Omega 3 fatty acids intake and risk of all-cause mortality, and cardiovascular diseases: a systematic review of prospective cohort studies

Russell J de Souza, Michael A Zulyniak, Mina Kazemi, Rahim Ali, Rachel Berbrier, Natalie Williams, and Laura E Banfield

Overall Objective of our NUGAG Work

- To conduct a systematic review and meta analysis of the evidence for the effect of polyunsaturated fatty acid consumption on
 - All cause mortality
 - Cardiovascular diseases
 - fatal CVD, fatal IHD/CHD, total IHD/CHD, SCD, stroke, atrial fibrillation
 - Type 2 diabetes
 - Mental disorders
 - Depression, cognitive decline
 - Breast Cancer
 - Inflammatory Bowel Disease
 - Crohn's Diease, Ulcerative Colitis

Today's presentation

- Results of the systematic review and meta-analysis of the associations between higher omega 3 fatty-acids on mortality and cardiovascular diseases
 - Exposures
 - dietary total n-3, long-chain n-3, EPA, DHA
 - Outcomes
 - All cause mortality
 - Cardiovascular diseases
 - fatal CVD, total CVD, fatal IHD/CHD, total IHD/CHD, SCD, stroke, atrial fibrillation

Inclusion Criteria

- Participants: aged 18+, both primary and secondary prevention
- Intervention: higher <u>dietary</u> n-3 fatty acids (total, long-chain, DHA, EPA)
- Comparator: lower n-3 fatty acids
- Outcomes: All cause mortality, cardiovascular diseases,
- **Design:** prospective cohort studies

Exposure assessment: cohort studies

Self reported PUFA intake

- semiquantitative food-frequency questionnaires
- multiple dietary records
- 24-hour recalls

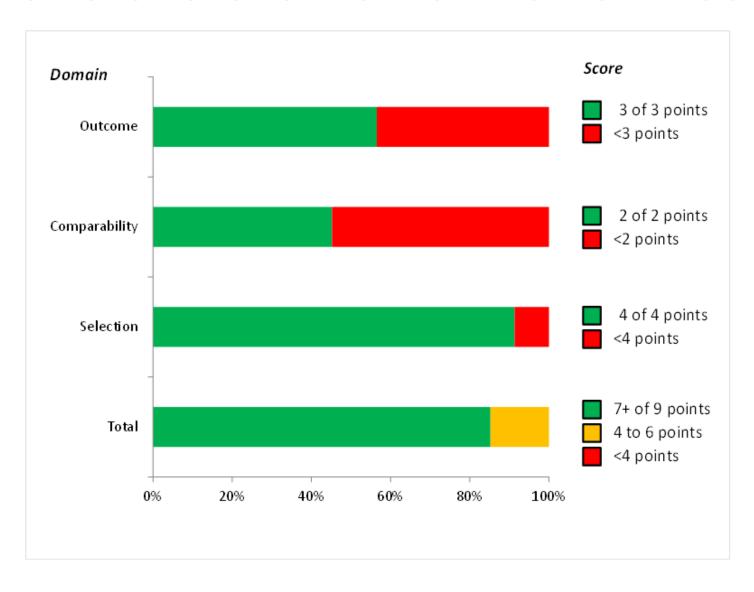
Major sources of EPA and DHA were fish

- North America (U.S.A.), Europe, Japan
- Supplements not separately analyzed owing to lack of data
- Biomarkers not analyzed

Outcome assessment: cohort studies

- Bound by the definitions reported in the studies themselves
 - Heterogeneity possible in outcome definitions across studies
- For cardiovascular outcomes (including CHD mortality)
 - Determined by self-report with confirmation by 1) record linkage; 2)
 hospital records; 3) clinic visits
 - In most cases, reviewed by up to 3 study investigators
 - Assigned ICD codes
 - ICD-9 codes (410-414, 429.2)
 - ICD 10 codes (I20-I25, 151.6)

Statistical Analysis


- Random effects meta-analysis (DerSimonian and Laird)
- Dose-Response
 - A priori approach was to use the generalized least-squares trend approach proposed by Greenland and Longnecker, and implemented for meta-analysis by Orsini
 - Method allows for estimating aggregate dose-response relationships with a single reference group per study

Type of PUFA	D-R expressed as per g	D-R expressed as per %
Total n-3 PUFA	5 g	2%
Long-chain n-3 PUFA	0.5 g	0.5 %

Results

PRISMA Flow Diagram Identification Records identified through database searching (n =<mark>2,636</mark>) Records after duplicates removed (n =2,614) Sareening Records' title/abstract Records excluded screened (n =<mark>2,36</mark>2) (n = 2,614) Full-text articles excluded. with reasons Full-text articles assessed for (n = 136)Eligibility eligibility (n = 252) Did not measure exposure of interest (n=61)Additional records identified Did not present a through hand-searching measure of association (n = 5)suitable for metaanalysis (n=16) Systematic/narrative review or meta-analysis Included (n=16) Editorial/commentary Studies included in (n=2)quantitative synthesis (meta- Only measured blood analysis) fatty acids (n=4) (n = 122) Ineligible population (n=11) Ineligible outcome (n=5) Ineligible study type (n=6) · No full-text available (n=6) Multiple publication, same cohort (n=2) Figure 1a. PRISMA 2009 Flow Diagram (Moher et al., 2009)

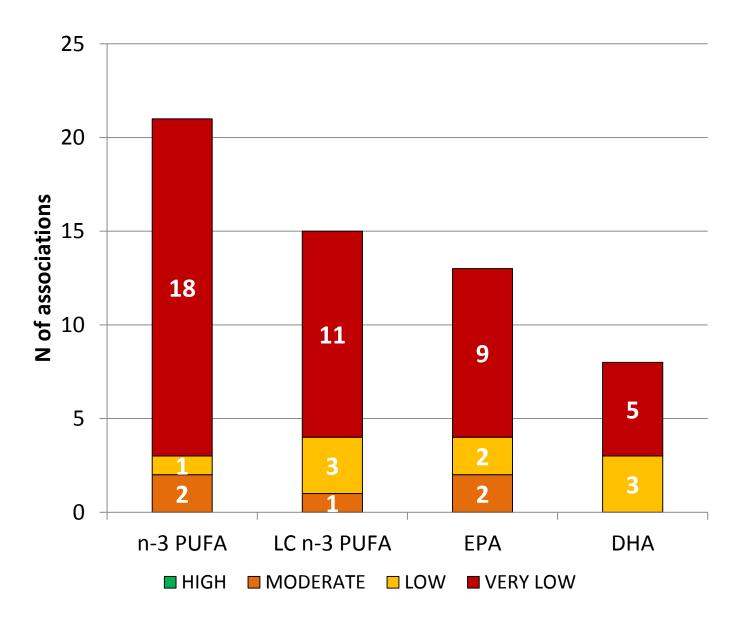
General Statements: Risk of Bias

General Statements

Sensitivity analyses

Influential outliers not a major problem

Publication bias


 Not detected for any of our assessments of n-3 and all-cause mortality or cardiovascular outcomes

Subgroup analyses

Long-chain n-3 and fatal CVD

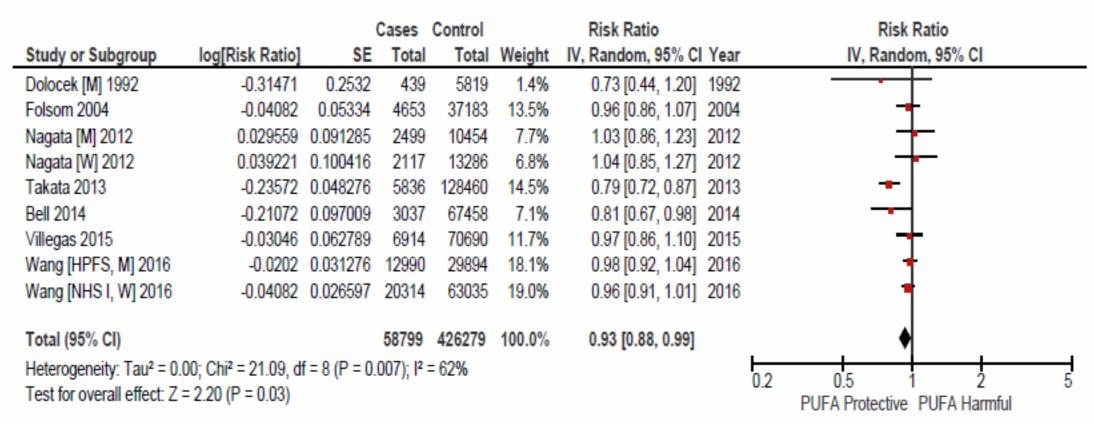
•	Failed to measure trans fats:	0.83 (0.74, 0.94)	I-squared = 47.7%	n=7
•	Did measure trans fats:	1.02 (0.86, 1.21)	I-squared = 71.1%	n=3
•	Each 1-unit increase in In(fold-difference) h v I:	0.90 (0.80, 1.01)	I-squared = 73.0%	n=9
•	Each 10% increase in current/former smokers:	0.93 (0.89, 0.98)	I-squared = 73.0%	n=9

General
Statements:
GRADE
(ACM, CVD)

Exposure Ranges

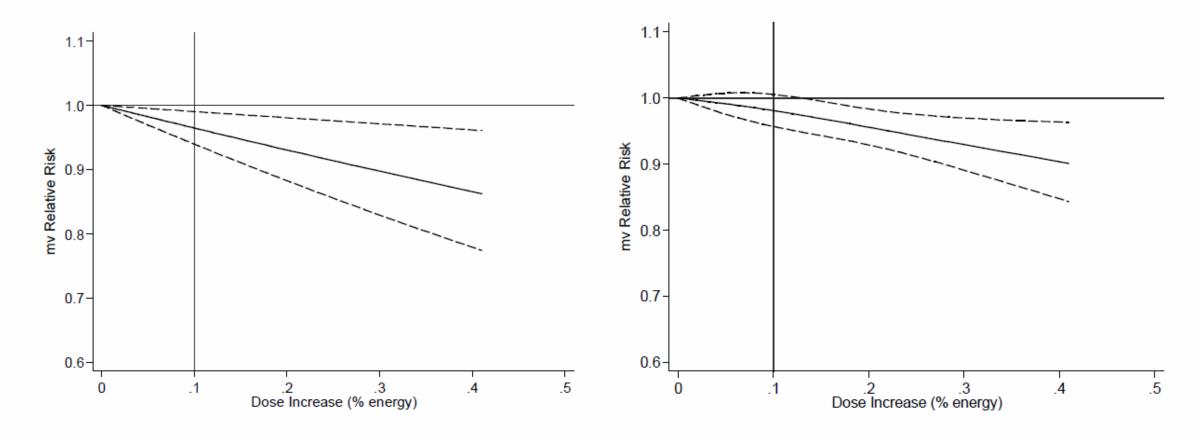
PUFA	Min	Max	Median	Mean
Total %	1.1%	9.0%	5.3%	5.3%
Total g	2.9	26.7	11.8	12.0
Long chain %	0	0.7%	0.15%	0.18%
Long chain g	0	1.7	0.6	0.6

n-3 PUFA and mortality


n-3 PUFA and all-cause mortality (5 studies/6 comparisons)

			Cases	Control		Risk Ratio				Risk Ra	itio	
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	Year		IV, F	Random	, 95% CI	
Yamagishi 2008	-0.08338	0.04953	7008	50964	16.3%	0.92 [0.83, 1.01]	2008			-		
Wakai [M] 2014	0.039221	0.046511	6291	16824	17.0%	1.04 [0.95, 1.14]	2014			+		
Wakai [F] 2014	-0.08338	0.047016	5365	30192	16.9%	0.92 [0.84, 1.01]	2014			-		
Wang [HPFS, M] 2016	-0.04082	0.031929	12990	29894	20.7%	0.96 [0.90, 1.02]	2016			-		
Owen 2016	0.329304	0.104186	1766	9481	7.2%	1.39 [1.13, 1.70]	2016			-	-	
Wang [NHS I, W] 2016	-0.05129	0.026878	20314	63035	21.9%	0.95 [0.90, 1.00]	2016			•		
Total (95% CI)			53734	200390	100.0%	0.98 [0.92, 1.05]				•		
Heterogeneity: Tau ² = 0.0	00; Chi² = 17.19, d	f = 5 (P = 0	.004); l²	= 71%				<u> </u>	+		-	
- ,		`	,,					0.2	0.5	1	2	5
Test for overall effect: Z	= 0.51 (P = 0.61)								PUFA Prote	ective P	UFA Harmful	

High vs. Low: 0.98 (0.92 to 1.05)


⊕○○○ VERY LOW risk of bias, inconsistency, imprecision

1. LC- n-3 *PUFA and All-Cause Mortality* (8 studies/9 comparisons)

⊕⊕⊕○ *High vs. Low:* 0.93 (0.88 to 0.99)

MODERATE Prospective cohort studies start with GRADE of LOW. Not downgraded. Updated for dose-response.

Figure 14. Dose-response association between long-chain n-3 PUFA (% E) and most-adjusted RR of total mortality in 10 studies, assuming linearity (P<0.002 for goodness-of-fit) (L), and using non-linear, cubic spline approach (R). Assuming linearity, a 0.5% increase in long chain n-3 PUFA was associated with an 8% reduced risk of all-cause mortality (mvRR: 0.92, 95% CI: 0.87 to 0.98). Horizontal line represents a RR = 1.0; vertical line represents the median long-chain n-3 PUFA intake in the studied populations (0.09%)

EPA and all-cause mortality (1 study/1 comparison)

			Cases	Control		Risk Ratio		Risk F	Ratio	
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI Year		IV, Randor	n, 95% CI	
Takata 2013	-0.23572	0.048276	5836	128460	100.0%	0.79 [0.72, 0.87] 2013				
Total (95% CI)			5836	128460	100.0%	0.79 [0.72, 0.87]		•		
Heterogeneity: Not ap Test for overall effect:	•	001)					0.2	0.5 1 PUFA Protective	2 PUFA Harmfu	5 J

High vs. Low: 0.79 (0.72 to 0.87)

 $\oplus \oplus \bigcirc \bigcirc$

LOW Prospective cohort studies begin with GRADE of LOW. Not downgraded.

1. DHA and all-cause mortality (1 study/1 comparison)

		(Cases	Control		Risk Ratio		Risk F	Ratio	
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI Year		IV, Randor	n, 95% CI	
Takata 2013	-0.24846	0.048895	5836	128460	100.0%	0.78 [0.71, 0.86] 2013				
Total (95% CI)			5836	128460	100.0%	0.78 [0.71, 0.86]		. •		
Heterogeneity: Not app Test for overall effect: 2		001)					0.2	0.5 1 PUFA Protective	2 PUFA Harmful	5

High vs. Low: 0.78 (0.71, 0.86)

⊕⊕OO LOW

n-3 PUFA and fatal CVD

2. n-3 *PUFA and Fatal CVD*(7 studies/8 comparisons)

Wakai [M] 2014 0.019803 0.087103 1665 21450 13.7% 1.02 [0.86, 1.21] 2014 Wakai [F] 2014 -0.08338 0.085367 1727 33830 13.9% 0.92 [0.78, 1.09] 2014 Koh 2015 -0.18633 0.055542 4780 55518 18.5% 0.83 [0.74, 0.93] 2015 Wang [NHS I, W] 2016 -0.10536 0.059463 4000 79471 17.9% 0.90 [0.80, 1.01] 2016 Owen 2016 0 0.241847 1766 9481 3.4% 1.00 [0.62, 1.61] 2016 Wang [HPFS, M] 2016 0.113329 0.061521 3878 39006 17.5% 1.12 [0.99, 1.26] 2016	Kamphuis 2006	-0.12783	0.275207	92	240	2.7%	0.88 [0.51, 1.51]	2006	
Wakai [F] 2014 -0.08338 0.085367 1727 33830 13.9% 0.92 [0.78, 1.09] 2014 Koh 2015 -0.18633 0.055542 4780 55518 18.5% 0.83 [0.74, 0.93] 2015 Wang [NHS I, W] 2016 -0.10536 0.059463 4000 79471 17.9% 0.90 [0.80, 1.01] 2016 Owen 2016 0 0.241847 1766 9481 3.4% 1.00 [0.62, 1.61] 2016 Wang [HPFS, M] 2016 0.113329 0.061521 3878 39006 17.5% 1.12 [0.99, 1.26] 2016	Yamagishi 2008	-0.21072	0.097009	2045	55927	12.3%	0.81 [0.67, 0.98]	2008	
Wakai [F] 2014 -0.08336 0.083367 1727 33830 13.9% 0.92 [0.76, 1.09] 2014 Koh 2015 -0.18633 0.055542 4780 55518 18.5% 0.83 [0.74, 0.93] 2015 Wang [NHS I, W] 2016 -0.10536 0.059463 4000 79471 17.9% 0.90 [0.80, 1.01] 2016 Owen 2016 0 0.241847 1766 9481 3.4% 1.00 [0.62, 1.61] 2016 Wang [HPFS, M] 2016 0.113329 0.061521 3878 39006 17.5% 1.12 [0.99, 1.26] 2016	Wakai [M] 2014	0.019803	0.087103	1665	21450	13.7%	1.02 [0.86, 1.21]	2014	-
Wang [NHS I, W] 2016	Wakai [F] 2014	-0.08338	0.085367	1727	33830	13.9%	0.92 [0.78, 1.09]	2014	 +
Owen 2016 0 0.241847 1766 9481 3.4% 1.00 [0.62, 1.61] 2016 Wang [HPFS, M] 2016 0.113329 0.061521 3878 39006 17.5% 1.12 [0.99, 1.26] 2016	Koh 2015	-0.18633	0.055542	4780	55518	18.5%	0.83 [0.74, 0.93]	2015	
Wang [HPFS, M] 2016 0.113329 0.061521 3878 39006 17.5% 1.12 [0.99, 1.26] 2016	Wang [NHS I, W] 2016	-0.10536	0.059463	4000	79471	17.9%	0.90 [0.80, 1.01]	2016	
•••	Owen 2016	0	0.241847	1766	9481	3.4%	1.00 [0.62, 1.61]	2016	
Subtotal (95% CI) 19953 294923 100.0% 0.93 [0.85, 1.02]	Wang [HPFS, M] 2016	0.113329	0.061521	3878	39006	17.5%	1.12 [0.99, 1.26]	2016	_
	Subtotal (95% CI)			19953	294923	100.0%	0.93 [0.85, 1.02]		•
Heterogeneity: Tau ² = 0.01; Chi ² = 16.93, df = 7 (P = 0.02); I ² = 59%	Test for overall effect: $Z = 1$		-	-					

High vs. Low: 0.93 (0.85 to 1.02)

VERY LOW Downgraded for risk of bias, imprecision

2. LC- n-3 *PUFA* and fatal *CVD* (9 studies/10 comparisons)

Dolocek [M] 1992	-0.59784	0.2532	232	6026	4.3%	0.55 [0.33, 0.90]	1992	
Morris [M] 1995	0.405465	0.298488	121	21264	3.4%	1.50 [0.84, 2.69]	1995	
Folsom [W] 2004	-0.05129	0.099037	1589	40247	11.7%	0.95 [0.78, 1.15]	2004	
Takata 2013	-0.30111	0.089337	1789	132507	12.4%	0.74 [0.62, 0.88]	2013	
Miyagawa [30-59] 2014	-0.38566	0.198094	234	4361	6.1%	0.68 [0.46, 1.00]	2014	
Bell 2014	-0.09431	0.166973	400	70095	7.5%	0.91 [0.66, 1.26]	2014	
Miyagawa [60+] 2014	-0.15082	0.114292	645	3950	10.6%	0.86 [0.69, 1.08]	2014	
(oh 2015	-0.15082	0.056261	4780	55518	14.8%	0.86 [0.77, 0.96]	2015	
Nang [HPFS, M] 2016	0.14842	0.059389	3878	39006	14.6%	1.16 [1.03, 1.30]	2016	
Wang [NHS I, W] 2016	-0.06188	0.059342	4000	79471	14.6%	0.94 [0.84, 1.06]	2016	_
Subtotal (95% CI)			17668	452445	100.0%	0.89 [0.79, 1.01]		•
Heterogeneity: Tau ² = 0.02; Chi	2 = 32.25, df = 9 (P =	= 0.0002); I2:	= 72%					
est for overall effect: Z = 1.83		**						

High vs. Low: 0.89 (0.79, 1.01)

⊕000

VERY LOW Prospective cohort studies begin with GRADE of LOW. Downgraded for risk of bias, inconsistency, and imprecision.

2. EPA and fatal CVD(1 study/1 comparison)

Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
4.2.1 Fatal CVD								
Takata 2013 Subtotal (95% CI)	-0.28768	0.09222	1789 1789	132507 132507	100.0% 100.0%	0.75 [0.63, 0.90] 0.75 [0.63, 0.90]	2013	
Heterogeneity: Not app Test for overall effect:)						

High vs. Low: 0.75 (0.63, 0.90)

 $\oplus \oplus \bigcirc \bigcirc$

LOW Prospective cohort studies begin with GRADE of LOW. Not downgraded.

2. DHA and fatal CVD (1 study/1 comparison)

		(Cases	Control		Risk Ratio		Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
5.2.1 Fatal CVD								_
Takata 2013 Subtotal (95% CI)	-0.27444	0.090989	1789 1789		100.0% 100.0%	0.76 [0.64, 0.91] 0.76 [0.64, 0.91]	2013	
Heterogeneity: Not app	olicable							
Test for overall effect: 7	Z = 3.02 (P = 0.003)							

High vs. Low: 0.76 (0.64, 0.91)

⊕⊕OO LOW

n-3 PUFA and total CVD

3. n-3 *PUFA and Total CVD* (1 study/1 comparison)

Risk Ratio] S ease	E Total	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
ease						
0.09531 0.1423				1.10 [0.83, 1.45] 1.10 [0.83, 1.45]	1995	
P = 0.50)						
		194	194 17616	194 17616 100.0%	194 17616 100.0% 1.10 [0.83, 1.45]	194 17616 100.0% 1.10 [0.83, 1.45]

High vs. Low: 1.10 (0.83, 1.45)

⊕000

VERY LOW Downgraded for risk of bias, imprecision.

3. LC- n-3 PUFA and total CVD (3 studies/3 comparisons)

		(Cases	Control		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI Year	IV, Random, 95% CI
3.2.1 Total Cardiovascular	Disease						
Morris [M] 1995	0.09531	0.160359	525	20860	33.2%	1.10 [0.80, 1.51] 1995	5 - • -
Virtanen 2008	0.113329	0.099711	3639	36591	37.9%	1.12 [0.92, 1.36] 2008	 ■−
Strom 2012	-0.64626	0.211899	577	48050	28.9%	0.52 [0.35, 0.79] 2012	2
Subtotal (95% CI)			4741	105501	100.0%	0.89 [0.60, 1.34]	
Heterogeneity: Tau ² = 0.10;	Chi ² = 10.94, df = 2 (P =	0.004); $I^2 = 0.004$	82%				
Test for overall effect: $Z = 0$.		-					

High vs. Low: 0.89 (0.60, 1.34)

@000

VERY LOW Prospective cohort studies begin with GRADE of LOW. Downgraded for imprecision, risk of bias.

n-3 PUFA and fatal CHD

3. n-3 *PUFA and Fatal CHD* (5 studies/6 comparisons)

2.2.3 Fatal CHD									
Hu 2002	-0.47804	0.176823	484	84204	14.6%	0.62 [0.44, 0.88] 20	002		
Jarvinen [W] 2006	-0.31471	0.25381	163	2282	7.6%	0.73 [0.44, 1.20] 20	006	-	
Iso [JPHC] 2006	0.431782	0.483321	62	41516	2.2%	1.54 [0.60, 3.97] 20	006	-	
Jarvinen [M] 2006	-0.04082	0.180547	335	2440	14.1%	0.96 [0.67, 1.37] 20	006		
Yamagishi 2008	-0.05129	0.213191	419	57553	10.4%	0.95 [0.63, 1.44] 20	800		
Koh 2015 Subtotal (95% CI)	-0.16252	0.07513	2697 4160	57601 245596	51.2% 100.0%	0.85 [0.73, 0.98] 20 0.84 [0.73, 0.96]	015	-	
Heterogeneity: Tau ² = 0.00	0; Chi ² = 5.73, df =	5 (P = 0.33);	I ² = 139	6					
Test for overall effect: Z =	2.47 (P = 0.01)								
	•								

High vs. Low: 0.84 (0.73 to 0.96)

 $\oplus \oplus \ominus \bigcirc$

MODERATE. Prospective cohort studies start with GRADE of LOW. Upgraded for dose-response.

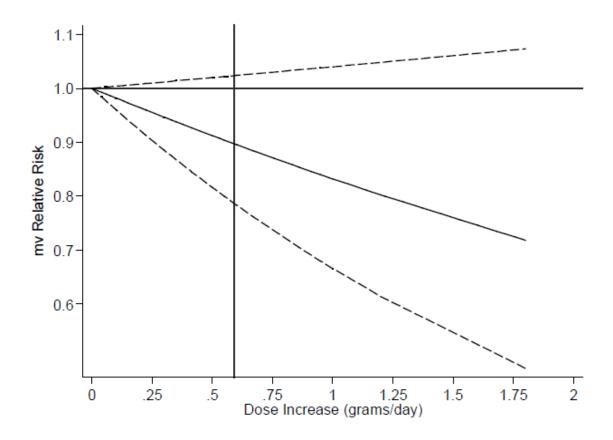
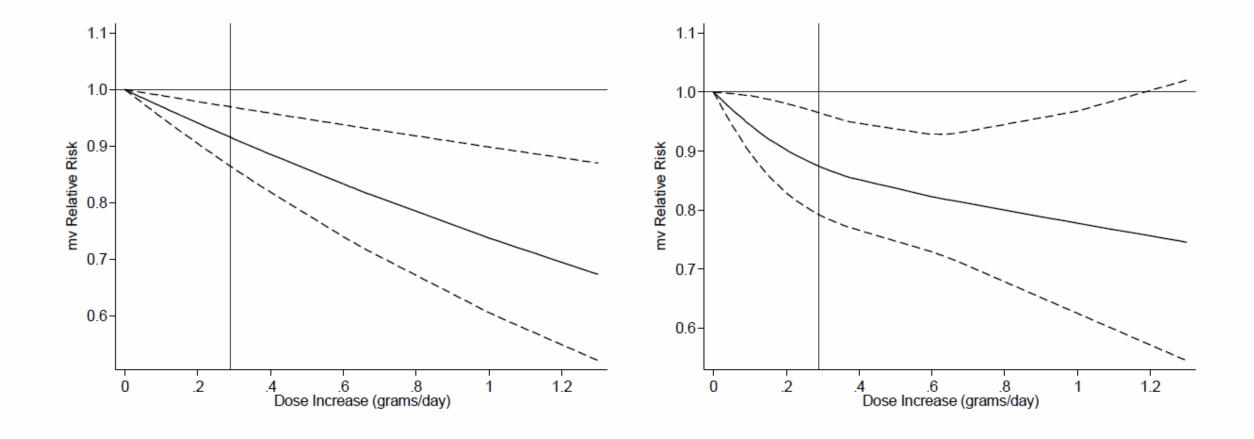


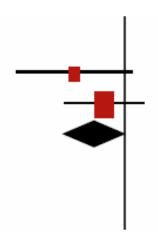
Figure 11. Dose-response association between total n-3 PUFA (g/d) and most-adjusted RR of CHD mortality in 6 studies, assuming linearity (P=0.06 for goodness-of-fit). Assuming linearity, a 2-g increase in n-3 PUFA was associated with a 31% reduced risk of CHD mortality (mvRR: 0.69, 95% CI: 0.44 to 1.08). Horizontal line represents a RR = 1.0; vertical line represents the median n-3 PUFA intake in the studied populations (590 mg)


4. LC- n-3 *PUFA and fatal CHD* (10 studies/11 comparisons)

	3.2.3 Fatal CHD							I
Mr. FIT (USA)	Dolocek [M] 1992	-0.69315	0.2532	175	6083	7.6%	0.50 [0.30, 0.82] 1992	
ATBC (Fin)	Pietinen [M] 1997	0.215111	0.12446	635	21295	14.2%	1.24 [0.97, 1.58] 1997	 •
CHS (USA)	Mozaffarian 2003	-0.54473	0.219955	247	3663	8.9%	0.58 [0.38, 0.89] 2003	
IWHS (USA)	Folsom [W] 2004	0.039221	0.131585	922	40914	13.8%	1.04 [0.80, 1.35] 2004	-
ZES (Net)	Streppel 2008	-0.43078	0.248612	348	1025	7.8%	0.65 [0.40, 1.06] 2008	
SHS (Chi)	Takata 2013	-0.23572	0.165382	476	133820	11.7%	0.79 [0.57, 1.09] 2013	
NIPPON (Jap)	Miyagawa [30-59] 2014	-0.35667	0.41867	54	4541	3.7%	0.70 [0.31, 1.59] 2014	•
VITAL (USA)	Bell 2014	-0.47804	0.237642	233	70262	8.2%	0.62 [0.39, 0.99] 2014	-
NIPPON (Jap)	Miyagawa [60+] 2014	-0.05129	0.277147	117	4478	6.8%	0.95 [0.55, 1.64] 2014	
SCHS (S-Chi)	Koh 2015	-0.15082	0.074249	2697	57601	17.3%	0.86 [0.74, 0.99] 2015	_
	Subtotal (95% CI)			5904	343682	100.0%	0.81 [0.68, 0.97]	•
	Heterogeneity: Tau ² = 0.04; Chi ² = 22	2.27, df = 9 (P =	= 0.008); I ² =	60%				
	Test for overall effect: Z = 2.34 (P = 0							
		,						

High vs. Low: 0.81 (0.68, 0.97)

VERY LOW Prospective cohort studies begin with GRADE of LOW. Downgraded for risk of bias, inconsistency


Figure 17. Dose-response association between long-chain n-3 PUFA (g/d) and most-adjusted RR of fatal CHD in 9 studies, assuming linearity (P<0.02 for goodness-of-fit) (L), and using non-linear, cubic spline approach (R). Assuming linearity, a 0.5-g increase in long chain n-3 PUFA was associated with a 14% reduced risk of CHD mortality (mvRR: 0.86, 95% CI: 0.78 to 0.95). Horizontal line represents a RR = 1.0; vertical line represents the median long-chain n-3 PUFA intake in the studied populations (290 mg/d)

3. EPA *and fatal CHD* (2 studies/2 comparisons)

4.2.2 Fatal CHD

Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.73$, df = 1 (P = 0.39); $I^2 = 0\%$

Test for overall effect: Z = 1.83 (P = 0.07)

High vs. Low: 0.78 (0.59, 1.02)

⊕000

VERY LOW Prospective cohort studies begin with GRADE of LOW. Downgraded for imprecision.

3. DHA and fatal CHD (1 study/1 comparison)

5.2.2 Fatal CHD

Takata 2013 Subtotal (95% CI) -0.23572 0.165382

476 133820 100.0% 476 133820 100.0% 0.79 [0.57, 1.09] 2013 0.79 [0.57, 1.09] 1

Heterogeneity: Not applicable

Test for overall effect: Z = 1.43 (P = 0.15)

High vs. Low: 0.76 (0.64, 0.91)

⊕000 **VERY LOW** *imprecision*

n-3 PUFA and total CHD

4. n-3 *PUFA* and total *CHD* (5 studies/8 comparisons)

Hu 2002	-0.37106368	0.09891978	1503	83185	17.1%	0.69 [0.57, 0.84] 2	002	
so [JPHC] 2006	-0.54473	0.260042	258	41320	8.1%	0.58 [0.35, 0.97] 2	006	
Joensen [W] 2010	-0.03046	0.228762	272	28745	9.4%	0.97 [0.62, 1.52] 2	010	
Joensen [M] 2010	-0.21072	0.123854	852	23934	15.4%	0.81 [0.64, 1.03] 2	010	
Wallström [M] 2012	0	0.12234	688	7451	15.5%	1.00 [0.79, 1.27] 2	012	-+
Wallström [W] 2012	0.182322	0.181338	333	12202	11.8%	1.20 [0.84, 1.71] 2	012	 -
Amiano [W] 2014	-0.26136	0.265024	128	25519	7.9%	0.77 [0.46, 1.29] 2	014	
Amiano [M] 2014	0.207014	0.134084	481	14963	14.8%	1.23 [0.95, 1.60] 2	014	+
Subtotal (95% CI)			4515	237319	100.0%	0.89 [0.74, 1.08]		•

High vs. Low: 0.89 (0.74, 1.08)

@000

VERY LOW Prospective cohort studies start with GRADE of LOW. Downgraded for serious imprecision, inconsistency.

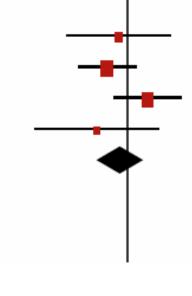
5. LC- n-3 *PUFA* and total *CHD* (3 studies/5 comparisons)

							I
3.2.8 Total CHD							
Pietinen [M] 1997	0.139762	0.084327	1399	20531	28.8%	1.15 [0.97, 1.36] 1997	
Vedtofte [M] 2011	-0.30111	0.186636	312	1322	17.0%	0.74 [0.51, 1.07] 2011	
Vedtofte [W] 2011	-0.47804	0.225977	159	1484	13.7%	0.62 [0.40, 0.97] 2011	
Wallström [W] 2012	0.09531	0.181745	333	12202	17.5%	1.10 [0.77, 1.57] 2012	
Wallström [M] 2012	-0.0202	0.130983	688	7451	23.0%	0.98 [0.76, 1.27] 2012	
Subtotal (95% CI)			2891	42990	100.0%	0.94 [0.76, 1.16]	•
Heterogeneity: Tau ² = 0.03; Ch	ni ² = 10.08, df = 4 (P =	$= 0.04$); $I^2 = 6$	0%				
Test for overall effect: Z = 0.60	(P = 0.55)						

High vs. Low: 0.94 (0.76, 1.16)

@000

VERY LOW Prospective cohort studies begin with GRADE of LOW. Downgraded for imprecision, inconsistency.


4. EPA and total CHD(2 studies/4 comparisons)

4.2.4 Total CHD [CHD Death + Nonfatal MI]

Joensen [W] 2010	-0.07257	0.219766	272	28745	16.6%	0.93 [0.60, 1.43]	2010
Joensen [M] 2010	-0.17435	0.120863	852	23934	39.0%	0.84 [0.66, 1.06]	2010
Amiano [M] 2014	0.165514	0.140318	481	14963	32.4%	1.18 [0.90, 1.55]	2014
Amiano [W] 2014	-0.26136	0.265024	128	25519	12.1%	0.77 [0.46, 1.29]	2014
Subtotal (95% CI)			1733	93161	100.0%	0.94 [0.78, 1.14]	

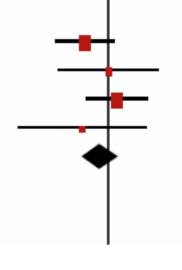
Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 4.06$, df = 3 (P = 0.26); $I^2 = 26\%$

Test for overall effect: Z = 0.59 (P = 0.56)

High vs. Low: 0.94 (0.78, 1.14)

⊕000

VERY LOW Prospective cohort studies begin with GRADE of LOW. Downgraded for imprecision.

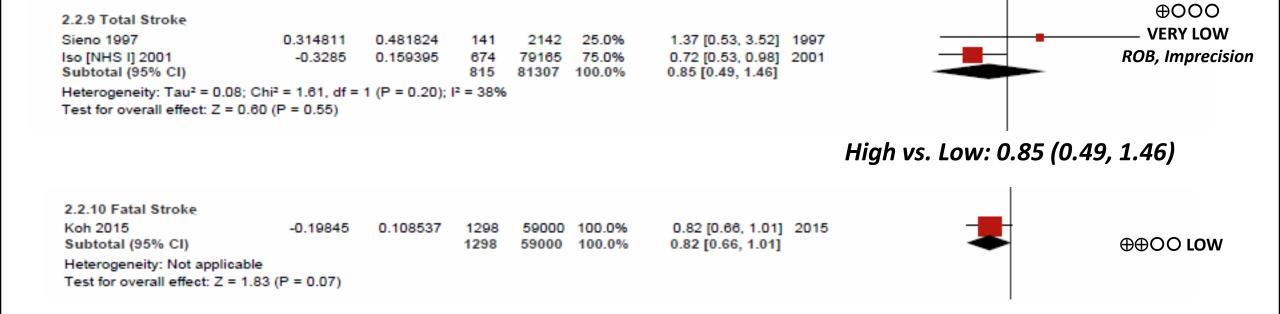

4. DHA and total CHD (2 studies/4 comparisons)

5.2.5 Total CHD	[CHD	Death +	Nonfatal	MI]
-----------------	------	---------	----------	-----

Joensen [M] 2010	-0.21072	0.133637	852	23934	40.0%	0.81 [0.62, 1.05] 2010
Joensen [W] 2010	0	0.228919	272	28745	13.6%	1.00 [0.64, 1.57] 2010
Amiano [M] 2014	0.076961	0.136986	481	14963	38.1%	1.08 [0.83, 1.41] 2014
Amiano [W] 2014	-0.23572	0.29344	128	25519	8.3%	0.79 [0.44, 1.40] 2014
Subtotal (95% CI)			1733	93161	100.0%	0.93 [0.79, 1.10]

Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 2.67$, df = 3 (P = 0.45); $I^2 = 0$ %

Test for overall effect: Z = 0.88 (P = 0.38)



High vs. Low: 0.93 (0.79, 1.10)

⊕000 **VERY LOW** *imprecision*

n-3 PUFA and stroke

5. n-3 *PUFA* and total stroke

High vs. Low: 0.82 (0.66, 1.01)

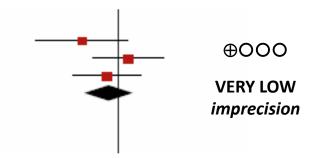
6. n-3 *PUFA* and ischemic stroke

2.2.11 Fatal Ischemic Stroke

Yamagishi 2008 0.157004 0.253779 319 57653 100.0% 1.17 [0.71, 1.92] 2008 Subtotal (95% CI) 319 57653 100.0% 1.17 [0.71, 1.92]

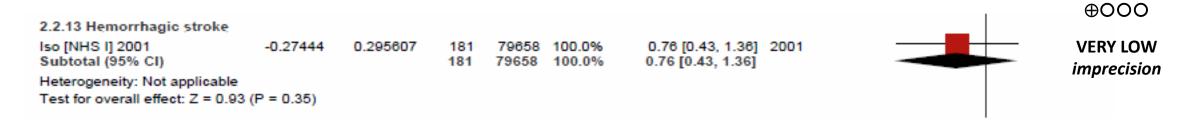
Heterogeneity: Not applicable

Test for overall effect: Z = 0.62 (P = 0.54)

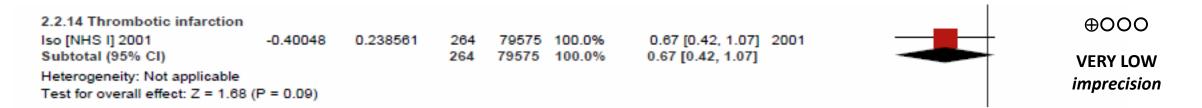

High vs. Low: 1.17 (0.71, 1.92)

2.2.12 Ischemic stroke

Iso [NHS I] 2001	-0.34249	0.222408	303	79536	24.1%	0.71 [0.46, 1.10]	2001
Wallström [M] 2012	0.09531	0.17187	401	7738	37.0%	1.10 [0.79, 1.54]	2012
Wallström [W] 2012	-0.10536	0.166818	354	12181	38.8%	0.90 [0.65, 1.25]	2012
Subtotal (95% CI)			1058	99455	100.0%	0.92 [0.73, 1.15]	

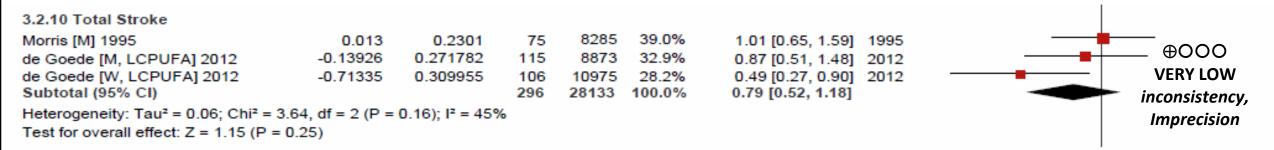

Heterogeneity: Tau2 = 0.01; Chi2 = 2.46, df = 2 (P = 0.29); I2 = 19%

Test for overall effect: Z = 0.75 (P = 0.45)

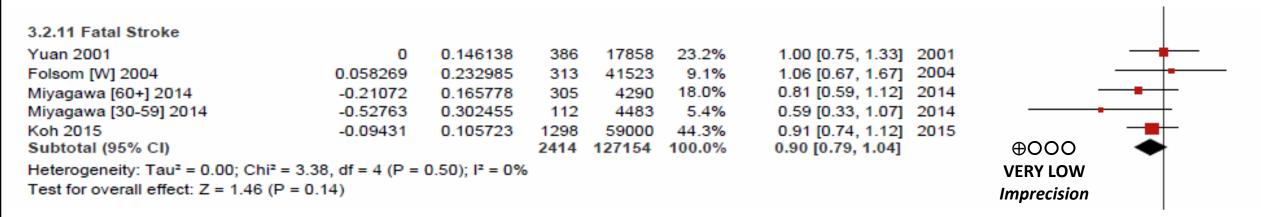


High vs. Low: 0.92 (0.73, 1.15)

8. n-3 *PUFA* and hemorrhagic/thrombotic stroke

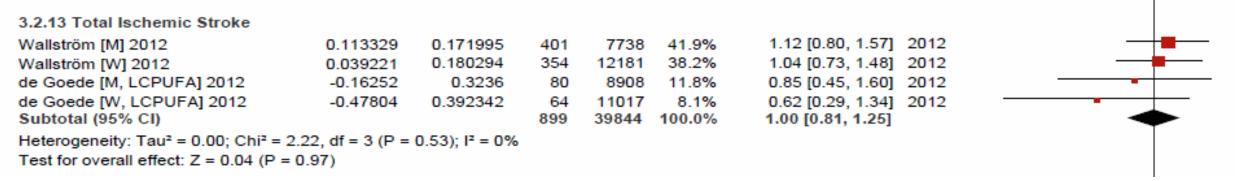


High vs. Low: 0.76 (0.43, 1.36)



High vs. Low: 0.67 (0.42, 1.07)

6. LC- n-3 PUFA and stroke



High vs. Low: 0.79 (0.52, 1.18)

High vs. Low: 0.90 (0.79, 1.04)

8. LC- n-3 *PUFA and ischemic stroke* (2 studies/4 comparisons)

High vs. Low: 1.00 (0.81, 1.25)

9. LC- n-3 PUFA and hemorrhagic/ischemic stroke

20022 100.0%

3.2.15 Total Hemorrhagic Stroke de Goede [W, LCPUFA] 2012 -0.79851 0.591013 31 11050 68.0% 0.45 [0.14, 1.43] 2012 ← de Goede [M, LCPUFA] 2012 -1.27297 0.860757 16 8972 32.0% 0.28 [0.05, 1.51] 2012 ←

Subtotal (95% CI) Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.21$, df = 1 (P = 0.65); $I^2 = 0$ %

Test for overall effect: Z = 1.95 (P = 0.05)

⊕○○○
VERY LOW *High vs. Low:* 0.39 (0.15, 1.00)
Imprecision

3.2.13 Total Ischemic Stroke

Wallström [M] 2012	0.113329	0.171995	401	7738	41.9%
Wallström [W] 2012	0.039221	0.180294	354	12181	38.2%
de Goede [M, LCPUFA] 2012	-0.16252	0.3236	80	8908	11.8%
de Goede [W, LCPUFA] 2012	-0.47804	0.392342	64	11017	8.1%
Subtotal (95% CI)			899	39844	100.0%

Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 2.22$, df = 3 (P = 0.53); $I^2 = 0\%$

Test for overall effect: Z = 0.04 (P = 0.97)

VERY LOW Imprecision

High vs. Low: 1.00 (0.81, 1.25)

5. EPA and stroke

4.2.6 Fatal Hemorrhagic Stroke

Heterogeneity: Not applicable

Test for overall effect: Z = 1.26 (P = 0.21)

Takata 2013 Subtotal (95% CI) -0.21072 0.167871

460 133836 100.0% 460 133836 100.0% 0.81 [0.58, 1.13] 2013

0.81 [0.58, 1.13]

High vs. Low: 0.81 (0.58, 1.13)

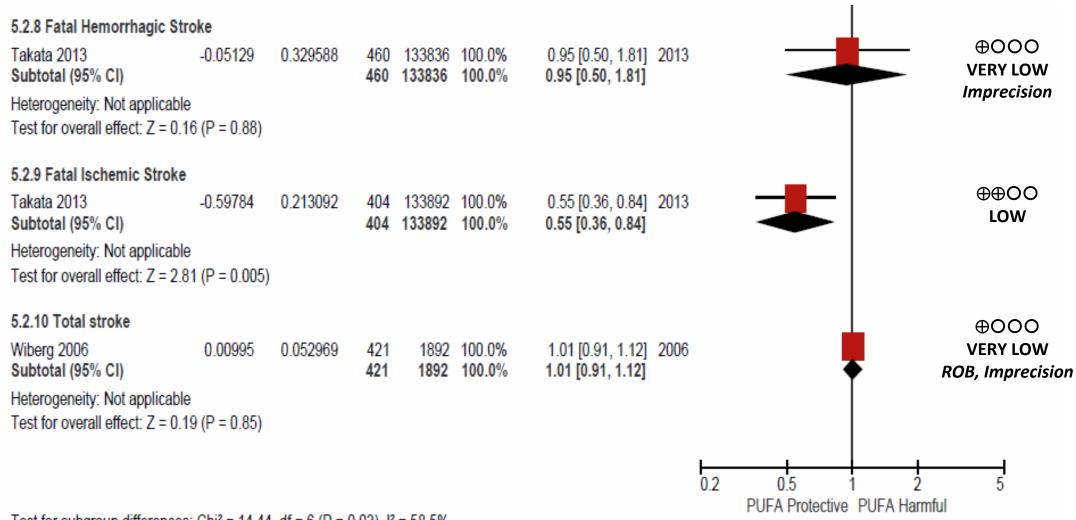
4.2.7 Fatal Ischemic Stroke

Takata 2013 Subtotal (95% CI) -0.57982

0.22215

404 133892 100.0% 404 133892 100.0% 0.56 [0.36, 0.87] 2013

0.56 [0.36, 0.87]


⊕⊕○○ Low

Heterogeneity: Not applicable

Test for overall effect: Z = 2.61 (P = 0.009)

High vs. Low: 0.56 (0.36, 0.87)

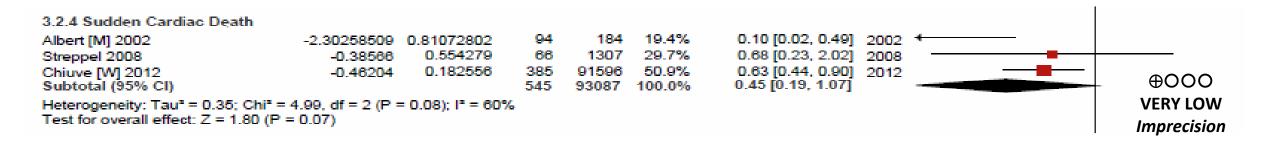
5. DHA and stroke

Test for subgroup differences: $Chi^2 = 14.44$, df = 6 (P = 0.03), $I^2 = 58.5\%$

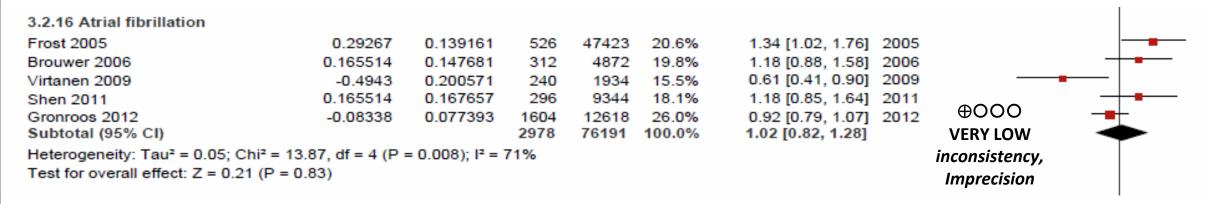
n-3 *PUFA* and sudden cardiac death and arrhythmia

3. n-3 PUFA and sudden cardiac death, a-fib

2.2.4 Sudden Cardiac Death (Arrest)


								I		
Iso [JPHC] 2006	0.215111	0.592574	37	41541	7.2%	1.24 [0.39, 3.96] 20	006		•	
Yamagishi 2008	-0.44629	0.461941	107	57865	11.9%	0.64 [0.26, 1.58] 20	800	-		
Chiuve [W] 2012	-0.43078	0.176823	385	91596	80.9%	0.65 [0.46, 0.92] 20	012			A /
Subtotal (95% CI)			529	191002	100.0%	0.68 [0.50, 0.93]			ΦΦOO [O]	/V
Heterogeneity: Tau ² = 0.00; (Chi² = 1.11, df =	2 (P = 0.57); F	2 = 0%							
Test for overall effect: Z = 2.4	13 (P = 0.02)									

High vs. Low: 0.68 (0.50, 0.93)

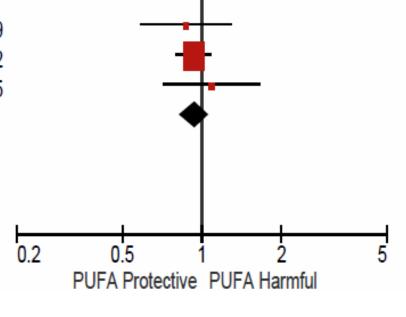


High vs. Low: 1.05 (0.80, 1.38)

10. LC- n-3 *PUFA* and sudden cardiac death/arrhythmia

High vs. Low: 0.45 (0.19, 1.07)

High vs. Low: 1.02 (0.82, 1.28)


6. EPA and atrial fibrillation (3 studies/3 comparisons)

4.2.11 Atrial fibrillation

Virtanen 2009	-0.13926	0.19956	240	1934	11.0%	0.87 [0.59, 1.29]	2009
Gronroos 2012	-0.07257	0.074184	1604	12618	79.4%	0.93 [0.80, 1.08]	2012
Chiuve [W] 2015	0.086178	0.213092	1441	32214	9.6%	1.09 [0.72, 1.66]	2015
Subtotal (95% CI)			3285	46766	100.0%	0.94 [0.82, 1.07]	

Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.65$, df = 2 (P = 0.72); $I^2 = 0\%$

Test for overall effect: Z = 0.98 (P = 0.33)

High vs. Low: 0.94 (0.82, 1.07)

@000

VERY LOW Prospective cohort studies begin with GRADE of LOW. Downgraded due to imprecision.

5. DHA and atrial fibrillation (3 studies/3 comparisons)

Virtanen 2009	-0.54472718	0.20468022	240	1934	27.0%	0.58 [0.39, 0.87]	2009
Gronroos 2012	-0.07257	0.074184	1604	12618	47.6%	0.93 [0.80, 1.08]	2012
Chiuve [W] 2015 Subtotal (95% CI)	0.039221	0.216683	1441 3285	32214 46766	25.4% 100.0%	1.04 [0.68, 1.59] 0.84 [0.63, 1.13]	2015

High vs. Low: 0.84 (0.63, 1.13)

⊕OOO **VERY LOW** *imprecision, inconsistency*

Conclusions

- The most robust associations observed in prospective cohort studies were for total n-3 fatty acids and fatal CHD, and long-chain n-3 fatty acids and all-cause mortality (MODERATE)
- Statistically significant associations were observed for EPA and all-cause mortality, and fatal ischemic stroke; DHA and all-cause mortality, fatal CVD, and fatal ischemic stroke; and for total n-3 and sudden cardiac death (LOW)
- Other associations between n-3 PUFA and ACM or cardiovascular outcomes were non-significant (LOW or VERY LOW)

Study	Death Definition/Confirmation
Dolocek (MR FIT)	Monitored by MRFIT co-ordinating centre; using ICD-9 (see Folsom) to assign cause-specific mortality. Death certificates coded by 2 nosologists (3 rd if needed)
Pietinen (ATBC)	Coronary death assigned when coronary heart disease was described as the underlying cause of death; reviewed hospital and pathology records
Mozafarrian (CHS)	Annual examinations, interim 6-month interviews; review and adjudication by central committee; death from definite MI or 1) occurred with 72 h of chest pain; or with 2) history of antecedent IHD; 3) primary arryhmira (within 5 mins of symptoms); 4) secondary arryhtmia (preceding subacute ischemic signs)
Folsom (IWHS)	ICD-9 codes (410-414, 429.2); ICD 10 codes (I20-I25, 151.6) would be AMI, other acute/subacute forms of IHD, old MI, angina pectoris, other forms chronic IHD, 429.2: CVD, unspecificed
Streppel (ZES)	CHD death (ICD 410-414); includes sudden cardiac death + men who died within 2h after onset of symptoms; or with past history of CHD
Takata (

Study	Death Definition/Confirmation
Takata (SHS)	Deaths due to CVD were further divided into the following categories: ischemic heart disease (ICD-9 codes 410–414)
Miyagawa (NIPPON-24)	National Vital Statistics were utilized to identify the causes of death. ICD 9 until the end of 1994, and ICD10 from the beginning of 1995.
Bell (VITAL)	Washington State death records (n = 3,021) through linkage based on participant identifiers. CVD deaths were further classified as being due to ischemic heart disease (ICD-10 codes I20–I25) or not. Cancer
Koh (Sig CHS)	Information on date and cause of death was obtained through linkage with the nationwide registry of birth and death in Singapore to 31 December 2011. ICD-9 codes 410–414 for CHD deaths