CLEANING STRATEGIES TO REMOVE FOOD ALLERGENS AND TOOLS FOR DETERMINING EFFICACY

Lauren S. Jackson, Ph.D.

U.S. Food and Drug Administration Division of Processing Science & Technology Institute for Food Safety & Health 6502 S. Archer Rd. Bedford Park, IL 60501

Codex Committee on Food Hygiene (CCFH) Tuesday, November 14, 2017

Food Allergen Recalls

- **Undeclared allergens** major cause of recalls in U.S.
- <u>Reportable Food Registry</u>

- Undeclared allergens increased from 30% of all RFR reports in first year, to 47% of reports in the fifth year
- Recall data from FDA-regulated products is mirrored by data from FSIS/USDA and from Canada (CFIA)
- 5-15% of allergen recalls are associated with consumer reactions¹

¹ from: Malyukova, Gendel, Luccioli. JACI 129(2):S234, 2012

<u>Causes of Allergen Recalls</u> (FY2007-FY2012)

	Cause of allergen recalls	Number recalls				
	Omission	191				
	Wrong package or label	137				
	Terminology	85				
	Failure to carry forward information from an ingredient to final label	70				
	Ingredient mislabeled from supplier	26				
<	Cross-contact	52	>			
	Rework	9				
	From: Gendel and Zhu, J. Food Prot. 2013, 76, 1933-1938					

INSTITUTI

WIFS

Cross-Contact

How does it occur?

- Dust or aerosols containing allergens
- Cross-over points in processing lines
- Reuse of cooking oil
- Reuse of cleaning solutions
- Ineffective cleaning

General Facts

- Effective cleaning is one of the most important strategies for preventing cross-contact
- Microbiologically clean ≠ allergen clean
- Food proteins can be difficult to remove from food contact surfaces- esp. if the protein has been heated/denatured
- Proteins vary in their "stickiness" to food-contact surfaces
- Wet cleaning can be effective at removing allergenic food soils- but all procedures must be evaluated
- Cleaning in a dry environment is a challenge—and it can be difficult to clean to "allergen clean"
- Older food processing equipment- not designed to be cleaned

Factors Affecting Allergen Removal

Allergen-related factors

- Type of food allergen
 - o Physical form- paste, particulate, powder, liquid
 - Chemistry- water- vs. lipid-based ingredients
- Concentration of food allergen
 - $\circ~$ High vs. low concentration in food

Equipment-related factors

- Equipment design
- Age of equipment
- Type of food-contact surface
 - o Composition- stainless steel, plastic, cloth
 - o Texture (finish) of surface

Processing-related factors

- Application of heat- hot vs cold soil
- Length of processing run- biofilm/build-up of food material

Cleaning method-related factors

Type of cleaning method (wet vs dry)

Cleaning Methods

Wet

- Plant area and equipment designed to accommodate water
- Employ detergents and sanitizers
- Can be automated (CIP), semi-automated (COP), or manual
- Purging line with ingredient or next food (water-based)

Dry

- Plant area/equipment not designed to accommodate water (low water activity foods)
- Water use limited
- Compressed air, vacuum and/or dry steam may be used to "clean" surfaces
- Other methods- blasting with CO₂
- Purging line with ingredient (e.g. salt, sugar, corn starch, oil) or next food (dark chocolate)

Effectiveness of Cleaning Solutions/Detergents for Removing Protein Soils

- <u>Chlorinated Alkaline Detergents (CAD)</u> -- Excellent
- Alkaline/Caustics with H₂0₂- Excellent
- Enzymes -- Excellent
- Alkaline/Caustics -- Fair ⇒ Very Good
- Detergent Builders/Surfactants -- Fair ⇒ Very Good
- Acids -- Poor
- Water --- Poor to fair

Effectiveness of Cleaning Regimens for Removing Milk Residue from a Pilot-Scale HTST Processing Line

Objectives:

- Investigate the efficacy of different cleaning procedures (a water rinse, intermediate cleaning treatments, and a full cleaning cycle).
- Evaluate methods (conventional ATP, sensitive ATP, total protein and ELISA/Lateral flow) for verifying the effectiveness of cleaning procedures
- Determine the levels of transfer (crosscontact) of milk residue from HTST to simulated apple juice.

Procedure

- Processing nonfat milk (10 g) for 1 h
 81°C for 17 sec
 - o Re-circulate milk
- Apply cleaning procedure
- Evaluate efficacy of cleaning procedure
 - o Swab ports (ELISA, ATP, total protein)
 - Detect milk residue in final rinse water (ELISA, ATP, total protein)
- Process (10 g) "simulated apple juice" (single-pass)
 - Measure presence of milk/protein in simulated juice coming off line as a function of time and after pooled

Levels of milk transferred into simulated apple juice from an HTST processing line after different cleaning regimens (n = 3).

Cleaning Regimens	Trial A	Trial B	Trial C	Milk concentration in composite sample of juice (µg /mL)
15 min water flush	103.8	58.6	150	104 ± 45.7
15 min full-strength CAD at 81ºC (55-60 gal/h flow rate)	12.83	26.03	46.93	28.6 ± 17.2
60 min full-strength CAD at 70°C (55-60 gal/h flow rate)	2.7	5.4	n.d.	2.70 ± 2.70
60 min ¼-strength CAD at 81ºC (55-60 gal/h flow rate)	0.45	0.6	n.d.	0.35 ± 0.31
60 min full-strength CAD at 81ºC (55-60 gal/h flow rate)	n.d.	n.d.	n.d.	n.d.
Full cleaning cycle	n.d.	n.d.	n.d.	n.d.

<u>Methods for Cleaning in a Low</u> <u>Water Activity Environment</u>

- Compressed air
- Grit/CO₂ blasting
- Premoistened (alcohol) wipes/cloths
- Vacuum
- "Dry steam"
- Brushing
- Purge/push-through with ingredients or next food
- A combination of dry cleaning methods

Tools for Verifying Cleaning Efficacy

What do we test?

- CIP rinse-water
- Push through materials (salt, sugar, next product)
- First product off line, final product
- Food-contact surfaces (visual inspection; swabs)

Having an adequate sampling plan is important!

<u>Analytical Tools for Detecting</u> <u>Allergens/Allergenic Food Residue</u>

Least Specific

- Visual Inspection
- ATP Swabs
- Total Protein
- DNA-Based/PCR
- Immunochemical
- Mass spectrometry*

*Not a routinely used method

Most Specific

ILLINOIS INSTITUTE OF TECHNOLOGY

Specific

Visual Inspection

- First step in determining if equipment is clean
- Points for inspection
 - Flat surfaces
 - Difficult to clean areas
 - Areas above processing zone
- Advantages
 - Does not require lab equipment/inexpensive
 - Rapid
- Disadvantages
 - Depends on accessibility, lighting, surface, etc.
 - Limited to accessible equipment
 - Does visibly clean = allergen clean?

Examples of "Visibly Dirty" Surfaces

Immunochemical Methods

- Antibody-based detection of allergenic protein, or other (marker) protein in food
- Formats
 - Well & lateral flow devices (LFD)/dipsticks
 - Sandwich and competitive
 - Multiplex LFDs now available
 - xMAP multiplex assay
- Analysis time: typically < 1 h
- Quantitative or qualitative
- Kits available for most of the 8 major allergens
- Used for ingredients, finished products, rinse water, swabs/environmental samples
- Need to ensure that method can detect allergen in food sample

Sandwich ELISA

Dipstick/strip tests

Immunochemical Methods

Advantages

- Sensitive (ppm range)
- Quantitative or semiquantitative
- Specific
- Low to moderate cost
- Equipment needs minor
- Skill level- low to medium

Limitations

- Cross-reactivity
- Extractability, solubility, and immunoreactivity important
- Matrix effects
- Processing (fermentation/hydrolysis, thermal) effects
- Need to understand what kit detects (e.g. casein vs. total milk vs. BLG)
- Values from different kits do not agree- reference standards needed

Non-Specific Methods: ATP

- Detects ATP from biological sources
- Advantages
 - Rapid (< 30 sec)
 - Less expensive than ELISA
 - Test can be performed on site ('real time')
- Disadvantages
 - Limited applicability- wet-cleaned surfaces only; may pick up ATP from water supply
 - Measures presence of ATP, not allergenic food
 - May be difficult to detect some food soils
 - Need to determine background ATP levels at facility

Non-Specific Methods: Total Protein

- Different companies and formats available
- Advantages
 - Rapid (< 5 min)</p>
 - Less expensive than ELISA
 - Measures protein
- Disadvantages
 - Measures all proteins, not specific

Importance of Choosing Appropriate Analytical Method

Detection of Soy Milk on Stainless Steel Plates

Soy Product	Method of	Amount of soy product (µg)						
	Detection	0	50	100	250	500	1000	
Soy milk	ELISA 1	0/10	n.d.	n.d.	n.d.	0/10	0/10	
	ELISA 2	0/10	n.d.	n.d.	n.d.	0/10	0/10	
	LFD 1	0/10	0/10	0/10	0/10	10/10	10/10	
	LFD 2	0/10	0/10	0/10	0/10	0/10	0/10	
	Conventional ATP 1	0/10	0/10	0/10	0/10	0/10	0/10	
	Conventional ATP 2	0/10	0/10	0/10	0/10	0/10	0/10	
	Sensitive ATP	0/10	1/10	3/10	7/10	9/10	9/10	
	Total protein 1	0/10	3/10	5/10	8/10	10/10	10/10	
	Total protein 2	0/10	0/10	0/10	3/10	5/10	10/10	

<u>Summary</u>

- Effective cleaning is one of the most important strategies for preventing cross-contact.
- Many factors influence the effectiveness of cleaning procedures.
- Wet cleaning methods that use chlorinated alkaline detergents tend to be effective at allergen removal- but methods needs to be evaluated for efficacy.
- Cleaning to "allergen clean" in a dry environment can be challenging.
- Validation of cleaning methods (conditions) is important for ensuring effectiveness for allergen control.
- Many tools are available for detection of allergens or allergenic foods.
 - Choice of method depends on specific use, type of food matrix, and other factors
 - Need to conduct "in-house" validation

