Field Document 3
July 1986


A report prepared for the
Re-establishment of carp fishing project

based on the work of

A.G.J. Tacon
Fish Feed Technologist

This report was prepared during the course of the project identified on the title page. The conclusions and recommendations given in the report are those considered appropriate at the time of its preparation. They may be modified in the light of further knowledge gained at subsequent stages of the project.

The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the United Nations or the Food and Agriculture Organization of the United Nations concerning the legal or constitutional status of any country, territory or sea area, or concerning the delimitation of frontiers.


This report details the results of a consultancy carried out to develop carp feed using locally available ingredients for use at the Aiyura carp station, administered by the Fisheries Division of the Department of Primary Industry. Baseline data on agricultural feed resources of Papua New Guinea are summarized, and national agricultural and industrial by-products identified for potential use as carp feed at the Aiyura carp station and surrounding highland village fish ponds. The principle by-products identified are coffee pulp, pasture and arable crop waste, barley mill sweepings, livestock manure, copra cake and wheat mill run. On the basis of the feed resources available, a low-cost semiintensive feed strategy, using a combination of organic fertilization and supplementary feeding, is recommended for use at the Aiyura carp station and village fish ponds, and is fully described.


The Food and Agriculture Organization of the United Nations is indebted to the following who assisted the author in the implementation of the project by providing statistical information, advice and facilities.

Rome, 1986

Hyperlinks to non-FAO Internet sites do not imply any official endorsement of or responsibility for the opinions, ideas, data or products presented at these locations, or guarantee the validity of the information provided. The sole purpose of links to non-FAO sites is to indicate further information available on related topics.

This electronic document has been scanned using optical character recognition (OCR) software. FAO declines all responsibility for any discrepancies that may exist between the present document and its original printed version.



1.1 Terms of Reference


2.1 Human Resources and Food Production Policy
2.2 Agriculture and the Economy

2.2.1 Subsistence food crop production
2.2.2 Small-holder cash cropping associated with subsistence
2.2.3 Large holder production

2.3 Fishery Country Profile


3.1 Major Animal and Cash Crop Byproducts and Wastes
3.2 Imported Animal Feed Ingredients and Fertilizers
3.3 Commercial Feed Manufacturers and Feed Lines
3.4 Village Subsistence Food Crops


4.1 Past Carp Feeding Programmes

4.1.1 Aiyura carp station
4.1.2 Village fish ponds

4.2 Proposed Carp Feeding Programmes

4.2.1 Available feeding options
4.2.2 Suggested feeding option
4.2.3 Aiyura carp station feeding plan
4.2.4 Village fish pond feeding plan




Appendix 2: PERSONS MET














1. Provincial government and major towns of Papua New Guinea

2. Primary industry: feed manufacturers, flour mills, breweries, abattoirs, bakeries, sugar refinery, pyrethrum refinery, oil palm processors, coconut processors, major poultry and pig farms

3. Primary industry: main cocoa, oil palm and pyrethrum growing areas

4. Primary industry: main coconut, sorghum and commercial maize growing areas

5. Primary industry: main arabica and robusta coffee growing areas

6. Primary industry: cattle distribution and ownership

7. Primary industry: main yam, sweet potato, sago, taro and banana growing areas



The Government of Papua New Guinea (PNG) has requested the assistance of the Food and Agriculture Organization of the United Nations, under the Technical Cooperation Programme, to advise on the re-establishment of the Fisheries Divisions carp rearing facilities at the Higlands Agricultural Experimental Station (Department of Primary Industry) in Aiyura, and to provide a training programme to safeguard good management. The FAO consultant team consisted of an aquaculture engineer (Mr J. Kövári), fish aquaculturist (Mr R. Pitt) and a fish feed specialist (Dr A.G.J. Tacon).

The Aiyura carp station is situated in the Eastern Highlands Province, 7 km southsoutheast of Kainantu. The primary aim of the Government carp station is to produce common carp (Cyprinus carpio) fingerlings for subsequent distribution and on-growing by interested rural farmers and institutions such as prisons, missions and schools within the Highland Provinces of PNG.

FAO assigned Dr A.G.J. Tacon as consultant (Fish Feed Technologist) of the Aquaculture Development and Coordination Programme (ADCP) for the period 17 January to 24 February 1986, with the following terms of reference:

During the visit to PNG, the terms of reference were broadened to include an assessment of the agricultural feed resources available at the village and national level for aquaculture planning and development.

This report is based on information collected during a mission which took place between 17 January and 17 February 1986. During this period discussions were held with staff of the Fisheries Division of the Department of Primary Industries, with village subsistence farmers in the Kainantu and Okapa Districts, and with commercial animal feed and agricultural producers thoughout PNG.

This report (a) summarizes baseline data on the agricultural feed resources of PNG; (b) identifies agricultural and industrial byproducts which may be considered for use as carp feed at the Aiyura carp station and village fish ponds; and (c) recommends experimental approaches for fish feed development.

Appendixes 1 and 2 give the travel itinerary and persons met.



Papua New Guinea is a country remarkable for its diversity. Within an area of 460 000 km2 and a population of only 3.3 million people, there are more than 700 language groups many of them with a recognizably distinct social and cultural system of organization, and a wide range of agro-ecological zones and physical environments. Any attempt, therefore, to formulate policy for government action and to implement action programmes and projects designed to have an impact on food systems, must address this diversity. What may be applicable in one area may be completely irrelevant elsewhere. The key elements need to be flexibility and a disaggregated approach.


Agriculture is the “economic backbone” of PNG, being the main provider of livelihood for the large majority of the population and the source of about half the total export earnings of the country (Table 1). Agricultural production in PNG is derived from three main sectors: subsistence cultivation, small-holder cash cropping associated with subsistence, and larger holder capital-intensive production of the plantation type.

2.2.1 Subsistence food crop production

Subsistence agriculture is the provider of livelihood and employment for 75% of the total labour force in PNG (Table 1). In fact, over 80% of the population relies on subsistence food systems, either completely or for a very substantial part of the daily diet and nutritional needs. Subsistence agriculture in PNG is characterized by shifting cultivation of starchy staples and a variety of other crops in garden areas of 500–2 500 m2 cleared in secondary forests by “slash and burn” techniques. The major staples are sweet potatoes, taro, yams, bananas and sago. These in turn are supplemented by a wide variety of other secondary crops including sugarcane, cassava, winged bean, indigenous and introduced vegetables, nuts and fruit. A typical villager in the lowlands or highlands will grow 10 to 20 species of food in his garden out of 30–40 available for the local area.

2.2.2 Small-holder cash cropping associated with subsistence

This is generally based on expanded subsistence agriculture, although these additional crops are grown specifically for cash sale; small holder cash crops providing the major direct source of cash income to rural PNG. The principal small-holder cash crops include coffee (75% of the total coffee production in PNG is produced by small holders; Harding 1985), sweet potato, peanuts, bananas, pineapples, guava, chillies and cardamon.

2.2.3 Large holder production

Large holder, plantation type agriculture, is largely based on tree crop production for the export market. The major export crops, in order of export cash earnings, include coffee, oil palm, cocoa, coconut, tea, rubber, chillies, pyrethrum and cardamon (Table 1). This form of agriculture is recent in age, requires high capital inputs, and at present is largely based on hired or contract expatriate labour and mechanization.


Table 2 summarizes the fisheries commodity balance for PNG in 1983. Although surrounded by vast seafood resources, over 90% of the fish consumed in PNG is imported; 70% of this being in the form of low priced canned fish. To rural villagers, canned fish has many advantages over domestically produced fresh or frozen fish; it is easier to transport, store, serve, and is cheaper per unit of protein than all other forms of animal protein in PNG. Table 3 summarizes the average retail price of selected grocery items in PNG, including imported finfish.



Table 4 lists the major animal and cash crop byproducts and wastes available in PNG, and also indicates the quantities produced, current utilization and cost (February 1986) per tonne of product. The source and geographical distribution of these products in PNG is shown in Figures 1–7.


Table 5 lists the major imported animal feed ingredients and fertilizers available in PNG, and also indicates the average protein and lipid level of the feed ingredients, and the cost (caf Lae, February 1986) of all commodities.


Table 6 summarizes the status of the commercial feed manufacturing industry in PNG. At present only two commercial feed manufacturers operate in PNG, both located in the port of Lae. Total animal feed production for 1985 was estimated to be 25 500 t, of which 92% constituted poultry feed, 6% pig feed, and 2% others, including duck, trout, horse, calf and dairy cow feed. At present both manufacturers import about 60% of their total feed ingredient requirement.


Table 7 lists the major subsistence food crops grown in PNG villages. The table also indicates the portions of the crop generally consumed.



4.1.1 Aiyura carp station

At the time of the consultant's visit to the Aiyura carp station there was no artificial feeding or fertilization programme for pond-reared fish; fish growth being totally dependent on natural pond productivity, fish size and stocking density. With the exception of a small hand-operated kitchen mincer and 3 small-scale solar driers, no adequate facilities exist at Aiyura for feed preparation and distribution.

4.1.2 Village fish ponds

Of the 53 village communities within the Highlands Region which have been supplied with carp fingerlings from Aiyura between December 1983 and August 1985, almost all report the use of kitchen waste and/or cooked/raw sweet potato tubers as carp feed in their ponds 1. Fish are generally fed on an irregular basis (at best once or twice per week), and no records are usually kept of the quantities of food given and fish growth within the ponds. Food is usually broadcast by hand into the centre of the pond with no further processing.

Only three of the 53 villages in question stated that they would use animal manure as a fertilizer within their fish ponds. There appears to exist a strong social taboo against the direct use of animal manure as a fertilizer. For example, it is reported that villagers will not eat sweet potato that has been fertilized with pig manure (D'Souza and Bourke, 1983).


4.2.1 Available feeding options

The food and feeding of carp can be viewed at four different levels of refinement or input:

1 The average size of a village fish pond is 100 m2, and villagers are advised to maintain a fish stocking density of 2/m2

4.2.2 Suggested feeding option

The ultimate choice of feeding option used depends upon a variety of factors, including: the feeding habit of the fish species chosen (herbivore, omnivore, carnivore); the farming system to be used (extensive, semi-intensive, intensive); the farming traditions and managerial ability of farmers; the local availability of fertilizers and feeds (including cost); the cost of transporting and processing feeds; the market value of the fish species farmed; and the financial status of the farmer.

In view of the shortage of conventional feed ingredients in PNG for human and livestock consumption, the low cash income and purchasing power of rural subsistence farmers, the poor road transportation system in PNG and consequently high cost of transportation, ingredient selection must be based on the following criteria: in order of importance, these include a) cost (if at all); b) availability; c) handling and processing requirement prior to feeding (including transportation); and finally d) nutritional value. Furthermore, by utilizing low quality and value products, and in particular those agricultural and industrial byproducts which are not currently used for human and livestock feeding, fish farming would be seen to be an asset to the community by increasing land productivity rather than a competitor with the traditional agricultural or livestock farmer. Appendixes 3 and 4 list those feed materials and fertilizers which are suggested for use at the Aiyura carp station and village fish ponds, respectively. The proximate composition of these agricultural byproducts and wastes is given in Appendix 5.

Of the four feeding strategies mentioned (4.2.1) it is believed that the most appropriate for the Aiyura station and village fish farms is a low-cost semi-intensive feeding strategy using a combination of organic fertilization (either by direct application or composting, or through integration with livestock) and supplementary feeding with agricultural byproducts. This feeding strategy will have the necessary flexibility in that fish growth is not dependent on a single food source but on a combination of different feed types. It is essential that the feeding strategy chosen has this flexibility as fertilizer, feed, and labour inputs may vary over a growing season depending on availability and the financial status of the farmer. Furthermore, if the Aiyura station and surrounding village farms were to use a similar feeding strategy, then the station could also be used as a practical training centre for prospective farmers.

Although it would have been simple here to recommend a feeding strategy identical to that developed in Asian countries for common carp, it is essential that PNG develops her own precise feeding programme using indigenous (non-imported) feed materials and social farming traditions. For reference, Appendix 6 summarizes the various feeding practices currently used for common carp in Asian countries.

4.2.3 Aiyura carp station feeding plan

In contrast to complete diet feeding, where rations are formulated to a pre-set nutrient level for each fish age class, the formulation of a semi-intensive fertilization/supplementary feeding plan is dependent upon the quality of fertilizer or supplementary feed used, the natural fertility of the pond, and on the density and biomass of the fish stocked. Sadly, there is no information on the natural productivity of the fish ponds in PNG, and scant information on the nutritive value and use of such products as coffee pulp and mill-sweepings as a fertilizer or supplementary feed for carp. Unfortunately, this information can only be obtained through exhaustive experimentation on site.

Despite these drawbacks, the following tentative feeding plan can be made for the Aiyura carp station:

Pond fertilization

The use of organic fertilizers is recommended so as to maintain the natural food productivity within the fry, fingerling, grow-out and broodstock ponds. One of the following options should be employed, in order of preference:

  1. Animal manuring: initial pond application rate of 10–30 kg manure/100 m2 (applied 1–2 weeks before stocking), followed by a bi-monthly application rate of 3–6 kg/100 m2 depending on pond fertility and manure quality.

  2. Animal manuring: manure application through livestock integration; rearing 15–30 chicks, 10–15 ducklings or 0.5–1 piglets in enclosures above or beside 100 m2 of fish pond area. The success of this fertilization strategy is dependent upon the availability of suitable compounded livestock feeds (Table 5), an animal breeding and distribution centre, and a ready market for the chickens, ducks or pigs produced.

  3. Anaerobic composting: a compost crib is first built with bamboo or other wooden poles in a corner near the pond inlet; 1 m crib radius and initially 1 crib/100 m2 pond surface. Compost is made by stocking organic matter (grass cuttings, coffee pulp, kitchen waste, crop waste, etc.) underwater within the crib. Ideally fill the crib with layers of grass or small amounts of animal manure alternating with fresh wastes; placing heavy stones on top of the crib to stop the compost floating away if need be. According to Vincke (1985) for a 100 m 2 pond about 50–60 kg of organic matter is required to start with, and weekly doses of 8–10 kg organic matter required thereafter. Various organic mixtures should be tested, including 100% coffee pulp (experimental basis only).

  4. Aerobic composting: the same raw materials can be used to make an aerobic compost; the only difference is that in this instance the compost is piled in the open air near the pond. For good fermentation the compost pile should be prepared in alternating layers of fresh vegetable fodder or waste (chopped) and dried organic matter such as dried grass. Compost ventilation should be ensured by inserting bamboo poles into the mixture. Ideally some animal manure or ash should be added between the layers and the compost pile kept continually moist by spraying. After a one-month fermentation period the compost should be mixed and turned over, and allowed to ferment for a further two months (depending on climate and the products used). According to Schmidt and Vincke (1981) between 5 and 7 t of organic matter is required to prepare a 9 m3 compost pile, with a yield of 2 800 kg compost after 3 months. The same authors suggest a fish pond fertilization rate of 20–30 kg decomposed compost/100 m2 pond surface/month for semi-intensive culture. Aerobic composting produces a much richer fertilizer, and in less time, than anaerobic composting. As stated previously, various organic mixtures can be tested for composting, including high coffee pulp mixtures.

  5. Vegetable manure: the use of wet or dry coffee pulp as a pond fertilizer by direct application (0.5–2 t/ha; through experimentation only).

Supplementary feeding

In addition to the continual maintenance of natural food productivity through organic fertilization, the following supplementary feeding regimes are recommended:

Larval/pre-nursery rearing: newly hatched carp larvae (1 mg in weight) should be stocked (50–100/m2) into well manured, predator-free fry rearing ponds and fed a supplementary feed ration of either 100% barley mill sweepings, 50:50 barley mill sweepings:wheat mill run mixture, or 100% wheat mill run (depending on experimentation). At a larval stocking density of 100/m2, feeding should commence two days after hatching with 20 g feed/100 m2 pond surface; the feed allowance thereafter increasing by 20% each day until day 14, and then 10% each day until day 28 from hatching (using this regime the daily feed rate at day 7, 14, 21 and 28 should be 50, 180, 350 and 680 g/100 m2 respectively). The total feed requirement for a 21 or 28 day rearing cycle would be 2.8 or 6.5 kg/100 m2 respectively. The feeding regime described is based on a feeding rate range of 200–33% bw/d (body weight per day) during week 1, 33–20% bw/d during week 2, and 20 % bw/d during week 3 and 4. No adjustment is made for fish mortality within this feeding strategy; thus maintaining a constant feed concentration within the water body. However, to save on feed costs, an assessment of fish mortality can be made on day 21, and the feed allowance for week 4 adjusted accordingly. Each daily feed allowance should be divided and administered to the fish as a dry powder or granule in four equal parts over a working day, 7 days/week. The feed must be finely ground before feeding; feed size of <0.25 mm from day 1–14, ≤0.50 mm from day 14/28.

Nursery grow-out rearing: advanced fry (c. 0.3–0.5 g in weight) should be stocked (5 ≤10/m2) into well manured nursery rearing ponds and fed a supplementary feed mash of either 100% barley mill sweepings, 50:50 mixture of barley mill sweepings and wheat mill run, or 100% wheat mill run (depending on experimentation). Fish should be fed at a feeding rate of between 10 and 15% bw/d (depending on appetite) for the duration of the nursery-rearing period. Each day's food allowance should be fed in three equal parts during the first two weeks, and thereafter in two equal parts, 7 days/week. The feed can be fed either wet, by using one or more bait-rod feeders (the number depending on pond size and fish stocking density) or by hand as a suspension or feed ball, or dry, by hand application over the pond surface or within one or more floating feeding frames. However, the effectiveness of these feeding methods will depend to a large extent upon fish size (i.e., fish below a certain size may not be able to operate a bait-rod feeder) and the physical characteristics of the supplementary feed) (i.e., density, particle size). As with the pre-nursery rearing period the feed must be finely ground before feeding; feed particle size of 0.5<1.0 mm during the first month and 1.0<2.0 mm during the second month.

For grow-out, fingerlings (c. 10–30 g) should be stocked at 1–2/m2 into organically manured ponds. In addition to the three supplementary feeds mentioned above, a 50:50 barley mill sweepings:copra cake mixture of 50:50 wheat mill run:copra cake mixture can also be employed; particularly under conditions of low natural food availability and high stocking density. Fish should be fed by hand or bait-rod feeder, twice daily, at a feeding rate of between 5 and 10% bw/d (again depending on appetite and natural food availability). A feed mash particle size range of 1–3 mm should be employed.

Broodstock feeding: broodstock and pre-broodstock should be kept in manured ponds at a low density (1–2 individuals/100 m2). Fish should be fed by hand or bait-rod feeder, once or twice daily, at a feeding rate of 1–5% bw/d (depending on appetite and water temperature). Any one or more of the past mentioned supplementary feeds can be employed. However, the following additional waste products can be mixed on an equal wet weight basis with the feed mash when available; chopped frogs or toads, tadpoles, chopped green folder (especially “tulip” leaves and shoots, cassava leaves, cooked pawpaw leaves); “mumu” waste and terrestrial lumbricid worms.

4.2.4 Village fish pond feeding plan

In contrast to the Aiyura carp station, the village fish pond feeding strategy will be almost entirely based on the use of organic fertilizers, with little or no direct supplementary feeding (with the possible exception of direct feeding with cassava leaves and sweet potato tubers). The following fertilization plan is based on a suggested fish stocking density of 1–2/m2.

Pond fertilization

The same fertilization options exist as for the Aiyura carp station. However, in view of the present limited acceptance of pig manure (the only manure normally available within village communities) as an agricultural fertilizer, and the need to develop farming strategies requiring "part time" labour inputs, the following pond fertilization options are recommended, in order of preference:

  1. Anaerobic composting: this method is recommended initially due to its ease of application and low labour requirement. For example, Schmidt and Vincke (1981) estimated that a rural farmer would spend an average of 28 hours a year collecting, transporting and piling organic matter to compost a 100 m2 fish pond (for method see 4.2.3 (iii)).

  2. Aerobic composting: although this method of composting requires a higher labour input and a planned farming approach, it may be ideally suited to those highland villages where intensive compost-based agricultural production already exists (i.e., Enga Province) (for method see 4.2.3 (iv)).

  3. Animal manuring: through integration with ducks, chickens or pigs. The success of this approach, as mentioned previously, will depend on the managerial ability and purchasing power of the farmer, and the availability of stock, stock feed, adequate transportation and markets for the products produced (see 4.2.3 (ii)).

  4. Animal manuring: as 4.2.3 (i). The apparent “taboo” associated with the direct use of animal manure as an agricultural fertilizer will first have to be overcome before this method can be fully realized by rural fish farmers.

Finally, it must be emphasized that the success of the above fertilization strategies will depend to a large extent upon the provision of a good extension service from Aiyura. All too often it is believed that the duties of a seed production centre end once the fish are delivered to the farmers; in fact the real duties are only just beginning. For a review of the role of extension in village aquaculture development see Vincke (1985a).


On the basis of the agricultural feed survey conducted and resources available at the Aiyura carp station and village fish ponds, it is recommended that:

  1. the Aiyura carp station and village fish farms develop a low cost semi-intensive feeding strategy using a combination of organic fertilization and supplementary feeding;

  2. the equipment facilities at Aiyura for feed preparation (i.e., grinding, weighing, sieving, and laboratory pelleting equipment) and water analysis (portable kits) are strengthened or established;

  3. the facilities of Aiyura for fish transportation (i.e.,vehicle, fish transportation tank and accessories) and field communication (i.e., walky-talky/radio, audio-visual aids) are established;

  4. in support of the reports of the aquaculture engineer and fish aquaculturist, that the Aiyura carp station be used as a short-term training centre for prospective village fish farmers;

  5. the Aiyura carp station strengthen its extension programme in terms of training expertise, personnel recruitment, technical support, and data collection and monitoring;

  6. in support of the report of the fish aquaculturist, the Aiyura carp station undertake a programme of aquaculture research (either alone or in conjunction with village farmers) which can subsequently be directly applied to the rural fish farming community. A recommended applied research programme in fish food and feeding in earth ponds (in addition to the feeding plan described in this report), includes:

  7. FAO provides support to assist with feed preparation and data collection at the Aiyura carp station by supplying essential equipment, such as a hammer mill, sieves, feed mincer and mixer, and field instruments for measuring aquaculture related physico-chemical parameters. FAO should also assist with the preparation of a rural aquaculture development programme. Support is also needed for training and consultancies on specific aquaculture activities such as extension, seed production, and integrated farming.


ABECOR, 1984 Country Report, Papua New Guinea. June 1984, 2 p.

D'Souza E. and R.M. Bourke, 1983 Improving subsistence agriculture on the Nembi Plateau. Harvest (9/2) :84–93

FAO, 1985 Country Tables: basic data on the agriculture sector. Rome, FAO.

FAO, 1985a ICS Turnaround Document, Papua New Guinea. 14 January 1986. Rome, FAO.

Flores, A.S and I. Temu, 1983 Policies and planning strategies for agricultural development in Papua New Guinea. In Economic Policy Issues and Options in Papua New Guinea (D. Gupta and S. Polume, eds.); Papers from a seminar, Fort Moresby, 5–7 September 1983. Working Paper No. 41 - Australian National University, Development Studies Centre, Canberra, 1983; 270 p.

Gohl B., 1981 Tropical Feeds, Rome, FAO Animal Production and Health Series No. 12, 529 p.

Harcourt, S.V., 1984 Commerce and development in Papua New Guinea. Longman Cheshire Pty. Ltd., Melbourne, Australia, 221 p.

Harding, P.E., 1985 The main coffee producing areas of Papua New Guinea. PNG Coffee, Vol. 4, December 1985, pp. 19–23

Jhingran, V.G. and R.S.V. Pullin, 1985 A hatchery manual for the common, Chinese and Indian major carps. Manila ADB/ICLARM Publ., 191 p.

King, D. and S. Ranck, 1980 Papua New Guinea Atlas - a nation in transition. Geography Department, University of Papua New Guinea. Robert Brown and Assoc. (Australia) Pty. Ltd., Bathurst, Australia, 120 p.

May, R.J., 1984 Kaikai Aniani - A guide to bush foods markets and culinary arts of Papua New Guinea. Robert Brown and Assoc. (Australia) Pty. Ltd., Bathurst, Australia, 192 p.

QEB, Quaterly Economic Bulletin, 1985 September 1985 Issue, Bank of Papua New Guinea, Port Moresby, Vol. XIII, No.3, 45 p.

Schmidt, U.W. and M.M.J. Vincke, 1981 Aquaculture Development in Rwanda. Rome, FAO ADCP/MR/81/12, 69 p.

Springhall, J.A., 1969 Composition of a number of tropical and sub-tropical feedstuffs. PNG Agric. J., 20 (3 and 4): 85–8

UNDP, 1985 Living conditions in Papua New Guinea. Office of the UNDP Resident Representative, UNDP/RR/POST/PNG/Rev. 4, 1 June 1985. 29 p.

USDS, 1984 Background notes - Papua New Guinea United States Department of State, Bureau of Public Affairs, June 1984

Vincke, M.M.J., 1985 Developing productive systems under village conditions. In Commonwealth Consultative Workshop on village level aquaculture development in Africa, Sierra Leone, 14–20 February 1985. 17 p. (in press)

Vincke, M.M.J. 1985a The role of extension in village aquaculture development. In Commonwealth Consultative workshop on village level aquaculture development in Africa, Sierra Leone, 14–20 February 1985. 9 p. (in press)

Ward, R.G. and A. Proctor, 1980 South Pacific Agriculture: choices and constraints, South Pacific Agricultural Survey 1979, Australian National University Press, Canberra 1980, 525 p.

Appendix 1


Rome 17.1.86
Port Moresby20.1.8623.1.86
Port Moresby12.2.8615.2.86

Appendix 2


Aiyura:Mr P.H.W. Sagon, aquaculturist, Highlands Agricultural Experimental Station (HAES) Mr G. Baidam, aquaculture technician, HAES Mr P. Toneba, aquaculture technician, HAES Mr J. Yogiyo, officer in charge, HAES Dr P.E. Harding, soils specialist, Coffee Research Institute (CRI) Dr A. Kabaara, director, CRI
Iyomintapo:Mr M. Anonanke, village fish pond operator
Bundara:Mr J. McGane, agricultural officer, Bundara Corrective Institute
Aibiera:Mr K. Pivito, village fish pond operator
Akwitana:Mr A. Aiyako, manager, Akwitana plantation, Taica Development Corporation
Tuempinka:Mr K. Kave, village fish pond operator
Lae:Mr R.B. Hansen (general manager - retired), Niugini Table Birds Pty. Ltd. Mr B. Vernom, general manager, Niugini Table Birds Pty. Ltd. Mr J. Strong, brewery manager, South Pacific Brewery Ltd. Mr Z.C. Aigal, senior import trading representative, Harcros Trading (PNG) Ltd. Mr M. Lloy, sales representative, Harcros Tranding (PNG) Ltd.
Port Moresby:Mr N. Kulkarni, officer in charge, UNDP Mr O. Natera, first assistant secretary, Fisheries Division, Department of Primary Industry Mr J. Opnai, chief biologist, Fisheries Division, DPI Dr T.T. Kan, senior lecturer Department of Fisheries, University of Papua New Guinea (UPNG)

Appendix 3


National feed materials which should be considered for testing and use as a supplementary feed or fertilizer at the Aiyura carp station can be listed, in order of importance, as follows:

Coffee pulp: wet coffee pulp is available throughout the year on site at the Highlands Agricultural Experimental Station (HAES) in Aiyura. The HAES factory processed 265 t of fresh arabica coffee cherries to the dry parchment stage in 1985. Approximately 600 t of wet coffee pulp is available per year at HAES and the nearby Akwitana Plantation (peak production April to October), and is available free of charge.

Pasture/Arable crop wastes: HAES has 170 and 10 hectares of land devoted to production studies on improved pastures and arable crops respectively. Food crops grown in 1985 included sweet potato, English potato, pit pit, maize, groundnut, banana, pineapple, cassava, sorghum, wheat, soybean and winged bean. Grass cuttings and limited amounts of non-edible crop wastes are therefore available on site at no cost.

Barley mill sweepings: dry mill sweepings are available throughout the year in Lae (South Pacific Brewery Ltd., 200 km by road from Aiyura). Annual production is between 50 and 70 t, dry and bagged. Mill sweepings are available free of charge at source.

Animal manure: 150 m3 of fresh broiler litter is available per week in Lae (Niugini Table Birds Pty. Ltd., factory produces 80 000 broilers and 100 000 day-old chicks per week), and is free of charge at source. Fresh pig manure is available in Goroka (Piggery Farm, 100 km by road from Aiyura; 100 sows producing 719 six-month-old pigs in 1985) and Lae (Rumion Pty. Ltd., farm produced 10 000 six-month-old pigs in 1985), and is free of charge at source. Small quantities of fresh cattle manure are available on site at HAES from 107 head of free-ranging cattle.

Rumen contents: approximately 30 t of fresh rumen contents are available per year in Goroka (Kamaliki Abattoir, 1 123 cattle, 493 pigs, 9 buffaloes and 3 horses were slaughtered in 1985), and at no cost.

Coffee hulls: limited quantities of dried coffee hulls are available in Aiyura (Akwitana Plantation) and Kainantu from factories which process coffee cherries to the green bean stage. However, at present about 80% of the coffee hulls produced (c. 100–150 t/year) is used as fuel for the coffee driers. To date no price has been fixed for coffee hulls.

Brewers spent yeast: 100 000 1 of waste yeast (50% moisture slurry) is available per year in Lae (South Pacific Brewery Ltd.). Because of severe wet-handling difficulties (i.e., product deterioration during transport through fermentation), this slurry is discharged to waste and consequently, is available at source free of charge.

Pyrethrum marc: 350 t of pyrethrum marc (10% moisture basis) is available per year in Mount Hagen (Kagamuya Natural Products Co. Pty. Ltd., c. 300 km from Aiyura by road). At present 20% of the marc produced is sold to villagers at source for 0.5 kina/ 30 kg (50–80% moisture basis) and the remainder is spread on the factory site as a general fertilizer. The company is currently investigating methods of sun-drying the marc; with an estimated selling cost of 20–30 kina/t, dry.

Brewer's grains: 4 200 t of wet brewer's grains (80% moisture basis) are available per year in Lae (South Pacific Brewery Ltd.). At present all the brewer's grains produced is sold to Rumion Pty. Ltd. for use as pig feed. The current selling cost at source is 4 kina/2.6 t brew.

Wheat mill run: 6 500 t of mill run (mixture of wheat bran and pollard) is available per year in Lae (Associated Mills Ltd.) at a cost of 95 kina/t at source.

Copra expeller cake: 20–22 000 t of expeller cake is available per year in Rabaul (Coconut Products - A division of WRC Ltd.) at a cost of 96 kina/t FOB. The cost of copra expeller cake, either in mash or pellet form, caf Lae is currently 120–140 kina/t.

Palm kernel/cake: 49 000 t of palm kernel/cake is available per year in PNG. The cost of palm kernel cake, either in mash or pellet form, caf Lae is currently 75 kina/t.

The additional cost of collecting feed materials (including fertilizers and compound feeds) from Lae or Goroka, and transporting them to Aiyura using a 3 t government vehicle, would be 38.4 and 34.4 kina/t of product, respectively 1.

1 Based on casual hire rate for a 3 t truck of 81 kina/day, a driver's wage of 10 kina/day, a fuel consumption rate of 0.18 1/km, and a diesolene cost of 0.336 kina/1 (February 1986 rates)

Appendix 4


In view of the inadequate road transportation system between villages and the low cash earnings of village subsistence farmers, only those agricultural byproducts and wastes available within the village itself can be considered for use as carp feed, including:

Coffee pulp: wet coffee pulp is available throughout the year in almost all highland villages; highland small-holders produced about 75% of the arabica coffee crop in 1985.

Crop waste: all the non-edible portion of village food crops can be considered for use, either as a composted fertilizer or supplementary feed (Table 7). Crop wastes which may hold particular promise include root and tuber peelings (i.e., from sweet potato, cassava, taro and yam), grass cuttings, cassava and sweet potato leaves, and fruit waste (banana skins). The proximate composition of PNG village food crops is given in Appendix 4.

Kitchen/cooking waste: all the non-edible left-overs from cooking by fire or traditional earth oven (mumu); including cooked banana, fig and breadfruit leaves, food scraps, elephant grass, plantain skins, tuber peelings, pit pit leaves and maize cobs.

Animal manure: limited quantities of pig manure are available in most highland villages. However, villagers will first have to be socially and physically convinced of the merits of using pig manure as a fertilizer.

Appendix 5


ProductAverage composition (% by weight)
WaterCrude proteinLipidCrude fibreCarbohydrate
(by difference)
AshCalciumPhosphorus No.Sample
Bakery waste, air dried9.19.711.50.865.
Barley mill sweepings11.011.75.712.652.
Barley brewers grains, fresh74.
Barley brewers grains, dried9.420.85.715.345.
Barley brewers grains, silage74.
Brewers dried yeast8.745.41.42.434.
Cane bagasse, dried9.61.50.840.343.25.1--(4)
Cane filter press mud, fresh75.
Cane molasses, final25.03.0tracetrace61.08.50.700.10(12)
Cocoa bean waste, dried10.
Cocoa pod husk, fresh85.
Cocoa pod husk, dried11.55.80.721.549.
Cocoa shell meal, dried9.318.87.013.541.
Coconut kernel, fresh47.
Copra oilcake, expeller9.
Copra oilcake, solvent extracted8.021.01.514.
Coffee pulp, fresh76.
Coffee pulp, sun dried11.410.92.322.944.67.70.530.11(7)
Coffee hulls, dried8.82.30.5568.819.10.45--(2)
Maize meal11.
Palm kernel cake, expeller10.517.79.714.742.
Palm press fibre bunch, fresh34.54.57.721.
Palm press bunch, dried13.84.818.131.425.
Palm oil sludge, dried10.29.418.110.846.211.00.360.47(2)
Pyrethrum marc, fresh22.711.90.4520.636.46.10.410.19(4)
Pyrethrum marc, sun cured14.512.60.520.646.36.40.340.26(2)
Sorghum grain12.
Wheat mill run11.515.24.18.557.
Blood, fresh79.619.70.1tracetrace0.60.180.05(3)
Blood, dried9.580.
Poultry by-product meal6.657.415.12.34.615.53.31.70(5)
Rumen contents, fresh57.54.60.615.417.12.3--(2)
Rumen contents, solid part (hung)
Rumen contents, liquid part91.
Rumen contents, dried13.712.11.228.731.912.5--(2)

1 For the composition of the major village food crops and wastes please refer to Gohl (1981), Springhall (1969) andMay (1984)

Appendix 6



Country (Location)Details of feeding practice
BangladeshPostlarvae fed boiled egg yolk which is sprayed over the tank for 15–20 minutes every 2–4 hours; 4–5 day-old fry reared in manured, predator-free ponds with supple-mental feeding after 2–3 days with mustard oilcake: rice bran (1:1); this feeding continues through fingerling growth; feeding rates are based on original stocking weight (W) with 2 feeds/day as follows: Week 1, 3x W; Week 2, 4x W; Week 3, 6x W; Week 4, 8x W; Week 5, 10x W.
BurmaPostlarvae fed 4–5% body weight/day of very fine rice bran: peanut oilcake (1:1) split into 2 daily feeds for first 4 days of rearing; similar supplemental feeds given to fry/fingerlings in manured, predator-free nursery ponds; notonectid predators eliminated by using emulsion of vegetable oil (e.g., peanut oil) at 50–60 kg/ha + one-third of its weight of cheap soap.
IndiaVarious fertilization and supplemental feeding practices in fry/fingerling ponds; feeds are based on groundnut oilcake, rice bran and fish meal.
Indonesia (South Sumatra, West Java)Postlarvae are usually stocked into fertilized, manured, predator-free ponds 2–3 days after hatching; supplemental feeding with hard boiled egg yolk and very fine rice bran, an alternative fry food is ground extracted soybean flour; fingerlings are fed rice bran plus small quantities of waste palm oil meal, soya mill waste residue or waste groundnut oil meal; other better fingerling foods include rice bran: fish meal mixtures and chicken broiler starter feed.
Nepal (Terai and Kathmandu Valley)Hatchlings/postlarvae receive boiled or beaten egg diet twice a day for 3–5 days once feeding commences, which is then substituted slowly with soya or wheat flour before fry transfer to fertilized predator-free ponds; a new dry diet for nursing is fish meal, 20%; wheat flour, 24.8%; maize flour, 20%; soya flour, 20%; oilcake,. 5%; meat meal, 5%; bone meal, 5%; poultry feed mineral supplement, 0.1%; poultry feed vitamin supplement, 0.1%.
Pakistan (Punjab)Various: 1) hatchings receive egg yolk diet for 1st day, then postlarvae are fed mass-cultured rotifers for 7–8 days, before transfer to previously limed, manured, predator-free ponds; 2) as 1) but postlarvae/fry kept in concrete tanks, feeding after the rotifers a mixture mass-cultured Daphnia sp. + a dried powdered diet of composition 12 egg yolks; 20 kg dried tilapia meal (made from grinding whole dried 25 g size Oreochromis mossambicus: 1 tin (0.5 kg) of Complan baby food (Glaxo).
PhilippinesReliance on natural feeding (rotifers, Daphnia and Cyclops) in manured ponds; no supplemental feeding during the first 2 weeks, fine rice bran given thereafter.
SingaporeMass-cultured Moina micrura fed as sole food to fry for 10 days (up to 1–5 cm length) gives 95–99% survival; late fry and fingerlings fed 5% body wt/day on carp grower bran in predator-free nursery ponds (composition: 30% soybean meal; 12% fishmeal; 13% meat and bone meal; 20% rice bran; 3% fat, 13% tapioca meal; 2% molasses; 20% vitamin/mineral microingredients.
Sri LankaPostlarvae and fry are fed the microencapsulated egg diet for first 2 days; thereafter supplemental feeding of powdered foods such as rice bran, soybean, maize meal, peas, coconut residue cake; late fry and fingerlings reared in fertilized, predatorfree ponds with supplemental feeding of various mixtures of rice bran, soybean, maize, coconut residue cake, chicken feed and fishmeal.
TaiwanVarious: for postlarvae and fry the most common first feed is steamed egg yolk; others are soybean milk, powdered milk and pig blood meal alone or combined; 3 light feedings per day at 3–4 hr intervals with no feeding at night; fry in manured nursery ponds feed on Daphnia for about 3 days, then steamed egg yolk and soybean milk for 7 days, then ground peanut cake at 4–10% body wt/day.
ThailandVarious: first-feeding with hard-boiled egg yolk + soybean milk and wheat flour; a supplemental nursery food in use is fishmeal, 30%; rice bran, 45%; peanutmeal, 24%; vitamin/premix, 1%.
VietnamFry are reared in small manured ponds, water is filtered to prevent predator entry; stocking densities of about 200/m2; supplemental feeding with rice flour, wheat flour and soybean meal all of which are cooked during the first week of feeding, uncooked thereafter; fingerlings are fed rice bran, soybean cake. Fry/fingerling ponds are periodically fertilized with manure.


Country (Location)Broodstock husbandryNutrition
BangladeshKept in fertilized ponds from which all wild fish previously cleared by drying or use of 3–4 ppm rotenone; sexes are segretated.Supplemental feeding is usually at 3 % body weight with mustard oilcake: wheat bran (1:1): the mustard oilcake is mixed with water (2:3), soaked for 24 hours and then this mixture is made into food balls with the wheat bran; spent fish transferred to well-manured ponds and fed at 10 % body weight/day during recovery.
BurmaSome pond fertilization, but heavy reliance and supplemental feeding when natural feeds are in short supply; usually various polyculture species combinations.Various supplemental feeds and feeding rates with rice bran, peanut oilcake and chopped vegetation; e.g., peanut oilcake: rice bran (1:2) plus equal volume of chopped green fodder (grasses or water hyacinth) during maturation, most spp. receive 3–4 % body weight/day reducing to 1–3 % in the prespawning period.
IndiaKept in manured ponds with supplemental feeding; various polyculture combinations; total stocking density 1 000–2 000 kg/ha.Supplemental feeding at about 1 % body weight/day with rice bran: oilcake (1:1).
Indonesia (South Sumatra;In manured ponds but with heavy reliance onRural farmers feed rice bran mixed with
West Java)supplemental feeding; stocking density, usually 2 000 kg/ha (some farmers use up to 3 300 kg/ha but this is too crowded); individual fish weight are 300 g-2 kg, 1–4 kg.fresh vegetation, waste palm oil and waste ground nut oil; government and private hatcheries feed pellets at 2–3 % body weight/day; pellets contain 20–25 % protein and maximum 8 % fat; a typical pellet mix is rice bran, 50 %; fishmeal, 25 %; leaf meal, 12 %; vitamin, mineral and antibiotic premix, 1 %.
Nepal (Terai and Kathmandu Valley)Kept in manured/fertilized ponds.Various supplemental feeds based on soya, wheat flour, rice bran and oilcakes at 3–5 % body weight/day.
Pakistan (Punjab)Sexes separated; all species kept in manured/ fertilized ponds with supplemental feeding.Various supplemental feeds depending on local availability; typical feed contain 30 % maize, 30 % rice; 20 % horse gram, 20 % cotton oilcake; some hatcheries use 20 % fishmeal from trash marine fish or tilapia (Oreochromis mossambicus) finger-lings grown on site.
Philippines (Rizal Province)All species kept in ponds and concrete tanks.Are fed rice bran and molasses or rice bran plus copra meal (1:1) or rice bran alone, all at 5 % body weight/day.
TaiwanAll species kept in manured ponds.Various supplemental feeds-soybean cake, rice bran and peanut cake.
ThailandAll kept in manured/fertilized ponds; stocking density one fish (2–4 kg) per 20–30 m2.Fed 25 % protein fishmeal-based pelleted feeds 30–40 days up to expected spawning at various rates.
Sri LankaKept in manured ponds, but also heavy reliance on supplemental feeds; mono-culture 4 000 kg/ha stocking density, mixed sexes.1–2 % body weight/day of rice bran: coconut residue cake (1:1) plus sometimes earth- worms or silkworm pupae; 1–2 % body weight of a 60 % rice bran, 35 % coco- nut residue cake, 5 % fishmeal feed.
VietnamAll species kept in manured ponds; sometimes alone with sexes segregated, stocking 1 kg/ 5–8 m2 or 1 kg/10–20 m2.Supplemental feeding at 5–7 % body weight/ day with various feeds depending on local availability of materials; usual balance 10–30 % protein: 70–90 % carbohydrates; a good feed is rice bran, 70 %; fishmeal, 5 %; soybean cake, 12 %; wheat flour, 10 %; fish sauce waste, 3 % plus microingredients in mg/kg dry food, CuSO4, 4; KI, 1; MnSO4, 2; CaCl2 1–5. During the last 2 months before spawning fish also receive 1–2 % body weight/day of germinated rice (assumed benecial because of high Vitamin E).

1 Source: Jhingran and Pullin (1985)

Table 1
Land area1462 000 km2
Population23 300 000 (1985 estimate)
81 %
Mean family unit
19 %
Port Moresby2
139 300
72 200
23 300
21 900
20 500
Density of population27/km2 (range 1–29/km2 by province)
Rate of population growth22.18 % (1980–2000 estimate)
Individual language groups2700
Total labour force41 250 000
Agriculture subsistence5
75 %
Agriculture commercial5
10 %
Commercial and Industry
8 %
2 %
5 %
Estimated inflow into labour force330 000
Estimated growth into formal wage 
employment33 000
National accounts6 
Total gross domestic product (GDP)6
2 355 million US$ (1982)
Agriculture (GDP)6
41.5 %
External accounts7 
Total export trade7
911.5 million US$ (1984)
Agricultural products846.2 %
By commodity (% total)
21.1 %
Palm oil
19.9 %
17.6 %
12.9 %
Copra oil
10.3 %
4.4 %
0.6 %
5.0 %
Fishery products8
1.3 %
Forestry products8
9.9 %
39.8 %
Total import trade7969.1 million US$ (1984)
Average annual inflation rate97.9 % (1983)
Exchange rateUS$ 1 = kina 0.96 (April 1986)
 1 kina = 100 toea

1 King and Ranck (1980)
2 UNDP (1985)
3 Flores and Temu (1983)
4 Ward and Proctor (1980)
5 USDS (1984)
6 FAO (1985)
7 FAO (1985a)
8 QEB (1985)
9 ABECOR (1984)

Table 2
 ProductionImportsExportsTotal supplyPer caput supply
  '000 t liveweight  
Fish for direct human consumption3.844.21.646.413.6
Fish for animal feed and other purposes-0.2-0.2-
Value of importsUS$ 22.6 million 
Value of exportsUS$ 10.9 million 

Source = FAO Fishery Country Profile: FIO/CP/PNG Rev. 2 August 1984

Table 3
Fresh fruit and vegetables:       
Eating bananas1 kg30.259.331.828.618.949.6
Dry coconut1 kg24.433.619.412.07.717.7
Peanuts (in shell)1 kg321.286.5125.7142.7136.7277.7
Sweet potatoes1 kg47.015.927.421.923.034.7
Taro1 kg81.1110.455.144.445.861.6
English potatoes1 kg95.459.889.484.9109.578.8
Brown onions1 kg98.388.0102.3100.9114.795.8
Aibika1 kg73.030.634.220.053.480.8
Pumpkin tips1 kg44.629.324.626.539.560.6
Corn1 kg73.828.538.021.749.872.9
Other food       
Bread, white       
(340–900 g)loaf58.
Plain flour1 kg57.463.656.757.561.660.5
Rice, white short       
grain1 kg58.362.159.058.560.959.0
Rice, white short       
grain10 kg521.3549.0534.0518.3538.4n/a
Blade steak1 kg425.1355.0404.8381.7374.5n/a
Lamb chops1 kg338.0316.6n/a371.5392.8478.3
Frozen chicken1 kg328.0349.3325.0325.7342.5347.3
Beef sausages1 kg306.5285.0299.2256.0399.0n/a
Corned beef340 g can129.5131.4126.3123.6131.3121.7
Corned meat loaf340 g can79.
Fish (mackerel)425 g can51.354.
Evaporated milk170 g can32.235.032.730.234.231.8
Eggs (Large > 55 g)dozen216.9220.9202.8211.3244.7205.0
White sugar1 kg102.0103.197.493.7107.7105.6
Table salt750 g75.475.672.377.286.877.0
Kerosene1 136.940.836.936.936.936.9
Motor spirit (petrol)1 143.647.543.643.643.643.6
Distillate (diesel)1 134.338.634.334.334.334.3

1 National Statistical Office (September Quarter 1985)
2 PNG National Gazette No. G70, Port Mores by, 19 December 1985 pp. 1151–1174

Table 4
Feed materialSource
(Fig. No)
Production quantity (t dry weight/annum)Current utilization (%)Cost at source (kina/t)
Bakery wasteFig. 2 O350----100free of charge
Barley mill sweepingsFig. 2 □120----100free of charge
Brewers grainsFig. 2 □1 400-100---4 kina/2.6 t brew (wet)
Brewers spent yeast (50 % DM)Fig. 2 □166 000 1----100free of charge
Cane bagasseFig. 2 63 600--2575-refinery own use
Cane filter press mudFig. 2 8 500--100--refinery own use
Cane molassesFig. 2 11 400---100-refinery own use
Cocoa bean wasteFig. 33 000--50-50processor own use
Cocoa pod huskFig. 324 000--50-50processor own use
Coconut huskFig. 2/4 250 000---100-processor own use
Coconut shellFig. 2/4 50 000---100-processor own use
Copra expeller cakeFig. 2/4 22 0009010---120–140 (CAF Lae)
Copra oilFig. 2/4 41 000100----400–500
Coffee hullsFig. 5 ● O10 300---7525free of charge
Coffee pulpFig. 5 ● O25 000--5-95free of charge
MaizeFig. 43 000-100---170
Palm kernel/cakeFig. 2/3 49 000100----75 (cake)
Palm oilFig. 2/3 140 000100----400
Palm oil press        
fibre bunchFig. 2/3 50 000---100-processor own use
Palm oil sludge        
and solidsFig. 2/3 125 000 wet----100free of charge
Pyrethrum marcFig. 3350--100--0.50 kina/30 kg bag (wet)
SorghumFig. 41 000-100---170
Wheat mill runFig. 2 ■12 5005050---95
Blood offal 1Fig. 2 84----100free of charge
Meat and bone offal 1Fig. 2 230----100free of charge
Poultry by-product mealFig. 2 ●/■400-100---370
Poultry offal 2Fig. 2 330----100free of charge
Rumen contents 1Fig. 2 200 wet----100free of charge
Tallow 1Fig. 2 150----100free of charge
LimestoneFig. 2 ●500-100---105
Broiler litter 2Fig. 2 ■30 000 wet--5-95free of charge
Caged layer manure 3Fig. 2 □6 500 wet--5-95free of charge
Pig manure 4Fig. 2 □4 500 000 wet--5-95free of charge
Cattle manure 5Fig. 62 000 000 wet--5-95free of charge

1 Based on 7 000 head of cattle slaughtered in 1985
2 Based on 8 000 000 broilers slaughtered in 1985
3 Assumes 150 000 caged layers in 1985
4 Based on 1 500 000 pigs present in 1985
5 Assumes 130 000 head of beef cattle in 1985

Table 5
Feed IngredientProtein Level
Lipid Level
Cost-ex. Lae
Fishmeal (Chilean)6510540
Fishmeal (Peruvian)679500
Blood meal (spray dried)851510–560
Soybean meal (solvent extracted)451270–300
Meat meal501260–270
Meat and bone meal5011280
Sunflower seed meal351220
Cotton seed meal382200
Rice bran (USA)1213100
L-lysine--2 600
DL-methionine--2 400
Vitamin premix - broiler starter--2 300
Vitamin premix - broiler finisher--2 100
Vitamin premix - layer--1 800
Vitamin premix - pig starter--2 400
Vitamin premix - pig grower--900
Mineral premix--950
Urea  2951–3602
Rock phosphate  200–235
Calcium ammonium nitrate (C.A.N.)  315–380
Triple super phosphate (T.S.P.)  365–445
Sulphate of ammonia (S.O.A.)  1801–215-2
Munate of potash (M.O.P.)  235–285
NPK 15.9.15 + 4  325–390
NPK 15.15.15  308–375
NPK 12.12.17 + 2  345–420
NPK 13.3.20 + 4  325–390
NPK 17.6.12 + 4  315–344

1 Cost for>20 t order
2 Cost for 1–4 t order

Table 6
Feed ManufacturerStatistics
1.Lae Feed Mills Pty. Ltd. 
LocationLae, Morobe Province
Major shareholderAssociated Mills Ltd., Australia
Start of feed operations1977
Total feed produced in 198510 000 t
Major feed lines (% production)Poultry 80% Pig 15% Duck, trout, horse, calf, dairy cow 5%
Feed ingredients (% imported)70% (trout' 95%)
PNG feed ingredients usedWheat millrun, copra cake, sorghum1, maize1
2.Niugini Table Birds Pty. Ltd. 
LocationLae, Morobe Province
Major shareholderDevelopment Bank of PNG (50%) Mainland Holdings Pty. Ltd. (50%)
Start of feed operations1985
Total feed produced in 198515 500 t
Major feed lines (% production)Poultry 100%
Feed ingredients (% imported)55%
PNG feed ingredients usedWheat millrun, poultry by-product meal, maize1, copra cake, palm oil2

1 Limited supplies available
2 Under investigation

Feed LinesProtein LevelM
Cost-ex. feedmill-Lae
Broiler starter21–22.53301–4082
Broiler finisher19–20328 –394
Broiler breeder14.5295 –357
Pullet starter21316 –363
Pullet grower19297 –342
Pullet developer15.5–16265 –352
Pig starter19338 –389
Pig grower16253 –291
Pig breeder15237 –273
Pig concentrate 441 –507
Duck grower pellets15304 –350
Trout starter pellets43460 –529
Trout grower pellets38432 –497
Horse pellets15227 –261
Calf weaner pellets18276 –317
Dairy cow pellets15258 –298

1 Cost for>2 t order
2 Cost for <2 t order; ranges also include price differences between manufacturers, but do not include transport costs from Lae to customer (see Appendix 3)

Table 7
CropPortion Consumed
Roots and tubers 
Sweet potato (Ipomoea batatas)tuber, young shoots and leaves
True taro (Colocasia esculenta)tuber, young leaves
Swamp taro (Cyrtosperma chamissonis)tuber, young leaves
Chinese taro (Xamthosoma sagittifolium)tuber, young leaves
Giant taro (Alocasia macrorrhiza)tuber, young leaves
Greater yam (Dioscorea alata)tuber
Lesser yam (Dioscorea esculenta)tuber
Cassava (Manihot esculentus)tuber, young leaves
Winged bean (Psophocarpus tetrogonolobus)tuber, pod, seed, leaves
Potato (Solanum tuberosum)tuber
Kudzu (Pueraria lobata)tuber
Ginger (Zingiber officinale)root, leaves (medicinal)
Sago and other starches 
Sago (Metroxylon sagu)starchy pith, young shoot buds
Cycad (Cycas circinalis)starchy pith, seed starch
Traditional vegetables 
Aibika (Hibiscus/Abelmoschus manihot)leaves
Amaranthus (Amaranthus hybridus and A. tricolour)leaves
Swamp cabbage (Ipomoea aquatica)leaves
Jointfire spinach (Gnetum gnemon)young leaves, fruit
Fig (Ficus copiosa, F. wassa)young leaves, fruit
Black nightshade (Solanum nodiflorum)leaves, fruit
Water dropwort (Oenanthe javanica)leaves
Rungia (Rungia klossii)leaves
Watercress (Nasturtium officinale)leaves
Leaf mustard cress (Rorippa spp.)leaves
Highland pitpit (Setaria palmifolia)stem, inner shoots
Bamboo (Bambusa spp.)young shoots
Fern (Anisogonium spp., Callipterus spp., Cyclosorus spp.)young leaves
Cucurbits, legumes and other vegetables 
Pumpkin (Cucurbita pepo)fruit, shoots, tendrils, young leaves, seeds
Gourd (Lagenaria siceraria)fruit, shoots
Cucumber (Cucumis sativus)fruit
Bitter melon (Momordica charantia)fruit, young shoots
Choko, custard marrow (Sechium edule)fruit
Hyacinth bean (Dolichos lablab)leaves, young pods, seeds
Lima bean (Phaseolus lunatus)leaves, pods, seeds
Yard long bean (Vigna sesquipedalis)pods, seeds, leaves
Common bean (Phaseolus vulgaris)pods, seeds, leaves
Mung bean (Phaseolus aureus)pods, seeds, leaves
Pigeon pea (Cajnus cajan)pods, seeds, leaves
Cow pea (Vigna sinensis)pods, seeds, leaves
Peanut (Arachis hypogaea)seeds
Soybean (Glycine max)pods, seeds, leaves
Nuts and fruit 
Coconut (Cocas nucifera)fruit/nut
Pandanus (Pandanus julianeti, P. brosimos, P. conoideus)fruit
Okari, Indian almond (Terminalia kavenbachii, T. catappa)nut
Galip, pili nut (Canarium indicum)nut
Cashew (Anacardium occidentale)nut
Banana, plantain (M. paradisiaca, 
Musa acuminata, M. balbisiana)fruit, young shoots
Breadfruit (Artocarpus altilis, A. incisus)fruit
Pawpaw, papaya (Carica papaya)fruit, young leaves, flowers
Mango (Mangifera minor, M. foetida, M. indica)fruit
Guava (Psidium guayava)fruit
Fivecorner (Averrhoa carambola)fruit
Passionfruit (Passiflora edulis, P. flavicarpa, P. mollissima)fruit
Bush orange (Citrus papuana)fruit
Lime (Citrus aurantifolia, C. acida)fruit
Lemon (Citrus limon)fruit
Avocado (Persea gratissima)fruit
Chico (Arhras zapota)fruit
Jackfruit (Artocarpus integrifolia)fruit
Pineapple (Ananas comosus)fruit
Strawberry (Fragaria sp.)fruit
Sugar cane (Saccharum officinarum)stem
Lowland pitpit (Saccharum edule)bud, inflorescence
Jobs tears (Coix lacryma-jobi)seeds
Maize (Zea mays)seeds


Fig. 1. Provincial government and major towns of Papua New Guinea


Fig. 2. Primary industry: feed manufacturers, flour mills, breweries, abattoirs, bakeries, sugar refinery, pyrethrum refinery, oil palm processors, coconut processors, major poultry and pig farms


Fig. 3. Primary industry: main cocoa, oil palm and pyrethrum growing areas


Fig. 4. Primary industry: main coconut, sorghum and commercial maize growing areas


Fig. 5. Primary industry: main arabica and robusta coffee growing areas


Fig. 6. Primary industry: cattle distribution and ownership


Fig. 7. Primary industry; main yam, sweet potato, sago, taro and banana growing areas

Top of Page