Previous pageTable of ContentsNext Page

Capítulo 8

HORNOS METALICOS

En los años 30 se difundió en Europa, para la fabricación de carbón vegetal, el empleo de hornos metálicos cilíndricos transportables. Durante la Segunda Guerra Mundial su técnica fué desarrollada aún más por el Reino Unido (U.K) en su laboratorio de investigación de productos forestales (UK Forest Products Research Laboratory). Diversas versiones del diseno original fueron usadas de una extremidad a otra en el Reino Unido. Esta tecnología fue transferida a los países en vía de desarrollo a fines de los años 60. especialmente con las actividades del Departamento Forestal de Uganda. Ver también lar. referencias 7, 8, 9, 10, 17, 18, 25, 34 para mayor información.
 

8.1 Diseños disponibles de hornos metálicos transportables

El Tropical Products Institute (TPI). que es una unidad científica de la Overseas Development Administration, ha adquirido considerable experiencia en el Funcionamiento de diversos modelos de hornos transportables de metal, ya sea en el Reino Unido como en muchos países en desarrollo. El Instituto ha evolucionado hasta llegar a un modelo que se considera ahora ser óptimo en economía de construccción, robustez y durabilidad, funcionaniento sencillo con eficiencia y productividad máxima para las situaciones de los países en desarrollo. Las principales características del horno modelo TPI son:

- Se usa una chapa de acero de 3 mm de espesor para fabricar la sección del fondo del horno; para la sección superior y para la tapa se usa chapa de acero de 2 mm de espesor.
- Las dos secciones principales del horno son cilíndricas.
- Se usan repisas con perfiles de hierro ángulo de 50 mm, para soportar la sección superior y la tapa. Estos soportes están soldados en la parte interna del borde más alto de las dos principales secciones cilíndricas.
- Los ocho tubos de entrada/salida, ubicados debajo de la sección inferior del horno, se abren en la base. Alrededor del hueco en la cara superior de cada canal, se ha previsto un collar para sostener la chimenea durante el funciona miento del horno.
- En la tapa del horno hay cuatro bocas a igual distancia, para la liberación del vapor.

En otras versiones de hornos metálicos transportables pueden encontrarse varias modificaciones de las características anteriores. Algunos fabricantes de hornos usan chapa metálica de espesor menor del que recomienda el modelo TPI. Para asegurar al horno una vida máxima útil, especialmente cuando se lo hace funcionar con descuido, el espesor y el tipo de metal empleado en la fabricación del horno es de importancia fundamental. La sección inferior del horno está expuesta a las tensiones más grandes por el calor, y debería ser fabricada con lámina de acero de espesores a partir de los 3 mm. Para la sección superior y para la tapa es suficiente un espesor de 2 mm. Un ulterior aumento de la durabilidad se obtendrá empleando en la fabricación del horno acero Corten "Al' en lugar de acero dulce. Esta aleación especial tiene la propiedad de resistir al calor y la herrumbre. Su costa básico es de alrededor del 10%. mayor que el del acero dulce, pero puede ser más, donde fuesen necesarios acuerdos especiales para obtenerlo.

Un horno ampliamente usado en los bosques del Reino Unido, tiene una sección superior cónica, de modo que el diámetro de la tapa es considerablemente menor del de la sección inferior. Se reduce con ello el peso de la tapa, el armado del horno resulta más fácil y se aumenta la rigidez de la sección superior, sin afectar el comportamiento del horno.

Sin embargo, no se le usa en el modelo TPI, puesto que sería más difícil de construir la sección cónica en los pequeños talleres mecánicos que se encuentran en los países en desarrollo y limita además su mobilización en terrenos de monte.

Los detalles del sellado entre las secciones son de importancia crítica. Un modelo de horno metálico usa canales en lugar de repisas para sostener la parte superior y la tapa. Estos canales están soldados en la parte interna del borde superior de ambas secciones, inferior y superior; se rellenan con arena durante el armado para crear un sello hermético al colocárseles encima la sección superior de la tapa. Los canales, sin embarg retienen el alquitrán de madera que se condensa en las paredes del horno, y las elevadas temperaturas, que se alcanzan durante las últimas etapas de la carbonización, cuece la me ola de alquitrán de madera con la arena, formándose un cemento duro, por lo que se requie ren muchas horas de trabajo pesado para limpiar los canales después de cada hornada. Ade TU las secciones a menudo se funden juntas después del enfriamiento, y las juntas se da- si se usan palancas de metal para separar las secciones. Otra falla grave del modelo es el uso de una tapa de cierre superior, donde el sellado se obtiene por medio de una ba da vertical soldada en la parte de abajo de la tapa. En el caso en que se observara una fuga en la junta entre la tapa y la sección superior, después que se ha encendido el horn sería sumamente difícil sellarla, puesto que ese tipo de tapa impide al fogonero de poner más tierra o arena en la junta. Estos problemas no surgen con el modelo TPI, ya que los hierros ángulos usados para soportar la sección superior y la tapa no retiene el alquitrá Además, la colocación de la tapa dentro del borde de la sección superior permite al opera dor de agregar a la junta más arena o tierra para el sellado, corno y cuando fuesen necesarios.

Algunos hornos metálicos usan, como canales de carga y descarga, tubos de sección cuadrada. Se ha hallacdo, en la práctica, que es más conveniente usar los canales de base abierta del diseno TPI. Ello es porque el alquitrán de madera, que se condensa en las chimeneas durante la carbonización, fluye abajo en los canales donde el calor lo cuece, formando una pasta dura. Cuando los canales tienen una base abierta, la mayor parte del alquitrán es absorbido por el suelo y lo poco que queda puede ser fácilmente eliminado por el libre acceso a las superficies inferiores. También, después de uso prolongado, las terminaciones de los canales de ingreso/salida, insertadas dentro del horno, se retuercen por el intenso calor localizado, generado en ese punto por el encuentro entre el aire y la carga. Si se ha usado una sección cuadrada para el canal, las caras superiores e inferiores se tuercen hacia adentro, lo que limita seriamente el flujo, del aire y del gas de descarga, a través del canal. Es difícil reconstruir su forma original, porque las superficies internas del tubo no son accesibles. Por otro lado, la distorsión de un canal de base abierta puede ser corregida fácilmente girándolo y enderezándolo con un mar tillo.

En algunos diseños, las chimeneas están inseridas en el canal por un agujero cortado en la superficie superior de este último. La base de cada chimenea tiene una pequeña sección cortada que permite el ingreso del humo desde el canal. Este tipo de encaje puede reducir la salida de los gases, si ocurriese una rotación accidental de la chimenea y además los canales no pueden ser limpiados fácilmente durante el funcionamiento del horno.

Todos los hornos metálicos transportables incorporan algún refuerzo para proteger el horno durante el manipuleo. Un refuerzo excesivo, sin embargo, puede crear problemas, ya que aún los hornos más robustos pueden ser dañados, si se los descarga negligentemente del camión. Cuando se daña un horno fuertemente reforzado, se requerirá considerable trabajo para reponerlo en su forma original. Ello puede a veces hacerse usando un gato entre dos maderos largos, colocados atravesados al diámetro de la sección dañada. El refuerzo más importante que se recomienda, para los hornos metálicos, es el uso de una banda de hierro ángulo, soldada en forma contínua alrededor de la parte externa del borde inferior de la sección de abajo. Con ello se tendrá un doble espesor de metal en el borde inferior del horno, donde las tensiones de calor son más severas. Ofrece también una superficie plana que distribuye el peso del horno en los canales de ingreso/salida. Las repisas de apoyo de hierro ángulo, soldadas en el interior del borde superior de las secciones de la base y superior, ofrecen más refuerzo, que se completa con una tira plana soldada alrededor y adentro del borde inferior en la sección de arriba y de la tapa.

No todos los hornos incorporan en la tapa bocas para la liberación del vapor. Des- del encendido del horno, las grandes cantidades de vapor liberadas durante la fase inicial del proceso, deben irse. Si no hay bocas de liberación de vapor, debe quitarse la tapa antes del encendido y luego puesta en su lugar, apenas la carga comienza a quemar violentamente. Se puede también recargar el horno: el hundido natural de la carga da tiempo suficiente para que el vapor escape, antes que la tapa se asiente sobre el borde de apoyo, Los riesgos obvios que se presentan, con estos dos procedimientos, producen cierta ansiedad, en los cursos iniciales de entrenamiento de fogoneros con poca experiencia. Se ha hallado que, cuando se introducen los hornos metálicos en nuevas áreas del mundo en desarrollo, son mucho más preferidas las bocas de liberación de vapor. Otra ventaja está en la producción de carbón vegetal a partir de materia prima de pequeñas dimensiones, como son los desperdicios y las cáscaras de coco. Para mantener una corriente suficiente de gas, a través de la carga durante la carbonización de estos materiales, se recomienda encender el horno, arriba, a través de las bocas de liberación de vapor en la tapa.

En fin, algunos hornos que se encuentran en el mercado, están equipados con aletas y tapas metálicas unidascon bisagras sobre los canales de entrada/salida, y que se usan para cerrar el ingresodel aire, dentro del horno, en el momento del sellado. Estos extras, aumentan el costo de la inversión de capital para el horno, y se ha hallado que son absolutamente innecesarios. Debido a la herrumbre, las tapas abisagradas no pueden ser usadas ya a los pocos días. El sellado puede obtenerse más efectivamente con el uso de tierra o arena. En algunos modelos, se incluyen manijas en el externo de las secciones cilíndricas del horno. Si bien las agarraderas son necesarias en las tapas del horno, ellas pueden crear problemas, cuando están en las secciones cilíndricas principales, en los momentos en que estas secciones tienen que rodar de un lugar a otro. Se ha hallado que los horno pueden ser fácilmente maniobrados sin el uso de manijas en las dos secciones cilíndricas.
 

8.2 Horno metálico para carbón vegetal hecho con tambores de aceite

Puede fabricarse carbón vegetal en hornos hechos con tambores standard de 45 galones de aceite (aprox. 180 lt). Este método ha funcionado bien, usando materia prima que quema rápido, como madera de palma de coco, cáscaras de coco y basura de madera. Sin embargo, cuando se hacen funcionar con latifoliadas densas, es difícil obtener una completa carbonización y el carbón resultante posiblemente tiene un elevado contenido de materia volátil. Aún con materiales de baja densidad, el contenido volátil del carbón vegetal producido es algo elevado, si bien no es un inconveniente serio para un combustible doméstico de uso local. Si el carbón debe ser producido para la exportación, el uso, sin embargo, de hornos metálicos apropiados, hará que sea posible obtener la buena calidad exigida por el comercio.

Un hombre puede hacer funcionar un grupo de hasta 10 unidades de tambores de gasoleo. El proceso requiere un período de carbonización de alrededor de dos a tres horas, seguido por un período de enfriamiento de alrededor de otras tres horas. Un operador con experiencia puede reciclar diez tambores, dos veces por día, obteniendo una producción total de hasta 30 kg de carbón por cada tambor. Esto significa que la operación de un hombre, usando 10 hornos, puede producir 1,5 ton de carbón vegetal en una semana de 5 días, si recibe el suministro de madera adecuadamente preparada.

Comparado con métodos tradicionales de producción la eficiencia de conversión obtenida con hornos de tambores de aceite, es comparativamente elevada, habiéndose citado rendimientos de hasta el 23% (sobre la base seca). (8). La principal desventaja del método es que, para obtener resultados satisfactorios, la materia prima tiene que ser de un largo menor de 30 cm, con un diámetro máximo de 5 cm. Ello significa una considerable cantidad de mano de obra para la preparación de la materia prima. A veces es también difícil y caro obtener tambores de aceite usados. Los tambores tienden a quemar-se bastante rápidamente, por el metal delgado empleado, y tienen que ser reemplazados con relativa frecuencia.

Foto 25: retorta hecha con tambores de aceite. Observar
el caño para recoger el condensado y el fuego preparado
en la zanja. Ghana. Foto Lejeune.

8.3 Ventajas y desventajas de los hornos metálicos transportables

Las principales ventajas de los hornos metálicos transportables comparados con el método tradicional del foso o de la parva de tierra, son: - La materia prima y el producto están dentro de un recipiente cerrado, permitiendo el máximo control de la entrada de aire y de la corriente de gases, durante el proceso de carbonización.

- El personal inexperto puede ser entrenado en poco tiempo y hacer funcionar con facilidad estas unidades.

- Se requiere menos supervisión del proceso, mientras que para la fosa o la parva, es necesario el cuidado constante.

- Puede obtenerse una eficiencia consistente, media de conversión del 24% incluyendo la carbonilla fina (sobre la base del peso seco). Las fosas y las parvas dan a menudo rendimientos erráticos inferiores.

-Puede aprovecharse todo el carbón obtenido en el proceso. Con los métodos tradicionales (fosa y parva) parte del carbón vegetal producido se pierde en el terreno, y el que se recupera está, a menudo, contaminado con tierra y piedras.

-Los hornos metálicos transportables, si son diseñados para descargar agua de la tapa, pueden funcionar en áreas con mucha lluvia, siempre que el sitio tenga un drenaje correcto. Los métodos tradicionales de producción de rarb6n vegetal, funcionan con dificultades en ambientes muy húmedos.

-Una mayor variedad de materias primas pueden ser carbonizadas con el máximo control del proceso, incluyendo coníferas, madera de deshechos, madera de palma de coco y cáscaras de coco.

-El ciclo total de producción, cuando se usan hornos metálicos, es entre dos y tres días.

Las desventajas del empleo de hornos metálicos comparados con los métodos tradicionales de la fosa y de la parva de tierra, son: -Debe conseguirse el capital inicial para pagar el costo de la fabricación de los hornos. Debe poderse disponer de habilidades y equipo para talleres mecánicos fundamentales y, a menudo, debe importarse el acero usado en la fabricación de los hornos.

-Cierto cuidado es necesario en la preparación de la materia prima para facilitar el empaquetado y para una eficiencia máxima. La madera debe ser cortada o rajada a medida, y estacionada por un período de por lo menos tres semanas.

-Puede ser difícil trasladar los hornos portátiles metálicos sobre un terreno muy quebrado, si bien pueden pasar con facilidad pendientes más suaves.

-La vida útil de los hornos metálicos es de solo dos a tres años.
 

Las ventajas del uso de hornos transportables metálicos, comparados con instalaciones fijas, inclusive los hornos de ladrillos, son: -Los hornos metálicos transportables pueden ser desmantelados con facilidad y con frecuencia, y hechos rodar sobre el terreno forestal para ir detrás de las extracciones comerciales de la madera, de los raleos de las plantaciones y de las operaciones de limpieza del terreno. Ello significa que puede evitarse el transporte complicado y caro de la madera a lugares centralizados de elaboración.

-El ciclo total de operación para esas unidades es de aproximadamente de una semana, mientras que para los hornos metálicos es de dos a tres días.

Las desventajas del empleo de hornos metálicos, comparados con hornos construidas con ladrillos, son: -El costo de fabricación de un horno metálico portátil es normalmente mayor de un horno construido con ladrillos de producción comparable, lo que se debe principalmente al costo de la materia prima. Cuando el acero tiene que importarse, se necesitan divisas. Para la fabricación y mantenimiento, se requieren, habilidad para trabajar las láminas de acero, y un taller.

-Gracias a la mayor aislación termal de las paredes del horno construido con ladrillos, una menor cantidad de la madera cargada se quema durante el proceso de carbonización y normalmente se obtiene una eficiencia de conversión levemente mayor de la que se tiene con los hornos metálicos transportables. Los hornos de ladrillos pueden car bonizar madera de gran diámetro y se requieren menos cortes transversales y de raja.

-No es factible la recuperación de subproductos con hornos metálicos transportables para carb6n vegetal. Existen posibilidades de recuperar los alquitranes condensables, cuando se emplean hornos construidos con ladrillos.

- En una situación de procesos centralizados donde funcionan baterías estáticas de hornos hechos con ladrillos puede proveerse más rápidamente supervisión operativa y apoyo logístico.

Foto 26: Horno metálico transportable. Foto TPI

8.4 Fabricación del horno metálico TPI

El horno consiste en dos secciones cilíndricas que encajan y de una tapa cónica. La tapa viene provista con cuatro bocas para la salida del vapor, regularmente distanciadas entre sí, que pueden ser cerradas, si requerido, con tapones. El horno se apoya sobre ocho conductos de entrada/salida de aire, dispuestos radialmente alrededor de la base. Durante la combustión, cuatro chimeneas para el humo se encajan sobre conductos alternados de aire.

El horno puede ser construído localmente en un sencillo taller que trabaje las chapas de acero. Si se encuentra, deberían usarse láminas de acero Corten 'A' de 3 mm de espesor, en lugar de acero dulce, ya que sus condiciones de resistencia al calor y a la herrumbre prolongarán la vida útil del horno.
 

8.5 El transporte y la ubicación de los hornos

Los hornos pueden ser transportados con facilidad sobre un camión de piso plano. Para transportar el horno en la parte trasera de una camioneta pick-up, pueden encajarse las dos secciones cilíndricas la sección superior dentro del borde inferior del cilindro de abajo, y hecho rodar sobre la parte trasera del vehículo usando -un plano inclinado de madera. La tapa cónica puede colocarse dentro de los cilindros y la carga será apuntada y atada firmemente para evitar que vaya rodando.

Debe cuidarse la descarga de las secciones cilíndricas de los vehículos. Si las secciones cáen sobre su costado, es posible que se produzcan distorsiones y habrá dificultades en el momento de ensamblarlas para el uso. Podría tolerarse alguna distorsión liviana pero, si es profunda, deberá ser arreglada con un gato o cric de auto y dos palos largos puestos a través del diámetro de la sección dañada

Para economizar mano de obra se recomienda que funcionen dos o más hornos en grupo a una distancia a pie razonable de uno a otro. El operador puede de esta manera, descargar una unidad mientras que los otros hornos están en su fase de carbonización o de enfriamiento.

Para evitar transporte innecesario de madera, los hornos mismos deberían ser rodados con frecuencia a nuevas ubicaciones, vecinas a la fuente de la madera. Dos otres hombres pueden hacer rodar cada sección individual del horno; generalmente, dos hombres empujan desde atrás y uno guía la sección, desde el frente. Se recomienda el uso de palancas de madera para volear cada sección individual sobre su costado, antes de rodarla a su nueva ubicación. El rodado de las secciones es más fácil que su arrastre horizontal, aun si las distancias son sólo de 1 a 2 metros. Con una cierta experiencia el trabajo de manejar estos hornos sobre el terreno forestal se vuelve considerablemente más fácil.
 

8.6 Elección y preparación del sitio

Deberá elegirse un área bien drenada y bastante nivelada, de aproximadamente 3 metros de diámetro, muy cerca de donde está la madera. Deberán evitarse los tocones y grandes entramados de raices y deberá eliminarse el excesivo sotobosque dentro del área elegida, así como también se afirmará el suelo , pisoteándolo. Deberá disponerse de tierra suelta o arena cerca del lugar, para sellar las filtraciones de aire al horno durante su funcionamiento. Es preferible un suelo arenoso o franco, y si no lo hay, se obtendrá, para las operaciones iniciales, una cierta cantidad de arena de algún arroyo vecino. Este material puede ser reutilizado y bien pronto aumentará en volumen, a medida que se le incorporan carbonilla en polvo y ceniza de madera, producidos en el curso de sucesivas operaciones.
 

8.7 Preparación de la materia prima

Deberá voltearse, cortarse y apilarse la madera por lo menos tres semanas antes del horneo, para obtener un rendimiento máximo en carbón vegetal. La madera seca requiere menos tiempo para carbonizar y aumenta la eficiencia del proceso de conversión. El tamaño más oportuno para la madera será de 45 a 60 cm de largo y de hasta 20 cm de diámetro. Pueden incluirse ramas de hasta 90 cm de largo, siempre que sur. diámetros no sean superiores a 13 cm y que no se reduzca notablemente la densidad de empaque dentro del horno. Pueden usarse trozas con diámetros vecinos a los 30 cm, siempre que se recorten en largos no mayores de 30 cm. Cuando la madera tiene un diámetro mayor a los 30 cm, deberá ser rajada antes del uso.

Las ramas con un diámetro menor de 4 cm no deben ser mezcladas en la misma carga con madera de diámetros máximos. Este material deberá ser cargado con otra madera de tamaño mediano. Para llenar el horno son necesarios alrededor de 7 metros cúbicos de madera apilada.

Foto 27: Preparación de la madera para carbón vegetal. Notar el largo reducido
de la madera. Foto TPI

8.8 Método de funcionamiento del horno TPI

8.8.1 Herramientas necesarias para operar con 2-3 hombres:

 
Sierra mecánica o trozadora Poste o plancha de madera
Palas o azadas (2) Conducto con tamiz
Hoz Bolsas
Hacha Aguja y piolín
Cuña (2) Guantes resistentes al calor
Martillo pesado

8.8.2 Armado y carga de! horno

(a) Se hace rodar la sección inferior del horno hasta el lugar preparado, y se le vuelca en su posición de funcionamiento. Usando un poste de madera, como palanca, se insertan los ocho canales para el ingreso/salida de aire, radialmente y con la cara abierta hacia abajo, debajo de la sección inferior y a intervalos equidistantes. Se obtendrán iguales distancias si se colocan los primeros cuatro canales a distancias de 90 0 y luego se intercalan los otros cuatro.

Foto 28: Armado del horno metálico. Foto TPI

Los canales de aire deben penetrar por lo menos 20 cm dentro del horno, para evitar recalentamientos de la pared del mismo. El collar de soporte, arriba del canal no debe inclinarse hacia adentro, o sea, hacia la pared del horno, lo que dificultaría luego colocar las chimeneas, una vez que se ha armado el horno. Una vez que los canales de entrada/salida, están en posición, será necesario controlar que estén completamente libres de cualquier obstrucción.

(b) Se carga el fondo del horno con madera asegurándose que las extremidades de los canales de ingreso/salida y los espacios entre ellos no están bloqueados. Para ello, la carga se apoya sobre "listones", que son piezas de madera de mediano diámetro (15 cm) dispuestas radialmente como rayos de rueda.

Foto 29. Trozos redondos dispuestos radialmente
como listones. Foto TPI

(c) Para crear cuatro puntos de encendido, se colocan, en cada cuadrante de la base del horno, Ieñita seca de fácil combustión, con cualquier desperdicio inflamable (papel, aceite usado, lata.) entre los listones, desde el borde de la parte inferior del horno hacia el centro.

Foto 30. Desperdicios inflamables colocados entre los listones para
establecer cuatro puntos de encendido. Foto TPI.

(d) Ahora se coloca, haciendo cruz con los listones y sobre la yesca, un puente de madera de diámetro chico y medio y de tizones (madera no completamente carbonizada en las hornadas anteriores). se completa el estrato inferior del horno haciendo puente sobre los listones descubiertos con madera de tamaño pequeño a medio.

Haciendo que el primer estrato de madera desde el piso se apoye sobre listones, se forman, debajo de la carga, conductos de aire que harán que el fuego se distribuya más rápidamente en el centro del horno.

Foto 31. Operación de carga de madera. Foto TPI

(e) se carga la sección inferior del horno con sucesivas capas de madera, llenando el máximo posible de los espacios libres y colocando las maderas de mayor diámetro hacia el centro del horno. Cuando la sección inferior está cargada y las superficies de las juntas del horno se han limpiado por raspaje, se rueda al costado, la sección cilíndrica de arriba, que luego se levan-ha, colocándola sobre la repisa de apoyo de la sección inferior.

(f) Se completa la carga de la madera hasta que la carga forme un cono arriba del borde de la sección superior pero, al mismo tiempo, permitiendo que la tapa sea colocada sin inconvenientes dentro del borde. Se hace rodar la tapa al costado del horno y se le levanta hasta apoyar sobre la repisa de apoyo. Dos hombres expertos pueden cargar el horno en alrededor de dos horas.
 

8.8.3 Encendido del horno

(a) Se aplica una llama a los cuatro puntos de encendido, después de asegurarse que los cuatro orificios de salida del vapor de la tapa, estén abiertos. Donde predominan vientos, el costado del horno expuesto quemará más rápidamente. Para evitarlo, no se encienden los puntos de encendido que se abren al viento, hasta que esté bien encendido el lado opuesto.

Foto 32: Puntos de encendido. Foto TPI

(b) Se deja que el horno queme libremente durante 30 minutos, hasta que la sección inferior, en correspondencia con cada punto de encendido, se vuelve tan caliente que resulta desagradable quedarse parado cerca del horno. Duran-te este período grandes cantidades de vapor se liberan de las cuatro bocas en la tapa del horno. Mientras esto se está desarrollando, se llenan las juntas entre las secciones principales del horno, con arena o tierra, y se colocan en posición las cuatro chimeneas sobre los anillos de soporte, de los conductos de aire, alternadamente.

Foto 33. Se llenan con arena y con tierra las juntas entre las secciones
principales, y se colocan las chimeneas para el humo en su lugar,
Foto TPI.

8.8.4 reducción de la corriente

Cuando cada sector del horno ha alcanzado la temperatura requerida, se tapan con arena o con tierra los espacios entre los canales de ingreso/salida. Cuando se han -tapado todos los espacios entre los conductos, se sellan las extremidades de los cuatro canales que soportan lar. chimeneas. Ahora se cierran las bocas de salida del vapor para que el humo sea eliminado desde la base del horno por medio de las cuatro chimeneas. Cuando se ha reducido la corriente, el aire penetra en el horno solamente por los canales de ingreso de donde fluye al centro de la carga. Los gases de combustión son forzados hacia abajo, hacia el borde externo del horno, y se liberan por las chimeneas. Puesto que el aire y los gases de descarga circulan en direcciones opuestas, esta condición se denomina de contracorrientes.

Foto 34. Corrientes de aire y de los gases de descarga
en el horno. Foto TPI.

8.8.5 Control de la carbonización

(a) A los 15-30 minutos, después de generar la contracorriente, cada chimenea debiera emitir una columna de humo blanco y denso. Durante todo el periodo de la carbonización, es conveniente asegurar que se mantiene a una temperatura uniforme alrededor de la circunferencia del horno. El control es más fácil cuando los hornos funcionan en posiciones protegidas. Si hay un fuerte viento dominante el perfil de la temperatura a través del horno puede desequilibrarse, con la necesidad de bloquear, parcial o completamente, una o dos de las bocas de aire en el costado de donde viene el viento. Pueden necesitarse medidas más extremas para equilibrar el horno, en las fases iniciales de la carbonización, cuando se funciona en condiciones mojadas o con madera húmeda de corta reciente. En estas condiciones, hay grandes cantidades de agua que evaporarán del suelo y de la madera, en el costado más caliente, para condensarse luego en las zonas más frías del horno. Este agua puede apagar totalmente el fuego que queda en los puntos de encendido, y deprimir aún más la temperatura en estas áreas.

Para corregir esta situación, deberán temporareamente bloquearse las entradas de aire en el costado caliente del horno, y deberán destaparse los espacios entre los canales de entrada/salida, sobre el costado más frio, para permitir que entre más aire en esta zona del horno. Con ello, se arrastrará el fuego a las zonas más frías del horno, y una vez que aquí la temperatura ha aumentado suficientemente, pueden volverse a sellar los espacios entre los canales. Puede seguirse posteriormente con el método normal para el control de la entrada de aire.

Es importante no dejar nunca un horno desatendido cuando los espacios entre los canales de entrada/salida están abiertos, puesto que el horno puede quedar seriamente dañado.

Cuando se usa madera mojada o cuando se hace funcionar el horno en condiciones mojadas, es probable que el tiempo de carbonización se alargue harta un total de 48 horas. Debido a la mayor cantidad de madera que se quema internamente para eliminar el exceso de humedad, deben esperarse rendimientos más bajos.

(b) Durante la carbonización, una cierta cantidad de alquitrán se deposita en los conductos de salida y en lar. chimeneas. Este alquitrán reduce la corriente de descarga de gas del horno, y debería ser eliminado cuando se nota una reducción de la cantidad de humo liberado desde algunas de las chimeneas. Ello se hace, retirando la chimenea de su anillo de apoyo del conducto de salida, usando un par de guantes resistentes al calor o una vieja bolsa, y se quita toda obstrucción que hubiera dentro de la chimenea. Al mismo tiempo se hace penetrar una vara larga, por el canal hacia el centro del horno, para asegurarse que no hay obstáculos internos.

En un cierto momento durante el período de carbonización (normalmente 8 a 10 horas después del encendido) deberán trasladarse las chimeneas a los conductos de aire adyacentes, para convertir las bocas de ingreso de aire en salidas de humo y viceversa. Se mantiene de esta manera una quema regular, reduciendo la formación de ceniza en las áreas donde el aire penetra en el horno.

(c) La carbonización es completa cuando el color del humo, en todas las chimeneas, toma un tinte azulado y se vuelve casi transparente, lo que ocurre normalmente de 16 a 24 horas después del encendido. En esta fase, toda la superficie del horno debería ser muy caliente (1500 a 200°C), tal que una gota de agua hecha caer sobre la pared del horno, evaporará inmediatamente con un ruido chispeante. Al llegarse a este momento, se sella completamente el horno para el enfriamiento.

El horno se sella, quitando las chimeneas y bloqueando completamente, con tierra o arena, todos los conductos de aire. Si fuese necesario, se agrega más tierra o arena a las juntas de las secciones principales del horno y a las bocas de salida de vapor, para asegurarse que estén completamente selladas y el aire no pueda entrar. Se deja enfriar el horno durante 16 a 24 horas antes de abrirlo y descargarlo. Una lluvia ayudarla mucha el enfriamiento.
 

8.8.6 Descarga del horno

(a) No debe abrirse el horno antes de que su contenido esté frío y que la superficie externa del horno resulte fresca al tacto. La presencia de luz del sal directa podría confundir, por lo que la temperatura interior del horno puede ser apreciada mejor tocando la superficie de la sección inferior, en una zona sombreada. A continuación deberá tantearse la temperatura del resto de la superficie de la sección inferior, para asegurarse que no existen "puntos calientes". Si el contenido del horno sigue caliente después de un período de enfriamiento de 24 horas, significará que no se ha obtenido el sellado completo con el exterior, que debe tratarse de obtener.Además, si se abre el horno y se nota que parte del carbón vegetal está aún prendido, se volverá a sellar el horno para un ulterior período de enfriamiento.

Inmediatamente después de romper el cierre hermético en el horno, deberá sacarse el carbón, aún cuando pareciera que el contenido es completamente frío. Cualquier demora podría hacer que se enciendan fuegos localizados y, a parte de la pérdida, puede hacerse mucho daño al horno.

(b)Durante la carbonización, la madera se habrá reducido a alrededor de la mitad de su volumen original y será posible quitar la tapa y la sección superior, apenas el horno se enfría, quedando el carbón vegetal en la sección inferior.

Foto 35. Durante el período de carb on ización la madera se ha reducido
a alrededor de la mitad de su volúmen original. Foto TPI

La tapa se remueve con poco esfuerzo, levantando un costado de su plancha de apoyo e insinuando la extremidad de una rama larga o tablón en el espacio abierto. Este pedazo de madera puede ser luego usado como deslizadero, sobre el cual se hace delicadamente resbalar la tapa hasta el suelo. Se seguirá el mismo procedimiento para remover la sección superior del horno.

(c) Para retirar la sección inferior, se quitan antes los conductos de entrada/salida de un costado del horno, usando una palanca. Con la palanca debajo del lado opuesto, la sección inferior puede voltearse sobre su costado, dejando libre el carbón vegetal para su embolsado. Cuando se descarga el horno deberá tenerse al alcance de la mano una paila de agua o una cierta cantidad de arena o de tierra, para apagar cualquier pequeño fuego que se presente.
 

8.8.7 Embolsado del carbón vegetal

Para abreviar esta operación debe usarse un tamiz deslizador que separe los pedazos grandes de carbón vegetal de la carbonilla fina y polvo. En la figura 11 se indica como construir un tamiz deslizador.

Se recomienda colocar la sección inferior del horno en el lado opuesto de donde se tira el carbón, y de charla para sostener el tamiz deslizador, de manera que no solamente aumentará la establidad del tamiz, sino que se reduce la cantidad de polvo que alcanza al obrero.

Si fuese necesario, se puede también usar un tamiz deslizador de libre apoyo. Dos obreros pueden descargarlo y llenar las bolsas en alrededor de una hora.


 

Foto 36. Un tamiz deslizador se usará para separar los pedazos
grandes de carbón vegetal de la carbonilla y polvo. Foto TPI

8.9 Variantes en los métodos de funcionamiento

El encendido del horno desde arriba, es un método especialmente adaptado para carbonizar madera pequeña o cáscaras de coco, puesto que asegura una suficiente corriente de gas a través de la carga.
 

8.9.1 Carga

El horno se carga como se ha descrito antes, sin yesca entre los listones en la base. La yesca de leña se coloca en vez, en una depresión de 25 cm de profundidad en la parte alta de la carga, que luego se recubre con un estrato final de madera.

No se necesitan los listones cuando se carboniza cáscara de coco. Debe tenerse cuidado de asegurar que el material de la cáscara no bloquea los extremos de los conductos de entrada/salida dentro del horno. Para ello, se coloca una pieza plana de madera (por ejemplo, un pedazo de costilla de una rama muerta de palma) arriba de la extremidad final del conducto, antes de taparlo con cáscaras.
 

8.9.2 Encendido

El fuego se enciende arriba, a través de una de las cuatro bocas de liberación del vapor, y se deja que la carga queme con un acceso de aire completamente libre hacia la base del horno. El humo escapará por las cuatro bocas de la tapa. Se dejará que esta etapa continúe por alrededor de dos horas, hasta que toda la sección superior del horno sea demasiado caliente como para tocarla con las manos desnudas.
 

8.9.3 Reducción de las corrientes

Cuando la sección superior está suficientemente caliente, se cubren los espacios entre los conductos de ingreso/salida con arena o tierra y se colocan las chimeneas en posici- Se sellan las bocas de salida de vapor. La inversión de los flujos y el control de la alimentación de aire se hacen según el método normal de operación descrito anteriormente.
 

8.10 Programa para el funcionamiento comercial

Dos hombres expertos pueden hacer funcionar dos hornos metálicos transportables y producir 2-3 toneladas de carbón vegetal por semana. De acuerdo con las condiciones y facilidades locales, puede necesitarse ayuda para cortar la madera y mover los hornos y, en algunos casos, puede ser necesario un tercer hombre, preferentemente un operador de una sierra mecánica.

La experiencia ha demostrado que las operaciones comerciales exitosas, cuando se han usado hornos metálicos transportables, han sido las que ofrecían incentivos máximos a sus operadores. Un ejemplo se tiene en una cooperativa gestionada por propietarios/operadores del horno, donde los socios reciben la- mayor parte de los beneficios de la venta del carbón vegetal.

A continuación se formula y se sugiere un programa de trabajo para una semana de 5 días. Pueden hacerse modificaciones al presente horario, para permitir variaciones en las horas diarias de trabajo y para una semana de 6 días. Además, pueden obtenerse operaciones adicionales, si se puede contratar, con alguien que viva cerca del área de producción la tarea liviana de media hora, de sellar el horno durante el fin de semana.
 
 
Lunes 08.00-10.00 Horno 1 Horno 2 Descargar ambos hornos.
10.00-12.00 Horno 1   Cargar horno con madera
12.00-13.00 Horno 1   Encender el horno y reducir el tiraje
13.00-17.00   Horno 2 Cargar horno con madera.
Horno 1   Controlar la carbonización. Cambiar y limpiar las chimeneas a las 16.30
Martes 08.00-08.30 Horno 1   Cambiar y limpiar chimenea
08.30-11.00     Preparar madera para futuras operaciones
11.00-12.00   Horno 2 Encender el horno y reducir el tiraje
12.00-17.00   Horno 2 Controlar la carbonización. Cambiar y limpiar las chimeneas a las 16.30
Horno 1   Cerrar el horno cuando se completa la carbonización
    Preparar madera para futuras operaciones
     
Miercoles 08.00-08.30   Horno 2 Cambiar y limpiar chimeneas
08.30-14.00     Preparar madera para futuras operaciones.
14.00-15.00 Horno 1   Descargar del horno, el carbón vegetal.
15.00-17.00 Horno 1   Comenzar carga horno con madera
  Horno 2 Cerrar el horno cuando se complete la carbonización
Jueves 08.00-10.00 Horno 1   Terminar carga del horno con madera.
10.00-11.00 Horno 1   Encender horno y reducir el tiraje.
11.00-11.30   Horno 2 Descargar del horno el carbón vegetal.
Horno 1   Controlar la carbonización
13.00-15.00   Horno 2 Cargar el horno con madera.
Horno 1   Controlar la carbonización
15.00-16.00   Horno 2 Encender el horno y reducir el tiraje.
16.00-17.00 Horno 1   Cambiar y limpiar las chimeneas.
  Horno 2 Controlar la carbonizaci6n.
Viernes 08.00-09.00 Horno 1   y Horno 2 Cambiar y limpiar chimeneas.
09.00-13.00 Horno 1   Cerrar el horno al completar la carbonizaciór
    Preparar madera para futuras operaciones.
  Horno 2 Cambiar y limpiar chimeneas a las 12.30.
13.00-17.00     Preparar madera para futuras operaciones.
Horno 2 Cerrar el horno al completar la carbonización

8.11 Los más frecuentes defectos de funcionamiento

(a) Insuficiente encaje de los conductos de entrada/salida debajo del borde inferior de la sección inferior del horno, durante el armado. La elevada temperatura, que se produce en la extremidad interna del conducto de aire, produce graves daños a la pared del horno, si no se mantiene la requerida distancia entre la zona caliente y la pared del horno.

(b) Insuficiente flujo del gas a través del sistema, por no quitar los depósitos de alquitrán de los conductos de salida y de las chimeneas, resultando bajas temperaturas en el honro y períodos de carbonización más largos.

(c) Empleo de demasiado tiempo en el enfriado del horno, con la reducción de la cantidad de operaciones posibles en la semana de trabajo.

(d) Hesitación en mudar los hornos más cerca de la madera disponible, con un desperdicio de tiempo y de trabajo en el transporte de la madera hasta el horno.

(e) Insuficiente cantidad de madera disponible en el área vecina al horno para cargar apenas termina la operación anterior.

(f) La práctica de permitir el desarrolla de grandes fuegos cerca de la superficie de la pared del horno, durante la fase del encendido, lo que normalmente reduce el fluir del aire debajo del horno e impide que el fuego se expanda rápidamente hacia el centro de la carga. Puede también causar danos serios a la pared del horno. Todo lo que normalmente reduce el fluir del aire debajo del horno e impide que el fuego se expanda rápidamente hacia el centro de la carga. Puede también causar danos serios a la pared del horno. Todo lo que normalmente se requiere, apenas se enciende dentro del horno la yesca preparada, es un máximo flujo de aire.

(g) La práctica laboriosa y desperdiciadora de tiempo de embolsar a mano en lugar de usar una pala y un tamiz. Tiempo excesivo en el descargue del horno produce demoras en la carga y encendido de la siguiente operación.
 

8.12 Rendimientos del carbón vegetal

El peso del carbón que se produce en cada hornada en una carbonera metálica transportable se relaciona con diferentes factores físicos. Los factores fundamentales que contribuyen a obtener resultados máximos, son; - elevada densidad de la madera
- bajo contenido de humedad en la madera
- condiciones secas de operación y un sitio bien drenado para el horno
- elevada densidad de empaque de la carga, gracias al tamaño y forma regulares de la materia prima.
En la práctica, se ha hallado que, raramente pueden juntarse estas condiciones, y por consecuencia los rendimientos y las eficiencias de conversión mencionadas, difieren en manera considerable 7, 20 18, 31).

Los programas de entrenamiento por parte de TPI, en siete países, han dado un rendimiento medio de carbón vegetal, incluyendo carbonilla fina, del 26% sobre la base seca. El máximo peso de carbón vegetal obtenido en una sola hornada se observó en Guyana, donde se produjeron 1.083 kg a partir de 3.852 kg (peso seco) de tronquitos de tamano regular, de una latifoliada muy densa. El contenido de humedad de la madera empleada era de aproximadamente el 25% (base húmeda), con lo que se indica una eficiencia de conversión (sobre la base de peso seco) del 28,12%. Se han obtenido mayores eficiencias de conversión en la región árida litoral del Ecuador, donde se ha observado una recuperación del 31,40%.

En el otro extremo, la carga más liviana dé carbón vegetal obtenida de una sola hornada ha sido en Sudán con residuos de costaneras de coníferas. Se produjeron 297 kg de carbón vegetal a partir de una cantidad estimada de madera de 1,568 kg (peso seco), indicándose una eficiencia de conversión del 18,94%. El contenido de humedad de las piezas de madera recién aserradas era de aproximadamente el 57% (sobre base húmeda).
 

8.13 Vida útil de los hornos metálicos transportables

La durabilidad de los hornos depende en gran medida del cuidado y de la habilidad ejercitados por los operadores. Si no son los propietarios quienes hacen funcionar los hornos, sino obreros casuales, se reduce el incentivo para disminuir los daños de funcionamiento. Los obreros no calificados pueden también reducir la vida útil de los hornos.

La experiencia ha demostrado hasta ahora que, estos hornos pueden sobrevivir un funcionamiento continuo durante un período de tres anos. Al final de este tiempo el cilindro inferior necesitará generalmente ser reemplazado o reparaciones fundamentales. La sección superior y la tapa no están expuestas a la misma cantidad de tensiones por el calor como en el caso de la sección inferior. Siempre que se haya tenido cuidado en el transporte y en el armado, debería esperarse un período de uso más prolongado. En África Occidental, un horno de diseño TPI en continuo funcionamiento, puso en evidencia al cabo de dos anos, sólo señales menores de distorsión en la par-be más baja de la sección inferior. La sección superior y la tapa habían quedado en condiciones de primera clase.

Los componentes del horno, que sufren más con el uso son los 8 conductos de entrada/ salida. Las elevadas temperaturas que resultan en las extremidades más internas del canal, distorsionan el metal en estas áreas localizadas. Los conductos tiene que ser enderezados continuamente, y casi seguramente tendrán que ser reemplazados al cabo de un período de tres años de uso continuo.
 
 

Previous pageTop of PageNext Page