FAO/OIE/WHO joint scientific consultation on influenza and other emerging zoonotic diseases at human-animal interface: final remarks

Giuseppe Ippolito
National Institute for Infectious Diseases “L. Spallanzani”, Rome, Italy
giuseppe.ippolito@inmi.it

WHO Collaborating Center for clinical care, diagnosis, response and training on Highly Infectious Diseases

Acknowledgments

- Ilaria Capua and the organizers
- FAO/OIE/WHO
- Wonderful persons and very good food and wine!
- Very nice venue
- Excellent organization
- Our tireless facilitator
Conclusions

It is possible to predict
that infectious disease emergencies will continue to occur with regularity,

It is possible, with appropriate planning
- to be prepared to meet emergencies in a way that ensures that they cause as little social disruption as possible.

Foreword

• Hundreds of excellent papers published in the issue of EIDs testify to the vast expansion in knowledge of emerging viruses biology that has been achieved over that time, ranging from the elucidation of viral replication mechanisms to the development of new vaccines

• the burden of EIDs in western and developing countries is growing

• Not only did the emergence of EIDs surprise the research community because in some cases agent shows unexpectedly high lethality and/or a novel epidemiologic pattern.

• Sequencing of EIDs revealed significant differences among viruses isolated from individual patients, indicating that repeated introductions of the viruses had taken place
Emerging Infections in western countries: a rare and unusual event in the XXI century!

Are we ready?
Lack of awareness, communication, integration between scientists, clinicians and public health officers
Response to Imported Case of Marburg Hemorrhagic Fever, the Netherlands

Rapid communications

A FATAL CASE OF LASA FEVER IN LONDON, JANUARY 2009

A. Teeling (Akerliao.mrt@unioxart.org.uk), S. Ahmadi, S. Cattelan, S. D’Souza, S. Khan, M. Heimdic, J. Cudby, K. Dwyer, K. Emsley, J. Margin, B. Sundby

Rapid communications

THE FIRST CASE OF LASA FEVER IMPORTED FROM MALI TO THE UNITED KINGDOM, FEBRUARY 2009

S. Ahmadi (Sara.Akerliao.mrt@unioxart.org.uk), S. Anadždi, P. Cuthbert, A. Dalaco, D. Brown, S. Sultan, J. Hanley, J. Margin

1. Health Protection Agency, North East and North Central London Health Protection Unit, London, United Kingdom
2. Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
3. Health Protection Agency, Geostatistical Analysis, Emerging and Zoonotic Infections (E4Z) Department, Centre for Infections, Colindale, United Kingdom
4. Virus Reference Unit (VIRU), Centre for Infections, Colindale, United Kingdom
Corsica, August 2006

-59 year old man from southeast France who had stayed in Porto, a département of South Corsica, from early to mid summer 2006.

-at the beginning of August fever and gastrointestinal symptoms, and after several days of illness was admitted to the hospital.

Thrombocytopenia (40 000 platelets/mm3).

Diagnosis?

Possible Autochthonous Malaria from Marseille to Minneapolis

Barbara Doudier,* Hervé Bogreau,† Aaron DeVries,‡ Nicolas Ponpon,§ William M StauffeRIII,† Didier Fontenille,§ Christophe Rogier,† and Philippe Parola†

We report 2 cases of Plasmodium falciparum malaria in southern France in a French woman and an American man of Togolese origin who reported no recent travel to malaria-endemic countries. Both infections occurred off a lay near Marseille, which raises the possibility of autochthonous transmission. Entomologic and genotypic investigations are in progress.
Are physicians ready?

Some features that should be carefully kept in mind:

• Clinical presentation of emerging diseases (key-symptoms)
• Geographical provenience of patient
• Outbreak currently occurring worldwide

Problems in the therapy for imported malaria in the USA

Errors in drug treatment occurred in 25% of patients

While the clinical symptoms and signs do not help distinguish the infecting Plasmodium species, the travel history is extremely helpful in guiding drug selection.

Non-infectious diseases specialists are more likely to make errors in therapy than are infectious diseases specialists.

Imported malaria in Canada: inappropriate therapy rate

patients treated:

at community hospitals 48%

at the Tropical Diseases Unit 8%

Detection & Intervention

Global Re-Emergence of Infectious Diseases

• PROTECT
 – Early Detection
 – Rapid Response

• PREVENT
 – Research - Vaccines, Drugs, Diagnostics

• PREPARE
 – Readiness
Syndromic Surveillance in Emerging Infectious Diseases

Early Detection

The FASTER

We Know What It Is

Rapid Response

The FASTER We Can Take Appropriate Action

Early warning systems based on Syndromic Surveillance: a lesson learned from real life – Chikungunya in Italy

- July 2007: reports of febrile illnesses;
- Second week of August: implementation of surveillance systems through a standardized questionnaire;
- Late August: outbreak investigation and diagnosis;
- About two months from warning to diagnosis. Probably too long time…

ECDC Mission Report – Chikungunya in Italy
Lessons learned from past experiences about the potential utility of a good use of early warning systems – WNV in USA, 1999

- Deaths reported in birds in June, initial human cases in August;
- The two “lines of investigations” were linked one month after (initially St. Louis encephalitis suspected in humans);
- Dead birds would have been considered as a driving clue

Another valuable approach for early warning: investigating factors influencing EID occurrence

- Some events could be predicted on the basis of the factors that may determine their occurrence:
 - Climatic factors;
 - Migration routes;
 - Changes in land use;
 - Many others…
Main points to be addressed to face EID

- Surveillance and prevention:
 - Early warning systems (prompt detecting, investigating and monitoring of EID events),
 - Systems monitoring the factors influencing EIDs;
Surveillance

Surveillance Systems

Active System Passive System Sentinel System

Syndromic System
Sentinel Surveillance

• Key report sources are selected to participate in an enhanced disease surveillance system

• e.g., reporting systems for Influenza

Syndromic Surveillance Systems

• Syndromic surveillance systems:
 • Electronic transfer of data fields describing symptoms or presenting complaints (e.g. ED visit)
 • Periodic analysis to detect temporal or spatial clusters
 • If pre-determined threshold exceeded, triggers active surveillance and medical record review
 • Possible use of the new media (facebook, twitter……)

• Limitations
 • Numerous software packages
 • Requires compatible electronic formats
 • May be difficult to define sensitivity to individual or combined measures being used
 • Require more resources to operate as compared to other systems – false alarms
 • Costly to maintain
 • Need appropriate laboratory support
Indicator vs. Event-based surveillance

- **Indicator-based surveillance (Syndromic Surveillance)**
 - computation of indicators upon which unusual disease patterns to investigate are detected (number of cases, rates, proportion of strains…)

- **Event-based surveillance**
 - the detection of public health events based on the capture of ad-hoc unstructured reports issued by formal or informal sources.
Main points to be addressed to face EID

- **Surveillance and prevention:**
 - Early warning systems (prompt detecting, investigating and monitoring of EID events),
 - Systems monitoring the factors influencing EIDs;
- **Infrastructures:**
 - Laboratories able to perform initial and differential diagnosis, Isolation units and biocontainement laboratories BSL 3-4, biobanks;

Are infrastructures adequate to face EIDs?
Are our infrastructures adequate to face EIDs?

Two surveys, in UK and USA:

- In UK, only 24% of surveyed hospitals had isolation facilities available in the ED. Up to 30% of hospitals do not isolate patients with suspect infectious diseases. Conclusion: EDs in the UK are not prepared for emerging biological threats. With current facilities it is highly likely that an infectious agent will spread to staff and other patients.

- In USA, more than one-half of surveyed hospitals (278 of 410) expressed concerns about their facilities’ preparation and capacity for managing SARS cases.

Anathalie M et al, J Infect 2007
Srinivasan A et al, CID 2004

Main points to be addressed to face EID
Infrastructures - Laboratories

Emerging of new diseases

Emerging of new diagnostic needs
Multiple Roles/Missions of a Laboratory for EIDs

• Diagnosis
• Epidemiological surveillance
• Reference in specific areas
• Training activity
• Diagnostic innovation
• Dissemination of knowledge and research
• And…

Moving diagnostics from the bench to the bedside

Researchers have been able to miniaturize elements of potential diagnostics, but what will it take to put them together into a workable device? Jim Kling investigates.

NATURE BIOTECHNOLOGY VOLUME 24 NUMBER 8 AUGUST 2006

World Health Organization

Developing laboratory partnerships to detect infections and prevent epidemics

Why public health laboratories are on the margin of public health

- lack of public awareness of the role of public health laboratories
- lack of confidence in laboratory results
- lack of training and leadership among laboratory staff
- laboratory staff do not recognize their own value
- poorly-funded and not income-generating
- lack of optimization of resources
- lack of tangible outcomes
The three factors important in the detection of newly arrived pathogens are:

- diagnosis,
- diagnosis, and
- diagnosis

How to interact with labs

• One World, One Health, One Lab
• Multiple agents vs single agent approach
• Not just viruses
• Labs must be able to perform differential diagnosis in real (appropriate for clinical and public health decisions)

Main points to be addressed to face EID

• Surveillance and prevention:
 – Early warning systems (prompt detecting, investigating and monitoring of EID events),
 – Systems monitoring the factors influencing EIDs;
• Infrastructures:
 – Laboratories able to perform initial and differential diagnosis, isolation units and biocontainment laboratories BSL 3-4, biobanks;
• Research:
 – Integration between basic and translational research;
Some aspects of Research for EIDs

-Targeting
-Sensitivity
-Specificity
-Resources
-Public Health driven/oriented
-Sustainable

Priority areas for research in EIDs

-clinical epidemiology (human and animal) and surveillance including disease burden estimation,
-identification of reservoirs and vectors,
laboratory diagnosis including new technologies, but not just omics
-molecular studies
-case management,
-modelling and mathematical modelling,
-methods for risk analysis, decision analysis, support to the diagnosis,
-animal research,
-socio-anthropological
-sample storage/banking
Priority areas for research in EIDs

Surveillance and Epidemiology-1
- case definitions to be applied in western countries
- case definitions to be applied in developing countries
- rapid identification of infected returning travellers
- reporting system

Priority areas for research in EIDs

Surveillance and Epidemiology-2
- critical parameters in transmission and development of protocols for identification of sites of transmission to interrupt the disease
- risk factors related to exposure, infection, disease development and severe outcomes
- the natural history of the disease and underlying causes/dynamics for its rapid spread
- ethological, anthropological and behavioural determinants of import, spread and transmission of EIDs
Priority areas for research in EIDs

Surveillance and Epidemiology -3
- Evaluation of circulation of microbes in animals
- Assessment of the risk of local dissemination and establishment
- Determination and validation of threshold levels of virological parameters to develop early warning systems
- Immunological correlates to understand the level of herd immunity, if any
- Use of laboratory based surveillance

Priority areas for research in EIDs

Laboratory diagnosis and molecular studies
1. Development and evaluation of new, field applicable and rapid diagnostic tools with high sensitivity and specificity in different settings
2. Molecular characterization of viruses to understand genetic diversity for use in molecular epidemiology/ diagnostics
3. Define new transparent procedure for strains share
Priority areas for research in EIDs

Immunology/vaccinology/treatments

- increased susceptibility in special patients
- immune response to EIDs agents
- set-up of diagnostic immunological tests
- design, preparation and validation of vaccine candidates
- identify and test new antivirals as evaluate old ones for new viruses
- evaluate potential immunotherapy
- new vaccine delivery

Priority areas for research in EIDs

Preparedness

- research infrastructure
- high containment lab
- communication
- multidisciplinary integration
- international cooperation
- capacity building
- increasing awareness and public-private partnership
- new public health regulation, in respect of privacy and not intrusive, for tracing humans, animal, food, movement
Priority areas for research in EIDs

Environmental Research

1. Quantification of potential impact of climate change on the transmission of EIDs agents

2. Use of RS, GIS and other new low cost technologies in mapping risk for making decisions in control and the possibility of their use in developing an early warning system

Cooperation & partnership
Networks/cooperation: why?

The response to newly emerging global concerns must be:

• Coordinated

• Effective

• Rapid

A trans-national response to trans-national threats

International cooperation on infectious disease health issues: an utilitarian definition

• The ability to treat infectious diseases in the source country to prevent spread in other countries.

• The early and continued exchange of information between countries for surveillance and control of infectious diseases.

• The development of international agreements on any restrictions to travel, if and where necessary in the future.

• International cooperation among scientists and governments over the exchange and development of specimens and tissue banks for new and emerging infections, to enable development and research into control measures such as early diagnostics and vaccines.

Bases on Foresight Report on the future control of infectious diseases in humans 2005
International Collaboration/Cooperation

Objectives
To improve health in the developing countries by:
• Supporting growth of health system and health care delivery
• Funding operational research and research into major health issues
• Developing surge capacity

Main points to be addressed to face EID

• training:
 – Informatic systems,
 – Specific training modules,
 – Interdisciplinarity, multidisciplinarity and new core curriculum;
Main points to be addressed to face EID

- **Response:**
 - Elaboration of effective tools for intervention.

Response

- Elaboration of Evidence Bases and effective tools for intervention
- Understanding the demand and answering with ethical, feasible approach, time and money saving
- Consider human and socio-economic drivers
- Involve public opinion and all stakeholders in the process
Summary of Needs

- Ensure a rapid and effective response to health threats deriving from natural infection by EIDs agents or their deliberate release
- Stimulate complementarity and prevent duplication
- Promote exchange of information and international cooperation
- Share good practice and protocols
- Cooperation agreement for training, communication, and service availability to other Countries
- Promote new regulation and code of ethics

Are we ready?

- Address policy, organizational, planning and human/material resource gaps
- Preparedness and response planning, preparation, training, practice, evaluation = readiness
- Be ready to put the problem in the political agenda
Take home messages for the future:

• Respecting Values- Working and Learning Together
• Bridging The Resource Gap: Improving Value for Money In EIDs