Logo COUNTRY COMPASS

Brazil

IDB approves grant for Brazilian renewable energy project

The Inter-American Development Bank (IDB) has approved a US$898 950 grant to support a Brazilian programme promoting decentralized energy services based on renewable sources in isolated communities. The resources from the Japan Special Fund, which is administered by IDB, will help the Brazilian Government to improve the management and the effectiveness of its programme, known as PRODEEM (Programa de Desenvolvimento Energético de Estados e Municípios), for developing renewable energy services in rural municipalities.

The project will create a framework designed to attract investment in renewable energy systems and renewable energy-based services that can improve the quality of life and raise productivity in isolated populations that lack access to modern and clean sources of energy. Under the programme, PRODEEM would step up the transfer of project execution to decentralized market agents and the private sector. It would also provide training to the agents and assist small and medium-sized enterprises in using renewable energy to boost their productive capacity.

The project also seeks to reduce deforestation due to the use of wood and charcoal as energy sources, as well as to decrease emissions from poorly maintained diesel generators. (Source: IDB press release, 1 September 1999.)

El Consejo termina con los subsidios a la producción de alcohol

El Consejo Interministerial del azúcar y del alcohol (CIMA) decidió terminar con los subsidios al alcohol y crear un grupo de estudio para el mismo sector. La secretaría ejecutiva del Ministerio de Agricultura y Comercio garantiza que no realizará ningún aumento del precio del alcohol como combustible. A partir del 1 de noviembre, el gobierno va a suspender el subsidio otorgado a las distribuidoras del alcohol hidratado de todo el país, de manera tal de compensar el precio del producto en el mercado. El diferencial de competitividad correspondió $R 0,045 por litro de alcohol hidratado.

También será suspendido, el subsidio concedido a las distribuidoras de alcohol anhidro que está siendo mezclado con gasolina. Las principales distribuidoras del producto, pertenecientes a las regiones de Paraná, Río de Janeiro, Minas Gerais, Mato Grosso, Mato Grosso del sur del Pará, recibían $R 0,037 por litro vendido.

«No tendrá ningún efecto en el mercado, puesto que las distribuidoras no estaban usando este subsidio», afirmó Fortes.

El consejo creó un grupo de trabajo para obtener datos del sector alcoholero. Una de las modificaciones que el grupo estudiará será la actualización del programa de Ecualización.

En el noreste, el programa beneficia a los productores con R$ 5,07 por tonelada de caña de azúcar vendida. Pero los usuarios de la región piden que el subsidio sea de R$ 9,40.

«Nosotros vamos a estudiar la situación, analizar los costos, los gastos, en general, y vamos a ver si vale la pena», enfatizó el secretario-ejecutivo. Para las demás regiones del país, Márcio Fortes dijo que se deberá modificar el modo de pago del beneficio.

Actualmente, en las regiones del norte, centro-oeste, sur y sudeste, el subsidio se paga a las distribuidoras. «La idea es hacer que todos estos estados tengan la misma forma de pago que se hace en el nordeste, directamente al productor», explicó Fortes. (Extraído de: CNN en portugués, agencia del Brasil, 15 de octubre de 1999; http://cnnemportugues.com/economia/1999/10/15/brasil.alcool/index.html )

 

China

Bioenergy systems in a South Chinese context

The present development in Asia will greatly affect the future global environment, owing to its high growth rate and the high population in the area. The production and use of energy is a key factor in this development. China is a major symbol for the growth and development in Asia. In order to elucidate the possibilities and problems involved in bioenergy production and use in China today and in the future, the Department of Forest Management and Products held a course on Bioenergy Systems in a South Chinese Context at the Swedish University of Agricultural Sciences (SLU) and Central South Forestry University (CSFU), Hunan Province, China. This multidisciplinary course, which took place from 11 October to 12 November 1999, aimed to increase the knowledge of bioenergy, in general, and of bioenergy use in a Chinese context, in particular.

The students were given:

The course gave an overview of present and future feasible bioenergy applications in Central South China. The Chinese overview was complemented with experiences and research results from Sweden. The two perspectives provided increased understanding of the potential for bioenergy in China and Asia. (Contributed by: Dr Bengt Hillring, Swedish University of Agricultural Sciences, Sweden.)

For more information, please contact: Mr Johan Vinterbäck, Department of Forest Management and Products, Swedish University of Agricultural Sciences, Box 7060, 750 07 Uppsala, Sweden.
Fax: +46 18 673522;
e-mail: Johan.Vinterback@sh.slu.se

 

Honduras

Proyecto FAO TCP/HON/6713 Apoyo al subsector dendroenergético de Honduras -algunos resultados en relación al balance de carbono de Honduras

El TCP realizó una nueva estimación del consumo de madera para energía en el país, basada en un estudio del consumo domiciliar en el Distrito Central, en la Localidad de San Lorenzo y en una zona rural del Sur de Lempira. También se realizó un estudio del consumo pequeño-industrial y artesanal en los ocho ramos más importantes. Los resultados (para el año 1998) se resumen en el cuadro A.

Doméstico rural

Doméstico urbano

Industrial

TOTAL

3 700 000 m3/a

1 480 000 m3/a

350 000 m3/a

5 530 000 m3

2 405 000 t LE /a

962 000 t LE/a

227 500 t LE/a

3 600 000 t LE/a

1 200 000 t C/a

480 000 t C/a

113 000 tC/a

1 800 000 t C/a

18% comercial

93% comercial

100% comercial

 

La tendencia del consumo de madera para energía parece ser estable en el sector doméstico y decreciente en el sector industrial. La leña está siendo substituída por gas de petróleo liquefactado (GPL) y electricidad en los domicilios urbanos, pero el aumento de la población urbana hace que el número de usuarios aumente. En la población rural, la nueva estimación es más baja que las anteriores debido a un menor consumo medio por hogar. En las pequeñas industrias, hay algo de substitución y menor nivel de actividad en muchos ramos.

En cuanto a las emisiones de carbono originadas en el uso de madera para energía, se encontró que:

Queda en claro que el uso de leña no es una causa principal de la deforestación ni del cambio de uso del suelo, aunque en algunas áreas -donde los recursos forestales son muy escasos y la población rural es densa- el corte de árboles vivos para leña puede estar reduciendo la biomasa en pie. Las causas principales de la deforestación son la expansión de las fronteras agrícolas, la pecuarización de muchos sistemas productivos y los sistemas de agricultura migratoria no estabilizados.

Teniendo en cuenta el origen de la leña utilizada (podas, residuos de desmonte, madera muerta), la reducción de consumo de leña en el sector domestico rural no acarrearía reducción de las emisiones de carbono. Sólo en los casos en que la leña proviene del corte de árboles vivos (que representan no más del 50 por ciento del consumo urbano) se podría afirmar que su ahorro o substitución por otro combustible podría reducir las emisiones. Pero en estos casos las emisiones netas también pueden reducirse desarrollando sistemas de manejo sostenible para producción de leña.

El potencial para producir leña bajo manejo sostenido parece bastante grande, porque:

Si se aprovecharan racionalmente los recursos forestales leñeros, sería posible producir en forma sostenible los siguientes volúmenes de leña (ver cuadro B).

Recursos

Disponibilidad

Productividad

(m3/ha/año)

Utilización para leña

Volumen

(m3/año)

%

Aprovech. pino

600 000 m3/a

 

40%

240 000

9,7

Aserrado pino

600 000 m3/a

 

30%

180 000

7,3

Sombra de café

210 000 ha

4,5

80%

756 000

30,5

SUBTOTAL*

     

1 176 000

47,5

Guamiles

144 000 ha

2,0

50%

144 000

5,8

Raleos en PMs

270 000 ha

3,6

30%

291 600

11,8

Bosques robles

360 000 ha

4,8

50%

864 000

34,9

TOTAL

     

2 475 600

100

* actualmente utilizado en su mayor parte

Este volumen sería suficiente para atender a toda la demanda industrial y comercial de leña de Honduras, que es del orden de 2 100 000 m3/año.

Por su alto costo (debido entre otras causas a relieve accidentado, tierras no mecanizables, incidencia de incendios) y los bajos índices de productividad prevalecientes (debidos a sitios de baja calidad, dificultades para el manejo, afectación por malezas y plagas), las plantaciones energéticas no son económicamente viables. El manejo de bosques secundarios (guamiles o tacotales), los sistemas agroforestales sucesionales, y el manejo de bosques de Quercus son alternativas mucho más seguras, de menor inversión y de mayor rentabilidad para la producción sostenible de leña y la fijación de carbono, que tienen además un componente importante de conservación de la biodiversidad.

Para más información, dirigirse a Sr. Miguel Trossero.

 

India

Fuelwood and displaced people: a case study from northwestern Bengal, India

FAO's Regional Wood Energy Development Programme in Asia (RWEDP) sponsored a case study entitled, Forests and displaced people: woodfuel collection and trade as a first step survival strategy, which was recently undertaken by the Indian Institute of Forest Management (IIFM), Bhopal, an autonomous institute under the Ministry of Environment and Forests of the Government of India. The study aimed to understand the regional peculiarities of woodfuel flow in the narrow, chicken-neck belt of northwestern Bengal. This is a strategic location, being surrounded by a number of sister states and close to a few neighbouring countries, namely Bangladesh, Nepal and Bhutan. This area is prone to the influx of large numbers of people from outside the regioon who migrate under traumatic or distressed conditions, driven by the onslaught of natural and human-caused catastrophes. Fuelwood collection and trade acts as a safety net in the first-step survival strategy of these displaced people.

The main objective of the case study was to document the impact of unwanted outside pressure on the area's forests with special reference to the status of fuelwood production, collection and marketing, and other related issues.

The study used a combination of methods for information collection, which included surveys, interviews, focus group discussions and participatory rural appraisal (PRA). Eight different kinds of questionnaires and checklists were used in the primary data collection process. In order to make detailed observations and to fulfil the study objectives, five Forest Divisions spread over three districts of northwestern Bengal were selected. A total of 255 respondents in 55 villages of 18 forest ranges were selected for carrying out field surveys to generate data for the study.
The tea garden (TG) labour in Jalpaiguri imposes a heavy demand on fuelwood from the forest, especially since the regular TG fuelwood quota has been withdrawn by the Forest Department. Trees on non-forest areas, traditional woodlots and private plantations are largely missing in the Baikunthapur and Darjeeling Forest Divisions. However, in the forest-deficient Cooch Bihar Social Forestry Division, fuelwood is derived either from the traditionally managed home gardens or as a purchased item from the market. The non-monetized or free fuelwood supply in the former case is derived destructively from the area's forests in an unauthorized manner. The distance to be travelled and time taken for fuelwood collection have been increasing over the years as have the effort and patience needed to collect dry leaves and twigs from the forest floor. It is the rural women who have had to bear a major share of the brunt of this ecological ravage. Attracted by the ease of illegal fuelwood removal from the State forests and the lucrative prospects of earning cash from the sale of this freely collected fuelwood, primary collectors use their hands, axes and sickles to bring down young and mature trees in a systematic and ingenious manner. An armed Forest Protection Force deployed by the Forest Department in the area has also been unsuccessful in protecting the forests from this destruction.

Of the more than 0.7 million rural people engaged in fuelwood trade in the study area, around 36 percent are migrants who depend on fuelwood collection and sale as the major source of household income. A large proportion (53 percent) of these migrants are people from Bangladesh who were attracted to the West Bengal region by the prospects of earning cash from fuelwood sale; and still, today, fuelwood trade remains the main occupation of this section of migrants. Around 100 000 Bangladeshis in the area contribute more than 15 percent of the illegally removed fuelwood to the market. The socio-economic impacts of these activities include: accelerated fuelwood supply to the flourishing illegal fuelwood market; social heterogeneity and the consequent demographic distortions; encroachment of public and community lands owing to the low land-person ratio; and irreversible damage to natural forests catering to the unsustainable demands for fuelwood.

Fuelwood emerged as the most important wood product in the area, with more than 70 percent being sourced from the State forests. The study revealed that more than 200 000 people enter 11 879 km2 of forests in North Bengal every day, collecting up to 120 kg fuelwood per week per household on a regular basis. Fuelwood business was found to be the main source of income for 10 percent of rural households in three districts of northwestern Bengal and it also accounts for about 45 percent of their cash earnings. Around 72 000 tonnes of fuelwood traded in the primary and secondary markets of northwestern Bengal every week represent the 45 percent monetized portion of the total fuelwood supply in the study area.

This case study emphasizes the need for green development through the introduction, dissemination and adoption of clean technologies. This has been found to be essential for weaning local people in the study area away from the lure of earning quick cash from the sale of forest-derived fuelwood, whose free and easy availability appears to be the strongest disincentive for switching over to cleaner and greener alternatives. The need to integrate forestry and energy sector programmes with those of other sectors to bring about a holistic development of the area has been emphasized. It has also been recommended that the existing Joint Forest Management institutions in the area should be stimulated and encouraged to channel their energy into tackling the fuelwood problem in the area. (Abstract by: Bharati Joshi, Indian Institute of Forest Management, Madhya Pradesh, India.)

For more information, please contact: Dr P. Bhattacharya, Indian Institute of Forest Management, Nehru Nagar, PO Box 357, Bhopal-462003, Madhya Pradesh, India.
Fax: +91 755 772878;
e-mail: prodyut@iifm.org

 

Kenya

Briquetting charcoal powders

In Nairobi, a company called Tamfeeds Ltd has been collecting the waste powder and chips (fines) that are discarded at urban lump-charcoal vendors' sites. Between 10 and 15 percent of all charcoal arriving in Nairobi is discarded as fines. Rough roads, increasing transport distances owing to diminishing wood resources and the prevalence of soft-wood charcoal are contributing factors to a high proportion of waste fines arriving in Nairobi. This scenario is probably repeated throughout Africa, and indeed the world, wherever lump charcoal is a major domestic fuel.

A brief survey of available charcoal powder was conducted by the author in June 1999. It is estimated that more than 150 000 tonnes of unutilized charcoal fines in and around Nairobi are distributed over 150 medium-to-large vendors' sites. This material is accumulating at the rate of 15 to 20 tonnes per day and is considered to be both a nuisance and an environmental hazard.

Waste charcoal powder is purchased from vendors' sites in urban Nairobi in 7 tonne lorry loads and delivered to the Tamfeeds premises where the material is protected from rain with plastic sheeting. Fines are sieved to sort the material into two size groups and to separate out foreign material. Charcoal particles not passing through the 5 mm sieve are milled in a 20 h.p. electrically driven hammer mill and then mixed back with the sieved particles. The ratio of milled to sieved charcoal is approximately 1:2.

Locally sourced bentonite clay is used as a binder at an inclusion of 10 percent. For a standard 50 kg batch, 5 kg of clay are thoroughly mixed into 10 litres of water. The water/clay solution is mixed into 45 kg of charcoal powder either by hand or with a drum-type cement mixer.

Extrusion is accomplished via locally made electrically driven 5 h.p. screw-type extruders. In practice, one machine's output is 750 kg per eight-hour shift. Briquettes are cylindrical, 3 cm in diameter and vary in length between 4 and 7 cm.

Damp briquettes are carried by hand on trays to outdoor drying trestles where they are sun- and air-dried. One square metre of mesh drying surface holds 10 kg of dried briquettes. Drying time is 1.5 days in full sun, or three days in dry overcast conditions. Briquettes on the trestles are covered with plastic sheets during wet weather.

The finished product is dense and hard, although slightly more difficult to light. Burning time is almost twice as long as for lump charcoal. The briquette is smokeless and does not spark, burning with a blue flame in excess air. Ash content averages 27 percent and energy is calculated at 22.5 mj/kg. Briquettes are sold at a price slightly below (US$0.072/kg) the cost per kg of lump charcoal. Acceptance has been good in the absence of any marketing initiatives. Production is currently 50 to 60 tonnes per month. (Contributed by: Mr E.L. Karstad, Kenya.)

For more information, please contact: Mr Elsen L. Karstad, Tamfeeds Ltd, PO Box 24371, Nairobi, Kenya.
e-mail: elk@net2000ke.com

 

Mali

Commercialization of the Sewa stove

Appropriate Technology International (ATI)/Mali trains local, private entrepreneurs in the production of the Sewa stove, a modified stove design based on the Kenyan Jiko, and the entrepreneurs then make and sell the stoves commercially. ATI/Mali provides support in the form of initial production research and tooling, training and quality control, and marketing campaigns. Through the latter, consumers are informed of the Sewa stove's existence and performance and are free to decide whether or not to contact a retailer or producer in order to purchase. If they purchase, they pay the true retail cost, without price subsidies. ATI/Mali does not fix prices, pay a salary to producers or pay consumers to purchase stoves.

The entrepreneurs trained by ATI/Mali use their own working capital and sell directly to retailers and consumers; if they wish, they may, at the same time, produce competing stove models. Successful entrepreneurs sell at a profit. The two principal reasons cited for choosing the Sewa stove are: since the price per stove is not set by ATI/Mali, the price they can charge depends on what the market will permit; and manufacturing the Sewa stove requires less physical effort and is more profitable.

ATI/Mali believes that in the end it is the Malian consumer the and environment that benefit from competition and a wider range of improved stove technologies on the commercial market. More than 8 200 Sewa stoves have been sold in Bamako since April 1997. (Edited from: Boiling Point, No. 42, Spring 1999.)

For more information, please contact: Mr Brian Dotson, Appropriate Technology International (ATI)/Mali, s/c USAID, BP 34, Bamako, Mali.
e-mail: brian@ati.malinet.ml

 

Nicaragua

Proyecto de emergencia de producción sostenible de carbón de leña en Posoltega, Nicaragua

El siguiente es el resumen ejecutivo del proyecto de emergencia de producción de carbón en una área afectada por el huracán Mitch en Nicaragua. Este proyecto tuvo duración de seis meses (enero-junio de 1999) y su objetivo fue crear fuentes de trabajo inmediata para los damnificados por el huracán, aprovechando la gran cantidad de madera caída para producir carbón. Este proyecto fue ejecutado por PROLEÑA con financiamiento del Programa de asistencia para la administración del sector de la energía (ESMAP) del Banco Mundial.

La zona más afectada por el huracán Mitch fue el municipio de Posoltega, donde se produjo un deslizamiento del volcán Casita, avalanchas, inundaciones provocados por la enorme cantidad de lluvias concentradas en períodos cortos, lo cual conlleva la pérdida de numerosas vidas humanas, destrucción de infraestructura y viviendas, irreparables pérdidas ecológicas (suelos, bosques, formación de grandes cárcavas, alteración de cauces, etc.). Contabilizando 1 741 hectáreas destruidas en cultivos agrícolas y otras perdidas pecuarias.

El proyecto de emergencia de producción sostenible de carbón de leña en Posoltega, Chinandega, nace con la visita de la misión de emergencia del ESMAP/Banco Mundial, el 20 de noviembre de 1998 en Nicaragua. La misión tiene el propósito de identificar con las agencias del gobierno y con la Asociación para el fomento dendroenergético de Nicaragua - PROLEÑA, las prioridades en el sector forestal a raíz de los daños causados por el huracán Mitch. El proyecto fue ejecutado en coordinación con el Ministerio de Agricultura y Forestal (MAGFOR), durante el período de enero a junio de 1999, en la zona del Tololar, Posoltega, ha sido ejecutado por PROLEÑA, con el financiamiento del ESMAP/Banco Mundial, bajo la asesoría de FRM y CIRAD. El objetivo del proyecto, es aprovechar la gran cantidad de madera caída y soterrada producto del huracán Mitch, para ser carbonizada, con el fin de generar empleos e ingresos en el aprovechamiento, producción y comercialización del Carbón con los damnificados por el huracán. La producción de carbón se realizo a través de «parvas tradicionales», beneficiando a 46 productores de la zona.

Este proyecto se desarrolló en condiciones bastante inestable, debido a que se trabajó con personas refugiadas, sin ninguna capacidad de inversión, en vía de reinstalación, preocupaciones cotidianas (salud, comida, empleo), la producción de carbón no era una actividad conocida, el acceso de la madera no estaba claramente establecida, no existían nuevas fuentes de trabajo en la zona, en general es una población muy afectada por las trágicas consecuencias del huracán. La iniciativa de los productores en participar en el proyecto, es porque el negocio del carbón les genera empleos e ingresos significativos para subsistir en las condiciones precarias que están pasando los damnificados del huracán Mitch.

Las maderas a carbonizar proceden de las zonas de deslizamiento de la vertiente sur del volcán Casita que se produjeron bajo el efecto del huracán Mitch. Estas zonas están cubiertas por bosques naturales secos. Contienen una gran diversidad de especies, de arboles de pequeña o de gran dimensión (árboles de más de 1,5 m de diámetro y de 30 m de altura). Los depósitos de madera se formaron en las zonas bajas ocupadas por la agricultura, cubren varios miles de hectáreas en diferentes sitios. Las maderas se encuentran dispersas, semienterradas parcialmente y algunas totalmente (troncos de árboles o trozos de madera dispersas aquí o allí), sea a nivel de plazas de depósitos que se formaron más arriba de setos vivos, de repoblaciones forestales (las maderas están muy enredadas y son difíciles de extraer). Estas maderas a carbonizar presentan una fuerte heterogeneidad del recurso (madera de varia densidad, diámetros muy variables que oscilan de 5 cm hasta 1 m de diámetro, maderas mal conformadas (curvas, rotas y desgarradas) y maderas parcialmente o totalmente enterradas (presencia de tierra, madera enredadas e inicio de degradación).

En resumen los logros del proyecto fueron los siguientes: El impacto social que tuvo el proyecto de la actividad de carbonización de la madera y leña arrasada por el huracán Mitch contribuyó a resolver problemas familiares de la población afectada, la cual fue una alternativa de trabajo directa e indirecta que contribuyó a la organización y unificación de los damnificados. Desde el punto de vista ambiental, los sitios de extracción de leña han sido limpiados para ser utilizados nuevamente en la actividad agrícola. Eliminando la leña y madera avalserada, se ha evitado el peligro de epidemias y obstaculización de las vías de acceso a las diferentes comarcas. Referente a lo técnico, los productores de carbón se apropiaron de las diferentes técnicas de producción de carbón y se elaboró una guía de técnicas de carbonización.

Desde el punto de vista económico, el proyecto generó empleo directo para 46 personas, además de unos 74 empleos adicionales, produciendo un total de 6 774 sacos de carbón, lo que generó un ingreso total de 24 454 dólares EE.UU., lo que equivale a un ingreso mensual por productor de 110 dólares EE.UU. por persona. Finalmente, en lo organizativo, se conforma la Asociación de Productores de carbón Mitch en Posoltega, para el acopio y comercialización del producto.

Podemos resumir que las lecciones aprendidas en este proyecto fueron las siguientes:

(Fuente: Red Internet en Bioenergía: bioenergia@sdnnic.org.ni )

Para más información, dirigirse a: Lic. Maria Engracia De Trinidad, Director Ejecutivo/PROLEÑA, Apartado Postal C-321, Managua, Nicaragua.
Fax: +505 2705448;
Correo electrónico: prolena@sdnnic.org.ni

 

Russian federation

Charcoal manufacture in Russia: past and future

Prior to the twentieth century, charcoal manufacture in Russia was considered only as a handicraft. The layers of wood covered by earth were a source of charcoal in wooded areas and provided fuel for rural forges and small factories. Much of the charcoal was made in this way, especially in the Urals, where it was fed into the famous Demidovs factories. These "handicraft" technologies damaged nature and the gases produced polluted the air and poisoned plants, in addition to having low productivity and being poorly controlled.

At the beginning of the eighteenth century, the first brick and metal kilns appeared. In the early part of the twentieth century, large industrial enterprises for charcoal production were created. They processed from 90 000 to 150 000 m3 of fuelwood per year using the wood from birch, oak and beech trees. The trunks were sawn into 20-25 cm lengths and then chopped into 15 cm thick pieces. Initially, all factories had American steel retorts with trolleys. These vertical retorts, similar to the "Lambiotte" system, were still used in two factories in the 1950s. The liquid products were recovered almost completely and the gases burnt to generate the heat required in the charcoal production process.

These large factories clearcut almost all the wood available in their neighbouring forest areas and after 30 to 40 years of operation they had exhausted the wood supply for charcoal production. Fuelwood had to be transported from distant areas and the rail tariffs became so high that charcoal production ceased to be a profitable activity. Nowadays, the majority of large factories are no longer making charcoal or are just producing small quantities. In 1991, the annual per caput consumption of charcoal in the United States was five times higher than it was in Russia. This has increased during the last decade.

Charcoal consumers in Russia have varied over the years. Ten years ago, industry consumed almost all the charcoal produced; recently, however, households have increased their demand.

The former economic system placed parameters on the volume of the development of production as the overall objective. In the planned economy, the profitability of manufacturers as a main parameter was not considered. But this parameter now defines their activities.

The timber industry concentrated principally on the manufacture of industrial wood. The wastes remained in the forest or were burnt. Such squandering is not permitted today.

The obligation to produce qualitative charcoal from wood wastes has arisen for the first time in the history of Russian wood technology.

Over the past decade, the charcoal kiln UVP-5 has been used by private enterprises. This kiln is very cheap, can be transported from one place to another and does not require electricity. However, emits gases into the air and its thermal efficiency does not exceed 10 percent. If the raw material and fuelwood are very cheap, and ecology is not a priority, then the use of such a charcoal kiln is a satisfactory solution. In normal situations, however, this technical solution can no longer be accepted.

For this reason, the Department of Forest Chemical Products of the St Petersburg Forest Technical Academy has developed its own apparatus which meets present Russian requirements. It has a small production output (processing 5 000 to 15 000 m3/year of fuelwood) and is designed to use residues from the wood and timber industry. The end product complies with the needs of the main users. An obligatory condition needs to be made - use of the superfluous heat generated during the carbonization processes.

Experimental work was carried out and a charcoal kiln was made which can produce 300 tonnes per year. Tests have shown that the kiln can work constantly using poor-quality wood wastes as raw material. About one half of the charcoal produced satisfies all consumer requirements. The rest (fine charcoal) can be used for the preparation of household charcoal briquettes. The results of these tests have permitted the transfer of expertise to the industrial manufacturers. The new charcoal kiln is under construction near St Petersburg. This technology started producing high-quality charcoal in April 1999; charcoal output will be 500 tonnes per year. Two new charcoal kilns are being built with an estimated productivity of 800 tonnes per year each.

The main features of this charcoal kiln will be the complete burning of the by-products formed at charcoaling and its maintenance. The process is ecologically clean. It consists of a heat exchanger, which permits the use of surplus heat to provide hot water to meet household needs. A general scheme of a charcoal kiln is shown below.

The tendency to create ecological and economical charcoaling processes with the power aspect in mind has recently become more and more widespread in Russia. It is hoped that such processes will predominate in charcoaling. (Contributed by: Yury Yudkevitch, Associate Professor; and Vladimir Jagodin, Professor, Head, Department of Technology of Chemical Forest Products, St Petersburg Forest Technical Academy.)

For more information, please contact: Prof. Yury Yudkevitch, Department of Technology of Chemical Forest Products, St Petersburg Forest Technical Academy, St Petersburg, Russian Federation.
Fax: +7 3133 73256;
e-mail: woodcoal@mailbox.alkor.ru

 

Sri lanka

Woodfuel is the primary energy source in rural Sri Lanka, but in the industrial sector woodfuel consumption is limited to 18.2 percent of total energy consumption. The ways in which woodfuel is distributed from production sources to end users are not well understood. Indeed, the national wood energy picture currently available reveals little about woodfuel flows, particularly about gender issues or about the flow mechanisms that have a direct bearing on the commercial trade in woodfuel. Our limited understanding impedes our ability to plplan and formulate strategies of local significance, to promote cash returns from woodfuel to both men and women equitably and efficiently and to contribute to improving the living standards of those who are engaged in the woodfuel distribution process without remuneration or with only marginal benefits.

A recent publication by FAO's Regional Wood Energy Development Programme in Asia (RWEDP) presents the findings of a study conducted in Kandy district. From the perspective of studying the gender aspects of woodfuel flows, a wide range of situations was taken into consideration. In the process of commercial woodfuel flow, women's roles are marginal, so the benefits of trade are directly reaped by men. At the local, national and regional levels, the goals of empowering women and improving their socio-economic status must be integrated into the policies and programmes related to wood energy development. "Woodfuel trade" needs to be considered as a means to provide women with income earning opportunities. To achieve the broader goals of gender equality, a Regional Advocacy Network (RAN) is proposed under the umbrella of RWEDP. The RAN will take the initiative to help organize national networks. (Source: Gender aspects of woodfuel flows in Sri Lanka: a case study in Kandy district, Field Document No. 55.)

For more information, please contact: Mr Wim Hulscher, Chief Technical Adviser, RWEDP, c/o RAP, Maliwan Mansion, Phra Atit Road, Bangkok 10200, Thailand.
Fax: +66 2 280 0760;
e-mail: RWEDP@fao.org

 

United states

Developing and promoting bio-based products and bioenergy

On 12 August 1999, President Clinton issued an Executive Order to further the development of a comprehensive national strategy that includes research, development and private sector incentives to stimulate the creation and early adoption of technologies needed to make bio-based products and bioenergy cost-competitive in national and international markets.

This included taking steps to address global warming by setting a goal to increase within ten years the use of technology in the United States that converts plants and trees into fuel, chemicals and electricity. The Executive Order established a council to coordinate the federal government's effort to develop a biomass research programme, and set a goal of tripling the use of bioenergy and bioproducts by 2010.

Biomass energy, generated mostly from wood and wood waste, is currently about 3 percent of the total United States energy supply. Biomass technology uses trees, crops and waste from agriculture or forestry to make energy that can then be used as fuel for cars or to power factories.

The ultimate goal of Clinton's order is to replace coal, oil, natural gas and uranium with cleaner, renewable biomass energy. White House officials have said that if the goal of tripling biomass use by 2010 is met, annual greenhouse gas emissions would drop by more than 100 million tonnes, the equivalent of taking 70 million automobiles off the nation's roads. They added that meeting the goal would also generate US$15 billion to 20 billion in income for farmers and rural areas.

President Clinton appealed to Congress to approve US$242 million in his fiscal 2000 budget proposal for research and tax credits to promote energy efficiency, bioenergy and other clean energies. The Executive Order directs the secretaries of agriculture and energy and the administrator of the Environmental Protection Agency to prepare a report within 120 days on options for increasing biomass energy use. (Source: Various, including the Executive Order and an AP press release.)

It's hard to think of a greater gift we could give at the turn of the century or a new millennium than a clean energy future. (Extracted from: President Clinton's speech at the Bio-energy Climate Change Event, United States Department of Agriculture, 12 August 1999.)

Future use of biomass energy

Biomass is the second-largest of the renewable energy sectors (after conventional hydroelectric), with wood comprising the largest component of biomass energy. The greatest use of wood for energy occurs in the forest products industry. Congress is discussing several bills that would increase the quantity of renewables used to generate electricity. Three important factors should be considered by policy-makers as they see ways to increase the use of renewables in electricity generation:

· The largest proportion of current wood-based electricity generation occurs in the forest products industry (there are now only a handful of wood-fired utilities in the United States).

Some scenarios for greatly increased biomass-energy use rely heavily on the assumption that fluidized-bed combustion (FBC) units and combined cycle generators will offset possibly higher biomass fuel costs through energy-efficient operation. This assumption is likely to be true for generation-only plants. FBC technology, however, generally does not have very good economic, energy or environmental characteristics in the short term when applied for pulp and paper manufacturing.

Biomass-oriented generating plants yet to be built could indeed have an energy-efficiency advantage over some of the conventional combustion systems now in use in the forest products industry. However, in the short term they are certain to face disadvantages. Biomass-generating plants must be located near fuel resources, especially because of their established fuel supply infrastructure. At the same time, these facilities need to be located near existing electricity transmission lines. In contrast, pulp and paper manufacturing plants are located near their fuel resources as well as the point of electricity demand.

These issues are only a few of the two-edged considerations associated with possible legislative mandates for higher renewable electricity generation. Another is the cost-effectiveness of locating generating facilities near population centres, where the cost of land is high or possibly prohibitive. Yet biomass energy has demonstrated favourable environmental, employment as well as energy security characteristics and is generally considered to be CO2-neutral. The challenge of broader implementation of biomass for energy is to gain the wider involvement of those entities most able to participate, and to stimulate new industry.

Although certain sectors of the forest products industry would indeed resist diverting more biomass resources for energy, the fact is that the majority of timber grown in the United States is available to the winning bidder. Forest products industry members are generally not self-sufficient in supply, so they purchase the necessary biomass products from producers or other intermediaries. Generally, these resources are non-industrial private forest landowners not under long-term contract. Further, current forest removal (i.e. utilization) rates are such that a substantial supply of logging residue is available. Therefore, at a sufficient price, energy interests could obtain additional biomass resources. The above statements are generally more true in the eastern United States, where most wood is purchased directly from the producer.

Another factor operating in energy interests' favour is that a significant volume of wood is consumed as fuelwood for home heating. The value of forest removals for this purpose is generally less than that of timber removed for industrial products. Thus, energy interests could obtain additional fuelwood without having to compete with industrial interests.

Finally, forest products companies are seeking new ways to increase timber resource utilization. One possibility is to convert logging slash into a usable product. Members of the forest products industry, a very significant potential participant, have mixed views on the increased use of wood for electricity generation. Some, such as those in the pulp and paper subgroup, believe that increased demand on wood supply would drive up resource costs and place a greater strain on already tight profit margins. Others in the industry who are well situated with respect to resource ownership, or whose resource divisions are very profitable, may view biomass energy as a favourable opportunity. Regardless of resource position, biomass energy producers may increase their generation if they can operate profitably on woodfuel priced competitively with stumpage that might otherwise go for pulp and paper manufacturing.

Considering all viewpoints, however, two key questions relating to the area of governmental policy seem to be emerging:

(Source: A view of the forest products industry from a wood energy perspective, EIA.)

For more information, please contact: National Energy Information Center, United States Department of Energy, 1000 Independence Avenue, S.W., Washington, DC 20585, USA.
e-mail: infoctr@eia.doe.gov;
www.eia.doe.gov/

 

Yugoslavia

FAO's Special Relief Operations Service, in close collaboration with its Forest Products Division and Investment Centre Division, is fielding a mission to the Kosovo Province of the Federal Republic of Yugoslavia. One of the main issues to be addressed by the consultant forestry specialist is fuelwood; in particular, the setting up of a fuelwood project before the winter, including:

In addition, the consultant will take into consideration the following factors:

For more information, please contact: Mr Miguel Trossero.

[The results of the consultant's mission will be given in the next issue of Forest Energy Forum.]

 

[Top of page][Contents]