Note: This report includes Codex Circular Letter CL 2016/14-PR.
To: - Codex Contact Points
 - Interested International Organizations

From: Secretariat,
Codex Alimentarius Commission,
Joint FAO/WHO Food Standards Programme,
Email: codex@fao.org
Viale delle Terme di Caracalla,
00153 Rome, Italy

SUBJECT: DISTRIBUTION OF THE REPORT OF THE 48TH SESSION OF THE CODEX COMMITTEE ON PESTICIDE RESIDUES (REP16/PR)

The report of the 48th Session of the Codex Committee on Pesticide Residues will be considered by the 39th Session of the Codex Alimentarius Commission (Rome, Italy, 27 June - 1 July 2016).

PART A: MATTERS FOR ADOPTION BY THE 39TH SESSION OF THE CODEX ALIMENTARIUS COMMISSION:

1. Proposed draft maximum residue limits for pesticides at Step 5/8 (para. 113, Appendix II).

2. Proposed draft revision of the Classification of Food and Feed: Selected commodity groups - Group 020 Grasses of cereal grains at Step 5 (para. 141, Appendix X).

Governments and observer international organizations wishing to submit comments on the above matters, should do so in writing, in conformity with the Procedure for the Elaboration of Codex Standards and Related Texts (Part 3 – Uniform Procedure for the Elaboration of Codex Standards and Related Texts, Procedural Manual of the Codex Alimentarius Commission) by e-mail, to the above address before 31 May 2016.

PART B: REQUEST FOR COMMENTS AND INFORMATION:

4. 2017 Schedule for JMPR evaluations (paras 169 and 182, Appendix XII)

Governments and observer international organizations (sponsors) who have nominated compounds for the 2017 JMPR evaluation for new uses (additional MRLs) are invited to send documented evidence of authorized labels and GAPs before 31 May 2016 to:

- Ian Reichstein, Director, National Residue Survey, Department of Agriculture and Water Resources,
 Email: Ian.Reichstein@agriculture.gov.au;
- Yong Zhen Yang, FAO JMPR Secretary, E-mail: YongZhen.Yang@fao.org;
- Philippe Verger, WHO JMPR Secretary, E-mail: vergerp@who.int;
- CCPR Secretariat, Institute for the Control of Agrochemicals, Ministry of Agriculture (ICAMA), E-mail: ccpr@agri.gov.cn; and
- Codex Secretariat, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme,
 E-mail: codex@fao.org
5. Matters related to the 2016 JMPR Meeting including concern forms (paras 28 – 112, Appendix XII).

Those countries and observers specified under individual compounds concerning matters related to the 2016 JMPR (e.g. GAP, residue evaluation, intake assessment, etc.) on specific pesticide/commodity(ies) to be considered by 2016 JMPR, including submission of concern forms together with necessary data, are invited to send information or data **before 30 June 2016** to:

- Yong Zhen YANG, FAO JMPR Secretary, E-mail: YongZhen.Yang@fao.org;
- Philippe VERGER, WHO JMPR Secretary, E-mail: vergerp@who.int;
- CCPR Secretariat, Institute for the Control of Agrochemicals, Ministry of Agriculture (ICAMA), E-mail: ccpr@agri.gov.cn; and
- Codex Secretariat, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, E-mail: codex@fao.org

Governments and observer international organizations (sponsors) specified under individual compounds in REP16/PR, Appendix XII concerning matters related to the future JMPR meetings (GAPs, residue evaluation, intake assessment, etc.) on specific pesticide/commodity(ies) to be considered at subsequent years by JMPR, are invited to send information or data **one year before** JMPR considers these compounds at the addresses indicated above.
SUMMARY AND CONCLUSIONS

The 48th Session of the Codex Committee on Pesticide Residues reached the following conclusions:

<table>
<thead>
<tr>
<th>MATTERS FOR ADOPTION BY THE 39TH SESSION OF THE COMMISSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed draft standards and related texts</td>
</tr>
<tr>
<td>• Proposed draft MRLs for pesticide at Step 5/8 (with omission of Steps 6/7) (para 113, Appendix II);</td>
</tr>
<tr>
<td>• Proposed draft revision of the Classification of Food and Feed: Selected commodity groups - Group 020 Grasses of cereal grains at Step 5 (para 141, Appendix X);</td>
</tr>
<tr>
<td>• Proposed draft Guidelines for performance criteria for methods of analysis for the determination of pesticide residues in food at Step 5 (para 163, Appendix XI).</td>
</tr>
<tr>
<td>Other matters for adoption / approval</td>
</tr>
<tr>
<td>• Maximum residue limits for pesticides recommended for revocation (para 113, Appendix III);</td>
</tr>
<tr>
<td>• Codex schedules and priority list of pesticides for evaluation by JMPR (para 182, Appendix XII).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTERS OF INTEREST TO THE COMMISSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Committee:</td>
</tr>
<tr>
<td>• noted matters referred to the Committee by the Commission and its subsidiary bodies and confirmed that guidance provided in the Procedural Manual and in the Risk Analysis principles applied by the Codex Committee on Pesticide Residues were sufficient to ensure transparent and efficient work management and therefore no additional guidance was needed (para 9);</td>
</tr>
<tr>
<td>• agreed to retain several draft and proposed draft MRLs for pesticides awaiting for JMPR evaluations (para 114, Appendices IV and V);</td>
</tr>
<tr>
<td>• agreed to withdraw several draft and proposed draft MRLs for pesticides in view of the advancement of corresponding MRLs to the Commission for adoption (para 114, Appendix VI);</td>
</tr>
<tr>
<td>• agreed to hold Group 011 - Fruiting vegetables, cucurbits, Group 015 – Pulses, Group 014 – Legume vegetables pending finalization of the Classification of Food and Feed in relation to the vegetable commodity groups at its next session (paras 126 and 134, Appendices VII, VIII and IX);</td>
</tr>
<tr>
<td>• agreed to further consider crop grouping for Group 021 Grasses for sugars or syrup production and Group 024 Seeds for beverages and sweets at its next session as part of the ongoing revision of the Classification of Food and Feed (paras 145 and 150);</td>
</tr>
<tr>
<td>• agreed to continue to work on examples of selection of representative commodities for vegetable and other commodity groups in parallel with the revision of the Classification of Food and Feed for inclusion in the Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides to Commodity Groups (para 157);</td>
</tr>
<tr>
<td>• agreed to consider advantages and challenges that might arise from the possible revision of the IESTI equations and the impact on risk management, risk communication, consumer protection goals and trade at its next session (para 193).</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

INTRODUCTION ... 1
OPENING OF THE SESSION .. 2 - 4
DIVISION OF COMPETENCE .. 5
ADOPTION OF THE PROVISIONAL AGENDA (Agenda Item 1) ... 6
APPOINTMENT OF RAPPORTEURS (Agenda Item 2) .. 7
MATTERS REFERRED TO THE COMMITTEE BY THE CODEX ALIMENTARIUS COMMISSION AND/OR OTHER SUBSIDIARY BODIES (Agenda Item 3) .. 8 - 9
MATTERS OF INTEREST ARISING FROM FAO AND WHO (Agenda 4a) 10 - 13
MATTERS OF INTEREST ARISING FROM OTHER INTERNATIONAL ORGANISATIONS (Agenda Item 4b) .. 14 - 18
REPORT ON ITEMS OF GENERAL CONSIDERATION BY THE 2015 JMPR (Agenda Item 5a) ... 19 - 26
REPORT ON 2015 JMPR RESPONSES TO SPECIFIC CONCERNS RAISED BY CCPR (Agenda Item 5b) .. 27
DRAFT AND PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES IN FOOD AND FEED AT STEPS 7 AND 4 (Agenda Item 6) ... 28 - 114

General remarks ... 28 - 33
Lindane (48) .. 34
Methidathion (51) ... 35 - 36
Chorothalonil (81) ... 37 - 39
Ethephon (106) ... 40 - 41
Phorate (112) .. 42
Cypermethris (118) .. 43
Triazophos (143) .. 44
Cyhalothrins (include lambda-cyhalothrin) (146) ... 45 - 46
Propiconazole (160) .. 47 - 49
Profenofos (171) .. 50
Bentazone (172) .. 51
| Paragraphs | \(173\) | \(177\) | \(178\) | \(180\) | \(182\) | \(185\) | \(189\) | \(206\) | \(207\) | \(213\) | \(224\) | \(225\) | \(226\) | \(234\) | \(243\) | \(246\) | \(248\) | \(256\) | \(263\) | \(266\) | \(267\) | \(276\) | \(280\) | \(281\) | \(282\) | \(283\) | \(284\) | \(285\) | \(286\) | \(287\) |
|------------|
| 52 - 53 | Buprofezin | Abamectin | Bifenthrin | Dithianon | Penconazole | Fenpropothrin | Tebuconazole | Imidacloprid | Cypromilin | Trifloxystrobin | Difenoconazole | Dimethomorph | Pyrimethanil | Spirotetramat | Fluopyram | Acetamiprid | Flutriafol | Fluxapyroxad | Cyantraniliprole | Imazapic | Imazapyr | Imazamox | Acetochlor | Cyazofamid | Flonicamid | Fluazifop-P-butyl | Flumioxazin | Flupyradifurone | Lufenuron | Quinlorac |
| 54 - 57 | |
| 58 - 60 | |
| 61 | |
| 62 - 63 | |
| 64 | |
| 65 - 68 | |
| 69 - 70 | |
| 71 | |
| 72 | |
| 73 | |
| 74 | |
| 75 | |
| 76 - 77 | |
| 78 - 79 | |
| 81 - 82 | |
| 83 - 85 | |
| 86 - 88 | |
| 89 - 90 | |
| 91 | |
| 92 | |
| 93 | |
| 94 - 97 | |
| 98 - 99 | |
| 100 - 102 | |
| 103 | |
| 104 - 105 | |
| 106 | |
| 107 - 108 | |
| 109 - 111 | |
Removal of compounds from the Codex pesticide list 112

Status of maximum residue limits for pesticides 113 - 114

DISCUSSION PAPER ON THE IMPACT OF THE RELOCATION OF VIGNA SPP UNDER THE BEANS ON THE CXL FOR PEAS (Agenda Item 7) 115 - 121

DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 7: SELECTED VEGETABLE COMMODITY GROUPS – GROUP 015 PULSES (Agenda Item 8a)

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED VEGETABLE COMMODITY GROUPS – GROUP 014 LEGUME VEGETABLES (Agenda Item 8b) 122 - 126

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED VEGETABLE COMMODITY GROUPS – GROUP 011 FRUITING VEGETABLES, CUCURBITS (Agenda Item 8c) 127 - 134

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED COMMODITY GROUPS – GROUP 020 GRASSES OF CEREAL GRAINS (Agenda Item 8d) 135 - 141

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED COMMODITY GROUPS – GROUP 021 GRASSES FOR SUGARS OR SYRUP PRODUCTION (Agenda Item 8e) 142 - 145

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED COMMODITY GROUPS – GROUP 024 SEEDS FOR BEVERAGES AND SWEETS (Agenda Item 8f) 146 - 150

PROPOSED DRAFT TABLES ON EXAMPLES OF SELECTION OF REPRESENTATIVE COMMODITIES (FOR INCLUSION IN THE PRINCIPLES AND GUIDANCE FOR THE SELECTION OF REPRESENTATIVE COMMODITIES FOR THE EXTRAPOLATION OF MAXIMUM RESIDUE LIMITS FOR PESTICIDES TO COMMODITY GROUPS) AT STEP 4 (Agenda Item 8g) 151 - 157

Terms of Reference of the EWG on the revision of the Classification 158

PROPOSED DRAFT GUIDELINES ON PERFORMANCE CRITERIA FOR METHODS OF ANALYSIS FOR THE DETERMINATION OF PESTICIDE RESIDUES (Agenda Item 9) 159 - 163

ESTABLISHMENT OF CODEX SCHEDULES AND PRIORITY LISTS OF PESTICIDES (Agenda Item 10) 164 - 183

OTHER BUSINESS AND FUTURE WORK (Agenda Item 11)

Revisiting the IESTI equation 184 – 194

Emerging issues: A proposed risk management approach to address detection in food of chemicals of very low public health concern 195

Guidance document in risk assessment using brew factor for the establishment of MRLs for pesticides in tea 196 - 197

DATE AND PLACE OF THE NEXT SESSION (Agenda Item 12) 198
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix I</td>
<td>LIST OF PARTICIPANTS</td>
<td>19</td>
</tr>
<tr>
<td>Appendix II</td>
<td>PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES</td>
<td>36</td>
</tr>
<tr>
<td>Appendix III</td>
<td>MAXIMUM RESIDUE LIMITS FOR PESTICIDES RECOMMENDED FOR REVOCATION</td>
<td>46</td>
</tr>
<tr>
<td>Appendix IV</td>
<td>DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES (AT STEP 7)</td>
<td>51</td>
</tr>
<tr>
<td>Appendix V</td>
<td>PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES</td>
<td>52</td>
</tr>
<tr>
<td>Appendix VI</td>
<td>DRAFT AND PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES WITHDRAWN BY CCPR</td>
<td>54</td>
</tr>
<tr>
<td>Appendix VII</td>
<td>DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED VEGETABLE COMMODITY GROUPS - GROUP 015 PULSES (AT STEP 7)</td>
<td>55</td>
</tr>
<tr>
<td>Appendix VIII</td>
<td>PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED VEGETABLE COMMODITY GROUPS - GROUP 014 LEGUME VEGETABLES (AT STEP 4)</td>
<td>59</td>
</tr>
<tr>
<td>Appendix IX</td>
<td>PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED VEGETABLE COMMODITY GROUPS - GROUP 011 FRUITING VEGETABLES, CUCURBITS (AT STEP 4)</td>
<td>64</td>
</tr>
<tr>
<td>Appendix X</td>
<td>PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED COMMODITY GROUPS - GROUP 020 GRASSES OF CEREAL GRAINS (AT STEP 5)</td>
<td>69</td>
</tr>
<tr>
<td>Appendix XI</td>
<td>PROPOSED DRAFT GUIDELINES ON PERFORMANCE CRITERIA FOR METHODS OF ANALYSIS FOR THE DETERMINATION OF PESTICIDE RESIDUES (AT STEP 5)</td>
<td>74</td>
</tr>
<tr>
<td>Appendix XII</td>
<td>CODEX SCHEDULES AND PRIORITY LIST OF PESTICIDES FOR EVALUATION BY JMPR)</td>
<td>86</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADI</td>
<td>Acceptable Daily Intake</td>
</tr>
<tr>
<td>ALINA</td>
<td>The Latinamerican Association of the National Agrochemical Industries</td>
</tr>
<tr>
<td>ARfD</td>
<td>Acute Reference Dose</td>
</tr>
<tr>
<td>AU</td>
<td>African Union</td>
</tr>
<tr>
<td>CAC</td>
<td>Codex Alimentarius Commission</td>
</tr>
<tr>
<td>CCMAS</td>
<td>Codex Committees on Methods of Analysis and Sampling</td>
</tr>
<tr>
<td>CCPR</td>
<td>Codex Committee on Pesticide Residues</td>
</tr>
<tr>
<td>CCRVDF</td>
<td>Codex Committee on Residues of Veterinary Drugs in Foods</td>
</tr>
<tr>
<td>CLI</td>
<td>CropLife International</td>
</tr>
<tr>
<td>CRD</td>
<td>Conference Room Document</td>
</tr>
<tr>
<td>CXL</td>
<td>Codex Maximum Residue Limit for Pesticide</td>
</tr>
<tr>
<td>DIE</td>
<td>Daily Intake Estimate</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EHC</td>
<td>Environmental Health Criteria</td>
</tr>
<tr>
<td>EMRL</td>
<td>Extraneous Maximum Residue Limit</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EWG</td>
<td>Electronic Working Group</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organization of the United Nations</td>
</tr>
<tr>
<td>GAP</td>
<td>Good Agricultural Practice (in the use of pesticides)</td>
</tr>
<tr>
<td>GEMS/Food</td>
<td>Global Environment Monitoring System - Food Contamination Monitoring and Assessment Programme</td>
</tr>
<tr>
<td>GLP</td>
<td>Good laboratory practices</td>
</tr>
<tr>
<td>HR</td>
<td>Highest residue in edible portion of a commodity found in trials used to estimate a maximum residue level of pesticide(s) in the commodity</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>IEDI</td>
<td>International Estimated Daily Intake</td>
</tr>
<tr>
<td>IESTI</td>
<td>International Estimated of Short-Term Intake</td>
</tr>
<tr>
<td>IGG</td>
<td>FAO Intergovernmental Group (IGG) on Tea</td>
</tr>
<tr>
<td>JECFA</td>
<td>Joint FAO/WHO Expert Committee on Food Additives</td>
</tr>
<tr>
<td>JMPR</td>
<td>Joint FAO/WHO Meeting on Pesticide Residues</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of Quantification</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MRL</td>
<td>Maximum Residue Limit</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Co-operation and Development</td>
</tr>
<tr>
<td>PAD</td>
<td>Pesticide Attributes Database</td>
</tr>
<tr>
<td>PWG</td>
<td>Physical Working Group</td>
</tr>
<tr>
<td>RIVM</td>
<td>National Institute for Public Health and the Environment</td>
</tr>
<tr>
<td>STMR</td>
<td>Supervised Trial Median Residues</td>
</tr>
<tr>
<td>TDI</td>
<td>Tolerable Daily Intake</td>
</tr>
<tr>
<td>TTC</td>
<td>Threshold of Toxicological Concern</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WG</td>
<td>Working group</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
</tbody>
</table>
INTRODUCTION

1. The 48th Session of the Codex Committee on Pesticide Residues (CCPR) was held in Chongqing, China, from 25 – 30 April 2016 at the kind invitation of the Government of China. Professor Xiongwu QIAO, Director of the Shanxi Academy of Agricultural Science chaired the Session, assisted by Dr Guibiao YE, Director of CCPR Secretariat, Institute for Control of Agrochemicals, Ministry of Agriculture of the People’s Republic of China. Representatives from 49 Member countries, one Member organisation, nine international organisations attended the Session. The list of participants, including FAO, WHO, the CCPR and Codex Secretariats is attached as Appendix I.

OPENING OF THE SESSION

2. Mr Zhonghua SUN, General Agronomist, Ministry of Agriculture of the People’s Republic of China, opened the session. In his remarks, Mr SUN informed the Committee that China in 2015 had released a revised food safety law with stricter standards and penalty and accountability systems; the law had come into force in October 2015. China had also launched in 2015 a five-year programme for the use of pesticides with a target of zero growth in the use of agriculture chemicals by 2020. China was improving the safety and quality of the agro and food production, developing MRLs for pesticides and planning to harmonise with Codex by 2020. In closing, Mr SUN reiterated China’s commitment to actively participate in Codex and support the work of CCPR.

3. Mr Qiang LIU, Vice Mayor of Chongqing, welcomed the participants and noted the important economic growth, including the IT and agriculture sector, of Chongqing Municipality in recent years. Efforts were underway to improve the efficiency of the agriculture sector and modernise agriculture production. The Municipality was committed to ensuring the production of safe and quality food products according to standards and to reducing the use of pesticides.

4. Dr Percy Wachata MISIKA, FAO Representative in China, also addressed the Committee on behalf of FAO and WHO and thanked China for hosting CCPR. The FAO Representative drew the Committee's attention to the UN Sustainable Development Goals (SDGs) and noted the contribution of Codex work to Goal 2: End hunger, achieve food security and improved nutrition and promote sustainable agriculture and Goal 3: Ensure healthy lives and promote well-being for all at all ages. Dr Misika also highlighted the contribution of FAO and WHO to Codex work, in particular the scientific advice of JMPR, and confirmed the continued support of the two organizations to Codex.

Division of Competence

5. The Committee noted the division of competence between the European Union and its Member States, according to paragraph 5, Rule II of the Procedure of the Codex Alimentarius Commission.

ADOPTION OF THE PROVISIONAL AGENDA (Agenda Item 1)

6. The Committee adopted the Provisional Agenda and agreed to:

i. Consider under Agenda Item 11:
 • Revisiting the IESTI equations – proposed by EU and Australia;
 • Emerging Issues: A proposed risk management approach to address detection in food of chemicals of very low public health concern – proposed by New Zealand;
 • Guidance document on risk assessment using brew factor for the establishment of MRLs for pesticides in tea - proposed by India.

ii. Establish an in-session WG chaired by USA and co-chaired by China and India to address comments submitted on the Guidance on performance criteria for methods of analysis for the determination of pesticide residues in order to prepare a revised version for consideration by the plenary.

APPOINTMENT OF RAPPORTEURS (Agenda Item 2)

7. The Committee appointed Mr David LUNN (New Zealand) and Mr Kevin BODNARUK (Australia) to act as rapporteurs.
MATTERS REFERRED TO THE COMMITTEE BY THE CODEX ALIMENTARIUS COMMISSION AND/OR OTHER SUBSIDIARY BODIES (Agenda Item 3)³

8. The Committee noted that matters referred from CAC38 (2015) were for information only.

Work management

9. The Committee confirmed that guidance provided in the Procedural Manual and in the Risk Analysis Principles applied by the Codex Committee on Pesticide Residues were sufficient to ensure transparent and efficient work management and therefore no additional guidance was needed.

MATTERS OF INTEREST ARISING FROM FAO AND WHO (Agenda Item 4a)⁴

Feedback from JECFA81 (2015)

10. The WHO Representative noted relevant considerations for CCPR arising from JECFA regarding:

- Coordination of the priorities to be assigned to JECFA and JMPR for substances that are used both as pesticides and as veterinary drugs; and
- Development of an approach for long-term dietary exposure assessment of compounds used for multiple purposes (i.e. veterinary drugs and pesticides).

11. The WHO Representative also informed the Committee of the decisions of JECFA concerning: teflubenzuron, for which had established an ADI of 0–0.005 mg/kg bw for teflubenzuron (half of the value established for this insecticide by the 1994 JMPR); and diflubenzuron, for which was not able to propose health based guidance value or MRLs for (insecticide last evaluated by the 2001 JMPR) due to the absence of adequate information on exposure to 4-chloroaniline (PCA), a genotoxic and carcinogenic metabolite and/or degrade of diflubenzuron.

Review of the WHO guidelines for drinking-water quality

12. The WHO Representative also informed CCPR that the new studies on acute toxicity of bentazone identified by the experts of WHO Guidelines for Drinking-water Quality had not yet been submitted to JMPR following the 2016 call for data. The sponsor of this compound agreed to submit the two studies for evaluation by the 2016 JMPR.

Report of the WHO Expert Task Force on Diazinon, Glyphosate and Malathion

13. The WHO Representative further informed CCPR that a meeting of JMPR would take place in May 2016 to re-evaluate these compounds. The re-evaluation should consider all end-points, including carcinogenicity. In accordance with its mandate and expertise, the work of JMPR should focus on exposure from residues in food.

MATTERS OF INTEREST ARISING FROM OTHER INTERNATIONAL ORGANISATIONS (Agenda Item 4b)⁵

Organisation for Economic Cooperation and Development (OECD)

14. The Committee noted information provided by OECD relevant to the work of CCPR.

Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

15. The Representative of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture reported on the division’s projects relevant to the work of CCPR. In addition to the research and capacity building activities detailed in CX/PR 16/48/4, the Representative highlighted the response of the Joint FAO/IAEA Division to a request from the Republic of the Marshall Islands for urgent assistance in mitigating toxic chemical residues in foods and developing a food safety programme in their country.

16. Several delegations expressed support for the work of the Joint Division and stressed on the need for additional resources to be dedicated to capacity building activities in developing countries.

17. The Committee concurred and thanked the Joint Division for their excellent work in building much needed food safety monitoring capacity in developing countries and for their contribution to the work of CCPR.

Other

18. The Delegation of Australia drew the attention of the Committee on the capacity building activities within the framework of APEC related to the harmonisation of MRLs for pesticides in the Asia-Pacific region as detailed in CRD28.

³ CX/PR 16/48/2; Comments of Kenya and AU (CRD4); Mali (CRD13).
⁴ CX/PR 16/48/3; Comments of Kenya and AU (CRD5); Mali (CRD13).
⁵ CX/PR 16/48/4; Comments of Kenya and AU (CRD5); Australia (CRD28).
19. The Committee noted the information contained in Section 2 of the 2015 JMPR Report and the support of Codex members for such activities as follows:

Item 2.1 EFSA workshop, co-sponsored by WHO and FAO, revisiting the IESTI equations

20. A scientific workshop co-sponsored by FAO and WHO was organised by EFSA and RIVM to discuss the methodology used to estimate the short-term dietary exposure for compounds having an ARfD. The workshop identified several elements, which could improve the scientific basis for the IESTI equations for further consideration by JMPR. The workshop also made other recommendations related to risk management and risk communication for consideration by CCPR.

Item 2.2 Shorter than lifetime exposure

21. Besides the model to assess dietary exposure on a single day or a single eating occasion (ESTI), the JMPR was estimating the long-term dietary exposure (IEDI) based on multi-annual consumption data averaged over the whole population to capture the per capita dietary pattern over a lifetime. The JMPR noted that adverse effects considered for establishing the ADIs could occur over a wide exposure duration range. It would therefore be necessary to develop an additional model to cover dietary exposure longer than one day and shorter than life-time. FAO and WHO had established an expert working group to develop such model.

Item 2.3 Update on the revision of Principles and methods for risk assessment of chemicals in food (EHC 240) EFSA

22. The JMPR recommended FAO and WHO to revise the EHC 240 to take account of recent developments on risk assessment methodologies.

Item 2.4 A Report on the Joint expert meeting on hazards associated with animal feed

23. The FAO and WHO Joint Expert Meeting recommended CCPR and Codex members to establish MRLs for pesticides of concern in feed and encouraged countries to submit data and processing studies for the development of MRLs for feed (e.g. biofuel by products).

Item 2.5 Minimum number of supervised field trials for MRL setting for minor crops

24. The Committee noted that JMPR would start using the CCPR guidance on the minimum number of supervised field trials for setting MRLs for minor crops from the 2016 JMPR meeting and that on a case-by-case basis, fewer trials might be acceptable.

25. The Committee agreed to consider the possibility for an interim transition period prior to the application of CCPR guidance under Agenda Item 10.

Item 2.6 Revision of the FAO manual on the submission and evaluation of pesticide residue data for the estimation of maximum residue levels in food and feed

26. The Committee noted that the FAO manual had been recently revised. The JMPR Secretariat clarified that the principles incorporated in the revised manual were the current JMPR working procedures, which were regularly presented to CCPR as items of general considerations by JMPR. The publication of the manual was to assist in the systematic application of these principles by and to ensure transparency in the work of JMPR.

REPORT ON 2015 JMPR RESPONSES TO SPECIFIC CONCERNS RAISED BY CCPR (Agenda Item 5b)7

27. The Committee noted that specific concerns raised by CCPR would be addressed when discussing the relevant compounds under Agenda Item 6.

DRAFT AND PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES IN FOOD AND FEED AT STEPS 7 AND 4 (Agenda Item 6)8

General remarks

28. The Delegation of EU explained to the Committee that it was current EU policy to align EU MRLs with Codex MRLs (CXLs) if three conditions are fulfilled: (i) that the EU sets MRLs for the commodity under consideration; (ii) that the current EU MRL is lower than the CXL; and (iii) that the CXL is acceptable to the EU with respect to areas such as consumer protection, supporting data, and extrapolations.

6 Section 2 of the 2015 JMPR Report; Comments of China, EU, Ghana, AU (CRD6); Mali (CRD13); CropLife (CRD15)
7 Section 3 of the 2015 JMPR Report; Comments of China, EU, AU (CRD7); Mali (CRD13).
8 CX/PR 16/48/5; Comments of Australia, Canada (CX/PR 16/48/5-Add.1); China, EU, Ghana, Japan, Paraguay, AU (CRD8); Mali (CRD13).
29. In the interest of transparency the Delegation advised the Committee that they would be making reservations during the discussions on the individual compounds where they considered the third criterion had not been met (CRD7 and CRD8).

30. The Delegation of Norway advised the Committee that they supported all EU reservations as their residue risk assessment approach was the same as that of the EU.

31. The Committee agreed that these reservations, where relevant, would be noted in the report.

32. The Delegation of EU informed the Committee that they were conducting a study on the relevance of triazole derivative metabolites and that their position with respect to MRLs for triazole compounds might change, depending upon the outcome of this work.

33. The Committee made several editorial changes to the proposed draft and draft MRLs under consideration and clarified the descriptors for plums and prunes namely: plums (including fresh prunes) (includes all commodities in this subgroup) (FS 0014) and prunes, dried (DF 0014).

34. The Committee agreed to advance the proposed draft EMRLs for adoption at Step 5/8. The Committee also decided to withdraw all CXLs as recommended by the 2015 JMPR.

35. The JMPR Secretariat confirmed the public health concern raised by CCPR47 based on current CXLs the acute dietary exposure would be 10 times above the ARfD.

36. The Committee agreed to keep this compound in the list of pesticides, wait for data on peach and mango submission to the 2020 JMPR, and agreed to consider withdrawing all existing CXLs at CCPR49 (2017).

37. The Committee noted the reservations of the Delegations of EU and Norway on the advancement of the proposed draft MRLs for cherries (includes all commodities in this subgroup); ginseng, dried, including red ginseng; horseradish; onion, bulb; peaches (including nectarine and apricots) (includes all commodities in this subgroup); peppers; pistachio nuts; rhubarb; root and tuber vegetables; and shallot as they consider separate MRLs for the SDS-3701 metabolite are needed for plant commodities.

38. The Committee agreed to advance all the proposed draft MRLs for adoption at Step 5/8, with the subsequent revocation of the associated CXLs as recommended by the 2015 JMPR.

39. The Committee agreed to maintain the CXL for cranberry, until the submission of data for evaluation by the 2018 JMPR.

40. The Committee noted the reservation of the Delegations of EU and Norway on the advancement of the proposed draft MRLs for barley; rye; and wheat (due to their different residue definition for cereal commodities) and for figs (insufficient residue data set).

41. The Committee agreed to advance all proposed draft MRLs for adoption at Step 5/8, with the subsequent revocation of the associated CXLs, as recommended by the 2015 JMPR.

42. The Committee agreed to advance the proposed draft MRLs for adoption at Step 5/8, as recommended by the 2015 JMPR.

43. The Committee decided to advance the proposed draft MRL for cardamom seed for adoption at Step 5/8, as recommended by the 2015 JMPR.

44. The Committee agreed to advance all the proposed draft MRLs to Step 5/8, with the subsequent revocation of the associated CXL, as recommended by the 2015 JMPR.

45. The Committee noted that the Delegation of EU commented that toxicological information available for a recent EU assessment had not been available for JMPR, and encouraged the manufacturer to submit the relevant data for evaluation by JMPR.

46. The Committee agreed to advance all the proposed draft MRLs to Step 5/8, with the subsequent revocation of the associated CXLs, as recommended by the 2015 JMPR.
47. The Committee noted the general reservation expressed by the Delegations of EU and Norway, pending the outcome of their review of triazole metabolites.

48. The Delegation of Japan asked the JMPR Secretariat how the dietary exposure to the common metabolites derived from different triazole-containing pesticides is assessed. The JMPR Secretariat responded that the method to estimate combined exposure to multiple residue with a similar health endpoint is not in place in JMPR.

49. The Committee agreed to advance all the proposed draft MRLs to Step 5/8, with the subsequent revocation of the associated CXLs, as recommended by the 2015 JMPR.

PROFENOFOS (171)

50. The Committee agreed to advance all the proposed draft MRLs to Step 5/8, with the subsequent revocation of the associated CXLs, as recommended by the 2015 JMPR.

BENTAZONE (172)

51. The Committee noted that data on field peas would be available for evaluation by the 2018 JMPR.

BUPROFEZIN (173)

52. The Committee noted that the Delegations of EU and Norway confirmed its 2015 reservation to the advancement of the proposed draft MRL for coffee beans due to toxic metabolite aniline.

53. The JMPR Secretariat responded that aniline can occur naturally in some foods and may also originate from many chemicals, it should be considered as a contaminant. JMPR recommended that the JECFA Secretariat place aniline on the agenda for an evaluation to both characterise hazard and estimate exposure from the diet, including exposure from the use of pesticides.

ABAMECTIN (177)

54. The Committee noted the short-term intake concern identified by the 2015 JMPR, and agreed to maintain the draft MRL for spinach at Step 4, awaiting advice on the availability of alternative GAP information.

55. The Committee noted that the Delegations of EU and Norway expressed general reservation on the advancement of all proposed draft MRLs due to a different residue definition for enforcement.

56. The Committee agreed to advance all the proposed draft MRLs to Step 5/8, followed by the subsequent revocation of the associated CXLs, as recommended by the 2015 JMPR.

57. The Committee also decided to withdraw the CXLs for cattle fat; cattle kidney; cattle liver; cattle meat; cattle milk; goat meat; goat milk; goat, edible offal of; lettuce, leaf; squash, summer and watermelon as recommended by 2015 JMPR.

BIFENTHRIN (178)

58. The Committee agreed to advance the proposed draft MRLs for blueberries; grapes; peas (pods and succulent=immature seeds) and peas, shelled (succulent seeds) for adoption at Step 4, and to retain the proposed draft MRLs for strawberry; celery and lettuce, head at Step 4 (in light of acute intake risk identified by the 2015 JMPR) and await an alternative GAP for review by the 2017 JMPR.

59. The Committee noted that the draft MRLs for mango; okra and papaya were retained at Step 7, awaiting the 2017 JMPR review of new data submitted by Kenya.

60. The Committee agreed to retain the existing CXLs for barley and barley straw and fodder, dry, awaiting the outcome of the 2018 JMPR.

DITHIANON (180)

61. The Committee noted that the draft MRLs for mandarin and pummelo and grapefruits (including shaddock-like hybrids, among others grapefruit) as recommended by the 2013 JMPR.

PENCONAZOLE (182)

62. The Committee noted that a revised ADI of 0-0.03 mg/kg bw and an ARfD of 0.8 mg/kg bw had been established by the 2015 JMPR.

63. The Delegations of EU and Norway informed the Committee of their general reservation on this compound, pending the outcome of their evaluation of triazole derivative metabolites.
64. The Committee agreed to withdraw the proposed draft MRLs for cherries (includes all commodities in this subgroup); peaches (including nectarine and apricots) (includes all commodities in this subgroup) and pome fruits and to recommend revocation of the existing CXL for pome fruits, because no alternative GAP was available to resolve the short-term intake concerns for these commodities.

TEBUCONAZOLE (189)

65. The Delegations of EU and Norway expressed a reservation on the advancement of the proposed draft MRL for sunflower seed because the OECD calculator suggested a lower level.

66. The JMPR Secretariat responded that the higher MRL recommendation took account of the higher uncertainty associated with a small data set.

67. The Committee agreed to advance all the proposed draft MRLs for adoption to Step 5/8 as recommended by the 2015 JMPR, with the subsequent revocation of the associated CXLs for banana; cucumber and onion, bulb.

68. The Committee maintained the draft MRL for common bean (pods and/or immature seeds) at Step 7, until the 2017 JMPR evaluation of data from Kenya.

IMIDACLOPRID (206)

69. The Delegations of EU and Norway reserved their position on the advancement of all proposed draft MRLs pending the outcome of their ongoing review of this compound. And also informed the Committee of their acute intake concern with respect to the proposed draft MRL for kale, noting that this concern was based on their lower ARfD and higher variability factor.

70. The Committee agreed to advance all the proposed draft MRLs for adoption to Step 5/8, with the subsequent revocation of the associated CXLs as recommended by the 2015 JMPR.

CYPRODINIL (207)

71. The Committee agreed to advance the proposed draft MRL for rape seed for adoption at Step 5/8 as recommended by the 2015 JMPR.

TRIFLOXYSTROBIN (213)

72. The Committee agreed to advance all the proposed draft MRLs for adoption at Step 5/8 as recommended by the 2015 JMPR.

DIFENOCONAZOLE (224)

73. The Committee agreed to advance all proposed draft MRLs for adoption at Step 5/8, with the subsequent revocation of the associated CXLs, as recommended by the 2015 JMPR.

DIMETHOMORPH (225)

74. The Committee agreed to retain the proposed draft MRL for lettuce, leaf at Step 4, and await the outcome of the 2016 JMPR alternative GAP evaluation.

PYRIMETHANIL (226)

75. The Committee agreed to advance the proposed draft MRLs for blackberries; blueberries; cucumber and raspberries, red, black for adoption at Step 5/8 as recommended by the 2015 JMPR.

SPIROTETRAMAT (234)

76. The Committee agreed to advance the proposed draft MRLs for avocado; guava and sweet corn for adoption at Step 5/8 as recommended by the 2015 JMPR.

77. The Delegations of EU and Norway expressed a reservation on the advancement of all proposed draft MRLs pending the outcome of their review of the residue definition for this compound.

FLUOPYRAM (243)

78. The Committee agreed to hold the proposed draft MRLs for peppers and peppers chilli, dried at Step 4, awaiting the outcome of the 2017 JMPR evaluation.

79. The Committee agreed to advance all other proposed draft MRLs for adoption at Step 5/8, and to recommend revocation of the associated CLXs.

80. The Committee agreed to revoke the existing CXLs for eggs; kidney of cattle, goats, pigs and sheep; liver of cattle, goats, pigs and sheep; meat (from mammals other than marine mammals); milks; poultry meat and poultry, edible offal of.
81. The Committee noted the acute intake concern expressed by the 2015 JMPR for mustard green and agreed to advance the proposed draft MRL to Step 4, awaiting the evaluation of alternative GAP by the 2017 JMPR.

82. The Committee agreed to advance all other proposed draft MRLs for adoption at Step 5/8.

FLUTRIAFOL (248)

83. The Committee noted the reservations of the Delegations of EU and Norway on the advancement of the proposed draft MRLs for brassica vegetables and celery (acute intake concern); cucurbits, peppers and pome fruit (residue data assessment, pooling and extrapolation) and animal commodities (livestock dietary burden calculation).

84. The Committee agreed to withdraw the proposed draft MRLs for lettuce, leaf; mustard greens; and spinach, in light of acute intake risks identified by the 2015 JMPR.

85. The Committee agreed to advance the remaining proposed draft MRLs for adoption at Step 5/8, with the subsequent revocation of the associated CXLs.

FLUXAPYROXAD (256)

86. The Committee noted the reservations of the Delegations of EU and Norway on the advancement of proposed draft MRLs for celery (acute intake concern); banana; berries and other small fruits (except grapes), brassica vegetables; brassica leafy vegetables; carrot; fruiting vegetables, cucurbits; garlic; onion, bulb; oranges, sweet, sour; parsnip; and shallot (different methodology on residue data extrapolation, pooling, trial numbers); rice (processing factor) and different policy for acute exposure estimation.

87. The Committee agreed to withdraw the proposed draft MRL for spinach, in light of acute intake risks identified by the 2015 JMPR.

88. The Committee agreed to advance all remaining draft MRLs for adoption at Step 5/8, with the subsequent revocation of the associated CXLs.

CYANTRANILIPROLE (263)

89. The Committee noted the reservation of the Delegations of EU and Norway on the advancement of the proposed draft MRLs for milk (long term intake risk) and cotton seed, rapeseed, sunflower seed (inclusion of outliers in residue data set). The JMPR Secretariat responded that the JMPR policy is to consider outliers if there are valid reasons for excluding the result. In this case, no valid reason was identified.

90. The Committee agreed to advance all draft MRLs for adoption at Step 5/8, with the subsequent revocation of the associated CXLs.

IMAZAPIC (266)

91. The Committee agreed to advance the proposed draft MRL for soya bean (dry) to Step 5/8.

IMAZAPYR (267)

92. The Committee agreed to advance all the proposed draft MRLs to Step 5/8, with the subsequent revocation of the associated CXLs.

IMAZAMOX (276)

93. In response to the concern from the Delegation of USA on the need to establish ARID, the JMPR Secretariat explained that the ARID of 3 mg/kg bw was based on malformations observed in a developmental toxicology study. This effect was considered relevant for acute toxicity and therefore JMPR reaffirmed its conclusions.

ACETOCHLOR (280)

94. The Committee noted that the Delegations of EU and Norway expressed a general reservation on the advancement of all proposed draft MRLs due to their different interpretation of the toxicology (genotoxicity) studies.

95. In response to the genotoxicity of metabolites, the JMPR Secretariat explained that they would raise this issue for further discussion, and seek agreement on a robust indicator of genotoxicity among authorities. The JMPR Secretariat added that JMPR has developed draft guidance to evaluate genotoxicity, which might be adopted in the 2016 JMPR meeting.

96. The Committee agreed to advance all the proposed draft MRLs for adoption at Step 5/8.

97. The Committee noted that the Delegation of USA had submitted a concern form requesting a review of the soya bean MRL decision and that this would be reconsidered by the 2016 JMPR.
CYAZOFAMID (281)

98. The Delegations of EU and Norway advised the Committee that this compound is under evaluation in the EU and expressed a reservation on the advancement of all proposed draft MRLs, pending the outcome of their evaluation.

99. The Committee agreed to advance all the proposed draft MRLs for adoption at Step 5/8.

FLONICAMID (282)

100. The JMPR Secretariat advised the Committee that the livestock dietary burden for flonicamid would be reviewed by the 2016 JMPR and the Committee agreed to hold the proposed draft MRLs for commodities of animal origin and for animal feed (and associated) commodities at Step 4 and to advance all other proposed draft MRLs to Step 5/8.

101. The Delegations of EU and Norway expressed a reservation on the advancement of all the proposed draft MRLs for plant commodities due to their different residue definition.

102. The Committee noted that the Delegation of USA had submitted a concern form requesting a review of the JMPR decision on MRLs for cucurbits based upon the green house cucumber data. The JMPR Secretariat clarified that with the current principle JMPR was not able to make an estimation on MRLs for cucurbits but that the 2016 JMPR would provide a reply to the concern form for consideration by CCPR49.

FLUAZIFOP-P-BUTYL (283)

103. The JMPR Secretariat informed the Committee that the toxicological evaluation had been postponed due to an incomplete data package.

FLUMioxAZIN (284)

104. The Delegations of EU and Norway advised that this compound was under re-evaluation in the EU and they expressed a reservation on the advancement of the proposed draft MRLs pending the outcome of this re-evaluation.

105. The Committee agreed to advance all the proposed draft MRLs for adoption at Step 5/8 as recommended by the 2015 JMPR.

FLUPYRADIFURONE (285)

106. The Committee noted the ADI of 0-0.08 mg/kg bw and ARfD of 0.2 mg/kg bw proposed by the 2015 JMPR.

LUFENURON (286)

107. The Delegations of EU and Norway expressed a reservation on the advancement of the proposed draft MRLs due to potential chronic risk concern for European consumers.

108. The Committee agreed to advance all the proposed draft MRLs for adoption at Step 5/8 as recommended by the 2015 JMPR.

QUINCLORAC (287)

109. The Committee agreed to advance the proposed draft MRLs (cranberry, rhubarb) for adoption at Step 5/8 as recommended by the 2015 JMPR 2015.

110. The Delegations of EU and Norway expressed a reservation on the advancement of these proposed draft MRLs because the more toxic metabolite was not included in the JMPR residue definition.

111. The Delegation of USA supported the JMPR, parent only residue definition as the metabolite was only a small proportion of the total residue and not found in the mature crop. The Delegation also stated that they believed the parent compound served as an adequate marker and requested the Delegation of EU to consider withdrawing its reservation.

REMOVAL OF COMPOUNDS FROM THE CODEX PESTICIDE LIST

112. The Committee agreed to revoke all the existing CXLs related to Dichlofluanid (82); Bioresmethrin (93); Tecnazene (115) and Tolyfluanid (162) as the compounds were not supported and no authorised uses have been notified to the Committee. The compounds would also be removed from the pesticide list.

STATUS OF THE MAXIMUM RESIDUE LIMITS FOR PESTICIDES

113. The Committee agreed to forward to CAC39 (2016):
 - Proposed draft MRLs for adoption at Steps 5/8 (Appendix II).
 - Codex MRLs (CXLs) for revocation (Appendix III).
114. The Committee noted that:

- Draft and proposed draft MRLs retained at Steps 7 and 4 are attached as Appendices IV and V.
- Draft and proposed draft MRLs withdrawn are attached as Appendix VI.

DISCUSSION PAPER ON THE IMPACT OF THE RELOCATION OF VIGNA SPP. UNDER THE BEANS ON THE CXLs FOR PEAS (Agenda Item 7)

115. The Delegation of Thailand introduced the item and summarised the main findings in CX/PR 16/48/6 on the impact of the relocation of *Vigna* spp. from the peas to the beans group on the CXLs for *Vigna* spp. and drew the attention of the Committee to the recommendations in paragraph 14 of the discussion paper.

Discussion

116. The Committee noted general agreement on Recommendation 1 related to the extrapolation and application of the CXLs of *Phaseolus* spp. to *Vigna* spp. to both immature and dry beans.

117. The Committee however recognised that the Recommendation 2 was not necessary and agreed to retain two separate codes for *Phaseolus* spp. and *Vigna* spp. as currently proposed in the revised Groups 014 and 015 (See Agenda Items 8(a)-(b)).

118. The Committee recognised that this would allow the carry-over of CXLs currently available for *Vigna* spp. under the peas group thereby avoiding potential trade disruptions. It was recognised that the transfer of *Vigna* spp. to the beans group could in some cases decrease or increase the CXLs. This situation was considered acceptable as a transitional step until such time as JMPR assessed the compounds as per the agreed priority schedule.

119. The Committee recalled that this decision was consistent with the decision taken when finalizing the fruit commodity groups i.e. no changes would be made to existing CXLs until such time as JMPR reviews were completed as per current procedures for the establishment of Codex schedules and priority list of pesticides. The Committee agreed that the same approach would be taken when reviewing other commodity groups in the database following the adoption of revised commodity groups in the Classification.

120. The Committee further noted a comment from a delegation that it was necessary to compare GAPs and pesticide residue levels after pesticide uses following the same the GAP between mature and immature beans of *Phaseolus* spp. and those of *Vigna* spp.

Conclusion

121. The Committee agreed to apply the CXLs from peas to *Vigna* spp until such time as JMPR assess the compound as per the agreed priority schedule and to retain two separate codes for both commodities to allow availability of CXLs for *Vigna* spp. The Committee also agreed on the extrapolation of MRLs of *Phaseolus* spp. to *Vigna* spp.

DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 7: SELECTED VEGETABLE COMMODITY GROUPS (GROUP 015 - PULSES) (Agenda Item 8a)

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED VEGETABLE COMMODITY GROUPS – GROUP 014 LEGUME VEGETABLES (Agenda Item 8b)

122. The Delegation of USA, as Chair of the EWG, introduced the item and explained that the EWG had considered the pending issues identified by CCPR47 (2015) related to this group. The Delegation referred to CRD24, which contained revised Groups 014 and 015 which was based on the crop grouping agreed to by CCPR47 as described in CX/PR 16/48/7. The revision included proposals for inclusion of commodities as contained in written comments submitted to this session and editorial amendments to ensure consistency in the terminology applied to the group, subgroups and commodities.

9 CX/PR_16/48/6; Comments of China, Colombia, Costa Rica, El Salvador, EU, Ghana, Kenya, Paraguay, Uruguay, USA, AU (CRD9); Mali (CRD13); Republic of Korea (CRD18); Japan (CRD19).

10 REP15/PR-Appendix IX; CX/PR 16/48/7; Comments of Australia, Canada, Chile, El Salvador, EU, Kenya, Thailand, USA, AU (CX/PR 16/48/7-Add.1); China, Colombia, Costa Rica, El Salvador, EU, Ghana, Kenya, Paraguay, Uruguay, USA, AU (CRD9); Mali (CRD13); Morocco (CRD17); Japan (CRD19); Ecuador (CRD22); Group 014 Legume vegetables and Group 015 Pulses as revised by the Chair and Co-Chair of the EWG on the Classification (CRD24).

11 REP15/PR-Appendix X; CX/PR 16/48/7; Comments of Australia, Canada, Chile, El Salvador, EU, Kenya, Thailand, USA, AU (CX/PR 16/48/7-Add.1); China, Colombia, Costa Rica, El Salvador, EU, Ghana, Kenya, Paraguay, Uruguay, USA, AU (CRD9); Mali (CRD13); Morocco (CRD17); Japan (CRD19); Ecuador (CRD22); Group 014 Legume vegetables and Group 015 Pulses as revised by the Chair and Co-Chair of the EWG on the Classification (CRD24).
123. The Delegation noted that following conclusion on the issue of the codes for *Phaseolus* spp. and *Vigna* spp. (see Agenda Item 7) the only remaining issue was the allocation of certain groundnuts under a separate subgroup 015C and 014E to better reflect the criteria for crop grouping in the Classification.

Discussion

124. The Committee noted general agreement for the inclusion of groundnuts into two separate subgroups under Groups 014 and 015 as presented in CRD24. In addition, the Committee agreed on a number of editorial changes and inclusion of additional commodities.

Conclusion

125. The Committee agreed to include a separate subgroup 014E and 015C to accommodate underground beans and peas (immature and dry) and to keep two separate codes for *Phaseolus* spp. and *Vigna* spp. to facilitate allocation of CXLs for *Vigna* spp. until such time as JMPR revises the CXLs for *Vigna* spp. under the beans group.

126. The Committee agreed to retain the draft revision of Group 015 and the proposed draft revision of Group 014 at Steps 7 and 4 respectively awaiting final compilation of all vegetable commodity groups at its next session (Appendices VII and VIII).

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED VEGETABLE COMMODITY GROUPS – GROUP 011 FRUITING VEGETABLES, CUCURBITS (Agenda Item 8c)

127. The Delegation of USA, as Chair of the EWG, introduced the item and explained that the EWG had considered the pending issues identified by CCPR47 related to this group. The Delegation referred to CRD25, which contained a revised Group 011 - Fruiting vegetables, cucurbits for consideration by CCPR. The revised Group 011 was based on Option 3 of CX/PR 16/48/8, compromise solution reached by members of the EWG to cluster this commodity group. The revision took into account written comments submitted to this session in particular: the inclusion of provisions to address the concern regarding the different consumption patterns of winter squashes (with or without peel) to avoid underestimation of the dietary intake of pesticide residues; the inclusion of several cultivars in the different subgroups; the deletion of the commodity code VC 2682 for Korean Melon in subgroup 011B as it was unnecessary.

Discussion

128. The Committee noted that delegations generally supported Option 3. Those delegations supporting Option 1 could accept Option 3 in a spirit of compromise.

129. The Committee further noted a comment from one delegation that, while supporting Option 3, pumpkins and squashes should not be considered in this subgroup as they usually had few phytosanitary problems as opposed to melons and watermelons.

130. The Committee corrected a number of editorial inconsistencies, including commodity codes.

Conclusion

131. The Committee agreed that the revised Option 3 for crop group of fruiting vegetables, cucurbits as presented in CRD25 (with the additional editorial amendments made in plenary) addressed the comments and concerns submitted to this session and would therefore conclude the discussion of this commodity group.

132. The Committee noted that the concerns expressed on the selection of representative commodities for this group would be considered under Agenda Item 8(g).

133. The Committee further noted that, with the conclusion of Agenda Items 8(a), 8(b) and 8(c), the consideration of all vegetable commodity groups had been completed. The Committee thus agreed to request the EWG to compile all vegetable commodity groups finalised by CCPR to ensure consistency throughout the groups in order to send the entire vegetable commodity group to CAC40 (2017) for final adoption (see Terms of Reference of the EWG, paragraph 158).

12 CX/PR 16/48/8: Comments of Australia, Canada, Chile, El Salvador, EU, Japan, Kenya, USA, AU (CX/PR 16/48/8-Add.1); China, Colombia, Costa Rica, El Salvador, EU, Ghana, Paraguay, Uruguay (CRD10); Mali (CRD13); Morocco (CRD17); Republic of Korea (CRD18); Ecuador (CRD22); Group 011 Fruiting vegetables, cucurbits (Crop group – Option 3) as revised by the Chair and Co-Chair of the EWG on the Classification (CRD25).
The Committee agreed to retain the proposed draft revision of Group 011 at Step 4, awaiting final compilation of all vegetable commodity group at its next session (Appendix IX).

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED COMMODITY GROUPS – GROUP 020 GRASSES OF CEREAL GRAINS (Agenda Item 8d)

The Delegation of USA, as Chair of the EWG, introduced the item and explained that the EWG had considered the pending issues related to Group 020 identified by CCPR 47. The EWG had prepared two compromise proposals as described in CX/PR 16/48/9. Both proposals addressed five subgroups and separated wheat and barley into two subgroups but mainly differed on the attribution of pseudo-cereals to specific subgroups, namely: Proposal 1 (Canada), which combined pseudo-cereals in the subgroup of wheat (020A); and Proposal 2 (Japan), which separated pseudo-cereals into the two subgroups of 020A (wheat) and 020B (barley) on the basis of whether or not the kernels were protected by husks during the growing season and whether or not the kernels were traded with husks and the impact of husks on residue levels (higher or lower residue levels depending on the presence or absence of the husk) and clarified the portion of the commodity to which the MRL applied and was analysed.

Discussion

Delegations in support of Proposal 1 noted that: the division into the five subgroups was a good compromise among regulatory and trade practices worldwide (e.g. MRLs usually apply to the whole grain kernel and do not distinguish between whole commodity with or without husk); the proposal acknowledged the need to keep barley and wheat separated into two different subgroups which was an important element of compromise; separating the pseudo-cereals into two subgroups could create additional difficulties for the establishment and enforcement of MRLs for these minor crops (e.g. need for more residue field trials due to different representative commodities).

Delegations in support of Proposal 2 noted that: the proposals also acknowledged the need to keep barley and wheat separated into two different subgroups; the proposal had the same subgroups of proposal 1 but took into account the presence of husk during the growing season or when they are distributed in trade - as this can have a significant impact on residue levels and consequently on the portion of the commodity to which the MRL applies (and is analysed); residue trials data have shown that residue levels in barley are generally higher than those found in wheat when pesticides are applied in accordance to the same or similar GAP based on the presence of the husk; a similar situation could be expected in pseudo-cereals which would justify their distribution between subgroups 020A (wheat) and 020B (barley).

Some delegations also noted the following in relation to subgroup 20E (sweet corn cereals): there are differences between sweet corn, baby corn and corn on the cob; consideration should be given to the need to keep separate codes for these commodities; CXLs have previously been set for some of these commodities therefore existing codes previously allocated should be kept in the revised subgroup 20E to avoid problems with the CXLs.

Conclusion

The Committee noted that the Delegation of Canada agreed to withdraw Proposal 1 as there was greater support for Proposal 2. The Committee therefore agreed to the grouping as in Proposal 2 and noted the spirit of compromise of delegations in favour of this proposal.

The Committee also agreed to request the EWG to continue working on the commodities to be included in the different subgroups, with the understanding that the crop subgrouping for Group 020 would not be subject to any further discussion (see Terms of Reference of the EWG, paragraph 158).

STATUS OF THE PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED COMMODITY GROUPS – GROUP 020, GRASSES OF CEREAL GRAINS

The Committee agreed to forward the proposed draft revision of Group 020 to the Commission for adoption at Step 5 (Appendix X).
PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED COMMODITY GROUPS – GROUP 021, GRASSES FOR SUGARS OR SYRUP PRODUCTION (Agenda Item 8e)\(^{14}\)

142. The Delegation of USA, as Chair of the eWG, introduced the item and noted that there were proposals for inclusion of several commodities. There were also proposals for the expansion of the group to plants (other than grasses) that could also be used for the production of sugars or syrups, and for the possibility to have multiple entries for the same commodities in the different commodity groups of the Classification.

Discussion

143. Delegations noted that it was premature to consider the inclusion of additional commodities, e.g. sugar beet, or other elements, e.g. portion of the commodity to which the MRL applies (and is analysed), before agreeing on whether the group should be expanded to plants other than grasses for sugar and syrup production. In addition, it was noted that guidance was needed on the possibility of listing commodities in more than one group, as different methods of production might lead to different traded products, which in turn might require the allocation of a commodity to more than one group of the Classification.

Conclusion

144. The Committee agreed to request the EWG to look into the possible expansion and grouping of Group 021 including the possibility for multiple entries of commodities in different groups of the Classification and report back at the next session with a proposal for consideration (see Terms of Reference of the EWG, paragraph 158).

STATUS OF THE PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED COMMODITY GROUPS – GROUP 021, GRASSES FOR SUGARS OR SYRUP PRODUCTION

145. The Committee agreed to return the proposed draft revision of Group 021 to Step 2/3 for further discussion, comments and consideration by the next session of the Committee.

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED AT STEP 4: SELECTED COMMODITY GROUPS – GROUP 024, SEEDS FOR BEVERAGES AND SWEETS (Agenda Item 8f)\(^{15}\)

146. The Delegation of USA, as Chair of the EWG, introduced the item and noted that there were proposals for inclusion of several commodities and for the expansion of the group to plants other than seeds that could also be used for the production of beverages or syrups, and the possibility of having multiple entries for the same commodities in different commodity groups of the Classification.

Discussion

147. A similar discussion for Group 021 occurred for Group 024 in relation to the possible expansion of the group to plants other than seeds that could also be used for the production of beverages or syrups. The Committee noted the need for guidance on the possibility of listing commodities in more than one group as different methods of production might lead to different products which might require the allocation of a commodity to more than one group of the Classification.

148. Delegations gave specific examples of a number of commodities e.g. ground nuts, soya beans, etc. that were already included in other groups of the Classification and noted that commodities originally included in this group were used after extensive processing e.g. coffee and cocoa beans, while some of the proposed commodities for inclusion in this group required limited processing e.g. basil seeds and therefore guidance was needed on how to deal with commodities that might fall into more than one commodity group.

Conclusion

149. The Committee agreed to request the EWG to explore the possible expansion and grouping of Group 024 including the possibility for multiple entries of commodities in different groups of the Classification and report back at the next session on a proposal for consideration (see Terms of Reference of the EWG, paragraph 158).

STATUS OF THE PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED COMMODITY GROUPS – GROUP 024, SEEDS FOR BEVERAGES AND SWEETS

150. The Committee agreed to return the proposed draft revision of Group 024 to Step 2/3 for further discussion, comments and consideration by the next session of the Committee.

\(^{14}\) CX/PR 16/48/10; Comments of Canada, Kenya, USA, AU (CX/PR 16/48/10-Add.1); China, Colombia, Costa Rica, El Salvador, EU, Ghana, Paraguay, Uruguay (CRD10); Mali (CRD13); Japan (CRD19).

\(^{15}\) CX/PR 16/48/11; Comments of Canada, Kenya, Thailand, USA, AU (CX/PR 16/48/11-Add.1); China, Colombia, Costa Rica, El Salvador, EU, Ghana, Paraguay, Uruguay (CRD10); Mali (CRD13); China (CRD20).
The Delegation of USA, as Chair of the EWG, introduced CRD26, which contained a proposal for changes to the examples of representative commodities related to Groups 011 Fruiting vegetables, cucurbits; 014 Legume vegetables; and 015 Pulses.

Discussion

Group 011 – Fruiting vegetables, cucurbits

152. One delegation noted that since commodities of Group 011 were consumed either raw or cooked, representative commodities of each type of commodity needed to be added and suggested including gourd in subgroup 011A (and pumpkin in 011B). The proposal was supported by a number of delegations, which noted that the inclusion of additional commodities would allow flexibility for countries in selecting the more representative commodity in the region.

153. Other delegations noted that the main purpose of crop grouping was to set MRLs for multiple commodities based on data from the representative commodity(ies). These delegations considered that the inclusion of more representative commodities could result in unnecessary additional requirements for field trials and therefore could jeopardise the establishment of group MRLs for minor crops. It was further noted that there were already limited residue field trial data for the proposed representative commodities i.e. gourd for subgroup 011A and pumpkin for subgroup 011B for use as representative commodities for the extrapolation of MRL to the commodities in these subgroups. In addition, the representative commodities listed for both groups had the highest residue potential and were best suited for extrapolation to the commodities under these subgroups.

154. The Committee noted that there was a footnote in Table 1 – Examples of the selection of representative commodities, Type 01 Fruits in the Principles and Guidance on the selection of representative commodities for the extrapolation of maximum residue limits for pesticides to commodity groups (CAC/GL 84-2012) indicating that countries could use alternative representative commodities or regional or national purposes.

Conclusion

155. The Committee agreed:

- In Group 011: to list as examples of representative commodity for subgroup 011A “cucumber and summer squash and/or gourd” as this would allow for flexibility in the selection of the appropriate representative commodity without introducing unnecessary additional field trials and to keep only melon as an example of representative commodity of subgroup 011B.

- In Groups 014 and 015: to make a number of editorial changes to harmonise the language and correct commodity names and codes.

156. In view of the finalisation of the discussion on all vegetable commodity groups (Agenda Items 8a-c), the Committee further agreed to request the EWG to check and finalise Table 2 on the examples of representative commodities for vegetable commodity groups. The EWG should also take into account the vegetable commodity groups as finalised by CCPR for consideration at the next session of the Committee (see Terms of Reference of the EWG, paragraph 158).

Status of the Proposed Draft Tables on Examples of Selection of Representative Commodities (Vegetable and Other Commodity Groups) for Inclusion in the Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides for Commodity Groups

157. The Committee agreed to return the proposed draft Tables to Step 2/3 for further discussion, comments and consideration by the next session of the Committee.

Terms of Reference of the EWG on the revision of the Classification

158. The Committee agreed to re-establish the EWG chaired by USA and co-chaired by the Netherlands working in English only with the following Terms of Reference:

16 CX/PR 16/48/12; Comments of Australia, Canada, Kenya, Thailand, USA, AU (CX/PR 16/48/12-Add.1); China, Colombia, Costa Rica, El Salvador, EU, Ghana, Paraguay, Uruguay (CRD10); Mali (CRD13); Morocco (CRD17); Japan (CRD19); Table 2 - Examples of representative commodities for vegetable commodity groups (Groups 011, 014 and 015) as revised by the Chair and Co-Chair of the EWG on the Classification (CRD26).
REP16/PR
i. Determine if commodities can be included in more than one group.
ii. Continue work on group 021 Grasses for sugar or syrup production and determine if these groups can be expanded to other plants.
iii. Continue work on group 024 Seeds for beverages and sweets and determine if these groups can be expanded to other plants.
iv. Review all of the vegetables and their codes and their location in Table 2.
v. Continue work on Table 3, Type 03 Grasses
vi. Report back on how the CXLs in the database would be impacted under the proposed vegetable commodity groups and subgroups.
vii. Consider the need for separate codes for sweet corn (kernels), sweet corn (corn-on-the cob) and baby corn.

PROPOSED DRAFT GUIDANCE ON PERFORMANCE CRITERIA FOR METHODS OF ANALYSIS FOR THE DETERMINATION OF PESTICIDE RESIDUES (Agenda Item 9) 17

159. The Delegation of USA, as Chair of the in-session WG, introduced the item and highlighted the main changes made to the Guidelines to take account of written comments submitted to this session in addition to those provided by members and observers in the in-session WG as contained in CRD27. The in-session WG was co-chaired by China and India.

Discussion

160. The Committee considered the Guidelines and made a number of editorial changes to improve the accuracy and clarity of the document as well as to remove references to documents other those adopted by the Codex Alimentarius Commission or developed by international organisations. The Committee further agreed that such references should be kept as footnotes.

161. Delegations generally supported the revision and good progress made throughout the document. A number of delegations however requested additional time to consult internally with their experts and other relevant stakeholders in order to fully assess the technical requirements in the Guidelines. It was noted that this was a particular sensitive issue for developing countries and thus the Guidelines should not jeopardise the laboratory capacity for the determination of pesticide residues in these countries.

Conclusion

162. The Committee noted general agreement on the Guidelines. However, in light of the changes made to the document, the Committee agreed to reconsider the Guidelines at its next session for completion and final adoption by CAC40. This would allow broad national consultation between various stakeholders taking into account the relevance of this document for the determination of pesticide residues and its impact on regulatory practices for enforcement of MRLs for pesticides.

STATUS OF THE PROPOSED DRAFT GUIDELINES ON PERFORMANCE CRITERIA FOR METHODS OF ANALYSIS FOR THE DETERMINATION OF PESTICIDE RESIDUES

163. The Committee agreed to forward the proposed draft Guidelines to the Commission for adoption at Step 5 (Appendix XI).

ESTABLISHMENT OF CODEX SCHEDULES AND PRIORITY LISTS OF PESTICIDES (Agenda Item 10) 18

164. The Delegation of Australia, as Chair of the EWG on Priorities, introduced the revised Schedules and Priority Lists of Pesticides (CRD2).

2017 Schedule for JMPR evaluations

165. The Chair of the EWG provided the list of 7 new compounds to be scheduled for JMPR evaluation plus one reserve compound triallumezopyrim.

166. The proposed 2017 Schedule of Periodic Reviews was confirmed with five compounds plus two reserves Clethodim (187) and Kresoxim-methyl.

17 CX/PR 16/48/13; Comments of Australia, Canada, Chile, El Salvador, Japan, AU (CX/PR 16/48/13-Add.1); Argentina, China, Colombia, Costa Rica, EU, Ghana, Philippines, Thailand, Uruguay (CRD11); Mali (CRD13); ALINA (CRD14); Ecuador (CRD22); Brazil (CRD23); Report of the in-Session WG on Methods of Analysis (CRD27).

18 CX/PR 16/48/14; CRD2 (Revised Schedules and Priority Lists of Pesticides); Comments of China, EU, Kenya, Philippines, Uruguay, AU (CRD12); ALINA (CRD14); Morocco (CRD17).
167. The Committee confirmed 12 full evaluations plus three reserves listed in order of priority: Triflumezopyrim, Kresoxim-methyl and Clethodim (187).

168. The Chair of the EWG advised the Committee that there were 33 new use and other evaluations listed in the proposed 2017 Schedule. The JMPR Secretariat advised that this far exceeded the quota of approximately 20 evaluations.

169. After lengthy discussion, the Chair of the EWG indicated that in accordance with paragraph 66 of the Risk Analysis Principles applied by CCPR (Codex Procedural Manual), all members / observers nominating compounds in the 2017 proposed schedule for new use and other evaluations must lodge documented evidence of an authorised label and GAP by 31 May 2016. Those complying with this request would be given Priority 1. Those providing evidence of having lodged a dossier with a national registration authority would be given Priority 2. Non-compliant nominations would be deferred to 2018 if the number of Priority 1 and 2 compounds exceeded 20.

2018-2021 Priority Lists

170. The Chair of the EWG informed the Committee that the 2018 priority list of new compounds, periodic reviews and new use and other evaluations contained more nominations than 2017 and thus was likely to create greater issues in regard to establishing a proposed 2018 Schedule within JMPR resource constraints.

171. In regard to Table 2A (compounds listed for periodic review), the Chair of the EWG indicated that 50 percent were not supported by the manufacturer and a large proportion of those had been nominated for review on the basis of public health concerns.

Balance of new and old compound evaluations

172. The Chair of the EWG opened discussion on the balance of new and old compounds listed for inclusion in the proposed Schedule. Following interventions from several members and observers, the Chair of the EWG concluded that a level of flexibility was warranted and could be determined each year on the basis of the number of new and old compound nominations and levels of concern relating to public health. The Committee noted that the 2017 proposed schedule included seven new compounds and five periodic reviews.

Fenbutatin oxide (109)

173. At CCPR47, the Chair of the EWG had indicated that unless support for fenbutatin oxide (109) was presented, the compound would be recommended for removal and all CXLs revoked. The Committee noted that several members appeared to have national registrations for the compound and no concern form had been lodged with regard to public health. Following a number of interventions, and noting the proposal for a circular letter seeking formal guidance on national registrations, the Chair of the EWG suggested the compound remain on the Codex pesticide list. As there have been no public health concerns raised in regard to the compound, the Committee agreed to retain fenbutatin oxide (109).

Improved administration and management of the Priority Lists and Schedules

174. The Chair of the EWG informed the committee that as of 2017 all nominations would be ‘date stamped’ in accordance with paragraph 65 of the Risk Analysis Principles applied by CCPR (Codex Procedural Manual). Nominations would be initially prioritised on this basis followed by the assessment of compounds against other nomination requirements and prioritisation criteria listed in paragraphs 67, 68 and 69.

175. In cases where the evaluation workload exceeded available JMPR resources, the EWG on Priorities would apply prioritisation criteria relating to date received, national registration, labels and authorised GAP.

176. The Chair of the EWG indicated that efforts would be made to minimise the prevalence of consecutive nominations for new uses and other evaluations for the same compound where practicable.

177. The Chair of the EWG indicated that compounds listed for new use and other evaluations would be cross-checked with compounds listed in Table 2A. The Chair of the EWG suggested that it would be reasonable to transfer new and other evaluations to the periodic review in cases where there was a gap of two years or less between the new use and other evaluation, and the scheduled periodic review. This would be considered further in the review of the EWG on Priorities administration and management.

178. The Chair of the EWG proposed a Sunday meeting of the EWG and other interested parties before commencement of CCPR49 to finalise the proposed 2018 Schedule.

179. The Chair of the EWG indicated that further elaboration of these and other proposed administrative criteria consistent with the Risk Analysis Principles applied by CCPR (Codex Procedural Manual) would occur following CAC39 via the EWG broadcast email. The Chair of the EWG invited all members and observers to provide suggestions to further improve the administration and management of the priority lists and schedules.
Circular Letter on national registrations and approved uses

180. The Committee noted that a Circular Letter seeking documented evidence of national registrations for all compounds on the CCPR pesticide list would be prepared. In addition, the CL would ask members and observers to list commodities for which as registered use was in place. Following a request for assistance by the Chair of the EWG, the Delegation of Germany indicated their willingness to act as co-chair of the EWG on Priorities to assist in this work.

Transition period for the application of the criteria for minimum number of field trials for the establishment of MRLs for minor crops

181. The Committee noted that the JMPR Secretariat would apply the criteria for minimum number of field trials for the establishment of MRLs for minor crops19 as a general principle starting from the 2018 JMPR.

Conclusion

182. The Committee agreed to forward the proposed Schedule of Pesticides for evaluation by the 2017 JMPR to CAC39 for approval (Appendix XII) noting that the new use and other evaluation list would not be finalised until 31 May 2016 (paragraph 169).

183. The Committee further agreed to re-convene the EWG on Priorities, chaired by Australia and co-chaired by Germany and working in English to provide a report on the schedules and priority list for consideration at CCPR49.

OTHER BUSINESS AND FUTURE WORK (Agenda Item 11)

Revisiting the IESTI equations20

184. The Delegation of the EU introduced CRD3 on a proposal for new work on a possible revision of the IESTI equations, prepared by EU and Australia. Recognising the short time available for other delegations to analyse the proposal, the Delegation expressed their appreciation to the Committee for discussing the matter under this agenda item.

185. The Delegation informed the Committee about the challenges the EU was facing in risk communication in relation to residue levels in enforcement samples that were compliant with the MRL but could lead to an exposure estimate exceeding the ARfD. It expressed concerns that in the long term, this might undermine public trust in the regulatory system for pesticide residues and contribute to the proliferation of private standards.

186. The Delegation underlined the importance the EU was placing on a methodology for acute exposure assessment of pesticide residues that was harmonised at the international level, and notably within CCPR. It further recalled the considerations of JMPR in recent years on the need to revisit the IESTI equations.

187. The Delegation clarified that the intention of their proposal was to facilitate further work to better understand the potential impact of possible changes to the IESTI equations, and encouraged other delegations to actively participate in such work.

188. The Delegation reported on the outcome of the international EFSA/RIVM workshop, co-sponsored by FAO and WHO, in September 2015 in Geneva. It presented the recommendations of the workshop and referred to CRD3 and to the workshop’s report - available on the EFSA website - for further information.

189. The Delegation of Australia, co-author of the paper, explained that the IESTI, as developed by JMPR, had been in use in their country for 15 years for the purposes of conducting dietary exposure assessments for registration and for re-evaluation of existing compounds. It was important for Australia and other members to make reference to best international practice for exposure assessments as endorsed by FAO and WHO for harmonisation and risk communication. Science changes over time and there is an expectation that assessment methodologies should reflect best science and best practice.

Discussion

190. The discussion indicated general support for the proposal to explore the potential impact of possible changes to the IESTI equations and highlighted the need to clearly define the issues to be addressed, how it had developed and what should be done. Delegations also acknowledged that it was timely for JMPR to review the IESTI procedure, which has been in place for more than a decade, and for CCPR to address the need to harmonise approaches for risk assessment, risk management and risk communication.

19 Risk Analysis Principles applied by the Codex Committee on Pesticide Residues, Annex D Guidance to facilitate the establishment of MRLs for minor crops (Procedural Manual).
20 Revisiting the International Estimate of Short-Term Intake (IFEST) (CRD3).
191. More specifically, delegations highlighted the need: to examine the impact of the parameters on the intake assessments derived by the current and proposed IESTI; to clearly define the protection goals of the proposed IESTI equations; to identify any positive or negative impact of the proposed changes in terms of number of Codex MRLs; to have a broader participation in the EWG (if established) reflecting a wide spectrum of economic development; for FAO and WHO advice on the new equation and its parameters to assist CCPR to reach a conclusion on this matter; and to evaluate the wider acceptability of the changed equation.

192. A number of delegations also noted that the proposal had been submitted very late and was available in English only and therefore countries had limited time to examine it in detail. In addition, it was noted that the EFSA report issued in December 2016 was also available in English only.

Conclusion

193. In view of the general support to the proposal, the Committee agreed to establish an EWG, chaired by Netherlands and co-chaired by Australia, and working in English only with the following Terms of Reference:

- To identify advantages and challenges that might arise from the possible revision of the current IESTI equations and the impact on risk management, risk communication, consumer protection goals, and trade. The recommendations of the international EFSA/RIVM workshop cosponsored by FAO and WHO and the discussions in CCPR48 should be taken into account.

194. The Committee noted the offer of Spain and ALINA to provide informal translation to facilitate the participation of Spanish speaking countries.

Emerging Issues: A proposed risk management approach to address detection in food of chemicals of very low public health concern

195. The Delegation of New Zealand introduced CRD16 that was presented at CCGP30 (April 2016) and indicated the following:

- The purpose of the paper is to inform members of the value of promoting an internationally harmonised risk management approach to address detections in food of traces of chemicals (such as cleaning compounds or fertilisers) presenting very low exposure and very low potential public health concern.
- Many of these chemicals might have already been determined by different national regulatory authorities as chemicals of very low public health concern and of little or no public health or food safety consequence. However, there is a need to look beyond those chemicals already dealt with by existing Codex processes and address issues arising from the use and detection of these chemicals of very low exposure and very low public health concern that might be inadvertently present in food at trace levels.
- Codex has a clear interest and responsibility to take a proactive approach to address the issues in the New Zealand information paper and support the development of an internationally harmonised risk management approach. Therefore, New Zealand will be presenting a new work proposal for consideration at CCEXEC71 and CAC39.

Guidance document on risk assessment using brew factor for the establishment of MRLs for pesticides in tea

196. The Delegation of India recalled that CCPR44 (2012) had encouraged countries to submit relevant data/information on brewing factors and standard method to JMPR for consideration in estimation of MRLs for pesticides in tea. India, explained that following the CCPR’s decision, the IGG in 2015 had endorsed a guidance document (CRD21), jointly prepared by India and China, which aimed at providing guidance on the establishment of MRLs for pesticides in dry tea leaves using brew factors for risk assessment.

197. The JMPR Secretariat informed the Committee that the use of available tea brew studies to estimate processing factors was part of the current JMPR procedures for the establishment of MRLs for dry tea leaves and encouraged countries when submitting their trials to also include tea brew studies.

DATE AND PLACE OF THE NEXT SESSION (Agenda Item 12)

198. The Committee was informed that its 49th session was tentatively scheduled to be held in China, in one year’s time, the final arrangements being subject to confirmation by the Host Country and the Codex Secretariats.

21 Information paper on emerging issues: A proposed risk management approach to address detection in food of chemicals of very low public health concern (CRD16).
23 REP12/PR, para 178.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Step</th>
<th>Action by</th>
<th>Reference</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed draft MRLs for pesticides</td>
<td>5/8</td>
<td>Governments CAC39</td>
<td>para 113</td>
<td>Appendix II</td>
</tr>
<tr>
<td>Codex MRLs for revocation</td>
<td>CXL</td>
<td>CAC39</td>
<td>para 113</td>
<td>Appendix III</td>
</tr>
<tr>
<td>Draft MRLs for pesticides</td>
<td>7</td>
<td>CCPR49 (JMPR 2016)</td>
<td>para 114</td>
<td>Appendix IV</td>
</tr>
<tr>
<td>Proposed draft MRLs for pesticides</td>
<td>4</td>
<td>CCPR49 (JMPR 2016)</td>
<td>para 114</td>
<td>Appendix V</td>
</tr>
<tr>
<td>Draft and proposed draft MRLs for pesticides</td>
<td>Withdrawn</td>
<td>CCPR48</td>
<td>para 114</td>
<td>Appendix VI</td>
</tr>
<tr>
<td>Draft revision to the Classification of Food and Feed (vegetable commodity groups: Group 015 - Pulses)</td>
<td>7</td>
<td>CCPR49</td>
<td>para 126</td>
<td>Appendix VII</td>
</tr>
<tr>
<td>Proposed draft revision to the Classification of Food and Feed (selected commodity groups: Group 015 – Grasses of cereal grains)</td>
<td>5</td>
<td>Governments CAC39, Governments CCPR49</td>
<td>para 141</td>
<td>Appendix X</td>
</tr>
<tr>
<td>Proposed draft revision to the Classification of Food and Feed (other vegetable commodity groups: Group 014 Legume vegetables, Group 011 - Fruiting vegetables, cucurbits)</td>
<td>4</td>
<td>CCPR49</td>
<td>paras 126, 134</td>
<td>Appendices VIII, IX</td>
</tr>
<tr>
<td>Proposed draft revision to the Classification of Food and Feed:</td>
<td></td>
<td></td>
<td>paras 145, 150</td>
<td></td>
</tr>
<tr>
<td>• Group 021 - Grasses for sugars or syrup production and</td>
<td>2/3</td>
<td>EWG (USA and the Netherlands), Governments CCPR49</td>
<td>para 157</td>
<td></td>
</tr>
<tr>
<td>• Group 024 - Seeds for beverages and sweets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed draft Tables on examples of selection of representative commodities (for inclusion in the Principles and guidance for the selection of representative commodities for the extrapolation of maximum residue limits for pesticides for commodity groups)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed draft Guidance on performance criteria for methods of analysis for the determination of pesticide residues</td>
<td>5</td>
<td>Governments CAC39, Governments CCPR49</td>
<td>para 163</td>
<td>Appendix XI</td>
</tr>
<tr>
<td>Establishment of Codex schedules and priority list of pesticides for evaluation by JMPR</td>
<td>1/2/3</td>
<td>Governments CAC39, EWG on Priorities (Australia and Germany), Governments CCPR49</td>
<td>paras 182-183</td>
<td>Appendix XII</td>
</tr>
<tr>
<td>Discussion paper on the possible revision of the IESTI equations</td>
<td>---</td>
<td>EWG (EU and Australia), CCPR49</td>
<td>para 193</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX I

LIST OF PARTICIPANTS

LISTE DES PARTICIPANTS

LISTA DE PARTICIPANTES

Chairperson/Président/Presidente

Dr Xiongwu Qiao
Shanxi Academy of Agricultural Sciences
81 Longcheng Street, Taiyuan Shanxi Province
Shanxi
China
Tel: +86 351 7581865
Email: ccpr_qiao@agri.gov.cn

ALGERIA - ALGÉRIE - ARGELIA

Mr Ridha Nebais
Premier Secrétaire
Ambassade d’Algérie à Pékin
Ministère des Affaires Etrangères
7, San Li Tun Lu, Beijing, 100600 China
Chine
Algeria
Tel: 0086 06532 23
Email: riad197@yahoo.fr

AUSTRALIA - AUSTRALIE

Mr Ian Reichstein
Director, National Residue Survey
Department of Agriculture and Water Resources
GPO Box 858
Canberra ACT
Australia
Tel: +61 2 6272 5668
Email: Ian.Reichstein@agriculture.gov.au

Ms Rajumati Bhula
Executive Director, Scientific Assessment and Chemical Review
Australian Pesticides and Veterinary Medicines Authority
18 Wormald Street Symonston
Canberra ACT
Australia
Tel: +61 2 6210 4826
Email: raj.bhula@apvma.gov.au

Mr Kevin Bodnaruk
Consultant
Horticulture Innovation Australia
26/12 Phillip Mall
West Pymble NSW
Australia
Tel: +61 2 9499 3833
Email: kevinakc@bigpond.net.au

Mr Gerard McMullen
Consultant
McMullen Consulting Pty Ltd
76 Bruce Street
Coburg VIC
Australia
Tel: +61 3 8300 0108
Email: gerardmcmullen@optusnet.com.au

Mr Chris Williams
Assistant Director, Plant Programs National Residue Survey
Department of Agriculture and Water Resources
GPO Box 858
Canberra ACT
Australia
Tel: +61 2 6272 3614
Email: Chris.Williams@agriculture.gov.au

BANGLADESH

Mr Paritosh Talukder
Senior Examiner (Chemical)
Testing
Bangladesh Standards and Testing Institution
116/A, Tejgaon Industrial Area
Dhaka
Bangladesh
Tel: +8801818729834
Email: Partoshbsti@gmail.com

BRAZIL - BRÉSIL - BRASIL

Mr Carlos Venancio
Head of Pesticide Registration Division
Ministry of Agriculture Livestock and Food Supply
Brasilia
Brazil
Tel: 55 61 32182668
Email: carlos.venancio@agricultura.gov.br

Mr Marcus Venicius Pires
General Management of Toxicology
Brazilian Health Surveillance Agency - ANVISA
SIA (Setor de Indústria e Abastecimento) Trecho 05
Área Especial 57, Lote 200
Brasilia
Brazil
Email: marcus.pires@anvisa.gov.br

CANADA - CANADÃ

Dr Peter Chan
Director General
Health Evaluation Directorate, Pest Management Regulatory Agency
Health Canada
2720 Riverside Drive, AL 6605E
Ottawa
Canada
Tel: 613-736-3510
Email: Peter.Chan@canada.ca
Ms Louise Roberge
President
Tea Association of Canada
133 Richmond Street West, suite 204
Toronto
Canada
Tel: 416-510-8647
Email: louise.roberge@tea.ca

Dr Manjeet Sethi
Executive Director
Agriculture and Agri-Food Canada
960 Carling Ave, Building 57
Ottawa
Canada
Tel: 613-759-7431
Email: Manjeet.Sethi@agr.gc.ca

Ms Rebeka Tekle
Acting Deputy Director
Agriculture and Agri-Food Canada
1305 Baseline Rd., Room T5-5-324
Ottawa, Ontario
Canada
Tel: 613-773-1759
Email: Rebeka.Tekle@agr.gc.ca

Dr Jian Wang
Research Scientist
Calgary Laboratory
Canadian Food Inspection Agency
Canadian Food Inspection Agency 3650
36th Street NW
Calgary
Canada
Tel: 403 338 5273
Email: Jian.Wang@inspection.gc.ca

CHILE - CHILI
Ms Roxana Vera
Coordinadora Unidad de Acuerdos Internacionales
Servicio Agrícola y Ganadero (SAG)
Ministerio de Agricultura
Bulnes 140, piso 5.
Santiago
Chile
Tel: +56 2 23451167
Email: roxana.vera@sag.gob.cl

Mrs Paulina Chavez
Asesor Técnico
Departamento de Nutrición y Alimentos
Ministerio de Salud
Santiago
Chile
Tel: +56 2 2574 0000
Email: pchavez@minsal.cl

CHINA - CHINE
Mrs Ying Ji
Professor
Institute for the Control of Agrochemicals, MOA, P.R.china
Beijing ChaoYang District, MaiZiDian Street No.22
Beijing
China
Tel: 86-13910737120
Email: jiying@agri.gov.cn

Mr Kit Hong Chan
Senior Technician
Food Safety Centre Division of Risk Assessment
Rua Nova da Areia Perta, no.52 Centro de Sericos 3 andar da RAEM MACAU
China
Tel: 15344854325
Email: kitongc@iacm.gov.mo

Mrs Ho-yen Chung
Scientific Officer (Veterinary Drug)
Centre for Food Safety,Food and Environmental Hygiene Department,HKSAR Government
43/F, Queensway Government Offices, 66 Queensway, Hong Kong
Hong Kong
China
Tel: (852) -98269183
Email: hychung@fehd.gov.hk

Mrs Qiu Jian
Professor
Institute for the Control of Agrochemicals, MOA, P.R. China
Beijing ChaoYang District, MaiZiDian Street No.22
Beijing
China
Tel: 86-13811028362
Email: jianqu@agri.gov.cn

Mr Xingpei Jiang
Department Chief
Chongqing Entry-Exit Inspection & Quarantine Bureau
No.8 Honghuang Rd.,Jiangbei District, Chongqing
China
Tel: 18696506036
Email: cjqxp@163.com

Ms Xiaoxi Ju
Researcher
Food Safety Centre, I.A.C.M., Macao S.A.R.
Rua Nova da Areia Preta Nº 52, Macao S.A.R. Macao
China
Tel: +853-63777083
Email: xxju@iacm.gov.mo

Mr Fugen Li
Senior Agronomist
Institute for the Control of Agrochemicals
Ministry of Agriculture, P.R. China
Beijing ChaoYang District, MaiZiDian Street No.22
Beijing
China
Tel: 86-13621266070
Email: lifugen@agri.gov.cn

Prof Fengmao Liu
Professor
China Agricultural University
College of Science, China Agricultural University, Beijing 100193
China
Tel: 86-18901175536
Email: lfm2000@cau.edu.cn
Mrs Yu Liu
Attendant
WTO Department of the Ministry of Commerce
Beijing
China
Tel: 13488898830
Email: liuyu_wto@mofcom.gov.cn

Mr Chuanjiang Tao
Director
Institute for the Control of Agrochemicals, MOA, P.R. China
Beijing ChaoYang District, MaiZiDian Street No.22
Beijing
China
Tel: 13910595002
Email: taochuanjiang@agri.gov.cn

Mr Songxue Wang
Researcher
Academy of State Administration of Grain
No.11 Baiwanzhuang Street, Xicheng District Beijing
China
Tel: 86+13522649591
Email: wx@chinagrain.org

Mr Xuewan Xu
Deputy Division Director
Development Center of Science and Technology
Ministry of Agriculture
Nongfengdasha,no.96 Dongsanhuannanlu, Chaoyang District
Beijing
China
Tel: 86-13718866138
Email: xuxuewan@126.com

Dr Edgar Arturo Guerrero Ángel
Profesional Especializado
Instituto Nacional de Vigilancia de Medicamentos y Alimentos - INVIMA
Bogotá
Tel: 57 (1) 2948700
Email: eguerreroa@invima.gov.co

Ing Marco Vinicio Jiménez Salas
Jefe de la Unidad de Control de Residuos de Agroquímicos
Servicio Fitosanitario del Estado
Costa Rica
Tel: (506) 2549-3488
Email: mvjimenez@sfe.go.cr

Dr Tomás Joaquín Gómez Bernia
Especialista del Departamento Nacional de Higiene de los Alimentos y Nutrición
Higiene y Nutrición de los Alimentos
Ministerio de Salud Pública
Calle 23 y N Vedado. Plaza de la Revolución
La Habana
Cuba
Tel: +5378300022
Email: nc@ncnorma.cu

DENMARK - DANEMARK - DINAMARCA
Mrs Bodil Hamborg Jensen
Scientific adviser
The National Food Institute
Technical University - Denmark
Mørkøv Bygade 19
Søborg
Denmark
Tel: +45 3588 7468
Email: bhje@food.dtu.dk

DJIBOUTI
Mr Kamil Ali Hassan
Directeur
Laboratoire National d’Analyse Alimentaire (LANAA)
Ministère de l’Agriculture
Terre-plein du port de pêche

ECUADOR - ÉQUATEUR
Mr Luis Fernando Rojas Meloni
Director de la Oficina Comercial de Pro Ecuador en Beijing
Instituto de Promoción de Exportaciones e Inversiones Pro Ecuador
1-01 Sanlitun Diplomatic Compound, Chaoyang District Beijing
China
Tel: 86-10-85319431
Email: lrojasm@proecuador.gob.ec

ESTONIA - ESTONIE
Mrs Sille Vahter
Chief specialist
Food Safety Department
Ministry of Rural Affairs
Lai str 39/41
Tallinn
Estonia
Tel: +3726256211
Email: sille.vahter@agri.ee

EUROPEAN UNION - UNION EUROPÉENNE - UNIÓN EUROPEA
Ms Almut Bitterhof
Deputy Head of Unit
SANTE.DDG2.E.4
European Commission
Rue Froissart 101 04/054
Brussels
Belgium
Tel: +32 229-86758
Email: Almut.Bitterhof@ec.europa.eu

Mr Marco Castellina
Administrator
DG Sante D 2
European Commission
Rue Froissant 101
Brussels
Belgium
Tel: +32 229-87443
Email: marco.castellina@ec.europa.eu
Ms Hermine Reich
European Food Safety Authority
Via Carlo Magno 1A
Parma
Italy
Email: Hermine.REICH@efs.europa.eu

Mr Volker Wachtler
Administrator
DG Santé
European Commission
Rue Froissart
Brussels
Belgium
Tel: +32 229-58305
Email: volker.wachtler@ec.europa.eu

Ms Tiia Mäkinen-töykkä
Senior Officer
Finnish Food Safety Authority Evira
Mustialankatu 3, FI-00790
Helsinki
Finland
Tel: +358-40-5521859
Email: tiia.makinen@evira.fi

Mrs Florence Gerault
Residue Expert
Agriculture
Ministry of Agriculture - DGAL
Ministry of Agriculture SRAL Pays De La Loire 10 Rue Le Notre
Angers
France
Tel: 0033241723234
Email: florence.gerault@agriculture.gouv.fr

Dr Xavier G Sarda
Head of Residues & Food Safety Unit
Direction d’Évaluation des Produits Réglementés
Anses
14 rue Pierre et Marie Curie
Maisons Alfort
France
Tel: 33 1 49 77 21 66
Email: xavier.sarda@anses.fr

Ms Lalia Jawara
Principal Scientific Officer
Directorate of Scientific Affairs
Food Safety and Quality Authority of Gambia
2 Kairaba Avenue, Westfield P.O. Box 2047
Serre Kunda
Gambia
Tel: +2204378552
Email: jawawra@gmail.com

GERMANY - ALLEMAGNE - ALEMANIA

Ms Monika Schumacher
Desk Officer
Section Pesticide Residues and Contaminants Foods, Food Contact Materials
Federal Ministry of Food and Agriculture
Rochusstr. 1
Bonn
Germany
Tel: +49 228 99 529 4662
Email: monika.schumacher@bmel.bund.de

Dr Karsten Hohgardt
Director and Professor
Plant Protection Products
Federal Office of Consumer Protection and Food Safety
Messeweg 11 - 12
Braunschweig
Germany
Tel: +49 531 299 3503
Email: karsten.hohgardt@bvl.bund.de

Dr Hans-dieter Jungblut
Head of Global Consumer Safety
APD/EC – Global Consumer Safety
BASF SE
Speyerer Str. 2
Limburgerhof
Germany
Tel: +49 621 60 27774
Email: hans-dieter.jungblut@basf.com

Dr Ingrid Maria Kaufmann-Horlacher
Head of laboratory / Senior Chemist
Chemical and Veterinary Investigatory Office Stuttgart
Schaflandstr. 3/2
Berlin
Germany
Tel: +49 711 3426 1142
Email: Ingrid.Kaufmann-Horlacher@cvuas.bwl.de

GHANA

Mr Samuel Duodu Manu
Dep. Director
Fisheries Commission
Ministry of Fisheries and Aquaculture Development
P.O. Box GP 630
Accra
Ghana
Tel: 233 244 571903
Email: sdmanu123@yahoo.com

Ms Ernestina Agaalie Adeenze
Standards Officer
Pesticide Residue Laboratory
Ghana Standards Authority
P.O. Box MB 245
Accra
Ghana
Tel: +233243080241
Email: eadeenze@gmail.com

Mr Joseph Cantamanto Edmund
Deputy Director
Chemicals Control and Management Centre
Environmental Protection Agency
P.O. M 326
Accra
Ghana
Tel: +233 208168907
Email: joseph.edmund@epa.gov.gh
Ms Jocelyn Adeline Naa Koshie Lamptey
Principal Regulatory Officer
Food Enforcement Dept.
Food and Drugs Authority
P.O. BOX CT 2783 Cantonments
Accra
Ghana
Tel: +233 244 563764
Email: nakoshie@yahoo.com

Mr Benjamin Osei Tutu
Senior Regulatory Officer
Food Safety Management Dept.
Food and Drugs Authority
P.O. BOX 2783 Cantonments
Accra
Ghana
Tel: +233 244 453406
Email: otumfu4@gmail.com

Mr Paul Osei-fosu
Senior Standards Officer
Pesticide Residues Laboratory
Ghana Standards Authority
P.O. BOX MB 245
Accra
Ghana
Tel: +233 208 150469
Email: posei_fosu@yahoo.co.uk

Mr Bernard Yaw Owusu
Senior Research Officer
Research
Quality Control Company Ltd (COCOBOD)
P.O. Box M54 Accra
Accra
Ghana
Tel: +233 249 219840
Email: benoy70@gmail.com

Ms Olivia Peace Dzifa Vordoagu
Senior Research Officer
Research
Quality Control Company Ltd (COCOBOD)
P.O. Box M54 Accra
Accra
Ghana
Tel: +233 269 889282
Email: dzifavord@yahoo.com

Ms Florence Marfoa Yeboah
Research Officer
Research
Quality Control Company Ltd (COCOBOD)
P.O. Box M54 Accra
Accra
Ghana
Tel: +233 507 280687
Email: fmarfoaa@gmail.com

INDIA - INDE

Ms Chittra Bamola
Technical Officer
Food Safety and Standards Authority of India
Kotla road
New Delhi
India
Email: chitrapokhriyal@gmail.com

Dr Pranjib Chakrabarty
Assistant Director General
Plant Protection & Biosafety
Indian Council of Agricultural Research (ICAR)
Krishi Bhawan, Dr Rajendra Prasad Road
New Delhi
India
Tel: 91-9540029275
Email: adgpp.icar@nic.in

Mr A. Basu Majumder
Research Officer
Tea Board of India
Ministry of Commerce & Industry Govt. of India
14 BTM Sarani, 700 001
Kolkata
India
Tel: 08900128649
Email: abmajumder.tbi@nic.in

Mr Kamma Satyanarayana Murthy
Senior Quality Professional
ITC Limited - ABD ILTD, Spices Office
522 004 (AP)
Guntur
India
Tel: 098663 74155
Email: k_satyamurthy@itc.in

Dr Krishan Kumar Sharma
Network Coordinator
All India Network Project on Pesticide Residues
Indian Agricultural Research Institute
New Delhi
India
Tel: 011-25846396
Email: kksaicrp@yahoo.co.in

INDONESIA - INDONÉSIE

Mrs Sri Sulihantini
Director
Center for Consumption Diversification and Food Safety
Food Security Agency, Ministry of Agriculture
Jl. Harsono RM No. 3
Jakarta
Indonesia
Tel: +6221 7806708
Email: ssilhnt@yahoo.com

Ms Mia Mariani
Technical Officer
International Cooperation Bureau
Secretariat General Ministry of Agriculture
Jl. Harsono RM No.3 A Building, 6th Floor
Jakarta
Indonesia
Tel: +6221 7804350
Email: agustinamia81@gmail.com

Mrs Loise Riani Sirait
Head of Food Safety Section
National Quality Control Laboratory of Drug and Food
The National Agency of Drug and Food Control
Jl. Percetakan Negara No. 23 Jakarta Pusat
Jakarta
Indonesia
Tel: +6221 4245075
Email: siraitloise@yahoo.com
Mrs Sri Sulasmi
Senior Technical Staff
Center for Consumption Diversification and Food Safety
Food Security Agency, Ministry of Agriculture
Jl. Harsono RM No. 3 Ragunan, Jakarta Selatan
Jakarta
Indonesia
Tel: +6221 7806708
Email: ciami_12@yahoo.com

Dr Mohammadkazem Ramezani
Member of CCPR in Iran
Ministry of Agriculture
Tehran
Iran (Islamic Republic of)
Email: kazem.ramezani@gmail.com

Mr Makoto Irie
Deputy director
Plant Products Safety Division
Food safety and Consumer Affairs Bureau
Ministry of Agriculture, Forestry and Fisheries
1-2-1, Kasumigaseki, Chiyoda-ku
Tokyo
Japan
Tel: +81-3-3502-5969
Email: makoto_irie340@maff.go.jp

Ms Atsuko Horibe
Deputy Director
First Risk Assessment Division
Food Safety Commission Secretariat
22nd Fl., Akasaka Park Bld., 5-2-20, Akasaka, Minato-ku
Tokyo
Japan
Tel: +81 3 6234 1165
Email: atsuko_horibe@cao.go.jp

Mr Akira Iino
Technical Official
Department of Environmental Health and Food Safety
Ministry of Health, Labour and Welfare
1-2-2 Kasumigaseki, Chiyoda-ku
Tokyo
Japan
Tel: +81-3-5253-4288
Email: codexj@mhlw.go.jp

Mr Yuta Ogawa
Assistant Director
Department of Environmental Health and Food Safety
Ministry of Health, Labour and Welfare
1-2-2 Kasumigaseki, Chiyoda-ku
Tokyo
Japan
Tel: +81-3-3595-2341
Email: codexj@mhlw.go.jp

Dr Yoshiyuki Takagishi
Associate director
Food Safety Policy Division, Food Safety and Consumer Affairs Bureau
Ministry of Agriculture, Forestry and Fisheries
1-2-1, Kasumigaseki, Chiyoda-ku
Tokyo
Japan
Tel: +81-3-3502-8731
Email: yoshiyuki_takagis500@maff.go.jp

Dr Takahiro Watanabe
Section Chief
Division of Foods
National Institute of Health Sciences
1-18-1, Kamiyoga, Setagaya-ku
TOKYO
Japan
Tel: +81-3-3700-1141
Email: tawata@nihs.go.jp

Mr Andrew Okwakau Edewa
Consultant
SMAP
TA
Nairobi
Kenya
Email: andrewedewa@gmail.com

Ms Lucy Muthoni Namu
Head
Quality Assurance & Laboratory Accreditation
Kenya Plant Health Inspectorate Services
P.O. Box 49592,00100 600
Nairobi
Kenya
Tel: +254-20 3536172
Email: lrnmn02@yahoo.co.uk

Mr Njane Samuel Njoroge
Manager
Regulation and Compliance
Tea Directorate
P.O. Box 20064
Nairobi
Kenya
Tel: +254-722200556
Email: Snjane@teaboard.or.ke

Mr Mohammad Nazrul Fahmi Abdul Rahim
Principal Assistant Director
Department of Agriculture
Ministry of Agriculture and Agro-based Industry
Malaysia
Level 4, Wisma Tani, Jalan Sultan Salahuddin 50632
Kuala Lumpur
Malaysia
Tel: +603-2030 1499
Email: nazsmie@yahoo.com
Ms Nor Hasimah Haron
Assistant Director
Department of Agriculture
Ministry of Agriculture and Agro-based Industry
Malaysia
Level 4, Wisma Tani, Jalan Sultan Salahuddin 50632
Kuala Lumpur
Malaysia
Tel: +603-2697 7223
Email: norhasimah_doa@yahoo.com

Mr Mohammad Shahid Shahrun
Senior Research Officer
Crop and Soil Science Research Centre
Malaysia Agriculture Research and Development Institute (MARDI)
MARDI Headquarters Persiaran MARDI-UPM 43400
Selangor
Serdang
Malaysia
Tel: +603-8953 6697
Email: shahid@mardi.gov.my

Mali - Malí
Dr Sekouba Keita
Chef Division Appui Scientifique et Technique à l’Elaboration de la Réglementation/documentation Ministère de la Santé et de l’Hygiène Publique Agence Nationale de la Sécurité Sanitaire des Aliments Centre Commercial, Quartier du Fleuve, Rue: 305 BPE: 2362
Bamako
Mali
Tel: (223) 20 22 07 54/ 79 15 60 31
Email: sekokake@yahoo.fr

Malta - Malte
Ms Ann Marie Borg
Senior Policy Officer
Permanent Representation of Malta to the EU
Rue Archimède 25
Brussels
Belgium
Tel: +32478198469
Email: ann-marie.borg@gov.mt

Mexico - MEXIQUE - MÉXICO
Ms Alma Liliana Tovar Diaz
Subdirectora de Certificación y Reconocimiento Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA)
Boulevard Adolfo Ruiz Cortines 5010 Colonia Insurgentes Cuicuilco Delegación Coyoacán Ciudad de México
Mexico
Tel: +52(55) 5905-1000
Email: alma.tovar@senasica.gob.mx

Morocco - MAROC - MARRUECOS
Mr Ahmed Jaafari
Chef de Service du Suivi et du Contrôle des intrants Chimiques Agriculture Office National de Sécurité Sanitaire des Produits Alimentaires (ONSSA)
Avenue Haj Ahmed Cherkaoui Agdal
Rabat
Morocco
Tel: +212537681351, +212537676611
Email: ahmed.jaafari@ONSSA.GOV.MA

Mr Zouaoui Ahmed
Chef de Service des Pesticides Agriculture Laboratoire Officiel d’Analyses et de Recherches Chimiques (LOARC)
25 rue Nichakra Rahal
Casablanca
Morocco
Tel: +212522302007
Email: zouaouiloarc@yahoo.fr

Mr Aarar Mustapha
Délégué Agriculture Etablissement Autonome Contrôle et de Coordination des Exportations (EACCE)
N°72; Rue Mohamed Smiha
Casablanca
Morocco
Tel: +212 5 22 30 51 04
Email: aarar@eacce.org.ma

Mrs Asmaa Ouagari
Association des Professionnels du the au Maroc
Rabat
Morocco
Tel: +212608800080
Email: asmaoaouagari@mathe.ma

Netherlands - PAYS-BAS - PAÍSES BAJOS
Mr Martijn Martena
Policy Officer
Department of Nutrition, Health Protection and Prevention Ministry of Health, Welfare and Sport
P.O. Box 20350
The Hague
Tel: +31 70 340 5463
Email: mj.martena@minvws.nl

Ms Bernadette Ossendorp
Head Dept. Food Safety RIVM (Dutch National Institute for Public Health and Environment)
PO Box 1
Bilthoven
Netherlands
Tel: +31 30 274 3970
Email: bernadette.ossendorp@rivm.nl
Ms Dorin Poelmans
Policy Officer
Dutch Food and Consumer Product Safety Authority
PO BOX 9201
Wageningen
Netherlands
Tel: +31 88 2232121
Email: D.A.M.POELMANS@NVWA.NL

Ms Outi Tyni
Administrator - part of Dutch delegation
DGB2B Veterinary & Plant Health Questions, Food Chain, Forestry
General Secretariat of the Council of the EU - Dutch Presidency
JL-40-DH-25
Brussels
Belgium
Tel: 003222812770
Email: outi.tyni@consilium.europa.eu

NEW ZEALAND - NOUVELLE-ZÉLANDE - NUEVA ZELANDIA

Mr Warren Hughes
Principal Adviser
Ministry for Primary Industries
ACVM Regulation & Assurance
25 The Terrace
Wellington
New Zealand
Email: warren.hughes@mpi.govt.nz

Ms Rebecca Fisher
Market Access Solutionz Ltd, wellington
New Zealand
Email: rebecca@solutionz.co.nz

Mr Dave Lunn
Principal Adviser, Residues, Plant Exports
Ministry for Primary Industries
25 The Terrace
Wellington
New Zealand
Email: Dave.Lunn@mpi.govt.nz

NIGERIA - NIGÉRIA

Dr Vincent Ikape Isegbe
Coordinating Director
Nigeria Agricultural Quarantine Service
81 Ralph Sodiende Street (Enugu House) CBD Abuja
Nigeria
Email: visegbe@gmail.com

Mr Peters S.O. Emuze
Deputy Permanent Representative
Permanent Mission of Nigeria to the UN
Chemin du Petit-Saconnex 28A 1209 Geneva
Nigeria
Tel: 41(0)766435886
Email: peteremuz@yahoo.com

Dr Maimuna Abdullahi Habib
Nigeria Agricultural Quarantine Service
81 Ralph Sodeinde street (Enugu House) CBD Abuja
Nigeria
Tel: +2348093862253
Email: maimunahabib@gmail.com

NORWAY - NORVÉGE - NORUEGA

Dr Hanne Marit Gran
Senior Adviser
Norwegian Food Safety Authority
P.O. Box 383
Brunumndal
Norway
Tel: 22 778217
Email: Hanne.Marit.Gran@mattilsynet.no

PAKISTAN - PAKISTÁN

Mr Syed Liaquat Ali Shah Naqvi
Deputy Secretary
Food Security
Ministry of National Food Security and Research
Room No. 338, 3rd Floor, Block -B, Pakistan
Secretariat, Ministry of National Food Security and Research
Islamabad
Pakistan
Tel: 092519205203, 03224003606
Email: slanaqvi@hotmail.com

PERU - PÉROU - PERÚ

Mr Josue Alfonso Carrasco Valiente
Director General de Insumos Agropecuarios e Inocuidad Agroalimentaria
Servicio Nacional de Sanidad Agraria - SENASA
Av. La Molina 1915, La Molina
Lima
Perú
Tel: 051-3133300 Ext. 2121
Email: jcarrasco@senasa.gob.pe

Mr Ethel Humberto Reyes Cervantes
Miembro Titular de la Comisión Técnica del Codex de Residuos de Plaguicidas
Servicio Nacional de Sanidad Agraria - SENASA
Av. La Molina 1915, La Molina
Lima
Perú
Tel: 051-3133300 Ext. 2121
Email: ereyesc@senasa.gob.pe

PHILIPPINES - FILIPINAS

Mr Sonny Conde
OIC, National Pesticide Analytical Laboratory
Department of Agriculture
Bureau of Plant Industry
San Andres Street, Malate
Manila
Philippines
Tel: 426 3366
Email: Isdnpal2010@gmail.com

Ms Ma. Esperanza Uy
Chair, NCO Sub-Committee on Pesticide Residues and Assistant Division Chief
Department of Agriculture
Plant Product Safety Services Division Bureau of Plant Industry
San Andres Street, Malate
Manila
Philippines
Tel: 09177754103, +432-426 3366
Email: euy92@yahoo.com
Mr Gleb Masaltsev
Junior Researcher
Department of Genetic Toxicology
Federal Scientific Center of Hygiene named after F. F. Erisman
Tel: +7 (916) 424-94-81
Email: gmasaltsev@mail.ru

Mr Tatiana Nikeshina
Head of Laboratory
Federal Center for Animal Health (FGBI "ARRIAH")
Email: nikeshina@arriah.ru

Mrs Elena Norkina
Specialist
Department of economic and legal support and risk assessment in the WTO system and other international The All-Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI)
Email: e.norkina@crraf.ru

SAUDI ARABIA - ARABIE SAOUDITE - ARABIA SAUDITA
Mr Khalid Albaqami
Senior Food Safety Specialist
Executive Dept. of Technical Regulations and Standards
Saudi Food and Drug Authority (3292) North Ring Road - Al Nafal Unit (1)
Riyadh
Saudi Arabia
Tel: 00966 1 2038222
Email: codex.cp@sfda.gov.sa

SENEGAL - SÉNÉGAL
Mr Papa Sam Gueye
Coordonnateur du Comité du Codex sur les Résidus de Pesticides
Ceres Locustox Km 15
Ministère de l’Agriculture et de l’Équipement Rural
Route de Rufisque
Dakar
Sénégal
Tel: +221 563 11 63
Email: psamguye@hotmail.com

Mr Nar Diene
Ministère Sante Et Action Sociale
Centre Anti-Poison
Fann Dakar
Sénégal
Email: snardiene@yahoo.fr

Prof Mamadou Fall
Enseignant chercheur
Ministère Sante Et Action Sociale
Centre Anti-Poison
Fann Dakar
Sénégal
Email: madoufal@gmail.com

SINGAPORE - SINGAPOUR - SINGAPUR
Dr Yuansheng Wu
Deputy Director
VPHL Chemistry Department
Pesticide Residues Section Agri-Food & Veterinary Authority of Singapore
10 Perahu Road Singapore 718837
Singapore
Tel: +65-67952837
Email: wu_yuan_sheng@ava.gov.sg

Mr Say Yong Toh
Scientist, Pesticide Residues Section
VPHL Chemistry Department, Laboratories Group
Agri-Food & Veterinary Authority of Singapore
10 Perahu Road Singapore 718837
Singapore
Tel: +6567952818
Email: toh_say_yong@ava.gov.sg

SPANISH - ESPAGNE - ESPAÑA
Mr Cesar Casado De Santiago
Jefe de Servicio
Subdirección General de Promoción de la Seguridad Alimentaria
Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN)
C/ Alcalá, 56
Madrid
Spain
Email: ccasado@msssi.es

SUDAN - SOUDAN - SUDÁN
Dr Ismail Abusaeed
Director
Pesticide Residue Analysis Laboratory
Ministry of Agriculture & Irrigation
Ministry of Agriculture & Forestry
Agriculture Research Corporation
Khartoum
Sudan
Tel: +249922658852
Email: ismalsadd55@yahoo.com

Mrs Nour Grashi
Pesticide Residue Specialist
Head of Conformity Assessment section
Pesticide Residue Standards
Sudanese Standard & Metrology Organization
Aljamaa Street
Khartoum
Sudan
Tel: +249912367408
Email: nourssmo2009@hotmail.com

Mr Mohamed Abdelsamad
Agriculture Engineering
Crop Production
Ministry of Agriculture and Forestry
Khartoum
Sudan
Tel: +249123633319
Email: mohammedabdelsamad@gmail.com

Mrs Ihlam Hassan Ahmed
Head of Pesticides Registry Section
Pesticide Registration section
Ministry of Agriculture & Forestry
Khartoum North
Sudan
Tel: +249912839500
Email: ahlamhassan424@yahoo.com
Dr Ihsan Ali
Pesticide Residue Researcher
Agriculture Research corporation lab.
Ministry of Agriculture & Forestry
Oud Madani-Elgazeera State –
Agriculture Research corporation
Khartoum
Sudan
Tel: +24921323025
Email: ehsaanali000@gmail.com

Mrs Afag Almahy
Agriculture Engineering
Crop Protection Specialist
Standards Dep.
Head of agricultural Technical committees unit
Sudanese Standard & Metrology Organization
Aljamaa Street
Khartoum
Sudan
Tel: +249912667800
Email: afaggoodluck@hotmail.com

Mrs Nada Osman
Quality Control Inspector
Quality Control & Export Development
Ministry of Agriculture & Irrigation
P.O. BOX 285
Khartoum
Sudan
Tel: +249912638318
Email: nadahamza2010@hotmail.com

Mrs Oratai Silapanaporn
Advisor
National Bureau of Agricultural Commodity and Food Standards
Ministry of Agriculture and Cooperatives
50 Phaholyothin Road Ladyao Chatuchak
Bangkok
Thailand
Tel: +662 561 2277
Email: oratai_sil@hotmail.com

Ms Panida Chaiyanboon
Senior Scientist
Department of Agriculture
Ministry of Agriculture and Cooperatives
50 Phaholyothin RD., Chatuchak, 10900
Bangkok
Thailand
Tel: 662 579 3578
Email: acpanida@yahoo.com

Mrs Sirisawad Chansri
Veterinarian
Department of Livestock Development
Ministry of Agriculture and Cooperatives
91, Moo 4, Thiwannon Road, Bangkadi, Amphoe Meuang
Pathumthanee
Thailand
Tel: +662 967 9714
Email: sirisawads@gmail.com

Mr Emanuel Hänggi
Scientific Officer
Food and Nutrition
Federal Food Safety and Veterinary Office FSVO
Bern
Switzerland
Email: Emanuel.Haenggi@blv.admin.ch

Mr Till Stéphane Goldmann
Early Warning Group
Nestec Ltd.
Food Safety & Quality Competence Pillar
Nestlé Research Center PO Box 44
Lausanne
Switzerland
Email: Till.Goldmann@rdls.nestle.com

Ms Panpilad Saikaew
Standards Officer
National Bureau of Agricultural Commodity and Food Standards
Ministry of Agriculture and Cooperatives
50 Phaholyothin road, Chatujak
Bangkok
Thailand
Tel: +6625612277 ext 99602
Email: panpilad@acfs.go.th

Dr Wischada Jongmevasna
Senior Medical Scientist
Department of Medical Sciences
Ministry of Public Health
88/7 Thiwannon Road, Amphoe Meuang, Nontaburi
Thailand
Tel: 662-951 0000 ext 99602
Email: wischada.j@gmail.com

Mr Charoen Kaowsuksai
Vice- Chairman of Food Processing Industry Club
The Federation of Thai Industries
Queen Sirikit National Convention Center, Zone C 4th Floor, 60 New Rachadapisek Rd., Klongtoey
Bangkok
Thailand
Tel: 662-9763088
Email: charoen@cpram.co.th

Ms Chitra Settaudom
Senior Advisor in Standards of Health Products
Food and Drug Administration
Ministry of Public Health
88/24 Moo 4, Tiwanon Road
Muang Nonthaburi
Thailand
Tel: 662 590 7140
Email: schitra@fda.moph.go.th
Mrs Rattiyakorn Srikote
Medical scientist
Department of Medical Sciences
Ministry of Public Health
88/7 Thiwannon Road, Amphoe Meuang
Nonthaburi
Thailand
Tel: +662 951 0000 ext 99602
Email: rattiyakorn.s@dmsc.mail.go.th

Mr Geoffrey Onen
Principal Government Analyst
Government Chemist and Analytical Laboratory
P.O. Box 2174
Kampala
Uganda
Tel: +256-712-832871
Email: onengff@hotmail.com

Prof Mykola Prodanchuk
Director
L.I. Medved’s Research Center of Preventive Toxicology, Food and Chemical Safety
Ministry of Health
6, Heroiv Oborony str.
Kyiv
Ukraine
Tel: +380503107826, +380445269700
Email: ecohyntox@gmail.com

Mr David J. Miller
Chief, Chemistry & Exposure Branch and Acting Chief, Toxicology & Epidemiology Branch
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
Ariel Rios Building 1200 Pennsylvania Avenue NW
Washington, DC
United States of America
Tel: +1-703-305-5352
Email: Miller.Davidj@epa.gov

Mr Bill Barney
Senior Coordinator
Food, Crop Grouping, and Biopesticides
Rutgers University
IR-4 Project Headquarters 500 College Road East Suite 201 W
Princeton, NJ
United States of America
Tel: +1-732-932-9575 ext. 4603
Email: barney@aesop.rutgers.edu

Ms Cynthia Baker Smith
Senior Vice President and Director
American Vanguard Corporation
4695 MacArthur Court Suite 1200
Newport Beach, CA
United States of America
Tel: +1-949-221-6126
Email: CindyS@amvac-chemical.com

Mr Raul Guerrero
Consultant
International Regulatory Strategies
793 N. Ontare Road
Santa Barbara, CA
United States of America
Tel: +1805 898 1830
Email: guerrero_raulj@yahoo.com

Ms Sara Kucenski
Agricultural Scientific Analyst
Foreign Agricultural Service
U.S. Department of Agriculture
1400 Independence Avenue, SW
Washington, DC
Tel: +12027206741
Email: sara.kucenski@fas.usda.gov
Dr Daniel Kunkel
Associate Director, Food and International Programs
IR-4 Project Headquarters
Rutgers, The State University of NJ
500 College Road East Suite 201
W Princeton, NJ
United States of America
Tel: +1 732 932 9575; ext: 4616
Email: kunkel@aesop.rutgers.edu

Dr Chia Pei (Charlotte) Liang
Chemist, Plant Products Branch
Center for Food Safety and Applied Nutrition
U.S. Food and Drug Administration
Division of Plant Products and Beverages
Office of Food Safety
5100 Paint Branch Parkway
College Park, MD
United States of America
Tel: +1-240-402-2785
Email: charlotte.liang@fda.hhs.gov

Ms Marie Maratos
International Issues Analyst
U.S. Codex Office
Food Safety & Inspection Service
U. S. Department of Agriculture
1400 Independence Avenue, SW Room 4861
Washington, DC
United States of America
Tel: +1-202-690-4795
Email: marie.maratos@fsis.usda.gov

Dr Ray Mcallister
Senior Director, Regulatory Policy
CropLife America
1156 15th St NW #400
Washington, DC
United States of America
Tel: +1-202-577-6657
Email: ray@croplife.us

Mrs Laura Nollen
Biologist
Office of Pesticide Programs
U.S. Environmental Protection Agency,
Health Effects Division
William Jefferson Clinton Building 1200 Pennsylvania Ave., NW
Washington, DC
United States of America
Tel: +1-(703) 305-7390
Email: Nollen.Laura@epa.gov

Dr Allen Scarborough
North America Trade Flow Manager
North America Regulatory Affairs
Bayer CropScience LP
P.O. Box 12014 2 T.W. Alexander Drive Research
Triangle Park, NC 27709
United States of America
Tel: +1 919 549 2397
Email: allen.scarborough@bayer.com

Dr Ronald Williams
Director, Crop Protection Technology Safety
Corporate Scientific and Regulatory Affairs
The Coca-Cola Company
PO Box 1734
Atlanta, GA
United States of America
Tel: +1 404 275 9954
Email: ronaldwilliams@coca-cola.com

VIET NAM
Mr Phan Thanh Trung
Official
Quality Assurance and Testing Center 3
49 Pasteur. District 1
HO CHI MINH
Viet Nam
Tel: 0912310812
Email: pt-trung@quatest3.com.vn

INTERNATIONAL GOVERNMENTAL ORGANIZATIONS - ORGANISATIONS GOUVERNEMENTALES INTERNATIONALES - ORGANIZACIONES GUBERNAMENTALES INTERNACIONALES
INTER-AMERICAN INSTITUTE FOR COOPERATION ON AGRICULTURE (IICA)
Mr Robert Gaynor Ahern
Head
Agricultural Health and Food Safety
IICA
Costa Rica
Email: robert.ahern@iica.int

INTERNATIONAL NON-GOVERNMENTAL ORGANISATIONS - ORGANISATIONS NON-GOUVERNEMENTALES INTERNATIONALES - ORGANIZACIONES INTERNACIONALES NO GUBERNAMENTALES
THE LATINAMERICAN ASSOCIATION OF THE NATIONAL AGROCHEMICAL INDUSTRIES (ALINA)
Ms Amanda Francisco
Adviser
Board Member
ALINA
Rua Frei Caneca, 1100
São Paulo
Brazil
Tel: +551133540053
Email: amanda@aenda.org.br

Prof Laura Ruiz
Adviser
R&D Agroconsultora s.a.
ALINA
Necochea 1323
Martinez
Argentina
Tel: +5491164835689
Email: lruiz@alinainternacional.org
Ms Amada Velez
Associate
Alina
Tuxpan 45-A
Mexico City
Mexico
Tel: 52 55 5601 1100
Email: amada.velez@umffaac.org.mx

GLOBAL PULSE CONFEDERATION (CICILS)
Ms Lois Rossi
Consultant
Global Pulse Confederation
1050 N. Taylor Street, Unit 512
Arlington
United States of America
Email: rluisa1@aol.com

Mr Todd Scholz
US Dry Pea and Lentil Council
United States of America
Email: scholz@pea-lentil.com

CROPLIFE INTERNATIONAL (CROPLIFE)
Mr Munetaka Akashi
Kumiai Chemical Industry Co., Ltd
1-4-26 Ikenohata Taitou-ku
Tokyo
Japan
Tel: +81338225170
Email: m-akashi@kumiai-chem.co.jp

Mr Philip Anthony Brindle
Manager, Global MRLs & Import Tolerances
BASF
26 Davis Drive
Durham
United States of America
Tel: 00191959472654
Email: philip.brindle@basf.com

Mr Peter Chalmers
APAC Head of Development and Registration
Adama
9 Temasek Boulevard #16-03A Suntec Tower Two
Singapore
Singapore
Tel: 006564999326
Email: peter.chalmers@adama.com

Ms Cheryl Cleveland
Consumer Safety
BASF
26 Davis Drive
Research Triangle Park, NC
United States of America
Tel: 0019195930194
Email: cheryl.cleveland@basf.com

Mr Craig Dunlop
Regulatory Policy Lead
Syngenta Crop Protection AG
Schwarzwaldallee 215
Basel
Switzerland
Tel: 0041791393178
Email: craig.dunlop@syngenta.com

Dr Richard Garnett
Global Regulatory Affairs Strategy Lead
Monsanto
270-272 avenue de Tervuren
Brussels
Belgium
Tel: 003227767614
Email: richard.p.garnett@monsanto.com

Mr David Heering
Director, Global Glyphosate Sustainability
Monsanto
800 N Lindbergh BLVD
St. Louis, Missouri
United States of America
Tel: 0013149206709
Email: david.c.heering@monsanto.com

Ms Chishio Hidaka
Regulatory Affairs Group
Arysta LifeScience
38th floor, St. Luke’s Tower 8-1 Akashi-cho Chuo-ku
Tokyo
Japan
Tel: +81335474641
Email: chishio-hidaka@arysta.com

Mr Peter Horne
Global Regulatory Affairs Manager
DuPont
Stine Haskell Research Center 1090 Elkton Road
Newark, Delaware
United States of America
Tel: 0013023666228
Email: peter.home-1@dupont.com

Mr Naoto Ikegami
Manager
Nippon
2-1 Ohtemachi 2-chome Chiyoda-ku
Tokyo
Japan
Tel: +818059875487
Email: n.ikegami@nippon-soda.co.jp

Mr Yuji Ikemoto
Assistant General Manager
Regulatory Affairs Unit
Nihon Nohyaku Co., Ltd.
Kyobashi OM Bldg 19-8 Kyobashi 1-chome
Chuo-ku
Tokyo
Japan
Tel: +81363611411
Email: yikemoto@nichino.net

Ms Amelia Jackson-Gheissari
International Regulatory Affairs Manager
Monsanto
1300 I (Eye) Street, NW Suite 450 East
Washington DC
United States of America
Tel: 0012022306733
Email: amelia.elizabeth.jackson.-
gheissari@monsanto.com
Dr Michael Kaethner
Regulatory Policy Manager
Bayer CropScience
Alfred Nobel Str.50
Monheim
Germany
Tel: 004921733837521
Email: michael.kaethner@bayer.com

Mr Tadashi Kosaka
Director
The Institute of Environmental Toxicology
4321, Uchimoriya-Machi
Joso-shi, Ibaraki Japan
Tel: 0081297274628
Email: kosaka@iet.or.jp

Mr Neil John Lister
Operator and Consumer Safety
Syngenta
Jealott’s Hill
Bracknell
United Kingdom
Tel: 00441344414381
Email: neil.lister@syngenta.com

Mr Yoshiro Nishimoto
R&RA Manager
Sumitomo Chemical Co., Ltd.
27-1 Shinkawa 2-chome Cho-ku
Tokyo
Japan
Tel: 0081355435692
Email: nishimotoy@sc.sumitomo-chem.co.jp

Mr Masanao Nomura
Deputy General Manager
Ishihara Sangyo Kaisha Ltd.
2-3-1 Nishi-Shibukawa Kusatsu Shiga Kusatsu Japan
Tel: +81775623589
Email: m-nomura@iskweb.co.jp

Ms Mi Kyong Park
Regulatory Affairs
Syngenta Korea Ltd
CP RA 18th floor SC Bank Building Jongro 47
Jongro-Gu, South Korea
Tel: +821088074663
Email: mkiyoung.park@syngenta.com

Dr Vasant Patil
Science & Regulatory Affairs
CropLife Asia
150 Cantonment Road Block B # 01-07
Singapore
Singapore
Tel: 006562211615
Email: vasant.patl@croplifeasia.org

Mr Naoto Sakiyama
Manager
Regulatory Affairs Dept.
Soda Co,LTD.
2-3-1 Nishi-Shibukawa Kusatsu Japan
Tel: +81775624122
Email: n-sakiyama@iskweb.co.jp

Mr Toshio Shimomura
Consultant
National Federation of Agriculture Cooperation
1-3-1 Otemachi Chiyoda-ku
Tokyo
Japan
Tel: +81362718289
Email: shimomura-toshiio-q1@zennoh.or.jp

Ms Sachiko Suzuki
Assistant Manager
Regulatory Affairs Unit
Nihon Nohyaku Co., Ltd.
Kyobashi OM Bldg 19-8 Kyobashi 1 Chome Chuo-ku
Tokyo
Japan
Tel: +81363611411
Email: suzuki-sachiko@nichino.co.jp

Mr Carmen Tiu De Mino
Global Residue & MRL Leader
Dow AgroSciences LLC
9330 Zionsville Road Indianapolis
United States of America
Tel: 0013173724215
Email: tcarmen@dow.com

Mr Omura Tomohiro
Hokko Chemical Industry Co., LTD.
1-5-4 Nihonbashi Honcho Chuo-ku
Tokyo
Japan
Tel: +81332795931
Email: omura-t@hokkochem.co.jp

Mr Ryozo Tsuji
Group Manager
Kyoyu Agri Co., Ltd
Yamaman Bldg 11F 6-1 Nihobashi-koamicho Chuo-ku
Tokyo
Japan
Tel: +8135645708
Email: tsuji-ryozo@kyoyu-agri.co.jp

Mr Shinpei Tsuchima
Manager
Nippon Soda Co, LTD.
2-1 Ohtemachi 2-chome Chiyoda-ku
Tokyo
Japan
Tel: +818059693622
Email: s.tushima@nippon-soda.co.jp

Mr Ching-yu Tu
Associate Researcher
Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture
11, Kuangming Road Wufeng Taichung Taiwan China
Tel: 0081886423302101
Email: cytu@tactri.gov.tw

Mr Yoshihiro Wada
Manager
SDS Biotech K.K.
1-1-5 Higashi-Nihombashi Chuo-ku
Tokyo
Japan
Tel: +81358255516
Email: yoshihiro_wada@sdbsbio.co.jp
Mr Hiroo Wakimori
Chemistry Technical Lead, Asia
Monsanto Japan Limited
Kyobashi Souseikan 6F 2-5-18 Kyobashi Chuo-ku
Tokyo
Japan
Tel: +83362644856
Email: hiroo.wakimori@monsanto.com

Mr Hiromi Yamamoto
Director
Mitsui Chemicals Agro, Inc.
1-19-1, Nihonbashii Chuo-ku
Tokyo
Japan
Tel: 0081352902818
Email: Hiromi.Yamamoto@mitsuichemicals.com

Ms Han Yan
Registration Manager
Nippon Soda Trading
RM 2318 Ruijing Building 205 Maoming South Road
Shanghai
China
Tel: +832164731277
Email: yanhan@nipponsoda-sh.com

Mr Chun-hung Yang
Associate Researcher
Taiwan Agricultural Chemicals and Toxic Substances Research Institute
11, Kuangming Road Wufeng Taichung
Taiwan
China
Tel: 0081886-4-23302101
Email: yjh@tactri.gov.tw

Mr Tokunori Yokota
General Manager
Japan Crop Protection Association
2-3-6 Kayaba-cho Nihonbashi Cho-ku
Tokyo
Japan
Tel: +81356497191
Email: yokota@jcpa.or.jp

GRAIN AND FEED TRADE ASSOCIATION (GAFTA)
Mr Alan Ding
Chief Representative
Grain and Feed Trade Association Beijing Office
1-1-1607 Leading International Center
NO.1 Guang Qu Men Nan Xiao Jie, 100061
Beijing
China
Tel: +86-10-67121741
Email: gafat@263.net

INTERNATIONAL NUT AND DRIED FRUIT COUNCIL FOUNDATION (INC)
Dr Gabriele Ludwig
International Dried Fruit and Nut Council
Almond Board of California 1150 9th St
Modesto
United States of America
Tel: + 1- 209-765-0578
Email: gludwig@almondboard.com

INTERNATIONAL SOCIETY OF CITRICULTURE (ISC)
Mr James Cranney
Representative for ISC
International Society of Citriculture
c/o California Citrus Quality Council 853 Lincoln Way,
Suite 206 Auburn, CA 95603
Auburn
United States of America
Tel: 5308851894
Email: jcranney@calcitrusquality.org

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY (IUPAC)
Dr Caroline Harris
Centre Director
Centre for chemical regulation and food safety
IUPAC
The Lenz Hornbeam Park
Harrogate
United Kingdom
Tel: +44 1423 853201
Email: charris@exponent.com

INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)
Dr Johannes Corley
Food Safety Specialist
Nuclear Applications
FAO/IAEA Joint Division on Nuclear Applications in Food & Agriculture
International Atomic Energy Agency
A-1400 Vienna, Austria
Tel: +43 1 2600 21695
Email: j.s.corley@iaea.org

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS - ORGANISATION DES NATIONS UNIES POUR L’ALIMENTATION ET L’AGRICULTURE - ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA
Ms Yongzhen Yang
FAO JMPR Secretary
Viale delle Terme di Caracalla
Rome
Italy
Tel: +39 06 57054246
Email: Yongzhen.Yang@fao.org
WORLD HEALTH ORGANIZATION -
ORGANISATION MONDIALE DE LA SANTÉ -
ORGANIZACIÓN MUNDIAL DE LA SALUD

Dr Philippe Jean Verger
Scientist
Risk Assessment and Management
World Health Organization (WHO)
20, avenue Appia
Geneva 27
Switzerland
Tel: +41 22 791 3053
Email: vergerp@who.int

HOST GOVERNMENT SECRETARIAT -
SECRÉTAIRAT DU GOUVERNEMENT HÔTE -
SECRETARÍA DEL GOBIERNO ANFITRIÓN

Dr Guibiao Ye
Professor/Director, CCPR Secretariat
Institute for the Control of Agrochemicals, Ministry of Agriculture (ICAMA)
Room 904, Building NO.18, Maizidian Street, Chaoyang District, Beijing
Beijing
China
Tel: +86-10-59194302
Email: yeguibiao@agri.gov.cn

Ms Lifang Duan
Senior Agronomist
Institute for the Control of Agrochemicals
Ministry of Agriculture, P.R.china
ChaoYang District, MaiZiDian Street No.22
Beijing
China
Tel: 86-13911379536
Email: duanlifang@agri.gov.cn

Ms Min Li
Institute for the Control of Agrochemicals Ministry of Agriculture
NO.22 Maizidian Street, Chaoyang District
Beijing
China
Tel: +86-10-59195054
Email: limin@agri.gov.cn

Ms Ran Liu
Institute for the Control of Agrochemicals Ministry of Agriculture
Beijing
China
Tel: +86-10-59194130
Email: liuran@agri.gov.cn

Ms Xiuying Piao
Institute for the Control of Agrochemicals Ministry of Agriculture
NO.22 Maizidian Street, Chaoyang District
Beijing
China
Tel: +86 10 59194097
Email: piaoxiuying@agri.gov.cn

Mr Duanxiang Yan
Deputy Director
Institute for the Control of Agrochemicals, Ministry of Agriculture, P.R.china
ChaoYang District, MaiZiDian Street No.22
Beijing
China
Tel: +86-10-59194106
Email: yanduanxiang@agri.gov.cn

Ms Xue Yu
Institute for the Control of Agrochemicals Ministry of Agriculture
NO.18 Maizidian Street, Chaoyang District
Beijing
China
Tel: +86 10 5919 4255
Email: ccpr@agri.gov.cn

Dr Fengzu Zhang
Institute for the Control of Agrochemicals Ministry of Agriculture
NO.18 Maizidian Street, Chaoyang District
Beijing
China
Tel: +86 10 5919 4254
Email: zhangfengzu@agri.gov.cn

Mr Ercheng Zhao
Beijing Academy of Agriculture and Forestry Science
NO.9 Shuguang Huayuan Middle Road Haidian District
Beijing
China
Tel: Tel:
Email: eczhao@126.com

CODEX SECRETARIAT -
SECRÉTAIRAT DU CODEX -
SECRETARÍA DEL CODEX

Ms Gracia Brisco
Food Standards Officer
Joint FAO/WHO Food Standards Programme
Viale delle Terme di Caracalla
Rome
Italy
Tel: + 39 06 570 52700
Email: gracia.brisco@fao.org

Ms Annamaria Bruno
Senior Food Standards Officer
Joint FAO/WHO Food Standards Programme
Viale delle Terme di Caracalla
Rome
Italy
Tel: +39 06570 56254
Email: annamaria.bruno@fao.org
PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES
(At Step 5/8)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>EMRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lindane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 0080 Cereal grains</td>
<td>0.01</td>
<td>5/8</td>
<td>(except rice)</td>
</tr>
<tr>
<td>WD 0120 Diadromous fish</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.001</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.001</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>WS 0125 Marine fish</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.001</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.005</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0081 Straw and fodder (dry) of cereal grains</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 1275 Sweet corn (kernels)</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorothalonil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS 0621 Asparagus</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 0013 Cherries (includes all commodities in this subgroup)</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DV 0604 Ginseng, dried including red ginseng</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0583 Horseradish</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 2001 Peaches (including Nectarine and Apricots) (includes all commodities in this subgroup)</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0051 Peppers</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>70</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0675 Pistachio nuts</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VS 0627 Rhubarb</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0075 Root and tuber vegetables</td>
<td>0.3</td>
<td>5/8</td>
<td>(except horseradish)</td>
</tr>
<tr>
<td>VA 0388 Shallot</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>5</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodity</th>
<th>EMRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethephon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 0226 Apple</td>
<td>0.8</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0640 Barley straw and fodder, Dry</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 0013 Cherries (includes all commodities in this subgroup)</td>
<td>5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>6</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FT 0297 Fig</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>0.8</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0353 Pineapple</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>PF 0111</td>
<td>0.04</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111</td>
<td>0.08</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0650</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0650</td>
<td>7 (dw)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FT 0305</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0448</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0653</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0653</td>
<td>7 (dw)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0654</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>CM 0654</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>CF 1210</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0654</td>
<td>7 (dw)</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>

112 Phorate

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0779</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0731</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0190</td>
<td>0.5</td>
<td>5/8</td>
<td>(except coriander seed and fennel seed)</td>
</tr>
</tbody>
</table>

118 Cypermethrins (including alpha- and zeta- cypermethrin)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0775</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>

143 Triazophos

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0775</td>
<td>4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0779</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0731</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0191</td>
<td>0.07</td>
<td>5/8</td>
<td>(except cardamom)</td>
</tr>
</tbody>
</table>

146 Cyhalothrin (includes lambda-cyhalothrin)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH 0722</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0775</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SB 0716</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0191</td>
<td>0.03</td>
<td>5/8</td>
<td>(except cardamom)</td>
</tr>
</tbody>
</table>

160 Propiconazole

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 0640</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0647</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0650</td>
<td>0.09</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0653</td>
<td>0.09</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0654</td>
<td>0.09</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>

171 Profenofos

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0775</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0779</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0780</td>
<td>5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0731</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0191</td>
<td>0.07</td>
<td>5/8</td>
<td>(except cardamom)</td>
</tr>
</tbody>
</table>

177 Abamectin

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 0660</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0326</td>
<td>0.015</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0071</td>
<td>0.005</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0061</td>
<td>0.08</td>
<td>5/8</td>
<td>(immature beans with pods)</td>
</tr>
<tr>
<td>FB 0264</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VS 0624</td>
<td>0.03</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>FS 0013</td>
<td>Cherries (includes all commodities in this subgroup)</td>
<td>0.07</td>
<td>5/8</td>
</tr>
<tr>
<td>FC 0001</td>
<td>Citrus fruits</td>
<td>0.02</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0691</td>
<td>Cotton seed</td>
<td>0.015</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0424</td>
<td>Cucumber</td>
<td>0.03</td>
<td>5/8</td>
</tr>
<tr>
<td>DF 0269</td>
<td>Dried grapes (=currants, raisins and sultanas)</td>
<td>0.03</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0440</td>
<td>Egg plant</td>
<td>0.05</td>
<td>5/8</td>
</tr>
<tr>
<td>VA 0381</td>
<td>Garlic</td>
<td>0.005</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0425</td>
<td>Gherkin</td>
<td>0.03</td>
<td>5/8</td>
</tr>
<tr>
<td>JF 0269</td>
<td>Grape juice</td>
<td>0.015</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0269</td>
<td>Grapes</td>
<td>0.01</td>
<td>5/8</td>
</tr>
<tr>
<td>DH 1100</td>
<td>Hops, Dry</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>VA 0384</td>
<td>Leek</td>
<td>0.005</td>
<td>5/8</td>
</tr>
<tr>
<td>VL 0482</td>
<td>Lettuce, Head</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>FI 0345</td>
<td>Mango</td>
<td>0.01</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0046</td>
<td>Melons, except watermelon</td>
<td>0.01</td>
<td>5/8</td>
</tr>
<tr>
<td>VA 0385</td>
<td>Onion, Bulb</td>
<td>0.005</td>
<td>5/8</td>
</tr>
<tr>
<td>FI 0350</td>
<td>Papaya</td>
<td>0.015</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 2001</td>
<td>Peaches (including Nectarine and Apricots) (includes all commodities in this subgroup)</td>
<td>0.03</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0697</td>
<td>Peanut</td>
<td>0.005 (asterisk)</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0444</td>
<td>Peppers Chili</td>
<td>0.005 (asterisk)</td>
<td>5/8</td>
</tr>
<tr>
<td>HS 0444</td>
<td>Peppers Chili, dried</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0445</td>
<td>Peppers, Sweet (including pimento or pimiento)</td>
<td>0.09</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 0014</td>
<td>Plums (including fresh prunes) (includes all commodities in this subgroup)</td>
<td>0.005</td>
<td>5/8</td>
</tr>
<tr>
<td>FP 0009</td>
<td>Pome fruits</td>
<td>0.01</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0589</td>
<td>Potato</td>
<td>0.005 (asterisk)</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0272</td>
<td>Raspberries, Red, Black</td>
<td>0.05</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0649</td>
<td>Rice straw and fodder, Dry</td>
<td>0.001</td>
<td>5/8</td>
</tr>
<tr>
<td>CM 0649</td>
<td>Rice, Husked</td>
<td>0.002</td>
<td>5/8</td>
</tr>
<tr>
<td>VA 0388</td>
<td>Shallot</td>
<td>0.005</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0275</td>
<td>Strawberry</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0508</td>
<td>Sweet potato</td>
<td>0.005 (asterisk)</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0448</td>
<td>Tomato</td>
<td>0.05</td>
<td>5/8</td>
</tr>
<tr>
<td>TN 0085</td>
<td>Tree nuts</td>
<td>0.005 (asterisk)</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0600</td>
<td>Yams</td>
<td>0.005 (asterisk)</td>
<td>5/8</td>
</tr>
</tbody>
</table>

Bifenthrin

FB 0020	Blueberries	3	5/8
FB 0269	Grapes	0.3	5/8
VP 0063	Peas (pods and succulent=immature seeds)	0.9	5/8
VP 0064	Peas, Shelled (succulent seeds)	0.05 (asterisk)	5/8

Tebuconazole

VS 0621	Asparagus	0.02 (asterisk)	5/8
FI 0327	Banana	1.5	5/8
VC 0424	Cucumber	0.2	5/8
VR 0604	Ginseng	0.15	5/8
### Commodity MRL (mg/kg)	Step	Note
DV 0604 Ginseng, dried including red ginseng | 0.4 | 5/8
DM 0604 Ginseng, extracts | 0.5 | 5/8
VA 0385 Onion, Bulb | 0.15 | 5/8
VA 0388 Shallot | 0.15 | 5/8
VA 0389 Spring Onion | 2 | 5/8
SO 0702 Sunflower seed | 0.1 | 5/8

206 **Imidacloprid**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH 0722 Basil</td>
<td>20</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 0013 Cherries (includes all commodities in this subgroup)</td>
<td>4</td>
<td>5/8</td>
</tr>
<tr>
<td>VL 0480 Kale (including among others: Collards, Curly kale, Scotch kale, thousand-headed kale; not including Marrow-stem kele)</td>
<td>5</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0305 Olives for oil production</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 2001 Peaches (including Nectarine and Apricots) (includes all commodities in this subgroup)</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 0014 Plums (including fresh prunes) (includes all commodities in this subgroup)</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>DF 0014 Prunes, dried (dry)</td>
<td>5</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>AL 0541 Soya bean fodder</td>
<td>50</td>
<td>5/8</td>
</tr>
<tr>
<td>FT 0305 Table Olives</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>DT 1114 Tea, Green, Black (black, fermented and dried)</td>
<td>50</td>
<td>5/8</td>
</tr>
</tbody>
</table>

207 **Cyprodinil**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO 0495 Rape seed</td>
<td>0.02</td>
<td>5/8</td>
</tr>
</tbody>
</table>

213 **Trifloxystrobin**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0533 Lentil (dry)</td>
<td>0.01</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0072 Peas (dry)</td>
<td>0.01</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>0.05</td>
<td>5/8</td>
</tr>
</tbody>
</table>

224 **Difenconazole**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 0326 Avocado</td>
<td>0.6</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0697 Peanut</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>0.1</td>
<td>5/8</td>
</tr>
</tbody>
</table>

226 **Pyrimethanil**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB 0264 Blackberries</td>
<td>15</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0020 Blueberries</td>
<td>8</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.7</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0272 Raspberries, Red, Black</td>
<td>15</td>
<td>5/8</td>
</tr>
</tbody>
</table>

234 **Spirotetramat**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 0326 Avocado</td>
<td>0.4</td>
<td>5/8</td>
</tr>
<tr>
<td>FI 0336 Guava</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0447 Sweet Corn</td>
<td>1.5</td>
<td>5/8</td>
</tr>
</tbody>
</table>

243 **Fluopyram**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP 0061 Beans, except broad bean and soya bean</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>VP 0062 Beans, Shelled</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.01</td>
<td>5/8</td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>MO 0098 Kidney of cattle, goats, pigs and sheep</td>
<td>0.8</td>
<td>5/8</td>
</tr>
<tr>
<td>MO 0099 Liver of cattle, goats, pigs & sheep</td>
<td>5</td>
<td>5/8</td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.8</td>
<td>5/8</td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.6</td>
<td>5/8</td>
</tr>
<tr>
<td>AL 0072 Pea hay or pea fodder (dry)</td>
<td>40</td>
<td>5/8</td>
</tr>
<tr>
<td>VP 0064 Peas, Shelled (succulent seeds)</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 4521 Soybean (dry)</td>
<td>0.05</td>
<td>5/8</td>
</tr>
<tr>
<td>246 Acetamiprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS 0621 Asparagus</td>
<td>0.8</td>
<td>5/8</td>
</tr>
<tr>
<td>HS 0775 Cardamom</td>
<td>0.1</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>HS 0790 Pepper, Black; White</td>
<td>0.1</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0447 Sweet corn (corn-on-the-cob)</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0447 Sweet corn fodder</td>
<td>40</td>
<td>5/8</td>
</tr>
<tr>
<td>248 Flutriafol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB 0040 Brassica (Cole or Cabbage) Vegetables, Head Cabbage, Flowerhead Brassicas</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>VS 0624 Celery</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 0013 Cherries (includes all commodities in this subgroup)</td>
<td>0.8</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>20</td>
<td>5/8</td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.02</td>
<td>5/8</td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.02 (fat)</td>
<td>5/8</td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 2001 Peaches (including Nectarine and Apricots) (includes all commodities in this subgroup)</td>
<td>0.6</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0051 Peppers</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 0014 Plums (including fresh prunes) (includes all commodities in this subgroup)</td>
<td>0.4</td>
<td>5/8</td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.4</td>
<td>5/8</td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.02</td>
<td>5/8</td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.03</td>
<td>5/8</td>
</tr>
<tr>
<td>DF 0014 Prunes, dried</td>
<td>0.9</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0651 Sorghum</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0651 Sorghum straw and fodder, Dry</td>
<td>7</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0596 Sugar beet</td>
<td>0.02</td>
<td>5/8</td>
</tr>
<tr>
<td>AV 0596 Sugar beet leaves or tops(dry)</td>
<td>3 (dw)</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>0.8</td>
<td>5/8</td>
</tr>
<tr>
<td>256 Fluxapyroxad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI 0327 Banana</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0018 Berries and other small fruits</td>
<td>7</td>
<td>5/8</td>
</tr>
<tr>
<td>VB 0040 Brassica (Cole or Cabbage)</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>VL 0054 Brassica leafy vegetables</td>
<td>4</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0577 Carrot</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>VS 0624 Celery</td>
<td>10</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 0013 Cherries (includes all commodities in this subgroup)</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>DF 0269 Dried grapes (=currants, raisins and sultanas)</td>
<td>15</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>VA 0381 Garlic</td>
<td>0.6</td>
<td>5/8</td>
</tr>
<tr>
<td>AB 0269 Grape pomace, Dry</td>
<td>150</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>4</td>
<td>5/8</td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>0.6</td>
<td>5/8</td>
</tr>
<tr>
<td>FC 0004 Oranges, Sweet, Sour (including Orange-like hybrids): several cultivars</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0588 Parsnip</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 2001 Peaches (including Nectarine and Apricots) (includes all commodities in this subgroup)</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 0014 Plums (including fresh prunes) (includes all commodities in this subgroup)</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0494 Radish</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>VL 0494 Radish leaves (including radish tops)</td>
<td>8</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0649 Rice</td>
<td>5</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0649 Rice straw and fodder, Dry</td>
<td>50 (dw)</td>
<td>5/8</td>
</tr>
<tr>
<td>CM 0649 Rice, Husked</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>CM 1205 Rice, Polished</td>
<td>0.4</td>
<td>5/8</td>
</tr>
<tr>
<td>VA 0388 Shallot</td>
<td>0.6</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0651 Sorghum</td>
<td>0.7</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0651 Sorghum straw and fodder, Dry</td>
<td>7 (dw)</td>
<td>5/8</td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.04</td>
<td>5/8</td>
</tr>
<tr>
<td>263 Cyantraniliprole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL 0061 Bean fodder</td>
<td>40 (DM)</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>VP 0062 Beans, Shelled</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.7</td>
<td>5/8</td>
</tr>
<tr>
<td>OR 0001 Citrus oil, edible</td>
<td>4.5</td>
<td>5/8</td>
</tr>
<tr>
<td>SB 0716 Coffee beans</td>
<td>0.05</td>
<td>5/8</td>
</tr>
<tr>
<td>VP 0526 Common bean (pods and/or immature seeds)</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.6</td>
<td>5/8</td>
</tr>
<tr>
<td>AL 0072 Pea hay or pea fodder (dry)</td>
<td>60 (DM)</td>
<td>5/8</td>
</tr>
<tr>
<td>VP 0063 Peas (pods and succulent=immature seeds)</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>VP 0064 Peas, Shelled (succulent seeds)</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>FI 0355 Pomegranate</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.04</td>
<td>5/8</td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.02</td>
<td>5/8</td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>0.8</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>0.4</td>
<td>5/8</td>
</tr>
<tr>
<td>VP 0541 Soya bean (immature seeds)</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>AL 0541 Soya bean fodder</td>
<td>80 (DM)</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0702 Sunflower seed</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.04</td>
<td>5/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266 Imazapic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>267 Imazapyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0162 Hay or fodder (dry) of grasses</td>
<td>6</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>5</td>
<td>5/8</td>
</tr>
<tr>
<td>280 Acetochlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0640 Barley straw and fodder, Dry</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>VP 0061 Beans, except broad bean and soya bean</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0523 Broad bean (dry)</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0641 Buckwheat</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0641 Buckwheat fodder</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0524 Chick-pea (dry)</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0531 Hyacinth bean (dry)</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>AL 0157 Legume animal feeds</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0533 Lentil (dry)</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0545 Lupin (dry)</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.02</td>
<td>5/8</td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>MM 0095</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>ML 0106</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0646</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0646</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0647</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0647</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0072</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VD 0537</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0589</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>PM 0110</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>PO 0111</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0650</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0650</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0596</td>
<td>0.15</td>
<td>5/8</td>
</tr>
<tr>
<td>AV 0596</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>DM 0596</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>AB 0596</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>SO 0702</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0447</td>
<td>0.04</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0447</td>
<td>1.5</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0657</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0657</td>
<td>0.3</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0653</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0654</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0654</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0655</td>
<td>0.04 (*)</td>
<td>5/8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP 0061</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0062</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0040</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0054</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0440</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0045</td>
<td>0.09</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0269</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DH 1100</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0053</td>
<td>10</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0444</td>
<td>0.8</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0445</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0589</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0448</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>

281 Cyazofamid

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP 0061</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0062</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0040</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0054</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0440</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0045</td>
<td>0.09</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0269</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DH 1100</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0053</td>
<td>10</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0444</td>
<td>0.8</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0445</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0589</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0448</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Flonicamid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS 0624 Celery (includes all commodities in this subgroup)</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 0013 Cherries (includes all commodities in this subgroup)</td>
<td>0.9</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.6</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0050 Fruiting vegetables other than cucurbits</td>
<td>0.4</td>
<td>5/8</td>
<td>(except mushrooms and sweet corn)</td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DH 1100 Hops, Dry</td>
<td>20</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0483 Lettuce, Leaf</td>
<td>8</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 2009 Low growing berries</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HH 0738 Mints</td>
<td>6</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 2001 Peaches (including Nectarine and Apricots) (includes all commodities in this subgroup)</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0672 Pecan</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VS 0620 Artichoke, Globe</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VS 0621 Asparagus</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 2006 Bush berries</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0041 Cabbages, Head</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0524 Chick-pea (dry)</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0050 Fruiting vegetables other than cucurbits</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td>(except sweet corn and mushrooms)</td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0162 Hay or fodder (dry) of grasses</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td>Wheat hay</td>
</tr>
<tr>
<td>VD 0533 Lentil (dry)</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0545 Lupin (dry)</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HH 0738 Mints</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0697 Peanut</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0072 Peas (dry)</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0355 Pomegranate</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 0012 Stone fruits</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0702 Sunflower seed</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0508 Sweet potato</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FT 0305 Table Olives</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0654 Wheat straw and fodder, Dry</td>
<td>7 (dw)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Lufenuron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.09</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.04</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.7 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0046 Melons, except watermelon</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FM 0183 Milk fats</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0445 Peppers, Sweet (including pimento or pimiento)</td>
<td>0.8</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.04</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.02 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Quinclorac</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB 0265 Cranberry</td>
<td>1.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VS 0627 Rhubarb</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>
CODEX MAXIMUM RESIDUE LIMITS FOR PESTICIDES

(For Revocation)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lindane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>0.01</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.1 (fat)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0647 Oats</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.05 (fat)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0650 Rye</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0651 Sorghum</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>AS 0081 Straw and fodder (dry) of cereal grains</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 1275 Sweet corn (kernels)</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS 0013 Cherries (includes all commodities in this subgroup)</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VP 0526 Common bean (pods and/or immature seeds)</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0581 Galangal, Greater</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>70</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0445 Peppers, Sweet (including pimento or pimiento)</td>
<td>7</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0075 Root and tuber vegetables</td>
<td>0.3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Dichlofluanid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 0226 Apple</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0021 Currants, Black, Red, White</td>
<td>15</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0268 Gooseberry</td>
<td>7</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>15</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0247 Peach</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0230 Pear</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0051 Peppers</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>20</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0272 Raspberries, Red, Black</td>
<td>15</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Bioresmethrin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>1 Po</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>CM 0654 Wheat bran, Unprocessed</td>
<td>5 PoPo</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>CF 1211 Wheat flour</td>
<td>1</td>
<td>PoP</td>
<td>CXL-D</td>
</tr>
<tr>
<td>CF 1210 Wheat germ</td>
<td>3</td>
<td>PoP</td>
<td>CXL-D</td>
</tr>
<tr>
<td>CF 1212 Wheat wholemeal</td>
<td>1</td>
<td>PoP</td>
<td>CXL-D</td>
</tr>
<tr>
<td>Etaphen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 0226 Apple</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>AS 0640 Barley straw and fodder, Dry</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0020 Blueberries</td>
<td>20</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 4199 Cantaloupe</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0013 Cherries (includes all commodities in this subgroup)</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PE 0840 Chicken eggs</td>
<td>0.2 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>DF 0269 Dried grapes (=currants, raisins and sultanas)</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 0096 Edible offal of cattle, goats, horses, pigs & sheep</td>
<td>0.2 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>DF 0297 Figs, Dried or dried and candied</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>TN 0666 Hazelnuts</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0096 Meat of cattle, goats, horses, pigs & sheep</td>
<td>0.1 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0107 Milk of cattle, goats & sheep</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0051 Peppers</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>50</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FI 0353 Pineapple</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.1 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.2 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0650 Rye</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>AS 0650 Rye straw and fodder, Dry</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>TN 0678 Walnuts</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>AS 0654 Wheat straw and fodder, Dry</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS 0190 Spices, Seeds</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Tecnazene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>20</td>
<td>Po</td>
<td>CXL-D</td>
</tr>
<tr>
<td>Triazophos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS 0191 Spices, Fruits and Berries</td>
<td>0.07</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Cyhalothrin (includes lambda-cyhalothrin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS 0191 Spices, Fruits and Berries</td>
<td>0.03</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0650 Rye</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0653 Triticale</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Tolylfluanid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB 0264 Blackberries</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0021 Currants, Black, Red, White</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>DH 1100 Hops, Dry</td>
<td>50</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VA 0384 Leek</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>15</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>20</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0445 Peppers, Sweet (including pimento)</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0272 Raspberries, Red, Black</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Profenofos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS 0191 Spices, Fruits and Berries</td>
<td>0.07</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Abamectin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 0660 Almond hulls</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>TN 0660 Almonds</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0226 Apple</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MF 0812 Cattle fat</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 1280 Cattle kidney</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 1281 Cattle liver</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0812 Cattle meat</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0812 Cattle milk</td>
<td>0.005</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.01</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0814 Goat meat</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0814 Goat milk</td>
<td>0.005</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 0814 Goat, Edible offal of</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>DH 1100 Hops, Dry</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VL 0483 Lettuce, Leaf</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0046 Melons, except watermelon</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0230 Pear</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0445 Peppers, Sweet (including pimento)</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0431 Squash, summer</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>TN 0678 Walnuts</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0432 Watermelon</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Dithianon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC 0206 Mandarin</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>FC 0005 Pummelo and Grapefruits</td>
<td>3</td>
<td>CXL-D</td>
<td>(including Shaddock-like hybrids, among others Grapefruit)</td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Flumethrin</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.15</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.15</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>TC 0240 Apricot</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>TC 0244 Cherry, Sweet</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>TC 0245 Nectarine</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0247 Peach</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0014 Plums (including fresh prunes)</td>
<td>0.2</td>
<td>CXL-D</td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>0.02 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 0098 Kidney of cattle, goats, pigs and sheep</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 0099 Liver of cattle, goats & sheep</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.7</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0445 Peppers, Sweet (including pimento or pimiento)</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0012 Stone fruits</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>SB 0716 Coffee beans</td>
<td>0.03</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.015</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.01</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.01</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.01</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.01</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.01</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Imazapyr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
</tbody>
</table>
DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES

(At Step 7)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Source</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Chlorpyrifos-Methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>3</td>
<td>Po</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>10</td>
<td>Po</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>GC 0647 Oats</td>
<td>10</td>
<td>Po</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>GC 0649 Rice</td>
<td>10</td>
<td>Po</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>3</td>
<td>Po</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CM 0654 Wheat bran, unprocessed</td>
<td>6</td>
<td>PoP</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CF 1210 Wheat germ</td>
<td>5</td>
<td>PoP</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>126 Oxamyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>3</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>1</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VC 0046 Melons, except watermelon</td>
<td>1</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VO 0051 Peppers</td>
<td>5</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>178 Bifenthrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI 0345 Mango</td>
<td>0.5</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VO 0442 Okra</td>
<td>0.2</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>FI 0350 Papaya</td>
<td>0.4</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>189 Tebuconazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP 0526 Common bean (pods and/or immature seeds)</td>
<td>2</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>212 Metalaxyl-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 0226 Apple</td>
<td>0.02 (*)</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SB 0715 Cacao beans</td>
<td>0.02</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>1</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>0.5</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>0.03</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VO 0445 Peppers, sweet (including pimento or pimiento)</td>
<td>0.5</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.02 (*)</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VL 0502 Spinach</td>
<td>0.1</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SO 0702 Sunflower seed</td>
<td>0.02 (*)</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>0.2</td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Proposed Draft Maximum Residue Limits for Pesticides

(At Step 4)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Source</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Diquat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>0.05</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.01 (*)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.01 (*)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.001 (*)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.01 (*)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.01 (*)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>90 Chlorpyrifos-Methyl</td>
<td></td>
<td></td>
<td></td>
<td>(except maize and rice)</td>
</tr>
<tr>
<td>GC 0080 Cereal grains</td>
<td>5 Po</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM 0649 Rice, Husked</td>
<td>1.5 Po</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM 1205 Rice, Polished</td>
<td>0.2 Po</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148 Propamocarb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB 0041 Cabbages, Head</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VL 0480 Kale (including among others: Collards, Curly kale, Scotch kale, thousand-headed kale; not including Marrow-stem kale)</td>
<td>20</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>177 Abamectin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL 0502 Spinach</td>
<td>0.15</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>178 Bifenthrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS 0624 Celery</td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>225 Dimethomorph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL 0483 Lettuce, Leaf</td>
<td>20</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>243 Fluopyram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO 0051 Peppers</td>
<td>0.5</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>5</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>246 Acetamiprid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL 0485 Mustard greens</td>
<td>15</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>252 Sulfoxaflor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.015</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>253 Penthiopepyrad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>10 (DM)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VL 0485 Mustard greens</td>
<td>50</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Source</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>264 Fenamidone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL 0485 Mustard greens</td>
<td>60</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VL 0502 Spinach</td>
<td>60</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>282 Flonicamid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 0660 Almonds</td>
<td>0.01 (*)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>AM 0660 Almond hulls</td>
<td>9</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VB 0040 Brassica (Cole or Cabbage) Vegetables, Head Cabbage, Flowerhead Brassicas</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VL 0054 Brassica leafy vegetables</td>
<td>15</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.06</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.03</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.02</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.05</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.04</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.8</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.015</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.02</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.02</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.02</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>0.5</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>0.08</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>AS 0654 Wheat straw and fodder, Dry</td>
<td>0.3</td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
DRAFT AND PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES

(Withdrawn by CCPR)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenpropathrin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS 0013</td>
<td>Cherries (includes all commodities in this subgroup)</td>
<td>7</td>
<td>MRL-W</td>
</tr>
<tr>
<td>FS 2001</td>
<td>Peaches (including Nectarine and Apricots) (includes all commodities in this subgroup)</td>
<td>3</td>
<td>MRL-W</td>
</tr>
<tr>
<td>FP 0009</td>
<td>Pome fruits</td>
<td>3</td>
<td>MRL-W</td>
</tr>
<tr>
<td>248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flutriafol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL 0483</td>
<td>Lettuce, Leaf</td>
<td>5</td>
<td>MRL-W</td>
</tr>
<tr>
<td>VL 0485</td>
<td>Mustard greens</td>
<td>7</td>
<td>MRL-W</td>
</tr>
<tr>
<td>VL 0502</td>
<td>Spinach</td>
<td>10</td>
<td>MRL-W</td>
</tr>
<tr>
<td>256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluxapyroxad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL 0502</td>
<td>Spinach</td>
<td>30</td>
<td>MRL-W</td>
</tr>
</tbody>
</table>
APPENDIX VII

DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED VEGETABLE COMMODITY GROUPS (GROUP 015 - PULSES)

(At Step 7)

PULSES
Class A
Type 2 Vegetables Group 015 Group Letter Code VD
Group 015. Pulses are derived from the mature seeds, naturally or artificially dried, of leguminous plants known as beans (dry) and peas (dry). Pulses are dry seeds without the pods.

The seeds in the pods are protected from most pesticides applied during the growing season except pesticides which show a systemic action. The dry beans and peas however are often exposed to post harvest treatments.

The dry pulses are consumed after processing or household cooking.

Commodities in this group are grouped in 3 subgroups:

15A Dry beans
15B Dry peas
15C Dry Underground pulses

Portion of the commodity to which the MRL applies (and which is analysed): Whole commodity.

<table>
<thead>
<tr>
<th>Group 015 Pulses Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD 0070</td>
<td>Pulses</td>
</tr>
<tr>
<td>Subgroup 015A Dry beans</td>
<td></td>
</tr>
<tr>
<td>Code No.</td>
<td>Commodity</td>
</tr>
<tr>
<td>VD 2065</td>
<td>Dry beans</td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>VD 0071</td>
<td>Beans (Phaseolus spp.) (dry)</td>
</tr>
<tr>
<td></td>
<td>Phaseolus spp.; several species and cultivars</td>
</tr>
<tr>
<td>VD 2891</td>
<td>Beans (Vigna spp.) (dry)</td>
</tr>
<tr>
<td></td>
<td>Vigna spp.; several species and cultivars</td>
</tr>
<tr>
<td>VD 0560</td>
<td>Adzuki bean (dry)</td>
</tr>
<tr>
<td></td>
<td>Vigna angularis (Willd.) Ohwi & Ohashi</td>
</tr>
<tr>
<td></td>
<td>syn: Phaseolus angularis (Willd.) W. Wight;</td>
</tr>
<tr>
<td>VD 2890</td>
<td>African yam bean (dry)</td>
</tr>
<tr>
<td></td>
<td>Sphenostylis stenocarpa (Hochst. Ex A. Rich.) Harms</td>
</tr>
<tr>
<td></td>
<td>Asparagus pea, see Goa bean (dry), VD 0530</td>
</tr>
<tr>
<td></td>
<td>Black-eyed pea, see Cowpea (dry), VD 0526</td>
</tr>
<tr>
<td></td>
<td>Vigna unguiculata (L.) Walp. subsp. unguiculata</td>
</tr>
<tr>
<td></td>
<td>Black gram (dry), see Urd bean (dry), VD 0521</td>
</tr>
<tr>
<td></td>
<td>Black turtle beans, see Common bean, VD 0526</td>
</tr>
<tr>
<td></td>
<td>Bonavist bean (dry), see Lablab bean (dry), VD 0531</td>
</tr>
<tr>
<td>VD 0523</td>
<td>Broad bean (dry)</td>
</tr>
<tr>
<td></td>
<td>Vicia faba L, subsp. faba, var. faba</td>
</tr>
<tr>
<td></td>
<td>Syn: V. faba L. var. major (Harz) Beck</td>
</tr>
<tr>
<td></td>
<td>Butter bean (dry), see Lima bean (dry), VD 0534</td>
</tr>
<tr>
<td></td>
<td>Catjang (dry), see Cowpea, Dry, VD 0527</td>
</tr>
<tr>
<td></td>
<td>Vigna unguiculata (L.) Walp. subsp. cylindrica (L.) Verdc. syn: Dolichos catjang Burm.</td>
</tr>
</tbody>
</table>
Common bean (dry)
Phaseolus vulgaris L.

Common vetch (dry)
Vicia sativa L.

Cowpea (dry)
Vigna unguiculata (L.) Walp;
syn: *V. sinensis* (L.) Savi ex Hassk.; *Dolichos sinensis* L.

- Cranberry bean (dry), see Common bean (dry), VD 0526
- Dwarf bean (dry), see Common bean (dry), VD 0526
- Fava bean (dry), see Broad bean (dry), VD 0523
- Field bean (dry), see Common bean (dry), VD 0526
- Flageolet (dry), see Common bean (dry), VD 0526
- French bean, see Group 014: Legume vegetables

Goa bean (dry)
Psophocarpus tetragonolobus (L.) DC.

- Gram (dry), see Chick-pea (dry), VD 0524
- Green beans, see Group 014: Legume vegetables
- Green gram (dry), see Mung bean (dry), VD 0536

Guar (dry)
Cyamopsis tetragonoloba (L.) Taub;
syn: *C. psoralioides* (lam.) DC.

- Haricot bean, see Group 014: Legume vegetables
- Horse bean (dry), see Broad bean (dry), VD 0523

Horse gram (dry)
Macrotyloma uniflorum (Lam.) Verdc.
syn: *Dolichos uniflorus* Lam.; *D. biflorus* auct. non L.

Hyacinth bean (dry), see Lablab bean (dry), VD 0531

Jack bean, (dry)
Canavalia ensiformis (L.) DC.

Kidney bean (dry), see Common bean (dry), VD 0526

Lablab bean (dry)
Lablab purpureus (L.) Sweet spp. *purpureus*
syn: *Dolichos lablab* L.; *Lablab niger* Medik; *L. vulgaris* Savi

Lima bean (dry)
Phaseolus lunatus L.;
syn: *Ph. limensis* Macf.; *Ph. inamoenum* L.

Lupin (dry)
Lupinus spp., sweet spp. varieties and cultivars

- Mat bean (dry), see Moth bean (dry), VD 0535

Morama bean (dry)
Tylosema esculentum (Burch.) A. Schreib.
Moth bean (dry)

Vigna aconitifolia (Jacq.) Verde.

syn: *Phaseolus aconitifolius* Jacq.; *Ph. trilobus* Ait;

Mung bean (dry)

Vigna radiata (L.) Wilczek, var. *radiata*;

syn: *Phaseolus aureus* Roxb;

Navy bean (dry), see Common bean (dry), VD 0526

Pinto bean (dry), see Common bean (dry), VD 0526

Rice bean (dry)

Vigna umbellata (Thunb.) Ohwi & Ohashi;

syn: *V. calcarata* (Roxb.) Kurz; *Phaseolus calcaratus* Roxb.

Runner bean, see Group 014: Legume vegetables

Scarlet runner bean (dry)

Phaseolus coccineus L.

Sieva bean (dry), see Lima bean (dry), VD 0534

Southern pea, see Cowpea (dry), VD 0527

Soya bean (dry)

Glycine max (L.) Merr.;

Soya bean, black (dry), see Soya bean (dry), VD 0541

Soybean (dry), see Soya bean (dry), VD 0541

Sword bean (dry)

Canavalia gladiata (Jacq.) DC.

Tepary bean (dry)

Phaseolus acutifolius Gray, var. *acutifolius*

Tick bean (dry)

Vicia faba L. var. *minuta* (hort. Ex Alef.) Mansf.

Urd bean (dry)

Phaseolus mungo L.;

syn: *Vigna mungo* (L.) Hepper

Velvet bean (dry)

Mucuna Pruriens (L.) DC.

Vetches (*Vicia* spp.) (dry)

White bean (dry), see Navy bean (dry)

Winged pea (dry)

Lotus tetragonolobus L.

syn: *Tetragonolobus purpureus* Moench

Yardlong bean (dry)

Vigna unguiculata (L.) Walp. subsp. *unguiculata forma group sesquipedalis*
Subgroup 015B Dry peas

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD 2066</td>
<td>Dry peas</td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>VD 0072</td>
<td>Peas (dry, of Pisum spp)</td>
</tr>
<tr>
<td></td>
<td>Pisum spp. several species and cultivars</td>
</tr>
<tr>
<td>-</td>
<td>Angola pea (dry), see Pigeon pea</td>
</tr>
<tr>
<td>-</td>
<td>Ben Moringa seed (dry), see Ben Moringa seed, Group 023: Oilseed</td>
</tr>
<tr>
<td>-</td>
<td>Cajan pea (dry), see Pigeon pea (dry), VD 0537</td>
</tr>
<tr>
<td>-</td>
<td>Chickling vetch (dry), see Grass-pea (dry), VD 2860</td>
</tr>
<tr>
<td>VD 0524</td>
<td>Chick-pea (dry)</td>
</tr>
<tr>
<td></td>
<td>Cicer arietinum L.</td>
</tr>
<tr>
<td>VD 0561</td>
<td>Field pea (dry)</td>
</tr>
<tr>
<td></td>
<td>Pisum sativum L., subsp. sativum var. arvense (L.) Poir.</td>
</tr>
<tr>
<td></td>
<td>syn: Pisum arvense L.</td>
</tr>
<tr>
<td>-</td>
<td>Garden pea, see Group 014: Legume vegetables</td>
</tr>
<tr>
<td>-</td>
<td>Gram (dry), see Chick-pea (dry), VD 0524</td>
</tr>
<tr>
<td>VD 2860</td>
<td>Grass-pea (dry)</td>
</tr>
<tr>
<td></td>
<td>Lathyrus sativus L.</td>
</tr>
<tr>
<td>VD 0533</td>
<td>Lentil (dry)</td>
</tr>
<tr>
<td></td>
<td>Lens culinaris Medik subsp. culinaris</td>
</tr>
<tr>
<td></td>
<td>syn: Lens esculenta Moench.; Ervo lens L.</td>
</tr>
<tr>
<td>-</td>
<td>Pea (dry), Pisum sativum, see Field pea (dry) VD 0561</td>
</tr>
<tr>
<td>VD 0537</td>
<td>Pigeon pea (dry)</td>
</tr>
<tr>
<td></td>
<td>Cajanus cajan (L.) Huth</td>
</tr>
<tr>
<td></td>
<td>syn: C. indicus Spreng.</td>
</tr>
<tr>
<td>-</td>
<td>Red gram (dry), see Pigeon pea (dry), VD 0537</td>
</tr>
<tr>
<td>-</td>
<td>Wrinkled pea (dry), see Field pea (dry), VD 0561</td>
</tr>
</tbody>
</table>

Subgroup 015C Dry underground pulses

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD 2067</td>
<td>Dry underground pulses</td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>VD 0520</td>
<td>Bambara groundnut (dry seed)</td>
</tr>
<tr>
<td></td>
<td>Vigna subterranea (L.) Verde.;</td>
</tr>
<tr>
<td></td>
<td>syn: Voandzeia subterranea (L.) Thou.</td>
</tr>
<tr>
<td>-</td>
<td>Geocarpa groundnut or Geocarpa bean (dry), see Kersting’s groundnut, VD 0563</td>
</tr>
<tr>
<td>-</td>
<td>Groundnut (dry), see Peanut, Group 023: Oilseed</td>
</tr>
<tr>
<td>VD 0563</td>
<td>Kersting’s groundnut (dry)</td>
</tr>
<tr>
<td></td>
<td>Macrotyloma geocarpum (Harms) Marcechal & Baudet;</td>
</tr>
<tr>
<td></td>
<td>syn: Kerstingiella geocarpa Harms.</td>
</tr>
<tr>
<td>-</td>
<td>Peanut (dry), see Peanut, Group 023: Oilseed</td>
</tr>
</tbody>
</table>
APPENDIX VIII

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED VEGETABLE COMMODITY GROUPS (GROUP 014 - LEGUME VEGETABLES)

(At Step 4)

LEGUME VEGETABLES

Class A

Type 2 Vegetables Group 014 Group Letter Code VP

Group 014. Legume vegetables are derived from the succulent seed and immature pods of leguminous plants commonly known as beans and peas.

Pods are fully exposed to pesticides during the growing season, whereas the succulent seed is protected within the pod from most pesticides; except pesticides with systemic action and underground beans and peas.

The succulent forms may be consumed as whole pods or without pods. Immature soya bean is usually marketed and served with pods, but pods are not edible and only succulent seeds are eaten.

This group contains 5 subgroups based on the morphology and growing practices:

14A Beans with pods
14B Peas with pods
14C Succulent beans without pods
14D Succulent peas without pods
14E Underground beans and peas

Portion of the commodity to which the MRL applies (and which is analysed): Whole commodity, unless otherwise specified.

Group 014 Legume vegetables

Code No. Commodity
VP 0060 Legume vegetables

Subgroup 14A Beans with pods

Code No. Commodity
VP 2060 Beans with pods

(includes all commodities in this subgroup)

VP 0061 Beans with pods (Phaseolus spp.) (immature pods and succulent seeds)

VP 2840 Beans with pods (Vigna spp.) (immature pods and succulent seeds)

- Asparagus bean (pods), see Yard-long bean, VP 0544
- Asparagus pea (pods), see Goa bean, VP 0530
- Black gram (immature pods), see Urd bean, VP 0521
- Bonavist bean (immature pods and succulent seeds), see Lablab bean, VP 0531

VP 0522 Broad bean (immature pods and succulent seeds)

Vicia faba L. subsp. faba, var. faba

VP 2841 Catjang (immature pods and succulent seeds)

Vigna unguiculata (L.) Walp. subsp cylindrica (L.) Verdc.

syn: Dolichos catjang Burm.

- Chinese longbean, see Yard-long bean, VP 0544
- Cluster bean (immature pods), see Guar, VP 0525
Common bean (poroto) (pods and succulent seeds)

Phaseolus vulgaris L., several cultivars

Cowpea (immature pods)

Vigna unguiculata (L) Walp. subsp. unguiculata

- Four-angled bean (immature pods), see Goa bean, VP 0530
 - French bean (immature pods and seeds), see Common bean (pods and succulent seeds), VP 0526

- Garden bean, see Common bean, VP 0526

Goa bean (immature pods)

Psophocarpus tetragonolobus (L.) DC.

- Green bean (immature pods and succulent seeds), see Common bean (pods and succulent seeds), VP 0526
- Green gram (immature pods), see Mung bean, VP 0536
- Green soya bean, see Soya bean (succulent seeds in pods), VP 0546

Guar (immature pods)

Cyamopsis tetragonoloba (L.) Taub; syn: C. psoralioides (lam.) DC.

- Haricot bean (immature pods and succulent seeds), see Common bean (pods and succulent seeds), VP 0526
- Hyacinth bean (immature pods and succulent seeds), see Lablab bean (pods and succulent seeds), VP 0531

Jack bean (immature pods and succulent seeds)

Canavalia ensiformis (L.) DC.

- Kidney bean (pods), see Common bean (pods and succulent seeds), VP 0526

Lablab bean (pods and succulent seeds)

Lablab purpureus (L.) Sweet spp. purpureus

syn: Dolichos lablab L.; Lablab niger Medik; L. vulgaris Savi

- Manila bean (immature pods), see Goa bean (immature pods), VP 0530
- Mat bean (immature pods), see Moth bean (immature pods), VP 0535

Moth bean (immature pods)

Vigna aconitifolius (Jacq.) Verde.

syn: Phaseolus aconitifolius Jacq.; Ph. trilobus Ait;

Mung bean (immature pods)

Vigna radiata (L.) Wilczek, var. radiata; syn: Phaseolus aureus Roxb;

- Navy bean (immature pods and/or succulent seeds), see Common bean VP 0526
- Poroto (pods and succulent seeds) see Common Bean (pods and succulent seeds), VP 0526

Rice bean (immature pods)

Vigna umbellata (Thunb.) Ohwi eg Ohashi;

syn: V. calcarata (Roxb.) Kurz; Phaseolus calcaratus Roxb.

- Runner bean, see Common bean, VP 0526

Scarlet runner bean (pods and seeds)

Phaseolus coccineus L.

- Slicing bean, see Common bean (pods and succulent seeds), VP 0526
- Snap bean (immature pods), see Common bean, VP 0526
<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP 0546</td>
<td>Soya bean</td>
<td>(succulent seeds in pods)
 Glycine max (L.) Merr.;</td>
</tr>
<tr>
<td>VP 2842</td>
<td>Stink bean</td>
<td>(pods and succulent seeds)
 Parkia speciosa Hassk.</td>
</tr>
<tr>
<td>VP 0542</td>
<td>Sword bean</td>
<td>(immature pods and beans)
 Canavalia gladiata (Jacq.) DC.</td>
</tr>
<tr>
<td>VP 0521</td>
<td>Urd bean</td>
<td>(immature pods)
 Vigna mungo (L.) Hepper var. mungo
 syn: Phaseolus mungo L.;</td>
</tr>
<tr>
<td>-</td>
<td>Vegetables soybean (edamame)</td>
<td>see Soya bean (succulent seeds in pods),</td>
</tr>
<tr>
<td>VP 0546</td>
<td>Wax bean</td>
<td>see Common bean, VP 0526</td>
</tr>
<tr>
<td>-</td>
<td>Winged bean</td>
<td>(immature pods), see Goa bean, VP 0530</td>
</tr>
<tr>
<td>VP 0544</td>
<td>Yard-long bean</td>
<td>(pods)
 Vigna unguiculata subsp sesquipedalis (L.) Verdc.</td>
</tr>
<tr>
<td>VP 2061</td>
<td>Peas with pods</td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>VP 0063</td>
<td>Peas</td>
<td>(pods and succulent seeds of Pisum spp.)
 Pisum spp.</td>
</tr>
<tr>
<td>VP 0690</td>
<td>Ben Moringa</td>
<td>(pods)
 Moringa oleifera
 syn: Moringa pterygosperma.</td>
</tr>
<tr>
<td>VP 0524</td>
<td>Chick-pea</td>
<td>(immature pods)
 Cicer arietinum L.</td>
</tr>
<tr>
<td>-</td>
<td>Dwarf pea</td>
<td>see pigeon pea with pods (immature pods), VP 0537</td>
</tr>
<tr>
<td>VP 0528</td>
<td>Garden pea</td>
<td>(immature pods)
 Pisum sativum L. var. sativum</td>
</tr>
<tr>
<td>VP 2860</td>
<td>Grass pea</td>
<td>(immature pods)
 Lathyrus sativus L.</td>
</tr>
<tr>
<td>VP 0533</td>
<td>Lentil</td>
<td>(immature pods)
 Lens culinaris Medik. subsp. culinaris
 syn: Lens esculenta Moench.; Ervum lens L.</td>
</tr>
<tr>
<td>-</td>
<td>Mangetout or Mangetout pea</td>
<td>see Podded pea, VP 0538</td>
</tr>
<tr>
<td>VP 0537</td>
<td>Pigeon pea</td>
<td>(immature pods and young seeds)
 Cajanlus cajan (L.) Millsp. syn: C. indicus Spreng.</td>
</tr>
<tr>
<td>VP 0538</td>
<td>Podded pea</td>
<td>(immature pods)
 Pisum sativum L., subsp. sativum var. macrocarpon Ser.; P. sativum L., spp. sativum, var. sacharatum</td>
</tr>
<tr>
<td>-</td>
<td>Red gram</td>
<td>(immature pods and immature seeds), see Pigeon pea, VP 0537</td>
</tr>
<tr>
<td>-</td>
<td>Snow pea</td>
<td>see Pigeon pea (immature pods), VP 0537</td>
</tr>
<tr>
<td>-</td>
<td>Sugar pea</td>
<td>(immature pods), see Podded pea, VP 0538</td>
</tr>
</tbody>
</table>
Subgroup 14C: Succulent beans without pods

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP 2062</td>
<td>Succulent beans without pods (includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>VP 0062</td>
<td>Beans without pods (Phaseolus spp.) (succulent seeds) VP 2843</td>
</tr>
<tr>
<td>-</td>
<td>Beans without pods (Vigna spp.) (succulent seeds)</td>
</tr>
<tr>
<td>-</td>
<td>Blackeyed peas (succulent seeds), see Cowpea (succulent seeds), VP 2846</td>
</tr>
<tr>
<td>-</td>
<td>Bonavist bean (succulent seeds), see Lablab bean, VP 2848</td>
</tr>
<tr>
<td>VP 0523</td>
<td>Broad bean, without pods (succulent seeds)</td>
</tr>
<tr>
<td>VP 2844</td>
<td>Catjang (succulent seeds)</td>
</tr>
<tr>
<td>VP 2845</td>
<td>Common bean (succulent seeds)</td>
</tr>
<tr>
<td>VP 2846</td>
<td>Cowpea (succulent seeds)</td>
</tr>
<tr>
<td>-</td>
<td>Fava bean (succulent beans), see Broad bean, without pods, VP 0523</td>
</tr>
<tr>
<td>-</td>
<td>Flageolet (succulent beans), see Common bean (succulent seeds), VP 2845</td>
</tr>
<tr>
<td>VP 2847</td>
<td>Goa bean (succulent seeds)</td>
</tr>
<tr>
<td>-</td>
<td>Hyacinth bean (succulent seeds), see Lablab bean (succulent seeds), VP 2848</td>
</tr>
<tr>
<td>VP 2853</td>
<td>Jack bean (succulent seeds)</td>
</tr>
<tr>
<td>VP 2848</td>
<td>Lablab bean (succulent seeds)</td>
</tr>
<tr>
<td>-</td>
<td>Lablab purpureus (L.) Sweet spp. purpureus</td>
</tr>
<tr>
<td>-</td>
<td>Phaseolus lunatus L.; Lablab niger Medik.; L. vulgaris Savi</td>
</tr>
<tr>
<td>VP 0534</td>
<td>Lima bean (succulent seeds)</td>
</tr>
<tr>
<td>VP 0545</td>
<td>Lupin</td>
</tr>
<tr>
<td>-</td>
<td>Mat bean (succulent seeds), see Moth bean (succulent seeds), VP 2849</td>
</tr>
<tr>
<td>VP 2849</td>
<td>Moth bean (succulent seeds)</td>
</tr>
<tr>
<td>-</td>
<td>Sieva bean (fresh beans), see Lima bean, VP 0534</td>
</tr>
<tr>
<td>-</td>
<td>Southern pea, see Cowpea (succulent seeds), VP 2846</td>
</tr>
</tbody>
</table>
VP 0541 Soya bean (succulent seeds)
\textit{Glycine max} (L.) Merr.;
- Soybean, see Soya bean (succulent seeds), VP 0541

VP 2851 Stink bean (succulent seeds)
\textit{Parkia speciosa} Hassk.

VP 2852 Velvet bean
\textit{Mucuna pruriens} (L.) DC.

Subgroup 14D Succulent peas without pods

Code No.
Commodity

VP 2063 Succulent peas without pods
(includes all commodities in this subgroup)

VP 0064 Peas without pods (succulent seeds of \textit{Pisum} spp.)
\textit{Pisum} spp.
- Angola pea (succulent seeds), see Pigeon pea (succulent seeds), VP 2865
- Cajan pea (succulent seeds), see Pigeon pea (succulent g seeds), VP 2865

VP 2862 Chick-pea (succulent seeds)
\textit{Cicer arietinum} L.
- Garbanzos, see Chick-pea (succulent seeds), VP2862

VP 2863 Garden pea, (succulent seeds)
\textit{Pisum sativum} L. var. \textit{sativum}
- Green pea, see Garden pea (succulent seeds), VP 2863

VP 2864 Lentil (succulent seeds)
\textit{Lens culinaris} Medik subsp. \textit{culinaris}
syn: \textit{Lens esculenta} Moench.; \textit{Ervum lens} L.

VP 2865 Pigeon pea (succulent seeds)
\textit{Cajanus cajan} (L.) Millsp.; syn: \textit{C. indicus} Spreng.
- Red gram (succulent seeds), see Pigeon pea (succulent seeds), VP 2865
- Wrinkled pea, see Garden pea (succulent seeds), VP 2863
\textit{Pisum sativum} L., convar. \textit{medullare}

Subgroup 14E Underground beans and peas

Code No.
Commodity

VP 2064 Underground beans and peas
(includes all commodities in this subgroup)

VP 0520 Bambara groundnut (immature seeds)
\textit{Vigna subterranea} (L.) Verdc.

VP 0697 Peanut (immature seeds)
\textit{Arachis hypogaea} L.
FRUITING VEGETABLES, CUCURBITS

Class A

Type 2 Vegetables Group 011 Group Letter Code VC

Group 011 Fruiting vegetables, Cucurbits are derived from the immature or mature fruits of various plants, belonging to the botanical family Cucurbitaceae: usually these are annual vines or bushes. The vegetables are fully exposed to pesticides during the period of fruit development. The edible portion of those fruits of which the inedible peel is discarded before consumption is protected from most pesticides, by the skin or peel, except from pesticides with a systemic action. The entire fruiting vegetable or the edible portion after discarding the inedible peel may be consumed in the fresh form or after processing. The entire immature fruit of some of the fruiting vegetables species may be consumed, whereas only the edible portion of the mature fruit of the same species, after discarding the then inedible peel, is consumed. A number of varieties of winter squashes are eaten with peels, which needs to be considered in exposure assessment of these commodities to avoid underestimating the dietary intake of pesticide residues.

The group Fruiting vegetables, Cucurbits is divided in 2 subgroups:

11A Fruiting vegetables, Cucurbits – Cucumbers and Summer squashes

11B Fruiting vegetables, Cucurbits – Melons, Pumpkins and Winter squashes

Portion of the commodity to which the MRL applies (and which is analysed): Whole commodity after removal of stems.

Group 011 Fruiting vegetables, Cucurbits

Code No. Commodity
VC 0045 Fruiting vegetables, Cucurbits

Subgroup 011A Fruiting vegetables, Cucurbits – Cucumbers and Summer squashes

Code No. Commodity
VC 2039 Fruiting vegetables, Cucurbits - Cucumbers and Summer squashes
 (includes all commodities in this subgroup)
 - Alcayota, see Gourd Malabar, VC 2658
VC 0420 Balsam apple
 Momordica balsamina L.
VC 0421 Bitter melon
 Momordica charantia L.
 - Bitter cucumber, see Bitter melon, VC 0421
 - Bitter gourd, see Bitter melon, VC 0421
 - Balsam pear, see Bitter melon, VC 0421
VC 0422 Bottle gourd
 Lagenaria siceraria (Molina) Standl.;
 syn: L. vulgaris Ser.; L. leucantha (Duch.) Rusby
VC 0423 Chayote
 Sechium edule (Jacq.) Schwartz;
 syn: Chayota edulis Jacq.
VC 2650 Chieh qua (young Chinese waxgourd, immature fruit)
 Benincasa hispida (Thunb.) Cogn. var. chieh-qua How
VC 2651 Chinese cucumber
 Trichosanthes kirilowii Maxim.
- Christophine, see Chayote, VC 0423
- Courgette, see Squash, Summer, VC 0431
VC 0424 Cucumber
 Cucumis sativus L.; English and forcing cucumber cultivars
- Cucumber, brown-netted, see Cucumber, VC 0424
 Cucumis sativus L. var. sikkimensis
VC 2652 Cucumber, exploding
 Cyclanthera brachystachya (Ser.) Cogn.
VC 2653 Cucumber, stuffing
 Cyclanthera pedata (L.) Schrad.
- Cucuzzi, see Bottle gourd, VC 0422
VC 2654 Gac
 Momordica cochinchinensis (Lour.) Spreng.
VC 0425 Gherkin
 Cucumis sativus L.; pickling cucumber cultivars
VC 0426 Gherkin, West Indian
 Cucumis anguria L.
VC 2655 Gourd, bitter snake
 Trichosanthes tri cuspidata Lour.
VC 2656 Gourd, buffalo
 Cucurbita foetidissima Kunth
- Gourd, club, see Snake gourd, VC 0430
VC 2657 Gourd, fluted
 Telfairia occidentalis Hook. f.
VC 2658 Gourd, Malabar
 Cucurbita ficifolia Bouché
VC 2659 Gourds, other, including
 Trichosanthes edulis Rugayah
 Trichosanthes laeoica C. Y. Cheng & Lu Q. Huang
VC 2660 Gourd, pointed
 Trichosanthes dioica Roxb.
VC 2661 Gourd, round
 Benincasa fistulosa (Stocks) H. schaef. & S.S. Renner
- Gourd, Xishuangbanna, see Cucumber, VC 0424
 Cucumis sativus L. var. xishuangbannensis ined.
Indian curry cucumber, see Cucumber, VC 0424
- Indian round gourd, see Gourd, round, VC 2661
 Praecitrullus fistulosus (Stocks) Pangalo
VC 2662 Indian spine gourd
 Momordica dioica Roxb. Ex Willd.
VC 2663 Ivy gourd
 Coccinia grandis (L.) Voigt
Japanese snake gourd
Trichosanthes pilosa Lour.

Loofah, Angled
Luffa acutangula (L.) Roxb.

Loofah, Smooth
Luffa aegyptiaca Mill.
syn: Luffa cylindrica (L.) M. J. Roem;
- Marrow (immature fruit), see Squash, Summer, VC 0431
 Cucurbita pepo L., several cultivars
- Patisson, see Squash, Summer, VC 0431
- Sinkwa or Sinkwa towel gourd, see Loofah, Angled, VC 0427

Snake gourd
Trichosanthes cucumerina L.;
syn: T. anguina L.
- Spiny bitter gourd, see Gac, VR 2654
- Sponge gourd, see Loofah, Smooth, VC 0428

Squash, Summer
Cucurbita pepo L.; Cucurbita pepo L. subsp. pepo; Cucurbita pepo L. subsp. Ovifera (L.) Harz; several cultivars, immature
- Squash, White Bush, see Squash, Summer, VC 0431
- Sweet gourd, see Gac, VR 2654

Tacaco
Sechium tacaco (Pittier) C. Jeffrey
- Vegetable sponge, see Loofah, Smooth, VC 0428
- Wax gourd (immature fruit), see Chieh qua, VC 2650
- West Indian gherkin, see Gherkin, West Indian, VC 0426
- Zapallito italiano (zucchini), see Squash, Summer, VC 0431
- Zucchini, see Squash, Summer, VC 0431
- Zucchetti, see Squash, Summer, VC 0431

Subgroup 011B Fruiting vegetables, Cucurbits – Melons, Pumpkins and Winter Squashes

Code No. Commodity
VC 2040 Fruiting vegetables, Cucurbits – Melons, Pumpkins and Winter Squashes
 (includes all commodities in this subgroup)
 - Acorn squash, see Winter squash, VC 0433
 Cucurbita pepo var. ovifera (L.) Harz

VC 2680 African horned melon
Cucumis metuliferus E. Meyer ex Naudin
- Butternut squash, see Winter squash, VC 0433 or Pumpkins, VC 0429
 Cucurbita moschata Duchesne
- Calabaza, see Winter squash, VC 0433 or Pumpkins, VC 0429
 Cucurbita pepo L.
- Cantaloupe, see Melons, except Watermelon, VC 0046
 Cucumis melo L., subsp. melo var. cantaloupo Ser.
Casabanana

Sicana odorifera (Vell.) Naudin

- **Casaba or Casaba melon**, see Melons, except Watermelon, VC 0046
- **Cheese pumpkin**, see Winter squash, VC 0433 or Pumpkins, VC 0429

 Cucurbita moschata Duchesne

- **Chinese wax gourd** (mature fruit), see Wax gourd (mature fruit), VC 2684
- **Citron melon**, see Watermelon, VC 0432

 Citrus lanatus (Thunb.) Mansf., *var. edulis*;

 syn: *Citrus edulis* Pang.

- **Cucumber, Armenian**, see Melon, Serpent
- **Cushaw**, see Pumpkins, VC 0429

 Mature cultivars of *Cucurbita argyrosperma* C. Huber

- **Giant pumpkin**, see Winter squash, VC 0433 or Pumpkins, VC 0429

 Cucurbita moschata Duchesne

- **Hubbard squash**, see Winter squash, VC 0433
- **Kiwano**, see African horned melon, VC 2680
- **Korean Melon**, see Melons, except Watermelon, VC 0046

 Hybrid cultivars of *Cucumis melo* L. *subsp. agrestis* (Naudin) Pangalo

- **Marrow** (late variety), see Pumpkins, VC 0429

Melons, except Watermelon

Several var. and cultivars of *Cucumis melo* L.

- **Melon, Crenshaw**, see Melons, except Watermelon, VC 0046

 Cultivar of *Cucumis melo* L. *subsp. melo var. inodorus* H. Jacq.

- **Melon, Dudaim**, see Melons, except Watermelon, VC 0046

 Cucumis melo L., *var. dudaim* (L.) Naudin.

- **Melon, Garden**, see Melons, except watermelons VC 0046

- **Melon, Honey Ball**, see Melons, except Watermelon, VC 0046

 Cultivar of *Cucumis melo* L., *subsp. melo var. cantaloupo* Ser.

- **Melon, Honeydew**, see Melons, except Watermelon, VC 0046

 Cultivar of *Cucumis melo* L., *var. inodorus* Naud.

- **Melon, Mango**, see Vine peach

Melon, nara

Acanthosicyos horridus Welw. ex Benth. & Hook. f.

- **Melon, Oriental Pickling**, see Melons, except Watermelon, VC 0046

 Cucumis melo L. *subsp. agrestis* (Naudin) Pangalo *var. conomon* (Thunb.) Makino

- **Melon, Persian**, see Melons, except Watermelon, VC 0046

 Cultivar of *Cucumis melo* L., *subsp. melo var. cantaloupo* Ser.

- **Melon, Pomegranate**, see Melons, except watermelons VC 0046

- **Melon, Serpent**, see Melons, except Watermelon, VC 0046

 Cucumis melo L., *var. flexuosus* (L.) Naudin.

- **Melon, Snake**, see Melons, except Watermelon, VC 0046

 synonym of Melon, Serpent

- **Melon, Snap**, see Melons, except Watermelon, VC 0046

 Acanthosicyos horridus Welw. Ex Benth. & Hook. f.
- **Melon, White-skinned**, see Melons, except Watermelon, VC 0046
 Cultivars of *Cucumis melo* L. subsp. *melo* var. *inodorus* H. Jacq.

- **Melon, Winter**, see Melons, except Watermelon, VC 0046
 synonym of Melons, White-skinned, see there

- **Muskmelon**, see Melons, except Watermelon, VC 0046
 Cultivar of *Cucumis melo* L.; *C. melo* L. var. *melo*

- **Oriental melon**, see Melons, except Watermelon, VC 0046

- **Pumpkin**, see Pumpkins, VC 0429 or Winter squash, VC 0433
 Cucurbita pepo L.; *C. pepo* L. subsp. *pepo*

VC 0429
Pumpkins
Mature cultivars of *Cucurbita maxima* Duchesne; *Cucurbita argyrosperma* C. Huber; *C. moschata* Duchesne; *C. pepo* L. subsp. *pepo* and *C. pepo* L., several cultivars

- **Silver Seed gourd**, see Pumpkins, VC 0429
 Cucurbita argyrosperma C. Huber

- **Spaghetti squash**, see Winter squash, VC 0433 or Pumpkins, VC 0429
 Cucurbita pepo subsp. *pepo*

- **Vine peach**, see Melons, except Watermelon, VC 0046
 Cucumis melo L. subsp. *agrestis* (Naudin) Pangalo var. *chito* (C. Morren) Naudin

VC 0432
Watermelon
Citrullus lanatus (Thunb.) Matsum. & Nakai var. *lanatus*
syn: *C. vulgaris* Schrad.; *Colocynthis citrullus* (L.) O. Ktze.

VC 2684
Wax gourd (mature fruit)
Benincasa hispida (Thunb.) Cogn.;
syn: *B. cerifera* Savi

VC 0433
Winter squash
Mature cultivars of *Cucurbita maxima* Duchesne; *C. maxima* subsp. *maxima*; *C. moschata* Duchesne; *C. pepo* (L.); *Cucurbita pepo* subsp. *pepo* and *Cucurbita pepo* var. *ovifera* (L.) Harz
APPENDIX X

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOOD AND FEED: SELECTED COMMODITY GROUPS (GROUP 020 – GRASSES OF CEREAL GRAINS)

(At Step 5)

TYPE 3 GRASSES

Grasses are herbaceous annual and perennial monocotyledonous plants of different kinds, cultivated extensively for their ears (heads) of starchy seeds used directly for the production of food. Grasses used for animal feed are classified under Class C: Primary Animal feed commodities, Group 051.

The plants are fully exposed to pesticides applied during the growing season.

Cereal grains

Class A

Type 3 Grasses Group 020 Group Letter Code GC

Group 020. Cereal grains are derived from the ears (heads) of starchy seeds produced by a variety of plants, primarily of the grass family (Gramineae).

Pseudo-cereals or pseudo-grains, are not grasses, but have similar uses and are generally considered with cereal grains. Pseudo-cereals, produce dry fruit referred to as seed, nutlets, grains or achenes and are found in families such as Amaranthaceae (amaranths), Chenopodiaceae (Cañihua) and Polygoniaceae (buckwheat). This group also includes the small seeded crop chia (Lamiaceae).

The edible seeds are protected to varying degrees from pesticides applied during the growing season by husks. Husks are removed before processing and/or consumption.

Cereal grains are often exposed to post-harvest treatment with pesticides.

Portion of the commodity to which the MRL applies (and which is analysed): "Whole commodity in trade. Wheat, rye, triticale, maize, sorghum, pearl millet and other similar cereals with husks readily separable from kernels during threshing: kernels. Barley, oats, rice and other similar cereals with husks that remain attached to kernels even after threshing: kernels with husks (Note: For rice, only about 10% of traded grains is with husk). Fresh corn and sweet corn: kernels plus cob without husk. [Note that there are also hullless varieties of barley]

Group 020 Cereal grains

Code No. Commodity

GC 0080 Cereal grains Seeds of gramineous plants and of dicotyledonous plants with similarities in size and type of the seed, residue pattern and the use of the commodity

GC 0081 Cereal grains, cereal grains except pseudo-cereals

GC 0082 Pseudo-cereals, or pseudo-grains, produce dry fruit referred to as seed, nutlets, grains or achenes and are found in families such as Amaranthaceae (amaranths), Chenopodiaceae (Cañihua) and Polygoniaceae (buckwheat). This group also includes the small seeded crop chia (Lamiaceae).

Subgroup 020A Wheat, similar grains, and pseudo-cereals without husks

Code No. Commodity

GC 2086 Wheat, similar grains, and pseudo-cereals without husks

(includes all commodities in subgroup 020A)

GC 3080 Amaranth, grain

Amaranthus spp.

- Amaranth, purple, see Amaranth grain, GC 3080

Amaranthus cruentus L.

GC 0642 Cañihua

Chenopodium pallidicaule Aellen
GC 3081 Chia
Salvia hispanica L.

GC 3082 Cram-cram
Cenchrus biflorus Roxb.

- **Durum wheat**, see Wheat, GC 0654

- **Emmer**, see Wheat, GC 0654

GC 3083 Huauzontle
Chenopodium berlandieri Moq. subsp. *nuttalliae* (Saff.) H. D. Wilson & Heiser

- **Inca wheat**, see Amaranth grain, GC 3080
Amaranthus caudatus L.

- **Princess–feather**, see Amaranth grain, GC 3080
Amaranthus hypochondriacus L.

GC 3084 Psyllium sp.
Plantagospp

- **Psyllium**, see Psyllium sp.GC 3084
Plantago arenaria Waldst. & Kit.

- **Psyllium, blond**, see Psyllium sp. GC 3084
Plantago ovata Forssk.

GC 0648 Quinoa
Chenopodium quinoa Willd.

GC 0650 Rye
Secale cereale L.

- **Spelt**, see Wheat, GC 0654
Triticum spelta L.

GC 0653 Triticale
Hybrid of Wheat and Rye

GC 0654 Wheat
Cultivars of *Triticum aestivum* L.;
syn: *T. sativum* Lam.; *T. vulgare* Vill.; *Triticum* spp., as listed

Subgroup 020B
Barley, similar grains, and pseudo-cereals with husks

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
</table>
| GC 2087 | *Barley, similar grains, and pseudo-cereals with husks*
(includes all commodities in subgroup 020B) |
| GC 0640 | *Barley*
Hordeum vulgare L.;
syn: *H. sativum* Pers. |
| GC 0641 | *Buckwheat*
Fagopyrum esculentum Moench;
syn: *F. sagittatum* Gilib. |
Buckwheat, tartary
Fagopyrum tataricum (L.) Gaertn.

Oats
Avena sativa L.; A. abyssinica Hochst.
- Oat, Red, see Oats, GC 0647
 Avena byzantina Koch

Subgroup 020C Rice Cereals

Code No. Commodity
GC 2088 Rice cereals
 (includes all commodities in subgroup 020C)
GC 0649 Rice
 Oryza sativa L.; several ssp. and cultivars
GC 3086 Rice, African
 Oryza glaberrima Steud.
GC 0655 Wild rice
 Zizania palustris L.
- Wild Rice, Eastern, see wild rice GC 0655
 Zizania aquatica L.

Subgroup 020D Maize, Grain Sorghum and Millet

Code No. Commodity
GC 2089 Maize, Grain Sorghum and Millet
 (includes all commodities in subgroup 020D)
- Acha, see Hungry Rice, GC 0643
- Adlay, see Job's Tears, GC 0644
- African millet, see Millet, GC 0646
- Brown-corn millet, see Millet, GC 0646
- Bulrush millet, see Millet, Bulrush
GC 3087 Canarygrass, annual
 Phalaris canariensis L.
- Cat-tail millet, see Millet, Bulrush
- Chicken corn, see Sorghum, GC 0651
 Sorghum drummondi (Steed.) Millsp. & Chase
- Corn, see Maize, GC 0645
- Dari seed, see Sorghum, GC 0651
- Durra, see Sorghum, GC 0651
 ssp. Sorghum durra (Forsk.) Stapf.
- Feterita, see Sorghum, GC 0651
 ssp. Sorghum caudatum Stapf.
- Finger millet, see Millet, GC 0646
- Fonio, see Hungry Rice, GC 0643
- Fonio, black, see Hungry Rice, GC 0643
 Digitaria iburua Stapf
- Foxtail millet, see Millet, GC 0646
- Fundi, see Hungry Rice, GC 0643
- Guinea corn, see Sorghum, GC 0651
 spp. Sorghum guineense Stapf.
- Hog millet, see Millet, GC 0646

GC 0643

Hungry rice

Digitaria exilis Stapf.; *D. iburua* Stapf.

GC 0644

Job’s tears

Coix lacryma-jobi L.

- Kaffir corn, see Sorghum, GC 0651
- Kaoliang, see Sorghum, GC 0651

GC 0645

Maize

Zea mays L., several cultivars, not including Sweet corn

GC 0646

Millet

Including Barnyard Millet, Bulrush Millet, Common Millet, Finger Millet, Foxtail Millet, Little Millet; (see for scientific names, specific commodities listed as Millet, followed by a specific denomination)

- **Millet, Barnyard**, see Millet, GC 0646

 Echinochloa crus-galli (L.) Beauv.;

 syn: *Panicum crus-galli* L.;

 E. frumentacea (Roxb.) Link;

 syn: *Panicum frumentaceum* Roxb.

- **Millet, Bulrush**, see Millet, GC 0646

 Pennisetum glaucum (L.) R. Br.

 syn: *P. typhoides* (Burm. f.) Stapf. & Hubbard; *P. americanum* (L.) K. Schum.; *P. spicatum* (L.) Koern.

- **Millet, Common**, see Millet, GC 0646

 Panicum miliaceum L.

- **Millet, Finger**, see Millet, GC 0646

 Eleusine coracana (L.) Gaertn.

- **Millet, Foxtail**, see Millet, GC 0646

 Setaria italic (L.) Beauv.;

 Syn: *Panicum italicum* L.; *Chaetochloa italic* (L.) Scribn.

- **Millet, Kodo**, see Millet, GC 0646

 Paspalum scrobiculatum L.

- **Millet, Little**, see Millet, GC 0646

 Panicum sumatrense Roth

- **Millet, Pearl**, see Millet, GC 0646

- **Milo**, see Sorghum, GC 0651

 spp. *Sorghum subglabrescens* Schweinf. & Aschers

- **Pearl millet**, see Millet, GC 0646
GC 0656 **Popcorn**

Zea mays L., var. *everta* Sturt.;
syn: *Zea mays* L., var. *praecox*

- **Proso millet**, see Millet, GC 0646
- **Russian millet**, see Millet, GC 0646
- **Shallu**, see Sorghum, GC 0651
 ssp. *Sorghum roxburghii* Stapf.
- **Sorgo**, see Sorghum, GC 0651

GC 0651 **Sorghum**

Sorghum bicolor (L.) Moench; several *Sorghum* ssp. and cultivars

- **Spiked millet**, see Millet, GC 0646

GC 0652 **Teff or Tef**

Eragrostis (Zucc.) Trotter;
syn: *E. abyssinica* (Jacq.) Link

GC 0657 **Teosinte**

Zea mays ssp. *mexicana* (Schrader) Ittis;
syn: *Zea mexicana* (Schrader) Kunze; *Euchlaena mexicana* Schrader.

Subgroup 020E Sweet Corn Cereals

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 2090</td>
<td>Sweet Corn Cereals</td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in subgroup 020E)</td>
</tr>
<tr>
<td>-</td>
<td>Baby corn, (immature corn) see Sweet corn GC 0447</td>
</tr>
<tr>
<td></td>
<td>Zea mays L., several cultivars</td>
</tr>
<tr>
<td>-</td>
<td>Corn-on-the-cob, see Sweet corn GC 0447</td>
</tr>
<tr>
<td></td>
<td>Zea mays L., several cultivars, not including popcorn</td>
</tr>
<tr>
<td>-</td>
<td>Corn, whole kernel, see Sweet corn GC 0447</td>
</tr>
<tr>
<td></td>
<td>Zea mays L., several cultivars, not including popcorn</td>
</tr>
</tbody>
</table>

GC 0447 **Sweet corn**

Zea mays L., several cultivars, not including popcorn
PROPOSED DRAFT GUIDELINES ON PERFORMANCE CRITERIA FOR METHODS OF ANALYSIS FOR
THE DETERMINATION OF PESTICIDE RESIDUES IN FOOD

(At Step 5)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Objective</th>
<th>Paragraphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles for the Selection and Validation of Methods</td>
<td>4-10</td>
</tr>
<tr>
<td>A. Defining the Purpose of the Method and Scope</td>
<td>4-7</td>
</tr>
<tr>
<td>B. Supplementing other Codex Alimentarius Commission Guidelines</td>
<td>8-9</td>
</tr>
<tr>
<td>C. Method Validation</td>
<td>10</td>
</tr>
<tr>
<td>Performance Parameters for Analytical Methods</td>
<td>11-31</td>
</tr>
<tr>
<td>A. Applicability</td>
<td>12</td>
</tr>
<tr>
<td>B. Selectivity</td>
<td>13-14</td>
</tr>
<tr>
<td>C. Calibration</td>
<td>15-16</td>
</tr>
<tr>
<td>D. Linearity and Intercept</td>
<td>17-18</td>
</tr>
<tr>
<td>E. Matrix effects</td>
<td>19</td>
</tr>
<tr>
<td>F. Trueness and Recovery</td>
<td>20-21</td>
</tr>
<tr>
<td>G. Precision</td>
<td>22-25</td>
</tr>
<tr>
<td>H. Limit of Quantification</td>
<td>26</td>
</tr>
<tr>
<td>I. Analytical Range</td>
<td>27</td>
</tr>
<tr>
<td>J. Ruggedness</td>
<td>28-29</td>
</tr>
<tr>
<td>K. Measurement Uncertainty</td>
<td>30-31</td>
</tr>
<tr>
<td>Performance Acceptability Criteria of Screening Methods</td>
<td>32-34</td>
</tr>
<tr>
<td>Performance Acceptability Criteria of Quantitative Methods</td>
<td>35-43</td>
</tr>
<tr>
<td>Performance Acceptability Criteria of Methods for Analyte Identification and Confirmation</td>
<td>44-51</td>
</tr>
<tr>
<td>A. MS-Based Identification</td>
<td>46-49</td>
</tr>
<tr>
<td>B. Confirmation</td>
<td>50-51</td>
</tr>
<tr>
<td>Tables</td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>Annex</td>
</tr>
</tbody>
</table>

OBJECTIVE

1. The purpose of this guidance document is to define and describe the performance criteria, which should be met by methods to analyse pesticide residues in foods. It addresses the characteristics/parameters to provide scientifically acceptable confidence in the analytical method that is fit for the intended use and may be used to reliably evaluate pesticide residues for either domestic monitoring and/or international trade.

2. This document is applicable to both single residue methods and multi-residue methods (MRMs) that analyse target compounds in all food commodities, including parent pesticide residues and/or their metabolites and degradants in food commodities per the residue definition.

3. This guidance covers qualitative and quantitative analyses, each having their own method performance requirements. Performance acceptability criteria of methods for analyte identification and confirmation are also addressed.

PRINCIPLES FOR THE SELECTION AND VALIDATION OF METHODS

A. Defining the Purpose of the Method and Scope

4. The intended purpose of the method is usually described in a statement of scope, which defines the analytes (residues), the matrices, and the concentration ranges. It also states whether the method is intended for screening, quantification, identification, and/or confirmation of results.

5. In regulatory applications, the maximum residue limit (MRL) is expressed in terms of the "residue definition," which may include the parent compound, a major metabolite, a sum of parent and/or metabolites, or a reaction product formed from the residues during analysis. Residue analytical methods should be able to measure all components of the residue definition.
6. **Fitness-for-purpose** is the extent to which the performance of a method meets the end-user’s needs, and matches the criteria (data quality objectives) agreed between the laboratory and the end-user (or client) of the data, within technical and resource constraints. **Fitness-for-purpose** criteria could be based on some of the characteristics described in this document, but ultimately will be expressed in terms of acceptable combined uncertainty.

7. Selection of methods is based on analytes and the intended purpose of the analyses.

B. Supplementing other Codex Alimentarius Commission Guidelines

8. The Codex Alimentarius Commission (CAC) has issued a guideline for laboratories involved in the testing of foods for import/export which recommends that such laboratories should:
 a. use internal quality control procedures, such as those described in the “Harmonized Guidelines for Internal Quality Control in Analytical Chemistry Laboratories;”
 b. participate in appropriate proficiency testing schemes for food analysis which conform to the requirement laid out in “The International Harmonized Protocol for Proficiency Testing of (Chemical) Analytical Laboratories;” and
 c. whenever available, use methods which have been validated according to principles provided by the CAC.

9. The analytical methods should be used within the internationally accepted, approved, and recognized laboratory Quality Management System to be consistent with the principles in the document for quality assurance (QA) and quality control (QC) referenced above. The on-going performance is monitored through the Quality Management System in place in the laboratory.

C. Method Validation

10. The process of method validation is intended to demonstrate that a method is **fit-for-purpose**. This means that when a test is performed by a properly trained analyst using the specified equipment and materials and exactly following the method protocol, accurate and consistent results can be obtained within specified statistical limits for sample analysis. The validation should demonstrate the identity and concentration of the analyte, taking into account for matrix effects, provide a statistical characterization of recovery results, and indicate if the rates of false positives and negatives are acceptable. When the method is followed using suitable analytical standards, results within the established performance limits should be obtained on the same or equivalent sample material by a trained analyst in any experienced residue testing laboratory. To ensure that validation of the method remains appropriate over time, the method should be continuously assessed using on-going proficiency testing and appropriate quality control samples (e.g. including recovery spikes).

PERFORMANCE PARAMETERS FOR ANALYTICAL METHODS

11. The general requirements for the individual performance characteristics of a method are summarized below.

A. Applicability

12. After validation, the method documentation should provide, in addition to performance specifications (data quality objectives), the following information:
 a. identity of the analytes, including isomers, metabolites and other components where appropriate (e.g. endosulfan I&II, spinosyn A&D);
 b. concentration range covered by the validation (e.g. “0.01-10 mg/kg”);
 c. range of sample matrices covered by the validation (e.g. “cucurbits, root vegetables, citrus”);
d. protocol describing the equipment, reagents, detailed step-by-step procedure including permissible variations (e.g. “heat at 100 ± 5 °C for 30 ± 5 min”), calibration and quality procedures, special safety precautions required, and intended application and critical uncertainty requirements;

e. if required, a quantitative result should be reported together with the expanded measurement uncertainty (MU).

B. Selectivity

13. Ideally, selectivity should be evaluated to demonstrate that no interferences occur which detrimentally affect the analysis. It is impractical to test the method against every potential interferant, but it is recommended that common interferences are checked by analysing a blank for every batch of samples and reagents. Background levels of plasticizers, septa bleed, cleaning agents, reagent impurities, laboratory contamination, carry-over, etc. tend to show up in reagent blanks and must be recognized by the analyst when they occur. Also, analyte-to-analyte interferences must be known by checking individual analytes in mixed standard solutions. Matrix interferences are evaluated by analyses of samples known to be free of the analytes.

14. As a general principle, selectivity should be such that interferences are inconsequential. The ultimate test of selectivity involves the rates of false positives and negatives in the analyses. To minimally estimate rates of false positives and negatives during method validation, an adequate number (suggested >5 each) of diverse matrix blanks (not from the same source) should be analysed along with spiked matrices at the analyte reporting level. Validations of screening methods (presence/absence analyses) are discussed in paragraphs 32-34.

C. Calibration

15. With the exception of gross (also known as “spurious”) errors in preparation of calibration materials, calibration errors are usually (but not always) a minor component of the total uncertainty, and can be safely assigned into other categories. For example, random errors resulting from calibration are part of the uncertainty, while systematic errors cause analytical bias, both of which are assessed as a whole during validation and on-going quality control. Nevertheless, there are some characteristics of calibration that are useful to know at the outset of method validation because they affect optimization of the final protocol. For example, it must be known in advance whether the calibration is linear or quadratic, passes through the origin, and is affected by the sample matrix or not. The described guidelines in this document relate more to validation, which may be more detailed than the calibration undertaken during routine analysis.

16. Replicate measurements are needed to provide an empirical estimate of uncertainty. The following calibration procedures are recommended for the initial method validation:

a. determinations at five or more concentrations should be performed;

b. the calibration standards should be evenly spaced over the concentration range of interest and the calibration range should encompass the entire concentration range likely to be encountered;

c. the calibration standards should be dispersed over the whole sequence, or encompass the beginning and end of the run to demonstrate that calibration integrity is maintained over the entire sequence; and the fit of the calibration function must be plotted and inspected visually and/or by calculation of the residuals (differences between the actual and calculated concentrations of the standards), avoiding over-reliance on correlation coefficients. If individual residuals deviate by more than ±20%, statistical consideration of outliers should be made, possibly leading to re-analysis of the sequence if quality control criteria are not met.

D. Linearity and Intercept

17. Linearity can be tested by examination of a plot of residuals produced by linear regression of the responses on the concentrations in an appropriate calibration set. Any curved pattern suggests a lack of fit due to a nonlinear calibration function. If this is the case, another function such as quadratic should be tested and applied, using at least five concentration levels. Despite its current widespread use as an indication of quality of fit, the coefficient of determination (R^2) may be misleading because it places greater significance on standards with higher concentrations. In this case, an appropriate weighting factor such as 1/x or 1/x^2 should be considered.

18. In general, the use of weighted-linear regression or weighted-quadratic function is recommended rather than linear regression for low part per billion (µg/kg) concentration determinations. The value of the intercept should be close to zero (e.g. <20% of the lowest calibration standard) to reduce errors in calculating residue concentrations at low levels.
E. Matrix Effects

19. Matrix-matched calibration is commonly used to compensate for matrix effects. Extracts of blank matrix, preferably of the same type as the sample, should be used for calibration. An alternative practical approach to compensate for matrix effects in gas chromatographic (GC) analyses is the use of chemical components (analyte protectants) that are added to both the sample extracts and the calibration solutions in order to (ideally) maximize equally the response of pesticides in calibrants in solvent and sample extracts. Alternative ways to compensate for matrix effects involve the use of standard addition, isotopically labeled internal standards (IS), or chemical analogues. However, these approaches are often difficult in MRM s because there are too many residues in different matrices at different levels to devise routine procedures, and the lack of isotopically-labelled standards for so many analytes. If solvent-only calibration is used, a measurement of matrix effects should be made to demonstrate equivalence of results by comparing responses of matrix-matched with solvent-only standards.

F. Trueness and Recovery

20. Trueness is the closeness of agreement between a test result and the accepted reference value of the property being measured. Trueness is stated quantitatively in terms of “bias,” with smaller bias indicating greater trueness. Bias is typically determined by comparing the response of the method to a certified (if available) reference material with a known value assigned to the material. Multi-laboratory testing is recommended ideally. Where the uncertainty in the reference value is not negligible, evaluation of the results should consider the reference material uncertainty as well as the statistical variability from analysing the reference material. In the absence of certified reference materials1,5 guidelines recommend use of an available reference material that is well characterized for the purpose of the validation study.

21. Recovery refers to the proportion of analyte determined in the final result compared with the amount added (usually to a blank) sample prior to extraction, generally expressed as a percentage. Errors in measurement will lead to biased recovery figures that will deviate from the actual recovery in the final extract. Routine recovery refers to the determination(s) performed in quality control spikes in the analysis of each batch of samples.

G. Precision

22. Precision is the closeness of agreement between independent (replicate) test results obtained under stipulated conditions. It is usually specified in terms of standard deviation (SD) or relative standard deviation (RSD), also known as coefficient of variation (CV). The distinction between precision and bias depends on the level at which the analytical system is viewed. Thus, from the viewpoint of a single determination, any deviation affecting the calibration used in the analysis would be seen as a bias. From the point of view of the analyst reviewing a year’s work, the analytical bias will be different every day and should act like a random variable with an associated precision, incorporating any stipulated conditions for the estimation of this precision.

23. For single-laboratory validation, two types of precision sets of conditions are relevant: (a) repeatability, the variability of measurements within the same analytical sequence, and (b) within-laboratory reproducibility, the variability of results among multiple sets of the same sample. It is important that the precision values are representative of likely test conditions. First of all, the variation in conditions among the runs should represent what would normally happen in the laboratory during routine use of the method. This can be done by on-going method performance validation/verification. For instance, variations in reagent batches, analysts, and instruments should be measured in ongoing quality control. Secondly, the test material used should be typical, in terms of matrix and (ideally) the state of comminution, of the materials likely to be encountered in real applications.

24. In single-laboratory validations, precision often varies with analyte concentration. Typical assumptions are that: (a) there is no change in precision with analyte level, or (b) that the standard deviation is proportional to, or linearly dependent on, analyte level. In both cases, the assumption needs to be checked if the analyte level is expected to vary substantially.

25. Precision data may be obtained for a wide variety of different sets of conditions in addition to the minimum of repeatability and between-run conditions indicated here, and it may be appropriate to acquire additional information. For example, it may be useful to the assessment of results, or for improving the measurement, to have an indication of separate operator and run effects between- or within- day, or to have an indication of the precision attainable using one or several instruments. A range of different designs and statistical analysis techniques is available, and careful experimental design is strongly recommended in all such studies. The initial validation should be conducted at the targeted limit of quantification (LOQ) or reporting limit of the method, and at least one other higher level, for example, 2-10x the targeted LOQ or the MRL.
H. Limit of Quantification (LOQ)

26. By long-standing definition among analytical chemists, the LOQ is the concentration at which the average signal/noise ratio (S/N) equals 10 in the analysis. The LOQ in practice can only be estimated because precise determination of the actual LOQ requires many analyses of spiked samples and matrix blanks but the LOQ can change day-to-day due to the performance state of the instrument, among many other factors. Some validation guidelines require that the LOQ be verified to meet method performance criteria via spiking experiments at the LOQ, however day-to-day variations in LOQ tend to force the analyst to greatly over-estimate the actual method LOQ, which can be difficult to implement the strict definition of the LOQ (S/N = 10). Thus spiking at the Lowest Validated Level (LVL) is the more descriptive and proper approach. Furthermore, quantification of analytes should not be made below the lowest calibrated level (LCL) in the same analytical sequence. The S/N at the LCL must be ≥10 (conc. ≥ LOQ), which can be set as a system suitability check required for each analytical sequence. A quality control matrix spike can also be included in each sequence to verify that the reporting limit is achieved in the analysis (an action level that is typically greater than the LCL). In essence, the point of the validation is not to determine the LOQ, but to demonstrate that the lowest reported concentration is meeting the need for the analysis.

I. Analytical Range

27. The validated range is the interval of analyte concentration within which the method can be regarded as validated. The LVL is the lowest concentration assessed during validation that meets method performance criteria. It is important to realize that the validated range is not necessarily identical to the useful range of the calibration. While the calibration may cover a wide concentration range, the validated range (which is usually more important in terms of uncertainty) will typically cover a more restricted range. In practice, most methods will be validated for at least two levels of concentration. The validated range may be taken as a reasonable extrapolation between these points of concentration, but many laboratories choose to validate at a third level to demonstrate linearity. For monitoring residue concentrations with respect to Codex standards, the analytical method must be sensitive enough so that the LVL for each analyte is at or below the current Codex maximum residue limit (CXL). The validation range should cover the existing CXL. When a CXL does not exist, the lowest level may be MRLs established by a national regulatory authority. If no CXL or MRL exists for a given analyte/matrix pair, then 0.01 mg/kg generally serves as the desirable LVL. In MRM, the typical analytical goal is to set the LVL (and reporting level) at 0.01 mg/kg in diverse, yet representative commodities.

J. Ruggedness

28. The ruggedness (often synonymous with robustness) of an analytical method is the resistance to change in the results produced by the analytical method when deviations are made from the experimental conditions described in the procedure. The limits for experimental parameters should be prescribed in the method protocol (although this has not always been done in the past), and such permissible deviations, separately or in any combination, should produce no meaningful change in the results produced. A “meaningful change” here would imply that the method would not meet the data quality objectives defined by the fitness for purpose. The aspects of the method that are likely to affect results should be identified, and their influence on method performance evaluated by using ruggedness tests.

29. Examples of the factors that a ruggedness test could address are: changes in the instrument, operator, or brand/lot of reagent; concentration of a reagent; pH of a solution; temperature of a reaction; time allowed for completion of a process, and/or other pertinent factors.

K. Measurement Uncertainty (MU)

30. The formal approach to measurement uncertainty estimation is a calculated estimate from an equation or mathematical model, around which the true value can be expected to lie within a defined level of probability. The procedures described in method validation are designed to ensure that the equation used to estimate the result, with due allowance for random errors of all kinds, is a valid expression embodying all recognized and significant effects upon the result. Further considerations and description of the measurement uncertainty are provided in “Guidelines on Estimation of Uncertainty of Results”.

31. It is preferable to express the uncertainty of measurement as a function of concentration and compare that function with a criterion of fitness for purpose agreed between the laboratory and the client or end-user of the data. One possibility is to calculate MU from proficiency test data.

6 Estimation of Uncertainty of Results, CAC/GL 59-2006
PERFORMANCE ACCEPTABILITY CRITERIA OF SCREENING METHODS

32. Screening methods are usually either qualitative or semi-quantitative in nature, with the objective of discriminating samples which contain no residues above a threshold value (“negatives”) from those which may contain residues above that value (“indicated positives”). The validation strategy therefore focuses on establishing a threshold concentration above which results are “potentially positive,” determining a statistically based rate for both “false positive” and “false negative” results, testing for interferences and establishing appropriate conditions of use. The screening concept offers laboratories an effective means to extend their analytical scope to analytes, which potentially have a low probability of being present in the samples. Analytes that occur more frequently should continue to be monitored using validated quantitative MRMs. As in quantitative methods, screening methods should also be checked in terms of selectivity and sensitivity. In some applications, commercial test kits may be useful, but current techniques have rarely met multi-residue screening needs economically in practice. Selectivity and analytical scope are often improved when chromatography or other form of separation is used prior to detection. Another approach is to use screening methods that involve mass spectrometry (MS)-based detection, which is able to distinguish particular chemicals from each other.

33. The selectivity of screening methods should be adequate and must be able to distinguish the presence of the target compound, or group of compounds, from other substances that may be present in the sample material. Selectivity of screening methods is normally not as great as that of a quantitative method. Screening methods often take advantage of a structural feature common to a group or class of compounds and may be based on immunoassays or spectrophotometric responses which may not unambiguously identify a compound.

34. The validation of a screening method based on a screening detection limit (SDL) can be focused on detectability. For each representative type of matrix, a minimal validation should involve analysis of at least 5 samples spiked at the estimated SDL. The samples and at least 5 matrix blanks from different sources (more replicates of greater diversity provides better validation) with a minimum of two different samples for each type of matrix should be suitable for the intended scope of the laboratory. Additional validation data can be collected from ongoing QC-data and method performance verification during routine analysis. The SDL of the qualitative screening method is the lowest level at which an analyte has been detected (not necessarily meeting the MS-identification criteria) in at least 95% of the samples (e.g. an acceptable false-negative rate of 5%).

PERFORMANCE ACCEPTABILITY CRITERIA OF QUANTITATIVE METHODS

35. Selectivity is of particular importance in defining the performance characteristics of quantitative methods used in regulatory control programs for pesticide residues in foods. Ideally, the method needs to provide a signal response that is free from interferences from other analytes and matrix compounds that may be present in a sample or sample extract. Chromatographic analyses based on peaks, which are not fully resolved, provide less reliable quantitative results. Use of element-specific detectors or different detection wavelengths or MS-based detectors which are better able to distinguish a particular compound or structure, combined with chromatographic separation, improves the selectivity of quantitative methods.

36. The requirement to recover a range of different pesticide residues in one extraction increases the potential for compromised selectivity in MRMs compared to single residue methods. Using less selective extraction and clean-up procedures is likely to result in greater co-extracted matrix material in the final extract. The nature and quantities of such co-extracted material can vary markedly based on the matrix method analytes of interest. Care is therefore required when setting criteria for the precision and trueness of MRMs to ensure that quantification will not be affected by chemical interferences.

37. In addition to the selectivity of a method, the ability of the method to provide a reliable quantitative result must be demonstrated (i.e. trueness - see section F and precision – see section G). Ideally, the relative standard deviation between the original sample and replicates will be less than 30 percent.

38. Acceptability criteria for a quantitative analytical method should be demonstrated at both initial and ongoing validation stages, as being capable of providing acceptable mean recovery values at each spiking level. For validation, a minimum of 5 replicates is required (to check the recovery and precision) at the targeted LVL, LOQ, or reporting limit of the method, and at least one additional higher level, for example, 2-10x the LVL or the MRL. If a method is being used for compliance testing (i.e. if a commodity is complaint with an established MRL) the MRL (or CXL) must be one of the spiking levels. When the residue definition includes two or more analytes, the method should be validated for all analytes.
39. The trueness of a method may be determined by analysis of a certified reference material, by comparison of results with those obtained using another method for which the performance parameters have previously been rigorously established (typically a collaboratively studied method), or by determination of the recovery of analyte fortified into known blank sample material. Acceptable mean recoveries for enforcement purposes should range from 70-120% with a RSD ≤20%. In certain cases (typically with MRMs), recoveries outside this range may be acceptable, such as when recovery is lower but consistent (e.g. demonstrating good precision). This is more justifiable if the reason for the systematic low bias is well established by chemistry (e.g. known analyte distribution between phases in a partitioning step). However, a more accurate method should be used, if practicable. Recoveries >120% are likely to be attributable to a positive interference or bias that should be investigated.

40. Analysis of incurred matrix to support method validation is encouraged. For interpreting recoveries, it is necessary to recognize that analyte spiked into a test sample may not behave in the same manner as the biologically incurred analyte (pesticide residue). In many situations, the amount of an extracted incurred residue is less than the total incurred residues actually present. This may be due to losses during extraction, intra-cellular binding of residues, the presence of conjugates, or other factors that are not fully represented by recovery experiments using analyte-fortified blank matrices.

41. At relatively high concentrations, analytical recoveries are expected to approach one hundred percent. At lower concentrations, particularly with methods involving extensive extraction, isolation, and concentration steps, recoveries may be lower than at higher concentrations. Regardless of what average recoveries are observed, recovery with low variability is desirable so that a reliable correction for recovery can be made to the final result, when required.

42. In general, residues data do not have to be adjusted for recovery when the mean recovery is within the range of 70-120%. Recovery corrections should be made consistent with the guidance provided by the CAC/GL 37-2001⁷. It is of over-riding importance that all data, when reported, should (a) be clearly identified as to whether or not a recovery correction has been applied and (b) include the amount of the correction and the method by which it was derived, if a recovery correction has been applied. This will promote direct comparability of data sets. Correction functions should be established on the basis of appropriate statistical considerations, and documented, archived and made available to the client.

43. In accordance with ISO IEC17025⁴, participation in a proficiency testing program should be done. Many proficiency testing schemes are available and affordable for laboratories worldwide that conduct pesticide residue monitoring. Inter-laboratory testing may also be performed.

PERFORMANCE ACCEPTABILITY CRITERIA OF METHODS FOR ANALYTE IDENTIFICATION AND CONFIRMATION

44. By far, gross errors (spurious mistakes made during sample preparation) are the greatest source of misidentifications in MS-based methods. For this reason, all regulatory enforcement actions (above an MRL or for those with no MRL on that commodity) require confirmation of the result via re-extraction of a replicate test portion of the original sample and re-analysis, ideally using different chemistries of sample preparation and/or analysis.

45. Selectivity is the primary consideration for methods of identification. The method should be sufficiently selective to provide unambiguous identification. MS coupled to a chromatographic separation method is a very powerful combination for identification of an analyte in the sample extract. This method provides information about the structure of the analyte that is not obtainable with chromatography alone. GC-MS and LC-MS tools (full-scan, selected ion mode, high-resolution, tandem MS/MS, hybrid systems, among other advanced techniques) provide many measurable parameters, such as retention times, chromatographic peak shapes, ion intensities and relative abundances/ratios, mass accuracies, and other useful aspects to help make analyte identifications.

A. MS-Based Identification

46. There are no universally accepted criteria for identification. Table 1 gives examples of criteria.

47. Current practices in qualitative (and quantitative) analysis of pesticide residues commonly involve chromatography + selected ion monitoring (SIM) or MS/MS techniques. Full-spectral (full-scan or time-of-flight) MS is also an acceptable tool that uses spectral library matching factors and/or relative abundances of major ions within the full spectra. The latter case can be treated as ion ratios in the criteria given below using at least 3 ions. In the former case, matching factors should be ≥900 (≥90% match) for regulatory identification purposes, and the library reference spectra should be obtained from background-subtracted high purity standards on the same instrument using the same conditions as in the sample analysis. The following identification criteria should be met:

 a. Analyte retention time reference values must be determined from contemporaneously analysed (within the same batch) high concentration calibration standards in solvent-based solutions (matrix-matched calibration standards may be used if it is known that no interferences are present).

 b. Ion ratio reference values are to be set in the same way as in paragraph 47 a. The different ions used for identification must co-elute and have similar peak shapes. The ion from the calibration standard with the higher average intensity is to be used as the denominator in the ion ratio, expressed in percentage (due to signal fluctuations, matrix effects, etc. deviations of ion ratios up to 30% are acceptable).

 c. The signal to noise ratios for measured peaks must be greater than 3 and/or the signal must exceed the threshold intensity level as compared to the signal of a suitable calibration standard or control encompassing the level of interest.

 d. The ion transitions chosen for identification purposes should make chemical/structural sense (be sure that the ions chosen do not originate from a degradant, impurity, or confusion with a different chemical than the analyte).

 e. All measured reagent and matrix blank samples should be shown to be free of carry-over, contamination, and/or interferences above 20% of the LOQ.

48. The minimum acceptable retention time for the analyte(s) should be at least twice the retention time corresponding to the void volume of the column. The retention time of the analyte in the extract should correspond to that of the reference value (\(47a\)) within ±0.2 min or 0.2% relative retention time, for both gas chromatography and liquid chromatography.

49. Methods based on high-resolution mass spectrometry are considered to provide improved reliability through accurate measurement of the mass/charge of the ion than cannot otherwise be obtained using unit-resolution mass spectrometry techniques. Different types and models of mass spectrometric detectors provide different degrees of selectivity, which relates to the confidence in identification. The example criteria for identification provided in Table 1 should only be regarded as guidance criteria for identification, not as absolute criteria to prove presence or absence of a compound.

B. Confirmation

50. If the initial analysis does not provide unambiguous identification or does not meet the requirements for quantitative analysis, a confirmatory analysis is required. This may involve re-analysis of the extract or the sample. In cases where a CXL/MRL is exceeded, a confirmatory analysis of another test portion is always required. For unusual pesticide/matrix combinations, a confirmatory analysis is also recommended.

51. If the initial confirmatory method is not based on an MS technique, the confirmatory methods should involve MS-based analyte identification. Moreover, the confirmatory methods should use an independent approaches based on different chemical mechanisms (such as LC and GC separations). In some situations, confirmation by independent laboratories may be appropriate. Examples of analytical techniques that may be suitable to meet criteria for confirmatory analytical methods are summarized in Table 2.
Table 1. Identification criteria for different MS techniques

<table>
<thead>
<tr>
<th>MS detector / characterist ics</th>
<th>Typical systems (examples)</th>
<th>Acquisition</th>
<th>Requirements for identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit mass resolution</td>
<td>quadrupole, ion trap, TOF</td>
<td>full scan, limited m/z range, SIM</td>
<td>3 ions</td>
</tr>
<tr>
<td>MS/MS</td>
<td>triple quadrupole, ion trap, Q-trap, Q-TOF, Q-Orbitrap</td>
<td>selected or multiple reaction monitoring, mass resolution for precursor-ion isolation equal to or better than unit mass resolution</td>
<td>2 product ions</td>
</tr>
<tr>
<td>Accurate mass measurement</td>
<td>High resolution MS: TOF or Q-TOF Orbitrap or Q-Orbitrap FT-ICR-MS sector MS</td>
<td>full scan, limited m/z range, SIM, fragmentation with or without precursor-ion selection, or combinations thereof</td>
<td>2 ions: 1 molecular ion, (de)protonated molecule or adduct ion with mass acc. ≤ 5 ppm(a,c) plus 1 MS/MS product ion(d)</td>
</tr>
</tbody>
</table>

- \(a\) preferably including the molecular ion, (de)protonated molecule or adduct ion
- \(b\) including at least one fragment ion
- \(c\) < 1 mDa for m/z < 200
- \(d\) ≤10 ppm
- \(e\) in case noise is absent, a signal should be present in at least 5 subsequent scans
- \(f\) if the precursor mass accuracy is less than 5 ppm and the product ion mass accuracy is less than 10 ppm, ion ratio tolerances is optional

Table 2. Examples of detection methods suitable for the confirmatory analysis of substances

<table>
<thead>
<tr>
<th>Detection method</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC or GC and MS</td>
<td>If sufficient number of fragment ions are monitored</td>
</tr>
<tr>
<td>LC-DAD</td>
<td>If the UV spectrum is characteristic</td>
</tr>
<tr>
<td>LC – fluorescence</td>
<td>In combination with other techniques</td>
</tr>
<tr>
<td>2-D TLC – (spectrophotometry)</td>
<td>In combination with other techniques</td>
</tr>
<tr>
<td>GC-ECD, NPD, FPD</td>
<td>Only if combined with two or more separation techniques</td>
</tr>
<tr>
<td>Derivatization</td>
<td>If it was not the first choice method</td>
</tr>
<tr>
<td>LC-immunogram</td>
<td>In combination with other techniques</td>
</tr>
<tr>
<td>LC-UV/VIS (single wavelength)</td>
<td>In combination with other techniques</td>
</tr>
</tbody>
</table>
DEFINITIONS

Analyte: The chemical substance sought or determined in a sample (CAC/GL 72-2009).

Analyte protectant: Compounds that strongly interacts to fill active sites in the gas chromatographic system, thereby reducing the analyte interactions with those active sites and yielding less peak tailing or losses, thus a higher analyte response.

Analytical quality controls: Calibration standards, blanks, spikes, reference sample, systems suitability sample, or similarly laboratory-generated analytical test designed to verify if the batch (sequence) of samples being analysed meet the specified performance characteristics (data quality objectives).

Applicability: The analytes, matrixes, and concentrations for which an analytical method can be used satisfactorily (CAC/GL 72-2009).

Coefficient of Variation (CV): Often referred to as the Relative Standard Deviation (RSD). This is a measure of precision in quantitative studies comparing the variability of sets with different means.

Confirmation: The combination of two or more analyses that are in agreement with each other, at least one of which meets identification criteria.

Confirmatory method: A method that is capable of providing complementary information in agreement with a previous result. Ideally, a different subsample is analysed with a method involving a different chemical mechanism than in the first analysis, and one of the methods meets analyte identification criteria with an acceptable degree of certainty at the level of interest.

False positive: A result wrongly indicating that the analyte is present or exceeds a specified concentration (e.g. CXL/MRL or reporting level).

False negative: A result wrongly indicating that the analyte is not present or does not exceed a specified concentration (e.g. CXL/MRL or reporting level).

Fortification: Addition of analytes for the purposes of determining the recovery (also known as spiking).

Identification: Process of unambiguously determining the chemical identity of an analyte or its metabolite(s) in an analysis.

Incurred residue: Residue occurring in a commodity resulting from specific use of a pesticide or from consumption by an animal or environmental contamination in the field, as opposed to residues present due to laboratory fortification of samples.

Interference: Intrinsic or extrinsic response unrelated to an analyte (e.g. noise) due to electronic, chemical, or other factors related to the instrumentation, environment, method, or sample.

Interferent: A chemical or other factor causing an interference

Internal standard (IS): A chemical added at a known amount to samples and/or standards in a chemical analysis, including the blank and calibration standards. This substance can then be used for calibration by plotting the ratio of the analyte signal to the internal standard signal as a function of the concentrations. This ratio for the samples is then used to obtain the analyte concentrations. The internal standard used needs to provide a signal that is similar to the analyte signal in most ways but sufficiently different so that the two signals are readily distinguishable from each other.

Limit of quantification (LOQ): The lowest concentration or mass of the analyte that has been validated with acceptable accuracy by applying the complete analytical method. In practice, this is typically the analyte concentration at which the average signal/noise is 10. [See also paragraph 26].

Linearity: The ability of a method of analysis, within a certain range, to provide an instrumental response or results, proportional to the quantity of analyte to be determined in the laboratory sample (CAC/GL 72-2009).

Lowest Calibrated Level (LCL): The lowest concentration (or mass), which the determination system is successfully calibrated, through the analysis batch.

Lowest Validated Level (LVL): The lowest validated spiking level meeting the method performance acceptability criteria.

Matrix: The material or component sampled for pesticide residue studies.

Matrix blank: Sample material or sample portion containing no detectable concentration of the analytes of interest.
Matrix effect: An influence of the one or more undetected components from the sample on the measurement of the analyte concentration or mass.

Matrix-matched standards: Standard solutions prepared in final extracts of matrix blanks similar to that of the sample to be analysed which is intended to compensate for matrix effects and possible interferences during analysis.

Maximum residue level/limit (MRL/CXL): Maximum concentration of a residue that is legally permitted or recognized as acceptable in, or on, food commodities as set by Codex (CXL) or a national regulatory authority (MRL). The term “tolerance” used in some countries is, in most instances, synonymous with MRL (normally expressed as mg/kg product weight).

Measurement uncertainty: Parameter associated with the results of a measurement, characteristic of the dispersion of the values that could be reasonably attributed to what is measured.

Multi-class method: Method which allows simultaneous measurement of 2 or more residue groups (or families).

Multiresidue method (MRM): A method which can determine a large number of compounds typically from different chemical classes

Precision: Degree of variability of a measurement around a mean.

Quantitative method: A method capable of producing analyte concentration (determinative) results with trueness and precision that comply with established criteria.

Recovery: Amount measured as a percentage of the amount of analyte(s) (active substance and relevant metabolites) originally added to a sample of the appropriate matrix, which contains either no detectable level of the analyte or a known detectable level. Recovery experiments provide information on both precision and trueness and thereby the accuracy of the method.

Relative Standard Deviation (RSD): The standard deviation, divided by the absolute value of the arithmetic mean, expressed in percentage. It refers to the precision of the method (also known as coefficient of variation-CV).

Repeatability: Precision usually expressed as RSD, obtained from the same measurement procedure or test procedure; the same operator; the same measuring or test equipment used under the same conditions; the same location and repetition over a short period of time (CAC/GL 72-2009).

Reproducibility: Precision (typically expressed as RSD) from observation conditions where independent test/measurements results are obtained with the same method on identical test/measurement items in different test or measurement facilities with different operators using different equipment (CAC/GL 72-2009).

Ruggedness: A measure of the capacity of an analytical procedure to remain unaffected by small but deliberate various in method parameters and provides an indication of its reliability during normal usage (CAC/GL 72-2009).

Sample preparation: Involves the extraction of a test portion of the sample, its clean-up and other steps in the method that leads to a final extract for analysis.

Sample processing: Procedure to yield a test portion for analysis that is representative of the collected sample and maintains the integrity of the analytes. This involves cutting, homogenization, comminution, blending, or other means using appropriate techniques and equipment depending on the sample type and sizes of the collected sample and test portions.

Screening Detection Limit (SDL): Lowest level of fortification that has been shown to have certainty at a 95% confidence level.

Screening Method: A method that meets predetermined criteria to detect the presence, or absence, of an analyte or class of analytes, at or above the minimum concentration of interest.

Selectivity: The extent to which a method can determine particular analyte(s) in a mixture(s) or matrices(s) without interferences from other components of similar behaviour (CAC/GL 72-2009).

Sensitivity: Quotient of the change in the indication of a measuring system and the corresponding change in the value of the quantity being measured (CAC/GL 72-2009).

Single Residue Method: A method which determines a single analyte or a small group of analytes with similar physico-chemical properties.
Standard addition: The method of standard addition is a type of quantitative analysis approach sometimes used in analytical chemistry whereby a known quantity of analyte is added directly to the aliquots of final extracts.

Trueness: The closeness of agreement between the average of an infinite number of replicate measured quantity value and a reference quantity value (CAC/GL 72-2009).

Uncertainty: A parameter associated with the result of a measurement that characterizes the dispersion of values that could reasonably be attributed to the measurement.
TABLE 1: CCPR SCHEDULE AND PRIORITY LISTS OF PESTICIDES (NEW COMPOUNDS, NEW USES AND OTHER EVALUATIONS)

2017 CCPR SCHEDULE OF JMPR EVALUATIONS (PROPOSED) - NEW COMPOUND EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Prioritisation criteria</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicyclopyrone (999); USA (herbicide); [Syngenta]</td>
<td>Bicyclopyrone (999)</td>
<td>Registered; MRLs > LOQ? Y</td>
<td>Corn; Barley; Wheat; Sugarcane; Soybean</td>
<td>Corn (29); Barley (12); Wheat (20); Sugarcane (11); Soybean (20)</td>
</tr>
<tr>
<td>Cyclaniliprole [Ishihara Sangyo Kaisha] USA (999) (insecticide) Moved from 2016</td>
<td>Cyclaniliprole</td>
<td>Not Registered until March 2016 MRLs > LOQ</td>
<td>Potato; broccoli; cabbage; mustard green; brussels sprout; kale; cauliflower; soybean, dried; soybean, immature (with pods); tomato; pepper; apple; pear; cherry; peach; plum; apricot; plum; nectarine; almond hulls; almond; pecan; lettuce, head; lettuce, leaf; spinach; grape; cucumber; muskmelon; summer squash; tea - India</td>
<td>Potato (8); broccoli (21); cabbage (34); mustard green (5); brussels sprout (6); kale (4); cauliflower (8); soybean, dried (6); soybean, immature (with pods) (3); tomato (53); pepper (36); apple (46); pear (16); cherry (17); peach (24); plum (26); apricot (6); plum (26); nectarine (2); almond hulls (5); almond (5); pecan (5); lettuce, head (9); lettuce, leaf (11); spinach (9); grape (43); cucumber (9); muskmelon (10); summer squash (9); tea (6)</td>
</tr>
<tr>
<td>Fenazaquin (999) (insecticide) [Gowan] USA Moved from 2015 following discussion</td>
<td>Fenazaquin (999)</td>
<td>Registered MRLs > LOQ</td>
<td>Alfalfa; apples; apricots; berries; citrus; cotton; cucurbits (cucumbers, melons, zucchini, squash, pumpkin); eggplant; grapes; hops; nectarines; peaches; pears; peppers; pineapples; plums; prunes; strawberries; tea; tomatoes; tree nuts; zucchini</td>
<td>India - Tea</td>
</tr>
<tr>
<td>Fenpyrazamine (fungicide) Japan [Sumitomo Chemical] (999)</td>
<td>Fenpyrazamine</td>
<td>Registered USA, EU, Japan</td>
<td>[Sumitomo] Almond; apricot; bushberry subgroup; caneberry subgroup; cherry; cucumber; eggplant; ginseng; grape (table, wine and juice); lettuce (head and leaf); peach; pepper; pistachio; plum; strawberry; tomato</td>
<td>[Sumitomo] Almond (nutmeats - 7, hulls - 7); apricot (8); bushberry subgroup (blueberry - 8); caneberry subgroup (caneberry - 5); cherry (12); cucumber (protected - 8); ginseng (3); grape (table, wine and juice) (US - 19), (EU - 16); lettuce (head and leaf) (head w/wo wrapper leaves - 10+10, leaf - 10); peach (12); pepper (protected - 8); plum (12); strawberry (24); tomato (protected - 8)</td>
</tr>
<tr>
<td>Isoprothiolane (999) Japan, India fungicide</td>
<td>Isoprothiolane (999)</td>
<td>Registered Japan</td>
<td>Rice Nihon Nohyaku</td>
<td>Rice 6</td>
</tr>
</tbody>
</table>
TOXICOLOGY RESIDUE Prioritisation criteria Commodities Residue trials provided

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Prioritisation criteria</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nihon Nohyaku</td>
<td>Natamycin(999); (Fungistat); [DSM Food Specialties]; USA</td>
<td>Registered; MRLs> LOQ</td>
<td>Mushroom; Pineapple, citrus, stone fruit, pome fruit, avocado, kiwi fruit, mango, pomegranate</td>
<td>Mushroom (2); Pineapple (2), orange (3), lemon (3), grapefruit (3)</td>
</tr>
<tr>
<td></td>
<td>Phosphorous acid (999)[Nufarm] Australia; Fosetyl-aluminium [Bayer CropScience] Germany (fungicide)</td>
<td>Registered; MRLs >LOQ</td>
<td>BCS: Table and wine grapes; Pome fruit; Citrus fruit; Berries and other small fruit; Avocado; Pineapple; Tomato; Peppers, sweet; Peppers, chili; Cucumber, Gherkin; Melon; Watermelon; Lettuce, head; Lettuce, leaf; Spinach; Cabbage, head; Cauliflower; Hops; Coffee; US add on: Citrus Post harvest, tree nuts, grapes</td>
<td>USA: navel orange (5); mandarin orange (5), lemon (5), grapefruit (5); Valencia (5); almond (5); walnut (5); pistachio (5); avocado (5)</td>
</tr>
<tr>
<td></td>
<td>Triflumezopyrim (999); Insecticide; DuPont – USA</td>
<td>Registered No expected Oct 2016; MRLs > LOQ (not yet known)</td>
<td>Rice</td>
<td>Rice (30 trials from various countries))</td>
</tr>
</tbody>
</table>

NEW USES AND OTHER EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (020) [Dow AgroSciences]</td>
<td>India Tea</td>
<td>Tea; Cotton (22 total; 18 USA, 4 Brazil)</td>
<td></td>
</tr>
<tr>
<td>Acephate (95) India</td>
<td>fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum, rice and grapes)</td>
<td>Await field trial information</td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Residue trials provided</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| Review of new tox. Data | Acetamiprid (246) [Nippon Soda] | Iran – pistachios Mustard green (IR4) | Await field trial information
COMMENT: Although acetamiprid was quite recently reviewed by JMPR (2011), there are new toxicological data on development neurotoxicity which may lead to a lowering of the current ARfD (0.1 mg/kg bw). EFSA, in its reasoned opinion on developmental neurotoxicity of acetamiprid and imidacloprid (December 2013) recommends a lower ARfD of 0.025 mg/kg bw. With such a lowered ARfD, the CXLs for apple, chard and citrus fruit may be of concern. Iran – pistachios (4) |
<p>| | Azoxystrobin (229) [Syngenta] | Indonesia and Vietnam: dragon fruit; Egypt: guava; Canola, sugarcane | Dragon Fruit (7); Guava (6); Canola (21), sugarcane (16) |
| | Bifenthrin (178) India [FMC] | India - strawberry, mango Lettuce head, celery (alternative GAP) | Await field trial information |
| | Captan (7) (fungicide) [Arysta USA] | Ginseng | Ginseng (3) |
| | Chlorpyrifos (017) India | fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum, rice and grapes). | Await field trial information |
| | Cyprodinil (207) [Syngenta] France | carrots; beans, except broad bean and soya bean (green pods and immature seeds), celery, cucumber, globe artichoke, guava, pomegranate, potato, almond. Pecan | Carrot (8), beans with pods (9), celery (8), cucumber (5), globe artichoke (4), guava (5), pomegranate (4), potato (16), almond (4). Pecan (5) |
| | Difenconazole (224) [Syngenta] | Indonesia and Vietnam: dragon fruit; Egypt: guava; Republic of Korea: paprika; chili pepper USA: almonds, pulses, blueberries, ginseng, globe artichoke, apple, pear, sweet corn, watermelon, coffee, strawberry, rice, Guatemala: snap beans and snow peas (edible, podded) | Dragon Fruit (7); Guava (6), Paprika (6); chili pepper (6), Almond (5), lentils (3), blueberries (11), ginseng (4), globe artichoke (4), apple (5), pear (4), sweet corn (9), watermelon (4), coffee (4), strawberry (9), rice (10) |</p>
<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fonicamid (999) Insecticide [Ishihara Sangyo Kaisha] USA</td>
<td>Pulses (VD 0070) and Legume Vegetables (VD 0060) USA- Citrus fruits</td>
<td>Dry Bean (12); Dry Pea (5); Succulent Bean (13); Succulent Pea (13), Orange (12); Grapefruit (6); Lemon (5)</td>
</tr>
<tr>
<td>Moved from 2016 on request</td>
<td>Fenamidone (264) [Bayer CropSciences]</td>
<td>Mustard green, spinach – alternative GAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluxapyroxad (256) [BASF]</td>
<td>Citrus</td>
<td>Citrus (13)</td>
</tr>
<tr>
<td></td>
<td>Fluensulfone (265) [Adama]</td>
<td>coffee, citrus, sugarcane, soybean, black pepper</td>
<td>coffee (4), citrus 27, sugarcane (4), soybean (4), black pepper (4)</td>
</tr>
<tr>
<td></td>
<td>Fluopyram (243) [Bayer CropScience]</td>
<td>Artichoke, Barley, Chicory, Citrus, Cotton, Herbs (dry), Hops, Maize, Mango, Peanut, Rape seed, Rice, Soya bean, Spices, Sunflower seed, Wheat Peppers</td>
<td>Artichoke (4), Chicory (8), Citrus (48), Cotton (11), Herbs (dry) (9), Hops (13), Maize (16), Mango (8), Peanut (12), Rape seed (24), Rice (8), Soya bean (21), Spices (4), Sunflower seed (24), Wheat and Barley (44)</td>
</tr>
<tr>
<td></td>
<td>Flupyradifurone (999) [Bayer CropScience]</td>
<td>Stone fruit</td>
<td>Stone fruit (40)</td>
</tr>
<tr>
<td></td>
<td>Imidacloprid (206)</td>
<td>Pistachio (Iran),</td>
<td>Pistachios (4)</td>
</tr>
<tr>
<td></td>
<td>Imazamox (276), imazapyr (267) [BASF] Australia</td>
<td>Barley</td>
<td>Barley (12)</td>
</tr>
<tr>
<td></td>
<td>Isopyrazam (249) [Syngenta]</td>
<td>tomato, melon, pepper, cucumber, cereals, oil seeds, peanuts, peach, apricot, pome fruit, carrots,</td>
<td>Wheat (16), barley (16), oil seed rape (16), peanuts (4), peach (4), apricot (4), apples (16) carrot (16), tomato (16), peppers (14), cucumbers (24), melons (24)</td>
</tr>
<tr>
<td></td>
<td>Isoxaflutole [Bayer CropScience] (268)</td>
<td>Soya bean (label review)</td>
<td></td>
</tr>
<tr>
<td>EU (tox)</td>
<td>Lambda-cyhalothrin (146)</td>
<td>Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum), grapes,Tea - India, coffee</td>
<td>Await field trial information</td>
</tr>
<tr>
<td></td>
<td>Penthionpyrad (253)</td>
<td>Maize fodder, Mustard greens (alternative GAP)</td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Residue trials provided</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Moved at request of USA and DuPont</td>
<td>Picoxystrobin– [Dupont] – USA (258)</td>
<td>Fruiting vegetables, cucurbits; stone fruit; pome fruit; grapes; legume vegetables; bulb vegetables; strawberry; brassica vegetables; leafy vegetables; root and tuber vegetables; sunflower; tree nut; peanut; rice; cotton and tomato</td>
<td>Brassica (broccoli, cauliflower, cabbage, mustard greens), 30; bulb vegetables (green onion, dry bulb onion), 15; coffee, 4; cotton, 13; cucurbits, 30 (cucumbers, 12); muskmelons, 9; summer squash, 9; fruiting vegetables, 44 (tomatoes, 24); bell peppers, 13; (7 non-bell peppers); grape, 13; leafy vegetables, 44 trials (leaf lettuce 10); head lettuce, 11; celery, 10; spinach, 9; peanut, 13; pome (apple, pear), 26 (apple 17, pear 9); rice, 11; root and tuber vegetables, 56 trials (potatoes, 21; sugarbeets, 13; radishes, 6; carrots, 10; turnips, 6); stone fruit (cherries; peaches, plums), 30; strawberry, 9; succulent/edible podded legumes, 40 (8 edible podded bean, 4 edible podded pea, 17 succulent bean, and 11 succulent pea); sugarcane, 4; sunflower, 9; tree nuts, 12 (6 almond, 6 pecan)</td>
</tr>
<tr>
<td>Profenofos (171) India</td>
<td>fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum), Tea, coffee</td>
<td>Await field trial information</td>
<td></td>
</tr>
<tr>
<td>Propiconazole (160)</td>
<td>India Tea Citrus, stone fruit, pineapple</td>
<td>Tea Citrus – orange, mandarin, lemon, grapefruit (16), Stone fruit – cherry, peach, nectarine and plum (28), Pineapple (4)</td>
<td></td>
</tr>
<tr>
<td>Propylene oxide [Balchem] (250) – USA - JMPR 2013</td>
<td>Propylene oxide [Balchem] (250) Tree nuts</td>
<td>Moved at the request of manufacturer</td>
<td></td>
</tr>
<tr>
<td>Prothioconazole (232) [Bayer CropScience]</td>
<td>Cotton</td>
<td>Cotton (16)</td>
<td></td>
</tr>
<tr>
<td>Pyraclostrobin (210) [BASF]</td>
<td>Pyraclostrobin (210) Registered? Yes MRLs > LOQ? Yes - all commodities listed for evaluation:</td>
<td>Pome fruits, olives, persimmon, tropical fruits (mango, papaya, passion fruit, pine apple), leek, brassica vegetables, fruiting vegetables, corn salad (lamb’s lettuce), spinach, legume vegetables (beans and peas), root and tuber vegetables, stem vegetables, rice, sugar cane, peanuts, cacao, coffee, tea</td>
<td>Pome fruits (8), olives (12), persimmon (3), tropical fruits (mango (8), papaya (4), passion fruit (8), pine apple (8)), leek (8), brassica vegetables (20), fruiting vegetables (15), corn salal (lamb’s lettuce) (4), spinach (extrapolation from lettuce, head (29)), legume vegetables (beans and peas) (43), root and tuber vegetables (46), stem vegetables (33), rice (about 20), sugar cane (48), peanuts (31), cacao (4), coffee (7), tea (6 - 10)</td>
</tr>
<tr>
<td>Quinclorac [BASF] (287)</td>
<td>Canola, rice</td>
<td>Canola (8), rice (8)</td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Residue trials provided</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Spinetoram (233) – [Dow AgroSciences]</td>
<td>USA: cucurbits; pepper; strawberries; plum; cherry; apricot; potato; soybean; corn; tangerine; sweetcorn; kiwi; passion fruit</td>
<td>US: cucurbits (8); pepper (8); strawberries (8); plum (8); cherry (8); apricot (4); potato (4); soybean (4); corn (4); tangerine (8); sweetcorn (4); kiwi (3); passion fruit (4)</td>
</tr>
<tr>
<td></td>
<td>Thailand; Columbia; New Zealand; USA</td>
<td>NZ: feijoa, passionfruit, tamarillo</td>
<td>NZ: feijoa (4); passionfruit (4); avocado (4); tamarillo (4).</td>
</tr>
<tr>
<td></td>
<td>Thailand: mango, litchi</td>
<td>Thailand: mango (6); litchi (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colombia: avocado</td>
<td>Colombia: avocado (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spiroteramat (234) Bayer</td>
<td>Iran - pistachios</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tebuconazole (189) [Bayer CropScience] USA</td>
<td>Kenya (common beans)</td>
<td>Green bean (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>India Tea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trifloxystrobin (213) [Bayer CropScience]</td>
<td>Cotton; Ginseng (Korea)</td>
<td>Cotton (12) Ginseng (6), head cabbage (6), Cauliflower + broccoli (6), Spinach (6).</td>
</tr>
<tr>
<td></td>
<td>head cabbage, Cauliflower + broccoli, Spinach,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERIODIC REVIEW

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Comments</th>
<th>Previous evaluation</th>
<th>ADI</th>
<th>ARfD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlormequat (15) [BASF]</td>
<td>Chlormequat (15)</td>
<td>Cereals; cottonseed; maize; rapeseed; maize fodder; cereals fodder/straw; meat; milk; eggs</td>
<td>Cereals - 64 trials (16 trials each for wheat, barley; oats and rye); grapes - 8 trials; soybean - 8 trials; cottonseed - 4 trials; potato - 4 trials; onion - 4 trials; meat/milk/eggs</td>
<td>1994 0.05</td>
<td>1997 0.05</td>
<td>1999</td>
</tr>
<tr>
<td>Moved from 2016</td>
<td></td>
<td>All CXLs supported</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clethodim (187) USA</td>
<td>Clethodim (187)</td>
<td>Bean; broccoli; cabbage; carrot; cranberry; cucurbits; hops; lettuce; pea; strawberry; blueberry</td>
<td>Blueberry (9) – Awaiting further advice</td>
<td>1994 0.01</td>
<td>1994</td>
<td>NR 2004</td>
</tr>
<tr>
<td>Arysta LifeScience RESERVE 3</td>
<td>USA – Artichoke; Caneberry; Safflower, Apple, Pear, Cherry, Peach, Plum</td>
<td>Artichoke (3); Caneberry (6); Safflower (4); Apple (14), Pear (6), Cherry (15), Peach (9), Plum (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenpropimorph (188) [BASF]</td>
<td>Fenpropimorph (188) [BASF] fungicide</td>
<td>Banana; cereals; sugar beet; cereals fodder/straw; meat; milk; eggs</td>
<td>Cereals (56 trials); banana (23); sugar beet (8)</td>
<td>1993 0.03</td>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
<td>Previous evaluation</td>
<td>ADI</td>
<td>ARfD</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Fenpyroximate (193) [Nihon Nohyaku]</td>
<td>Fenpyroximate (193) [Nihon Nohyaku]</td>
<td>US Add-ons: potato; bean (snap); melons; cucumber; stone fruit; avocado; mint, Banana; Caneberry; Celery; Pepper; tomato; Summer squash; watermelon Brazil – coffee, papaya</td>
<td>US Data: potato (16); bean (snap) (8); melons (8); cucumber (9); cherry (8); peach (10); plum (6); avocado (5); mint (6) banana (5); Caneberry (7); Celery (8); Pepper (16); tomato (19); Summer squash (5); watermelon (4); Brazil - coffee (8), papaya (3)</td>
<td>1995</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Carbendazim [Nippon Soda Co] (72)</td>
<td>Carbendazim</td>
<td>Mandarinis (8), Orange (8), Hazelnut (4), Almond (5), Pecan (9), Pistachio (3), Apple (11), Pear (10), Apricot (13), Peach (9), Nectarine (2), Plum (17), Cherry (8), Strawberry (10), Grape (16), Banana (4), Potato (3), Green Onion (3), Tomato (8), Squash, summer (10), Cucumber (11), Melon (16), Watermelon (9), Brussels sprouts (4), Bean, snap (11), Bean dry (10), Soya beans (23), Canola seed (7), Barley (11), Oats (8), Wheat (11), Peanut (18) India Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum), Tea - Await field trial data</td>
<td>Manufacturer of thiophanate-methyl will support Codex MRLs for carbendazim (72) which covers thiophanate-methyl (77). all the relevant studies required to maintain the Codex MRLs for thiophanate-methyl (expressed as carbendazim) will be submitted Public health concerns were lodged by the EU – see next table The last periodic re-evaluation of carbendazim was in 1998. Active substances benomyl and thiophanate-methyl are no longer supported by the sponsor but the CXLs for carbendazim still cover uses of these two active substances meaning that a couple of CXLs are obsolete. Moreover, the EU has a lower ARfD. Acute health risks were identified for several commodities in the 2006 CCPR. In addition, the EU received an import tolerance application for the use of carbendazim in rice and it turned out that the existing CXL for rice is based likely on an obsolete US GAP on benomyl. In this case as well an acute risk could not be excluded</td>
<td>1995</td>
<td>0.4</td>
<td>NR (1998)</td>
</tr>
<tr>
<td>Kresoxim-methyl (199) Periodic evaluation (BASF) RESERVE 2</td>
<td>Kresoxim-methyl (199)</td>
<td>Citrus, pome fruits, stone fruits, strawberry, small berries, sunflower, grapes, grape leaves, dried grapes, bulb vegetables, leek, cucurbits - inedible peel, cucurbits - edible peel, wheat, barley, straw and fodder of cereals, olives, mango, pecans, beetroots, bell peppers, tomato, egg plants, animal</td>
<td>Citrus (19), pome fruits (37), stone fruits (10), strawberry (24), small berries (6), sunflower (10), grapes (12), grape leaves (16), bulb vegetables (16), leek (16), cucurbits - inedible peel (14), cucurbits - edible peel (8), wheat (20), barley (14), straw and fodder of cereals (34), olives (8), mango (4), pecans (6), beetroots (10), bell peppers (10), tomato (12)</td>
<td>1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
<td>Previous evaluation</td>
<td>ADI</td>
<td>ARfD</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Methidathion (51)</td>
<td>Methidathion (51) insecticide</td>
<td>The active substance has been re-evaluated for residues (after its first inclusion in 1972) in 1992. An ARfD was derived in the toxicological re-evaluation in 1997. As a consequence of this ARfD a couple of MRLs are not safe for consumers. Due to the fact that no periodic re-evaluation of residues took place in 42 years it is proposed to carry out a new evaluation.</td>
<td>The JMPR has established an ADI of 0.001 mg/kg bw/d and an ARfD of 0.01 mg/kg bw/d in 1997. A risk assessment was performed using the EFSA PRIMo including all MRLs that were considered relevant for international trade. The ADI was exceeded for 25 European diets with the highest exposure representing 2392% of the ADI. Citrus fruits, olives for oil production and milk were shown to be the main contributors. Citrus fruits also exceeded the ARfD (up to 6631%). A second exposure calculation delete the existing MRLs for citrus fruits, pome fruits and sunflower seeds still showed an that the ADI for 5 European diets was exceeded (up to 301%). For further details see EFSA evaluation on the internet at http://www.efsa.europa.eu/en/efsajournal/doc/1639.pdf.</td>
<td>1992</td>
<td>0.001 - 1997</td>
<td>0.01 - 1997</td>
</tr>
<tr>
<td>Oxamyl (126) [Dupont]</td>
<td>Oxamyl (126)</td>
<td>Potato, Root and tuber vegetables, including Carrot, Parsnips, Sugar beet, Brussels sprouts -; Citrus (mandarin) (orange), Banana, Tomato, Pepper, Aubergine, Edible-peel cucurbit (cucumbers – gherkins – courgettes, Inedible-peel cucurbit</td>
<td>Potato (16), Root and tuber vegetables, including Carrot, Parsnips (9), Sugar beet (19), Brussels sprouts (3 - minor crop, <LOQ residues, Citrus (8 mandarin) (8 orange), Banana (4 <LOQ residues), Tomato (22 protected), Pepper (10 protected), Aubergine (8 protected), Edible-peel cucurbit (11 cucumbers protected – gherkins – 11 courgettes protected), Inedible-peel cucurbit (8 protected)</td>
<td>1986R 2002T</td>
<td>0.009 2002</td>
<td>0.009 2002</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Prioritisation criteria</td>
<td>Commodities</td>
<td>Residue trials provided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorfenapyr Tox 2012</td>
<td>Chlorfenapyr [BASF] (254)</td>
<td>Registered</td>
<td>Bell peppers, eggplant, soybean, soybean processed, tea, tomato, tomato processed</td>
<td>Bell peppers (8), eggplant (5), soybean (10), soybean processed (3), tea (6), tomato (8), tomato processed (3),</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethiprole (999) (insecticide) [Bayer CropScience] – Germany</td>
<td>Ethiprole (999)</td>
<td>Registered MRLs > LOQ</td>
<td>Coffee; corn/maize; rice; soybean and food of animal origin</td>
<td>Coffee (15); corn/maize (10); rice (12); soybean (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandomestrob (999) (fungicide) [Sumitomo Chemical]</td>
<td>Mandomestrob</td>
<td>Registered, MRLs>LOQ</td>
<td>Canola, Grape, Strawberry</td>
<td>Canola (23); Grape (16); Strawberry (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norflurazon USA (herbicide) (999) [TessenderloKerley Inc.]</td>
<td>Norflurazon (Moved from 2016 at request of nominator)</td>
<td>Registered MRLs > LOQ</td>
<td>Almond; apple; apricot; asparagus; avocado; blackberry; blueberry; cranberry; cherry (sweet/tart); citrus fruits group; cottonseed; grape; hazelnut; hops; nectarine; peach; peanut; pear; pecan; plums and prunes; raspberry; soybean; walnut</td>
<td>Almond: 7; apple: 8; apricot: 2; asparagus: 6; avocado: 3; blackberry: 1; blueberry: 6; cranberry: 5; cherry: 3; citrus fruits: 8; cottonseed: 10; filberts: 3; grapes: 14; nectarine: 2; peach: 4; pear: 10; pear: 4; pecans: 4; plums: 6; raspberry: 6; soybeans: 22; walnuts: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrifluquinazon (999) (insecticide) [Nihon Nohyaku Japan]</td>
<td>Pyrifluquinazon [moved from 2015 at the request of manufacturer]</td>
<td>Registered Japan; KOREA</td>
<td>Citrus; pome fruits; potatoes; stone fruits; grapes; tree nuts; melons; tea; grapes (table grapes, raisins, wine); fruiting vegetables, cucurbits; cotton; leafy vegetables; brassica leafy and head/stem vegetables</td>
<td>Almonds (10); pecans (10); grape (table) (24); raisin, juice (if MRL not included under table grape); plum (18); peach (24); cherry (16); apple (24); pear (12); lemon (10); grapefruits (12); oranges (24); cantaloupe (12); cucumbers (14); summer squash (10); peppers (24); tomatoes (28); cauliflower/broccoli (12); cabbage (16); potatoes (33); cotton seed (24); tea (6) and corresponding animal commodity MRLs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PydiflumetofenSYN 545794 (999) (fungicide) Canada [Syngenta]</td>
<td>Pydiflumetofen SYN545794 (999) [Moved from 2017 on request]</td>
<td>Registered – No (2014 status) MRL>LOQ</td>
<td>Soybean seed; Pulses (dry beans, dry peas, lentils, chickpeas), grapes; fruiting vegetables; cucurbits; leafy vegetables; potato; corn; wheat; barley; oats, peanuts, apples, canola</td>
<td>Wheat (33 trials), barley (21 trials), oats (22 trials), canola (21 trials), grapes (12 trials), apples (8 trials), dry beans (11 trials), dry peas (10 trials), fruiting vegetables (tomato (12 trials), bell and non-bell peppers (9 trials)), leafy vegetables (head and leaf lettuce (16 trials), spinach (8 trials), celery (8 trials)), cucurbits (cucumber (7 field and 3 protected), squash (6 trials), cantaloupe (6 trials)), corn (field and popcorn (23 trials), peanuts (12 trials), soybeans (21 trials), potatoes (26 trials)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Prioritisation criteria</td>
<td>Commodities</td>
<td>Residue trials provided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDE-777 (999)</td>
<td>XDE-777 (999)</td>
<td>Registered - Soon MesoAndean</td>
<td>Bananas, Wheat, triticale, rye and durum</td>
<td>Banana – 8 trials, Cereals (Wheat 8 trials)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dow AgroSciences</td>
<td>Dow AgroSciences; France</td>
<td>countries (2015-6); UK (2018) MRLs > LOQ – Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metconazole (999)</td>
<td>Metconazole</td>
<td>Registered US MRLs > LOQ</td>
<td>USA- Stone fruit group; Blueberry; Banana;</td>
<td>USA- Banana (12), barley grain (28), blueberry (11), cotton seed (12), corn/maize (20), sweet corn (12), tree nuts (10), peanuts (14), soya bean (30), stone fruits (22), sugar beet roots (12), sugarcane cane (8), sunflower (12), oats (12), rape oilseed (16), dried shelled peas pulses (15), dry beans (19), triticale wheat (31), potato (32), fresh legumes, peas without pod (13), onion (4), garlic (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Valent USA Corporation, on behalf of Kureha Corporation Japan] (fungicide)</td>
<td>[Valent USA Corporation] (999)</td>
<td></td>
<td>Garlic; Onion, Bulb; Legume vegetables;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pulses; Soya bean; Root and tuber vegetables (except Sugar beet (root)); Sugar beet (roots); Barley; Maize; Oats; Rye; Triticale; Wheat; Sugar cane; Tree nuts; Oilseed (except Cotton seed; Peanuts, Soya bean and Sunflower)**; Cotton seed; Peanuts; Sunflower seed; Meat (from mammals other than marine mammals); Mammalian fats (except milk fats); Edible offal (Mammalian); Milks; Poultry meat; Poultry fats; Poultry, Edible offal; Egg; Peanut oil, crude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluazinam (999)</td>
<td>Fluazinam (999)</td>
<td>Registered MRLs > LOQ</td>
<td>USA- Apples; Mayhaw; Brassica (Cole) Leafy Vegetables plus Turnip greens; Bushberry; Carrot; Ginseng; Lettuce, Head and Leaf; Edible-podded Legume Vegetables, Except Peas; Succulent Bean, includes Lima Bean, Except Peas; Dry Beans, Except Peas and Soybeans; Onions, Bulb; Melons; Squashes/ Cucumbers; Peppers/ Eggplants; Peanuts; Tuberosous and Corm vegetables; Soybean; Wine grape; Tea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ISK Biosciences; Ishihara Sangyo Kaisha] USA (fungicide)</td>
<td></td>
<td></td>
<td>USA&CAN: Apple (20); Broccoli (13); Cabbage (20); Mustard greens (11); Blueberry (13); Carrot (13); Ginseng (5); Head lettuce (7); Leaf lettuce (7); Succulent beans (11);Lima beans (7); Dried beans (16); Onion (9); Cantaloupe (11); Cucumber (6); Summer squash (6); Bell pepper (9); Non-bell pepper (4); Peanut (10); Potato (12); Soybean (16); USA, CAN, GRC, FRA, ITA, DEU, ESP, CHL: Grape (23); JPN: Tea (5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyriofenone (999)</td>
<td>Pyriofenone (999)</td>
<td>Registered in EU and Japan MRLs > LOQ</td>
<td>USA- Berries and other small fruits; Fruiting vegetables; Mango</td>
<td>USA&CAN: Grape (12); Strawberry (9); Blueberry (10); Blackberry (6); Kiwi (3); Cucumbers (9); Summer Squash (9); Cantaloupe (5); BRA: Mango (4); EU: Table and Wine Grapes (20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Prioritisation criteria</td>
<td>Commodities</td>
<td>Residue trials provided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinalphos (999)</td>
<td>Quinalphos (999)</td>
<td></td>
<td>Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, grean pea, bitter gourd, cucumber, brinjal and capsicum), grape, spices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India insecticide</td>
<td>India</td>
<td></td>
<td>India - Tea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moved on request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricyclazole (999)</td>
<td>Tricyclazole (999)</td>
<td></td>
<td>Rice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India fungicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moved on request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioxazafen (999)</td>
<td>Tioxazafen and its</td>
<td>Registered? no MRLs > LOQ? Corn and cotton seed no, soybean seed yes</td>
<td>USA- Corn, cotton, soybean</td>
<td>Corn (22), Cotton (13), Soybean (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Monsanto]- USA</td>
<td>metabolite benzamidine (999)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(nematicide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethion (34) India</td>
<td>Ethion (34)</td>
<td>Registered Y MRLs > LOQ</td>
<td>Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, grean pea, bitter gourd, cucumber, brinjal and capsicum), grapes, tea</td>
<td>Await field trial information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiromesifen (999)</td>
<td>Spiromesifen (999)</td>
<td></td>
<td>Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, grean pea, bitter gourd, cucumber, brinjal and capsicum), grapes, tea</td>
<td>Await field trial information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexaconazole (170)</td>
<td>Hexaconazole (170)</td>
<td>Registered Y MRLs > LOQ</td>
<td>India Tea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENT: This compound was removed from the Pesticide List in 1978 and all CXLs revoked. A full toxicological package will be required.
<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abamectin [Syngenta] (177)</td>
<td>Caneberry, Sweetcorn, Green Onion, Beans - shelled, Soybean, Pineapple Grape, mandarin (Thailand) Spinach (alternative GAP)</td>
<td>Caneberry (7), sweetcorn (12), green onions (5), lima bean (7), soybean (20), pineapple (8)</td>
<td></td>
</tr>
<tr>
<td>Acephate (95) India</td>
<td>Rice, grapes</td>
<td>Await field trial information</td>
<td></td>
</tr>
<tr>
<td>Acetamiprid (246) [Nippon Soda]</td>
<td>India - Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, grean pea, bitter gourd, cucumber, brinjal and capsicum), grapes, tea</td>
<td>Await field trial information</td>
<td></td>
</tr>
<tr>
<td>Bentazone [BASF] (172)</td>
<td>Field pea (USA) - 4 year rule granted in 2014 Possible move to periodic review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzovindiflupyr (261) [Syngenta]</td>
<td>Coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifenthrin [FMC] (178)</td>
<td>Barley; barley (straw fodder); - 4 year rule granted in 2014 Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, grean pea, bitter gourd, cucumber, brinjal and capsicum), grapes,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos (017) India</td>
<td>Rice, grapes</td>
<td>Await field trial information</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil (81); (fungicide) [Syngenta]</td>
<td>Orange; Lemon; Grapefruit; Lettuce; Strawberry; Almond; Radish (root veg); mustard greens; guava; lychee, USA- Cranberry (under the 4 year rule).</td>
<td>Orange (12), Lemon (5), Grapefruit (6), Lettuce (13), Strawberry (8), Almond (5) radish (7); mustard greens (9); guava (5); lychee (4)</td>
<td></td>
</tr>
<tr>
<td>Cyantraniliprole [DuPont] USA</td>
<td>USA- fruiting vegetables, other than cucurbits (except sweetcorn); grapes; strawberries; cucurbit vegetables (greenhouse); olives; artichoke, Globe; mangos; cranberries; rice</td>
<td>[fruiting vegetables - tomatoes (19), peppers (24)]; grapes (18); strawberries (29); [cucurbit vegetables (greenhouse cucumbers) (5)]; olives (9); artichokes, Globe (5); mangos (8); cranberries (6); rice (6)</td>
<td></td>
</tr>
<tr>
<td>Cyazofamid [ISK Biosciences] USA</td>
<td>USA- Herbs, bulb vegetables</td>
<td>USA- Chive (9); Green Onions (5); Dry Bulb Onions (10)</td>
<td></td>
</tr>
<tr>
<td>Diquat [Syngenta] (031)</td>
<td>Cereals—wheat, barley, oat (Australia); Pulse (Canada)—4 year rule (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Residue trials provided</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Moved on request</td>
<td>Diazinon (22) India</td>
<td>Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum), grapes</td>
<td>Await field trial information</td>
</tr>
<tr>
<td></td>
<td>Fluazifop-p-butyl (999)</td>
<td>Blueberry; Caneberry; Lettuce; Strawberry; Onion; Mustard Greens; papaya</td>
<td>Blueberry (9); Caneberry (6); Lettuce (26); Strawberry (6); Onion, green (4); Mustard Greens (12); papaya (8)</td>
</tr>
<tr>
<td></td>
<td>Herbicide [Syngenta] USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fludioxonil [Syngenta]</td>
<td>Carrots, Celery, Guava, Pineapple, Kale, Pomegranate</td>
<td>Carrots (4), celery (8), guava (5), pineapple (4), mustard green (7), cabbage (6), brocoli (6), pomegranate (4)</td>
</tr>
<tr>
<td></td>
<td>Fluensulfone (265) [Adama]</td>
<td>cereal, tree nut, stone fruit, pome fruit, com, guava, cotton</td>
<td>Cereal (56), tree nut (10), stone fruit (21), pome fruit (26), com (21), guava (4), cotton (4)</td>
</tr>
<tr>
<td></td>
<td>Imidacloprid (206) India</td>
<td>Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum), grapes</td>
<td>Await field trial information</td>
</tr>
<tr>
<td></td>
<td>Isofetamid [IshiharaSangyoKaisha] USA</td>
<td>USA- Pome fruits; Stone fruits; Berries and other small fruits; Legume vegetables; Pulses; Almond; Soybean</td>
<td>USA&CAN: Apple (20); Pear (10); Peach (13); Plum (9); Cherry (15); Blueberry (10); Raspberry (5); Kiwi (3); Snap bean (8); Dry bean (15); Almond (5); BRA: Soybean (4)</td>
</tr>
<tr>
<td></td>
<td>Isoprotiolane (999) LATAM fungicide Nihon Nohyaku</td>
<td>Nihon Nohyaku– banana</td>
<td>Banana (16)</td>
</tr>
<tr>
<td></td>
<td>Isoprotiolane (999) LATAM fungicide Nihon Nohyaku</td>
<td>Nihon Nohyaku– banana</td>
<td>Banana (16)</td>
</tr>
<tr>
<td></td>
<td>Lufenuron [Syngenta]</td>
<td>citrus, coffee</td>
<td>citrus (12), coffee (5)</td>
</tr>
<tr>
<td></td>
<td>Mesotrione [Syngenta]</td>
<td>Citrus, Pome Fruit, Stone Fruit, Tree Nuts</td>
<td>Citrus – orange, grapefruit, lemon (23), Pome fruit – apple, pear (18), Stone fruit – cherry, peach, plum (21), Tree nuts – almond, pecan (10)</td>
</tr>
<tr>
<td></td>
<td>Metalaxyl-M [Syngenta] (212)</td>
<td>Cocoa beans (4 year rule granted in 2014), Republic of Korea (ginseng)</td>
<td>Ginseng (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comment from Manufacturer- Consider aligning with Metalaxyl review, if needed to avoid MRL gaps. There are CXLs formetalaxyl-M pending at Step 5/8, which could replace any metalaxyl CXLs that might be withdrawn during review. In addition for cocoa, the MRL at Step 5/8 is not aligned with today’s practice (no OECD MRL calculator used, Syngenta consider the MRL at Step 5/8 too low). Syngenta is also generating new trials on cocoa.</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Residue trials provided</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Methomyl</td>
<td>(94) India</td>
<td>Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum), grapes</td>
<td>Await field trial information</td>
</tr>
<tr>
<td>Moved from 2017</td>
<td>Penthionpyrad (253) USA</td>
<td>USA – Blueberry; Caneberry</td>
<td>Blueberry (9) and Cranberry (7)</td>
</tr>
<tr>
<td>Pyriproxyfen</td>
<td>(200) Costa Rica (from 2016 as requested)</td>
<td>Costa Rica: banana; Philippines: papaya; Malaysia/Singapore: mango; Panama: pineapple USA: Cucurbit vegetables Canada - Greenhouse tomatoes, and greenhouse bell peppers</td>
<td>Summer Squash (6), Cucumber (6), Cantaloupe (7) Greenhouse tomatoes (11), greenhouse bell peppers (8) Banana (12), papaya (6), mango (6), pineapple (6)</td>
</tr>
<tr>
<td>Profenofos</td>
<td>(171) India</td>
<td>Rice, grapes</td>
<td>Await field trial information</td>
</tr>
<tr>
<td>Propamocarb</td>
<td>(148) [Bayer CropSciences]</td>
<td>Feeding studies</td>
<td></td>
</tr>
<tr>
<td>Sulfoxalor</td>
<td>(252) [Dow AgroSciences] USA - Re-evaluation of developmental tox, based upon new data</td>
<td>Kenya, Tanzania, Uganda: passion fruit; Ghana and Senegal: mango</td>
<td>Passion fruit (6); mango (6)</td>
</tr>
<tr>
<td>Thiabendazole</td>
<td>[Syngenta]</td>
<td>Legumes and Pulses</td>
<td>Legumes and pulses (48)</td>
</tr>
<tr>
<td>Triazophos</td>
<td>(143) India</td>
<td>Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, cucumber, brinjal and capsicum), grapes</td>
<td>Await field trial information</td>
</tr>
<tr>
<td>Trinexapac</td>
<td>[Syngenta]</td>
<td>Rice, Rye</td>
<td>Rice (16)</td>
</tr>
<tr>
<td>Herbs, spices etc - India</td>
<td>Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curry leaves (GAP or monitoring data)</td>
<td>Profenofos (171), chlorypyrifos (17), cypermethrin (118), methyl parathion (59), triazophos (143), ethion (34), bifenthrin (178)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry chilli, chilli powder (monitoring data)</td>
<td>Ethion (34), triazophos (143), acephate (95), chlorfenapyr (254), chlorypyrifos (17), deltamethrin (35), carbendazim (72), cypermethrin (118), profenofos (171), phosalone (60), fenpropahrin (185)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cummin (monitoring data)</td>
<td>Acetamiprid (246), carbendazim (72), clothianidin (238), fenpropahrin (185), hexaconazole (17), lambda-cyhalothrin (146), profenofos (171), thiamethoxam (245), tricyclazole (999), phorate (112)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardamom (monitoring data)</td>
<td>Phosalone (60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fennel and fenugreek (monitoring data)</td>
<td>Chlorypyrifos (17), dicofol (26), hexaconazole (170), propiconazole (160)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black pepper (monitoring data)</td>
<td>Dicofol (26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry ginger powder (monitoring data)</td>
<td>Carbendazim (72), chlorypyrifos (17), iprobenfos (999), metalaxyl (138), phorate (112), quinalphos (999)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2019 NEW COMPOUND EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Prioritisation criteria</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broflanilide (999) (insecticide) [Landis International on behalf of Mitsui Chemicals] [USA]</td>
<td>Broflanilide (999)</td>
<td>Registered? No
(first registration expected in 2019)
MRLs > LOQ? Yes, for majority of crops and food of animal origin</td>
<td>USA- Brassica vegetables; Fruiting vegetables; Leafy vegetables; Legume vegetables; Pulses; Root vegetables</td>
<td>Brassica vegetables (35 + 16 trials), Fruiting vegetables (35 trials), Leafy vegetables (35 + 10 trials), Soybean with pod (3 trials), Pulses: Soybeans (31 trials), dry beans (7 trials), Root vegetables: Potatoes (25 trials), radishes (6 trials), sweet potato (6 trials), turnip (3 trials), Stalk / stem vegetables: Leek (3 trials), green onion (3 trials), Cereals: Grain/Hay/Straw/Fodder (50 trials), Sugarcane (6 trials), Coffee (9 trials), Tea (6 trials), Feeding studies in cow and hen</td>
</tr>
<tr>
<td>BAS 750 F (fungicide) (999) [USA]</td>
<td>BAS 750 F [BASF] (999)</td>
<td>Registered? NO
MRLs > LOQ? YES</td>
<td>USA- wheat, field corn, rice, sorghum, barley, sweet corn, dried beans, succulent beans, dried peas, succulent peas, lentils, soybean, sugar beet, peanut, canola, apple, pear, almond, pecan, pistachio, cherry, peach, plum, grape</td>
<td>US- Wheat, 25 (US/CA), 16 (EU); Field corn, 16; Rice, 12; Sorghum, 9; Barley, 16 (US/CA), 16 (EU); Sweet corn, 12; dried bean, 10; dry pea, 9; succulent pea, 9; lentil, 8; soybean, 20; sugar beet, 15; peanut, 12; canola, 13; apple, 15; pear, 10; almond, 5; pecan, 5; pistachio, 3; cherry, 8; peach, 12; plum, 8; grape, 13</td>
</tr>
<tr>
<td>Afidopyropen (999) [Meiji SeikaPharma/ BASF] [USA] (insecticide)</td>
<td>Afidopyropen [BASF] (999)</td>
<td>Registered? n
MRLs > LOQ? y</td>
<td>USA- Citrus fruits, Pome fruits, Stone fruits, Brassica (Head, flowering), Fruiting vegetables (tomatoes, peppers), Fruiting vegetables (Cucurbitis), Leafy (head, leafy lettuce, spinach), Brassica, leafy (Mustard greens), Soybeans, Potatoes, Celery, Tree nuts, Cotton</td>
<td>Citrus (lemon, 8; oranges, 12; grapefruit, 6); pome fruit (apple, 15; pear, 9); stone fruit (peaches, 13; plum, 10; cherry, 8); Brassica (head cabbage, 10; broccoli, 10); cucurbits (cucumber, 9; cantaloupe, 8; squash, 10); fruiting vegetables (tomatoes, 20; sweet bell peppers, 7; nonbell peppers, 3); leafy lettuce (8); head lettuce (9); spinach (9); mustard greens (8); soybean (20); potato (20); celery (10); tree nuts (almonds, 5; pecans, 5; pistachios, 3); cotton</td>
</tr>
<tr>
<td>SYN546330 [Syngenta] (insecticide)</td>
<td>SYN546330</td>
<td>Registered? No
MRLs > LOQ? Yes</td>
<td>Soybean dry, Pome fruit, Citrus, Cotton, Fruiting vegetables, Cucurbitis, Okra</td>
<td>Soybean dry (8), Pome fruit (8), Citrus (16), Cotton (4), Fruiting vegetables (Tomato 13, Pepper 13), Cucurbitis (Cucumber 8, Melon 8), Okra (8)</td>
</tr>
<tr>
<td>Triflumuron [Bayer]</td>
<td>Triflumuron [Bayer]</td>
<td>Registered Y</td>
<td>Soybean</td>
<td></td>
</tr>
</tbody>
</table>
2019 NEW USES AND OTHER EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpyrifos-methyl (90) [Dow AgroSciences] Australia</td>
<td>Wheat, barley, sorghum</td>
<td>4 YEAR RULE from 2015</td>
<td></td>
</tr>
<tr>
<td>Cypermethrin (118) [BASF], [FMC]</td>
<td>Public health concerns - acute dietary risk-- Netherlands – check uses for peach based on existing residue data and labels; Republic of Korea (ginseng)</td>
<td></td>
<td>Ginseng (4)</td>
</tr>
<tr>
<td>Spirotetramat (234) [Bayer]</td>
<td>Strawberry; carrot; sugarbeet</td>
<td></td>
<td>Strawberry (10); carrot (24); sugarbeet (19)</td>
</tr>
<tr>
<td>Thiamethoxam (245) [Syngenta]</td>
<td>Persimmon (Korea); Rice [Syngenta]</td>
<td></td>
<td>Persimmon (6); Rice (8)</td>
</tr>
<tr>
<td>Clofentezine (156) [ADAMA]</td>
<td>Hops (IR4)</td>
<td></td>
<td>Hops (5)</td>
</tr>
<tr>
<td>Fluensulfone (265) [ADAMA]</td>
<td>Grapes, peanuts</td>
<td></td>
<td>Grapes (12), peanuts (12)</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Iprodione (111)</td>
<td>Iprodione (111)</td>
<td>Tree nuts; cereals; beans, (dried); blackberry; broccoli; carrots; cheery; cucumber; grapes; kiwi; lettuce (head and leafy); onion; stone fruit; pome fruit; raspberry; sugar beet; sunflower; tomato; witloof (All CXLs appear to be supported)</td>
<td>FMC Trials: Almonds (4); barley (13); blackberries (8); broccoli (4); carrot (12); cherry (5); lettuce, leaf (12); peach (9); raspberries, red/black (8); rice, husked (18); Spices, seeds (4); spices, roots & rhizomes (4); apricots (8); artichoke (4); banana (8); bean, succulent - lima and snap (12); Brassica, head and stem vegetables (12); coffee (6); eggplant (8); mandarins (8); mango (4); melon (12); pea (12); peanut (12); plum (12); potato (16); soybean (12); wheat (16)</td>
</tr>
<tr>
<td>Flumethrin (195)</td>
<td>Flumethrin (195)</td>
<td>Cattle milk; cattle meat</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl (138)</td>
<td>Metalaxyl (138)</td>
<td>Review in 2004 for residues was for evaluation of metalaxyl-M; support from Quimicas del Vallés - SCC GmbH; USA – Grapes; tomatoes; potatoes; lettuce; oranges; strawberries; broccoli; cauliflower; head cabbage; onion Supervised trials by Thailand – pineapples</td>
<td>Grapes (21); tomatoes (20); potatoes (16); lettuce (10); oranges (4); strawberries (8); broccoli (8); cauliflower (4); head cabbage (4); onion (8) Thailand has agreed to provide field trials – pineapples Comment: Manufacturer requests consideration to align with Metalaxyl-M review, if needed to avoid MRL-gaps. There are CXLs for metalaxyl-M pending at Step 5/8, which could replace any metalaxyl CXLs that might be withdrawn during review. In addition for cocoa, the MRL at Step 5/8 is not aligned with today’s practice (no OECD MRL calculator used, Syngenta consider the MRL at Step 5/8 too low). Syngenta is also generating new trials on cocoa, which we propose to review.</td>
</tr>
<tr>
<td>Dithiocarbamates (105) [Taminco]</td>
<td>Dithiocarbamates (105)</td>
<td>Await advice Longan (Thailand – mancozeb)</td>
<td>Residue definition applies to all DTC – propineb; mancozeb; ferbam; ziram; thiram; manebe; metiram; zineb</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>(ferbam, manebs / mancozeb, propineb, thiram, ziram)</td>
<td></td>
<td></td>
<td>Netherlands - public health concerns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Several (serious) public health risks have been identified for several dithiocarbamates (Maneb/mancozeb, propineb, thiram, ziram) using EU data (ARfD and MRLs with conversion factor corrections). JMPR has not derived ARfDs for these substances (except an interim ARfD of 0.1 mg/kg bw for propineb) nor performed acute dietary risk assessment as it was not yet done at that time (before 2000). Various group ADI’s for several dithiocarbamates (e.g. 0.03 mg/kg for maneb, mancozeb, metiram and zineb, 0.007 mg/kg for propineb, 0.003 mg/kg for ziram and ferbam, and 0.01 mg/kg for thiram). We acknowledge that a periodic review of propineb has been performed in 2004. Still a risk has been identified for peppers and (dried) tomatoes using the HR for peppers of 13 mg/kg and the HR for tomatoes of 2.9 mg/kg for propineb and the interim ARfD of 0.1 mg/kg bw. Processing data have not been included in this calculation. For thiram risks have been identified for e.g. use on apples and pears (recommended MRL of 5 mg/kg listed under ziram, no STMR or HR listed, Annex I, JMPR report 2004 from http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Reports_1991-2006/report2004jmpr.pdf) falling back on the use of the ADI of 0.01 mg/kg bw/day (no ARfD exists). Using the EU ARfD of 0.6 mg/kg bw no risks are identified any more. For ziram risk are identified e.g. use pome fruit, even if making use of the EU ARfD (0.08 mg/kg bw) instead of falling back on the ADI of 0.003 mg/kg bw/d in the absence of an JMPR ARfD. Due to time constraints, we have not yet further explored the risks identified for maneb/mancozeb. The majority of the dithiocarbamates have been evaluated prior to the date that acute dietary risk assessment became part of the JMPR evaluations. We propose therefore to update the evaluations with regard to the acute dietary risk assessment of all the dithiocarbamates in one overall assessment. This would enable identification of all the possible risks, establish whether re-evaluation of the existing data for specific uses is appropriate, whether an ARfD should be derived, and to determine whether they should subsequently be placed on the priority lists. Conversion factors (from CS₂ to active substance) are not listed in the Annex: Mancozeb: 1.783, Maneb: 1.743, Propineb: 1.904, Thiram: 1.580, Ziram: 2.009</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Permethrin (120)</td>
<td>Permethrin (120)</td>
<td></td>
<td>Not supported by manufacturer
Last reviewed over 25 years ago</td>
</tr>
<tr>
<td>Tolclofos-methyl</td>
<td>Tolclofos-</td>
<td>Lettuce head; lettuce leaf; potato;</td>
<td>Await advice – moved from 2017 on request</td>
</tr>
<tr>
<td>(191) [Sumitomo</td>
<td>methyl (191)</td>
<td>radish</td>
<td></td>
</tr>
<tr>
<td>Chemical]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imazalil (110)</td>
<td>Imazalil (110)</td>
<td>Support / Retain: Banana, Citrus</td>
<td>Pome fruit: 39, Banana: 8, Cereal (seed treatment): 8, Citrus: 36, Cucurbits (edible peel plus melon): 17, Potatoes: 24, Tomatoes: 10
EU – public health concerns
The active substance has not been re-evaluated for residues since it was included the first time in 1977. Toxicological re-evaluation was done in 2000 and an ARfD was derived in 2005. (see CX/PR 12/44/14-Add.1 March 2012)
As a consequence of this ARfD a couple of MRLs are not safe for consumers. Due to the fact that no periodic re-evaluation of residue took place since 35 years all MRLs should be reviewed.
From EFSA evaluation an ADI of 0.025 mg/kg bw and an ARfD of 0.05 mg/kg bw was derived in 2010. This is in line with the current JMPR values of 0.03 mg/kg bw (ADI, 2001) and 0.05 mg/kg bw (ARfD, 2005).
A risk assessment was performed using the EFSA PRIMo including the current CXLs for banana, citrus fruit, cucumber, gherkins, melons exc. watermelons, Japanese persimmons, pome fruit, potato, raspberries, strawberries and wheat. Due to the rather old residue evaluation a refinement using HR and STMR values was impossible. Distribution between pulp and peel was not taken into account.
As can be seen from this rather rough estimation ADI is exceed for a couple of WHO clusters, i.e. cluster B, E, F, D, with residues in potatoes account for a major part of the residues. It can also be stated that for European consumers children are most likely at risk.
For European consumers the ARfD is exceeded for potatoes, pome fruit, Japanese persimmon as well as for citrus fruit, banana and melons, not taking into account distribution between peel and pulp. Changing the variability factor to 3 as used by JMPR will change the outcome of the assessment dramatically. Potatoes, pome fruits as well as citrus fruit, bananas and melons, not taking into account distribution between peel and pulp are still exceeding the ARfD.
Await advice from JMPR on public health concerns</td>
</tr>
<tr>
<td>[Janssen]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First reserve for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Bromopropylate</td>
<td>Bromopropylate</td>
<td>The active substance was first included in 1973 and re-evaluated in 1993, but not since. In the evaluation of 1993 an ADI was set at 0.03 mg/kg bw/d but no ARfD. Since no ARfD was ever set and data for evaluation are missing (supervised field trials, processing studies), the MRLs should be re-evaluated after 41 years</td>
<td>Since in 1993 it was not yet common practice to set an ARfD, EFSA used the ADI to assess the acute effects in the short term intake. A risk assessment was performed using the EFSA PRIMo including the existing CXLs for citrus fruits, pome fruits and grapes. The highest chronic exposure was calculated for the German child, representing 124% of the ADI. Since there were no supervised field trials complying with the critical GAP or reliable processing studies, the intake could not be further refined. The acute intake assessment (using the ADI-value) shows exceedance of the toxicological reference value for citrus fruits (884% for oranges, 594% for grapefruit, 371% for mandarins, 230% for lemons, and 134% for limes), pome fruits (653% for apples, 607% for pears), table grapes (437%) and wine grapes (158%). For further details see EFSA evaluation on the internet at http://www.efsa.europa.eu/en/efsajournal/doc/1640.pdf.</td>
</tr>
</tbody>
</table>
2019 PERIODIC REVIEW

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Comments</th>
<th>Previous evaluation</th>
<th>ADI</th>
<th>ARFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldicarb (117)</td>
<td>Aldicarb</td>
<td>Awaiting advice on commodities to be supported</td>
<td>Yes</td>
<td>1995</td>
<td>0.003 - 1992</td>
<td>0.003 - 1995</td>
</tr>
<tr>
<td>[AgLogic Chemical LLC]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox conducted in 1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide ion (47)</td>
<td>Bromide ion (47)</td>
<td></td>
<td>Last reviewed over 25 years ago</td>
<td>1988</td>
<td>1.0 - 1988</td>
<td>N/A</td>
</tr>
<tr>
<td>(Methyl bromide)</td>
<td></td>
<td></td>
<td>Bromide ion from all sources but not including covalently bound bromine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No CropLife manufacturer responsible</td>
<td></td>
<td></td>
<td>Methyl bromide (52) – guideline CXLs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not cleared toxicologically by JMPR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenbutatin oxide (109)</td>
<td>Fenbutatin oxide</td>
<td></td>
<td>National registrations - Y</td>
<td>1992</td>
<td>0.03 - 1992</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No supporting member country</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No longer supported by manufacturer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbosulfan (145)</td>
<td>Carbosulfan</td>
<td>Awaiting advice on supported commodities Asparagus; egg plant, mango (Thailand)</td>
<td>Netherlands – public health concerns</td>
<td>1997</td>
<td>0.01 (1986)</td>
<td>0.02 (2003)</td>
</tr>
<tr>
<td>Carbofuran (96)</td>
<td>Carbofuran</td>
<td></td>
<td>Carbosulfan: Not approved (September 2007, RMS BE) - Information insufficient with regard to consumer exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[FMC Corporation]</td>
<td></td>
<td></td>
<td>Concerns identified with regard to toxicity of the substance and presence of unknown levels of carcinogenic impurities which may increase during storage, Consumers exposure inconclusive due to uncertainties regarding the effects of certain metabolites, some of which could be genotoxic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbofuran: Not approved (September 2007, RMS BE) - Information insufficient with regard to consumer exposure, Concerns identified - High toxicity of the substance and some of its metabolites, Consumer exposure inconclusive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
<td>Previous evaluation</td>
<td>ADI</td>
<td>ARfD</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Fenarimol (192) [Gowan]</td>
<td>Fenarimol</td>
<td>Fenarimol was first included as active substance in 1995. The ADI was set at 0.01 mg/kg bw/d. The COM set an ADI of 0.01 mg/kg bw/d in 2007 as well as an ARfD of 0.02 mg/kg bw/d. Since the JMPR hasn’t evaluated the active substance in 19 years whereas now an ARfD-value is available it is proposed to re-evaluate all MRLs.</td>
<td>An ADI- and ARfD-value were derived in a peer-review under 91/414/EEC. EFSA identified in the acute risk assessment for children a possible risk for peppers (157.4%), peaches (148.3%), apples (146.9%), tomatoes (145.4%), pears (136.6%) and bananas (125.4%). A refined calculation was carried out using the HR. For further details see EFSA evaluation on the internet at http://www.efsa.europa.eu/en/efsajournal/doc/161r.pdf.</td>
<td>1995</td>
<td>0.01 - 1995</td>
<td>N/A</td>
</tr>
<tr>
<td>Dimethoate [Cheminova] (027)</td>
<td>Dimethoate</td>
<td>EU concerns ARfD JMPR 2003 Acute risk for citrus and cherries Sum of dimethoate and omethoate expressed as dimethoateIn the 2003 evaluation by JMPR an ARfD was established. However, in the exposure assessment for the acute risk the highest residue was not used in the case of citrus. Using the HR would lead to an exceedance of the ARfD of 230%. Furthermore, the CXL of 2 mg/kg for cherries leads to an unacceptable acute risk for children and should be revised. Rice, fresh vegetables (cabbage, cauliflower, okra, green chilli, green pea, bitter gourd, brinjal and capsicum), grapes, Tea</td>
<td>Await advice from JMPR on public health concerns</td>
<td>0.002, 1996</td>
<td>0.02, 2003</td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESidue</td>
<td>Commodities</td>
<td>Comments</td>
<td>Previous evaluation</td>
<td>ADI</td>
<td>ARfD</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------------------</td>
<td>--</td>
<td>---------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Methidathion (51)</td>
<td>Methidathion (51) insecticide</td>
<td>Peach, mango</td>
<td>The active substance has been re-evaluated for residues (after its first inclusion in 1972) in 1992. An ARfD was derived in the toxicological re-evaluation in 1997. As a consequence of this ARfD a couple of MRLs are not safe for consumers. Due to the fact that no periodic re-evaluation of residues took place in 42 years it is proposed to carry out a new evaluation. The JMPR has established an ADI of 0.001 mg/kg bw/d and an ARfD of 0.01 mg/kg bw/d in 1997. A risk assessment was performed using the EFSA PRIMo including all MRLs that were considered relevant for international trade. The ADI was exceeded for 25 European diets with the highest exposure representing 2392% of the ADI. Citrus fruits, olives for oil production and milk were shown to be the main contributors. Citrus fruits also exceeded the ARfD (up to 6631%). A second exposure calculation delete the existing MRLs for citrus fruits, pome fruits and sunflower seeds still showed an that the ADI for 5 European diets was exceeded (up to 301%). For further details see EFSA evaluation on the internet at http://www.efsa.europa.eu/en/efsajournal/doc/1639.pdf.</td>
<td>1992</td>
<td>0.001 - 1997</td>
<td>0.01 - 1997</td>
</tr>
<tr>
<td>Hydrogen phosphide, (zinc and aluminium salts) (46)</td>
<td>Hydrogen phosphide (46)</td>
<td>Cereal grains, citrus, almonds</td>
<td>1971</td>
<td>NR</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Prochloraz (142) [Bayer CropScience]</td>
<td></td>
<td></td>
<td>Last reviewed by JMPR in 2001. In 2011, Prochloraz was re-evaluated in the EU and a lower acute toxicological endpoint of 0.025 mg/kg bw/d was established compared to a value of 0.1 set by JMPR in 2001. From the JMPR report (2004) the IESTI was calculated to be greater than 25% of the ARfD at 0.1 for several commodities. With a lowering of the ARfD by a factor of 4, the CXLs for banana, edible offal (mammalian), grapefruit, mandarin, orange, papaya, pineapple, shaddocks/pomelos are expected to be of concern. The EU values were derived from 2 studies that do not appear to have featured in the JMPR evaluation. The multi-generation rat study "Reader 1993" submitted as part of a dossier by a notifier and a 90 day dog study “ Lancaster 1979” submitted by another notifier. In addition a change in the interpretation the significance of extended gestation in both the “Cozen 1980 study” and the “Reader 1993” study also impacted. It should also be noted the many papers reviewed as part of the literature search around prochloroz were also considered when the list of endpoints and critical values were set.</td>
<td>0.01</td>
<td>1983 confirmed 2001</td>
<td>0.1, 2009</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
<td>Previous evaluation</td>
<td>ADI</td>
<td>ARfD</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Pirimicarb (101) Syngenta</td>
<td>Pirimicarb (101)</td>
<td>Public health concerns - acute dietary risk – Netherlands – check uses for peach and lettuce based on existing residue data and labels Moved from 2017 New use and other evaluations</td>
<td></td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethoxyquin (35) One CXL - pear</td>
<td>Ethoxyquin (35)</td>
<td>The substance is not authorised in the EU and no import tolerances exist. EFSA concluded that the metabolism data used by JMPR for establishing the residue definition for enforcement and risk assessment could not be confirmed as the metabolism data showed deficiencies using the JMPR residue definition. EFSA concluded that the CXL for pears exceeded the ARfD (109%) and proposed to lower the EU MRL to the LOD. The last periodic review of residues was performed by JMPR in 1999 and of toxicology in 1998. This is approximately 15 years ago. It seems that Japan has recently performed a toxicological evaluation of the substance. COMMENT: a toxicological review occurred in 2005 – reviewed ADI and set ARfD</td>
<td></td>
<td>0.005, 2005</td>
<td>0.5, 2005</td>
<td></td>
</tr>
<tr>
<td>Guazatine (114)</td>
<td>Guazatine (114)</td>
<td>Guazatine was first discarded as not having an ADI/ARfD at all. However, this appears to be a special case. In 1978 an ADI was derived, which was withdrawn in 1997 since “The Meeting concluded that it could not establish an ADI for guazatine owing to the inadequate information on its composition and concerns about the production of rare malignant tumours in mice”. “The Meeting estimated the maximum residue level shown in Annex I. As the Meeting withdrew the ADI for guazatine this is recorded only as a Guideline Level”. As such no CXLs are supposed to be available. However, a CXL for cereal grains (0.05* mg/kg G = guideline value) and citrus fruit (5 mg/kg Po = post harvest use) can still be found in the Codex alimentarius. Annex 1 and Annex 2 of the JMPR 1997 evaluation, show that the CXL for Citrus fruits of 5 mg/kg Po is withdrawn, but that for cereals a maximum residue level of 0.05* mg/kg is proposed. The CXL of 5 mg/kg has been adopted by the CCPR in 1999. It is unclear which discussion is behind this. The problem is that this specific MRL-crop combination gives rise to a human health risk. Only “guideline levels” (5 mg/kg) for citrus exist since the ADI was withdrawn in 1997. It was recommended that these guideline levels would remain until a new ADI is recommended. It is proposed either to delete the guideline level or request sponsors to support a re-evaluation of guazatine. There are no CXLs in place in CX/PR 14/46/5 – instead guideline levels are set – clarification from Codex Secretariat is sought</td>
<td></td>
<td>Withdrawn 1997</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td>RESIDUE</td>
<td>Commodities</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Dicloran (83) | Dicloran (83) | | Not approved (April 2008 and May 2011, RMS ES)
- Concerns identified with regard to the toxicological relevance of several impurities in the technical material (relevant for residues in food?) and with regard to consumer risk assessment in following crops. |

<table>
<thead>
<tr>
<th>Previous evaluation</th>
<th>ADI</th>
<th>ARfD</th>
</tr>
</thead>
</table>
2021 PERIODIC REVIEW

<table>
<thead>
<tr>
<th>Substance</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azinphos-methyl (2)
Not supported
JMPR 2007 ADI 0.03
JMPR 2007 ARfD 0.1</td>
<td>The EU submitted a concern form in October 2015. Azinphos-methyl was re-evaluated concerning toxicology in 2007 with concerns mentioned by EU in CCPR 2008 due to the use of human data. The re-evaluation for residue behaviour was announced for 2010 but then did not take place as the substance was no longer supported. The substance is not authorised in the EU. It is of public health concern as the ARfD established by JMPR is exceeded for several commodities when using EU consumption data: 185% of ARfD for pears; 135% oranges which might be of no concern taking into account distribution between peel and pulp; Peaches (120%); Pine apples (105%). As the substance is falling under the 15 year rule and it has been confirmed at several meetings of the CCPR that it is no longer supported worldwide, the existing CXLs should urgently been withdrawn (2010 CCPR, para 178; 2011 CCPR, Appendix X; 2012 CCPR, para 166; 2014 CCPR, Appendix XV; 2015 CCPR, Appendix XV).</td>
</tr>
<tr>
<td>Diazinon (22) [Makhteshim–Agan]
Note: Diazinon is already scheduled for toxicological and residue assessment by an interim JMPR to be held in Spring 2016, based on concerns raised by IARC on the possible carcinogenic properties of the substance (see Summary Report JMPR 2015).
ADI 0.005 – 2006 JMPR
ARfD 0.03 – 2006 JMPR</td>
<td>Falls under the 15-year rule (listed in Table 2B), last evaluation in 1996. EU Concerns are as follows: The substance is not authorised in the EU. The EU-ADI of 0.0002 mg/kg bw/day) is much lower than the JMPR ADI (0.005 mg/kg bw/day). Using the existing CXLs and the EU ARfD/ADI in the EFSA PRIMo model, serious public health concerns are identified after long-term dietary exposure of diazinon. An acute dietary risk assessment was performed using CXLs. When using the JMPR IESTI model, the JMPR-ARfD is not exceeded. By using the EFSA PRIMo model and the CXLs, the EU-ARfD is exceeded (IESTI 1) in case of scarole (175%), plums (132%), carrots (127%), melons (121%), apples (118%), broccoli (117%), tomatoes (116%), pears (105%), head cabbage (105%), bovine meat (102%). Refinement (IESTI 2) of the variability factors would still lead to exceedances of the ARfD for scarole, melons, plums and bovine meat (102-175%). Use of the HR would lower the short term exposure by a factor of 2 which would not result in an exceedance of ARfD. Even without including the LOQs for the crops without MRLs, the highest calculated TMDI values in % (EU) ADI are 376-4990% in various populations (child, toddlers, general public and countries, with meats, pome fruit, carrots and sugar beets contributing the most (all >>100 % of the ADI). It is acknowledged that the use of the STMRs would lower the long-term dietary exposure by approximately a factor of 4-5, but this would still lead to an exceedance of the ADI.</td>
</tr>
<tr>
<td>Phosalon (60)
[Cheminova]
ADI 0.02 – 1997 JMPR
ARfD 0.3 – 2001 JMPR</td>
<td>Falls under the 15-year rule (listed in Table 2B), last evaluation in 1997. The EU proposes submit a concern form on the basis of public health concerns. The substance is not authorised in the EU. EU has established a lower ADI and ARfD than JMPR. Using the EU ARfD and ADI of 0.01 mg/kg, the EU MRLs and the Codex MRL for apple and pome fruit for phosalone leads to exceedance of ADI, with apple contributing most (114-639 %) in various populations. In the short-term dietary risk assessment these MRLs lead to exceedances of the EU ARfD not only in apples (490%), but also in pears (180%) and peaches (120%). The impact of the metabolite oxaphosalone has not been taken into account, but will only add to the dietary exposure. With the ARfD of the JMPR at 0.3 mg/kg bw and the ADI at 0.02 mg/kg bw/day, there are no exposure concerns. Awaiting advice on supported commodities Durian (Thailand)</td>
</tr>
<tr>
<td>Substance</td>
<td>Rationale</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Quintozene (64)</td>
<td>Falls under the 15-year rule (listed in Table 2B), last evaluation in 1995. The EU proposes submit a concern form on the basis of public health concerns. Quintozene containing more than 0.1% hexachlorobenzene is banned in the EU. For quintozene (containing less than 0.1% hexachlorobenzene), the necessity for deriving an ARfD has not been assessed (EU or JMPR). Using the CXLs, the JMPR IESTI model and the ADI as surrogate ARfD, an exceedance of the ARfD is found for ginger root (240%); no exceedance is found for the EFSA PRiMo model. Using the (temporary) ADI of 0.01 mg/kg bw/day, the TMDI in the long-term dietary risk assessment does not exceed the ADI using the Codex MRLs and the EFSA PRiMo model. However, there are many uncertainties regarding the metabolites that can be formed, depending on application of the active substance at growth stage and on type of plant. There is a lack of sufficient data to exclude consumer risks.</td>
</tr>
<tr>
<td>[Crompton-AMVAC]</td>
<td></td>
</tr>
<tr>
<td>ADI 0.01 – 1995 JMPR</td>
<td></td>
</tr>
<tr>
<td>ARfD N/A</td>
<td></td>
</tr>
<tr>
<td>Amitraz (122)</td>
<td>Falls under the 15-year rule (listed in Table 2B), last evaluation in 1998. The EU proposes to submit a concern form on the basis of public health concerns. The EU and JMPR ARfD and ADI for amitraz are equal. All EU MRLs are set at LOQ. No EU evaluation of residue trials is available. Therefore the acute risk assessment was performed with the existing CXLs. However, when applied in the EFSA PRiMo model exceedances are observed for oranges (663%), apples (490%), pear (455%), peaches (297%), cucumber (292%), tomatoes (291%) for children. Refinement (IESTI 2) of the variability factors would still lead to exceedances of the ARfD for the same crops (211-480%). In addition, even without including the LOQs for the crops without MRLs, the highest calculated TMDI values in % ADI are 254 and 146 in DE and NL child, with pome fruit attributing the most (>100 % of the ADI). It is acknowledged that the use of the STMRs would lower the long-term dietary exposure by approximately a factor of 4-5, whereby exceedance of the ADI is no longer envisaged. Using the FAO IESTI spreadsheets and JMPR ARfD, the ARfD is exceeded in case of oranges (150-290%), apple (280-360%), pear (280-290%), peaches (150-260%), cucumber (130-200%), tomatoes (110-320%). It is acknowledged that the use of HRs would lower the dietary exposure by approximately a factor of 2, but this would still result in exceedances of the ARfD.</td>
</tr>
<tr>
<td>[Arysta Lifesciences]</td>
<td></td>
</tr>
<tr>
<td>ADI 0.01 – 1998 JMPR</td>
<td></td>
</tr>
<tr>
<td>ARfD 0.01 – 1998 JMPR</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2B: PERIODIC REVIEW LIST (COMPOUNDS LISTED UNDER 15 YEAR RULE BUT NOT YET SCHEDULED OR LISTED)

Compounds listed in this table have not been evaluated for at least 15 years. Decisions on the prioritization of these compounds should be based on the relevant criteria specified in pp159-161 of the Codex Procedural Manual. Compounds are listed in Table 2b awaiting advice on supporting data packages and/or an indication of manufacturer/member country support.

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Issue – Commodities supported</th>
<th>Current national registrations</th>
<th>Previous evaluation</th>
<th>ADI</th>
<th>ARfD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenthion (39)</td>
<td>fenthion</td>
<td>No longer supported by the manufacturer</td>
<td>yes</td>
<td>1995</td>
<td>0.007 - 1995</td>
<td>0.01 - 1997</td>
</tr>
<tr>
<td>Disulfoton (74)</td>
<td>disulfoton</td>
<td>No longer supported by the manufacturer</td>
<td>yes</td>
<td>1996</td>
<td>0.0003 - 2006</td>
<td>0.003 - 2006</td>
</tr>
<tr>
<td>Fenbuconazole (197) [Dow AgroSciences]</td>
<td>fenbuconazole</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1997</td>
<td>0.03 (1997)</td>
<td>0.2 (2012)</td>
</tr>
<tr>
<td>Dinocap (87)</td>
<td>dinocap</td>
<td>No longer supported by the manufacturer</td>
<td>yes</td>
<td>1998</td>
<td>0.008 - 1998</td>
<td>0.008 WCBA 0.03 general</td>
</tr>
<tr>
<td>Maleic hydrazide (102) [Chemtura]</td>
<td>maleic hydrazide</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1998</td>
<td>0.3 (1996)</td>
<td>N/A</td>
</tr>
<tr>
<td>Amitrole (79) [Nufarm]</td>
<td>amitrole</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1998</td>
<td>0.002 (1997)</td>
<td>N/A</td>
</tr>
<tr>
<td>Pyriproxyfen [Sumitomo] (200)</td>
<td>pyriproxyfen</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1999</td>
<td>0.1 (1999)</td>
<td>NR (1999)</td>
</tr>
<tr>
<td>Malathion [Cheminova] (049)</td>
<td>malathion</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1999</td>
<td>0.3 (1997)</td>
<td>2.0 (2003)</td>
</tr>
<tr>
<td>2-phenylphenol (056) [???]</td>
<td>2-phenylphenol</td>
<td>manufacturer unknown</td>
<td>yes</td>
<td>1999</td>
<td>0.4, 1999</td>
<td>NR 1999</td>
</tr>
<tr>
<td>Parathion-methyl (059) [Cheminova]</td>
<td>Parathion-methyl</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1994R, 1995T</td>
<td>0.003, 1995</td>
<td>0.03, 1995</td>
</tr>
<tr>
<td>Bitertanol (144) [Bayer CropScience]</td>
<td>Bitertanol</td>
<td>Awaiting advice on supported commodities</td>
<td>Yes</td>
<td>1998T, 1999R</td>
<td>0.01, 1998</td>
<td>NR 1998</td>
</tr>
<tr>
<td>2,4-D [Dow AgroSciences] (020)</td>
<td>2,4-D</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1996T, 1998R, 2001T(ARfD)</td>
<td>0.01, 1996</td>
<td>NR</td>
</tr>
<tr>
<td>Diphenylamine [Cerex Agri] (030)</td>
<td>Diphenylamine</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1998T, 2001R</td>
<td>0.08, 1998</td>
<td>NR</td>
</tr>
<tr>
<td>Piperonyl butoxide [Endura] (062)</td>
<td>Piperonyl butoxide</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>1995T, 2001T(ARfD), 2001R</td>
<td>0.2, 1995</td>
<td>NR</td>
</tr>
<tr>
<td>Methomyl [DuPont] (094)</td>
<td>Methomyl</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>2001</td>
<td>0.02, 2001</td>
<td>0.02, 2001</td>
</tr>
<tr>
<td>Fipronil [BASF] (202)</td>
<td>Fipronil</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>2000/2001</td>
<td>0.0002, 2000</td>
<td>0.003, 2000</td>
</tr>
<tr>
<td>Spinosad [Dow AgroSciences] (203)</td>
<td>Spinosad</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>2001</td>
<td>0.02, 2011</td>
<td>NR</td>
</tr>
<tr>
<td>Imidacloprid [Bayer CropScience] (206)</td>
<td>Imidacloprid</td>
<td>Awaiting advice on supported commodities</td>
<td>yes</td>
<td>2001</td>
<td>0.06, 2002</td>
<td>0.4, 2002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>Pest No. EU</th>
<th>Aust</th>
<th>Canada</th>
<th>USA</th>
<th>Japan</th>
<th>Phil</th>
<th>Moro</th>
<th>Korea</th>
<th>Chile</th>
<th>NZ</th>
<th>Brazil</th>
<th>Russia</th>
<th>Uruguay</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>azinphos-methyl</td>
<td>002</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td>020</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diazinon</td>
<td>022</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethoate</td>
<td>027</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diphenylamine</td>
<td>030</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fenarimol</td>
<td>039</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydrogen phosphide</td>
<td>046</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bromide ion</td>
<td>047</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>malathion</td>
<td>049</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>methidathion</td>
<td>051</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>2-phenylphenol</td>
<td>056</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>parathion-methyl</td>
<td>059</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>phosalone</td>
<td>060</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>062</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>quintozene</td>
<td>064</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>bromopropylate</td>
<td>070</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>disulfoton</td>
<td>074</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>amitrole</td>
<td>079</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>dicloran</td>
<td>083</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>dinocap</td>
<td>087</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>methomyl</td>
<td>094</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>carbofuran</td>
<td>096</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>maleic hydrazide</td>
<td>102</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>fenbutatin oxide</td>
<td>109</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>aldicarb</td>
<td>117</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>permethrin</td>
<td>120</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>amitraz</td>
<td>122</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>bitertanol</td>
<td>144</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>carbosulfan</td>
<td>145</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>fenarimol</td>
<td>192</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>fenbuconazole</td>
<td>197</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>pyriproxyfen</td>
<td>200</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>fipronil</td>
<td>202</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>spinosad</td>
<td>203</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>imidacloprid</td>
<td>206</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Chemical</td>
<td>Initial JMPR evaluation</td>
<td>Periodic reviews</td>
<td>Scheduled (Tox)</td>
<td>Scheduled (Residues)</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Abamectin</td>
<td>1992</td>
<td>1997T, 2015</td>
<td></td>
<td></td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Azocyclotin</td>
<td>1979</td>
<td>2005T, 2005R</td>
<td></td>
<td></td>
<td>Cerex Agri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Benalaxyl</td>
<td>1986</td>
<td>2005T, 2009R</td>
<td></td>
<td></td>
<td>FMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Bifenthrin</td>
<td>1992</td>
<td>2009T, 2010R</td>
<td></td>
<td></td>
<td>FMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Buprofezin</td>
<td>1991</td>
<td>2008</td>
<td></td>
<td></td>
<td>Nihon Nohyaku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Cadosafos</td>
<td>1991</td>
<td>2009T, 2010R</td>
<td></td>
<td></td>
<td>FMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Carbaryl</td>
<td>1965</td>
<td>2001T(ADI, ARfD), 2002R</td>
<td></td>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081</td>
<td>Chlorothalonil</td>
<td>1974</td>
<td>2009T, 2010R</td>
<td></td>
<td></td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Chlorpropham</td>
<td>2000</td>
<td>2005T(ADI, ARfD)</td>
<td></td>
<td></td>
<td>Cerex Agri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090</td>
<td>Chlorpyrifos-methyl</td>
<td>1975</td>
<td>2009</td>
<td></td>
<td></td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Cycloxydim</td>
<td>1992</td>
<td>2009T, 2012R</td>
<td></td>
<td></td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>067</td>
<td>Cyhexatin</td>
<td>1970</td>
<td>2005T, 2005R</td>
<td></td>
<td></td>
<td>Cerex Agri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Cypermethrin</td>
<td>1979</td>
<td>2006T, 2008R</td>
<td></td>
<td></td>
<td>FMC / AgriPhar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Cyromazine</td>
<td>1990</td>
<td>2006T, 2007R</td>
<td></td>
<td></td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>Dichlorvos</td>
<td>1965</td>
<td>2011T, 2012R</td>
<td></td>
<td></td>
<td>AMVAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>Dicofol</td>
<td>1968</td>
<td>1992, 2011T</td>
<td></td>
<td></td>
<td>Not supported by manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Ethephon</td>
<td>1977</td>
<td>2002T(ARfD), 2015</td>
<td></td>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Ethoprophos</td>
<td>1983</td>
<td>1999T, 2004R</td>
<td></td>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Etofenprox</td>
<td>1993</td>
<td>2011T,R</td>
<td></td>
<td></td>
<td>Mitsui Chemical Inc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>Fenitrothion</td>
<td>1969</td>
<td>2007T(ADI, ARfD), 2003R</td>
<td></td>
<td></td>
<td>Sumitomo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Fenpropathrin</td>
<td>1993</td>
<td>2012T, 2014</td>
<td></td>
<td></td>
<td>Sumitomo Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Chemical</td>
<td>Initial JMPR evaluation</td>
<td>Periodic reviews</td>
<td>Scheduled (Tox)</td>
<td>Scheduled (Residues)</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Fenvalerate</td>
<td>1979</td>
<td>2012</td>
<td></td>
<td></td>
<td>Sumitomo Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Flusilazole</td>
<td>1989</td>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Glufosinate-ammonium</td>
<td>1991</td>
<td>2012</td>
<td></td>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Glyphosate</td>
<td>1986</td>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td>Monsanto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Haloxyfop</td>
<td>1995</td>
<td>2006T, 2009R</td>
<td></td>
<td></td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Lambda-cyhalothrin</td>
<td>1984</td>
<td>2007T, 2008R</td>
<td></td>
<td></td>
<td></td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Methamidophos</td>
<td>1976</td>
<td>2002T, 2003R</td>
<td></td>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Methoprene</td>
<td>1984</td>
<td>2001T, 2005R</td>
<td></td>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Myclobutanil</td>
<td>1992</td>
<td>2014</td>
<td></td>
<td></td>
<td>Support from Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Penconazole</td>
<td>1992</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Phorate</td>
<td>1977</td>
<td>2004T, 2005R</td>
<td></td>
<td></td>
<td>BASF / AMVAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Pirimicarb</td>
<td>1976</td>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Profenofos</td>
<td>1990</td>
<td>2007T, 2008R</td>
<td></td>
<td></td>
<td></td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Propargite</td>
<td>1977</td>
<td>1999T, 2002R</td>
<td></td>
<td></td>
<td>Chemtura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>063</td>
<td>Pyrethrins</td>
<td>1965</td>
<td>2003T, 2000R</td>
<td></td>
<td></td>
<td>No manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>Tebufenozide</td>
<td>1996</td>
<td>2003T(ARfD)</td>
<td></td>
<td></td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Tefubenzuron</td>
<td>1994</td>
<td>2016</td>
<td></td>
<td></td>
<td>Support unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Terbufos</td>
<td>1989</td>
<td>2003T</td>
<td></td>
<td></td>
<td>AMVAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Triadimefon/triadimenol</td>
<td>1979</td>
<td>2004T, 2007R</td>
<td></td>
<td></td>
<td>133 /168 - Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Triazophos</td>
<td>1982</td>
<td>2002T, 2007R</td>
<td></td>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Chemical</td>
<td>Initial JMPR evaluation</td>
<td>Periodic reviews</td>
<td>Scheduled (Tox)</td>
<td>Scheduled (Residues)</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Clethodim</td>
<td>1994</td>
<td>1999T(ARfD)</td>
<td>2017</td>
<td>2017</td>
<td>Support from USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Fenpropimorph</td>
<td>1994</td>
<td>2004T(ARfD)</td>
<td>2017</td>
<td>2017</td>
<td>Support from BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>Kresoxim-methyl</td>
<td>1998</td>
<td>None</td>
<td>2017</td>
<td>2017</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Oxamyl</td>
<td>1980</td>
<td>2002</td>
<td>2017</td>
<td>2017</td>
<td>Dupont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>070</td>
<td>Bromopropylate</td>
<td>1973</td>
<td>1993</td>
<td>2018</td>
<td>2018</td>
<td>not supported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Flumethrin</td>
<td>1996</td>
<td>None</td>
<td>2018</td>
<td>2018</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Permethrin</td>
<td>1979</td>
<td>1999T</td>
<td>2018</td>
<td>2018</td>
<td>Not supported by manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Tolclofos-methyl</td>
<td>1994</td>
<td>None</td>
<td>2018</td>
<td>2018</td>
<td>Sumitomo Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>Fenarimol</td>
<td>1995</td>
<td>None</td>
<td>2019</td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082</td>
<td>Dichlofluanid</td>
<td>1969</td>
<td>1983T</td>
<td>2020</td>
<td>2020</td>
<td>Not supported by manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>051</td>
<td>Methidathion</td>
<td>1972</td>
<td>1997T, 1992</td>
<td>2020</td>
<td>2020</td>
<td>Not supported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Tolyfluuronid</td>
<td>1988</td>
<td>2002</td>
<td>2020</td>
<td>2020</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Azinphos-methyl</td>
<td>1965</td>
<td>2007T</td>
<td>2021</td>
<td>2021</td>
<td>Makhteshim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>064</td>
<td>Quintozene</td>
<td>1969</td>
<td>1995</td>
<td>2021</td>
<td>2021</td>
<td>Chemtura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Diflubenzuron</td>
<td>1981</td>
<td>2001T, 2002R</td>
<td>JECFA comments</td>
<td>Chemtura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Chemical</td>
<td>Initial JMPR evaluation</td>
<td>Periodic reviews</td>
<td>Scheduled (Tox)</td>
<td>Scheduled (Residues)</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>2-phenylphenol</td>
<td>1969</td>
<td>1999</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>No manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>093</td>
<td>Bioresmethrin</td>
<td>1975</td>
<td>1991T, none</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Not supported by manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Biteratol</td>
<td>1983</td>
<td>1998T, 1999R</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>087</td>
<td>Dinocap</td>
<td>1969</td>
<td>1998T, 2000T(ARfD)</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Not supported by manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>Diphenylamine</td>
<td>1969</td>
<td>1998T, 2001R</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Cerex Agri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>074</td>
<td>Disulfoton</td>
<td>1973</td>
<td>1996T(ARfD)</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>Fenbuconazole</td>
<td>1997</td>
<td>None</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>Fenthion</td>
<td>1971</td>
<td>1995, 1997T(ARfD)</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Not supported by manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Fipronil</td>
<td>2000/2001</td>
<td>None</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Imidacloprid</td>
<td>2001</td>
<td>None</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>049</td>
<td>Malathion</td>
<td>1965</td>
<td>1997T, 2003T(ARfD), 1999R</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>094</td>
<td>Methomyl</td>
<td>1975</td>
<td>2001</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059</td>
<td>Parathion-methyl</td>
<td>1965</td>
<td>1995T, 2000R</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Cheminova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Pyriproxyfen</td>
<td>1999</td>
<td>None</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Sumitomo Chemical / Valent Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Spinosad</td>
<td>2001</td>
<td>None</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Tecazene</td>
<td>1974</td>
<td>1994T</td>
<td>Listed-not scheduled</td>
<td>Listed-not scheduled</td>
<td>Support unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Acetamiprid</td>
<td>2011</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Nippon Soda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>Acetochlor</td>
<td>2015</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Monsanto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Acibenzolar-S methyl</td>
<td>2016</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Afidopyrophen</td>
<td>2019</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Meiji SeikaPharma / BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>Amitocladrin</td>
<td>2012</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>[BASF] – USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>Aminocyclopyrachlor</td>
<td>2014</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Aminopyralid</td>
<td>2007</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>Azoxytobrin</td>
<td>2008</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>BAS 750F</td>
<td>2019</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>Benzovindiflupyr</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Bicyclopyrone</td>
<td>2017</td>
<td>none</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>Bifenthrate</td>
<td>2006</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Chemtura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>Dicofol</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Boscalaid</td>
<td>2006</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Chemical</td>
<td>Initial JMPR evaluation</td>
<td>Periodic reviews</td>
<td>Scheduled (Tox)</td>
<td>Scheduled (Residues)</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Broflalinide</td>
<td>2019</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Landis Internationtal / Mitsui Chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Chlorantraniliprole</td>
<td>2008</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Chlorfenapyr</td>
<td>2012 T (2018 R)</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>[BASF] – Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>Clothianidin</td>
<td>2010</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Sumitomo Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>Cyantraniliprole</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>Cyazofamid</td>
<td>2015</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Ishihara Sangyo Kaisha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Cyclaniliprole</td>
<td>2016</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Ishihara Sangyo Kaisha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>Cyflumetofen</td>
<td>2014</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>Cyproconazole</td>
<td>2010</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Cyprodinil</td>
<td>2003</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Dicamba</td>
<td>2010</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>274</td>
<td>Dichlobenil</td>
<td>2014</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Chemtura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Difenoconazole</td>
<td>2007</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>Dimethenamid-P</td>
<td>2005</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Dimethomorph</td>
<td>2007</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Dinofuran</td>
<td>2012</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>[Mitsui Chemicals Agro] – Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>Emamectin-benzoate</td>
<td>2011</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Esfenvalerate</td>
<td>2002</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Sumitomo Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Ethiprole</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>Etoxazole</td>
<td>2010</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Sumitomo Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Famoxadone</td>
<td>2003</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>Fenamidone</td>
<td>2013/14</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Fenazaquin</td>
<td>2017</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Gowan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Fenhexamid</td>
<td>2005</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Fenpyrazamine</td>
<td>2017</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Sumitomo chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>Flonicamid</td>
<td>2015</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Ishihara Sangyo Kaisha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>Fluanline</td>
<td>2015 (not in JMPR report)</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Fluazinam</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>ISK Biosciences / Ishihara Sangyo Kaisha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>Flubendiamide</td>
<td>2010</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Nihon Nohyaku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Fludioxonil</td>
<td>2004</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>Flusulfone</td>
<td>2013/14</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Makhsheshim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>Flufenoxuron</td>
<td>2014</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Chemical</td>
<td>Initial JMPR evaluation</td>
<td>Periodic reviews</td>
<td>Scheduled (Tox)</td>
<td>Scheduled (Residues)</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>Flumioxazin</td>
<td>2015</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Sumitomo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Fluopicolide</td>
<td>2009</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>Fluopyram</td>
<td>2010</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>Flupyradifurone</td>
<td>2015</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Flutolanil</td>
<td>2002</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Nihon Nohyaku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Flutriafol</td>
<td>2011</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Cheminova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>Fluxapyroxad</td>
<td>2012</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>[BASF] – USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>Imazamox</td>
<td>2014</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>Imazapic</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>Imazapyr</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Imazethapyr</td>
<td>2016</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>Indoxacarb</td>
<td>2005</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Isofetamid</td>
<td>2016</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Ishihara Sangyo Kaisha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Isoprotiolane</td>
<td>2017</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Nihon Nohyaku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>Isopyrazam</td>
<td>2011</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>Isoxaflutole</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>Lufenuron</td>
<td>2015</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>Mandipropamid</td>
<td>2008</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Mandistrobin</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Sumitomo Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>MCPA</td>
<td>2012</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>[Nufarm] – USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>Meptyldinocap</td>
<td>2010</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>Mesotrione</td>
<td>2014</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>Metaflumizone</td>
<td>2009</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>Metalaxyl-M</td>
<td>2002</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Metconazole</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Valent USA / Kureha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Methoxyfenozide</td>
<td>2003</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>Metrafenone</td>
<td>2014</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Natamycin</td>
<td>2017</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DSM Food Specialities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Norflurazon</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Tessenderlo Kerley Inc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>Novaluron</td>
<td>2005</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Makhteshim-Agan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Oxathiapiprolin</td>
<td>2016</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Pendiimethalin</td>
<td>2016</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>Penthionyrd</td>
<td>2011</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Phosphorous acid / fosetyl</td>
<td>2017</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Nufarm / Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>Picoxyystrobin</td>
<td>2012</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>[Dupont] - USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Chemical</td>
<td>Initial JMPR evaluation</td>
<td>Periodic reviews</td>
<td>Scheduled (Tox)</td>
<td>Scheduled (Residues)</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Pinoxaden</td>
<td>2016</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Propylene oxide</td>
<td>2011</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Aberco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Prothioconazole</td>
<td>2008</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Pydiflumetofen SY545794</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>Fymetrozine</td>
<td>2014</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Pyraclostrobin</td>
<td>2003</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Pyrifluquinazon</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Nihon Nohyaku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>Pyrimethanil</td>
<td>2007</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Pyriofenone</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>ISK Biosciences / Isihara Sangyo Kaisha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Quinalophos</td>
<td>2017</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>Quinclorac</td>
<td>2015</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Quinoxyfen</td>
<td>2006</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>Saflufenacil</td>
<td>2011</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>Sedaxane</td>
<td>2012</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>[Syngenta] – USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Spinetoram</td>
<td>2008</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>Spirodiclofen</td>
<td>2009</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Spiromesifen</td>
<td>2016</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Spirotetramat</td>
<td>2008</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>Sulfoxaflor</td>
<td>2011</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>Sulfuryl fluoride</td>
<td>2005</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>SYN546330</td>
<td>2019</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Thiacloprid</td>
<td>2006</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Thiamethoxam</td>
<td>2010</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Tioxazafen</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Monsanto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>Tolfenpyrad</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Nihon Nohyaku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Triflumuron</td>
<td>2019</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Tricyclazole</td>
<td>2017</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Trifloxystrobin</td>
<td>2004</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Triflumizopyrim</td>
<td>2017</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Triflumizole</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Nippon Soda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>Trinexapac</td>
<td>2013</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Syngenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>XDE-777</td>
<td>2018</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Zoxamide</td>
<td>2007</td>
<td>None</td>
<td>Never scheduled</td>
<td>Never scheduled</td>
<td>Gowan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4: CHEMICAL-COMMODITY COMBINATIONS FOR WHICH SPECIFIC GAP IS NO LONGER SUPPORTED

<table>
<thead>
<tr>
<th>Code</th>
<th>Chemical</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Malathion</td>
<td>Apple; citrus; grapes (EU GAP no longer supported by EU)</td>
</tr>
<tr>
<td>39</td>
<td>Fenthion</td>
<td>Cherry; citrus fruits; olive oil (virgin); olives (EU GAP no longer supported by EU)</td>
</tr>
<tr>
<td>162</td>
<td>Tolyfluanid</td>
<td>All commodities (EU GAP no longer supported)</td>
</tr>
</tbody>
</table>