Previous Page Table of Contents


18. SOLUTIONS TO EXERCISES

Exercise 2.1 Mean value and variance

Worksheet 2.1

j

L(j) - L(j) + dL

F(j)

1

23.0-23.5

1

23.25

23.25

-2.968

8.809

2

23.5-24.0

1

23.75

23.75

-2.468

6.091

3

24.0-24.5

1

24.25

24.25

-1.968

3.873

4

24.5-25.0

2

24.75

49.50

-1.468

4.310

5

25.0-25.5

2

25.25

50.50

-0.968

1.874

6

25.5-26.0

6

25.75

154.50

-0.468

1.314

7

26.0-26.5

5

26.25

131.25

0.032

0.005

8

26.5-27.0

6

26.75

160.50

0.532

1.698

9

27.0-27.5

2

27.25

54.50

1.032

2.130

10

27.5-28.0

2

27.75

55.50

1.532

4.694

11

28.5-29.0

2

28.25

56.50

2.032

8.258

12

28.5-29.0

1

28.75

28.75

2.532

6.411

sums


31


812.75


49.467

s2 = 1.6489

s = 1.2841

Exercise 2.2 The normal distribution

Worksheet 2.2

x

Fc(x)

x

Fc(x)

22.0

0.02

26.0

4.75

22.5

0.07

26.5

4.70

23.0

0.21

27.0

4.00

23.5

0.51

27.5

2.93

24.0

1.08

28.0

1.84

24.5

1.97

28.5

0.99

25.0

3.07

29.0

0.46

25.5

4.12

29.5

0.18

Fig. 18.2.2 Bell-shaped curve determined for length-frequency sample of Fig. 17.2.1

Fig. 18.2.4 Ordinary regression analysis, regression line and scatter diagram (see Worksheet 2.4)

Exercise 2.3 Confidence limits

L - t30 * s/Ö n = 26.22 - 2.04 * 1. 284/Ö 31 = 25.75

L + t30 * s/Ö n = 26.22 - 2.04 * 1. 284/Ö 31 = 26.69

Exercise 2.4 Ordinary linear regression analysis

Worksheet 2.4

year

 

i


number of boats


catch per boat per year



x(i)

x(i)2

y(i)

y(i)2

x(i) * y(i)

1971

1

456

207936

43.5

1892.25

19836.0

1972

2

536

287296

44.6

1989.16

23905.6

1973

3

554

306916

38.4

1474.56

21273.6

1974

4

675

455625

23.8

566.44

16065.0

1975

5

702

492804

25.2

635.04

17690.4

1976

6

730

532900

30.5

930.25

22265.0

1977

7

750

562500

27.4

750.76

20550.0

1978

8

918

842724

21.1

445.21

19369.8

1979

9

928

861184

26.1

681.21

24220.8

1980

10

897

804609

28.9

835.21

25923.3

Total


7146

5354494

309.5

10200.09

211099.5

sx = 165.99

sy = 8.307

variance of b:

sb = 0.01034

variance of a:

sa = 7.568

Student's distribution: tn-2 = 2.31

confidence limits:

b - sb * tn-2, b + sb * tn-2 = [-0.0645, -0-0167]

a - sa * tn-2, a + sa * tn-2 = [42.5,77.4]

Exercise 2.5 The correlation coefficient

In principle the number of boats can be measured with any accuracy, so this is the natural independent variable. The correlation coefficient is not considered useful in the present context. Nevertheless, as an exercise we calculate the confidence limits, using Eqs. 2.5.3 in sections called A and B:

A = 0.5 * ln[(1 + r)/(1 - r)] = 0.5 * ln[(1 - 0.811)/(1 + 0.811)] = -1.130

r1 = tanh(A - B) = -0.95

r2 = tanh(A + B) = -0.37

Exercise 2.6a Linear transformations, the Bhattacharya plot Worksheet 2.6a

x

F(x)

ln F(x)

D ln F(z)

x + dL/2

remarks




(y)

(z)


4.5

2

0.693



not used




0.916

5


5.5

5

1.609







0.875

6


6.5

12

2.485







0.693

7


7.5

24

3.178







0.377

8


8.5

35

3.555







0.182

9


9.5

42

3.737



not used contaminated




0.000

10


10.5

42

3.737







0.091

11


11.5

46

3.829







0.197

12


12.5

56

4.025







0.035

13


13.5

58

4.060



not used




-0.254

14


14.5

45

3.807







-0.716

15


15.5

22

3.091







-1.145

16


16.5

7

1.946







-1.253

17


17.5

2

0.693





First component

Second component

intercept (a)

2.328

5.978

slope (b)

-0.240

-0.446

9.7

13.4

s2 = - 1/b

4.18

2.24

s

2.04

1.50

Worksheet 2.6b

First component

Second component

B = -1/(2 * 2.042) = -0.120

B = -1/(2 * 1.502) = -0.222

x

Fc(x)
first

Fc(x)
second

x

Fc(x)
first

Fc(x)
second

1.5

0.0


11.5

26.4

23.7

2.5

0.1


12.5

15.2

44.2

3.5

0.4


13.5

6.9

52.8

4.5

1.5


14.5

2.4

40.4

5.5

4.7


15.5

0.7

19.9

6.5

11.4


16.5

0.2

6.3

7.5

21.8

0.0

17.5

0.0

1.3

8.5

32.7

0.3

18.5


0.2

9.5

38.7

1.8

19.5


0.0

10.5

36.0

8.2

20.5



Fig. 18.2.6A Bhattacharya plots (linear transformations) (see Worksheet 2.6a)

Fig. 18.2.6B The two normal distributions as determined by the Bhattacharya method superimposed on Fig. 17.2.6B (see Worksheet 2.6b)

Exercise 3.1 The von Bertalanffy growth equation Worksheet 3.1

age
years

standard length
cm

total length
cm

body weight
g

0.5

1.0

1.4

0.04

1.0

6.6

8.0

9

1.5

11.8

14.1

45

2

16.5

19.7

118

3

24.9

29.6

380

4

32.0

37.9

775

5

38.0

45.0

1262

6

43.0

51.0

1802

7

47.3

56.0

2359

8

50.9

60.3

2909

9

54.0

63.9

3434

10

56.6

67.0

3922

12

60.6

71.7

4770

14

63.5

75.1

5444

16

65.5

77.5

5961

20

68.1

80.5

6637

50

70.7

83.6

7388

Fig. 18.3.1 Growth curves based on von Bertalanffy growth equations

Exercise 3.1.2 The weight-based von Bertalanffy growth equation Worksheet 3.1.2

age
t

length
L (t)

weight
w (t)

age
t

length
L (t)

weight
w (t)

0

2.54

0.38

0.9

9.34

19.00

0.1

3.63

1.11

1.0

9.78

21.83

0.2

4.62

2.29

1.2

10.55

27.36

0.3

5.51

3.90

1.4

11.17

32.53

0.4

6.32

5.88

1.6

11.69

37.21

0.5

7.05

8.16

1.8

12.11

41.37

0.6

7.71

10.69

2.0

12.45

44.99

0.7

8.31

13.37

2.5

13.06

51.93

0.8

8.85

16.16

3.0

13.43

56.47

Fig. 18.3.1.2 Growth curves for ponyfish

Exercise 3.2.1 Data from age readings and length compositions (age/length key) Worksheet 3.2.1

cohort

1982
S

1981
A

1981
S

1980
A

number in length sample

1982
S

1981
A

1981
S

1980
A

length interval

key


numbers per cohort

35-36

0.800

0.200

0

0

53

42.4

10.6

0

0

36-37

0.636

0.273

0.091

0

61

38.8

16.7

5.6

0

37-38

0.600

0.300

0.100

0

49

29.4

14.7

4.9

0

38-39

0.500

0.400

0.100

0

52

26.0

20.8

5.2

0

39-40

0.364

0.364

0.182

0.091

70

25.5

25.5

12.7

6.4

40-41

0.273

0.455

0.182

0.091

52

14.2

23.7

9.5

4.7

41-42

0.222

0.444

0.222

0.111

49

10.9

21.8

10.0

5.4





total

386

187.2

133.8

48.8

16.5

Exercise 3.3.1 The Gulland and Holt plot

Worksheet 3.3.1

A

B

C

D

E

F

fish
no.

L(t)
cm

L(t + D t)
cm

D t
days


cm/year
(y)


cm
(x)

1

9.7

10.2

53

3.44

9.95

2

10.5

10.9

33

4.42

10.70

3

10.9

11.8

108

3.04

11.35

4

11.1

12.0

102

3.22

11.55

5

12.4

15.5

272

4.16

13.95

6

12.8

13.6

48

6.08

13.20

7

14.0

14.3

53

2.07

14.15

8

16.1

16.4

73

1.50

16.25

9

16.3

16.5

63

1.16

16.40

10

17.0

17.2

106

0.69

17.10

11

17.7

18.0

111

0.99

17.85

a (intercept) = 8.77

b (slope) = -0.431

K = -b = 0.43 per year

L¥ = -a/b = 20.3 cm

sb = 0.145

t9 = 2.26

confidence interval of K = [0.10, 0.76]

Fig. 18.3.3.1 Gulland and Holt plot (see Worksheet 3.3.1)

Exercise 3.3.2 The Ford-Walford plot and Chapman's method

Worksheet 3.3.2

Plot

FORD-WALFORD

CHAPMAN

t

L(t)
(x)

L(t + D t)
(y)

L(t)
(x)

L(t + D t) - L(t)
(y)

1

35

55

35

20

2

55

75

55

20

3

75

90

75

15

4

90

105

90

15

5

105

115

105

10

a (intercept)

26.2

26.2

b (slope)

0.86

-0.14

0.0009268

0.0009271


0.030

0.030

tn-2

3.18

3.18

confidence limits of b

[0.76, 0.96]

[-0.24, -0.04]

K

- ln b/D t = 0.15

-(1/1) * ln (1 + b) = 0.15

L¥

1/(1 - b) = 185 cm

-a/b = 185 cm

Fig. 18.3.3.2 Ford-Walford and Chapman plots for yellowfin tuna off Senegal. Data source: Postel, 1955, (see Worksheet 3.3.2)

Ford-Walford plot

Chapman's method

Exercise 3.3.3 The von Bertalanffy plot

We choose 11 inches as estimate for L¥ , because very few (1.5%) of the seabreams are longer than 11 inches.

We assign the arbitrary ages of 1,2,3 and 4 years to the four age groups.

age

L

-ln (1 - L/L¥ )

1

3.22

0.35

2

5.33

0.66

3

7.62

1.18

4

9.74

2.17

b (slope) = K = 0.60 per year

At least, K has now got the correct sign.

sb2 = 0.0119, sb = 0.109, t2 = 4.3

confidence interval of K= [0.13, 1.07]

t0 cannot be estimated because the absolute age is not known.

Fig. 18.3.3.3 Von Bertalanffy and Gulland and Holt plots for sea breams. Data source: Cassie, 1954

von Bertalanffy plot

Gulland and Holt plot

Exercise 3.4.1 Bhattacharya's method

There is no "correct" solution to this exercise. The following is a "suggestion for a solution". It is not the same result as the one obtained by Weber and Jothy (1977) by using the Cassie method.

Fig. 18.3.4.1A Bhattacharya plots for threadfin bream. (See Worksheets 3.4.1a, b and c)

Worksheet 3.4.1a

A

B

C

D

E

F

G

H

I

length interval

N1+

ln N1+

D ln N1+
(y)

L
(x)

D ln N1

ln N1

N1

N2+

5.75-6.75

1

0

-

-

-

-

1

0

6.75-7.75

26

3.258

(3.258)

6.75

1.262

-

26

0

7.75-8.75

42#

3.738#

0.480

7.75

0.354

3.738#

42#

0

8.75-9.75

19

2.944

-0.793

8.75

-0.554

3.183

19

0

9.75-10.75

5

1.609

-1.335*

9.75

-1.462

1.722

5

0

10.75-11.75

15

2.708

1.099

10.75

-

-0.648

0.5

14.5

11.75-12.75

41

3.714

1.006

11.75

2.370

-3.926

0.0

41.0

12.75-13.75

125

4.828

1.115

12.75

-3.278

-

-

125

13.75-14.75

135

4.905

0.077

13.75

-

-

-

135

..........

..........

..........



-




Total

1069






93.5


a (intercept) = 7.391

b (slope) = -0.908

*) points used in the regression analysis
# clean starting point

Worksheet 3.4.1b

A

B

C

D

E

F

G

H

I

interval

N2+

ln N2+

D ln N2+

L

D ln N2

ln N2

N2

N3+

......

.....








10.75-11.75

14.5

2.674

-

10.75

-

-

14.5

0

11.75-12.75

41

3.714

1.039*

11.75

-

-

41

0

12.75-13.75

125#

4.828#

1.115*

12.75

-

4.828#

125#

0

13.75-14.75

135

4.905

0.077*

13.75

0.238

5.066

135

0

14.75-15.75

102

4.625

-0.280*

14.75

-0.262

4.806

102

0

15.75-16.75

131

4.875

0.250

15.75

-0.761

4.843

57.0

74.0

16.75-17.75

106

4.663

-0.212

16.75

-1.261

4.043

16.2

89.8

17.75-18.75

86

4.454

-0.209

17.75

-1.760

2.782

2.8

83.2

18.75-19.75

59

4.078

-0.377

18.75

-2.260

1.022

0.3

58.7

19.75-20.75

43

3.761

-0.316

19.75

-2.759

-1.038

0.0

43

20.75-21.75

45

3.807

0.045

20.75

-

-3.997

-

45

21.75-22.75

56

4.025

0,219

21.75

-

-

-

56

......

.....








Total







493.8


a (intercept) = 7.11

b (slope) = -0.500

Worksheet 3.4. 1c

A

B

C

D

E

F

G

H

I

interval

N3+

ln N3+

D ln N3+

L

D ln N3

ln N3

N3

N4+

......

.....








15.75-16.75

74.0

-

-

15.75

-

-

74

0

16.75-17.75

89.8

4.498

0.194*

16.75

-

-

89.9

0

17.75-18.75

83.2#

4.421#

-0.076*

17.75

-

4.421#

83.2#

0

18.75-19.75

58.7

4.072

-0.348*

18.75

-0.225

4.196

58.7

0

19.75-20.75

43

3.761

-0.312*

19.75

-0.404

3.792

43.0

0

20.75-21.75

45

3.807

0.046

20.75

-0.583

3.209

24.8

20.2

21.75-22.75

56

4.025

0.219

21.75

-0.762

2.447

11.6

44.4

22.75-23.75

20

2.996

-1.030

22.75

-0.941

1.506

4.5

15.5

23.75-24.75

8

2.079

-0.916

23.75

-1.120

0.386

1.5

6.5

24.75-25.75

3

1.099

-0.981

24.75

-1.299

-0.913

0.4

2.6

25.75-26.75

1

0

-1.099

25.75

-

-

-

1

Total







391.5


a (intercept) = 3.13

b (slope) = -0.179

Worksheet 3.4.1d

A

B

C

D

E

F

G

H

I

interval

N2+

ln N2+

D ln N2+

L

D ln N2

ln N2

N2

N3+

......

.....






20.75-21.75

20.2

3.006

-

20.75

?

too few observations

21.75-22.75

44.4

3.793

0.787

21.75

?


22.75-23.75

15.5

2.741

-1.052

22.75

?


23.75-24.75

6.5

1.892

-0.869

23.75

?


24.75-25.75

2.6

0.956

-0.916

24.75

?


25.75-26.75

1

0

-0.956

25.75

?


Gulland and Holt plot:

age

D L/D t

L

1

8.1





6.1

11.15

2

14.2





3.3

15.85

3

17.5



a (intercept) = 12.7
K = -b = 0.60 per year
b (slope) = -0.60
L¥ = -a/b = 21.4 cm

Fig. 18.3.4.1B Gulland and Holt plot of mean lengths of cohorts obtained by the Bhattacharya method (see Worksheets 3.4.1a, b, and c and Fig. 18.3.4.1A)

Exercise 3.4.2 Modal progression analysis

A. Leiognathus splendens:

Worksheet 3.4.2



GULLAND AND HOLT PLOT

VON BERTALANFFY PLOT

time of sampling

L (t)

D L/D t

L

t

-ln (1 - L/L¥ )

1 June

2.8



0.42

0.325



6.8

3.65



1 Sep.

4.5



0.67

0.590



5.2

5.15



1 Dec.

5.8



0.92

0.854



4.0

6.30



1 March

6.8



1.17

1.119

a (intercept)

10.65

-0.12

b (slope, -K or K)

-1.06

1.06

-a/b

L¥ = 10.1

t0 = 0.11

L (t) = 10.1 * [1 - exp(-1.1 * (t - 0.11))]

Fig. 18.3.4.2A Modal progression in time series of length-frequencies of ponyfish. (See Worksheet 3.4.2)

B. Rastrelliger kanagurta:



GULLAND AND HOLT PLOT

VON BERTALANFFY PLOT

time of sampling

L (t)

D L/D t

L

t

-ln (1 - L/L¥ )

1 Feb

13.3



0.08

0.648


21.6

14.20



1 March

15.1



0.17

0.779


17.4

16.55



1 May

18.0



0.33

1.036


16.8

18.70



1 June

19.4



0.42

1.189


13.2

19.95



1 July

20.5



0.50

1.327


9.6

20.9



1 August

21.3



0.58

1.442

a (intercept)

44.57

0.512

b (slope, -K or K)

-1.60

1.61

-a/b

L¥ = 27.9

t0 = -0.32

L(t) = 27.9 * [1 - exp(-1.6 * (t + 0.32))]

Fig. 18.3.4.2B Modal progression in time series of length-frequencies of Indian mackerel. (See Worksheet 3.4.2)

Exercise 3.5.1 ELEFAN I

Worksheet 3.5.1

RESTRUCTURING OF LENGTH FREQUENCY SAMPLE



STEP
1

STEP
2

STEP
3

STEP
4a

STEP
4b

STEP
5

STEP
6

mid-length
L

orig. freq.
FRQ(L)

MA(L)

FRQ/MA

zeroes

deemphasized

points

highest positive points

5

4

4.6

0.870

-0.197

2

-0.197

-0.109


10

13

4.6

2.826

1.610

2

0.966

0.966

0.966

15

6

4.8

1.250

0.154

1

0.123

0.123


20

0

4.0

0

-1.000

1

-1.000

0


25

1

1.4

0.714

-0.341

3

-0.340

-0.188


30

0

0.4

0

-1.000

2

-1.000

0


35

0

1.0

0

-1.000

1

-1.000

0


40

1

1.0

1.000

-0.077

2

-0.077

-0.043


45

3

1.0

3.000

1.770

2

1.062

1.062

1.062

50

1

1.2

0.833

-0.231

1

-0.230

-0.127


55

0

1.0

0

-1.000

1

-1.000

0


60

1

0.4

2.500

1.308

3

0.523

0.523

0.523

S = 12.993

SP = 2.674


(S /12) = M = 1.083

SN = -4.845

ASP = 2.551


-SP/SN = R = 0.552


Fig. 18.3.5.1 ELEFAN I, restructured data and highest positive points (see Worksheet 3.5.1, step 5)

Exercise 3.5.1a ELEFAN I, continued

Worksheet 3.5.1a

RESTRUCTURING OF LENGTH FREQUENCY SAMPLE



STEP
1

STEP
2

STEP
3

STEP
4a

STEP
4b

STEP
5

STEP
6

mid-length
L

orig. freq.
FRQ(L)

MA(L)

FRQ/MA

zeroes

deemphasized

points

highest positive points

20

14

18.2

0.769

-0.194

2

-0.194

-0.159


24

32

40.0

0.800

-0.162

1

-0.162

-0.133


28

45

63.0

0.714

-0.252

0

-0.252

-0.206


32

109

75.8

1.438

0.506

0

0.506

0.506


36

115

78.4

1.467

0.537

0

0.537

0.537

0.537

40

78

75.2

1.037

0.086

0

0.086

0.086


44

45

58.0

0.776

-0.187

0

-0.187

-0.153


48

29

37.2

0.780

-0.183

0

-0.183

-0.150


52

23

24.0

0.958

0.003

0

0.003

0.003

0.003

56

11

16.0

0.688

-0.279

0

-0.279

-0.228


60

12

10.6

1.132

0.186

0

0.186

0.186

0.186

64

5

6.2

0.806

-0.156

0

-0.156

-0.128


68

2

4.4

0.455

-0.523

0

-0.523

-0.428


72

1

2.0

0.500

-0.476

1

-0.476

-0.390


76

2

1.0

2.000

1.095

2

0.657

0.657

0.657

S = 14.320

SP = 1.975


(S /15) = M = 0.9547

SN = -2.413

ASP = 1.383


-SP/SN = R = 0.818


Fig 18.3.5.1A Regrouped length-frequency data of 523 pike (4 cm length intervals), ELEFAN I restructured data and highest positive points and mean lengths as determined from age reading (low arrow). (See Worksheet 3.5.1a, cf. Fig 17.3.5.1C)

Exercise 4.2 The dynamics of a cohort (exponential decay model with variable Z)

Worksheet 4.2

age group
t1 - t2

M

F

Z

e-0.5z

N(t1)

N(t2)

N(t1) - N(t2)

F/Z

C(t1, t2)

0.0-0.5

2.0

0.0

2.0

0.3679

10000

3679

6321

0

0

0.5-1.0

1.5

0.0

1.5

0.4724

3679

1738

1941

0

0

1.0-1.5

0.5

0.2

0.7

0.7047

1738

1225

513

0.286

147

1.5-2.0

0.3

0.4

0.7

0.7047

1225

863

362

0.571

207

2.0-2.5

0.3

0.6

0.9

0.6376

863

550

313

0.667

209

2.5-3.0

0.3

0.6

0.9

0.6376

550

351

199

0.667

133

3.0-3.5

0.3

0.6

0.9

0.6376

351

224

127

0.667

85

3.5-4.0

0.3

0.6

0.9

0.6376

224

143

81

0.667

54

4.0-4.5

0.3

0.6

0.9

0.6376

143

91

52

0.667

35

4.5-5.0

0.3

0.6

0.9

0.6376

91

58

33

0.667

22

Fig. 18.4.2 Exponential decay of a cohort with variable Z

Exercise 4.2a The dynamics of a cohort (the formula for average number of survivors, Eq. 4.2.9)

The formula for average number of survivors (Eq. 4.2.9).

Exact value:

Approximation:

Exercise 4.3 Estimation of Z from CPUE data

Worksheet 4.3





cohort

1982 A

1982 S

1981 A

1981 S

1980 A

age
t2

1.14

1.64

2.14

2.64

3.14

CPUE

111

67

40

24

15

cohort

age
t1

CPUE






1983 S

0.64

182

0.99

1.00

1.01

1.01

1.00

1982 A

1.14

111

------

1.03

1.02

1.02

1.00

1982 S

1.64

67

------

------

1.03

1.03

1.00

1981 A

2.14

40

------

------

------

1.02

0.98

1981 S

2.64

24

------

------

------

------

0.94

Exercise 4.4.3 The linearized catch curve based on age composition data

Worksheet 4.4.3

age
t
(x)

year
y

C(y, t, t + 1)

ln C(y, t, t + 1)
(y)

remarks

0

1974

599

6.395

not used

1

1975

860

6.757


2

1976

1071

6.976


3

1977

269

5.596

used in the analysis

4

1978

69

4.234


5

1979

25

3.219


6

1980

8

2.079


7

1981

-

-


slope: b = -1.16

sb2 = [(sy/sx)2 - b2]/(n - 2) = 0.002330

sb = 0.0483

sb * tn-2 = 0.0483 * 4.30 = 0.21 Z = 1.16 ± 0.21

Fig. 18.4.4.3 The linearized catch curve based on age composition data (see Worksheet 4.4.3)

Exercise 4.4.5 The linearized catch curve based on length composition data Worksheet 4.4.5

L1 - L2

C(L1, L2)

t(L1)

D t


(x)


(y)

z
(slope)

remarks

7-8

11

0.452

0.0759

0.489

4.976

-

not used

8-9

69

0.527

0.0796

0.567

6.765

-


9-10

187

0.607

0.0836

0.648

7.712

-


10-11

133

0.691

0.0881

0.734

7.319

-


11-12

114

0.779

0.0931

0.825

7.110

-


12-13

261

0.872

0.0987

0.921

7.880

-


13-14

386

0.971

0.1050

1.022

8.210

-


14-15

445

1.076

0.112

1.13

8.286

-


15-16

535

1.188

0.120

1.25

8.400

-

used in analysis

16-17

407

0.308

0.130

1.37

8.051

-


17-18

428

1.438

0.141

1.51

8.019

1.43


18-19

338

1.579

0.154

1.65

7.693

1.60


19-20

184

1.733

0.170

1.82

6.987

2.27


20-21

73

1.903

0.190

2.00

5.953

3.07


21-22

37

2.092

0.214

2.20

5.152

3.45


22-23

21

2.307

0.246

2.43

4.446

3.54


23-24

19

2.553

0.290

2.69

4.183

3.30


24-25

8

2.843

0.352

3.01

3.124

3.20


25-26

7

3.195

0.448

3.40

2.749

-

too close to L¥

26-27

2

3.643

0.617

3.92

1.176

-


Details of the regression analyses:

length group

slope

number of observations

Student's distrib.

variance of slope

stand. dev. of slope

confidence limits of Z

L1 - L2

Z

n

tn-2

sb2

sb

Z ± tn-2 * sb

15-16

-

1

-

-

-

-

16-17

-

2

-

-

-

-

17-18

1.43

3

12.70

0.59

0.7681

1.43 ± 9.75

18-19

1.60

4

4.30

0.12

0.3464

1.60 ± 1.49

19-20

2.27

5

3.18

0.156

0.3950

2.27 ± 1.26

20-21

3.07

6

2.78

0.228

0.4475

3.07 ± 1.33

21-22

3.45

7

2.57

0.140

0.3742

3.45 ± 0.96

22-23

3.54

8

2.45

0.071

0.2665

3.54 ± 0.65

23-24

3.30

9

2.37

0.051

0.2258

3.30 ± 0.54

24-25

3.20

10

2.31

0.030

0.1732

3.20 ± 0.40

Fig. 18.4.4.5 The linearized catch curve based on length composition data (see Worksheet 4.4.5)

Fig. 18.4.4.6 The cumulated catch curve based on length composition data (Jones and van Zalinge method) (see Worksheet 4.4.6)

Exercise 4.4.6 The cumulated catch curve based on length composition data (the Jones and van Zalinge method)

Worksheet 4.4.6

L1 - L2

C(L1, L2)

S C (L1, L¥ ) cumulated

ln S C (L1, L¥ )
(y)

ln (L¥ - L1)
(x)

Z/K
(slope)

remarks

7-8

11

3665

8.207

3.100

-

not used, not under full exploitation

8-9

69

3654

8.204

3.054

-


9-10

187

3585

8.185

3.006

-


10-11

133

3398

8.131

2.955

-


11-12

114

3265

8.091

2.901

-


12-13

261

3151

8.055

2.845

-


13-14

386

2890

7.969

2.785

-


14-15

445

2504

7.825

2.721

-


15-16

535

2059

7.630

2.653

-

used in analysis

16-17

407

1524

7.329

2.580

-


17-18

428

1117

7.018

2.501

4.03


18-19

338

689

6.565

2.416

4.56


19-20

184

351

5.861

2.322

5.28


20-21

73

167

5.118

2.219

5.81


21-22

37

94

4.543

2.104

5.86


22-23

21

57

4.043

1.974

5.62


23-24

19

36

3.584

1.825

5.25


24-25

8

17

2.833

1.649

5.00


25-26

7

9

2.197

1.435

-

too close to L¥

26-27

2

2

0.693

1.163

-


Details of the regression analyses:

length group

slope
* K

number of obs.

Student's distrib.

variance of slope

stand. dev. of slope

confidence limits of Z

L1 - L2

Z

n

tn-2

sb2

sb

Z ± K * tn-2 * sb

15-16

-

1

-

-

-

-

16-17

-

2

-

-

-

-

17-18

2.44

3

12.70

0.00289

0.05376

2.44 ± 0.41

18-19

2.77

4

4.30

0.858

0.2929

2.77 ± 0 76

19-20

3.20

5

3.18

0.169

0.4111

3.20 ± 0.79

20-21

3.52

6

2.78

0.141

0.3755

3.52 ± 0.63

21-22

3.55

7

2.57

0.064

0.2530

3.55 ± 0.39

22-23

3.41

8

2.45

0.045

0.2121

3.41 ± 0.32

23-24

3.20

9

2.37

0.056

0.2366

3.20 ± 0.34

24-25

3.03

10

2.31

0.045

0.2121

3.03 ± 0.30

Exercise 4.4.6a The Jones and van Zalinge method applied to shrimp

Worksheet 4.4.6a

carapace length mm

numbers landed/year
(millions)

cumulated numbers/year
(millions)




remarks

L1 - L2

C (L1, L2)

S C (L1, L¥ )

ln S C (L1, L¥ )
(y)

ln (L¥ - L1)
(X)

Z/K
(slope)


11.18-18.55

2.81

18.16

2.899

3.592

-

not used

18.55-22.15

1.30

15.35

2.731

3.366

-


22.15-25.27

2.96

14.05

2.643

3.233

-


25.27-27.58

3.18

11.09

2.406

3.101

-

used in analysis

27.58-29.06

2.00

7.91

2.068

2.992

-


29.06-30.87

1.89

5.91

1.777

2.915

3.36


30.87-33.16

1.78

4.02

1.391

2.811

3.52


33.16-36.19

0.98

2.24

0.806

2.663

3.68


36.19-40.50

0.63

1.26

0.231

2.426

3.32


40.50-47.50

0.63

0.63

-0.462

1.946

too close to L¥

Details of the regression analysis:

lower length

slope

number of obs.

Student's distrib.

variance of slope

stand. dev. of slope

confidence limits of slope

L1

Z/K

n

tn-2

sb2

sb

Z/K ± tn-2 * sb

29.06

3.36

3

12.70

0.0354

0.1882

3.36 ± 2.39

30.87

3.52

4

4.30

0.0143

0.1196

3.52 ± 0.51

33.16

3.68

5

3.18

0.0096

0.0980

3.68 ± 0.31

36.19

3.32

6

2.78

0.0224

0.1497

3.32 ± 0.42

Fig. 18.4.4.6A Cumulated catch curve based on industrial shrimp fisheries in Kuwait. Data source: Jones and van Zalinge, 1981 (see Worksheet 4.4.6a)

Exercise 4.5.1 Beverton and Holt's Z-equation based on length data (applied to shrimp)

Worksheet 4.5.1

A

B

C

D

E

F

G

H

carapace length group
mm

numbers landed/year
(millions)

cumulated catch

mid-length

*)

*)

*)

*)

remarks

L' (L1) - L2

C (L1, L2)

S C (L1, L¥ )

Z/K


11.18-18.55

2.81

18.16

14.87

41.77

478.56

26.35

1.39

not used

18.55-22.15

1.30

15.35

20.35

26.46

436.79

28.46

1.92


22.15-25.27

2.96

14.05

23.71

70.18

410.33

29.21

2.59


25.27-27.58

3.18

11.09

26.43

84.03

340.15

30.67

3.12


27.58-29.06

2.00

7.91

28.32

56.64

256.12

32.38

3.15


29.06-30.87

1.89

5.91

29.97

56.63

199.48

33.75

2.93


30.87-33.16

1.78

4.02

32.02

56.99

142.85

35.53

2.57


33.16-36.19

0.98

2.24

34.68

33.98

85.86

38.33

1.77

36.19-40.50

0.63

1.26

38.35

24.16

51.88

41.17

1.27

numbers too low

40.50-47.50

0.63

0.63

44.00

27.72

27.72

44.00

1.00


Fig. 18.4.5.4 Powell-Wetherall plot based on trap catches of Haemulon sciurus in Jamaica (see Worksheet 4.5.4). Data source: Munro, 1983

Exercise 4.5.4 The Powell-Wetherall method

Worksheet 4.5.4

A

B

C

D *)

E *)

F *)

G *)

H *)

L' (L1) - L2

C (L1, L2) (% catch)

S C(L',¥)
(% cumulated)

(x)







(y)

14-15

1.8

14.5

100.1

26.10

2086.95

20.849

6.849

15-16

3.4

15.5

98.3

52.70

2060.85

20.965

5.965

16-17

5.8

16.5

94.9

95.70

2008.15

21.161

5.161

17-18

8.4

17.5

89.1

147.00

1912.45

21.646

4.464

18-19

9.1

18.5

80.7

168.35

1765.45

21.877

3.877

19-20

10.2

19.5

71.6

198.90

1597.10

22.306

3.306

20-21 *)

14.3

20.5

61.4

293.15

1398.20

22.772

2.772

21-22 *)

13.7

21.5

47.1

294.55

1105.10

23.463

2.463

22-23 *)

10.0

22.5

33.4

225.00

810.50

24.266

2.266

23-24 *)

6.3

23.5

23.4

148.05

585.50

25.021

2.021

24-25 *)

6.4

24.5

17.1

156.80

437.45

25.582

1.582

25-26 *)

5.3

25.5

10.7

135.15

280.65

26.229

1.229

26-27 *)

3.3

26.5

5.4

87.45

145.5

26.944

0.944

27-28 *)

1.8

27.5

2.1

49.50

58.05

27.643

0.643

28-29 *)

0.3

28.5

0.3

8.55

8.55

28.500

0.500

b (slope) = -0.2997

a (intercept) = 8.795

Z/K = -(1 +b)/b = 2.337

L¥ = -a/b = 29.35

*) Considered fully recruited (n = 9)
Steady state with constant parameter system.

Comment:

Back in 1974, when Munro (1983) reported on the grunts, it was not easy to estimate L¥ (ELEFAN etc. was not available). The Ford-Walford plot resulted in almost parallel lines for all species and, consequently, could not produce reliable estimates of their L¥ . Based on modal progression analysis, Munro instead, obtained by trial-and-error, the value of L¥ which seemed to produce a straight line in the von Bertalanffy plot. The result was L¥ = 40 cm producing K = 0.26 per year. Using L' = 20 cm he then obtained Z/K = (40 - 22.772)/2.772 = 6.2 from Beverton and Holt's formula. (This estimate represents the straight line on the plot that connects the L' = 20 cm point with an x-intercept of L¥ = 40 cm, i.e. a line with slope b = -(1 + Z/K)-1 = -0.14.) Thus, Munro obtained Z = 6.2 * 0.26 = 1.6 per year. However, a L¥ » 30 cm changes Munro's MPA somewhat and using his procedure one cannot reject L¥ » 30 cm and K » 0.5 per year. Using our results we then obtain Z = 2.34 * 0.5 = 1.17 per year.

Exercise 4.6 Plot of Z on effort (estimation of M and q)

Worksheet 4.6

year

effort

mean length


*)

cm


1966

2.08

15.7

1.97

1967

2.80

15.5

2.05

1968

3.50

16.1

1.82

1969

3.60

14.9

2.32

1970

3.80

14.4

2.58

1071

no data

1972

no data

1973

9.94

12.8

3.74

1974

6.06

12.8

3.74

*) in millions of trawling hours

L¥ = 29.0 cm
K = 1.2 per year
Lc = 7.6 cm

a) Based on data for the years 1966-1970:

slope: q = 0.23 ± 0.66
sq2 = 0.0424
sq = 0.206
t3 * sq = 3.18 * 0.206 = 0.66

intercept: M = 1.41 ± 2.11
sM2 = 0.439
sM = 0.663
t3 * sM = 3.18 * 0.663 = 2.11

Both confidence intervals contain 0 and negative values which makes no biological sense. The variation in effort is too small to support a dependable regression analysis.

b) Based on data for the years 1966-1974:

slope: q = 0.27 ± 0.17
sq2 = 0.00429
sq = 0.0655
t5 * sq = 2.57 * 0.0655 = 0.17

intercept: M = 1.39 ± 0.87
sM2 = 0.115
sM = 0.339
t5 * sM = 2.57 * 0.339 = 0.87

Fig. 18.4.6 Plot of Z on effort, to estimate M and q of Priacanthus sp. Data source: Boonyubol and Hongskul, 1978 (see Worksheet 4.6)

Exercise 5.2 Age-based cohort analysis (Pope's cohort analysis)

a) terminal

F = F6 = 1.0
C6 = 8

C5 = 25

N5 = 44.4

F5 = 0.97

C4 = 69

N4 = 130.4

F4 = 0.88

C3 = 269

N3 = 456.6

F3 = 1.05

C2 = 1071

N2 = 1741.3

F2 = 1.14

C1 = 860

N1 = 3077.3

F1 = 0.37

C0 = 599

N0 = 4420.7

F0 = 0.16

b) terminal

F = F6 = 2.0
C6 = 8

C5 = 25

N5 = 39.7

F5 = 1.18

C4 = 69

N4 = 124.8

F4 = 0.94

C3 = 269

N3 = 449.7

F3 = 1.08

C2 = 1071

N2 = 1732.9

F2 = 1.15

C1 = 860

N1 = 3067.3

F1 = 0.37

C0 = 599

N0 = 4408.0

F0 = 0.16

Fig. 18.5.2 Pope's (age-based) cohort analysis of whiting, with different values of terminal F, to demonstrate VPA convergence. Data source: ICES, 1981

Exercise 5.3 Jones' length-based cohort analysis

Worksheet 5.3

length group

natural mortality factor

number caught (mill.)

number of survivors

exploitation rate

fishing mortality

total mortality

L1 - L2

H(L1, L2)

C(L1, L2)

N(L1)

F/Z

F

Z

11.18-18.55

1.1854

2.81

119.82

0.08

0.32

4.22

18.55-22.15

1.1047

1.30

82.90

0.08

0.34

4.24

22.15-25.27

1.1035

2.96

66.75

0.20

0.99

4.89

25.27-27.58

1.0858

3.18

52.13

0.29

1.62

5.52

27.58-29.06

1.0596

2.00

41.29

0.31

1.77

5.67

29.06-30.87

1.0806

1.89

34.89

0.28

1.51

5.41

30.87-33.16

1.1175

1.78

28.13

0.25

1.28

5.18

33.16-36.19

1.1949

0.98

20.93

0.14

0.63

4.53

36.19-40.50

1.4331

0.63

13.84

0.08

0.36

4.26

40.50-47.50

-

0.63

6.30

0.10

0.43 *)

4.33

*) F (40.50 - 47.50) = 3.9 * 0.1/(1 - 0.1) = 0.43

The cumulated catch curve (Exercise 4.4.6a) gave a Z/K value of about 3.

From this we have Z = 3 * 2.6 = 7.8; F = Z-M = 7.8-3.9 = 3.9; exploitation rate, F/Z = 3.9/7.8 = 0.5

Exercise 6.1 A mathematical model for the selection ogive

L50% = 13.6 cm
S1 = 13.6 * ln (3)/(14.6 - 13.6) = 14.941

L75% = 14.6 cm
S2 = ln (3)/(14.6 - 13.6) = 1.0986

S (L) = 1/[1 + exp(14.941 - 1.0986 * L)]

L

11

12

13

14

15

16

17

18

S(L)

0.05

0.15

0.34

0.61

0.82

0.93

0.98

0.99

Fig. 18.6.1 Length-based selection ogive

Exercise 6.5 Estimation of the selection ogive from a catch curve

Worksheet 6.5

A

B

C

D

E

F

G

H

I

length group
L1 - L2

t
a)

D t

C(L1, L2)

ln (C/D t)
b)

St obs.
c)

ln (1/S - 1)
d)

est.
e)

remarks


(x)





(y)



6-7

0.56

0.102

3

3.38

0.0001

9.07

-

not used

7-8

0.67

0.109

143

7.18

0.0081

4.81

0.02

used to estimate St

8-9

0.78

0.116

271

7.76

0.0229

3.75

0.02


9-10

0.90

0.125

318

7.86

0.041

3.15

0.04


10-11

1.03

0.134

416

8.04

0.087

2.58

0.08


11-12

1.17

0.146

488

8.11

0.168

1.60

0.17


12-13

1.32

0.160

614

8.25

0.362

0.67

0.34


13-14

1.49

0.177

613

8.15

0.666

-0.69

0.59

used to estimate Z (see Table 4.4.5.1)

14-15

1.67

0.197

493

7.83

1.020

-

0.81


15-16

1.88

0.223

278

7.13

-

-

0.94


16-17

2.12

0.257

93

5.89

-

-

0.99


17-18

2.40

0.303

73

5.48

-

-

1.00


18-19

2.74

0.370

7

2.94

-

-

1.00


19-20

3.15

0.473

2

1.44

-

-

1.00


20-21

3.70

0.659

2

1.11

-

-

1.00

not used too close to L¥

21-22

4.53

1.094

0

-

-

-

1.00


22-23

6.19

4.094

1

-1.40

-

-

1.00


23-24

-

-

1

-

-

-

1.00


K = 0.59 per year,
L¥ = 23.1 cm,
t0 = -0.08 year

Selection regression:

a = T1 = 8.7111
-b = T2 = 6.0829
t50% = 8.7111/6.0829 = 1.432
t75% = (ln (3) + 8.7111)/6.0829 = 1.613
L50% = 23.1 * [1 - exp(0.59 * (-0.08 - 1.432))] = 13.6 cm
L75% = 23.1 * [1 - exp(0.59 * (-0.08 - 1.613))] = 14.6 cm
St est. = 1/[1 + exp (8.7111 - 6.0829 * t)]

Exercise 6.7 Using a selection curve to adjust catch samples

L50% = 13.6 cm
S1 = 13.6 * ln (3)/(14.6 - 13.6) = 14.941

L75% = 14.6 cm
S2 = ln (3)/(14.6 - 13.6) = 1.0986
SL = 1/[1 + exp (14.941 - 1.0986 * L)]

Worksheet 6.7

length group
L1 - L2

mid point

observed biased sample

selection ogive
SL

estimated unbiased sample

6-7

6.5

3

0.00041

7326a)

7-8

7.5

143

0.00123

116491

8-9

8.5

271

0.00367

73769

9-10

9.5

318

0.01094

29067

10-11

10.5

416

0.03212

12952

11-12

11.5

488

0.09054

5390

12-13

12.5

614

0.2300

2670

13-14

13.5

613

0.4726

1297

14-15

14.5

493

0.7288

676

15-16

15.5

278

0.890

312

16-17

16.5

93

0.960

97

17-18

17.5

73

0.986

74

18-19

18.5

7

0.995

7

19-20

19.5

2

0.998

2

20-21

20.5

2

0.999

2

21-22

21.5

0

1.000

0

22-23

22.5

1

1.000

1

23-24

23.5

1

1.000

1

a) 3/0.00041 = 7326

Fig. 18.6.7 Biased sample of goatfish and estimated unbiased sample, corrected for selectivity. Data source: Ziegler, 1979. (see Worksheet 6.7)

Exercise 7.2 Stratified random sampling versus simple random sampling and proportional sampling

Worksheet 7.2

stratum
j

s (j)

s (j)2

N (j)

1 large

28.906

835.57

10

25413

423

2 medium

8.569

73.43

30

9091

457

3 small

2.809

7.89

60

1524

252

total



100

36028

1132

a) Simple random sampling

b) Proportional sampling

c) Optimum stratified sampling

stratum
j

s(j) * N(j)

1 large

289.06

0.40

8

2 medium

257.07

0.36

7

3 small

168.55

0.24

5

Total

714.68

1.00

n = 20


Comparison of results


random

proportional

optimum

3.06

2.10

1.20

allocation per stratum




1 large

?

2

8

2 medium

?

6

7

3 small

?

12

5

Exercise 8.3 The yield per recruit model of Beverton and Holt (yield per recruit, biomass per recruit as a function of F)

Worksheet 8.3


Tc = Tr = 0.2

Tc = 0.3

Tc = 1.0

F

Y/R

B/R

Y/R

B/R

Y/R

B/R

0.0

0.00

8.28

0.00

8.00

0.00

4.53

0.2

1.36

6.81

1.33

6.67

0.79

3.96

0.4

2.28

5.71

2.26

5.65

1.41

3.51

0.6

2.91

4.85

2.92

4.86

1.89

3.15

0.8

3.34

4.18

3.39

4.24

2.28

2.85

1.0

3.64

3.64

3.73

3.73

2.60

2.60

1.2

3.84

3.20

3.98

3.31

2.86

2.39

1.4

3.97

2.84

4.15

2.97

3.08

2.20

1.6

4.06

2.54

4.28

2.68

3.27

2.05

1.8

4.11

2.28

4.38

2.43

3.43

1.91

2.0

4.14

2.07

4.44

2.22

3.57

1.79

2.2

4.15 *

1.88

4.49

2.04

3.69

1.68

2.4

4.14

1..73

4.51

1.88

3.80

1.58

2.6

4.13

1.59

4.53

1.74

3.89

1.50

2.8

4.10

1.47

4.54

1.62

3.98

1.42

3.0

4.08

1.36

4.54 *

1.51

4.05

1.35

3.5

4.00

1.14

4.52

1.29

4.21

1.20

4.0

3.91

0.98

4.48

1.12

4.33

1.08

4.5

3.82

0.85

4.44

0.99

4.42

0.98

5.0

3.74

0.75

4.39

0.88

4.50

0.90

100.0

2.39

0.02

3.35

0.03

5.15 *

0.05

*) MSY/R

MSY increases when Tc increases, because more fish survive to a large size before they are caught. From age 0.2 years to age 1.0 years the biomass production caused by individual growth exceeds the loss caused by the death process. This, of course, is not true for any high value of Tc. If, for example, Tc would be larger than the lifespan of the species in question, no fish would be caught.

curve A: (Tc = 0.2) MSY/R = 4.15 (indicated by "*" in the Table)
curve B: (Tc = 0.3) MSY/R = 4.54
curve C: (Tc = 1.0) MSY/R = 5.15

For F = 1 the Y/R is 3.64 (curve A), 3.73 (curve B) or 2.60 (curve C).

Thus, irrespective of the actual mesh size in use an increased yield is expected for an increase of effort (F).

The smaller the actual mesh size the smaller the gain in yield from an effort increment.

Exercise 8.4 Beverton and Holt's relative yield per recruit concept

Worksheet 8.4


Lc = 118 cm

Lc = 150 cm


E

(Y/R)'

(Y/R)'

(F)

0

0

0

0

0.1

0.019

0.022

0.020

0.2

0.035

0.043

0.045

0.3

0.048

0.062

0.077

0.4

0.059

0.079

0.120

0.5

0.067

0.093

0.180 = M

0.6

0.071

0.105

0.270

0.7

0.071 *)

0.112

0.42

0.8

0.068

0.116

0.72

0.9

0.063

0.117 *)

1.62

1.0

0.056

0.114

¥

*) relative MSY/R

Fig. 18.8.3 Yield per recruit and biomass per recruit curves as a function of F at different ages of first capture of ponyfish. Data source: Pauly, 1980

Fig. 18.8.4 Relative yield per recruit curves a a function of exploitation rate (E) for two different values of 50% retention length of swordfish. Data source: Berkeley and Houde, 1980

Exercise 8.6 A predictive age-based model (Thompson and Bell analysis)

Worksheet 8.6

a. No change in fishing effort:

age group

mean weight (g)

beach seine mortality

gill net mortality

natural mortality

total mortality

stock number

beach seine catch

gill net catch

beach seine yield

gill net yield

total yield

t

FB

FG

M

Z

'000

CB

CG

YB

YG

YB + YG

0

8

0.05

0.00

2.00

2.05

1000

21.3

0

170

0

170

1

283

0.40

0.00

0.80

1.20

129

30.0

0

8486

0

8486

2

1155

0.10

0.19

0.30

0.59

39

2.9

5.7

3383

6428

9810

3

2406

0.01

0.59

0.20

0.80

21

0.15

8.7

356

21002

21358

4

3764

0.00

0.33

0.20

0.53

9.7

0

2.5

0

9312

9312

5

5046

0.00

0.09

0.20

0.29

5.7

0

0.44

0

2241

2241

6

6164

0.00

0.02

0.20

0.22

4.3

0

0.08

0

471

471

7

7090

0.00

0.00

0.20

0.20

3.4

0

0

0

0

0

total

54.35

17.42

12395

39454

51848

b. Closure of the beach seine fishery:

age group

mean weight (g)

beach seine mortality

gill net mortality

natural mortality

total mortality

stock number

beach seine catch

gill net catch

beach seine yield

gill net yield

total yield

t

FB

FG

M

Z

'000

CB

CG

YB

YG

YB + YG

0

8

0.00

0.00

2.00

2.00

1000

0

0

0

0

0

1

283

0.00

0.00

0.80

0.80

135

0

0

0

0

0

2

1155

0.00

0.19

0.30

0.49

61

0

6.9

0

10550

10550

3

2406

0.00

0.59

0.20

0.79

39

0

16.0

0

36560

36560

4

3764

0.00

0.33

0.20

0.53

17.8

0

4.6

0

16301

16301

5

5046

0.00

0.09

0.20

0.29

10.5

0

0.8

0

3923

3923

6

6164

0.00

0.02

0.20

0.22

7.8

0

0.14

0

824

824

7

7090

0.00

0.00

0.20

0.20

6.3

0

0

0

0

0

total

0

28.44

0

68158

68158

Although total yield increased in the case of closure of the beach seine fishery, a closure of this fishery without considering the socio-economic aspects is not recommended.

Exercise 8.7 A predictive length-based model (Thompson and Bell analysis)

Worksheet 8.7

length class



mean biomass

catch

yield

value

L1 - L2

F(L1, L2)

N(L1)

* D t

C(L1, L2)

(L1, L2)

(L1, L2)

10-15

0.03

1000

6.47

9.94

0.19

0.19

15-20

0.20

890.56

17.02

63.54

3.40

3.40

20-25

0.40

731.70

31.97

112.28

12.79

19.18

25-30

0.70

535.20

45.18

152.08

31.62

47.44

30-35

0.70

317.95

50.39

102.75

35.27

70.55

35-40

0.70

171.15

48.27

64.08

33.79

67.59

40 - L¥

0.70

79.60

61.10

55.72

42.77

85.55

Totals



260.44

560.39

159.86

293.91

Exercise 8.7a A predictive length-based model (Yield curve, Thompson and Bell analysis)

Worksheet 8.7a

length class



mean biomass

catch

yield

value

L1 - L2

F(L1, L2)

N(L1)

* D t

C(L1, L2)

(L1, L2)

(L1, L2)

10-15

0.06

1000

6.44

19.79

0.38

0.38

15-20

0.40

881.22

16.25

121.30

6.50

6.50

20-25

0.80

668.94

27.08

190.22

21.66

32.50

25-30

1.40

407.39

29.97

201.75

41.95

62.93

30-35

1.40

162.40

22.02

89.80

30.82

61.65

35-40

1.40

53.36

12.56

33.36

17.59

35.19

40 - L¥

1.40

12.84

5.80

10.57

8.12

16.24

Totals



120.13

666.79

127.05

215.41

Fig. 18.8.7A Thompson and Bell analysis, prediction of mean biomass, yield and value (values for X = 1 and X = 2 correspond to those calculated on Worksheets 8.7 and 8.7a respectively)

Exercise 9.1 The Schaefer model and the Fox model *)

Worksheet 9.1

year

yield (tonnes) headless

effort

Schaefer

Fox

i

Y(i)

f(i)
(x)

Y/f
(y)

ln (Y/f)
(y)

1969

546.7

1224

447

6.103

1970

812.4

2202

369

5.911

1971

2493.3

6684

373

5.922

1972

4358.6

12418

351

5.861

1973

6891.5

16019

430

6.064

1974

6532.0

21552

303

5.714

1975

4737.1

24570

193

5.263

1976

5567.4

29441

189

5.242

1977

5687.7

28575

199

5.293

1978

5984.0

30172

198

5.288

mean value

17286

305.2

5.666

standard deviation

11233

102.9

0.3558

intercept (Schaefer: a, Fox: c)

444.6

6.1508

slope (Schaefer: b, Fox: d)

-0.008065

-0.000028043

variance of slope:
sb2 = [(sy/sx)2 - b2]/(10 - 2)

2.361 * 10-6

2.7113 * 10-11

standard deviation of slope, sb

0.0015364

0.000005207

Student's distribution t10-2

2.31

2.31

confidence limits of slope:



b + tn-2 * sb

upper

-0.0045

-0.00001601

b - tn-2 * sb

lower

-0.0116

-0.00004007

variance of intercept:

973.4

0.01152

standard deviation of intercept

31.20

0.1073

confidence limits of intercept:



a + tn-2 * sa

upper

517

6.40

a - tn-2 * sa

lower

372

5.90

MSY Schaefer: -a2/(4b)

6128 tonnes


MSY Fox: -(1/d) * exp (c - 1)


6154 tonnes

fMSY Schaefer: -a/(2b)

27565 boat days


fMSY FOX: -1/d


35660 boat days

*) a, b replaced by c, d for the Fox-model

Worksheet 9.1a

f
boat days

Schaefer
yield (tonnes)

Fox
yield (tonnes)

5000

2021

2039

10000

3640

3544

15000

4854

4620

20000

5666

5354

25000

6074

5817

fMSY

6128 = MSY


30000

6080

6068

35000

5681

6153

fMSY


6154 = MSY

40000

4880

6112

45000

3675

5976

Fig. 18.9.1 Combined presentation of Schaefer and Fox models of a shrimp fishery. Top: yield against effort. Bottom: CPUE respectively In CPUE against effort. Data source: Naamin and Noer, 1980. (See Worksheets 9.1 and 9.1a)

Exercise 13.8 The swept area method, precision of the estimate of biomass, estimation of MSY and optimal allocation of hauls

Worksheet 13.8

STRATUM 1:


CPUE

VESSEL

TRAWL

CURRENT

DIST

AREA

CPUA

haul no.

Cw/t
kg/h

speed
knots

course
deg.

w. spr.
m

speed
knots

dir. deg.

nm.

swept
sq.nm.

Cw/a = Ca
kg/sq.nm.

i


VS

dir V

h * X2

CS

dir C

D

a


1

7.0

2.8

220

18

0.5

90

2.508

.02438

287.2

2

7.0

3.0

210

16

0.5

180

3.442

.02974

235.4

3

5.0

3.0

200

17

0.3

135

3.139

.02881

173.6

4

4.0

3.0

180

18

0.4

230

3.271

.03180

125.8

5

1.0

3.0

90

17

0.5

270

2.500

.02295

43.6

6

4.0

3.0

45

18

0.4

160

2.854

.02774

144.2

7

9.0

3.5

25

18

0.4

200

3.102

.03015

298.5

8

0.0

3.0

210

18

0.3

300

3.015

.02930

0.0

9

0.0

3.5

0

18

0.4

0

3.900

.03790

0.0

10

14.0

2.8

45

18

0.6

0

3.252

.03161

442.9

11

8.0

3.0

120

18

0.3

300

2.700

.02624

304.9

STRATUM 2:


CPUE

VESSEL

TRAWL

CURRENT

DIST

AREA

CPUA

haul no.

Cw/t
kg/h

speed
knots

course
deg.

w. spr.
m

speed
knots

dir. deg.

nm.

swept
sq.nm.

Cw/a = Ca
kg/sq.nm.

i


VS

dir V

h * X2

CS

dir C

D

a


12

42.0

4.0

30

17

0.5

160

3.698

.03395

1237.1

13

98.0

3.3

215

17

0.4

90

3.088

.02835

3457.3

14

223.0

3.9

30

17

0.0

0

3.900

.03580

6229.2

15

59.0

3.8

35

17

0.3

180

3.558

.03266

1806.3

16

32.0

3.5

210

17

0.5

270

3.775

.03465

923.5

17

6.0

2.8

210

17

0.5

330

2.587

.02374

252.7

18

66.0

3.8

45

17

0.5

30

4.285

.03933

1678.0

19

60.0

4.0

30

18

0.5

180

3.576

.03475

1726.5

20

48.0

4.0

210

18

0.5

180

4.440

.04315

1112.3

21

52.0

3.8

20

18

0.4

180

3.427

.03331

1561.3

22

48.0

4.0

30

18

0.5

190

3.534

.03435

1397.4

23

18.0

3.0

210

18

0.3

190

3.284

.03192

563.9

confidence limits of :

stratum

number of hauls
n

s

s/Ö n

Student's distr.
t (n - 1)

confidence limits for

1

11

186.9

141.6

42.7

2.23

[92, 282]

2

12

1828.8

1597.5

461.2

2.20

[814, 2843]

Mean biomass for total area:
Area of stratum 1 and 2 combined: A = A1 + A2 = 24 + 53 = 77 sq.nm.

Total biomass of whole area: B(A) = 1317.0 * 77/0.5 = 202818 kg, say 203 tons

From Eq. 9.3.1: MSY = 0.5 * 0.6 * 203 = 61 tons/year.

Worksheet 13.8a (for plotting graph maximum relative error)

number of hauls

tn-1

stratum 1

stratum 2

n


e a)

e b)

5

2.78

0.94

1.09

10

2.26

0.54

0.62

20

2.09

0.36

0.41

50

2.01

0.22

0.25

100

1.98

0.15

0.17

200

1.97

0.11

0.12

Worksheet 13.8b (optimum allocation)






stratum

s

A

A * s

A * s/S A * s

200*A*s\S A*s

1

141.6

24

3398

0.039

8 hauls

2

1597.5

53

84670

0.961

192 hauls

Total



88068


200 hauls

Fig. 18.13.8 Maximum relative error in the average catch per area of small-spotted grunt against number of trawl hauls. Topline: stratum 2, line below: stratum 1. Data source: Project KEN/74/023 (see Worksheet 13.8a)

In Part 1: Manual, a selection of methods for fish stock assessment are described in detail, with examples of calculations. Special emphasis is placed on methods based on the analysis of length frequencies. After a short introduction to statistics, the manual covers the estimation of growth parameters and mortality rates; virtual population methods, including age-based and length-based cohort analysis; gear selectivity; sampling; prediction models, including Beverton and Holt's yield-per-recruit model and Thompson and Bell's model; surplus production models; multispecies and multifleet problems; the assessment of migratory stocks; plus a discussion on stock/recruitment relationships and demersal trawl surveys, including the swept-area method. The manual ends with a review of stock assessment, giving an indication of methods to be applied at different levels of availability of input data, a review of relevant computer programs produced by or in cooperation with FAO, and a list of references. In Part 2: Exercises, a number of exercises are given with solutions. These exercises are directly related to the various chapters and sections of the manual.


Previous Page Top of Page