estimation of fry populations was not possible by this method. To achieve this, it was assumed, by analogy with mortality data on pike, that only 5% of $0+$ perch would survive to the following year. Thus the population of $0+f i s h$ was assumed to be 20 times the size of that of $1+$, in this case giving 626000 fry. The final total for abundance was ther:

	Number	Density/ha
$0+$	626000	29252
$1-9+$	43353	2026
Total	669353	31278

Rudenko further calculated the ichthyomass and production of fish in Lake Somino from data on length and weight at age derived from the samples. Observed mean weights allowed calculation of individual weight increments, and calculam tion of annual mortality permitted the estimation of annual population increase or ichthyonass (Eproduction). On this basis, he arrived at the following quantities:

Total biomass of perch:	835 kg
Annual biomass increment:	664 kg
Production per hectare per year:	$31 \mathrm{~kg} / \mathrm{ha}$

This value compares reasonably closely with the minimum production figure of 51 kg per ha per year for perch in Loch Leven (Thorpe 1974).

4.2.2 Changes in abundance

As mentioned above, Le Cren (1955) has shown thet wide year-to-year fluctuations of yearmclass strengths are characteristic of perch populations. In those extreme populations observed by Jensen (pers. comm.), the absence of complete year classes could not be accounted for by camibalism as no fry were found in the stomachs of the few donment yearmelasses. Menshutkin et al。 (1968) implied thet success of the new broods was dependent on food availability at first feeding (see section 3.2.2). Catastrophic massmdeaths of perch
have been recorded from North America (e.g. Bardach 1951) and Europe (e.g. Matthey 1963, Grimeldi 1967) due to epizootics (see section 3.3.5) . Population changes due to intensive fishing have been carefilly docunented for Lake Windermere where an experiment designed to test the inhibitory effect of a large perch population on competitor species was begun in 1941 (Worthington 1949). Each year during the spawning period, mature fish were removed by trapw ping, and Le Cren (1958) estimated that the stock was reduced by 45% per annum from 1941-1944, and then at a steadily decreasing rate until the popum lation in 1948 had reached about 3% of its original level.

Changes in abundance due to altered hydrographic conditions are seen clearly in the colonization period in new reservoirs. For example, Holcik (1966) found that in the first five years after the closing of the Orava dam, the perch population originating from the Biela and Cierna Orava rivers increased rapidly becoming one of the numerically dominant species, but then, declining as roach (Putilus rutilus L_{0}), bleak (Alburnus alburnus L.) and ruffe (Gymnocephalus cernua L.) took over this dominant position. Similarly in the Klisava Reservoir, Holcik (1970) found that perch with unspeciali.zed spawning requirements was able to dominate rapidly such that two jears after the filling of the reservoir, they accounted for 95% by number of all fish present. Their subsequent decline was probably influenced by food competition between the fry and those of roach (R. rutilus L.). Roach fry have a wider food spectrum and are more active then perch fry. Also, as perch become fishfeeders, they tend to concentrate on their own fry, thus limiting their own populations while roach will also eat perch fry. This general sequence of initial domination by perch followed by roach has also been reportea for newly built reservoirs by Ivanova (1953), Wikheev and Meisner (1954), and Wajdowicz (1959, 1961, 1964).

Bowman (1974) recorded that the abundance of yellow perch in bottom trawls of Lake Erie had shown a significant decrease over the interval 1962-66, coincident with a dramatic increase in the catch of alewives (Alosa pseudoharengus). In the Great Lakes, Christie (1974) noted an increase in the stocks of perch and attributed this to reduced food competition after the collapse of witefish stocks in Lake Ontario, blue pike in lake Erie, and pollution resistance by eggs and fry in Lake Erie. In Sweden, Vallin (1929) recorded a rapid decline in the perch population of Sjoin Ymsen after the introduction of pike-perch (Lucioperca lucioperca L_{*}). In 1915, the yield of perch was 1740 kg (20.8% of the total fish catch), and at that time, pike-werch yield was about 1420 kg 。 By 1927, perch yield had fallen to 87 kg (1.3% of catch) and pikemperch yield had risen to 4680 kg .

4.2.3 Average density

Data on average density from various localities are given in Table XXVI. Sumari (1971) discussed
TABLE XXVI

the variation in biomass of perch between ponds in a group of 32 Finnish waters ($0.6=64 \mathrm{ha}$). He noted that age-class variation affected biomass, and therefore biomass must be studied over several years in any one locality if true density data are to be established. For example, in "perch-only" ponds where $0+$ fish accounted for more than 50% of the older fish, the biomass was 9.3 kg per he on average: in ponds with lower proportions of $0+$ fish, the average biomess was sigmificantly greater at 16.2 kg per ha. Thus, the total biomass and the number of mature fish is smallest when a new ageclass is forming in these ponds with very irregular agemelass structure. He found also that biomass of perch is significantly greater in ponds without roach (14.3 kg per ha) than in those with roach (6.5 kg per ha), but did not determine whether this was a result of predation by roach on perch fry or by direct food competition. In one pair of ponds (Koukkulampi I and II), limnologically similar except for the presence of burbot (Lota lota L.) in I and its absence in II, there was a biomass difference. In II, perch amounted to 26 kg per ha: in I with 3 kg per ha of burbot, there were only 10 kg per ha of perch present, a reduction assumed to be a direct consequence of predation by burbot.

4.2.4 Changes in density

- Landings per unit fishing effort

It was noted above that perch catches in bottom trawls in Lake Erie declined sharply between 1962-66 (Bowman 1974) coincident with the increase of alewives. With eutrophication, perch have increased in importance in the commercial catch in various previously oligotrophic/mesotrophic salmonid waters especially in Germany, Switzerland and southeast France. For example, Hartmann (1974) (see Fig. 35) has show an upward trend in the annual catch curve for perch in Lake Constance over the past twenty years, the period of continuing eutrophication.

In Lake Mendota, Hasler and Wisby (1958) recorded catches of 200-400 perch per day on a line with two hooks in the ice-fishery of 1920. At this time, the total stock was probably about 15 million perch: over the period $1920=56$, the general decline in number and increase in size of Mendota perch was attributed to the following:
(1) disease outbreaks (see section 3.3.5);
(2) harvesting;
(3) eutrophication (agricultural and domestic pollution.

- Steinmann (1948) recorded the introduction of perch into a salmonid lake, Sihlsee, in nineteen forties. From zero yield in 1942, the perch catch rose to 19.5 t by 1945, and trout yield fell from $5000-6000$ to $1000-1500 \mathrm{~kg}$.
- Variations with depth and season

It has already been noted (sectjon 2.3) that there is annual movement from a winter deepwater area to a spawning and summer feeding area in shallower water in lakes. This is reflected also ir the pattern of catch curves (see Fig. 36), showing peak catches in spring on the littoral areas, in summer on the sublittoral and in autumn in the pelagial, followed by a general winter deciine in catch. This winter decline is related to acces." sibility to fishing gear as although Heyerdehl and Smith (1972) noted a fishing season from June-November in Lake of the Woods, Minnesota ceasing in November due to freeze-up, Ha.sler and Wisby (1958) recorded a yield of 1.5 million perch in the line-fishery through the ice of Lake Mendota in 1956.

El Zarka (1959) recorded that 75% of the annual catch of perch in Saginaw Bay, Lake Huron, was made from September-November (Table XXX).

4.3 Natality and recruitment
 4.3.1 Reproduction rates
 (See also section 3.1 .5 .)
 - Annual egg production rates

For the Loch Leven (1331 ha) population, Thorpe (1974) calculated egg-production from averages of estimated stocks of females 4 years old and older, and from fecundity-length data giving estimates of approximately 2 million eggs per ha per year. In a 2.4 -ha pond in Finland, Kukko et al. (1972) calculated an annual egg production of 650000 per ha.

- Survival rates

Kukko et al. (1972) estimated that survival of progeny to $\overline{1}$ year old was 0.001% in a Finnish pond. Lind et al. (1971) related survival to density of older perch and found values to 1 year old as 0.0001% when there were $350-500$ older perch per ha or 1.1% when that density was only 100 per ha. The relation of survival to predator populam tions and food supply is discussed in section 3.2.2.

- Forecasting potential yields

Heyerdahl and Smith (1971) found correlations between perch year-class strength and abundance of the harvestable stock 6 and 7 years later ($r=0.615$, and 0.768) at Red Lakes, Minnesota. This relationship was based on 19 years data from commercial catches, and being retrospective is. not itself readily usable for predictive purposes without an independent estimate of year-class strength among prerecruits.

Fig. 36 Seasonal changes in catches of perch in various areas of Bodensee
Scale Littoral (L): 5.3 fish/day in 2 trap.nets 1972-73
Sublittoral (S): 100 fish/day in 4 gillmets 1972-73 Pelagial (P): 20 fish/day in 6 drift-nets 1963-73
(From Hartmann MS. 1974)

Fig. 37 Average percentage age composition of Red Lakes perch, 1949-64 (From Heyerdahl and Smith 1971)

Fig. 38 Number of perch in each 0.5 cm interval per average 100 fivewnet lifts of commercial gear, summed for the years 1949-57 and 1959-65, Red Lakes, Minnesota (from Heyerdahl and Smith 1971)

TABLE XXVII
Annual mortality rates of adult perch

Locality	Total mortality (\%)	Fishing mortality (\%)	Natural mortality (\%)	Authority
Red Lakes, Minnesota		45	20-25	Heyerder: ard Smith 1971
Windermere			28-36	Le Cren 1965
Lake Mendota	c 50			Herman st al. 1964
Lake Constance	c 45			Hartman 1974
Lake Manitoba	52-60			Kennedy 1950
Ullswater	$\mathrm{e}^{2}: 47$ ¢ : 30			MoCormack 1965
Mill Leake	70			Schneider 1971
Cassidy and Jewett Lakes (experimental)			25 in 2na year 41 thereafter	Schneider 1972
Cassidy Lake	80-96			Schneider 1973

4.3.2 Factors affecting reproduction

- Density dependent factors

Cannibalism, food supply, predation: (See sections 3.2.1 and 3.2.2.)

- Physical factors
(See section 3.1.6.)

4.3.3 Recruitment

Since few countries stipulate size-limits (see section 6.1) for perch and few operate fishom ries specifically for this species, age and size at recruitment to the fishable stock depend largely on the characteristics of the fishery in which they are taken as a secondary or incidental catch. For example, in the River Vistula, predam tory perch are first recruited to the fishable stock at AG IV in a mixed species fishery (Beckiel 1971). However, in the Laurentian Great Lakes, Hile (1953) recorded that perch entered the fishable stock in their fourth year in Lake Erie and Saginaw Bay, Lake Furon, where the size limit was 21.6 cm . In Green Bay, however, with a size limit at 20.3 cm , perch were not recruited until their sixth year so that very many did not live long enough to reach legal size. Reduction of the size limit to 19 cm allowed the fishermen to retain $2 \frac{1}{2}$ times as many fish from their catch as before. The problem had also been vitiated by movement of larger perch out of Green Bay. Recently, perch have entered the fishable stock of the Great Lakes as $2-3$ year olds (Leach and Nepszy 1975). For Red Lakes, Minnesota, Heyerdahl and Smith (1971) calculated the average percentage age- and sizewomposition of the commercial
catch over 16 years (Figs. 37 and 38). In this particular locality, the seasonal fishery is determined primarily by the availability of walleye Stizostedion vitreum vitreum, and the high modal length (26 cm) of the netted perch is a reflection of meshosizes adjusted to the exploitation of walleye. Variation in annual recruitment was considerable since as noted above (section 4.1.2), yearmclass strengths varied by a factor of 26 . Since these variations occurred in parallel with those of walleye (see Fig. 39), the authors held that a common factor governed survival of the fry of both species and they suggested that meteorological conditions controlling the availability of food were the causative agents.

In Lake Constence, Hartmann (1974) found new yearmclasses entering the fishery at the beginning of the period of intensive feeding in Junemuly; coming to dominate the fishery for one or more years.

Stock-recruitment relationships: Forney (1971) showed from Oneida Lake data that the variance between yearmelass strengths increased from a $2-f \circ 1 d$ range at hatching through pelagic feeding stages to benthic feeding, finally to a 70 mifold range by age 1t. Yearmclass strength was not related to size of spawning stock. Depensatory mortality through predation by walleyes by removing an almost constant quantity of perch fry led to a much higher mortality rate when a yearmolass was initially low.

4.4 Mortality and morbidity

4.4.1 Mortality rates

Data from various populations are given in Table XXVII. Values of total annual mortality of
adults appear to range normally between $45-70$ percent. Hol®ik calculated mortality for each age group of perch in the Klicava Reservoir (Table XXVIII) and noted that males showed a higher mortality rate than females. He suggested that this was due to larger numbers of males, and their higher vulnerability to predators. Schneider (1971) found constant high mortality around 70% for adult perch in Mill Lake, Michigan, which was independent of density (Table XXVIII).

$$
\begin{aligned}
\text { 4.4.2 } & \begin{array}{l}
\text { Factors causing or affecting } \\
\text { mortality }
\end{array} \\
& -\quad \text { Predators }
\end{aligned} \quad \begin{aligned}
\text { (See section } & 3.3 .4 . \text {) } \\
& -\begin{array}{l}
\text { Food of larvae and post.. } \\
\\
\end{array}
\end{aligned}
$$

(See section 3.2.2.)

- Physical factors

In addition to data quoted in section 3.3.2, Lassleben (1953) recorded mass deaths of fry in late summer and autumn, and considered these to be caused by exceptional meteorological conditions when fry aggregated in upper strongly lighted areas where they may have been exposed to harmful radiation.

Mackenthun et al. (1948) in an experimental evaluation of the effects of decomposition of algal blooms on fish found that perch died 5 days after introduction to water deoxygenated by decomposing Aphanizomenon flos-acquae at $15.5^{\circ} \mathrm{C}$.

Meadows (1973) found that perch were killed by 5 percent rotenone at an initial concentration of $0.1 \mathrm{mg} / \mathrm{l}$, the median survival time at $10^{\circ} \mathrm{C}$ being about 4 h . With Salicylanilide I, a nonpersistent candidate piscicide, Marking (1972) found that in the laboratory at $12^{\circ} \mathrm{C}$, the LC_{50} values were as follows:

3 h	24 h	96 h
20.0	8.5	5.2 p.p.b.

with 95 percent confidence limits of

$$
16.5-24.2 \quad 7.1-10.2 \quad 4.3-6.3 \text { p.p.b. }
$$

In larger pools deaths of 6.6 cm perch were as follows:

	$0-2 \mathrm{~h}$	$2-4 \mathrm{~h}$	$4-6 \mathrm{~h}$	6 m 24 h
400 I pool:				
30 p.p.b.	-	-	-	100%
40 p.p.b.	-	10%	70%	100%
500 I pool:				
20 p.p.b.	-	-	10%	100%
60 p.p.b.	30%	90%	100%	-

- Fishing

(See section 4.4.1.)

4.4.3 Fe.ctors affecting morbidity

Parasites and diseases: (See section 3.3.5.)

4.5 Dynamics of population (as a whole)

Small lakes containing perch as the only fish species are often encountered particularly at high latitudes. Fluctuations of yearmclass strength are a prominent characteristic of such populations, and Menshutkin and Zhakov (1964) sought to account for this distinctive pattern of population dynamios largely on the basis of cannibalism. Their conceptual model of the interrelationships of the separate age group of perch in Lake Tyulen is shown in Fig. 40 where the assumptions are made that:
(a) age groups 0-5 are subject to cannibalism from age groups 1-8;
(b) age groups 0 and $4-8$ suffer mortality due to starvation:
(c) age groups $6-8$ suffer mortality due to old age, disease and other unspecified causes;
(d) female perch spawn every year from age 4 onwerd

To simplify the mathematical expression and evaluation of this model, environmental parameters were considered constant and the numerical fluc... tuations in the fish age groups were regarded as a function of their interactions and of their overall limitation by a maximum planktonic food supply. The model was tested in two forms, both using empirical data from the Tyulen population as starting values. In variant I, the maximal ration (R) (sensu Ivlev: that quantity of food which a fish would consume at an unrestricted prey density) was taken as 20 times the average annual increment in weight for each age group over 3+ and slightly less for the younger fish which were assumed to be less completely dependent on cannibalism. In variant II, the maximum ration was increased progresm sively for each age group to allow for the increasing intensity of cannibalism with age. The electivity of cannibal perch was determined partly from Ivlev's published data (Ivlev 1955) and partly from the author's own experimental data. In this way, the probability of death of any one individual due to camibalism could be determined on the basis of the numerical strengths of the respective yearmoliasses, and their prey and their electivity values.
Similarly, the chances of death due to starvation were calculated on the basis of a planktonic food base capable of sustaining a maximum number of fry. If this fry number was exceeded, all the surplus fry would die with consequent effects on the older age groups dependent upon them. The probability of natural deaths of fish of age groups 6 and 7 was
TABLE XXVIII
Annual mortality' rates of perch

| Year | Sex | S | II | III | IV | V | Age Group | VI | VII | VIII | I-II | I-III | III-VII | IV-VIII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | Both | 0.64 | - | 0.25 | 0.61 | 0.61 | 0.81 | - | | 0.55 | - | 0.46 | - | |
| 1964 | | 0.64 | 0.62 | - | 0.50 | 0.57 | 0.78 | - | | - | 0.61 | - | 0.52 | |
| | | 0.42 | - | - | 0.32 | 0.52 | 0.53 | 0.94 | - | 0.10 | - | 0.43 | | |

$$
\begin{aligned}
& \text { b) Mill Lake, Michigan (Schneider 1971) } \\
& \begin{array}{|l|lllllll|}
\hline \begin{array}{l}
\text { Year } \\
\text { Class }
\end{array} & \text { I-II } & \text { II-III } & \text { III-IV } & \text { IV-V } & \text { V-VI } & \text { VI-VII } & \text { VII_VIII } \\
\hline 1959 & & & & & 0.850 & 1.000 \\
1960 & & & & 0.762 & 0.760 & 0.758 & - \\
1961 & & & 0.690 & 0.694 & 0.691 & 0.694 & - \\
1962 & & 0.641 & 0.657 & 0.646 & 0.647 & - & - \\
1963 & & 0.837 & 0.750 & 0.736 & - & - & - \\
1964 & & - & - & - & - & - \\
1965 & 0.910 & - & - & - \\
\hline \text { Mean } & 0.910 & 0.739 & 0.699 & 0.710 & 0.733 & 0.826 & 0.920 \\
\hline
\end{array}
\end{aligned}
$$

a) Kliçava Reservoir (Holc̈ik 1969)

Fig. 40 Population model of perch (after Menshutkin and Zhakov 1964)

```
1: age groups
2: cannibalism
3: reproduction
growth
5: natural mortality from old age, disease and other causes
6: death from starvation
```

taken as 0.8 and that of age group 8 as 1.0 , values which were realistic from Lake Tyulen data. Fecundity values differed between the variants: in I, a constant value of 2400 eggs per year from age 4 onward was assumed; in II, this value started at 2000 eggs per year. at age 4 and increased by 1000 eggs per annum thereafter. Sex ratios were taken as 1:1 throughout. From observation of the very high mortality of eggs and fry, it was assumed that only 5% of this egg production would survive to figure as the $0+$ generam tion.

The authors gave examples worked on the basis of a series of equations, the main ones being as follows.

The number of age-class (i), N_{i} surviving to form agemelass $(i+1)$ the following year was:

$$
\mathbb{N}_{i+1}=\mathbb{N}_{i}\left(1-\mathbb{p}_{i}\right)\left(1-\mathbb{A}_{i}\right)\left(1-v_{i}\right)
$$

where:
ψ_{i} was probability of deaths due to cannibalism
λ_{i} was probability of deaths due to starvation
v_{i} was probability of deaths due to other natural causes

The actual number of prey of age group $k\left(\Delta N_{1}\right)$ available for predators was thus:

$$
\Delta N_{k}=H_{k} \cdot N_{k}
$$

and the number taken by each particular age group of predators was dependent on the empirically determined electivity value E and their relative density.

The relationship of actual (r) and maximal (R) ration was derived from that of Ivlev (1955) and expressed in the form:

$$
r_{i}=\sum_{\mu_{k}}^{k} \cdot N_{k}=\frac{k}{\Sigma} \frac{1}{m_{k}}\left(1-e^{-8 m_{k}}\right)
$$

where:

$$
m_{k}=\frac{N_{k}}{\Delta \max N_{k}}=\frac{1}{R_{i} k}
$$

N_{k} was number of prey of age
$\Delta \max N_{k} \begin{aligned} & \text { was number of these taken at maximum } \\ & \text { ration }\end{aligned}$
Mortality due to starvation also depended on the relation of actual and maximal ration such that:

$$
I_{i}=\frac{x_{i}}{R_{i}}
$$

and

$$
\lambda_{i}=1-L_{i}^{n}
$$

(The values for the quantity V_{i} are the mortality constants 0.85 and 1 assumed above.)

From these relationships, the authors calcu. lated the successive annual numerical states of their model population, and their 2 examples are illustrated. The phenomena of wide yearmclass fluctuations and dominance by an individual yearm class over several years are well reproduced (Figs. 41 and 43), and the system is shown to have longoterm stability (Fig. 42). Further, the absolute strengths of yearmclasses and the proporm tionate composition of the population by age classes are reproduced in a realistic form in the nodel.

4.6 The population in the community and the ecosystem

4.6.1 Physical features of the biotope of the community

In rivers, the perch is found characteristically in the slower flowing parts of the barbel zone (Huet 1954) and in the bream zone. In lakes, it occurs predominantly under mesotrophic conditions but is found plentifully in some oligotrophic salmonid waters, dystrophic woodland lakes (as in Scandinavia, see e.g. Sumari (1971)) and in the full range of bream lakes categorized by Bauch (1963). Within these systems, the perch occupies the area at the open-water edge of weed beds during the summer feeding period and ranges down to the region of the thermocline. In more turbid eutrophic conditions, it appears to be replaced by Lucioperca or Stizostedion spp. Tesch (1955) suggested a developmental series in open waters characterized from coregonids \longrightarrow perch \longrightarrow roach \longrightarrow smelt \rightarrow pike perch correspondingly from oligotrophy \rightarrow mesotrophy \rightarrow eutrophy.

4.6.2 Species composition of the community

The perch occurs together with a wide range of other freshwater fishes in the Old World and with an equally varied range of cold-warm water fishes in the New. In many European waters, the fate of roach and perch is parallel (Tesch 1955), the yield of each species increasing and decreasing together. However, Sumari (1971) showed that in Finnish lakes without roach, perch yield was higher than in lakes with roach present. Bardach (1951) recorded improved growth of perch in Lake Mendota when Leucichthys artedi decreased in numbers and while he attributed this to reduced competition,

Fig. 41 Numbers of mature and immature perch (excluding fry)
from Menshutikin and Zhakov's model
1: Immature stock
2: Nature stock

Fig. 42 The successive changes of state of Menshutkin and Zhakovis model population (Variant I)

1: Established cycle
2: Introduction into the cycle
Other numbers refer to the successive annual statea of the population (after Menshutkin and Shakov 1964)

Fig. 43 Age group distribution in both variants of Menshutkin and Shakov's population model. Solid columns indicate the dominant yearmelasses: t is in years (from Menshutkin and Shakov 1964)

Tesch (1955) implied that reduced predation by Leucichthys was the cause. It has been noted above (section 4.2.1) that perch colonize new reservoirs rapidly and may become the numerically dominant fish for a few years before declining again. In Rybinsk Reservoir, Vasilev (1955) recorded that perch formed a constant proportion of 11-12 percent by number of the total fish catch during the first 12 years life of this water body, but that with time these fish became smaller (19.3 percent of catch of trash fish after 11-12 years).

4.6.3 Interrelations within the community

Zakharova (1955) considered perch undesirable as a competitor with more valuable commercial species and a consumer of eggs and fry of bream (Abramis brama), pike and roach. Nïnann (1939) believed perch had an adverse effect on stocks of Coregonus lavaretus in Lake Constance, but Hartmann (1974) showed that numerical fluctuations of the two species paralleled one another with a twomyear displacement, but the controlling factor was not identified.

A more positive functional role is identified by several workers. Ferman et al. (1964) regarded perch as an important intermediate link in the food chain, being a converter of small invertebrates to fish flesh, themselves being eaten by walleye, pike, muskellunge (Esox masquinongy) and lake trout (Salvelinus namaycush). Thorpe (1974, In press a) calculated that perch fry made up 30 percent of the food of adult trout (Salmo trutta) between June and September in Loch Leven and 13 percent of food of adult perch in the same interval. These fry were thus acting as converters of zooplankton into a form usable by fish predators. Forney (1974) found that the abundance of perch fry governed the intensity of predation by walleye on other forage fish and thus indirectly controlled the size of the walleye population by regulating cannibalism.

5 EXPLOITATION

5.1 Fishing equipment

The types of gear used in perch fisheries are listed by countries in Table XXIX. Besides standard methods of gill-netting, seining, trawling, fykemetting, trammelmetting and angling, perch are also taken regularly in cage traps particularly at the spawning season when the males enter them very readily and by drop-lines through the ice in winter. The icemishery of Lake Mendota yielded more than 50 kg per ha in 1956 (Hermen et al. 1964)。

The Jazgarnik of Poland is a 60 m long dragnet used for removal of ruffe (Gymnocephalus cernua L.) and perch, and concists of wings of $15 \mathrm{~m} \frac{\text { length }}{}$
and 5 m depths, and a 30 -m bag. The mesh size varies from 12 mm in the bag to 18 mm in the wings (Leopold pers. comm.).

The Naseki of Lake Dojran, Macedonia, are described by Apostolski (1958). In this lake, the perch aggregate in littoral reedy areas in winter. The fishermen throw into the water small bushes (Quercus coccifera $L_{\text {. }}$) which serve to concentrate these shoals and then enclose these areas with a wall of reeds. The fish are then crowded into a progressively smaller area by building further waills of reeds within the enclosure until they are finally netted out of a small area (the Kolidor). A hundred and fifty metric tons of perch are harvested annually from the lake by this means.

5.2 Fishing areas
 (See Table XXIX.)

5.2.1 General geographic distribution

(See section 2.1.)
Perch are variously prized, from very important food fish in the Laurentian Great Lakes and Finland, to fish of secondary importance (much of Europe and U.S.S.R.), to trash fish in areas given over primarily to sport fishing. Consequently, they are exploited unevenly over their entire geographical range, but are most prized in areas relatively remote from access to fresh supplies of marine fish. Müller (1961) refers to them as Konsumfische (together with roach and bleak, Alburnus alburnus L.) as opposed to Feinfische (Coregonids, eels, carp, tench (Tinca tinca L.) and pike).

5.2.2 Geographic ranges

(See section 2.1.)

5.2.3 Depth ranges

(See section 2.3.)

5.3 Fishing seasons

(See Tables XXIX-XXX.)

5.3.1 General pattern of seasons

Perch are fished for throughout the year over the greater part of their range, but in France, Belgium, Holland, Italy and parts of Czechoslovakia, Denmark and Bulgaria, closed seasons protect the fish during the spawning period (see section 6.1.2).

5.3.2 Dates of beginning, peak and end of seasons

(See Table XXIX.)

Perch fisheries						
Country	Exploitation	Gear	Areas	Seasons	Utilization	Authority
Australia	Sport, commerical (very little)	Rod and line	Lakes and reservoirs	All year round	"Bread and butter" species for 26% of anglers	Tilzey (pers. comm.)
Austria			(In Lake Constance only)	All year	Consumption	Hemsen (pers. commo)
Belgium	Sport	Rod and line	Rivers: barbel and bream zone; ponds of central and lower Belgium	June-January	Recreation	Huet (pers. comm.)
Bulgaria	Sport. commercial	Rod and line, net	Rivers and dams of Danube, - Maritza, and Tundja catchments, and rivers Ropotamo and Veleka	1 June-14 April	Recreation, consumption	Chervenkov (pers. comm.)
Canada	$\begin{aligned} & \text { Commercial, } \\ & \text { sport } \end{aligned}$	Trawls, gillnets, poundnets, angling	Great Lakes, commercially; smaller lakes for sport	Recreationally: all year, commercially	Food fish, fish meal, export	$\begin{aligned} & \text { Scott and Crossman, } \\ & \text { 1973, FAO (1974) } \end{aligned}$
Czechoslovakia	$\begin{aligned} & \text { Commercial, } \\ & \text { sport } \end{aligned}$	Trapnets, angling	In all waters of Bohemia and Slovakia to 800 m above sea level	Danube, Labe; and Vltava Rivers; all year. Elsewhere mostly 15 June-autumn	Consumption, recreation	Vostradovsky (pers. comm.)
Denmark	Commercial, sport	Fyke nets, pound nets, gillnets; seines; drifting hook lines; angling	Lakes and estuaries, with eel, pike, and pike-perch fisheries	Recreation, all year especially winter, through ice; commercial, April-November	Consumption, recreation	Dahl (pers. comm.)
Finland	Commercial	Gillnets; fyke nets, steel net weirs, rod and line, lines through ice	All inland waters, and coast of Baltic	All year, but expecially at spawning	Consumption	Sumari (pers. comm.)
France	Sport: commercial	Rod and line, gillnets	Cyprinid rivers, ponds and lakes; commercially in Lac Leéman	$\begin{aligned} & \text { Autumn-early } \\ & \text { spring } \end{aligned}$	Recreation, consumption	Tuffiery (pers. comm.)
Germany	Commercial, sport	```Seines: gillnets, trap nets; elec- trofishing: angling```	Commercially in most large lakes, lower reaches of large rivers, and along Baltic coast. Angling: nearly all types of inland and coastal waters except small rivens	Whole year angling	Consumption, recreation	Tesch (pers. comm.)

Country	Exploitation	Gear	Areas	Seasons	Uijilization	Authority
Hungary				Spring-autumn		Donaszy (pers.comm.)
Ireland	Sport	Rod and line, gillnets, cage traps, seines	Everywhere except western side of the country	All year in gillnets; main fishery at spawning time in April-May: TuneOct. in seines	Sport: removal as management measure in trout waters	Fitzmaurice (pers. conm.)
Netherlands	$\begin{aligned} & \text { Commercial, } \\ & \text { sport } \end{aligned}$	Trammel nets, rod and line	Everywhere for sport; commercial chiefly in IJsselmeer	July/Aug. 16 Mar.	Sport, consumption	Willemsen (pers. comin.)
Poland	Sport, commercial	Rod and line, seines, gillnets, fykes, "Jazgarnik"	Everywhere	Maximum catches July-Sept. Season, 1 June15 April	Consumption, sport. Also removal as managenent measure	```Backiel (pers. comm.) Leopold (pers. comm.)```
Romenia	Sport, commercial	Pound nets, trawls, rod and line	Ponds in Danube Delta; Lake Razelm	All year	Consumption, recreation	Miron (pers. comm.)
Sweden	Sport, commercial	Fykes, trap nets, pound nets, gillnets, rod and line	Commercially, along Baltic coast	Chiefly April-June, plus perch in Sept., May-October	Consumption. recreation	Alm (1957)
Switzexland	Sport, commercial	Nets, rod and line	Lakes, $300-650 \mathrm{~m}$ above sea level	All year	Sport and consumption	Muthler (pers. commo)
Tasmania	Sport only	Rod and line	Lakes, such as Lake Leake, Zee Lagoon, Lagoon of Islands	1 August-30 April	Recreation	Iynnch (pers. comm.)
U.K.	sport only	Rod and line	$\begin{aligned} & \text { ngland and Wales: lakes, } \\ & \text { rivers, canals } \end{aligned}$	Bngland and Wales 14 Merch-16 June	Recreation	
U.S.A.	Comnercial; sport	Seines, pound nets, gillnets; trapneṫs, fyke nets, rod and line, droplines	Great Lakes chiefly: Lakes in northeast and upper Mississippi valley		Consumption, fish"meal, recreation	
U.S.S.R	Commercial			R.Ob throughout year		Berg. 196.5 Dryagin, 1948
Yugoslevia	Commercial	Gillnets: seine "Naseka", treps	Macedonia: Lake Dojran: Serbia: inundation area of Denube and Seva rivers, province of Banat and Srem; Croatia: no details	Winter and summer; spring and summer	Consumption	Apostolski (pers. comm. and 1958)

TABLE. XXX

5.3.3 Variation in date or duration of season

Fluctuations in the sizes of the cetch have been minimized to some extent by pricemsupport measures taken by the Canadian Government to maintain the price of perch to the fishermen at about U.S. 0.1 per lb when sold to the processing plants for filletting and freezing (Anon. 1966-70).

5.4 Fishing operations and results

5.4.1 Effort and intensity

Besides the data for catches of perch with various gears in Polish lakes (Table XXXI: Leopold pers. comm.), Mackenthun and Herman (1949) quoted an average daily catch of 10 perch per manmay of angling through the ice on Lake Mendota with hardly any variation through the winters of 1947-49. Bardach (1951), comparing catches by gillnet in the same lake between 1916 and 1947, calculated catches as shown in Tabie XXXII.

In Ontario's Lake Erie, commercial fishery perch are now the mainstay, accounting for $60-70$ percent of the total landings (Lambert 1975). Total fish landed in 1972 amounted to 16700 t of which 3.6 percent was sold live, 18.2 percent freshly packed and 78.2 percent processed. The landed value of the fish harvest was U.S. \$ 5.4 million, representing a value added (the activity's contrim bution to the local economy) of U.S. 3.2 million. This primary activity involved 601 people or 378 man--years of employment, and generated work for 599 more (516 man-years) in the packing and proces sing industry, and 15 (12 man-years) in trensportation. This secondary stage accounted for a further U.S. $\$ 7.2$ million in value added from packing and processing, and U.S. $\$ 79000$ from transportation. Thus, the total value added was U.S. 10.5 from 906 manowears of employment for 1215 individuals.

Rudenko (1969) pointed out that the size of fish yield depended on the age-composition of the population as well. as on its trophic level, the species composition of the watermody and the total ichthyomass. The fish crop is higher and the ich thyomass lower in lakes where young fish predominate so that in perch lakes, the yield must change yearly in accordance with the irregular changes in age-composition of the stock.

5.4.2 Selectivity

Selective properties of gear: Table XXXIII shows the changes in distribution of perch catches by size and month in a single Polish lake when the mesh of roach-perch gillnets was chenged from $30-40 \mathrm{~mm}$ to $40-50 \mathrm{~mm}$. Such changes also reflect activity and feeding changes by season, and the specific selective properties of nets in any one locality will depend heavily on the feeding opporm tunities and condition of the fish.

Selectivity of cage-traps during the spawning season was investigated by Thorpe (unpubl.) and some data are given in Table XKXIV. The traps used were as described by Worthington (1942) and were covered with 2 mesh sizes of wire, 2.5 cm or 0.8 cm ; had 2 entrance sizes, 7.5 cm or 12.5 cm diameter; and were either 75 cm or 150 cm in length. No difm ferences in size ranges of perch occurred between the catches in traps of differing: meshomize; no differences in quantity of perch were caught by traps of differing lengths; but, the size of entrance hole began to be selective among perch above a length of 25 cm .

Worthington (1942) noted that percin avoided unpainted wire traps, but entered rusty ones. Von Brandt (pers. comm.) found that perch avoided lightmcoloured gilinets: Scidmore and Sheftel (1958) found that nylon gillnets were no more efficient than linen ones in catching perch, but fioggman (1973). found nylon nets 1.2-1.33 times as efficient as cotton ones.

5.4.3 Catches

Total annual yields: The average annual yields in so far as records are available, are given in Table XXXV. Data taken from the FAO Yearbook of Fisheries Statistics for 1973 show that perch formed an approximately constant 7.3 percent by weight of the total catch of freshwater fish in Europe and North America (statistical areas 02, 05 and 27) from 1965-70 but decreased sharply thereafter to a new level at only 3.9 percent (Table XXXVI). The reduction was most noticeable in inland waters of Europe where the yield fell to 15 percent of its previous level. The cause of this decline is unknown, but reports of widespread (unidentified) disease among perch in British waters were current during 1970 (section 3.3.5), which, if general over the entire geographic range could have led to decreased yields over the subsequent years.

6 PROIECTION AND MANAGEMENT

6.1 Regulatory (legislative) measures
 6.1.1 Limitation or reduction of total catch

The only recorded limitation on catches of perch is that of a bagmimit of 2 kg imposed on anglers in Bulgaria (Chervenkov pers. comm.).

6.1.2 Protection of portions of population

Tesch (1955) noted that there was no good reason to protect perch by minimum catch sizes except perhaps in such stocks as those of the Bollic coast where the fish reach edible size ($>20 \mathrm{~cm}$) before maturing. Lassleben (1953)

TABLI XXXI
Perch fishing with various gears in Polish Lakes
(Bata Erom Leopold pers. Comm.)

Gear	Fishing Season.	$\begin{gathered} \text { Size Class } \\ \text { of lakes } \\ \text { (ha) } \end{gathered}$	Perch as \% of total eatch	Average catch per day (kg)	```Intensity of Exploitation```	Number of lakes
Winter seine with bag	January-April	$\begin{gathered} \text { up to } 100 \\ 100-500 \\ \text { over } 500 \\ \text { total } \end{gathered}$	$\begin{array}{r} 14.53 \\ 7.75 \\ 11.69 \\ 11.17 \end{array}$	$\begin{aligned} & 35.66 \\ & 25.10 \\ & 58.53 \\ & 43.70 \end{aligned}$	Very high	108
Summer seine with bag	July-December	$\begin{array}{r} \text { up to } 80 \\ 80-500 \\ \text { over } 500 \\ \text { total } \end{array}$	$\begin{array}{r} 8.01 \\ 10.09 \\ 12.31 \\ 11.01 \end{array}$	$\begin{aligned} & 12.62 \\ & 17.95 \\ & 31.06 \\ & 22.81 \end{aligned}$	High	206
Peroh-roach gillnets	April-December	All lakes	12.90	0.44	Average	21
Fyk.e nets	Maroh-October and December	All lakes	5.86	0.09	Low	105
Jaknamik			50-100	up to 200	Very low	46

TABLE XXXII
Perch catches in gillnets in Lake Mendota (fish/100' of net/h)
(From Bardach 1951)

Seas on	1916	1947
Spawning Season (Nets inshore at $4-10 \mathrm{~m}$ depth) Summer (Nets at $6-9 \mathrm{~m}$ depth $)$	15.5	3.6

TABLE XXXIII
Structure of perch catches by roach-perch type of gillnets as depending on mesh-size (in one, lake) (From Leopold pers. comm.)

Period	Meshsize (mm)	Units	Months								Year	\% of catch in weight		
			IV	V	VI	VII	VIII	IX	X	XI		above 0.5 kg	$\begin{aligned} & 0.2- \\ & 0.5 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \text { below } \\ & 0.2 \mathrm{~kg} \end{aligned}$
1958-62	30-40	kg	0.34 6.58	$\begin{aligned} & 0.19 \\ & 4.40 \end{aligned}$	$\begin{array}{r} 0.55 \\ 22.98 \end{array}$	$\begin{array}{r} 0.50 \\ 21.35 \end{array}$	$\begin{array}{r} 0.95 \\ 51.27 \end{array}$	$\begin{array}{r} 1.39 \\ 52.56 \end{array}$	$\begin{array}{r} 0.55 \\ 31.08 \end{array}$	$\begin{aligned} & 0.04 \\ & 5.22 \end{aligned}$	$\begin{array}{r} 0.63 \\ 21.69 \end{array}$	19.09	51.49	29.42
1963-67	40-50	kg	$\begin{aligned} & 0.17 \\ & 7.58 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 9.40 \end{aligned}$	$\begin{array}{r} 0.21 \\ 15.93 \end{array}$	$\begin{array}{r} 0.64 \\ 41.54 \end{array}$	$\begin{array}{r} 0.84 \\ 49.48 \end{array}$	$\begin{array}{r} 1.06 \\ 62.81 \end{array}$	$\begin{array}{r} 0.33 \\ 33.20 \end{array}$	$\begin{aligned} & 0.06 \\ & 7.03 \end{aligned}$	$\begin{array}{r} 0.54 \\ 31.92 \end{array}$	13.97	$77 \cdot 37$	8.66

TABLE XXXIV
Relative catches of spawning perch in Loch Leven in paired cage-traps with entrance diameters 7.5 and 12.5 cm (data from Thorpe, unpublished)

Fish length (TL cm)	Trap entrance diameter (cm)	
	7.5	12.5
20.5	69.0	31.0
21.0	51.4	48.6
21.5	61.0	39.0
22.0	50.8	49.2
22.5	46.5	53.5
23.0	53.3	46.7
23.5	53.8	46.2
24.0	54.2	45.8
24.5	44.3	55.7
25.0	53.9	46.1
25.5	40.5	59.5
26.0	51.2	48.8
26.5	54.3	45.7
27.0	47.1	52.9
27.5	41.0	59.0
28.0	34.0	66.0
28.5	21.4	78.6
29.0	31.0	69.0
29.5	29.3	70.7
30.0	25.0	75.0

TABLE XXXV
Perch catches

1 Underestimate: Lake Erie (Canada) produced an average of 10405 MT in this interval (Colby pers. comm.)

TABLE XXXVI
Perch as a percentage by weight of the total catch of freshwater fish (from FAO 1974)

Area	1965	1966	1967	1968,	1969	1970	1971	1972	1973
North America Europe (inland)	16.6	17.1	18.3	18.7	19.0	15.1	10.9	11.9	10.7
Europe (Baltic)	14.6	15.2	17.2	14.4	14.0	14.8	7.6	7.7	8.4
Total	7.1	7.3	7.4	7.6	7.8	6.6	3.7	4.0	3.9

commented that if perch were protected they ate one another, the perch being its own worst enemy.

By contrast, Herman (1964) noted that perch populations benefit from heavy exploitation with improvements in growth noticeable in such stocks as those of Lake Mendota and Lake Geneva. Hartmann (1974) predicted that introduction of a close season in Lake Constance would not be beneficial as it might lead to an increase in size of older perch with increasing camibalism and an increase in the stocks of less valuable Cyprinids.

In South Green Bay, Lake Michigan, Hile (1953) recorded 150 percent increase in the retainable catch of perch after the size limit had been reduced from 8 in (20 cm) to $7 \frac{1}{2}$ in (19 cm) in 1952 without any change in the size composition of the population on the fishing grounds.

However, close seasons and size limits are in force in some areas as shown in Table XXXVII.

6.2 Control or alteration of physical features of environment

None used for the promotion of perch stocks.

6.3 Control or alteration of the chemical features of the environment

None used for the promotion of perch stocks.

6.4 Control or alteration of the biological features of the environment

Population manipulation: (See section 3.4.3.) Tesch (1955) recommended the removal of spawn as the most effective measure for promotion of good growth. This is achieved by setting branches as additional spawning substrates in the shallows and removing these subsequently together with
the attached egg-strands. In some small ponds, planted eels (Anguilla anguilla) consume perch eggs very efficiently; although as noted in section 3.2.1, the natural predators of perch spawn are very few.

Thinning out the population reduces competition for food among the remainder which can grow large enough to feed on their own fry, and thus further restrict the growth of the population. However, Schneider (1972) from a study of experimental populations concluded that the yield from a perch fishery is limited by the food supply available to the larger perch, and that few perch will reach a large size unless recruitment of autumn fry is restricted. He recommended management measures to reduce recruitment and to improve available food resources:

(a) Reduction of recruitment

As fry growth is density-dependent, culling of the fry populations should be carried out in the autumn so that restricted growth rate up to that point enables the older cannibal fish to make maximum use of these progeny as food. Then the cull should be severe, leaving only enough survivors to achieve the optimal biomass of large fish, that is the carrying capacity of the environment, at recruitment to the fishery. Using observed values of growth and mortality for perch in Cassidy and Jewett Lakes, Michigan, he determined such an optimal stock structure for these lakes as shown in Table XXXVIII.

(b) Improvement of food resources

Establishment of a planktivorous fish, to transform some of the primary production into a form acceptable to adult perch, would augment the food supply both directly and possibly indirectly since the planktivore might reduce recruitment of perch fry through competition. He tested such a system, using fathead minnows (Pimephales promelas) as

TABLE XXXVII
Clese seasons and size limits

Area	Close season	Minimum size	Authority
Belgium	1 Feb to Saturday before 2nd Sunday of Jun	Rivers north of Sambre and Meuse: 15 cm Rivers south of Sambre and Meuse: 18 cm	Huet (pers. comm.)
Bulgaria	Rivers only: 15 Apr to 31 May	$=$	Chervenkov (pers. comm.)
Czechoslovakia	$\begin{aligned} & \text { (Most waters): } 16 \text { Mar to } \\ & 15 \text { Jun } \end{aligned}$	-	Vostradovsky (pers. comm.)
Denmark	Rivers Gudeno and Randersfjord: 15 Apr to 31 May	Rivers Gudeno and Randersfjord: 19 cm	Dahl (pers. comm.)
France	(Effectively): 1 Feb to 15 Mar and 15 Apr to 15 Jun	(Recently: 14 cm)	Tuffery (pers. comm.)
German (D.R.)	-	15 cm	Tesch (pers. comm.)
Germany (F.R.)	-	15 cm (Bremen: 13 cm Saarland: 20 cm)	Tesch (pers. comm.)
Italy	Variously by regions: 15 Mar to 31 May	-	Bini 1962
Netherlands	16 Mar to 31 May	22 cm	Willemsen (pers. comm.)
Poland	15 Apr to 31 May	-	Leopold (pers. comm.)
Switzerland	-	15 cm	Muiller (pers. comm.)
U.S.A.	Lake Huron: 15 Apr to 10 May (1948-56) Commercial fisheries	-	El Zarka 1959
	Indiana, Lake Michigan: none Wisconsin, S. Green Bay: 9 Apr to 20 May	$\begin{aligned} & 20 \mathrm{~cm} \\ & 19 \mathrm{~cm} \end{aligned}$	Schneider (pers. comm.)
	Wisconsin, Lake Michigan: 9 Apr to 11 Jun Michigan, Saginaw Bay: none Michigan, Ohio, Ontario; Lake Erie: none	$\begin{gathered} 20 \mathrm{~cm} \\ 20 \mathrm{~cm}(22 \text { proposed }) \end{gathered}$	
	Sport fisheries: none	none	

TABLE XXXVIII

Structure of a hypothetical perch population from which the harvest of perch 18 cm would be optimal
(After Schneider 1972)

| Age | $\begin{array}{c}\text { Natural } \\ \text { Mortality }\end{array}$ | $\begin{array}{c}\text { Perch/ha } \\ \text { Number }\end{array}$ | | (kg) |
| :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Average

lengths

(cm)\end{array}\right]\)| 1 |
| :---: |
| 2 |

a The predicted perch population if fishing mortality is 0.5
planktivore, but the increased perch production was only marginal. Fry survival was reduced by 60 percent and their growth by 20 percent, and even though their vulnerability to predation by adults may have been extended, their numbers were still in excess of the optimum level at age 1 .

He concluded also that the yield to man could be doubled if sterilization measures could be developed, as at present, approximately half the annual production of adults went into gonadal tissue.

6.5 Artificial stocking

6.5.1 Maintenance stocking

In general, the stocking of perch is not practised widely in areas in which it is native. How ever, in France, large quantities have been brought from Eastern Europe for stocking in impoundments (Tuffery pers. comm.), and some similar stocking has been carried out in Germany ($\mathrm{F}_{\mathrm{i}} \mathrm{R}_{\mathrm{o}}$) in small angling ponds and newly constructed reservoirs and on a small scale in Holland. In Denmark, perch are occasionally stocked as $2-3$ year olds from wild populations into impoundments being developed as recreational fisheries. Winter-kill ponds may also be repopulated this way (Dahl pers. comm.). In Ireland (Fitzmaurice pers. comm.), Kiltullagh Lake was stocked with perch as food for pike.

It is possible that some perch stocking was practised in Finland before 1800, but none now (Sumari pers. comm。). Seeley (1886) quoted
introductions of perch into trout ponds in Germany as food for trout.

In England, many canals have been stocked repeatedly to maintain angling stocks although this seems largely unnecessary.

Elsewhere in Europe, perch stocking is actively discouraged.

In the U.S.A., hatchery programmes in Pennsylvania, Ohio, Vermont, Michigan, Maryland, Minnesote, Wisconsin, Iowa, and Illinois were oprm rated for many years earlier this century. Egge were collected from wild spawnings and incubated in screen-bottomed floating boxes to be stocked as eyedmeggs or'yolk-sac fry in suitable rivers and lakes (Muncy 1959, 1962). Leach (1928 a) quotes an output for 1927 of 12 million perch eggs, 194 million fry and 1.25 million fingerlings, and in addition, 222 million eggs were collected from. the wild. The perch were distributed to 15 states over an area from Virginia, Missouri, Montana and Vermont.

6.5.2 Transplantation, introduction

Within the U.S.S.R., perch have been transm planted into the Far East, into Lake Kenon, near Chita in the Amur basin (Berg 1965). Karpevich et al. $(1961,1963,1965,1972)$ reported no acclim matizations of perch within the U.S.S.R. between 1957 and 1972.

Within the U.S.A., numerous transplantations have taken place, increasing the distribution of perch into almost every state. Not all have been successful, but Scott and Grossman (1973) note flourishing colonies in California, Oregon, Washington, New Mexico, Utah and Texas. Curtis (1949) and Coots (1956) noted the introduction to California as taking place in 1891. Weatherley (1963 a) referred to introductions to several reservoirs in Georgia and to failures to acclimam tize the fish in southem Ohio, probably due to high summer temperatures.

The occurrence of perch in Italy is suggested as due to introductions (Weatherley 1963 a), but their status here is not clear.

Introductions of perch well outside their normal range have been made on several occasions. Eleven fish survived the journey from England to Tasmania in tanks in 1861 and were held in ponds until they reproduced. The fry were then distributed fairly widely and have become abundant in the Macquarie - S. Esk river system in the north; in the Jordan, Derwent and Coal rivers in the south; and in the slower reaches of the few rivers to which they were added in the northwest. They also Plourish in Leke Echo to which they were introduced about 50 years ago (Weatherley 1974).

Seven specinens were brought to Australia to Wictoria in 1968. Perch were suificiently well estam blished there by 1882 that the mayor of Belleret could give some to the New South Weles Zoologioal Boctety (Arenta 1966). However, these died in the heat on route, but successful introductions to Hew South Wales were made in the ensuing years and the fish now occurs throughout the Mumay River system up to filcannia on the Derling River and in tributaries of the Snowy River (Iake 1959). Recently, introductions have continued, and Arentz (1966) reported 1000 perch from Bellarat liberated into Lake George, New South Wales, resulting in regular catches of $30-4 \mathrm{Ib}(1.5 \mathrm{~m} 2 \mathrm{~kg})$ fish by 1966. However, the general experience has been that the netive species are extinguished and, with incream sing density, the mean weight of individual perch declines with each new generation. However, in some areas which have been changed by the consm truction of weirs and dems to the disedventage of native species, perch provide good fishing (Lake pers. comm.).

OrConnor (1886) reported the Liberation of 36 specimens in Gold Greek River, Queensland, Australia, but with no subsequent success. A second liberetion there was also unsuccessful (Weatheriey 1963 a).

In South Africa, fry were imported in 1896 with only one survivor which grew to a "large size" over the next eleven years (Anon. 1945). Several further attempts were nade to introduce perch over the next thirty years, but not until 1928 when a Pew fish were introduced to Paarde Vlei Leke, Somerset-West, was there much success. In 1930, largenouth bass (Micropterus selmoides Lacepede) were also introduced, and from then on, new year classes of perch appered. It is thought that perch egge had been eaten by the indigenous fish Sandelia capencis, but this latter hish became prey for the bass. The numbers or perch began to increase by 1933, and a 5 mb (2.2 kg) xish was caught in 1934. Between 1934 and 1944, 2 "fair numbert were caught by angling, but thein numbers vere less than those of largemouth bass. After the introduction of bluegills in 1940 , both perch and bass improved in condition. Since 1945, the perch has gradually disappeared and none have been reported from Paarde Vlei "for many years" (D.F. Smith pers. conm.). Other populations in the province are likely to have been eliminated by drought.

Hey (1947) and Jubb (1967) reported stocking of perch at Plorida Lake, Johamesburg and at a daw in Somerset Rast. The letter yielded 80 fish weighing $4-5$ In (1.8 m .2 kg) eech (R.E.Boltt pers. comm.).

Perch heve also been introduced tato Hew Zealand, and are now widespread in the riverm aysterns there (Allen and Cwninghen 1957).

7 POND MISE CULIURE

In Europe, perch ane not nomally reared artificially in ponds. In Netherlands, there is some such production of perch but as an incidental extra from fams producing other species. The seme applies in Belgium and France where some perch are produced incidentally in Cyprinid ponds. Recently in Czechoslovalkia, some experiments were carried out into the cultivation of perch, but these wexe discontinued due to difficulties with feeding (Vostradovsky pers. comm.).

In the U.S.A., Leach (1928 a) described the incubation of perch eggs in 3 number of hatcheries. These eggs-were obtained either from captive fish in tenks or floating boxes, or collected from vegetation as the rloods subsided $\begin{aligned} & \text { longside the }\end{aligned}$ Mississippi River. In the hatcheries, they were either incubated in jars like whitefish eggs (2 qt per jar) or in wire baskets suspended in streams. These baskets were oylindrical, 15 in (38 cm) in diameter and 20 in (50 cm) long made of fine mesh wirecloth, attached in groups to $10 \mathrm{~m} 12 \mathrm{ft}(3 \mathrm{~m} 3.7 \mathrm{~m})$ planks as floats and anchored in situations where they were clear of the bottom at a.ll times.

Mensueti (1964) described the Maryland incum bation method, very similax to thet given by Leach except that the containers were square wooden boxes with fine hardware cloth stretched across the bottom. The only husbandry was intemittent stirring and removal of dead eggs.

Triels are currentily under way to establish the feasibility of rearing perch intensively to marketable size in Wisconsin (Downs 1975). Since the demand for perch from the Great Lakes has begun to outstrip supply, the operation may become viable. So far, acceptable sized perch have been reared in 9 months. The recomended stocking rate in farm tanks, $6 \mathrm{ft}(1.82 \mathrm{~m})$ wide and $3 \mathrm{ft}(1 \mathrm{~m}$ or 0.90 m) deep was given as not more than $\frac{1}{2} \mathrm{lb}$ (2258) of adult fish to 2 gal (9 1) of water.

8 BIBLIOGRAPHY
Alabaster, J.S. and A.L. Downing, A field and laboratory investigation of the effect of heated effluents 1966 on fish. Fish.Invest.Minist.Agric.Fish.Food, G.B. (1), 6(4):1-42

Allen, K.R., The food and migrations of the perch in Windermere. J.Anim.Ecol., 4:264-73 1935
_, A note on the food of pike (Esox lucius L) in Windermere. J.AnimoEcol., 8:72-5 1939

Allen, K.R. and B.T. Cunningham, New Zealand and angling 1947-1952. Results of the diary scheme. 1957 Fish.Bull.N.Z.Mar.Dep., (12):1-153

Allison, A., Food of cormorant and goosander. In Loch Leven IBP Project Report 1971-72. Edinburgh, 1972 Nature Conservancy, p. 24 (mimeo)

Allison, A., I. Newton and C. Campbell, Loch Leven National Nature Reserve: a study of waterfowl 1974 biology. Chester, WAGBI 124 p.

Alm, G., Undersökningar rörande Hjälmarens naturfo̊rhallanden och fiskar. Medd.K.Lantbruksstyr., (204): 1917 1-112
, Bottenfaunan och fiskens biologi i Yxtasjön. Medd.K.Lantbruksstyr., (236):1-186
1922 1946 Reasons for the occurrence of stunted fish populations with

Yearmelass fluctuations and span of life of perch. Rep.Inst.Freshwat.Res., Drottning., 1952 (33):17-38

1953 -, Maturity, mortality, and growth of perch (Perca fluviatilis) grown in ponds. Rep.Inst. 1953 Freshwat.Res., Drottning., (35):11-20

Avkastningen av gädd - och abborrfisket vid Sveriges o̊stersjo̊kust aren 1914-1955. 1957 Rep.Inst.Freshwat.Res., Drottning., (38):5-69
, Connection between maturity, size and age in fishes. Rep.Inst.Freshwat.Res., Drottning., 1959 (40):5-145

Andreasson, S. and E. Stake, Fiskens vertikalfördelning och miljo̊förhallanden i en djup fororena sjo. 1970 Inf.Sottvattenslab., Drottning., 1970 (4):1-26

Apostolski, K., Rybolov vo naseki na Dojranskoto ezero (Fishing by means of naseki on Dojran Lake). 1958 Izdani ja, Skopje, 2(5):83-101

Arentz, A.F., Acclimatization history covers 100 years. Fisherman, Syaney, 2(5):8-10 1966

Backiel, T., Production and food consumption of predatory fish in the Vistula river. J. Fish. Biolo, $19713(3): 369-406$

Bailey, R.M. and O.M. Allum, Fishes of South Dakota. Misc.Publ.Mus.Zool.Univ.Mich., (119):131 p. 1962

Bailey, R.M. and W.A. Gosline, Variation and systematic significance of vertebral counts in the 1955 . American fishes of the family Percidae. Misc. Publ. Mus.Zool.Univ.Micho, (93):44 p.

Bailey, R.M. et al., A list of common and scientific names of fishes from the United States and Canada. 1970 Spec.Publ.Am.Fish.Soc.; (6):1-150

Baldwin, N.S. and R.W. Saalfeld, Commeroial fish production in the Great Lakes 1867-19609. Tech.Rep. 1962 Great Lakes Fish.Comm., (3):1-166

Ball, R.C., A summary of experiments in Michigan lakes on the elimination of fish populations with 1948 rotenone 1933-1942. Trans.Am.Fish.Soc., 75:139-46

Balon, E.K., Mezdidruhovå hybridizåcia dunajskỷch ryb. 1. Oplodenie ikier ostriez̈a dunajského spermion 1956 zubača obyčajnE̊ho (Perca fluviatilis infraspecies vulgaris (Schäffer 1759) Pokrovskij 1951 \times Lucioperca lucioperca (Linnaeus 1758)). Polnohospodárstvo, Bratisl., 3(5):581-92

1963 - Einige Fragen ưber das Vorkommen und Biomasse der Fische in Inundationsseen ind in 1963 Hauptstrom der Donau in der Zeit des niedrigen Wasserstandes. Zool.Anz., 171(11/12):416-23
[, Vplyv Zivotneho prostredia na rast ryb v Oravskom priehradnom jazere. Biol. Pr., Bratislo, 1967 13(1):122-74

Banarescu, P., Einige Fragen zur Herkunft und Verbreitun der Süsswasserfisch-fauna der europaischen1960 mediterranen Unterregion. Arch.Hydrobiol., 57(1/2):16-134 , Origin and affinities of the freshwater fish fauna of Europe. Ichthyologia, 5:1-8 1973

Bangham, R.V., Studies on fish parasites of Lake Furon and Manitoulin Island. Am.Midl.Nat., 53(1):184-94 1955

Bangham, R.V. and C.E. Venard, Parasites of fish of Algonquin Park Lakes. Univ.Toronto Stud.(Biol.Ser.), 1946 (53)

Bardach, J.E., Changes in the yellow perch population of Lake Mendota, Wisconsin, between 1916 and 1948. 1951 Ecology, 32(4):719-28

Bauch, G., Die einheimische Sỉisswasserfische. Berlin, Neudham Verlag, 197 p. 1963

Becknan, W.C., Annulus formation on the scales of certain Michigan game fishes. Pap.Mich.Acad.Sci. 1943 Arts Lett., 28:281-312
, Rate of growth and sex-ratio for seven Michigan fishes. Trans.Am.Fish.Soc., 76:63-7 1949
, Changes in growth rates of fishes following reduction in population density by winter 1950 kill. Trans.Am.Fish.Soc., 78:82-90

Birkett, L., The nitrogen balance in plaice, sole and perch. J.Exp. Biole, 50:375-86 1969

Belyaeva, K.I., Ozera Karelii. Ryby Karetozera Petrozavodsk, Gosizdat Karelsk ASSR 1959

Belyy, N., SOn the nutrition and growth of perch. The feeding and growth of variousmsized perch. 7 1937 Tr.Stn.Gidrobiol.Kiev, 15:25-37

Berg, L.S., Freshwater fishes of the USSR, and adjacent countries. Jerusalem, Israel Program of 1965 Scientific Translations, vol.3, IPST Catalogue No. 743

Berzins, B., On the biology of the Latvian perch (Perca fluviatilis L). Fydrobiologia, 2:64-71 1949

Bibor, V. and C. Leray, Métabolisme de $l^{\text {tiode et de la thyrozine chez Perca flavescens. J.Fish.Res. }}$ 1973 Board Can., 30:1395-8

Bini, G。, I pesci delle acque interne d'Italia. Roma, Garzanti, 95 p. 1962

Black, E.C., F.E.J. Fry and V.S. Black, The influence of carbon dioxide on the utilisation of oxygen 1954 by some freshwater fish. Can.J.Zool., 32:408-20

Boulet, P.C., La perception visuelle du mouvement chez la perche et la seiche. Me̊m. Mus.Nat. Hist. Paris 1958 (Zool.). 17:1-131

Bownan, E.W., Lake Erie bottom trawl explorations, 1962-1966. NOAA Tech.Rep.NMFS (Spec.Sci.Rep. Fish. 1974 Ser.), (674):1-26

Breder, C.M.,Jr. and D.E: Rosen, Modes of reproduction in fishes. New York, American Museum of Natural 1966 History Press, 941 p.

Brofeldt, P., Über die Nahrung des Barsches und Kaulbarsches im Winter. Z. Fisch., 21:124-50 1922

Brunelli, G. and L. Rizzo, Ghizndala esocrina, ovario impari ed ermafroditismo nella "Perca fluviatilis". 1928 Atti R.Accad. Naz.Lincei Cl.Sci.Fis.Mat. Nat. Rend., 7:865-7

Burmakin, E.V., Opyt primeneniya khimicheskogo metoda dlya unichtozheniya malotsennoi ryby v nebolshikh 1960 ozerakh. Nauchno-Tekh.Byull.Gos.Inst.Nauchno-Issled.Okeanogr.Khoza, 10

Bykovskaya-Pavlovskaya, I.E. et al., Key to parasites of freshwater fish of the USSR. Jerusalem, 1964 Israel Program Scientific Translations, IPST Catalogue No. 1136:919 p.

Campbell, A.D., The parasites of fish in Loch Leven. Proc.R.Soc.Edinb.(B), 74:347-64 1974

Cannon, L.R.G., The life cycles of Bunodera sacculata and B. luciopercae (Trematoda Allocreadiidae) in 1971 Algonquin Park, Ontario. Can.J.Zoole, 49:1417- $\overline{29}$
, Diet and intestinal helminths in a population of perch, Perca flavescens. J.Fish.Biol., $1973-5: 447-58$

Carlander, K.D., Handbook of freshwater fishery biology. Dubuque, Iowa, Wm.C. Brown Company, 281 p. 1950
_-, The standing crop of fish in lakes. J.Fish.Res.Board Can., 12:543-70
Carr, I.A., Distribution and seasonal movements of Saginaw Bay fishes. Spec.Sci.Rep.Fish.USFWS (Fish.) 1962 (417):1~13
C̈erny, K. and K. Pivnicka, Abundance and mortality of the perch fry (Perca fluviatilis, Linnaeus 1758) 1973 in the Kličava Reservoir. Vest.Cesk.Spol.Zool., 37(1):1-13

Chevey, P., Observation sur une perche hermaphrodite (Perca fluviatilis Linn). Bull.Soc.Zool.Fr., $192247(3 / 4)$

Chikhova, V.M., Local populations of perch (Perca fluviatilis L) in Kuybyshev Reservoir. J.Ichthyol., 1973 13(4):491-6

Chimits, P., Note sur l'acclimation de Gambusia Holbrooki dans les étangs des Landes. Bull. Frr. Piscic., 1947 147:79m82

Chirkova, Z.N., 0 raspredelenii i roste segoletkov okunya v Rybinskom vodokhranilishche. Tr. Biol.Stn. 1955 "Borok", 2:191-9

Christie, W.J., A review of the changes in the fish species composition of Lake Ontario. Tech.Rep. 1973 Great Lakes Fish.Comm., 23:1-65 1974-31:827-54

Clady, M. and B. Hutchinson, Effect of high winds on eggs of yellow perch Perca flavescens in Oneida 1975 Lake, New York. Trans.Am.Fish.Soc., 104(3):524-5

Clemens, H.P., The food of the burbot Lota lota maculosa (Le Sueur) in Lake Erie. Trans.Am.Fish.Soc., 1951 80:56-66

```
Clemens, W.A., J.R. Dymond and N.K. Bigelow, Food studies of Lake Nipigon fishes. Publ.Ont.Fish.Res.
    1924 Lab., 25:103
Coble, D.W., Dependence of total annual growth in yellow perch on temperature. J.Fish.Res.Board Can.,
    1966 23:15-20
Collette, B.B., The subfamilies, tribes, and genera of the Percidae (Teleostei). Copeia, 1963 (4):
    1963 615-23
Collette, B.B. and P. Banarescu, Systematics and zoogeography of the fish family Percidae.
    1977 J.Fish.Res.Board Can.s 34
Coots, M., The yellow perch, Perca flavescens (Mitchill), in the Klamath river. Calif.Fish Game, 42:
    1956 219-28
Craig, J.F., Population dynamics of perch Perca fluviatilis L. in Slapton Ley, Devon. 1. Freshwat.
        1974 Biol., 4:417-31
            , Population dynamics of perch Perca fluviatilis L. in Slapton Ley, Devon. 2. Freshwat.Biol.,
        1974a 4:433-44
    Crossman, E.J., A colour mutant of the yellow perch from Lake Erie. Can.FieldmNat., 76:224-5
        1 9 6 2
Curtis, B., The warm water game fishes of California. Calif.Fish Game, 15:255-73
        1 9 4 9
Day, F., The fishes of Great Britain and Ireland, London, Williams and Norgate, vol. 1:366 p.
    1880
        1886`
        , On the hybridisation of Salmonidae at Howietoun. Rep.Br.Assoc.Adv.Sci., 55:1059-63
    Dechtiar, A.O. and K.H. Loftus, Two new hosts for Cyathocephalus truncatus (Pallas 1781)(Cestoda,
        1965 Cyathocephalidae) in Lake Furon. Can.J.Zool., 43:407-8
    Deelder, C.L., A contribution to the knowledge of the stunted growth of perch (Perca fluviatilis L)
        1951 in Holland. Hydrobiologia, 3:357-78
    Denker, A., Über das Hörvermögen der Fische. Acta Oto-laryngol., 15:247-60
        1931
    Deufel, J., Barschsterben im Bodensee. Allg.Fischereiztg., 86(16)
        1961
    Deutsch, H.F. and W.H. McShan, Biophysical studies of blood plasma proteins. 12. Electrophoretic
        1949 studies of the blood serum proteins of some lower animals. J.Biol.Cheme, 180:219-34
    Dianov, P.A., Okun ozera Zaysan. Dissertation: Inst.Zool.ANKazSSR
        1 9 5 5
Dogiel, V.A., G.K. Petrushevski and Y.I. Polyanski, Parasitology of fishes. Edinburgh, Oliver and
        1961 Boyd, 384 p.
Downs, W., Wisconsin: the dairy state takes a look at fish farming. Raising perch for the Midwest
        1975 market. Commer.Fish Farmer, 1(5):27
Driver, E.A. and E.T. Garside, Meristic numbers of yellow perch in saline lakes in Manitoba. J.Fish.
        1966 Res.Board Can., 23:1815-17
Dryagin, P.A., Promysloviye ryby Ob-Irtyshskogo basseina. Izv.Vses.Nauchno-Issled.Inst.Ozern.Rechn.
        1948 Rybn.Khoz., 25(2):3-104
        1 9 4 9
        , Polovye tsikly i nerest ryb. Izv.Vses.Nauchnomissled.Inst.Ozern.Rechn.Rybn.Khoz., 28*
```

Dryagin，P．A．and R．Kh．Muratova，Nablyudeniya nad rammozheniem nekotorykh ryb voime r Volgi okole 1948 g Cheboksar v 1940 i 1941 gg．Tr．Tat．Otd．Vses．Nouchnomssled．Inst．Ozern。Rechn。Rybn。Khoz．， 3
Dymond，J．R．，The fishes of Lake Nipigon．Univ．Toronto Stud．（Biol．ser．），（27）：108 p． 1926
$-\frac{-}{1932}$
，Blue perch．Copeia， 1932 （4）：182

Fcho，J．B．，Some ecological relationships between yellow perch and trout in Thompson Lake，Montana． 1955 Trans．Am．Fish．Soc．，84：239－48

Eddy，S ．and T．Surber，Northem fishes，with special reference to the Upper Mississippi Valley． 1960 Newton Center Mass．，Chas．里．Branford Co．， 276 p．

Ehrenbaum，E．，Eier und Larven von Fischen des nordischen Planktons．In Nordisches Plankton， 1905－09 Zoologischer Teil I．Kiel und Leipzig，Verlag Lipsīus und Tischler， 216 p．

Ekman，S．，Djurvårldens utbredningshistoria po skandinavska halvo̊n．Stockholm 1922

Blliott，A．M．and L．K．Russert，Some condition characteristics of a yellow perch population heavily 1949 parasitised by Clinostomum marginatum．J．Parasitol．，35：183－90

El－Zarka，S．el－D．，Fluctuations in the population of yellow perch Perca flavescens（Mitchill）in 1959 Saginaw Bay，Lake Furon．Fish．Bull．USFWW，59：365－413

Treshchenko，V．I．，K biologii promyslovykh ryb ozer Severnogo Kazakhstana．S．Rab．Tkhtiol．Gidrobiol． 1959 Inst．Zool．Akad．Nauk Kaz．SSR，2：208－33

Eriksson，Im0．，Diel and seasonal activity rhythms and vertical movements in the perch，Perca 1974 fluviatilis L ，at the Arctic Circle．University of Umea，（MS．）

Eschmeyer，P．Ho，The lifemistory of the walleye Stizostedion vitreum vitreum（Mitchill）in Michigano 1950 Bull．Inst．Fish．Res．Mich．Dep．Conserv．（3）：99 p．

Eschmeyer，R．W．，Some characteristics of a population of stunted perch．Pap．Mich．Acad．Scio，22：613－28 1937 1938

Evtyokhova－Rekstin，Bok．，Plodovitost Perca fluviatilis L，okunya pribrezhnosorovoi sistemy Baikala． 1962 Vopr．Ikhtiol．， $2(4): 648=63$

Faber，D．J．，Limnetic larval fish in northern Wisconsin Lakes．J．Fish．Res．Board Can．，24：927－37 1967

Fabricius，E．，Hur abborren leker．Zool．Revy，18：48－55 1956

Fabricius，E．and K．J．Gustafson，Ge̊ddans och abborrens lekbeteende．Svensk Fiskeritidskr．，1959（1m－2）： 1959 6－13

FAO，Yearbook of fishery statistics：catches and landings，1973．Yearb，Fish。Stat．FAO，（36）：pag．Var． 1974

Ferguson，R．G．，The preferred temperature of fish and their midsummer distribution in temperate lakes 1958 and streams．J．Fish。Res．Board Cen。，15：607－24

Filatov，D．P．and S．N．Duplakov，Materiaiy k izucheniya ryb Arelskogo morye．Byull．Sredneaziatsk． 1926 Gos．Univ．，Tashkent， 14

Forney；J．L．，Factors affecting growth and maturity in a walleye population．N．Yo Fish Game J．，12： $1965 \quad 217-32$

```
Forney; J.L., Development as dominant yearclasses in e yellow perch population. Trans.Am.Fish, Soc.,
    1971 100:739-49
    , Interactions between Jellow perch abundance, walleye predation, and survival of 3lternate
    1974 prey in Oneida Lake. Trens.Am.Fish.Soc., 103:15-24
Fortunatova, K.Roq Pitanie Scorpaena porcus (K metodike kolichestvennogo izucheniya dinamiki pitamiya
        1940 khishchnylkh morskikh ryb). Dokl.Aka,.Nauk SSSR, 29(3)
        , Metodika izucheniya pitaniya khishchnykh ryb. In Rukovodstvo po izucheniya pitaniya ryb
        1961 v estestvennykh usloviyakh. Moskya, Izdmvo ANSSSR
Froloff, J.P., Bedingte Reflexe bei Fischen. 1. Pflưgers ArchoGes.Physiol。, 208:261m71
    1925
Frost，W．E．，The food of pike，Esox Iucius L，in Windermere．JoAnimoEcol．，23：3390060 1954
Fry：F．E．J．，Aquatic respiration of fish．In The physiology of fishes，edited by M．E．Brown．London， 1957 Academic Press，vol．1：10－63
Galbraith，M．Go，Jrs，Size－selective predation on Daphnia by rainbow trout and yellow perch．Irans．Am． 1967 Fish．Soc．，96：1－10
Gaschott，O．，Die Stachelflosser（Acanthoptexygii）．Handb．Binnefisch。，Mitteleur．，3A（2）：53m100 1928
Gee，J．H．，K．Machniak and S．M．Chalanchuk，Adjustment of buoyency and excess internal pressure of 1974 swimbladder gases in some North American freshwater fishes．J．Fish．Res．Board Can．，31： 1139－41
Ghittino，P．，Les maladies des poissons en Italie Bull．Off。Int。Epizoote，59（1／2）：59－87 1963
Gimmy，J．，Der Móbiussche Hechtversuch．Diplomarbeit der Mathematischnaturwissenschaftlichen 1951 Fakult発t der Humboldt Universite̊t zu Berlin
Glue，D．E．，Perch and roach as prey of tawny owl．Br．Birds，62：237 1969
Grimaldi，E．，Mortalit今 preriproduttiva nel pesce persico（Perca fluviatilis）di prima maturazione 1967 del Lqgo Maggiore e sua influenza sulla struttura di popolazione della specie．Mem．Ist． Ital．Idrobiol．Dott．Merio Marchi Verbenia，Pallanza，22：105－16
Grimaldi，Jo and G．Leduco，The growth of the yellow perch in various Quebec waters．Nat．Can．， 1973 100（2）：165m76
Grimm，0．，Fischerei und Jagd in den Mussischen Gewassern．Arch，Natuurgesch．， 58 1892
Gripp，K．and M．Beyle，Das Interglazial von Billstedt（Öjendorf）．Mitt．Geol．Staatsinst．Hamburg，16： \(1937 \quad 19 \mathrm{~m} 36\)
Guildford，H．G．，New Species of Myxosporidia found in percid fishes from Green Bay（Lake Michigan）． 1963 J．Parasitol： \(49(3): 474=8\)
Haakh，T．，Studien ůber Alter and Wachstum der Bodensee Fische Arch．Hydrobiol．，20：214－95 1929
Hall，D．J．，Predatormprey relationships between yellow perch and Daphnia in a large temperate lake 1971 Trans．Am。FishoSoc．，90：106m7
Halme，E．and S．Hurme，Tutkimuksia Helsingin rannikkoalueen kalavesista，kaloista ja kalastusoloista。 1952 Helsingin Kaupungin Julko：3：1－157
```

Harden--Jones, F.R., Fish migration. London, Axnold, 325 po 1968

Hardtl, H., The toxicity to fish of the watermsoluble constituents of different tar products with 1934 special reference to road tars and impregnated substances. Z.Fisch., $32: 459$

Hurrington, R.W., Jro, Observations on the breeding habits of the yellow perch Perca flevescens (Mitchill). 1947 Copeia, 1947 (3):199-200

Hert, J.S., Geographic variations of some physiologicel and morphological characters in certain freshm 1952 water fish. Publ.Ont.Fish.Res.Lab., (72):1-79

Hartley, P.H.T., The natural history of some British freshwater fishes. Proc.Zool.Soc.Londe, 117: 1947 129-206

Hartman, W.L., Lake Erie; effects of exploitation, environment changes and new specjes, on the fishery 1972 resources. J.Fish.Res.Board Can., 29:899-912

Hartmann, J., Der Barsch (Perca fluviatilis) im sutrophierten Bodensee. (MS.) Langenargen, Staatl. 1974 Inst.f. Seenforschung, 27 p.

Hesler, A.D., Observations on the winter perch population of Lake Mendota. Ecology, 26:90-4 1945

Hasler, A.D. and J.E. Bardach, Daily migrations of perch in Lake Mendota, Wisconsin. J.Wildl.Manage., 1949 13(1):40-51

Hasler, A.D. and J.R. Villemonte, Observations on the daily movements of fishes. Science, Wash., 1953 118:321

Hasler, A.D. and W.J. Wisby, Perch and lake research on Mendota. Wisc. Conserv. Bull., 23(3)1-5 1958

Healy, A., Perch (Perca fluviatilis L) in three Irish Lakes. Soi.Proc.R.Dublin Soc., 26:397-410 1954

Herking, H., Die Fischwanderungen zwischen Stettiner Haff und der Ostsee. Zo. Fischo, 22 1923

Hergenrader, G.L., Spawning behaviour of Perca flavescens in aquaria. Copeia, 1969:839m41 1969

Hergenrader, G.L. and A.D. Hasler, Diel activity and vertical distribution ofyellow perch (Perca 1966 flavescens) under the ice. JoFish.Res. Board Cano, 23:499-509
_ 1967 Seasonal changes in swimming rates of yellow perch in Lake Mendota as measured by Sonar. 1967 Trans.Am.Fish.Soc., 96:373-82 1968 Cano, $25: 711-6$

Herman, E. et al., The yellow perch, its lifemistory, ecology and management. PubloWisc.Conserry. 1964 Dep., (228):1-14

Herter, K., Dressurversuche an Fischen. Z.Veral. Physiolo, 10:688-711 1929 1948

Hey, Do, The culture of freshwater fish in South Arrica. Cape Town, 124 p. 1947

Heyerdahl, E.G. and L.L. Smith, Jx., Annual cetch of yellow perch from Red Lakes, Minnesota, in relam 1971 tion to growth rate and fishing effort. RechoElil.UnivominnoAgric.ErDoStno, (285):51 po

Heyerdahl, E.G. and L.L. Smith, Jr., Fishery resources for Lake of the Woods, Minnesota. Tech. Bull. 1972 Univ.Minn.Agric.Exp.Stn., (288):145 p.

Hildebrand, S.F. and W.C. Schroeder, Fishes of Chesapeake Bay. Bull.U.S.Bur.Fish., 43:1-366 1928

Hile, R., Perch studies in Green Bay. Prog.Fish Cult., 15(3):133-4 1953

Hile, R. and F.W. Jobes, Age, growth and production of the yellow perch, Perca flavescens (Mitchill) 1941 of Saginaw Bay. Trans.Am.Fish.Soc., 70:102-22 , Age and growth of the yellow perch in the Wisconsin waters of Green Bay and Northern 1942 Lake Michigan. Pap.Mich.Acad.Sci.Arts Lett., 27:241-66

Hile, R. and C. Juday, Bathymetric distribution of fish in lakes of the north eastern highlands, 1941 Wisconsin. Trans.Wisc.Acad.Arts Sci.Lett., 33:147-87

Mnegardner, R.T., Evolution of cellular DNA content in teleost fishes. Am.Nat., 102:517-23 1968

Hinegardner, R.I. and D.E. Rosen, Cellular DNA content and the evolution of teleostean fishes. 1972 Am.Nat., 106:621-44

Hoffman, G.L., Parasites of North American freshwater fishes. Berkeley, University of Califormia Press, 1967486 p.

Högman, W.J., The relative efficiency of nylon gillnets after transition from cotton nets in a multi1973 specios fishew Trans.Am. Fish Soc., 102(4):778-85

Hokansen, K.E.F. and C.F. Kleiner, Effects of constant and rising temperature on survival and development 1975 rates of embryonic and larval yellow perch, Perca flavescens (Mitchill). In The early life history of fish edited by J.H.S. Blaxter. Berlin, Springer-Verlag, p. 437-48

Holiik, J., Vyvoj a formovanie ichtyofauny v Oravskej priehrade. Biol.Pr., Bratisl., 12(1):5-75 1966
., Annulus formation on the scales of six fish species from the Kliせava valley reservoir. 1967 Vestn.Cesk.Spol.Zool., 31(2):159-61
, Life history of the pike - Esox lucius (Linnaeus 1758) in the Kličava reservoir Vestn.
1968 Cert. Col.7001., $32(2): 166-80$
1969 Pr. Tab. Ryb. 2:269-305 of perch - Perca fluviatilis Linnaeus 1758 in the Klitava reservoir. 1969 Pr.Lab.Ryb., 2:269-305 1970
, Klicava Reservoir - an ichthyological study. Biol.Pr., Bratisl., 15(3):5-94

Hol Kik, J. and K. Hensel, A new species of Gymnocephalus (Pisces: Percidae) from the Danube, with 1974 remarks on the genus. Copeia, 1974(2):471-86

Holtik, J. and K. Pivnicka, On the use of mark-recapture methods for fish population estimation in 1975 large reservoirs and lakes. EIFAC Tech.Pap., (23) Suppl.1:656-71

Horoszewicz, L., Lethal and "disturbing" temperatures in some fish species from lakes with normal and 1973 artificially elevated temperature. J.Fish.Biol., 5:165-81

Houde, E.D., Food of pelagic young of the walleye, Stizostedion vitreum vitreum, in Oneida Lake, 1967 New York. Trans.Am.Fish.Soc., 96:17-24
_1969 Distribution of larval walleyes and yellow perch in a bay of Oneida Lake and its relation 1969 to water currents and zooplankton. N.Y.Fish Game J., 16:184-205

Hubbs, C., Survival of intergroup percid hybrids. Jap.J.Ichthyol., 18(2):65-75 1971

Huet, M., Biologie profils en long et en travers des eaux courantes. Bull. Fr. Piscic., (175):41-53 1954

Huitfeldt..Kaas, H., Hoorfor udvandre fiskene fra Stensjovandet. Norsk Fiskeritid., 28 1909

1916
, Mjo̊sens fisker och fiskerier. K.Norske Vidensk.Selsk.Skr.
\qquad , Studier over Aldersforholde og Veksttyper hos Norske Ferskvann fisker. Oslo

Hutchinson, B., Yellow perch egg and prolarvae mortality. Cornell University, Progress report for 1974 Job $I=e, F-17-R-17$

Ilina, I.K., Povedenie segoletkov okunya, Perca fluviatilis L, raznykh ekologicheskikh grupp v potomstve 1973 odnoi pary proizvoditelei. Vopr.Ikhtiole, 13(2):350-61

Ivanova, L.D., Biologìcheskie osobennosti plotvy kak komponenta ozernoi ikhtiofauny. Vopr.Ikhtiol., 1953 1:82-93

Ivanova, M.N., Nekotorye dannye o pitanii okunya v razlichnykh zonakh delty Volgi. Vopr.Ikhtiol., 1956 7:96-106 , Nutritive rations and food coefficients of predatory fishes in Rybinsk reservoir. Transl. 1969 by R.M. Howland. Transl.U.S.Bur.Sport Fish.Wildl., (72-12448):27 p.

Ivlev, V.S., Iksperimentalnaya ekologiya pitaniya ryb. Moscow, Pishchepromizdat, 252 p. 1955

Iyudina, E.F., K biologii molody okunya Onezhskogo ozera. Tr.Karelo.Finskog.Vses.Nauchno-Issled.Inst. 1951 Ozern.Rechn.Rybn.Okeanogr.Khoz., 3:169.-80

Jensen, K.W., Population estimates of perch (Perca fluviatilis L) by marking-recapture and by rotenone 1975 poisoning. EIFAC Tech.Pap., (23) Suppl. 1:600-2

Jezierska, B., The effect of various type of food on the growth and chemical composition of the body 1974 . of perch (Perca fluviatilis L.) in laboratory conditions. Pol.Arch.Hydrobiol. (2), 21(3/4): 467-79

Jobes, F.W., Preliminary report on the age and growth of the yellow perch (Perca flavescens Mitchill) 1933 from Lake Erie, as determined from a study of its scales. Pap.Mich.Acad.Sci.Arts Lett., 17:643-52 , Age, growth, and production of yellow perch in Lake Erie. Fish.Bull.USFWS, 52:205-66 1952

Jones, J.R.E., Fish and river pollution. London, Butterworths, 203 p. 1964

Jubb, R.A., Freshwater fishes of Southern Africa. Cape Town, Balkema, 248 p. 1967

Kammerer, P., Bastardierung von Flussbarsch (Perca fluviatilis L) und Kaulbarsch (Acerina cernua L). 1907 Arch. Entwicklungsmech.Org., 23:511-51

Karaman, S., Pisces Macedoniae. Split, 90 p. 1924

Karpevich, A.F. and E.N. Bokova, Peresadka ryb i vodnykh bezpozvonochnykh v 1957-1959 gg. Vopr. 1961 Ikhtiol., 1(3):552-63
, Peresadka ryb i vodnykh bezpozvonochnykh provedennaia v SSSR za 1960 i 1961 gg. Vopr. 1963 Ikhtiol., 3(2):366m95

Karpevich，A．Fo and DoE．Lokshina，Peresadka ryb i vodnykh bezpozvonochnyki v 1962 g．VoproIkhtiolo， $1965 \quad 5(1): 178$－ 97
 1972 Ichthyol．， $12(2): 325-41$

Keast，A．，Feeding of some Great Lakes Eishes at low temperatures．J．Fish．Res．Board Can． $25: 1199 \mathrm{~m} 218$ 1968

Keast，A．and L．Welsh，Deily feeding periodicities，food uptake rates，and dietary changes with hour 1968 of day in some lake fishes．Jofish，Res，Board Cano，25：1133m－44

Kelso，J．R．M．，Movement or yellow perch（Perce flavescens）and white suckers（Catastomus comersoni） 1976 in a nearshore Great Lekes habitat subject to a thermel discharge．J．Fish．Res．Board Can．， $33: 42-53$

Kennedy，CoRos A checklist of British and Irish freshwater fish parasites with notes on their distribu－ 1974 tion ，J．Eish．Biol．，6：613m44

Kennedy，W．A．，Relationship of length and weight and sexual maturity to age in three species of Lake 1949 Manitobe fich．Bull．Biol。Board Caxing（81）：1m5

Kennedy，W．A．：The detemnination of optimum size of mesh for gillnets in Lake Manitoba．Trans．Am．Fish． 1950 Soo．，79：167－79

Kettner，I．D．，Versuche zum Parbensehen der Fische．Dissertation der Mathematischnaturwissenschaftlichen 1948 Fakultåt der Fumboldt Universiteit；Berlin

Keup，L。 and J．Beyless，Pish distribution at vamying salinities in Neuse River Basin，North Carolina． 1964 Chesapeake Sci．， $5(3): 119-23$

Klemetsen，A．，Pelagic，plankton－eating perch．Astarte，6（1）：27－33 1973

Kokurewicz，B．，The influence of temperatuxe on the embryonic development of the perches：Perca 1969 Iluviatilis L_{0} and Lucioperca lucioperca（ L_{0} ），Zool．Polo，19（1）：47m66

Konovalova，L．E．，Osobennosti biologii ra，mnnozheniye okunya，Tr．Biol．Stn．Borok， $2: 266-77$ 1955

Konstantinov，K．G．，Smavitelnyi analiz morfologii i biologii okunya，sudaka，i bersha na raznykh 1957 etapakh rezvitiya，Tr．Inst．Morsol．Zhivotno，16：181－236

Kosswig，C．，Die Zooseographie der，turkischen Stisswasserfische Publ．Hydrobiolokes．Inst。Fac．Sci．Univo 1952 IstanbuL，（B），1（2）：85 101

Kothbeuer，He and H．Schenkel－Brunner，Hemagglutinine aus weiblichen Fischgonaden．Zur Prage ihrer 1974 biologischen Funktion－Hemmversuche mit mannlichen Gonaden．Z．Immunitatsforsch．Exp．Klin． Immunol．， $147(1): 87-90$

Kozicka，J．，Parasites of fishes of Druzno Lake。 Acta，ParasitoloPol．，7：1－72 1969

Kozikowska，S．，Une analyse des poissons dans trois lacs prês de Mikolajki（Mazury）．VerhoInt．Ver． 1966 Theor．Angew．Limnol． $16: 1088=94$

Krasikova，V．A．，Olua Perce fluviatilis L．r．Eniseye．（Promyslovombiologicheskii ocherk）．Vopr． 1958 Ikhtiol．，10：99m－110

Kreitmann，Lo，La vitesse de nage des poissons，Buly．Fr．Piscico，53：145－50，54：186m9 1932

Krizenecky，J．ard A．Krizeneckampulankova，K otezce mistu，urcoveni stål a pomeru ponlavi u okouna 1953 （ P ．Iluviatilis L）．Vestn。Kralovske Ceske Spol。Nauk，1953：1m－26

Kryzhanovskii, S.G., Sistema semeistva karpovykh ryb (Cyprinidae). Zool.Zh., 26:53-64 1947
工 Zakonomernosti razvitiya gibridov ryb razlichnykh sistematicheskikh kategorii. Moscow, 1968 Nauka, 220 p.

Kryzhanovskii, S.G., N.N. Disler and E.N. Smirnova, Ekologomorfologicheskie zakonomernosti razvitiya 1953 okunyevidnykh ryb (Percoidei). Tr.Inst.Morfol.Zhivotn。, 10:3-138

Kukko, O. and E.A. Lind, Ahvenen kutuaikaisista liikkumisalueista. Kalamies, 1972 (6):7-8 1972

Kukko, O., E.A. Lind and P. Hytinkoski, Lampiahventen kutuaika. Kalamies, 1972 (8):1-3 1972

Kuperman, B.I., Infection of young perch by the tapeworm Triaenophorus nodulosus. Verh.Int.Ver. Theor. 1973 Angew. Limnol., 18:1697-704

Lagler, K.F., J.E. Bardach and R.R. Miller, Ichthyology. Ann Arbor, University of Michigan Press, 545 p. 1962

Lake, J.S., The freshwater fishes of New South Wales. Fish.Res.Bull.N.S.W.State, (5):1-19 1959
, Rearing experiments with five species of Australian freshwater fishes. 1. Inducement to 1967 spawning. Aust.J.Mar. Freshwat.Res., 18:137-53

Lambert, L., Ontario's Lake Erie commercial fishery: a social and economic profile. Toronto, Ontario, 1950 Ministry of Natural Resources, 38 p.

Lane, T. H. and H.M. Jackson, Voidance time for 23 species of fish. Invest. Fish Control U.S.Bur. Sport 1969 Fish.Wildl., 33:1-9

Lange, W., Untersuchungen über den Hämoglobingehalt, die Zahl und die Grösse der roten Blutkörperchen. 1919 Zool. Jahrb. (Allg.Zool. Physiol.Tiere), 36

Laskar, K., Beitrag zur Kennthis der Entwicklungsgeschichte des Flussbarsches (Perca fluviatilis L). 1943 Zool.Anz., 143:277-82
, Wechstum und Ernährung des Barsches (Perca fluviatilis L) in ostholsteinischen Seen. 1945 Arch.Hydrobiol., 40:1009-26

Lassleben, P., Betrachtungen טober Barsch, kleines Schwebfelchen, und Forellen des Bodensees. Schweiz. 1953 Fisch. Ztg, 61:284-6

Lawler, G.H., Age, growth, production and infection with Triaenophorus nodulosus of the yellow perch 1953 Perca flavescens (Mitchill) of Manitoba. Manuscr.Rep.Fish.Res.Board Can., (521):1-19
, The biology and taxonomy of burbot, Lota lota, in Heming Lake, Manitoba. J.Fish.Rec. 1963 Board Can., 20:417-33 , The food of pike, Esox lucius, in Heming Lake, Manitoba. J. Fish. Res. Board Cam., 22: 1965 1357-77

Pugheadedness in perch (Perca flavescens) and pike (Esox lucius) of Heming Lake, Maniloba. 1966 J. Fish.Res. Board Can., $23: 1807-9$

Aspects of the biology of Triaenophorus nodulosus in yellow perch, Perca flavescens, in 1969 Heming Lake, Manitoba. Jo.FishoRes.Board Can., 26:821-31
Lea.ch, G.C., Artificial propagation of pike-perch, yellow perch, and pikes. Rep.U.S.Comm. Fisho, 1928 1927:1-27
, Propagation and distribution of food fishes, fiscal year 1927. Rep.U.S.Comm.Fish., 1928a 1927:683-736

Lebedev, V.D., Neogenovaya fauna presnovoduykh ryb Zaisansko vpadiny i Zapadno-mibirsko nizmennosti. 1959 Vopr.Ikhtiolo, 12:28-69

Le Cren, E. Do, The lengthoweight relationship and seasonal cycle in gonad weight and condition in the 1951 perch (Perca fluviatilis). J.Anim.Ecol., 20:201-19
, Year to year variation in the yearmclass strength of Perca fluviatilis. Verh.Int.Ver. 1955 Theor.Angew.Limnole, 12:187-92
, Observations on the growth of perch (Perca fluviatilis L) over twenty-two years with 1958 special reference to the effects of temperature and changes in population density. J.Anim. Ecol., 27:287-334

Letichevskii, M.A., K voprosu o plodovitosti ryb yuga Aralskogo morya. Zool.Zh., 25(4):351-6 1946

Lieder, U., UOber vermutliche Gonosomen bei Perca, Acerina, und Anguilla (Vertebrata, Pisces). Biol. 1963 Zentralbl. $82: 297$--302

Lien, L. ${ }^{2}$ Studies of the helminth fauna of Norway. 14. Triaenophorus nodulosus (Pallas 1960) (Cestoda) 1970 in Bogstad Lake. 2. Development and lifespan of the plerocercoids in perch (Perca fluviatilis L). Nytt Mag.Zool., 18:85-96

Lind, .E.A., Ahvenpopulaation rakenteesta (Uber die Struktur in den Populationen des Barsches, Perca 1968 fluviatilis Lo). Eripainos Suomen Kalastuslehti n:o 7, 187-90

Lind, E.A., Fish production in some Finnish lakes determined on the basis of catch stectistics and food 1974 coefficients. Kalottialueen Rauhanpäivät 5-7.7.74. Rovaniemi, 8 p.

Lind, E.A. and J. Turunen, Kalapopulaatioista ja niiden tutkimisesta merkintämenetelmällä. Luonnon 1971 Tutk., 75:29-35

Lind, E.A., P. Hytinkoski and O. Kukko, Ahvenen kyvystä oppia karttamaan katiskaa. Kalamies, 1971 1971 (6):5-6

Lind, E.A., O. Kukko and P. Hytinkoski, Ahvenen merkintäkokeista. Erämies 26(1):21-6 1971a

Lind, E.A. et al., Vastakuorintuneiden kalanpoikasten istutuksista. Eripainos Liitto, 65(28):5 1971

Lindroth, A., Time of activity of freshwater fish spermatazoa in relation to temperature. Zool. Bidr. 1947 Upsala, 25:165-8

Lohnisky, K., Prispevek k poznani potravy okouna ricniho (Perca fluviatilis (Linnaeus) 1758). (Beitrag 1960 zur kenntnis der Nahrung des Barsches (Perca fluviatilis) (Linnaeus) 1758). Acta Soc. 2001. Bohem., 24(2):139-61
-, Rust okouna ricniho (Perca fluviatilis Linnaeus 1758) ve slapske udolni prehrade (Das 1960a Wachstum des Flussbarsches (Perca fluviatilis Linnaeus 1758) in der Slapy-Talsperre。 Cas. Nar.Mus.(Prirod), 129(2):174-81
, Bemerkungen zum Wachstum des Flussbarsches Perca fluviatilis (Linneaus 1758) (Poznamky 1960 b k růstu okouna ricniho Perca fluviatilis (Linnaeus 1758). Acta Univ.Carol., (Biol.), 1960 (3):241-71

Lohnisky，K．，Potrava a rtist okouna ricniho Perca fluviatilis（Linnaeus，1758）v prvnich deseti letech 1967 existence vodarenske nadree kli莒ava（Nahrung und Wachstum des Flussbarsches，Perca fluviatilis （Linnaeus，1758）in den ersten zehn Jahren des Bestandes des Trinkwasserstausees Klicava）． Sb．Cesk．Akad．Zemed．Ved．（Ziv．Vyx．），12（40）：223－42

Lutz，P．L．，Ionic and body compartment responses to increasing salinity in the perch Perca 1972 fluviatilis．Comp．Biochem．Physiol．，42A：711－7

MacCrimmon，H．R．and O．E．Devitt，Winter studies on the burbot，Lota lota lacustris，Lake Simcoe， 1954 Ontario．Can．Fish Cult．，16：34－41

Mackenthun，K．M．and E．F．Herman，A preliminary creel census of perch fishermen on Lake Mendota， 1949 Wisconsin．Trens．Wisc．Acad．Sci。Arts Lett．，39：141－50

Mackenthun，K．M．，E．F．Herman and A．F．Bartsch，A heavy mortality of fishes resulting from the decompo－ 1948 sition of algae in the Yahara river，Wisconsin．Trans．Am．Fish．Soc．，75：175－80

Mansueti，A．J．，Early development of the yellow perch Perca flavescens．Chesapeake Sci．，5（1－2）：46－66 1964

Mansueti，R．J．，Comparison of the movements of stocked and resident yellow perch，Perca flavescens， 1960 in tributaries of Chesapeake Bay，Maryland．Chesapeake Sci。，1：21－35

Manteifel，B．P．et al．，Sutochnye ritmy pitaniya i dvigatelnoi aktivnosti nekotorykh presnovodnykh 1965 khishchnykh ryb．In Pitanie khishchnykh ryb，edited by B．P．Manteifel．Moscow，Nauka， pp．3－81

Marcuson，P．E．and N．R．Howse，Environmental correlates of seasonal abundance and movement of fish in 1968 Round Lake，Idaho．Univ．Idaho For．Wild．．Range Exp．Stn．Pap．，49－12

Markevich，A．P．，Epizootic of Triaenophorosis in Lake KandrymKul．Tr．Bashkirsk．Nauchno－Issled．Vet．Stn．， 1943 4：111－7

Marking，L．L．，Salicylanilide I，an effective non－persistent candidate piscicide．Trans．An．Fish．Soc．， 1972 101：526－33

Martin，W．R．，The mechanics of environmental control of body form in fishes．Univ．Toronto Stud．（Biol． 1949 Sen．），（58）：91 p．

Mast，H．，Einiges über Eizahlen bei Fischen．Allg．Fischereiztg．，41：255－260 1916
\qquad ，Eizahlen bei Hecht，Barsch，und Bachsaibling．Allg．Fischereiztg．，44：194
1919
Matteson，M．P．，Life history of Elliptio complanatus（Dillwyn 1817）．Am．Midl．Nat．，40：690－723 1948

Matthey，R．，Rapport sur les maladies des poissons en Suisse．Bull．Off．Int．Epizoot．，59：121－6 1963

McCormack，J．C．，Observations on the perch population of Ullswater．J．Anim．Ecole，34：463－78 1965

McKenzie，R．A．，Marine and freshwater fishes of the Miramichi River and estuary，New Brunswick．J．Fish． 1959 Res．Board Can．，16：807－33

McPhail，J．D．and C．C．Lindsey，Freshwater fishes of northwestern Canada and Alaska．Bull．Fish．Res． 1970 Board Can．，（173）：381 p．
－Meadows，B．S．，Observations on the return of fishes to a polluted tributary of the River Thames， 1970 1964－9．Lond．Nat．，49：76＝81

Toxicity of rotenone to some species of coarse fish and invertebrates．J．Fish．Biol．， 1973 5：155－63

Menshutkin，V．V．and L．A．Zhakov，Opyt matematicheskogo opredeleniya kharaktera dinamiki chislennosti 1964 okunya v zadannykh ekologicheskikh usloviyakh．In Ozera karelskogo Peresheika．Moscow－ Leningrad，Nauka，pp．140－55

Menshutkin，V．V．，L．A．Zhakov and A．A．Umnov，Issledovanie prichin smertnosti molodi okunya metodom 1968 modelirovaniya．Vopr．Ikhtiole，8（5）：881－91

Metcalfe，A．L．，Fishes of the Kansas river system in relation to zoogeggraphy of the Great Plains． 1966 Univ．Kansas PubloMus．Nat．Hist．，17：23－189

Mikheev，P．V．，Biologicheskie osobennosti razmnozheniya fitofilnykh ryb na plovuchikh nerestilishchakh 1953 V oblasti svobodnoi vody．Tr．Vses．Nauchnomssled．Inst．Prudov．Rybn．Khoz．, 6：121－92

Mikheev，P．V．and E．V．Meisner，Rezvitie rybnogo naseleniya vodokhranilishch vo vtoroi god sushchestvom 1954 vaniya，Volgo－donskogo kanala imeni VI Lenina．Tr，Vses．Nauchno－Issied．Inst．Prudov．Rybn，Khoz．， 7：187－91

Mobius，K．，Die Bewegung der Thiere und ihr psychischer Horizont．Schr．Naturwiss。Ver．Schleswig－Holstein， 1875 1：113－30

Molnar，K．，G．Hanek and C．H．Fernando，Parasites of fishes from Laurel Creek，Ontario．J．Fish．Biol．， 1974 6：717－28

Moravec，Fo，Studies on the development of Raphidascaris acus（Bloch 1779）（Nematoda：Heterocheilidae）． 1970 Vestn．Cesk．Spol．Zool．，34：33－49

Morawa，F．W．F．，Die regionale Verteilung des Fettes bei verschiedenen Sỉsswasserfischarten．Z．Fisch．， 1956 5（1／2）：115－32

Morgan，R．I．G．，The energy requirements of trout and perch populations in Loch Leven，Kinross．Proc． 1974 R．Soc．Edinb。（B），74：333－45

Moyle，J．Bı，J．H．Kuehn and C．R．Burrows，Fish population and catch data from Minnesota lakes．Trans． 1948 Am．Fish．Soc．e，78：163－75

Mraz，Do，Movements of yellow perch marked in southern Green Bay，Lake Michigan．Trans．Am．Fish．Soc．， 1952 81：150－61

Můller，H．，Ertragssteigerung durch Kleinmar：̈nenbesatz．Dtsch．Fischereiztg．，8（2）：37－42 1961

Muncy，R．J．，Evaluation of the yellow perch hatchery program in Maryland．Resour．Study Rep．Md．Dep．Res． 1959 Educ．15（1）：1－13
，Life history of the yellow perch，Perca flavescens，in estuarine waters of Severn River， 1962 a tributary of Chesapeake，Bay，Maryland。 Chesapeake Sci。，3（3）：143－59

Natochin，Y．V．and E．A．Lavrova，The influence of water salinity and stage of life history on ion 1974 concentration of fish blood serum．J．Pish．Biol．，6：545－55

Neill，W．H．and J．J．Magnuson，Distributional ecology and behavioural thermoregulation of fishes in 1974 relation to heated effluent from a power plant at Lake Monona，Wisconsin．Trans．Am．Fish．Soc．， 103：663－710

Neresheimer，E．，Zum Kapitel＂Fischschwåme＂．Schweiz．Fischereiztg。， 8 1951

Neuman，E．，Temperaturens inverkan pa abborrens（Perca fluviatilis L）tillväxt och arsklass－storek in 1974 nagra östersjöskårgardar．Inf．So̊ttavattenslab．，Drottning．o，1974（6）：40 p．

Temperaturen och balansen mellan limniska och marina fiskar i nagra östersjöskårgardar． 1974a．Inf．Söttvattenslab。，Drottningo， 1974 （14）：40 p．

Newsome，G．E．and G．Leduc，Seasonal changes of fat content in the yellow perch（Perca flavescens）of 1975 two Laurentian lakes．J．Fish．Res．Board Can．，32：2214－21

Newton，E．T．，Note relative a des fragments fossiles de petits vertêbrês trouvês dans les dêpôts pliocênes 1908 de Tegelen sunmeuse．Bull．Soc．Belg．Géol．，21：591－6

Ney, J.J. et al., First-year growth of the yellow perch, Perca flavescens, in the Red Lakes, Minnesota. 1975 Trans.Am.Fish.Soc., 104(4):718-25

Nikitinsky, V.Y., Dvukhletnie nablyudeniya nad ikrometaniem nekotorykh ozernykh ryb. Russ.Gidrobiol.Zh., 1928 7(5-7):152-6

Nikkilä, O.E. and R.R. Linko, Papermelectrophoretic analysis of protein extracted at low ionic st,re:1 \boldsymbol{t}, 1955 from fish skeletal muscle. Biochem.J., 60(2):242-7

Nikolskii, G.V., O nekotorykh zakonomernostyakh dinamiki plodovitosti ryb. In Ocherki po obshchimvopram, 1953 ikhtiologii.Moskva Izd-vo AN SSSR
Nikolyukin, N.I., ひ̈ber Kreuzungsversuche an Knochenfischen. Zool.Anz., 112:305-18 1935

-1958 , Otdalennaya gibridizatsiya ryb. Priroda, Mosk., 2:31-8

Noble, R.L., Parasites of yellow perch in Oneida Lake, New York. N.Y.Fish Game J., 17(2):95-101 1970

```
        , A method of direct estimation of total food consumption with application to young yellow
        1972 perch. Prog.Fish.Cult., 34:191-4
            , Mortality rates of walleye fry in a bay of Oneida Lake, New York. Trans.Am.Fish.Soc.,
        1972a 101:720-3
            , Evacuation rates of young yellow perch, Perca flavescens (Mitchill). Trans.Am. Físh. Fim:
        1973 102:759-63
            , Growth of young yellow perch (Perca flavescens) in relation to zooplankton populations.
        1975 Trans.Am.Fish.Soc., 104(4):731-41
Nordstrom, P.R., J.E. Bailey and J.R. Heaton, A bacterial disease of yellow perch (Perca flavescens).
        1960 Trans.Am.Fish.Soc., 89:310-2
Nuimann, W., Untersuchungen über die Biologie einiger Bodenseefische in der Uferregion und den
        1939 Randgebieten des freien Sees. Z.Fisch., 37:637-88
Nygren, A. et al., Cytological studies in perch (Perca fluviatilis L), pike (Esox lucius L) pikemperch
        1968 (Lucioperca lucioperca L), and ruff (Acerina cernua L). Hereditas, 59: \(\overline{518} \mathbf{- 2 4}\)
Nyman, L., Inter- and intraspecific variations of proteins in fishes. A.K.Vetenskapasamh.Uppsala Arsb.,
        1965 9:1-18
                        , Species specific proteins in freshwater fishes and their suitability for a protein
        1965a taxonomy. Hereditas, 53:117-26
\(0^{\prime}\) Connor, D., On fish acclimatization in Queensland. Proc.R.Soc.Queensld., 3:139-40
        1886
Ohlmer, W. and J. Schwartzkopff, Schwimmgeschwindigkeiten von Fischen aus stenhenden Binnengewassorll.
        1959 Naturwissenchaften, 46(10):362-3
Ohno, S. and N.B. Atkins, Comparative DNA values and chromosome complements of eight species of fishos.
        1966 Chromosoma, Berl., 18:455=66
Ojala, 0., Fish diseases in Finland. Bull.Off.Int.Epizoot., 59:31-42
        1963
Parker, J.B., Some observations on the reproductive system of the yellow perch (Perca flavescens).
        1942 Copeia, 1942 (4):223-6
```

Parker, R.A., Effects of thinning on a population of fishes. Ecology, 39:304-17 1958

Parsons, J.W., Selective food preferences of walleyes of the 1959 yearmclass in Lake Erie. Trans.Am. 1971 Fish.Soc., 100:474-85

Pearse, A.S., The chemical composition of certain freshwater fishes. Ecology, 6:7-16 1925

Petit, G.D., Effects of dissolved oxygen on survival and behaviour of selected fishes of Western Lake 1973 Erie. Bull.Ohio Biol.Surve, 4(4):1-76

Petrosky, B.R. and J.J. Magnuson, Behavioural responses of northern pike, yellow perch, and bluegill, 1973 to oxygen concentrations under simulated winterkill conditions. Copeia, 1973 (1):124-33

Petrovski, No.No, Nastapuvanye na polova zrelost i plodnost na Dojranskata Perkija. Izd.Zavod Ribar. 1960 N.R.Makedonija, 3(1):1-31

Pihu, E.R., Ahvena (Perca fluviatilis L) bioloogiast Vortsjarves, Loodusuur Seltsi Aastar, 56:133-46 1964

Pipping, M., Der Geruchssinn der Fische mit besonderer Berücksichtigung seiner Bedeutung fïr das 1926 Aufsuchen des Futters. Commun.Biol.Soc.Sci.Fennica (2), 4:1-28

Pokrovskii, V.V., Materialy po issledovaniyu v nutrividovoi izmenchivosti okunya (Perca fluviatilis L). 1951 Tr.KärelomFinskog.Vses.Nauchnomissled.Inst.Ozern.Rechn.Rybn.Okeanogr.Khoz., 3:95-149

Pokrovskii, V.V. and P.I. Novikov, Osnovnye biologicheskie osobennosti promyslovykh ryb ozer Karelii. 1959 In Ozera Karelii (Spravochnik) Petrozavodsk, Gosizdat KASSR

Popova, O.A., Ekologiya shchuki i okunya v delte Volgi. In Pitanie khishchnykh ryb, edited by 1965 B.P. Manteifel. Moscow, Nauka, pp. 91-172

Post, A., Vergleichende Untersuchungen der Chromosomenzahlen bei Süsswasser - Teleosteen. Z.Zool.Syst. 1965 Evo., 3:47-93

Privolnev, T.I., Reaktsiya ryb na svet. Vopr.Ikhtiol., 6:3-20 1956
, Reaction of freshwater, anadromous, and catadromous fish to varying water salinity. In 1970 Fish physiology in acclimatisation and breeding, edited by T.I. Privolnev. Program for Scientific Translations, Jerusalem, Israel, pp. 57-84

Pycha, R.L. and L.L. Smith, Jr., Early life history of the yellow perch, Perca flavescens (Mitchill) 1955 in the Red Lakes, Minnesota. Trans.Am. Fish.Soc., 84:249m60

Regier, H.A., V.C. Applegate and R.A. Ryder, The ecology and management of the walleye in western 1969 Lake Erie. Tech.Rep.Great Lakes Fish.Comm., (15):1-101

Reichenbach-Klinke, H.H., Untersuchungen ůber die bei Fischen durch Parasiten hervorgerufenen Zysten 1956 und deren Wirküng auf den Wirtsko̊rper. Z.Fisch., 4:1m52

Repa, P., Ånderungen in der Zahl der Kiemenstäbchen am I. Kiemenbogen beim Flussbarsch (Perca 1973 fluviatilis L) im Verlaufe seines Lebens. Vestn.Cesk.Spol.Zool., 37:296-306
1973a \quad (Perca Ånderungen der Form und der relativen Grösse einige Schädelknochen beim Flussbarsch
(Plis Linnaeus 1758) im Verlaufe seines Lebens. Vestn。Cesk.Spol.Zool., 34: 307-20

Rizvi, S.S.H., Parasite fauna of fish of Rostherne Mere, Cheshire. Ph. D. Thesis, Liverpool University 1964

Robson, D.S. and H.A. Regier, Estimation of population number and mortality rates. IBP Handb. (3):124-58 1968

Rogowski, U. and F.W. Tesch, Erste Nahrung fressfähig gewordener Fischbrut. Z. Fisch., 9:735-47 1960

Romanova, G.P. Pitanie sudaka Rybinskogo vodokhranilishcha, Tr.Biol.Stn. Borok, 2:306-26 1955

Röpper, K.C., Ernährung und Wachstum des Barsches (Perca fluviatilis) in Gewässern Mecklenburgs und der 1936 Mark Brandenburg. Z.Fisch., 34:567-638

Rudenko, G.P., Opyt opredeleniya chislennosti ryb, ikhtiomassy i ryboproductsii plotvichnomokunevogo 1967 ozera. Izv,Gos.Nauchno-Issled.Ozern.Rybn.Khoz., 64:19-38 , Vliyanie vozrastnoi struktury stada na velichinu ryboproductsii i vylova. Izv.Gos.Nauchno1969 Issled.Ozern. Rybn.Khoz., 65:67-70

Salyer, J.C., II and K.F. Lagler, The eastern belted kingfisher, Megaceryle alcyon alcyon (Linnaeus), 1949 in relation to fish management. Trans.Am.Fish.Soc., 76:97-117

Schäferna, K., Karpfen und Barsch mit abnorm verlängerten Flossen. Z. Fisch., 32 1934

Schiemenz, P., Einige wichti e Punkte der Seenbewirtschaftigun. Dtsch. Fischereiztg., 32:563-4; 585-6 1909
, Der Einfluss der Lebensbedingungen auf die Wachtumserscheinungen unserer Siosswasserfische. 1919 Mitt. Fischereiver. Prov. Brandenburg, (1)

Schindier, O., Unsere Süsswasserfische. Stuttgart, Franckh, 234 p. 1955

Schlicher, L., Vergleichend-physiologische Untersuchungen der Blutkörperzahlen bei Knochenfischen. 1926 Zool.Jahrb.(Allg.Zool.Physiol.Tiere), 43 (2)

Schneberger, \mathbb{E}_{0}, Growth of the yellow perch in Nebish, Silver and Weber Lakes, Vilas County, Wisconsin. 1935 Trans.Wisc.Acad.Arts Lett., 29:103-30

Schneider, G., Farbenvariationen des Flussbarsches (Perca fluviatilis L.). Koespbl.Naturfisch.Ver.Riga, 1908 51:41-6
, Zur Biologie der Ostbaltischen Perciden. Verh.Int.Ver. Theor.Angew.Limnol., 1922:58-74 1923

Schneider, J.C. \quad Characteristics of a population of warm-water fish in a southern Michigan Lake, 19641971 1969. Res.Dev.Rep.Mich.Dep.Nat.Resour., (236):158 p.
, Dynamics of Yellow Perch in single-species lakes. Res.Dev.Rep.Mich.Dep. Nat.Resour., 1972 (184):47 p.

1973	The fish population of Cassidy Lake, Washentaw County. Fi (1792):15 p.
1973a	, Density dependent growth and mortality of yellow perch in ponds. Fish.Res.Rep.Mich.Dep. Nat.Resour., (1795):18 p.
1973b	, Influence of diet and temperature on food consumption and growth by yellow perch, with supplemental observations on the bluegill. Fish.Res.Rep.Mich.Dep. Nat.Resour., (1802):25 p.
Schwartz, 1972	F.L., World literature to fish hybrids with an analysis by family, species and hybrid. Publ. Gulf Coast Res.Lab.Mus., 3:1-38
Scidmore, 1958	W.J. and Z. Sheftel, Relative efficiency and selectivity of experimental nets of linen and nylon. Fish.Ser.Minn.Fish Game Invest., 1(46):53
$\begin{array}{r} \text { Scolari } \\ 1955 \end{array}$., Ricerche sulla. frequenza della plerocercosi da Diphyllobothrium latum nei pesci dei laghi d.ell:Italia Settentrionale sulla incidenza della infestione nelle diverse specie ittiche recettive. Clin. Vet., Milano, 78:210-4

Scott，D．C．，Activity pattems of perch，Perca flavescens，in Rondeau Bay of Lake Erie．Ecology， 1955 36（2）：320－7

Scott，W．B．，Freshwater fishes of Eastern Canada．Toronto，University Press， 128 p． 1954

Scott，W．B．and E．J．Crossman，Freshwater fishes of Canada．Bull．Fish．Res．Board Can。，（184）：966 p． 1973

Sebentsov，B．M．，D．I．Bisk and $\mathbb{H} . V$ ．Meisner，Rezhim i ryby Ivankovskogo vodokhranilishcha v yervye goda， 1940 ego sushchestvovaniya．Tr．Voronezh．Otd．Vses．Nauchno－Issled．Inst．Prudov Rybn．Khoz．，3（2）

Seeley，H．G．，Freshwater fishes of Europe．London，Cassell， 444 p． 1886

Segestrale，C．，Oiber scalimetrische Methdplen zur Bestimmung des，linearen Wachstums bei Fischen， 1933 insbesondere bei Leuciscus idus L．，Abramis brama L．，und Perca fluviatilis Le Acta．Zool． Fenn．：15：167 p．
，Gaddan och abborren i sydfinle̊ndska Kustvatten．In Skargardsboken．Helsingers， 1948 Nordenskio̊ld，pp．401～－41

Sergeev，R．S．，I．E．Permitin and A．A．Yastrebkov， 0 plodovitosti ryb Rybinskogo vodokhranilishcha． 1955 Tr．Biol．Stn。Borok，2：278－300

Serov，N．F．，Ikhtiofauna KamyshmSamarskikh i Kushumskikh ozer．Sb．Rab．Ikhtiol．Gidrobiol．Inst．Zool。 1959 Alma－Ata，2：152－75

Shafi，M．and P．S．Maitland，The age and growth of perch（Perca fluviatilis L．）in two Scottish lochs． 1971 J．Fish．Biolo，3：39－57

Shentyakova，L．F．Nekotorye osobennosti rosta okunya．Tr．Inst．Biol．Vodokhe，1（4）：298－308 1959

Sheri，A．N．and G．Power，Fecundity of the yellow perch，Perca flavescens，Mitchill，in the Bay of 1969 Quinte，Lake Ontario．Can．J．Zool．，47：55－8

Shilenkova，A．K．，Materialy po sistematike i biologii okunya ozer Irgizturgaiskoi sistemy．Sb．Rab． 1959 Gidriobiol．Alma－Ata，2：176－90

Siefert，R．E．，First food of larval yellow perch，white sucker，bluegill，emerald shiner and rainbow 1972 smelt．Trans．Am。Fish．Soc．，101：219－25

Siegrund，R．and D．L．Wolff，Iaboruntersuchungen und Freiwasserbeobachtungen zur Schwimmaktivität 1973 einheimisckıer Siusswasserfische．Fisch．Forsch．，11：107－16

Smirnova，L．I．， 0 sezonnykh izmeneniyakh krovi ryb Rybinskogo vodokranilishcha，Vopr．Ikhtiol．，2：677－86 1962

Smith，C．L．，Pleistocene fishes of the Berends fauna of Beaver County，Oklahoma，Copeia，1954（4）：282m9 1954

Smith，G．P．，A late Illinoian fish fauna from southwestern Kansas and its climatic significance． 1963 Copeia， 1963 （2）：278－85

Smith，M．W．，The fish population of Lake Jesse，Nova Scotia．Proc．Nova Scotian Inst．Scie，19（4）：389m427 1939

Smith，LoLo，Jr．end RoL。Pycha，First year growth of the walleye，Stizostedion vitreum vitreum（Mitchill） 1960 and associated factors in the Red Lakes，Minnesota。 Limnol．Oceanogr．，5：281－90

Smith， $\mathrm{O}_{\mathrm{H}} \mathrm{H}_{0}$ and J．Van Dosten，Tagging experiments with lake trout，whitefish，and other species of fish 1939 from Lake Michigan．Trens．Am．Fish．Soc．，69：63－84

Smitt，FoA．，A history of Scandinavian fishes．Vol．I．Stockholm 1893

Smolian, K., Merkbuch der Binnenfischerei. 2 Vols. Berlin. 1920

Smyly, W.J.P., Observations on the food of the fry of perch (Perca fluviatilis L.) in Windermere. 1952 Proc.Zool.Soc.Lond., 122:407-16

Solomon, D.J. and A.E. Brafield, The energetics of feeding, metabolism and growth of perch (Perca 1972 fluviatilis Lo). JoAnimeEcol., 41:699-719

Spillman, C.J., Poissons d'eau douce. Faune Fro, (65):303 p. 1961

Staff, F., Ryby slodkowodne Polski i krajow osciennych. Warsaw, Trzaska, Evert i Michalski 1950

Stehlik, J., The fecundity of perch, Perca fluviatilis (Linnaeus 1758), in the Klicava water reservoir. 1968 Vestn.Cesk.Spol.Zool., 33(1):88 $=95$

Steinberg, Ro, Monofilament gillnets in freshwater experiment and practice. Modern fishing gear of the 1964 world, edited by Fishing News International and Fishing News. London, Fishing News (Books) Ltd., vol. 2:111m-5

Steinmann, P., Schweizerische Fischkunde. Aarau, 222 p. 1948
[._ Monographie der Schweizerischen Coregonen. Schweiz.Z.Hydrobiol., 12(1-2):107-89; 340-491 , Fischschwärme und was sie bedeuten körnnen. Schweiz.Fischereiztg., 6 1951

Stone, U.B., A study of the deepwater cisco fishery of Lake Ontario with particular reference to the 1944 bloater, Leucichthys hoyi (Gill). Trans.Am.Fish.Soc., 74:230-49

Strazhnik, L.V. and O.N. Davydov, Sravitelnaya kharakteristika soderzhaniya tiamina v tkanyakh nekotorykh 1971 leutochnykh chervei ryb. Gidrobiol.Zh., 75(5):81-4

Subklew, H.J., Der Greifswalder Bodden, fischereibiologisch und fischereiwirtschaftlich betrachtet. Z. 1955 Fisch., 4:545~88

Sumari, 0., Linjsukellusmenetelmästå kalapopulatioiden ruusauden arvioimisessa. Luonnon Tutk., 1963 67:40-7
1971 Structure of the perch populations of some ponds in Finland. Ann.Zool.Fenn., 8:406-21 1971

Suskiewicz, T., Okon (Perca fluviatilis L.) w zbiorniku Goczalkowickim. Acta Hydrobiol., 3:241-59 1961

Svetovidov, A.N. and E.A. Dorofeeva, Sistematicheskiye otnosheniya, proiskhozhdeniye i istoriya rasseleniya 1963 EvropeiskomAziatskykh i Severoamerikanskykh okuneyi i sudakov (rody Perca, Lucioperca i Stizostedion). Vopr.Ikhtiol., 3(4):625-51

Svetovidova, A.A., Nekotorye biologicheskie dannye o rybakh severnoi chasti Rybinskogo vodokhranilishcha. 1960 Tr.Darvinsk.Gos.Zapov., 6:29m62

Svob, T. et ai., Das Ro̊ntgenbild des Verdauungstraktes der Wirbeltiere und das Fischskeletts. Stuttgart, 1974 Gustav Fischer Verlag, 87 p.

Swift, D. R., Effect of temperature on mortality and rate of development of the eggs of the pike (Esox 1965 lucius L.) and the perch (Perca fluviatilis L.). Nature, Lond., 206:528

Swift, D.R. and GoE. Pickford, Seasonal variations in the hormone content of the pituitary gland of the 1965 perch Perca fluviatilis L. Gen.Comp.Endocrinolo, 5:354m65

Sychevskaya, E.K. and E.V. Devyatkin, Pervye nakhodki ryb iz neogenovykh i nizhnechetvertichnykh 1962 otlozhenii Gornogo Altaya. Dokl.AN SSSR, 142(1)

Syrovatskaya, N.I., Materialy po plodovitosti ryb r. Dnepra. Tr.Gos.Ikhtiol.Opytn.Stn., 3(1) 1927

Tarby, M.J., Characteristics of yellow perch cannibalism in Oneida Lake and the relation to first year 1974 survival. Trans.Am. Fish.Soc., 103:462-71

Tedla, S. and C.H. Fermando, Observations on the biology of Ergasilus spp. (Cyclopoidea: Copepoda) 1969 infesting North American freshwater fishes. Can.J.Zool., 47(3):4.05-8

Observations on the glochidia of Lampsilis radiata (Gmelin) infesting yellow perch Perca 1969 flavescens (Mitchill) in the Bay of Quinte, Lake Ontario. Can.J.Zool., 47(4):705-12

Tenhunen, A. and E.A. Lind, Tagesaktivität des Barsches, Perca fluviatilis L., in Naturpopulationen 1973 nahe des Polarkreises. (Selostus: Ahvenen, Perca fluviatilis L., vuorokausiaktiivisuudesta låhellä napapiiriå). Ichthyol.Fenn. Borealis, 1973 (2):31-54

Teodorescu, R., Die Entwicklung der Larven des Flussbarsches (Perca fluviatilis L) im Vergleicine mit 1943 derjenigen des Zanders (Iucioperca sandra C.). An.Inst.Cercet.Piscic. Buchar., 2:305-35

Tesch, F.W., Das Wachstum des Barsches (Perca fluviatilis L) in verschiedenen Gewässern. Z.Fisch., 1955 4:321-420 1965

Thorpe, J.E., Trout and perch populations at Loch Leven, Kinross. Proc.R.Soc.Edinb. (B), 74:295-313 1974 1977 Scotland. J.Fish.Biol., 11 , Morphology, physiology, ecology and behaviour of Perca fluviatilis L and Perca flavescens 1977a Mitchill. J.Fish.Res.BoaxdCan。, 34

Triplett, No, The educability of the perch. Am.J.Psychol., 12:354-60 1901

Tsai, C.-F. and G.R. Gibson, Fecundity of the yellow perch, Perca flavescens Mitchill, in the Patuxent 1971 river, Maryland. Chesapeake Sci., 12(4):270-4

Tunbridge, B. R., Trout and Redfin research at Cairn, Curran Reservoir. Freshwat. Fish.News Vict., 1972 Australia, (1):13-5

Turner, C.L., The seasonal cycle in the spermary of the perch. J.Morphol., 32:681-705 1919 1927

Tyurin, P.V., Materialy k poznaniyu biologii okunya (Perca fluviatilis L) ozera Chany. Dokl.AN SSSR, 1935 1:186-9

Vallin, S., Sjön Ymsen. Medd.K.Lantbruksst, 277(6):3-44 1929

Vashkyavichyute, A.F., Pitaniye i pishcheviye vzaimootnosheniya molodi leshcha, plotvy i okunya v 1963 zalive Kursiu Mariose na pervom godu zhizni. Leituvos TSR Mokshu Akad.Darbai Ser(CI), (3):99-115

Vasilev, L.I., Nekotorye osobennosti formirovaniya promislovoi ikhtiofauny rybinskogo vodokhvanilishcha 1955 za period 1941-1952 gg 158. Tr. Biol.Stn。Borok, 2:142-52

Veldre, I., 0 sezonnykh izmeneniyakh svoistv krasnoi krovi plotvy i okunya. Vopr.Ikhtiol., 12 1959

Vibert, R. and K.F. Lagler, Pêches continentales. Paris, Dunod, 720 p. 1961

Virolyainen, M.P., Ryby y rybnyi promysel sev. chasti Ladozhskogo ozera. Leningrad Pishrhepromizdat. 1940 VNIORKh

Vivier, P., Lévolution depuis le début du siècle du peuplement piscicole du Lêman feranģats. Schweri.... 1975 Hydrobiol., 37:193-377

Vladykov, V.D., Poissons de la Russie sousmcarpathique (Tchécoslovaquie). Mem.Soc.Zool.Fr., 29:217-374 1931

Vostradovsky, J., K biologii a rustu kapra obecneho, okouna ričniho a jelce proudnika v nove udolni 1961 nadrzi Lipno. Sb.Cesk.Akad.Zemed.VEd.(Ziv.Vyr.), 6(4):287-94 , K bionomii okouna riE̊niho (Perca fluviatilis L) v udolni nadrzi Mseno. Sb. Severoceskehu 1962 Mus.(Prir.Vedy), 2:159-73

Wajdowicz, Z., Zbiornik Goczalkowicki jako obiekt gospodarki rybackiej. 2. Formow anie sie stada rill w 1959 poczatkowom okresie istnienia zbiornnka. Biul.Zakl.Biol.Wod.PAN, 1959:67-86
___, Zbiornik Goczalkowicki jako obiekt gospodarki rybackicj. 3. Dalsze formuwanle sie stada 1961 ryb. Acta Hydrobiol., 3(4):225-39

Ward, F.J. and G.G.C. Robinson, A review of research on the limnology of West Blue Lako, Mant ha. 1974 J.Fish.Res.Board Can., 31:977-1005

Warmer, K., Utilization of fish as spring food by white perch and yellow perch in Maine lales. Pron. 1974 Fish-Cult., 36(2):96=8

Weatherley, A.H., Thermal stress and interrenal tissue in the perch Perca fluviatilis (Linnaeus). Pror. 1963 Zool.Soc.Lond., 141:527-55
, Zoogeography of Perca fluviatilis (Linnaeus) and Perca flavescens (Mitchill) with apeoial 1963 reference to the effects of high temperature. Proc.Zool.Soc.Lond., 141:557-76
, (ed.), Australian inland waters and their fauna. Canberra, Australian National Univeraity 1967 Press, 287 p.
, Introduced freshwater fish. Chapter 6. In Biogeography and ecology in Tasmania, edited 1974 by W.D. Williams. The Hague, W. Junk

Weatherley, A.H. and J.S. Lake, Introduced fish species in Australian inland waters. In Aus raltal, 1967 inland waters and their fauna, edited by A.H. Weatherley. Canberra, ANU Press

Weiler, W., Die Fischreste aus dem Oberpliocän von Willershausen. Arch.Hydrobiol., 25:291-304 . 1933
Weinfurter, E., Die oberpannonische Fischfauna vom Eichkogel bei Mo̊dling. Sitzungsber. Östcrr. Al:ul. 1950 Wiss. (Math. Naturwiss.Kl.), 159

Wikgren, B.J., Nuotan merkitys "kvantitatiivisena" pyyntivålineena. Süomen Kalastuslehti, /11:191-: 1964

Wong, B. and F.J. Ward, Size selection of Daphnia pulicaria by yellow perch (Perca flavescens) fry in 1972 West Blue Lake, Manitoba. J.Fish.Res.Board Cano, $29(12): 1761=4$

Wootten; R., Occurrence of Bunodera luciopercae (Digenea, Allocreadiidae) in fish from Hanningfield 1973 reservoir Essex. J.Helminthol., 47:399-408

FHSHERIES SYNOPSES

This series of documents, issued by FAO, CSIRO, INP and NMFS, contains comprehensive reviews of present knowledge on species and stocks of aquatic organisms of present or potential economic interest. The Fishery Resources and Environment Division of FAO is responsible for the overall coordination of the series. The primary purpose of this series is to make existing information readily available to fishery scientists according to a standard pattern, and by so doing also to draw attention to gaps in knowledge. It is hoped that synopses in this series will be useful to other scientists initiating investigations of the species concerned or of related ones, as a means of exchange of knowledge among those already working on the species, and as the basis for comparative study of fisheries resources. The will be brought up to date from time to time as further information becomes available.

The documents of this Series are issued under the following titles:

		Symbol
FAO	Fisheries Synopsis No.	FIR/S
CSIRO	Fisheries Synopsis No.	DFO/S
NNP	Sinopsis sobre la Pesca No.	INP/S
NMPS	Fisheries Synopsis No.	NMFIS/S.

Synopses in these series are compiled according to a standard outine described in Fib/S1 Rev. 1 (1965). FAO, CSIRO. INP and NMFS are working to secure the cooperation of other organizations and of individual scientists in drafting synopses on species about which they have knowledge, and welcome offers of help in this task. Additions and corrections to synopses already issued will also be most welcome. Comments on individual synopses and requests for information should be addressed to the coordinators and editors of the issuing organizations, and suggestions regarding the expansion or modification of the outline, to FAO:

FAO:

Fishery Resources and Environment Division
Aquatic Resources Survey and Evaluation Service
Food and Agriculture Organization of the United Nations
Via delle Terme di Caracalla
00100 Rome, Italy

CSIRO:
CSIRO Division of Fisheries and Oceanography Box 21
Cronulla, M.S.W. 2230
Australia

INP:

Instituto Nacional de Pesca
Subsecretaría de Pesca
Secretaría de Pesca
Secretaría de Industria y Comercio
Carmona y Valle 101-403
México 7, D.F.

NMFS:

Scientific Publications Office
National Marine Fisheries Service, NOAA 1107 N.E. 45 th Street
Seatte, Wa. 98105, U.S.A.

Consolidated lists of species or groups covered by synopses issued to date or in preparation will be issued from time to time. Requests for copies of synopses should be addressed to the issuing organization.

The following synopses in this series have been issued since January 1975 :
FIRS/S111 Synopsis of biological data on the Rohu Labeo rohita
June 1975
FIRS/S112 Synopsis of biological data on the Norway lobster Nephrops norvegicus
INP/S2 Sinopsis de datos biológicos sobre la Tortuga golfina Lepidochelys olivacea
FIR/S115 Synopsis of biological data on the Largemonth bass Mitropterus salmoides
September 1975
Febrero 1976
FIR/S113 Synopsis of biological data on the Perch Perca fluwatilis and Perca flavescens

[^0]: F.W. (freshwater) values from Lutz (1972). Comp. Biochem.Physiol., 48A:72-88

 3/ * Significant difference from normal (F.W.) values by Student's t-test ($\mathrm{P}<0.05$)

