logoCOUNTRY COMPASS

Canada

Last year's ice storm which hit the Canadian provinces of Ontario and Quebec has "fuelled" great interest in stoves as a heat source. In fact, the Hearth Products Association of Canada, with support from Environment Canada and the Ontario Ministry of Environment, launched the Eastern Ontario Great Wood Stove Changeout on 8 January 1999, the anniversary of the ice storm.

The response has been surprisingly strong. The core of the changeout is discounts offered by stove retailers and manufacturers to encourage people to trade in their old conventional stoves for new clean-burning EPA certified models. The old stoves are destroyed, so they are removed from the airshed thus reducing pollution, and the new stoves are far more efficient, so less wood is consumed from then on. But the big surprise was how many people turned out on cold, dark winter evenings to attend Woodstove Workshops to hear what responsible wood heating is all about. (Source: E-mail exchange between John Olsen and John Gulland, "Stoves" network e-mail list.)

For more information on the Changeout project, visit: www.wood-heat.com/change1.htm; and on the workshops: www.wood-heat.com/workshop.htm

NSERC-EU agreement

In 1996, Canada (Natural Sciences and Engineering Research Council [NSERC]) and the European Union (EU) signed an agreement that provides reciprocal access to science and technology programmes. This gives Canadian researchers the opportunity to join at least two European partners in research projects under Research and Technology Development (RTD) framework programmes. The agreement covers the establishment of joint research projects, the shared use of facilities, exchange visits by researchers and information exchange and related activities.

Under the terms of this agreement, Canadian participants must secure their own funding. The advantages to Canada are the leverage of funding, strengthening of Canadian research through participation in leading-edge international research projects, involvement in the development of technologies that conform to the EU's technical standards and access to intellectual property generated in the course of the research. The agreement contains an annex on the management, allocation and exercise of intellectual property rights.

Canadian researchers can use NSERC grants to collaborate with European partners under the European Union's RTD programmes. NSERC programmes provide considerable flexibility to grantees regarding the uses to which grant funds may be put. In addition, the NSERC Research Partnerships Program permits foreign partners to participate in the project.

The possibility is now being explored of establishing collaboration (joint proposal under the fifth framework programme) in the areas of basic and/or applied wood drying between the Wood Drying Laboratory at the UBC-Department of Wood Science and a group of European universities and/or research centres under the NSERC-EU agreement.

The Wood Drying Laboratory is interested in topics related to improving the conventional and radio-frequency/vacuum (RF/V) drying of thin and thick lumber (softwoods and hardwoods) for producing a superior product with less energy consumption and in shorter drying times. Drying modelling of the above processes and understanding the wood-water relationships are also parts of our general research interests. They have a well-organized wood-drying laboratory. Their equipment includes a computer-controlled laboratory size (6 m3) conventional kiln, a laboratory size (0.25 m3) computerized RF/V dryer and access to a new commercial size (30 m3) RF/V dryer. (Source: Wood Science Internet discussion list.)

For more information, please contact:
Dr Stavros Avramidis, Professor, Department of Wood Science, University of British Columbia, 4028-2424 Main Mall, Vancouver, British Columbia V6T1Z4, Canada.
Fax: (+1) 604 8229104;
e-mail: [email protected];
www.wood.ubc.ca

China

Biomass gasification project

Henan is one of the larger agricultural provinces in China. According to statistics, more than 45 million tonnes of agricultural residues are yielded annually in Henan. In order to save energy and improve the environment, the Henan Energy Research Institute has developed a biomass gasification technology.

The following illustrates where and how the project has made progress.

Phase 1. The downdraft, fixed-bed gasifier was developed first. The gasifier can utilize various types of agricultural and forest residues, such as corn cobs and stalks and timber mill waste. The output of a series of gasifiers is rated at 12-150 Nm3 per hour, which need 6-75 kg feedstocks per hour. Systematic tests have shown the heat value of the producer gas to be about 5 000-5 250 kJ/Nm3 and the energy efficiency of the gasifier reaches about 72 percent.

Taking into account user acceptance, the gasifiers are a simple structure made from steel plating, with a diameter ranging from 30 to 80 cm and a height of about 120-210 cm.

The gasifiers are mainly used for supplying heat to industrial equipment, such as wood dryers and boilers, and to households for cooking. Although there are no difficulties for users, the dissemination of the gasifiers is proceeding slowly at present owing to the lack of awareness of the energy conservation aspect, and the relatively higher investment. It is hoped that the new technology will gradually be accepted by the public.

In practice, it has been found that the fixed-bed gasifier has some shortcomings; for instance, its limited suitability for the lower-density biomass feedstocks, such as wheat straw, rice straw and grass, and the lower heat value and higher tar content of the producer gas. In order to enlarge the suitability of the gasifier and improve gas properties, a second stage was initiated with the research and development of the fluidized-bed gasifier.

Phase 2. In 1998, the design was completed of a fluidized-bed gasifier system (output of 120 Nm3/h) with two waste heat exchangers for preheating air and supplying hot water. The gasifier was required to obtain producer gas with a higher heat value (5 500 kJ/ Nm3) through its special structure, its use of preheated air and controlling the air equivalent ratio; moreover, the energy efficiency of the system will reach 74 percent by recovering the waste heat, and the tar in the producer gas will be reduced by cracking at a higher temperature.

The gasifier, which is 80 cm in diameter and 350 cm high, is capable of supplying gas to satisfy the cooking requirements of 100 households. Since the capital cost is a very important factor for dissemination, more attention has been paid to simplifying the structure.

At the end of 1998, another cooperative project was sponsored by the Henan Science and Technology Commission of China and Iowa State University (ISU) of the United States. This project aims to obtain a producer gas with a high heat value and to promote biomass gasification technology through the research and development of ISU's ballasted biomass gasification technology and the Chinese integrated auxiliary equipment system.

ISU's gasifier uses an arrangement of high-temperature phase-changing material to store heat during the combustion phase. The latent heat is then released to support the pyrolysis phase of the cycle. The gas is produced only during the pyrolysis phase in the absence of air and the flue gas during the combustion phase is exhausted out, so that the gas heat value is much higher (14 200-16 600kJ/Nm3) than that of normal biomass producer gas.

In Henan Province, professors and engineers from several institutions are carrying out research and developing the system, including both the ISU's gasifier and the Chinese auxiliary equipment consisting of a steam generator, cleaner, waste heat exchanger, etc. The capacity of the whole system is required to supply producer gas for the cooking requirements of 100-150 village households.

At present, the project is running smoothly. During 1999, it is hoped that the manufacture, installation and demonstration test of the system in a village in Henan Province will be completed through the close collaboration of the Chinese and American technicians. (Contributed by: Ms Yang Hongxiu, Energy Research Institute of Henan Academy of Sciences, 29 Huayuan Road, Zhengzhou, Henan, China.
Fax: (+86) 371 5717871;
e-mail: [email protected])

Cuba

La dendroenergía, una alternativa para el desarrollo energético sostenible en Cuba

Se ha aprobado recientemente el proyecto de dos años de duración, dentro del marco del Programa de Cooperación Técnica de la FAO. El proyecto tiene como objetivo principal elevar la participación de la dendroenergía en el balance energético nacional, para lo cual se requiere:

· Iniciar las tareas para la planificación e implementación de sistemas dendroenergéticos optimizados a fin de incrementar la oferta de recursos bioenergeticos (leña, carbón y otros) y reducir el consumo mediante un uso más eficiente de los mismos, especialmente en zonas con problemas serios de abastecimiento de combustibles leñosos.

· Realizar los estudios de base para promover la sustitución de combustibles convencionales en actividades industriales por combustibles derivados de la biomasa forestal y asistir a las agencias especializadas en la materialización de dichas iniciativas.

· Dotar al país con las herramientas metodológicas y capacitar los recursos humanos necesarios para la planificación y organización de sistemas sostenibles y eficientes de producción, abastecimiento y uso de combustibles a partir de la biomasa forestal.

· Asistir en la finalización de los estudios, evaluaciones y revisiones de un conjunto de disposiciones reglamentarias de la Ley Forestal.

Si bien el proyecto contempla tres objetivos principales con sus actividades para el logro de los mismos, este proyecto dará especial atención a las soluciones para resolver los problemas urgentes de leña y carbón para ciertas comunidades rurales alejadas de los centros de producción.

Las soluciones a estos problemas contempla un conjunto de actividades de apoyo a los campesinos de las áreas. En la medida de lo posible, dichas soluciones serán ejecutadas en estrecha colaboración con otras actividades existentes de apoyo a los campesinos, o por ser desarrolladas por el país como podrían ser las futuras actividades a desarrollar en el marco del Programa especial para la seguridad alimentaria.

Este proyecto intenta a su vez estudiar, examinar y evaluar soluciones viables y aceptables para la sustitución de petróleo importado por biomasa en el sector industrial y proponer programas de inversión para ejecutar dichas iniciativas con el apoyo de inversionistas internos y externos. Además este proyecto preparará y formulará proyectos de seguimiento para ser financiados por el PNUD y otras agencias de financiamiento internacional.

Para más información, dirigirse al Sr. Miguel Trossero en la dirección indicada en la primera página.

Germany

Forests in Focus

A series of international fora focusing on global forests issues aims at achieving consensus among relevant interest groups on tools and concepts for the sustainable development of the world's forests. The Forests in Focus project (carried out within the framework of the World Forum on Forests, an official project of the World Exposition EXPO 2000 Hannover) adds operative recommendations for solving environmental problems concerning forests to current political negotiations and scientific meetings in the field of forestry. The fora act as an agent between politics, economics, science and the public and provide condensed up-to-date knowledge as well as agreed proposals for action appropriate to target groups. Thus, Forests in Focus supports the local implementation of guidelines on forest management and enforces the forest-related parts of the Agenda 21 process.

The World Exposition EXPO 2000 Hannover promotes the concept of sustainable development as agreed upon in Agenda 21 at UNCED 1992 in Rio de Janeiro. EXPO 2000 includes various worldwide decentralized projects. One of these, World Forum on Forests, has been initiated by authorities of the district Soltau-Fallingbostel, northern Germany, the Association for the Protection of Forests and Woodlands (SDW), the Forestry Commission of Lower Saxony and the Alfred Toepfer Academy for Nature Conservation (NNA).

The project includes various activities and projects demonstrating sustainable management and use of forests to local people and international visitors (reforestation of degraded heathland, redevelopment of former military areas, environmentally sound wooden buildings, wood energy, use of non-timber products, management of a nature reserve and tourism, etc.).

Within this frame, Forests in Focus forms the professional backbone. The fora address institutions and social parties concerned with forests, particularly those which: are directly connected to forests; play an active role in forest management; and are affected by forest management.

The fora want to qualify relevant social parties to participate efficiently in decision-making on forest issues, thus promoting worldwide implementation of the Agenda 21 recommendations.

The dialogue process will consist of: a) making existing knowledge accessible (dissemination, orientation, explanation); b) achieving agreement within society (communication, understanding, integration); and
c) raising responsibility and assisting realization of action plans (inspiration, encouragement).

Between January 1998 and 2000, seven fora will take place in Schneverdingen, northern Germany. With respect to the multiple functions of forests, the fora focus from different positions on a worldwide sustainable coexistence of both humans and
forests:

· Forests and Energy. To what extent can forests contribute to the world's future energy supply?

· Biodiversity - Treasures in the Forests. Does sustainable development of forests guarantee biodiversity?

· Forests and Atmosphere - Water - Soil. How far is forest management able to influence climate change, soil degradation and shortage of drinking-water?

· Forests - Source of Raw Material. How is forest use serving its conservation and sustainable development?

· Forest Management and Nature Conservation. Which kinds of strategy for conservation and for management guarantee a sustainable coexistence of humankind and forest?

· Forests and Culture. Which cultural conditions ensure sustainable forest development?

· Forest and Society. How can society take over its responsibility for the forest?

The final event will be the presentation of the results at EXPO 2000 Hannover.

For more information, please contact: Alfred Toepfer Academy for Nature Conservation (NNA), Hof Möhr, D-29640 Schneverdingen, Germany.
Fax: (+49) 5199 989-46;
e-mail: [email protected]; or
[email protected];
www.forests.in.focus.comlink.apc.org/general.htm

Morocco

The Special Energy Programme in Morocco, which is supported by the German Government, aims to improve provision of energy in rural regions and, at the same time, save resources by decreasing consumption of fuelwood. Since 1988, several studies were performed on energy demand, the possibilities for fuel saving and the potential for the use and spread of renewable energies. Energy and forestry experts used education campaigns and workshops to mobilize the population. Meanwhile, there are 100 biogas plants operating in the southern part of Morocco. Fuelwood-saving stoves were developed, tested and sold in cooperation with women from the High Atlas region. Through the development and introduction of improved boilers, fuelwood consumption of traditional steam baths could be reduced by up to 50 percent.

URBAN CONSUMPTION OF BIOMASS IN MOROCCO

 Sector 

Consumption (tonnes/years) Percentage
 Households  381 000 30.0
 Steam baths (hammams)  430 00 33.7
 Public bakery oven (ferranes)  406 000 31.8
 Steam pressing shops/dry cleaners  32 000 2.5
 Other establishments  25 000 30.0
 Total urban establishments  1 274 000 100.0

Souce: Boiling Poimt, No. 41



Nicaragua

Proyecto biomasa

Introducción. El Proyecto biomasa inició en la Universidad Nacional de Ingenería (UNI), en el Depto de Biomasa del DINOT, con una cooperación financiera y técnica del Gobierno de Austria en 1988, realizando la coordinación y la asesoría técnica la empresa Sucher y Holzer.

El objetivo principal del proyecto ha sido investigar y desarrollar las potencialidades de los recursos biomásicos nacionales para la producción de combustible líquido y gaseoso, así como también desarrollar aplicaciones tecnológicas para el tratamiento de desechos agroindustriales y domésticos que mejoren y protejan el medio ambiente.

A lo largo de estos años se han venido desarrollando áreas con proyectos específicos de investigación y desarrollo tecnológico, siendo estas actualmente: cultivos energéticos, maquinaria, compost, tratamiento de aguas residuales, biogas y laboratorio.

Cultivos energéticos. Esta área ha concentrado su desarrollo en las investigaciones de cultivos agrícolas que puedan ser explotados como fuente energética que sustituya combustible fósiles. Durante la fase inicial del proyecto se investigó el aprovechamiento del Jicaro y de la Higuerilla, dado que había antecedentes de investigaciones nacionales en el área, paralelamente se iniciaron las investigaciones con el cultivo del tempate, el cual se constituye en la principal línea de investigación del Proyecto biomasa.

Se tienen resultados de las investigaciones en tempate como el manejo de preparación de tierra, el manejo de la siembra, el control de maleza y de las afectaciones y control de algunas plagas del cultivo. Se realizaron las determinaciones del potencial del cultivo así como las características físicos, químicas de los diferentes productos obtenidos del tempate.

El cultivo se ha llevado a una escala de 1 200 ha sembradas en áreas de cultivo como producción y se tienen, pequeñas áreas como reservas genéticas y para fines de investigación.

Se desarrolló a escala de laboratorio la tecnología para la extracción y transterificación de la semilla de tempate y posteriormente se ensayó a escala de planta piloto la tecnología. Hasta la fecha se ha dimensionado una planta industrial que fue instalada en el mes de febrero de 1997 para la obtención de 3 000 t/anuales de combustible.

La realización de las investigaciones en este sector han sido llevadas a cabo en el involucramiento y coordinación con otras instancias nacionales como la Universidad Nacional de Nicaragua (UNAN León), Petronic, diferentes áreas de la UNI, instituciones y laboratorios europeos, ect. El núcleo mas importante a nivel nacional, después de la UNI, ha sido el que se ha creado en la UNAN León que ha trabajado en investigaciones de malezas, densidad de plantaciones, polinización, plagas, enfermedades y su propagación. Como una presentación preliminar de las investigaciones realizadas se realizó en Nicaragua el Congreso Internacional Jatropha 97.

Durante 1998 el Proyecto tempate, que comprende el área agrícola e industrial, está en una fase de transición que permitirá superar los actuales problemas de baja atención al cultivo y por ende baja productividad así como una nueva ubicación institucional en el Gobierno de Nicaragua. La prioridad de la transición es mantener la vigencia del objetivo estratégico nacional del proyecto en el sector energético.

Se iniciaron investigaciones en otros productos y subproductos del tempate y del marango, con el objetivo de determinar las potencialidades de estas plantas en otros campos como el farmacéutico, veterinario, agrícola, nutritivo.

Se ha investigado entre otras plantas de forma integral el uso del árbol de marango (Moringa oleifera) por las siguientes características:

· alto contenido de proteínas en hojas, ramas y tallos;

· contenido de proteínas en el fruto;

· porcentaje de aceite en la semilla;

· contenido de polielectrolitos (polipeptidos) en la semilla;

· presencia de una hormona vegetal en las hojas.

El marango se utiliza como forraje para ganados, para suministro de hormona para aumentar la productividad en los cultivos anuales, forestales y ornamentales y para el suministro de energía proveniente de la combustión de sus fibras y de la fermentación de los azúcares que contiene la planta para la producción de alcohol.

De hecho las actividades en Moringa oleifera han constituido la segunda actividad importante de investigaciones en biomasa. Se han realizado y están en marcha investigaciones sobre la utilización de este árbol. Los reportes técnicos han sido publicados en la revista Nexo de la UNI y a partir de sus resultados se han elaborados informes técnicos sobre la utilización en escala industrial.

Maquinaria. Este sector ha trabajado en el desarrollo de los equipos para la extracción y procesamiento del aceite de tempate. Los resultados obtenidos han permitido diseñar, fabricar, especificar y validar los equipos necesarios para el proceso de la planta industrial, realizándose ensayos a escala de laboratorio y planta piloto. Se desarrollaron algunos equipos para la fertilización de la plantas de tempate.

Se continua en el proceso de validación de los equipos y en el mejoramiento de los equipos para el despulpe del fruto de tempate.

Se dio asistencia técnica para el montaje de la planta industrial de procesamiento de tempate. Hasta la fecha se ha entrenado al personal en la operación de los equipos y se continua brindando esta asistencia. Dada la poca disponibilidad de materia prima de tempate se ha ensayado y preparado la adaptación de las instalaciones para el procesamiento de grano de soya.

En los meses de septiembre, octubre y noviembre de 1998 se están haciendo modificaciones en la prensa de la planta industrial para realizar un ensayo de extracción en condiciones supercríticas de aceite y destoxificación de la torta de la semilla de tempate. Este ensayo a nivel de laboratorio y de planta piloto dio bueno resultados.

Compost. La tecnología desarrollada en este sector ha permitido la instalación de una planta de tratamiento de los residuos orgánicos de la Ciudad de Masaya, que permite disminuir la contaminación vía la conversión en abono orgánico de la basura. Esto se realizo a través de un convenio con la Alcaldía de Masaya.

El proyecto de compostaje ha permitido desarrollar y probar toda la tecnología del compostaje en una escala mediana, involucrando acciones desde la recolección de la basura hasta la comercialización del abono orgánico.

Para este último propósito, se formó una empresa que maneja todo el proceso, en conjunto con la Alcaldía de Masaya y con una participación de la UNI. Se ha concluido que técnicamente es posible el compostaje pero no sostenible económicamente en las actuales condiciones, debido al no pago por parte de la población del servicio de recolección y principalmente por la falta de mercado para el compost, dada la poca tradición de su uso por los agricultores. La capacidad de producción es de 400 quintales por día.

La actividades de producción y comercialización del compost han alcanzado un equilibrio económico y es prioritario aumentar las ventas y mantener una presencia constante del producto en el mercado para que los clientes ya establecidos tengan confianza en que serán suplidos continuamente.

Tratamiento de aguas residuales y biogas. Esta área ha trabajado en la investigación y aplicación de tecnologías que disminuyan o eliminen la contaminación ocasionadas en cuerpos de agua por residuos o desechos vertidos por industria o ciudades, teniendo como objetivo la protección del medio ambiente, la protección de los recursos acuáticos, ríos, lagunas y aguas subterráneas.

Se realizaron asistencias y aplicaciones técnicas a diferentes industrias nacionales que vertían residuos sin tratamiento, como jabonerías, aceiteras, curtidurías, ingenios azucareros, rastros municipales e industriales. Se ha participado en la elaboración de la Ley ambiental Nacional, un sector de la asesoría ambiental principal del Ministerio del ambiente siendo de referencia nacional en los análisis y caracterizaciones de vertidos para la industria.

Se han realizado estudios y evaluaciones de las lagunas de oxidación de las ciudades de Masaya y León. En la ciudad de Masaya se ha realizado un estudio completo para el establecimiento de una nueva red de alcantarillado sanitario y de un nuevo sistema de tratamiento, los estudios serán la base para un posible proyecto que podría ser financiado por la cooperación del Gobierno de Japón.

En las lagunas de oxidación de la Ciudad de Masaya, se han realizado experimentos con floculantes naturales que permitan la eliminación de las algas en los efluentes de las lagunas de oxidación

Como parte del programa de investigaciones en biogas, se realizó la construcción de los sistemas de tratamiento de las aguas residuales de los mataderos municipales de Masaya y Chinandega y el diseño y planificación para el matadero municipal de León y de Carnic.

Se ha realizado el proyecto piloto del «biofiltro masaya», construido en el primer semestre del año 1996 por la Cooperación Austríaca -Proyecto BIOMASA y el Instituto Nicaragüense de Acueductos y Alcantarillado, como contraparte del proyecto, con el objetivo principal de introducir este concepto de tratamiento de aguas residuales, hasta la fecha poco conocido, en los países de América Latina. Hasta la fecha se planificado la construcción de dos en la ciudad de León y de cinco en la República del Salvador. Esta tecnología de tratamiento permite aplicar conceptos económicos de rentabilidad en el área de tratamiento de aguas domesticas.

Laboratorio. El área de laboratorio cumple con dos funciones principales, primero realizar y desarrollar los ensayos que se requieren para las investigaciones en cultivos energéticos, tratamiento de agua, biogas y extracción de hormonas del marango. En estos ensayos se desarrollan los procesos que serán aplicados a escala piloto o bien se suministran los productos obtenidos a través del proceso desarrollado para realizar otros ensayos. La segunda función, es la de realizar análisis químicos, físicos y biológicos necesarios en las diferentes áreas de trabajo del Proyecto biomasa.

Entre los procesos que se han desarrollado se encuentran, entre otros, el proceso de transesterificación del aceite de tempate, la extracción de hormona del tempate y del marango, la extracción y concentración del polielectrolito del marango, el funcionamiento y operación de reactores experimentales para biogas con diferentes desechos líquidos de origen agroindustrial.

Se está investigando la producción de jabones transparentes a partir de aceite de tempate que permitan aumentar el rendimiento económico de las operaciones de la Planta Industrial de procesamiento de tempate.

Se realizan algunos servicios externos que son demandados por usuarios que tienen una buena referencia de la calidad de análisis que se realizan en biomasa. La mayoría de las solicitudes son para análisis que permitan caracterizar o monitorear un vertido liquido o sólido de una agroindustria. Se ha iniciado una política de cobro de este servicio de manera que se pueda recuperar los costos de materiales y recursos humanos.

Se estima que con la aplicación de la Ley del Medio Ambiente, por parte del Ministerio de Recursos Naturales, se tendrá un incremento de la demanda de estos servicios y algunos, estarán acompañados con la realización de estudios de impacto ambiental.

Para más información, dirigirse a: Sr. Leonardo Mayorga Garcia, Proyecto Biomasa, Ap. postal 432, Rupap Dinot, Villa Progreso, Castado Sur, Nicaragua.
Fax: (+505) 249 09 37;
correo electrónico: [email protected]; o
Ing. Nikolaus Foidl, Project Manager, Sucher & Holz, Alberstrasse 4, A-8010, Graz, Austria.
Correo electrónico: [email protected]:
Fax: (+43) 316 327071.

Perú

Valorizacion energética del bosque tropical aprovechamiento leñoso

La implementación de adecuados planes de manejo forestal en bosques tropicales permite, entre otras cosas, el aprovechamiento de un mayor volumen leñoso por unidad de superficie y la implementación de nuevas alternativas productivas con las respectivas ventajas adicionales como el aumento de fuentes de trabajo para la población rural asentada en zonas aledañas a los bosques bajo manejo.

Estas nuevas alternativas productivas, complementarias al aprovechamiento mecanizado convencional, son posibles de instalarse mediante la aplicación de tecnologías intermedias apropiadas que se caracterizan por su simplicidad tecnológica, su relativa baja inversión en equipos y su adaptabilidad al manejo por parte de los campesinos.

A tal efecto, el Gobierno del Perú, implementó una serie de módulos productivos con tecnologías intermedias apropiadas dentro del plan operativo del proyecto de Manejo Forestal del Bosque Nacional Alexander von Humboldt (BNAvH).

El trabajo comenzó con el análisis y la evaluación de materias primas forestales con potencial para adecuarse a las condiciones técnicas, económicas y culturales del lugar. El análisis determinó que la magnitud de los residuos, en la mayoría de los casos, supera el 55 por ciento del volumen aprovechable. En términos generales se determinó que la cantidad de material aprovechable alcanza un promedio de 23,72 m3/ha del volumen comercial (que incluye tocón) y un adicional de tronco y copa de 13,75 m3/ha, lo que resulta un total de material leñoso susceptible a valorizar del orden de 37,47 m3/ha. Los 13,75 m3/ha, de material leñoso residual podrían ser incorporados a la economía del poblador rural mediante la instalación de módulos productivos tales como la producción de carbón.

Por ejemplo, en el caso de un módulo productivo del BNAvH de 3 559,9 ha, se obtuvieron 70 285,87 m3 (19,7 m3/ha), del mismo sólo se aprovecharon 533,9 ha con un volumen equivalente a 4 958,5 m3 (9,29 m3/ha), quedando en el bosque 93 por ciento de la madera comercial aprovechable, sin considerar el material leñoso residual.

Las principales causas de este bajo aprovechamiento se debe a:

· maderas de especies desconocidas por el mercado;

· sistemas de aprovechamiento mecanizado deficientes;

· centros de transformación primaria ineficientes;

· métodos simples de aprovechamiento y transformación de residuos leñosos inexistentes;

· lejanía de los grandes mercados.

Por tal motivo, el proyecto estableció que una manera de valorizar el material leñoso residual y los árboles con defecto, es mediante la instalación de módulos de producción de leña y carbón adaptados a la pequeña empresa rural con suficientes márgenes de rentabilidad que se logran gracias al empleo de tecnologías intermedias apropiadas de tal manera que sea atractivo para los campesinos y autosostenibles. Además los módulos productivos seleccionados están servidos por una red vial construida para la extracción mecanizada convencional para facilitar su producción a bajo costo por parte de la comunidad local.

Para más información, dirigirse a los ingenieros forestales: Luis Novoa, Guillermo Abadie y Mario Quevedo, Manuel M. Salazar 160, San Isidro, Lima 27, Perú.
Fax: (+51) 1 341545/462602;
correo electrónico: [email protected]

Philippines

Panorama of the Philippine wood energy situation

When things are viewed from afar,

as in the case of a panoramic view, sometimes the view is not too clear.

So they caution us - "not to mistake the forest for the trees, and the trees for

the forest...."

The Republic of the Philippines is located in the South China Sea, to the northeast of Malaysia. The Philippine archipelago, generally quoted to consist of 7 100 islands, has a total land area of approximately 300 000 km2. There are three main island groups in the archipelago: the Luzon group of islands in the north, the Visayan group in central Philippines and the Mindanao and Sulu group to the south. The country is further divided into 13 regions (clusters of neighbouring island provinces) plus three other specially categorized regions, namely, the National Capital Region (NCR), the Cordillera Administrative Region (CAR) and the Autonomous Region in Muslim Mindanao (ARMM).

As regards population, the Philippines ranks as the ninth most populous country in Asia, and fourteenth in the world (Philippine Agenda 21: A National Agenda for Sustainable Development 1997). The annual population growth rate is 2.32 percent, and the average household size is 5.31; it is projected that by 2025 there will be about 128 million Filipinos (68 million in 1995).

Gross domestic product in 1993 rose to US$54 068 million and the Human Development Index was at 0.66 in 1994. Basically an agricultural economy, the Philippines has been suffering from high levels of poverty, widespread unemployment, low levels of savings and investment, massive external debts, large deficits, price distortions and indiscriminate land and ecosystem conversion.

Wood energy resources and consumption patterns. According to an officer of the Philippine Department of Environment and Natural Resources, Bayani S. Nera, the country is biomass-rich. These woodfuel resources generally come from different origins: logging residues, timber stand improvement removals, processing mills residue, forest plantations, mangrove forests, brushlands as well as other alternative sources (agroforestry farms, integrated social forestry areas, private homelots and family backyards). Likewise, alternatives to woodfuel are biomass resources such as agricultural crop residues in the form of coconut parts (shells, fronds, husks), rice husks and straw, corn cobs, sugar-cane bagasse and other agricultural wastes. These are found in large quantities and are commonly used by Filipinos.

On the other hand, a recently published 1995 Household Energy Consumption Survey (HECS, 1995) conducted by the country's National Statistics Office (NSO) and Department of Energy (DOE) reported the types of energy consumed by Filipino households. The results show that, next to electricity, kerosene, fuelwood, charcoal and biomass resources are the most popular sources of energy. As to end use, fuelwood is used mainly as cooking fuel, while charcoal is used both as cooking fuel and for traditional ironing purposes.

A closer look indicates that 8.1 million households out of 12.8 million used fuelwood together with other types of fuel in 1995. Compared with the 1989 HECS results, this is an increase of 638 households but, taken as a whole between the two time periods, the proportion registered a 3.6 percent decrease. It is interesting to note that the urban sector registered an increase while the rural counterpart reflected a decline in fuelwood use.

In general, among the lowest-income groups, three out of four households depend on fuelwood as their energy source. Among charcoal users, the trend seems to indicate that increases in income likewise tended to increase the use of charcoal.

In absolute terms, total fuelwood consumption has diminished. In 1989, an overall total of 18.3 million tonnes was recorded, compared with 14.6 million tonnes in 1995. Charcoal consumption reached 770 000 tonnes and biomass residue a figure of 2.6 million tonnes. The fact thus remains that wood-derived and biomass-residue continued to be important sources of energy in Filipino homes during the six years after the 1989 survey.

Fuelwood consumption per caput for 1995 was 327.61 kg, charcoal 28.55 kg, while biomass residue was 53.89 kg. For the most part, fuelwood and biomass residue are gathered free of charge; two out of every five households gather them from private lands. About the same number gather fuelwood from their own woodlots or farms. For households using fuelwood and biomass residue, only 5.4 percent purchased biomass residue, while only 16 percent also purchased fuelwood. Charcoal is mostly purchased; in fact, three out of four households bought charcoal and only 23.9 percent of charcoal-consuming households produced their own supply (HECS, 1995).

The main reason for using fuelwood is that food tastes better. Respondents also claimed that it provided hotter flames and that it has a lower cost than other commercial fuels. Fuelwood, however, is dirty to use.

Future trends. Reviewing the more recent literature about wood energy in the Philippines, there are a number of observations to be made. However, emerging global trends that affect the overall scenario of wood energy in this country also have to be considered. Inevitably, Les Milbrath's sustainability maxims that "everything has to go somewhere, everything is connected, and you can never do just one thing ..." must be accepted as a consequential reality.

While the country remains an LDC (least-developed country) despite its dreams of "tiger-hood" and NIC (newly industrialized country)-hood, poverty, especially in the countryside, continues to exist. It is certainly transitioning towards modernization and globalization but, like a zero sum game, the issues of unemployment, dislocation and displacement are set aside permanently rather than temporarily when the critical circumstances arise.

Fuel switching, i.e. shifting from non-conventional fuels in favour of commercial fuels, as an emerging trend has been recognized universally, the Philippines not being an exception. Yet, the factors leading to such switches remain vague for the time being. When does it happen? With a higher per caput income? With a more progressive agricultural transformation? With structural changes? Is it about economics? Is it about culture? Or, is it about education?

Hence, as more and more environmental efforts to sustain the natural resources (i.e. forests, trees, water) hover, forces against them are stronger in some regions than ever. Land conversions, the onset of climatic changes (i.e. El Niño dry spells, La Niña), impacts of the regional currency crisis, to name but a few, drive more and more households and families back to where they once belonged. Poverty-stricken, jobless, lacking education - and totally dependent upon the forces of nature. Perhaps, that is why they call it a "poverty cycle".

As far as facts and numbers are concerned, in terms of the supply and demand for wood energy in the years to come, one may consider them a "best estimate" since they vary. Some say that there will be a deficit, while others predict an oversupply. For instance, the Table below, obtained in summary from the Master Plan for Forestry Development 1990: Philippines, clearly indicates a deficit in the decade to come.

FUELWOOD SUPPLY AND DEMAND PROJECTIONS(in million m3)

  2000 2005 2010 2015
Supply 27.78 30.91 30.04 37.17
Demand 44.44 46.40 48.40 52.10
Balance (16.62) (15.49) (14.36) (14.93)

(Sources: Master Plan for Forestry Development 1990, as recounted in Bayani S. Nera's article, National woodfuel situation, 1997.)

In a more positive development, T. Bhattarai of the FAO-Regional Wood Energy Development Programme (RWEDP) presented a consultant's point of view. In his paper, he acknowledged variations among sources. While the Philippine Master Plan for Forestry Development showed a deficit of 15.5 million m3 in 1990, he cited that the Philippines Household Energy Strategy (PHES) study presented a threefold sustainable woodfuel supply potential in the same year.

This is so since new non-forest areas also contribute to the supply of woodfuel sources. Such non-forest areas include scattered trees in homesteads, home gardens, farm lands, village and/or community woodlots, to name but a few. In fact, this source alone is said to contribute about 60 percent of the total woodfuel supplied in the country.

Another source, comparative statistics of all RWEDP member countries, also shows a similar positive, sustainable trend (see following Table).

WOODFUEL SUPPLY AND CONSUMPTION OUTLOOK:
COUNTRY BALANCES (in `000 tonnes)

PHILIPPINES 1994 2010
Total woodfuel consumption 23 501 30 329
Potential supply:
- sustainable woodfuel from forest land
- sustainable woodfuel from agricultural land
- waste woodfuels from deforestation

12 962
30 819
45 486

7 941
39 177
24 052
Total potentially available woodfuels 89 267 71 171
50 percent of crop-processing residues 9 821 11 535
Total potentially available biomass fuels 99 088 82 706

(Source: Regional Study on Wood Energy Today and Tomorrow in Asia. RWEDP FD No. 50. 1997.)

The RWEDP methodology included assumptions on land use, wood production, wood from agricultural lands and fuelwood consumption patterns from various sources. All told, it is possible that the different sources made use of different assumptions and methodologies as a basis for their projections. Whatever the differences are, and no matter what the variations are, the scenario appears to be promising. Despite the unfolding of a new era of intense information technology, many Filipino households will continue to depend upon wood-derived and biomass-residue energy sources to fulfil their cooking fuel requirements. On the supply side, sustainability efforts will continue to meet pressing demands in order to assure an efficient supply. It is virtually just a balancing act. At least, for the near future, the wood energy scenario must not stay too long in its comfort zone. (Contributed by: Prof. Elizabeth M. Remedio, Economics Department, University of San Carlos, P. del Rosario Street, Cebu City 6000, Philippines.
E-mail: [email protected])

Russian federation

Charcoal and fuel briquettes made from bark

In some cellulose-making enterprises, some of the bark and wood wastes are deposited in dumps, which results in environmental pollution. These dumps occupy a significant amount of territory. One such dump surveyed contained more than 1 million tonnes of bark. And this dump is not unique.

The material in a dump consists of 60-70 percent bark, the rest being made up of wood wastes. Raw material contains extraneous impurities, building dust, stones and metal. A representative sample of the material was dried in a laboratory and then crushed in a pounding machine. The material was then separated by sifting and the ash content of each fraction was determined (see Table).

ASH CONTENT OF DUMP MATERIAL

NO. OF SIZE
FRACTION
SIZE OF
FRACTION
SHARE OF
FRACTION
ASH
CONTENT
1 f<1 10 38.0
2 1<f<2 10 16.0
3 2<f<10 32 8.0
4 10<f 42 1.3

Two-thirds of the total ash was in fractions 1 and 2. The ash part will decrease if separated. When the relative humidity of the bark reaches 60 percent, the bark requires drying.

A technological circuit of dump processing was developed (see Figure).

DUMP PROCESSING CIRCUIT

Fractions of bark of >5 mm are used as raw material for charcoaling and fractions of bark of <5 mm are pressed to make fuel briquettes.

The cylinder-sorting installation for the dried bark was developed by us. Installation cylinders are supplied with pyramid-shaped ledges, thus ensuring that a layer of material rises up to a sorting surface, and the sand sinks to the bottom layer and is removed.

Drying the raw material is carried out in two stages: first, mechanical squeezing to reduce humidity to 35-40 percent; and, second, drying through furnace gases obtained by burning part of the dried raw material.

Forty-six percent of the bark is used as fuel; the rest of the raw material is dried.

A project to obtain charcoal and briquettes from bark is now being developed. The economic analysis shows, however, that such a process will not only produce an ecological benefit, but also a financial one. (Contributed by: Vladimir Jagodin, Professor/Head of Department; Yury Yudkevitch, Associate Professor; Leonid Svirin, Associate Professor; and Anatoly Ivanov, Associate Professor, Department of Technology of Chemical Forest Products of St Petersburg Forest Technical Academy, St Petersburg, Russian Federation;
fax: (+7) 3133 73256; e-mail: [email protected])

Sweden

Sweden has a well-developed and extensive net of central heating systems. About 200 out of a total of 250 communes now run district heating systems mainly based on biofuels.

In 1993 there were about 428 energy plants using woodfuel, with a boiler capacity of more than 5 MW. Approximately half of the plants are municipally owned.

The development of the bioenergy sector has also been positive from an economic and employment point of view. A number of farmers, forest owners and forest workers today receive most or part of their income from the bioenergy sector. Some 2 000 worker years are generated owing to the use of biofuels within the industry and heating plant sectors in Sweden.

The employment created from the use of biofuels in small private houses is estimated to correspond to some 3 000 full-time annual workers.

It is interesting to note that, although people in Sweden use wood to heat their homes, they could increase the GNP by exporting more pulp or paper.

One cubic metre of wood in Sweden can be used to:

· reduce imports of fossil fuel by
SKr 130 (US$16);

· increase export income by selling pulp by SKr 800 (US$98);

· increase export income by selling paper by SKr 2 000 (US$245).

(Source: Mr David South, School of Forestry, Auburn University, AL 36849-5418, USA; e-mail: [email protected]. org)

For more information, please visit the following Web sites:
www.forestindustries.se/eng/oh/11300.jpg;
www.svebio.se/environment/env6.html

United states

Maine currently ranks second only to the State of California in the extent of wood biomass use, and ranks first in the nation in the percentage of its electricity produced from wood. Wood-fired systems currently produce one fifth of the state's electricity. The biomass energy industry supports employment opportunities for nearly 3 000 Maine residents, generates $118.5 million in personal income and contributes $144 million to Maine's annual gross state product. (Source: Mr David South, School of Forestry, Auburn University, AL 36849-5418, USA.)

For more information, please visit the following Internet site:
http://solstice.crest.org/renewables/SJ/biomass/072.html


[Top of page][Contents]