JOINT FAO/WHO FOOD STANDARDS PROGRAMME
CODEX COMMITTEE ON FOOD ADDITIVES
Fifty-second Session
GENERAL STANDARD FOR FOOD ADDITIVES (GSFA)
PROPOSALS FOR NEW AND/OR REVISION OF FOOD ADDITIVE PROVISIONS
Replies to CL 2019/40-FA of Australia, Uganda and Food Drink Europe

<table>
<thead>
<tr>
<th>THE PROPOSAL IS SUBMITTED BY:</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFY OF THE FOOD ADDITIVE:</td>
<td>Lauric arginate ethyl ester</td>
</tr>
</tbody>
</table>

Name of the Additive
As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989

INS Number
243

Functional Class
As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989
Preservative

PROPOSED USE(S) OF THE FOOD ADDITIVE (1):
The rows below may be copied as many times as needed.

<table>
<thead>
<tr>
<th>Food No. (2)</th>
<th>Category</th>
<th>Food Category Name (3)</th>
<th>Maximum Use Level (4)</th>
<th>Comments (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.6.2.1</td>
<td></td>
<td>Ripened Cheese, includes rind</td>
<td>200 mg/kg</td>
<td>Note XS263</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS264</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS266</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS267</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS268</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS269</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS271</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note XS272</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Remove these exclusions from the lauric arginate ethyl ester provisions</td>
</tr>
</tbody>
</table>
Is the proposal related to a FC with corresponding commodity standards?
(if yes indicate the relevant FC)
Yes. FC 01.6.2.1
Standard for Cheddar (CXS 263-1966)
Standard for Danbo (CXS 264-1966)
Standard for Edam (CXS 265-1966)
Standard for Gouda (CXS 266-1966)
Standard for Havarti (CXS 267-1966)
Standard for Samsø (CXS 268-1966)
Standard for Emmental (CXS 269-1967)
Standard for Tilsiter (CXS 270-1968)
Standard for Saint-Paulin (CXS 271-1968)
Standard for Provolone (CXS 272-1968)

Is the proposal also intended to revise the products covered by the commodity standards?
(if yes indicate the relevant commodity standards)
Yes, to revise the products covered by the commodity listed above to permit the use of lauric arginate ethyl ester (INS 243) (LAEE).

EVALUATION BY JECFA:

<table>
<thead>
<tr>
<th>Evaluation by JECFA</th>
<th>Evaluation date: 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference to the JECFA evaluation (including year and JECFA session of evaluation; full ADI (numerical or “not specified”); specifications monograph).</td>
<td>Report: TRS 952-JECFA 69/27</td>
</tr>
</tbody>
</table>

ADI 0-4 mg/kg bw for Ethyl-Nα-Lauroyl-L-Arginate

JUSTIFICATION:

Justification for use and technological need
Supporting information based on the criteria in Section 3.2 of the Preamble of the General Standard for Food Additives (i.e. has an advantage, does not present an appreciable health risk, serves a technological function).

Based on Section 3.2 of the Preamble of the General Standard for Food Additives, the main technological need for the use of LAEE in food category 01.6.2.1 is 3.2(c) ‘To enhance the keeping quality or stability of a food’.

Provisions were adopted at Step 8 in 2011 for LAEE (INS 243) in food category 01.6.2.1 at a level of 200 mg/kg. The provisions were adopted with footnotes that restrict the use of the additive in products conforming to corresponding commodity standards associated with this category.

The thirteen footnotes adopted were as follows:

XS263: Excluding products conforming to the Standard for Cheddar (CXS 263-1966)
XS264: Excluding products conforming to the Standard for Danbo (CXS 264-1966)
XS265: Excluding products conforming to the Standard for Edam (CXS 265-1966)
XS266: Excluding products conforming to the Standard for Gouda (CXS 266-1966)
XS267: Excluding products conforming to the Standard for Havarti (CXS 267-1966)
XS268: Excluding products conforming to the Standard for Samsø (CXS 268-1966)
XS269: Excluding products conforming to the Standard for Emmental (CXS 269-1967)
XS270: Excluding products conforming to the Standard for Tilsiter (CXS 270-1968)
XS271: Excluding products conforming to the Standard for Saint-Paulin (CXS 271-1968)
The current request is to authorize the use LAEE in the same cheese standards as many other preservatives, including lysozyme, sorbates, nisin, natamycin, nitrates and propionate. Therefore, it is sought to remove the following ten footnotes:

- XS263: Excluding products conforming to the Standard for Cheddar (CXS 263-1966)
- XS264: Excluding products conforming to the Standard for Danbo (CXS 264-1966)
- XS265: Excluding products conforming to the Standard for Edam (CXS 265-1966)
- XS266: Excluding products conforming to the Standard for Gouda (CXS 266-1966)
- XS267: Excluding products conforming to the Standard for Havarti (CXS 267-1966)
- XS268: Excluding products conforming to the Standard for Samsø (CXS 268-1966)
- XS269: Excluding products conforming to the Standard for Emmental (CXS 269-1967)
- XS270: Excluding products conforming to the Standard for Tilsiter (CXS 270-1968)
- XS272: Excluding products conforming to the Standard for Provolone (CXS 272-1968)

The acceptability of the use of preservatives in these ten food standards is recognised in the GSFA by way of the inclusion of provisions permitting the use of various preservatives, including lysozyme, sorbates, nisin, natamycin, nitrates and propionate in these standards. The use of LAEE provides an effective alternative to the use of such preservatives in products falling under these standards.

Technological effect of Lauric arginate ethyl ester in cheese

LAEE is a preservative that is also used in products that conform to these corresponding ten commodity standards associated with FC 01.6.2.1. The technical effect of LAEE in food is to inhibit microbial growth in the food to which it has been added, and it is effective in controlling the growth of potentially pathogenic organisms in products falling under 01.6.2.1. The active ingredient of LAEE, as a cationic surfactant, has a wide spectrum of activity against bacteria, yeasts and moulds. Specifically, LAEE affects negatively charged compounds such as microbial proteins present in cellular membranes or in enzyme systems.

Both hard or ripened and soft or unripened cheese benefit from the addition of preservatives. Age-ripened cheese retain their quality for long periods due to comparatively low pH, low water activity and low redox potential. However, spoilage may occur through the action of fungi, lactic acid bacteria and spore-forming bacteria. Unripened

1 Proprionates are not permitted for use in Emmental and have the following Note - XS269: Excluding products conforming to the Standard for Emmental (CXS 269-1967). But they are permitted in the other nine standards as described here.
Cheeses spoil more rapidly than aged cheeses, and typical spoilage microorganisms include psychrotrophs, coliforms, fungi and lactic acid bacteria (Ledenbach and Marshall, 2009). Pasteurisation may eliminate many spoilage microorganisms originating from milk production and processing, but post-process contamination of milk and cheese can still occur. Use of the currently authorised preservatives in cheese has some disadvantages. When used to prevent mould growth on the surface of cheese, sorbates tend to diffuse into the cheese decreasing the surface concentration and thereby decreasing their preservative effect, and also modifying the favour, appearance and ripening process of the cheese (de Ruig and van den Berg, 1985). In addition, some moulds that grow on cheese are capable of metabolising sorbic acid and sorbate to trans-1,3-pentadiene, which causes an off-odour and flavour (Ledenbach and Marshall, 2009; Sensidoni et al., 1994). In addition, the near neutral pH of fresh cheese is not optimal for the antimicrobial activity of sorbates. The use of other preservatives on cheese also have disadvantages, such as natamycin which is a polyene fungicide and is not active against pathogenic bacteria such as *L. monocytogenes* (EFSA, 2009). Nisin has a narrow spectrum of activity against only gram-positive bacteria and does not inhibit gram-negative bacteria, yeasts or moulds (EFSA, 2006). In addition, some strains of bacteria, including some strains of *L. monocytogenes* have been shown to develop gradual resistance against nisin (Soni et al., 2010).

The technological advantages of LAEE over other preservatives for use in cheeses (i.e. FC 01.6.2.1) include the following:

- LAEE is effective at low and near-neutral pH. In contrast, some currently approved preservatives are only effective at low pH.
- LAEE is similarly effective against bacteria (Gram +ve and Gram –ve), yeasts and moulds. Other preservatives must be combined to enhance their antimicrobial efficacy because they cannot inhibit the growth of such a wide range of micro-organisms by themselves.
- The minimum inhibitory concentrations (MICs) of LAEE are considerably lower than the MICs of the other preservatives against the same micro-organisms. This means that the effective application dose is lower for LAEE than for other food preservatives.
- On ingestion, LAEE can be easily and rapidly metabolised to common, natural constituent metabolic compounds. This implies a lack of adverse effects because it is a unique food preservative that is metabolically decomposed into constituent products.

Efficacy

The efficacy of LAEE as an antimicrobial preservative for use on cheese has been demonstrated in a number of studies. Some of these studies are now described:

An internal study examined effect of LAEE on fresh cheese (50 ppm and 100 ppm) (Internal study VED-EC-21). Treating fresh cheese with LAE did not change their taste and general appearance. Found that LAEE reduces the concentration of the standard microbiological contamination present in the samples (*E. coli*, Coliform bacteria and yeasts). The antimicrobial activity increases with higher concentrations of LAEE. At 50 ppm there is a clear reduction effect, while at 100 ppm the reduction increases significantly.

A separate internal study examined the effect of LAEE on blue cheese to prevent the presence of *Listeria monocytogenes* without affecting the technological characteristics of this type of product (Internal study VED-EC-22). During ripening, soaking of blue cheeses was done using a 1% LAEE solution. Soaking was carried out 4 times during ripening. Treating blue cheeses with solutions of LAE during ripening period did not change their general appearance. LAEE surface

| cheeses spoil more rapidly than aged cheeses, and typical spoilage microorganisms include psychrotrophs, coliforms, fungi and lactic acid bacteria (Ledenbach and Marshall, 2009). Pasteurisation may eliminate many spoilage microorganisms originating from milk production and processing, but post-process contamination of milk and cheese can still occur. Use of the currently authorised preservatives in cheese has some disadvantages. When used to prevent mould growth on the surface of cheese, sorbates tend to diffuse into the cheese decreasing the surface concentration and thereby decreasing their preservative effect, and also modifying the favour, appearance and ripening process of the cheese (de Ruig and van den Berg, 1985). In addition, some moulds that grow on cheese are capable of metabolising sorbic acid and sorbate to trans-1,3-pentadiene, which causes an off-odour and flavour (Ledenbach and Marshall, 2009; Sensidoni et al., 1994). In addition, the near neutral pH of fresh cheese is not optimal for the antimicrobial activity of sorbates. The use of other preservatives on cheese also have disadvantages, such as natamycin which is a polyene fungicide and is not active against pathogenic bacteria such as *L. monocytogenes* (EFSA, 2009). Nisin has a narrow spectrum of activity against only gram-positive bacteria and does not inhibit gram-negative bacteria, yeasts or moulds (EFSA, 2006). In addition, some strains of bacteria, including some strains of *L. monocytogenes* have been shown to develop gradual resistance against nisin (Soni et al., 2010). The technological advantages of LAEE over other preservatives for use in cheeses (i.e. FC 01.6.2.1) include the following:

- LAEE is effective at low and near-neutral pH. In contrast, some currently approved preservatives are only effective at low pH.

- LAEE is similarly effective against bacteria (Gram +ve and Gram –ve), yeasts and moulds. Other preservatives must be combined to enhance their antimicrobial efficacy because they cannot inhibit the growth of such a wide range of micro-organisms by themselves.

- The minimum inhibitory concentrations (MICs) of LAEE are considerably lower than the MICs of the other preservatives against the same micro-organisms. This means that the effective application dose is lower for LAEE than for other food preservatives.

- On ingestion, LAEE can be easily and rapidly metabolised to common, natural constituent metabolic compounds. This implies a lack of adverse effects because it is a unique food preservative that is metabolically decomposed into constituent products.

Efficacy

The efficacy of LAEE as an antimicrobial preservative for use on cheese has been demonstrated in a number of studies. Some of these studies are now described:

An internal study examined effect of LAEE on fresh cheese (50 ppm and 100 ppm) (Internal study VED-EC-21). Treating fresh cheese with LAE did not change their taste and general appearance. Found that LAEE reduces the concentration of the standard microbiological contamination present in the samples (*E. coli*, Coliform bacteria and yeasts). The antimicrobial activity increases with higher concentrations of LAEE. At 50 ppm there is a clear reduction effect, while at 100 ppm the reduction increases significantly.

A separate internal study examined the effect of LAEE on blue cheese to prevent the presence of *Listeria monocytogenes* without affecting the technological characteristics of this type of product (Internal study VED-EC-22). During ripening, soaking of blue cheeses was done using a 1% LAEE solution. Soaking was carried out 4 times during ripening. Treating blue cheeses with solutions of LAE during ripening period did not change their general appearance. LAEE surface |
treatment reduces the population of *Listeria spp.* in blue cheese and prevents the presence of *Listeria monocytogenes* on the surface of blue cheese.

International authorisation of LAEE

The use of lauric arginate ethyl ester (LAEE) is permitted for use in products falling under FC 01.6.2.1 in a number of countries worldwide (e.g. Australia, New Zealand, Canada, and the USA), without further restriction on its use in products conforming to the relevant Codex commodity standards. These products are also available in international trade. As such, consideration should be given to revising the provisions of the GSFA to reflect the acceptable use of LAEE as a preservative in these products in numerous countries.

<table>
<thead>
<tr>
<th>Safe use of additive: Dietary intake assessment (as appropriate)</th>
<th>Safe use of additive: Dietary intake assessment (as appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Yes</td>
<td>☒ No (Please provide information on dietary intake assessment below)</td>
</tr>
<tr>
<td></td>
<td>The use of lauric acid ethyl ester (INS 243) in cheese products that fall under Codex food category 01.6.2.1, as well as its use in a broad range of other foods, was taken into consideration as part of the JECFA assessment of the safety of the additive in 2009.</td>
</tr>
</tbody>
</table>

Justification that the use does not mislead consumer

When used as a preservative, the use of LAEE would be in the list of ingredients on the label of the products.

REFERENCES

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Scientific Opinion on the use of natamycin (E 235) as a food additive. EFSA Journal 2009;7(12):1412 [25 pp.].

Uganda

THE PROPOSAL IS SUBMITTED BY:

UGANDA

IDENTITY OF THE FOOD ADDITIVE:

<table>
<thead>
<tr>
<th>Name of the Additive</th>
<th>Azorubine (Carmoisine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989</td>
<td></td>
</tr>
<tr>
<td>INS Number</td>
<td>122</td>
</tr>
</tbody>
</table>
Functional Class

As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989

<table>
<thead>
<tr>
<th>Food Category No. (2)</th>
<th>Food Category Name (2)</th>
<th>Maximum Use Level (3)</th>
<th>Comments (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.4</td>
<td>Water-based flavoured drinks, including "sport," "energy," or "electrolyte" drinks and particulated drinks</td>
<td>50 mg/l</td>
<td>Labelling requirement: "may have an adverse effect on activity and attention in children"</td>
</tr>
</tbody>
</table>

PROPOSED USE(S) OF THE FOOD ADDITIVE (1):
The rows below may be copied as many times as needed.

The proposal for:

- X a new provision; or
- ☐ revising an existing provision in Tables 1 and 2 of the GSFA; or
- ☐ revising an existing provision in Table 3 of the GSFA (skip to "Is the proposal intended to revise products covered by the commodity standard?")

Is the proposal related to a FC with corresponding commodity standards?
(if yes indicate the relevant FC)
No

Is the proposal also intended to revise the products covered by the commodity standards?
(if yes indicate the relevant commodity standards)
No

EVALUATION BY JECFA:

Evaluation by JECFA
Reference to the JECFA evaluation (including year and JECFA session of evaluation; full ADI (numerical or “not specified”); specifications monograph).

- 27th JECFA (1983)
- ADI: 0 – 4 mg/kg bw
- FAS 18-JECFA 27/15 (monograph)

JUSTIFICATION:

Justification for use and technological need

Supporting information based on the criteria in Section 3.2 of the Preamble of the General Standard for Food Additives (i.e. has an advantage, does not present an appreciable health risk, serves a technological function).

To enhance products’ organoleptic properties.
The colourant is not mutagenic, carcinogenic, or teratogenic and it produces no serious histopathological effects (JECFA, 1983)

Safe use of additive: Dietary intake assessment (as appropriate)

Table 3 additive:
- ☐ Yes
- X No (Please provide information on dietary intake assessment below)

Justification that the use does not mislead consumer

Products containing the food additive to conform to food labelling requirements for food additives in the General Standard for the Labelling of Prepackaged Foods (CXS 1-1985)

THE PROPOSAL IS SUBMITTED BY:
UGANDA

IDENTITY OF THE FOOD ADDITIVE:
Name of the Additive

As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989

<table>
<thead>
<tr>
<th>INS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
</tr>
</tbody>
</table>

Functional Class

As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989

<table>
<thead>
<tr>
<th>Colour</th>
</tr>
</thead>
</table>

PROPOSED USE(S) OF THE FOOD ADDITIVE (1):

The rows below may be copied as many times as needed.

<table>
<thead>
<tr>
<th>Food Category No. (2)</th>
<th>Food Category Name (2)</th>
<th>Maximum Use Level (3)</th>
<th>Comments (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.4</td>
<td>Water-based flavoured drinks, including "sport," "energy," or "electrolyte" drinks and particulated drinks</td>
<td>10 mg/l</td>
<td>Labelling requirement: may have an adverse effect on activity and attention in children</td>
</tr>
</tbody>
</table>

Is the proposal related to a FC with corresponding commodity standards?
(if yes indicate the relevant FC)

No

Is the proposal also intended to revise the products covered by the commodity standards?
(if yes indicate the relevant commodity standards)

No

EVALUATION BY JECFA:

Evaluation by JECFA

Reference to the JECFA evaluation (including year and JECFA session of evaluation; full ADI (numerical or ‘not specified’); specifications monograph).

- 82nd JECFA (2016)
- ADI: 0 – 3 mg/kg bw
- FAO JECFA monographs 19

JUSTIFICATION:

Justification for use and technological need

Supporting information based on the criteria in Section 3.2 of the Preamble of the General Standard for Food Additives (i.e. has an advantage, does not present an appreciable health risk, serves a technological function).

To enhance products’ organoleptic properties.

Dietary exposure to quinoline yellow for children and all other age groups does not present a health concern. (WHO food additives series: 73, 2017)

Safe use of additive: Dietary intake assessment (as appropriate)

<table>
<thead>
<tr>
<th>Table 3 additive:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Yes</td>
</tr>
</tbody>
</table>

X No (Please provide information on dietary intake assessment below)

- Safety evaluation of certain food additives (JECFA, 2017)
<table>
<thead>
<tr>
<th>THE PROPOSAL IS SUBMITTED BY:</th>
<th>UGANDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTITY OF THE FOOD ADDITIVE:</td>
<td></td>
</tr>
<tr>
<td>Name of the Additive</td>
<td>Tartrazine</td>
</tr>
<tr>
<td>As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989</td>
<td></td>
</tr>
<tr>
<td>INS Number</td>
<td>102</td>
</tr>
<tr>
<td>Functional Class</td>
<td>Colour</td>
</tr>
<tr>
<td>As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989</td>
<td></td>
</tr>
<tr>
<td>PROPOSED USE(S) OF THE FOOD ADDITIVE (1):</td>
<td>The proposal for:</td>
</tr>
<tr>
<td>The rows below may be copied as many times as needed.</td>
<td>X a new provision; or</td>
</tr>
<tr>
<td></td>
<td>☐ revising an existing provision in Tables 1 and 2 of the GSFA; or</td>
</tr>
<tr>
<td></td>
<td>☐ revising an existing provision in Table 3 of the GSFA (skip to "Is the proposal intended to revise products covered by the commodity standard").</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Food Category No. (2)</th>
<th>Food Category Name (2)</th>
<th>Maximum Use Level (3)</th>
<th>Comments (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.4</td>
<td>Water-based flavoured drinks, including “sport,” “energy,” or “electrolyte” drinks and particulated drinks</td>
<td>100 mg/l</td>
<td>Labelling requirement: “may have an adverse effect on activity and attention in children”</td>
</tr>
</tbody>
</table>

Is the proposal related to a FC with corresponding commodity standards? (if yes indicate the relevant FC)
No

Is the proposal also intended to revise the products covered by the commodity standards? (if yes indicate the relevant commodity standards)
No

EVALUATION BY JECFA:

Evaluation by JECFA
Reference to the JECFA evaluation (including year and JECFA session of evaluation; full ADI (numerical or “not specified”); specifications monograph).
- 82nd JECFA Report (2016)
- ADI: 0 – 10 mg/kg bw
- FAO JECFA Monographs 19

JUSTIFICATION:

Justification for use and technological need
Supporting information based on the criteria in Section 3.2 of the Preamble of the General Standard for Food Additives (i.e. has an advantage, does not present an appreciable health risk, serves a technological function).
To enhance products’ organoleptic properties.
Dietary exposure to tartrazine for the general population, including children, does not present a health concern (WHO Food Additive Series: 73, 2017)
Safe use of additive: Dietary intake assessment (as appropriate)

Table 3 additive:
☐ Yes
X No (Please provide information on dietary intake assessment below)

(2017) Safety evaluation of certain food additives

Justification that the use does not mislead consumer

Products containing the food additive to conform to food labelling requirements for food additives in the General Standard for the Labelling of Prepackaged Foods (CXS 1-1985)

Food Drink Europe

THE PROPOSAL IS SUBMITTED BY: FoodDrinkEurope

IDENTITY OF THE FOOD ADDITIVE:

Name of the Additive
As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989
Sucralose

INS Number
955

Functional Class
As listed in Class Names and the International Numbering System (INS) - CAC/GL 36-1989
Sweetener

PROPOSED USE(S) OF THE FOOD ADDITIVE (*):
The rows below may be copied as many times as needed.

Existing Authorisation in GSFA

Table One
Category 7.2 Fine Bakery Wares
Sucralose 955 2008 700 mg/kg Notes 161 & 165

<table>
<thead>
<tr>
<th>Food Category No. (1)</th>
<th>Food Category Name (2)</th>
<th>Maximum Use Level (3)</th>
<th>Comments (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.2</td>
<td>Fine Bakery Wares</td>
<td>700 mg/kg</td>
<td>A new Note to be added “wafer paper only”</td>
</tr>
</tbody>
</table>

Is the proposal related to a FC with corresponding commodity standards? (if yes indicate the relevant FC)
No

Is the proposal also intended to revise the products covered by the commodity standards? (if yes indicate the relevant commodity standards)
No

EVALUATION BY JECFA:

Evaluation by JECFA
Reference to the JECFA evaluation (including year and JECFA session of evaluation; full ADI (numerical or “not specified”); specifications monograph).

Evaluation Year: 1990
ADI: 0-15mg/kg bw
Meeting: 37
Specs Code: R (1993)
Report: TRS 806-JECFA37/21
Tox Monograph: FAS 28-JECFA 37/219
FAO JECFA Monographs 1 vol. 3/439
| **2001, Compendium Addendum 9/FNP 52 Add.9/192 (Metals Limits)** |
| **1993, Compendium Addendum 2/FNP 52 Add.2/119. R** |
| **1990, Compendium/1531. R** |
| **1988, TRS 776-JECFA 33/20, FNP 38-JECFA 33/255, FAS 24-JECFA 33/45. 0-3.5 (Temporary). TE. N,T** |

JUSTIFICATION:

| **Justification for use and technological need** | **Supporting information based on the criteria in Section 3.2 of the Preamble of the General Standard for Food Additives (i.e. has an advantage, does not present an appreciable health risk, serves a technological function).** |
| **A baking process with sugar is in the case of wafer papers technically not possible because the sugar will stick during the baking process to the baking plates. Therefore, in the case of wafer papers no alternative to Sweeteners. Sucralose is most suitable sweetener for wafer paper.** |

| **Safe use of additive: Dietary intake assessment (as appropriate)** | Table 3 additive: |
| **☐ Yes** | **X No (Please provide information on dietary intake assessment below)** |
| **Wafer papers are absolute niche products and as a conclusion it can be stated that in the group of adults and children the ADI is not likely to be exceeded even for so called high-level consumers.** |

| **Justification that the use does not mislead consumer** | **There are no sugar sweetened wafer papers on the market. Furthermore, the use of Sucralose is mentioned explicitly on the labelling.** |