Monitoring Policy Impacts (MPI)

The Eight Methodo - “logical” Steps for MPI
Monitoring Policy Impacts (MPI)

The Eight Methodological Steps for MPI

by

Manfred Metz, Consultant, Gesellschaft für Technische Zusammenarbeit (GTZ), Germany, in collaboration with the Agricultural Policy Support Service, Policy Assistance Division, FAO, Rome, Italy

for

Food and Agriculture Organization of the United Nations, FAO
Table of contents

1 Summary ... 1

2 Introduction: Objectives and purpose ... 1
 Objectives .. 1
 Target audience .. 2
 Required background .. 2

3 The EIGHT METHODO- "LOGICAL" STEPS .. 2
 3.1 Step 1 – Initiation and preparation of MPI .. 4
 3.2 Step 2 – Policy Review and Analysis .. 6
 3.3 Step 3 – Development of Impact Model ... 9
 3.4 Step 4 - Selection of impact indicators ... 14
 3.5 Step 5 - Research design .. 16
 3.6 Step 6 - Data collection / survey execution ... 20
 3.7 Step 7 - Data compilation, processing and analysis 21
 3.8 Step 8 - Communication and presentation of results of MPI 22

4 Methods to be applied on the various steps ... 23

5 Passing through the eight steps: Linkages and feedback cycles 24

6 Conclusions: Suitable Methods for MPI .. 25

7 Further readings .. 26

Module metadata .. 28
1 SUMMARY

This Module presents the eight methodo-“logical” steps for monitoring policy impacts (MPI), comprising:

- Step 1: Initiation and preparation of MPI
- Step 2: Policy review and analysis
- Step 3: Development of the impact model
- Step 4: Selection of impact indicators
- Step 5: Research design
- Step 6: Information and data collection
- Step 7: Data compilation, processing and analysis
- Step 8: Feedback of results of MPI to policy makers, clients, public.

The activities to be performed on the various steps are described, and an overview of the methods to be applied in performing these activities is given.

It is pointed out that the eight steps represent a logical sequence but that the steps are closely interlinked and that there are likely possible feedback cycles to previous steps. In a concluding section, conditions for a practical application of MPI to specific policy cases are set out.

2 INTRODUCTION: OBJECTIVES AND PURPOSE

Objectives

The objective of this Module is familiarise readers / workshop participants with the application of the concept and approaches of MPI. They will become acquainted with the eight methodo-logical steps to be taken, the issues to be addressed, the tasks to be performed and the methods to be applied throughout the various steps.

The module is closely linked to three further EASYPOL Modules:

- EASYPol Module 056: Monitoring Policy Impacts (MPI): The Role of MPI in Policy Formulation and Implementation
- EASYPol Module 058: Monitoring Policy Impacts (MPI): Application of the LogFrame Method to Policy Monitoring
- EASYPol Module 059: Monitoring Policy Impacts (MPI): Setting-up and Organizing MPI

1 In the current literature one finds different - though similar - concepts of steps for impact monitoring and evaluation, generally referring to project and programme impact assessment; see, for example: Vahlhaus, 1999; Müller-Glodde, GTZ, 2000; Lobb-Rabe, 2000; Baker, 2000.
Module 056 gives introduction into MPI and an overview. It is strongly recommended to review this module first, before dealing with the eight steps for MPI and the other modules. Module 058 presents the LogFrame approach, one of the key methods to be applied at various stages of the process of monitoring policy impacts. Module 059 discusses aspects to be considered in establishing an MPI system, such as possible and suitable organisational structures and the human capacity and material requirements.

Target audience

The Module particularly aims at professional staff of government and organisations who are commissioned with the task to conduct policy impact monitoring. It also provides guidance for policy analysis and for performing general impact assessments at policy, programme and project level.

Required background

No specific technical background, beyond reasonable language skills, is required for this module. However, it is anticipated that individuals with a degree in economics, and agricultural or rural development related areas, and those with several years of experience in agricultural policy analysis or development planning and implementation, at a mid to senior level position, should have little difficulty in grasping the module’s content.

The trainer is strongly recommended to verify that trainees have a minimum understanding in micro-economics. If this background is weak or missing, the trainer may consider to join a glossary to the module.

3 THE EIGHT METHODO- “LOGICAL” STEPS

MPI itself is a process, comprising a number of consecutive logical steps to be performed as presented in Figure 1 below. The eight steps of MPI are described in detail in the following sections.
Figure 1 - Eight steps for MPI

Step 1: **Initiation and preparation of MPI**
- Clarification of objectives of MPI
- Assignment of responsibility for MPI
- Definition of tasks of MPI

Step 2: **Policy review and analysis**
- Policy framework: objectives and measures
- Stakeholders and role of institutions involved
- Performance and state of implementation

Step 3: **Development of impact model**
- Identification of impact areas
- Identification of impact path(s)
- Formulation of impact hypotheses

Step 4: **Selection of impact indicators**
- Intermediate/proxy/final indicators
- Quantitative/qualitative indicators
- Applying criteria for 'good' indicators

Step 5: **Research design**
- Determination of research approaches & methods
- Determination of data/information requirements
- Planning of specific quantitative/qualitative surveys

Step 6: **Data collection / survey execution**
- Tapping existing information and data sources
- Upgrading of existing data collection system
- Execution of specific quantitative/qualitative surveys

Step 7: **Data compilation, processing and analysis**
- Compilation of primary/secondary data
- Data processing and analysis
- Assessment and conclusions

Step 8: **Communication and presentation of results of MPI**
- to policy makers, clients, public
3.1 Step 1 – Initiation and preparation of MPI

As a first step, the objectives of MPI, the responsibility for carrying out MPI and the tasks to be performed have to be clarified. The policy makers have to be clear as to what they expect from MPI, and somebody must be mandated with the tasks to carry out MPI.

Under the overall objective of MPI, namely to ensure that a policy is effective in reaching its objectives, MPI may, for example, serve one of the following different purposes (specific objectives) to:

- trace all significant impacts of a set of macro and/or sector policies, such as the impacts of macro-economic reform, stabilisation or sector reform policies;
- trace the impacts of one specific policy which is of particular importance, e.g. a sector investment, market reform, privatisation or land use policy;
- concentrate on the assessment of one type/direction of policy impact which is considered to be of particular importance, such as policy outcomes on poverty, on the environment, or on food security.

Once clarification on the overall and specific objectives of MPI is achieved, the tasks to be performed need to be defined and the responsibilities for executing the tasks need to be assigned. This is necessary, on the one hand, to arrive at an assessment of the capacity and resource requirements for MPI, and on the other hand, of what can be realistically expected to be achieved with existing capacities and resources.

Although different parties will usually be involved in activities related to MPI, there must be an institutional or organizational body with the overall responsibility and coordinating function for MPI. Such an Impact Monitoring Unit (IMU) can be a government organization, a research institution, a non-governmental organization (NGO), or a private sector institution (e.g. consultancy firm).

The overall mandate for MPI does not necessarily mean that all activities related to MPI, as indicated in the following steps, will have to be performed by the respective units. It rather means initiation, coordination and supervisory functions. Many tasks related to carrying out MPI can be subcontracted to other institutions and organizations.

The policy makers and all other relevant stakeholders should be involved in this first step. It should become clear to all parties concerned what is expected from MPI (who expects what), what is feasible, which institutions, capacities and resources are (made) available for performing the impact monitoring tasks, and which additional efforts have to be made to put the necessary capacities, resources and procedures in place (including institutional arrangements, capacity building measures, etc.)

2 In the case of monitoring sector policies, the task to carry out MPI is often assigned to a unit or section within the responsible line ministry. In the case of monitoring policies which cut across various sectors, an IMU may be established under a committee of ministers, the planning ministry, or the prime minister's office.

3 See EASYPol Module 059: Monitoring Policy Impacts (MPI): Setting-up and Organizing MPI.
The objectives and tasks of MPI should preferably be structured according to the LogFrame format. As an example, Table 1 presents a basic LogFrame matrix for an exercise to monitor the impacts of a food security policy. The following steps 2 to 8 provide a framework and can be used as an outline for the definition of the tasks.

Table 1 - Example of a basic LogFrame matrix for monitoring impacts of a food security policy

<table>
<thead>
<tr>
<th>Objectives, outputs, activities</th>
<th>Indicators</th>
<th>Major assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall goal: Increased effectiveness of food security policies.</td>
<td>Indicators for measuring overall food security objectives: Access, availability, stability, utilisation.</td>
<td></td>
</tr>
<tr>
<td>Primary purpose: Real-time adjustments in policy design and/or implementation, if actual policy impacts divert from what was planned and intended.</td>
<td>Degree of achievement of objectives of food security policy documented. Adjustments in policy design or implementation made.</td>
<td>Policy makers and other stakeholders are ready to co-operate with Impact Monitoring Unit, and to adjust the policies and approaches, taking the results of MPI into account.</td>
</tr>
<tr>
<td>Other purposes: Accountability and learning process for stakeholders.</td>
<td>Feed back of results of MPI to policy makers and other stakeholders (notes, reports, workshops).</td>
<td></td>
</tr>
<tr>
<td>Outputs: Provision of current evidence on impacts of food security policies at project, programme and policy levels.</td>
<td>Indicators for tasks being performed on the various steps, e.g. 1) objectives clarified, tasks defined and assigned; 2) review done and documented (e.g. policy LogFrame); 3) impact model elaborated and documented; 4) list of impact indicators; 5) observation methods / research approaches described; 6) data collected and surveys executed; 7) data compiled, processed and analysed; 8) reports presented, workshops conducted, etc.</td>
<td></td>
</tr>
<tr>
<td>Activities: Performance of tasks according to the eight steps for MPI: 1) initiation and preparation of MPI process; 2) review of food security policies; 3) development of impact model; 4) selection of impact indicators; 5) determination of observation methods / research approaches; 6) data collection and survey execution; 7) data compilation, processing and analysis; 8) communication and presentation of results.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ultimately, step 1 aims at a definition of specific MPI objectives and the development of a research design - agreed upon between the client and those assigned with the monitoring tasks - as its result. To this end, the monitors will have to undertake all

4 Further on Logframe see EASYPol Module 058: *Monitoring Policy Impacts (MPI): Application of the LogFrame Method*.
analytical and planning work of steps 2 - 5, and develop an impact monitoring research proposal for discussion and eventual agreement between both parties. Depending on resource availability, manpower or capacity constraints, or any other considerations (e.g. deliberate limitation of impact monitoring to one or a few priority aspects), the research proposal may require adjustment, or even repeated adjustments, along with concomitant repeated fine-tuning of activities related to steps 2 to 5, before a final research blue-print can be drawn up and until expectations have been harmonised and are in line with feasibility.

3.2 Step 2 – Policy Review and Analysis

After the objectives and tasks for impact monitoring have been clarified, the policy under consideration needs to be reviewed in the following step. Impacts can only be attributed to a certain policy if the features of the policy (objectives, measures, stakeholders) and the state of implementation are duly considered. Therefore, policies need to be reviewed and analysed before a valid assessment of their impacts can be carried out.

Such a review includes stocktaking, clarification and analysis of the following factors:

- **Policy objectives** (hierarchy of objectives, including links between policy and programme objectives, compatible / conflicting objectives, possible hidden objectives, time-frame of objectives),
- **Measures and instruments** applied for policy implementation (regulations, programmes & projects defined and implemented under the policy),
- **Actors, stakeholders** (government institutions at different levels; donor and UN-organizations; international and local NGOs; parastatals, private and community organizations) and **target population**,
- **Human, financial and material resources** allocated and mobilised for policy implementation,
- **State of policy implementation** (including any discrepancies between plan and reality, if already occurred, and reasons thereof).

The LogFrame format offers a suitable approach to set-out and structure the policy objectives, policy measures and related impact indicators, and for policy review and analysis\(^5\). Existing LogFrames set-up at policy and related programme levels should be used and scrutinised. If they do not exist, it is recommended that a policy LogFrame be developed in retrospect.

Table 2 presents the example of a broad LogFrame Matrix for a component of a food security policy. Analogous LogFrame matrices would have to be developed for each programme / programme component (e.g. programmes to promote food production and supplies, disaster prevention and response, safety nets, improved food utilisation). If

such LogFrames are not available as part of the policy and programme documentation, they should be developed retrospectively.

Then, to complete the policy review, the analysis based on LogFrame matrices will have to be complemented by a review of the details for each programme component as to:

- **Stakeholder analysis**: Capacities, interests, strengths and weaknesses, role of stakeholders / institutions involved in programme design and implementation (government institutions, donors, NGOs, community organizations, private sector);

- **target areas and population, time horizon** for implementation, and for objectives / expected impacts to materialise;

- **resources allocated and used** (financial - domestic, external; human capacities);

- **state of implementation** of the different programmes / programme components, outputs achieved.

Ideally, such information can be retrieved from the programme documents and programme review/monitoring reports. In practice, it can be rarely expected that the complete set of relevant information is readily available. Therefore, additional efforts may have to be made to fill existing information gaps on programme objectives, content, state of implementation, and any divergence between plans and reality as regards activities, achievements, resource allocation, unforeseen factors, etc.
Table 2: Basic LogFrame matrix for a programme component of a food security policy

<table>
<thead>
<tr>
<th>Strategy / Objectives</th>
<th>Indicators</th>
<th>Means of verification</th>
<th>Assumptions / risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal: Overall policy objective:</td>
<td>E.g.: Nutritional status.</td>
<td>National statistics, quantitative and qualitative surveys.</td>
<td>• Decent economic growth.</td>
</tr>
<tr>
<td>Food security achieved / improved.</td>
<td>• No. of households below (food) poverty line; no. of population depending on relief assistance.</td>
<td></td>
<td>• Peace, no internal or external conflicts.</td>
</tr>
<tr>
<td></td>
<td>• Perception of stakeholders on changes in food situation.</td>
<td></td>
<td>• No major natural disaster (drought).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Good governance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Consistency with other policies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Donor contribution to promote FSP ensured.</td>
</tr>
</tbody>
</table>

Purpose: Programme objectives, e.g.:		
Agricultural production and income by different farm income groups.	National statistics, surveys.	
Income level by different income groups, particularly of groups that had been identified as poor and vulnerable.		
Food availability / consumption by different population / income groups,		
Perception of stakeholders concerning changes in income and food consumption.		

Outputs of programmes, e.g.:	No. of participating farmers using improved techniques.	Programme records, programme M & E.	To be defined in programme related planning and log-frame.
Improved farm input packages utilised by farmers.	No. of jobs and amount of income generated.		
Income and employment generated by food-/cash-for-work schemes.	Type and amount of infrastructure works completed.		
Rural infrastructure improvements (to be specified, etc.).			

Programme activities, e.g.:	Amount of input packages distributed, credit provided, extension staff trained, etc.	Programme records, programme M & E.	To be defined in programme related planning and log-frame.
Distribution of improved farm input, linked extension and credit.	Participants selected and working teams organised.		
Implementation of EGS.	E.g. km of feeder roads, irrigation channels etc. constructed.		
Implementation of rural infrastructure works.			

Notes: Dark grey areas: Subject of MPI (and evaluation)
Light grey areas: Subject to programme monitoring and evaluation, monitoring results used for MPI.
3.3 Step 3 – Development of Impact Model

The review and analysis of the policy to be monitored leads to the recognition of the policy makers' model of planned achievements. This serves as a basis for the development of an 'impact model', i.e. a theory on the expected or likely changes induced by the policy.

An impact model comprises the following three elements:

- **identification of impact areas**, i.e. the sectors/spheres which are likely to be affected by the policy interventions,
- **assessment of impact paths**, i.e. the ways and sequence of expected changes induced by the policy interventions (primary/secondary, intermediate/ultimate impacts), and
- **formulation of impact hypotheses** on the type and significance of expected impacts.

Since the LogFrame format presents a clear pattern of the policy makers’ model with the underlying conception of cause-effects-linkages, it is very appropriate to use it as the basis for developing an impact model. A policy LogFrame also gives hints on relevant impact indicators to be considered in the following step 3.

However, this basic impact model derived from the policy LogFrame may have to be amended and complemented by incorporating further possible impacts / impact areas / impact paths that were not considered when the policy was designed. Indications on possible unplanned and/or unintended impacts can be obtained from experience with similar types of interventions elsewhere or in the past, and through consultation of experts, key informants and stakeholders, such as target -, lobby - or other population groups that are affected by the policy in one way or another.

Therefore, once the basic impact model is developed, it needs to be refined and complemented, taking into consideration the following aspects:

- further relevant (external) factors, not considered in policy formulation, but affecting the achievement of the policy objectives,
- possible unplanned / unexpected impacts and side-effects,
- time horizon of impacts to materialise,
- prioritisation of impacts, i.e. distinction between factors and possible impacts or impact chains which are considered to be more (or less) relevant for achieving the respective policy objective(s).

An examination of these issues will help prioritise possible impact chains according to their assumed relevance for reaching the policy objectives. This, in turn, will guide the

6 Under step 2 of MPI it has, therefore, been proposed to put the policy into the LogFrame format retrospectively, if a LogFrame was not developed when the policy was set out. The LogFrame method is presented in EASyPol Module 058: Monitoring Policy Impacts (MPI): Application of the LogFrame Method.
decision as to whether or not specific impact chains will be researched during the current round of the MPI exercise. Impact chains that appear to be less relevant under present conditions or impacts which are assumed to become apparent only in the medium- or long-term may be examined later during subsequent rounds of MPI.

Figure 2 below presents a broad comprehensive impact model for a typical set of interventions under a food security policy. The likely impact paths, possible impact areas and relevant impact hypotheses are presented in the following Table 3.
Figure 2: An impact model for a typical set of interventions under a food security policy

Policy interventions
- Asset creation / improvement / transfers
- Production promotion
- Employment programmes (EGS, FFW)*
- Off-farm income generation
- Food security reserve
- Food subsidies & transfers
- Feeding programmes
- Education, health, water, sanitation

Impact areas:
- Links in food chain

Impact hypotheses:
- Intermediate impacts
 - Improved / increased productive resources
 - Increased agric./food production & avail.
 - Increased income
 - Improved access to food
 - Improved food consumption
 - More effective food utilisation

Expected final impact/outcome
- Improved nutritional status

* EGS: Employment Generation Scheme, FFW: Food-for-Work.
<table>
<thead>
<tr>
<th>Impact path</th>
<th>Food security policy intervention</th>
<th>Impact area</th>
<th>Intermediate impacts</th>
<th>Impact hypotheses</th>
<th>Impact path continued until final impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Examples: Natural resource (soil, water) conservation, land reform / land tenure in favour of small farmers / tenants. Example: Improvement of rural road infrastructure.</td>
<td>Natural resource endowment, quantity and quality of productive resources available to small farmers. Economic infrastructure, with impacts on production, markets and income.</td>
<td>Vulnerable groups of small farmers gain access to more / improved productive assets and utilise them. Improved rural roads network facilitates input and produce marketing (lower input prices, higher producer prices, lower consumer prices, availability of food over time and space).</td>
<td>Increased smallholder production →... → improved nutritional status.</td>
<td></td>
</tr>
<tr>
<td>A+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased access to and availability of food →... → improved nutritional status.</td>
</tr>
<tr>
<td>B</td>
<td>Promotion of agricultural extension, research, input supply, credit, etc.</td>
<td>Agricultural / food production, particularly smallholder sub-sector.</td>
<td>Increased agricultural and food production by smallholders.</td>
<td>Increased sales increased income →... → improved nutritional status; Increased home consumption →... → improved nutritional status.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Employment generation schemes (cash / food for work) for rural and urban un- or underemployed.</td>
<td>Income and markets.</td>
<td>Increased income (cash/kind) of poor and vulnerable population groups (market access).</td>
<td>Improved access →... → improved nutritional status.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Productive assets created through public works.</td>
<td>As under A: Natural resources and rural infrastructure.</td>
<td>As under A: Productive assets improved / increased and utilised.</td>
<td>As under A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Off-farm income generation, e.g. through training, credits.</td>
<td>Income and Markets.</td>
<td>As under C: Increased employment and income.</td>
<td>As under C</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Food security reserve.</td>
<td>Food market / consumption.</td>
<td>Market supply and price stabilisation in times of disasters.</td>
<td>Improved (ensured) access / avoiding shortfalls in consumption →... → improved (sustained) nutritional status.</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Targeted food subsidies / cash - / food transfers.</td>
<td>Real / nominal income of target population.</td>
<td>Increased real/cash income of target population.</td>
<td>Improved access → increased food consumption → improved nutritional status.</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Feeding programmes.</td>
<td>Food consumption of target population.</td>
<td>Increased / ensured food consumption.</td>
<td>→ improved nutritional status.</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Education, health, water, sanitation.</td>
<td>Utilisation.</td>
<td>Better knowledge, improved health, hygiene, clean water bring about better food utilisation.</td>
<td>→ improved nutritional status.</td>
<td></td>
</tr>
</tbody>
</table>
Unintended and/or unforeseen impacts and possible side-effects:
The impact model as outlined above is based on the assumption that a policy, through its related programmes, works towards the planned objectives and brings about effects as intended. However, there might be impacts that were not intended or not foreseen when the policy was designed and the programmes set out. Possible unintended or unforeseen impacts can be supportive or contradictory to the policy objectives. Knowledge about such possible unintended impacts may be derived from experience with similar types of interventions in the past or, for example, through consultation of experts, lobby groups, affected population groups, etc.

Based on past experience with food security interventions, the following effects have been observed and, therefore, need to be monitored:

- possible negative effects of food aid interventions (food-for-work and free relief distribution) on the food market (market distortion, erratic price and supply fluctuations), with possible negative implications for:
 - regular market supplies of food,
 - local/domestic food production, and
 - farmers’ income,
 and further negative impacts on factors determining food security along the impact paths as shown above;

- food security interventions (e.g. production support, employment programmes, transfers) may discourage seasonal or permanent migration, encouraging people to remain in unsustaining environments and conditions, with possible negative implications for:
 - the natural resource endowment (overutilisation of resources),
 - production (stagnating or even decreasing agricultural and food production), and
 - the sustainability of livelihoods (aggravation of poverty and continued dependency on assistance).

- Apart from such possible unintended side-effects, there may be further and other external factors with - positive or negative - impacts on food security, such as:
 - overall economic growth,
 - other macro or sector policies and programmes (e.g. PRSP, education, health, infrastructure).
 - the world market situation of food, agricultural and other relevant export / import commodities (e.g. coffee, cotton, cocoa, etc.).

Factors that are relevant for the country under consideration would have to be included in the model. Overall economic growth or an increase in export prices are, for example, likely to have positive impacts on production, employment and income (with further positive implications for food security, according to impact paths), whereas the impacts of bad governance, corruption, or a decrease in world market prices for export commodities on food security are likely to be negative. Improvements in health and education, brought about by specific sector policies and programmes, will not only lead to improved food utilisation but will also have likely positive medium- or long-term impacts on production and income.
3.4 Step 4 - Selection of impact indicators

In order to be able to examine whether the impact model reflects reality, or whether the changes induced by the policy go into the right direction and to what extent the objectives / planned impacts are actually achieved, suitable indicators to assess the impacts are to be selected. Impact indicators are measurements of change which serve as sign posts, milestones and benchmarks, to measure progress and achievements towards the objectives. Through the use of suitable impact indicators it is possible to find out whether one is on the "right track", and to measure how far the implementation has already gone towards reaching the policy objectives.

According to their properties and use, indicators can be classified as:

- **Intermediate and final indicators:**
 Intermediate indicators are used to measure changes which happen 'on the way' towards reaching the overall policy objectives, while final indicators provide a measurement for the expected final outcome (overall objective achievements). Final indicators generally change slowly over time and are the result of many factors, some outside the control of policy makers. Monitoring of intermediate indicators gives a more timely picture of what is happening. The intermediate indicators which are most useful in tracking progress towards achieving an impact are those that refer to key determinants of that impact. In LogFrame terminology, they often relate to policy sub-objectives. They may serve as suitable indicators to assess the impacts of specific measures (programmes and projects) launched under a policy and their contribution to reaching the overall policy objectives: If the intermediate indicators show an improvement, it can be plausibly assumed that a programme or project contributes to the desired overall change. Whether this assumption holds true at aggregate level can, however, only be verified by the use of final indicators. Such final indicators are measurements that reflect changes on aggregate level and directly relate to the overall policy objectives. MPI will also identify and use suitable final indicators to assess overall policy impacts. If respective data are not available in time, proxy indicators may be used as a second best solution (see following paragraph).

Box 1 – Examples of final and intermediate indicators

Possible and commonly used final indicators to assess the impacts of a poverty alleviation policy are the poverty line (number of people living below the poverty line) and the poverty gap (depth of poverty, distance to poverty line of those living below the poverty line). Possible intermediate indicators are the amount of new jobs created, employment and income opportunities offered in public employment programmes, production and income of small farmers increased, and/or the number of people depending on public transfers.

- **Direct and proxy indicators:**
 The above example presents direct indicators, i.e. measurements which directly relate to the expected outcome of a policy (decrease in poverty, increased employment and income). Due to lack of suitable and up-to-date data, or
because changes cannot be measured in quantitative terms, it is sometimes necessary to use proxy indicators. Although not necessarily an explicit direct expression of the intended changes, proxy indicators help to detect changing phenomena that are closely related to such changes, and therefore allow for conclusions to be drawn on the overall effectiveness of the policy interventions.

Box 2 – Example for direct and proxy indicators

A direct indicator to measure the impact of a food security policy would be a sustainable improvement of nutritional status of a population. Because of a lack of adequate data and the immense costs and efforts involved in continuously monitoring the nutritional status of a population, proxy indicators are used, such as the nutritional status of children under five in selected sample areas, the prevalence of nutrition related diseases; the frequency of appeals for food assistance; the phenomenon of ‘hunger migration’; the number of meals consumed per day; the fear or perception of the poor to go hungry, etc.

In MPI, the need to apply proxy indicator arises when early and real-time evidence on the nature and the direction of impacts is required but when the necessary data are not available and/or the intended impacts have not yet materialised.

- Quantitative and qualitative indicators:

 "Not everything that counts can be counted.
 and not everything that can be counted, counts."(Albert Einstein)\(^7\)

A further distinction has to be made between quantitative and qualitative indicators. Qualitative indicators will have to be applied, if meaningful quantitative data on impacts are not (yet) available, when qualitative and participatory approaches to impact assessment are being applied, or for cross-checking (triangulation) of quantitative data\(^8\).

Apart from quantitative indicators (physical, economic, social parameters) that are used to the extent that relevant up-to-date quantitative data are readily available or can be easily generated, the use of qualitative indicators plays a particularly important role in MPI, when real-time information on the direction of changes is required and the causes of such changes are to be understood, even though quantitative data are not (yet) available.

\(^7\) Cited in Roche, 2000.

\(^8\) See also discussion on quantitative and qualitative approaches to impact assessment in section 3.5.
Qualitative indicators are, for example, useful to assess changes in attitudes, behaviour, perceptions, capacities or expectations, among stakeholders and target groups that are induced by a specific policy and/or are relevant for achieving the policy objectives. The use of qualitative indicators requires specific social research approaches (Rapid/ Participatory Rural Appraisal R/PRA).

Box 3 – Examples for quantitative and qualitative indicators

Examples of quantitative indicators: Income, growth rates, production figures, nutrition status of children based on anthropometric measurements, land use figures, etc. *Examples of qualitative indicators*: Perception of households of their economic status (better/worse/same as before), of their food situation, experience and/or expectations of farmers, traders, small businessmen, formal/informal sector employees regarding changes of their economic situation, etc.

Although the use of qualitative indicators does not allow econometric exact analysis of impacts, they can be classified and rated in categories such as: (much or moderately) better or worse, more or less, important or insignificant, etc. Such categorisation at individual or group level can also be aggregated, allowing semi-quantitative analysis and assessment approaches of policy impacts.

In defining impact indicators, a list of possible indicators will have to be put together that well reflect the sub-objectives (possible intermediate indicators) and the overall policy objectives (final indicators). Logical framework matrices, if set-up, contain such indicators for the objectives at different levels. For clarity, cost, and time-economic reasons, the number of indicators should be limited to one or a few of the most significant indicator(s) for each (sub-)objective / possible impact.

Furthermore, in order to ensure that MPI is able to assess outcomes during a period of time which is relevant to the decision-makers' needs, a hierarchy of indicators might be established, ranging from short-term impact indicators (e.g. food production, household food supplies /consumption) to longer-term indicators (e.g. nutritional status). This ensures that even if final impacts are not available initially, intermediate impacts can be assessed. The process of MPI can be planned across several time periods, allowing for more immediate impacts to be picked up earlier while still tracking final outcomes at a later stage.

3.5 Step 5 - Research design

Once the two preceding steps are accomplished, the methods for tracing policy impacts will have to be determined. Based on the impact hypotheses to be tested, the selected impact indicators and the respective data requirements, suitable research approaches to trace impacts and methods for data collection are to be defined.

The following principal research approaches for impact assessment can be distinguished:

9 See also Baker (2000) and Mohr (1995), Prennushi et al. (2001)
a) **Comparison with counterfactual (experimental design)**

Here, the situation with policy interventions is compared with a persisting situation or possible persisting situation without interventions. In applying this method, treatment and control groups are to be formed. The control groups should show the same characteristics as the treatment groups but must not be affected by, nor benefit from interventions. While such an approach is generally applicable in partial coverage programmes which only affect/benefit part of the population, households or other units of analysis\(^{10}\), it cannot be applied to assess the impacts of country-wide policies and full coverage programmes because there is no control group\(^{11}\).

b) **Comparison of situations before and after (reflexive comparison)**

By comparing situations before and after policies are implemented, using appropriate indicators for this comparison, the relevant changes observed are conceived as effects of the policy measures introduced. The reflexive comparison method can be applied to quantitative as well as qualitative approaches for impact assessment. In the case of quantitative approaches, adequate baseline data referring to the time before policies are implemented are required. In the case of qualitative approaches, the perceptions of stakeholders on relevant changes and on the determining factors thereof are to be identified and analysed.

The method of reflexive comparison has, however, also its limitations, such as:

- the **attribution problem**: to what extent can the changes recorded be clearly attributed to the policy interventions or are caused by other factors?
- the need for **baseline data** that can be compared with indicators for change. Sometimes suitable baseline data are not available.
- the **single reference period** for changes to be recorded (before policy implementation); due to this fact, the retrospective comparison is specifically suitable for evaluations but less so for monitoring continuous changes.

c) **Combination of quasi-experimental / non-experimental designs with qualitative approaches**

In MPI one will, for practical, cost- and time-economic reasons, normally rely on methods that are blended kind of compromise solutions, using a variety of the methods referred to above. These are quasi-experimental or non-experimental quantitative approaches to impact assessment, such as:

- **matching methods or constructed controls** (a comparison group is matched to the treatment group on the basis of a set of observed characteristics);
- **reflexive comparison** (see above - the baseline provides the comparison group);

\(^{10}\) ... and, therefore, may be easily applied for impact assessment of programmes or projects that only cover certain areas or population groups.

\(^{11}\) It is possible to “construct” a counterfactual situation by simulations, using Computable General Equilibrium Models (CGE) based on detailed social accounting matrices (SAMs). Such an approach is, however, quite complex and time consuming and depends on the availability of a huge number of reliable quantitative data. Therefore, it may be justified for the purpose of comprehensive in-depth evaluations but normally not applicable for impact monitoring.
- **double difference or difference-in-difference methods** (treatment and comparison groups are compared before and after policy interventions);
- **instrumental variables or statistical control methods** (comparison of the variation of values of selected outcome indicators with instrumental variables);

as well as
- **qualitative approaches**, taking explicitly into account the perceptions of the target population and/or other key informants on observed changes and their causes.

Such methods generally bear less reliable results, compared to the exact statistical approaches, but still allow to trace progressive changes during the course of policy implementation. By combining different methods (e.g. quantitative and qualitative methods, case studies, compilation of results of impact assessments at different levels of aggregation), and by thoughtful and sensible interpretation of their results, it will be possible to draw relevant conclusions on the impacts of policies, as to whether implementation of a policy is progressing towards reaching the intended objectives, and at what speed it is progressing.

Data requirements
The indicators selected in step 4 and the research methods to be applied determine the data requirements. The robustness of the results of impact assessment largely depends on the data quality, therefore the collection of high quality data is absolutely essential for the validity of the results of impact assessment.

Data should fulfill certain quality criteria that can be labeled as APT: Accurate, precise, and timely. Although the "APT" criteria primarily apply to quantitative data, they can be analogously applied to qualitative data and information: Accurate and precise qualitative data can be obtained by putting the right and precise questions to the appropriate persons, and by verifying the answers and the validity of data obtained through triangulation13.

The choice of methods to be applied in impacts assessment pre-determines, to a large extent, the type of data required and the methods to be employed for data collection14.

Since the generation of highly accurate and precise quantitative data can be very costly and time consuming, there is, in practice, often the need to make compromises between data accuracy, precision and timeliness. This particularly applies to data generation for impact monitoring, when real-time data and information are required. Case studies and/or a combination of quantitative and qualitative approaches can help to overcome this problem.

12 See also discussion on qualitative indicators under step 4 above [section 3.4].
13 Triangulation means an approach to a specific phenomenon from a different angle, by asking the same question to different key informants. See section 1.5.5 of Chapter 1 and Chapter 3 for more on qualitative research approaches.
14 See Table 5 section 4 below.
Reasons of cost - and time-efficiency call for a maximum use of data that is available through statistics and/or as results of special and routine surveys done by other institutions (research institutions, government departments, development organizations, NGOs)15. Therefore, once clarification is achieved on which data are required, the existing information and data sources should be reviewed, so as to see which meaningful data are available and routinely collected.

If the necessary data are not available, or cannot be obtained in appropriate quality and time, the need to conduct specific surveys for collecting the required data arises. Such a need generally exists as regards to participatory and qualitative approaches for impact assessment.

The surveys will have to be designed by the impact monitoring unit, in close cooperation with research institutions, government organizations or other agencies that have adequate experience and capacity in the respective field. These partners may then also be involved in the actual data collection and survey execution (see the following step).

In developing the research design, the implications of MPI regarding capacity, resource and time requirements will become clear. If it turns out that the “optimal” research approaches are too sophisticated, too costly and/or too time-consuming to be implemented under given capacity-, resource- and time-constraints, this may lead to adjustments in the research design, priority settings and/or compromise solutions. Such modifications will usually involve a revision of the objectives and tasks of MPI, in close co-ordination and with the MPI clients’ consent, hence a respective feedback cycle, returning to step 1 and starting a new revised MPI process from there (indicated by dotted arrow line in Figure 1).

For impact monitoring, a combination of quantitative with qualitative methods will often be the most suitable approach, because:

- it provides the quantifiable impacts as well as an explanation of the process and interventions that yielded these outcomes16;
- qualitative approaches help to fill quantitative data gaps (particularly relevant if baseline data and most recent data are missing);
- qualitative methods allow verification of results through triangulation (looking at relevant issues from a different angle).

The methods to be chosen for impact assessment and the approaches for data collection are closely linked. A review of data available from secondary sources will influence the research approaches to be applied.

15 See also Prennushi et al., 2001
3.6 Step 6 - Data collection / survey execution

According to the selected observation methods and the information and data sources identified in the preceding step, actual collection of data will be carried out through:

- **Tapping existing information and data sources:** Arrangement with the respective data collecting institutions will have to be made to ensure that the required data are made available for impact monitoring in suitable form and time. This also applies to relevant monitoring data collected by programmes and projects that are implemented under the respective policy framework.

- **Upgrading of existing data collection systems:** Existing statistical services and data collecting systems may not generate exactly the type of data required for impact assessment, but similar kind of data. By slight modification and upgrading, the kind and quality of data collected could possibly be adapted to the requirements for impact monitoring.

- **Execution of specific quantitative/qualitative surveys:** Even if the two preceding possibilities are fully explored and used, there usually remains, as said before, the need to conduct special surveys for data collection. Execution of the surveys, using one or more of the relevant instruments, does not (necessarily) have to be done by the impact monitoring unit itself but can be outsourced to research institutions, government organizations or other agencies. They, preferably, have already been involved in survey design (see preceding step).

Since data collection can be both expensive and time-consuming, it is highly important to explore and make maximum use of existing data sources and ongoing data collection efforts. Table 4 below lists different types of data used for impact monitoring, their sources, the agencies normally responsible for its collection, and the typical collection frequency.

If the data available from secondary sources do not exactly match the type of data required for impact monitoring, coordination should take place with the data collecting agencies with the aim to adapt their approaches to the needs for impact assessment. Where there is a choice, it is usually better to “piggyback” surveys on to existing national or other surveys rather than to create a new data collection facility. A reluctance and inertia of agencies to modify established data collecting procedures can be overcome by respective support and pressure from higher administrative levels. The agencies should also be encouraged to provide the required data without delay.

Even if the possibilities for tapping existing data sources are fully explored, there may still be the need to generate own data. There are critical steps of designing the data collection instruments, sampling, fieldwork, data management, and data access. The main data collection instruments for impact assessment are:

17 See Table 5, section 4 for the main data collection instruments for impact assessment.
18 Cf. Premush, 2001
20 Cf. Baker, 2000
21 See Table 5 section 4.
The Eight Methodo-"logical" Steps for Monitoring Policy Impacts (MPI)

- case studies,
- focus group discussions,
- interviews,
- observation,
- questionnaires,
- written document analysis.

Table 4 - Data for impact assessment, typical sources and frequency of data collection

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
<th>Agency</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>National-level data:</td>
<td>System of National Accounts, trade Statistics.</td>
<td>Central statistical agency.</td>
<td>Monthly or quarterly where possible (trade statistics for example); at least yearly.</td>
</tr>
<tr>
<td>National accounts: GDP</td>
<td>System of National Accounts, trade Statistics.</td>
<td>Central statistical agency.</td>
<td>Monthly or quarterly where possible (trade statistics for example); at least yearly.</td>
</tr>
<tr>
<td>Consumption. Investment,</td>
<td>Budgets and actuals.</td>
<td>Ministry of Finance, Central</td>
<td>Monthly or quarterly where possible (trade statistics for example); at least yearly.</td>
</tr>
<tr>
<td>Exports, Imports, etc.</td>
<td>Price, wage surveys.</td>
<td>statistical agency, sectoral</td>
<td>Monthly; CPI basket updated at least every five years.</td>
</tr>
<tr>
<td>Social indicators (e.g. on nutrition).</td>
<td>Administrative systems, institutes.</td>
<td>Management Information Systems, MIS of sectoral ministries.</td>
<td>Yearly where possible.</td>
</tr>
<tr>
<td>Climatic data (temperature, rainfall, etc.).</td>
<td>Direct measurement.</td>
<td>Meteorological institute..</td>
<td>Daily.</td>
</tr>
<tr>
<td>Local-level data:</td>
<td>Community surveys, multi-topic household surveys; qualitative studies.</td>
<td>Local administration, sectoral</td>
<td>Yearly.</td>
</tr>
<tr>
<td>Availability of services.</td>
<td>Community surveys, multi-topic household surveys; qualitative studies.</td>
<td>administration, sectoral ministries.</td>
<td>Yearly.</td>
</tr>
<tr>
<td>Utilisation of services.</td>
<td>Tracking surveys.</td>
<td>Local service providers.</td>
<td>Yearly.</td>
</tr>
<tr>
<td>Individual and household level data:</td>
<td>Household budget / expenditure / income surveys, multi-topic household surveys.</td>
<td>Central statistical agency, Ministry of Labour / Employment.</td>
<td>Every three to five years.</td>
</tr>
<tr>
<td>Household consumption and income; living conditions, social indicators.</td>
<td>Household budget / expenditure / income surveys, multi-topic household surveys.</td>
<td>Central statistical agency, Ministry of Labour / Employment.</td>
<td>Every three to five years.</td>
</tr>
<tr>
<td>Household priorities, perceptions of well-being, user satisfaction.</td>
<td>Qualitative studies; user surveys.</td>
<td>Central statistical agency, sectoral ministries, others.</td>
<td>Every one to three years.</td>
</tr>
</tbody>
</table>

Source: Adapted from Prennushi et al. 2001

3.7 Step 7 - Data compilation, processing and analysis

Once the data are collected - primary data from own surveys as well as secondary data from other sources - they will have to be compiled, processed and analysed, according to the research approaches and analytical methods defined in step 5, in order to serve the
specific purpose of impact assessment. Problems with cleaning, validating and interpreting data will almost surely arise during this process. Therefore, close collaboration between data producers, processors and analysts is required, in order to clarify questions and to ensure timely and quality results.\(^\text{22}\)

Table 5 below gives an overview on the most relevant analytical methods for impact assessment, comprising quantitative as well as qualitative as well as quantitative approaches.

There are specific hard-, software and capacity requirements for data processing and analysis. Data banks are to be set-up and administered. Data analysis involves an examination of the quantitative as well as qualitative data, with the aim to:

- identify patterns which allow a verification (or falsification) of the impact hypotheses,
- establish clear cause-effect relationships, particularly also regarding impacts that are not as expected,
- provide clear evidence on which of the possible policy impact scenarios applies\(^\text{23}\),
- arrive at conclusions and to give recommendations for policy adjustments.

The ability to fulfil these tasks requires substantial analytical capacities, knowledge of how the data were collected and what they mean and express, as well as full awareness of the contents of preceding steps and of the process of MPI as a whole, including the ability to understand the policy, its mechanisms and its effects in the given socio-economic, political and cultural context.

3.8 Step 8 - Communication and presentation of results of MPI

The last and most important step is the feedback of the results of MPI to the policy makers and other stakeholders. In disseminating and presenting the results of MPI, the following aspects are to be considered:

- **Clients/ audience:** primary clients: policy makers; but also: programme managers, international, donor, non-governmental organizations, beneficiaries, public, media, research institutions.
- **Means of presentation:**
 e.g. regular or occasional bulletinings, reports, meetings, workshops, computer presentations, web-pages, etc. Means of presentation should be adapted to the intended audience, their presumed interest, capacity, information needs and access to media. The modern media offer a wide variety of techniques for communication and presentation. Staff of MPI unit may need to be trained in such techniques.
- **Timeliness:**
 In order to be useful, the results must be available when they are needed.

\(^\text{22}\) Baker, 2000, p. 38.

\(^\text{23}\) See EASYPol Module 056 section 5.
Particularly in MPI, the results should be presented as early as possible, in order to enable the policy makers to take corrective actions, if required. In practice, this may generally mean the presentation of monthly, quarterly or annual MPI reports/bulletins, and ad-hoc or occasional reports/quick infos if there is a particular reason (e.g. major event affecting policy design or implementation, results of an important study becoming available) or an urgent request by one of the clients of MPI.

- Impacts as planned?
 Diversions of reality from plan in impact achievements should be pointed, if there are any.

- Cause-effect-relations:
 Should be pointed out, particularly in cases where impacts do not match the objectives; reference should be made as to which impact scenario applies\(^{24}\).

- Recommendations:
 The results of impact monitoring will have the most policy relevance if they include clear and practical recommendations on policy adjustments\(^{25}\). These can be broken into most urgent, short- and long-term priorities, and may also include budgetary implications.

A special problem may arise if the results of MPI are critical and do not please the policy makers or other clients. Although there is no general recipe how to handle such a situation, the analysts must be aware of a potential threat to the clients, in order to find the most appropriate way and approach to trickle and present the research results.

4 METHODS TO BE APPLIED ON THE VARIOUS STEPS

In carrying out the specific tasks through the eight steps of the MPI process, different methods and related tools for planning, data collection, data analysis and presentation will have to be applied. The appropriate method(s) will have to be selected from a wide range of social research methods and tools. There are no new or special methods or tools which specifically serve the purpose of MPI. The same tools as applied for other planning, research and management purposes can be used, if appropriately adapted to the nature of policy implementation and the specific issues to be addressed by MPI. The choice of method(s) also depends on the nature of the policy/-ies to be monitored and respective policy measures adopted, as well as on the desired degree of accuracy of observation, on available resources, and on cost considerations.

Table 5 indicates the most relevant methods at different stages. However, application of a specific method or tool is generally not limited to a single step but may be repeatedly applied at the different stages of the MPI process.

\(^{24}\) For different impact scenarios, see EASYPol Module 056: *Monitoring Policy Impacts (MPI): The Role of MPI in Policy Formulation and Implementation*.

Table 5 - Relevant methods to be applied at the various steps of MPI

<table>
<thead>
<tr>
<th>Steps of MPI</th>
<th>Main relevant methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Clarification of objectives and task of MPI</td>
<td>• LogFrame Analysis
• Workshops
• Stakeholder interviews
• Expert consultations
• Metaplan</td>
</tr>
<tr>
<td>Step 2: Review of Policy</td>
<td>• LogFrame
• Document review
• Web-search
• Stakeholder interviews and analysis</td>
</tr>
<tr>
<td>Step 3: Development of impact model</td>
<td>• Expert consultations
• Stakeholder interviews
• Stakeholder analysis
• Metaplan</td>
</tr>
<tr>
<td>Step 4: Selection of impact indicators</td>
<td>• LogFrame
• Participatory appraisal
• Rapid appraisal</td>
</tr>
<tr>
<td>Step 5: Research design</td>
<td>• Experimental / quasi-experimental design:
• Reflexive comparison (before/after)
• Comparison with counterfactual
• Double difference
• Qualitative approaches
• Sampling methods / case study approach</td>
</tr>
<tr>
<td>Step 6: Data collection</td>
<td>• Tapping existing data sources
• Piggybacking
• Survey methods: Interviews, questionnaires, etc.
• RRA, PRA</td>
</tr>
<tr>
<td>Step 7: Data compilation, processing, and analysis</td>
<td>• Data banks / spread-sheets
• Statistical and econometric analysis
• Reference to research design</td>
</tr>
<tr>
<td>Step 8: Presentation / feed back of results</td>
<td>• Communication and presentation methods (Reports, Power-point presentations, workshops, publications, etc.)
• Web-based presentation and communication (web-page, net-meetings, etc.)</td>
</tr>
</tbody>
</table>

5 PASSING THROUGH THE EIGHT STEPS: LINKAGES AND FEEDBACK CYCLES

The sequence of steps as shown in Figure 1 above, represents a methodological order but should not be taken as absolute or binding. The steps are inter-linked (shown as overlapping fields) and there are also circular relationships / feedback cycles between progressing and preceding steps (indicated by dotted arrow lines). In passing through the process of MPI, it may be necessary to return to one of the preceding steps for further clarification and for adjustment of the approaches. Such a need arises, for example, in the following cases:

- If the impact model developed in step 3 is too complex to be fully covered under MPI, it is necessary to concentrate and/or prioritise on certain impacts / impact chains to be monitored. In consultation with the client(s), the objectives and tasks of MPI will have to be redefined and specified (step 1).
- If resource, capacity, data and/or time constraints will not allow to carry-out MPI activities according to a comprehensive and optimal research design developed in step 5, it will be necessary to redefine the scope and tasks of MPI (step 1), e.g. by agreeing with the client(s) on some compromise solution regarding aspects to be covered, research approaches to be applied and/or type/quantity/quality of data to be collected or generated. It is also possible to
present alternative research proposals, with different implications as to costs, capacity-, resource and/or time requirements. The decision of client(s) to implement one of the alternative proposals would have to go hand in hand with the allocations of the respective resources and capacities required. Also in this case, the process of MPI would have to start from step 1 again, now based on the agreed proposal for MPI.

- The type and quality of available data to be collected in step 6 will determine the choice of indicators (step 4).
- Problems in data compilation and processing (step 7) may lead to amendments in data collection (step 6).
- If the results of MPI suggest policy adjustments (step 8), this may lead to modifications in policy design and/or implementation which need to be taken into account during the further impact monitoring process, starting from step 2.

6 CONCLUSIONS: SUITABLE METHODS FOR MPI

The actual features of policies and the conditions under which they are implemented are highly diversified. Therefore, the MPI approaches will always have to be tailored to fit the case to which they are applied. Nevertheless, in spite of the specifics of each individual approach to policy impact assessment, there are some common critical issues to be considered if the eight-step-approach for MPI is to be applied in a wider policy and country context. Such major issues can be summarised as follows:

The LogFrame approach 26 can and should be applied:

- **On Step 1:** To clearly set out the objectives and tasks of MPI, as well as the conditions for effective policy monitoring.
- **On Step 2:** To get a well structured analytical view of the policy to be monitored. If the policy and related programmes are not yet structured according to the LogFrame format, it may be worthwhile doing it retrospectively.
- **On Step 3:** In developing an impact model, in formulating impact hypotheses, and
- **On Step 4:** In selecting impact indicators, differentiation should be made between:
 - Short-, medium-, long-term impacts & impact indicators,
 - Intermediate and final impacts & impact indicators (impact paths),
 - More and less important impacts & impact indicators,
 - Planned and unplanned impacts & respective indicators,
 - Desired and undesired impacts and respective indicators,
 - Quantifiable impacts, and impacts which are to be qualitatively assessed (nevertheless the latter can by analysed using semi-quantitative techniques such as grading and ranking).
 - Furthermore, the selection of impact indicators should already be done with a preview on data availability.

26 For the LogFrame method, see EASYPol Module 058: *Monitoring Policy Impacts (MPI): Application of the LogFrame Method.*
On Step 5: The choice of suitable methods for tracing policy impacts depends on the research questions (impact hypotheses) to be answered as well as the timing, budget constraints and implementation capacity. The pros and cons of different research designs should be considered to determine which methodologies are most appropriate and how quantitative and qualitative techniques can be integrated to complement each other.27 If resource, capacity and/or time constraints do not permit impact monitoring to be carried out according to a comprehensive or optimal research design, it may become necessary to redefine the scope and tasks of MPI (e.g. prioritisation on certain impacts, impact chains or impact areas; less sophisticated methods to be applied; aiming at tentative, rather than statistically verified, quantified results), hence, return to step 1 and agree with the stakeholders on a respectively reduced approach.

On Step 6: Before own data are collected, existing data sources should be reviewed and made maximum use of. Coordination and cooperation with data collecting agencies is required, and piggybacking of data collection on ongoing surveys should be preferred to own and additional surveys.

On Step 7: Data analysis should result in pointing out any major divergence between plan and reality, desired objectives and impacts actually achieved, and if a divergence is detected, the cause-effect relations, i.e. the reasons for such divergence, will have to be identified. It should become clear which of the impact scenarios applies.28

On Step 8: Feed-back of results to policy makers and other clients should be guided by their information needs/interests as well by criteria of clarity, comprehension, digestibility and applicability. Recommendations for policy adjustments should be made. Internet web-pages are to be used for information of the public on the results of MPI.

7 FURTHER READINGS

Baker, Judy L., 2000, Evaluating the Impact of Development Projects on Poverty, A Handbook for Practitioners, The World Bank, Washington D.C., USA. (This handbook seeks to provide project managers and policy analysts with the tools needed for evaluating the impact of interventions. It includes a discussion of evaluation methodologies and implementation issues and presents several case studies).

28 For the different impact scenarios, see EASYPol Module 056: Monitoring Policy Impacts (MPI): The Role of MPI in Policy Formulation and Implementation, section 5.
World Bank, OED, 1996, *Designing Project Monitoring and Evaluation*, Washington D.C., USA. (This document gives many useful hints on methods and approaches for the design and implementation of monitoring and evaluation at project and programme level which are equally important for MPI).

The documents listed above are accessible through World Bank website, see below.

Web-links on issues and literature related to impact assessment

USAID Center for Development Information and Evaluation: http://www.dec.org/usaid_eval/#15
Module metadata

1. EASYPol module 057

2. Title in original language
 English Monitoring Policy Impacts (MPI)
 French
 Spanish
 Other language

3. Subtitle in original language
 English The Eight Methodo- "logical" Steps for MPI
 French
 Spanish
 Other language

4. Summary
 This Module presents the eight methodo-“logical” steps for monitoring policy impacts (MPI), comprising: Step 1: Initiation and preparation of MPI; Step 2: Policy review and analysis; Step 3: Development of the impact model; Step 4: Selection of impact indicators; Step 5: Research design; Step 6: Information and data collection; Step 7: Data compilation, processing and analysis; Step 8: Feedback of results of MPI to policy makers, clients, public.

 It is pointed out that the eight steps represent a logical sequence but that the steps are closely interlinked and that there are likely possible feedback cycles to previous steps. In a concluding section, conditions for a practical application of MPI to specific policy cases are set out.

5. Date
 November 2005

6. Author(s)
 Manfred Metz, Consultant, Gesellschaft für Technische Zusammenarbeit (GTZ), Germany, in collaboration with the Agricultural Policy Support Service, Policy Assistance Division, FAO, Rome, Italy

7. Module type
 ☒ Thematic overview
 ☒ Conceptual and technical materials
 ☐ Analytical tools
 ☐ Applied materials
 ☐ Complementary resources

8. Topics covered by the module
 ☐ Agriculture in the macroeconomic context
 ☒ Agricultural and sub-sectoral policies
 ☐ Agro-industry and food chain policies
 ☐ Environment and sustainability
 ☐ Institutional and organizational development
 ☐ Investment planning and policies
 ☐ Poverty and food security
 ☐ Regional integration and international trade
 ☒ Rural Development
9. Subtopics covered by the module

10. Training path

Analysis and monitoring and evaluation of socio-economic impacts of policies

11. Keywords