JOINT FAO/WHO FOOD STANDARDS PROGRAMME

CODEX ALIMENTARIUS COMMISSION
Twenty-fourth Session
Geneva, Switzerland, 2-7 July 2001

REPORT OF THE TWENTY-THIRD SESSION OF THE
CODEX COMMITTEE ON METHODS OF ANALYSIS AND SAMPLING
Budapest, Hungary
26 February – 2 March 2001

Note: This document incorporates Codex Circular Letter CL 2001/5-MAS
TO: - Codex Contact Points
 - Interested International Organizations

FROM: - Secretary, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, FAO, 00100 Rome, Italy

SUBJECT: Distribution of the Report of the 23rd Session of the Codex Committee on Methods of Analysis and Sampling (ALINORM 01/23)

A. MATTERS FOR ADOPTION BY THE 24th SESSION OF THE CODEX ALIMENTARIUS COMMISSION

Proposed Amendments to the Procedural Manual

1. General Criteria for the Selection of Methods of Analysis Using the Criteria Approach (para. 41, Appendix II - Part 1)

2. Relations between Commodity Committees and General Committees – Methods of Analysis and Sampling (para. 41, Appendix II - Part 1)

3. Guidelines and Working Instructions to Aid the Implementation of the Criteria Approach to the Selection of Methods of Analysis for Codex Purposes (para. 33, Appendix II - Part 2)

Guidelines for Adoption by Reference for Codex Purposes

4. Harmonized IUPAC Guidelines for the Use of Recovery Information on Analytical Measurement (para. 46, Appendix III)

Methods of Analysis and Sampling

5. General Methods of Analysis for Contaminants and for Irradiated Foods (paras. 86 and 106, Appendix IV - Part III)

6. Methods of Analysis and Sampling in Commodity Standards at different steps (paras. 89-99, Appendix IV - Part I and II)

Governments wishing to propose amendments or comments on the above documents should do so in writing in conformity with the Guide to the Consideration of Standards at Step 8 (see Procedural Manual of the Codex Alimentarius Commission) to the Secretary, Joint FAO/WHO Food Standards Programme, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy before 15 May 2001.
B. REQUEST FOR COMMENTS AND INFORMATION

8. Criteria for Evaluating Acceptable Methods of Analysis: Dispute Situations (para. 38)

Government are invited to provide comments and information on current practices for the selection of methods in dispute situations.

Governments and international organizations wishing to submit comments on points 7. and 8. above should do so in writing to the Secretary, Joint FAO/WHO Food Standards Programme, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy, before 15 November 2001.
SUMMARY AND CONCLUSIONS

The summary and conclusions of the 23rd Session of the Codex Committee on Methods of Analysis and Sampling are as follows:

Matters for consideration by the Commission:

The Committee:

- agreed to propose amendments to the Procedural Manual on General Criteria for the Selection of Methods of Analysis Using the Criteria Approach and Relations between Commodity Committees and General Committees – Methods of Analysis and Sampling (para. 41, Appendix II - Part 1) and the inclusion of Guidelines and Working Instructions to Aid the Implementation of the Criteria Approach to the Selection of Methods of Analysis for Codex Purposes (para. 33, Appendix II - Part 2);

- agreed to propose that the Commission adopt by reference for Codex purposes the Harmonized IUPAC Guidelines for the Use of Recovery Information on Analytical Measurement with an amendment to Recommendation 1. (para. 46, Appendix III);

- agreed to propose two methods for contaminants and five methods for the detection of irradiated foods for adoption as general Codex methods (paras. 86 and 106, Appendix IV - Part III);

- endorsed a number of methods of analysis and sampling in commodity standards at different steps of the Procedure (paras. 89-99, Appendix IV – Part I and II);

- agreed to initiate new work on Proposed Draft Guidelines on Measurement Uncertainty (para. 63, Appendix V) and on Proposed Draft Guidelines for the Selection of Methods of Analysis directed to governments (para. 34)

Other Matters of Interest to the Commission

The Committee:

- agreed to return the Proposed Draft Guidelines on Sampling to Step 3 for redrafting, circulation and consideration by the next session (para. 24)

- agreed that it should have a general coordinating role as regards the development of methods of analysis for foods derived from biotechnology (para. 12)

- agreed to consider further at its next session the following questions: single-laboratory validation and validation through the use of results from proficiency testing schemes (para. 84) and the relationship between the analytical result, the measurement uncertainty, recovery factors and the specifications in Codex standards (paras. 20 and 64).
TABLE OF CONTENTS

OPENING OF THE SESSION... 1-2
ADOPTION OF THE AGENDA.. 3
MATTERS REFERRED TO THE COMMITTEE BY THE CODEX ALIMENTARIUS COMMISSION
AND OTHER CODEX COMMITTEES.. 4-15
PROPOSED DRAFT GENERAL GUIDELINES ON SAMPLING.. 16-25
CRITERIA FOR EVALUATING ACCEPTABLE METHODS OF ANALYSIS FOR CODEX PURPOSES
 A) PROPOSED DRAFT GUIDELINES ON THE APPLICATION OF THE CRITERIA APPROACH……. 26-38
 B) AMENDMENTS TO THE PROCEDURAL MANUAL OF THE CODEX ALIMENTARIUS
 COMMISSION RELEVANT TO THE CRITERIA APPROACH.. 39-41
CONSIDERATION OF HARMONIZED GUIDELINES FOR THE USE OF RECOVERY INFORMATION IN
ANALYTICAL MEASUREMENT.. 42-46
HARMONIZATION OF ANALYTICAL TERMINOLOGY IN ACCORDANCE WITH INTERNATIONAL
STANDARDS; “MEASUREMENT LIMITS”.. 47-51
MEASUREMENT UNCERTAINTY
 A) PROGRESS REPORT BY RELEVANT ORGANIZATIONS... 52-53
 B) RELATIONSHIP BETWEEN THE ANALYTICAL RESULT, THE MEASUREMENT
 UNCERTAINTY AND THE SPECIFICATION IN CODEX STANDARDS..................................... 64-64
IN-House METHOD VALIDATION... 65-84
ENDORSEMENT OF METHODS OF ANALYSIS PROVISIONS IN CODEX STANDARDS................. 85-106
REPORT OF AN INTER-AGENCY MEETING ON METHODS OF ANALYSIS................................. 107-110
OTHER BUSINESS AND FUTURE WORK.. 111
DATE AND PLACE OF NEXT SESSION... 112

LIST OF APPENDICES

| Appendix I | List of Participants... 15 |
| Appendix II | Proposed Amendments to the Procedural Manual.. 24 |
| Appendix III | Harmonized IUPAC Guidelines for the Use of Recovery Information
 on Analytical Measurement... 31 |
| Appendix IV | Status of Endorsement of Methods of Analysis and Sampling................................ 32 |
| Appendix V | Proposed Draft Guidelines on Measurement Uncertainty....................................... 44 |
INTRODUCTION

1) The Codex Committee on Methods of Analysis and Sampling held its Twenty-third Session in Budapest, Hungary, from 26 February to 2 March 2001, by courtesy of the Government of Hungary. The Session was chaired by Professor Péter Bicsés, Head of Biotechnological Division of the Central Food Research Institute (KÉKI). The Session was attended by 111 delegates and observers representing 40 Member Countries and 17 international organizations. A complete list of participants is given in Appendix I of this report.

OPENING OF THE SESSION

2) The Session was opened and welcomed by Dr. I. Muci, Deputy State Secretary of Ministry of Agriculture and Regional Development. Dr. Muci emphasized the importance of Codex standards for harmonization of food legislation and for the export of agricultural commodities from Hungary. He informed the delegates of the active participation of Hungary in Codex work and of the reorganization of the Hungarian National Codex Committee. Dr. Muci stressed the importance of the work of the Committee on Methods of Analysis and Sampling in ensuring compliance with provisions in Codex standards and wished the delegates all success in their work.

ADOPTION OF THE AGENDA (Agenda Item 1)

3) The Committee adopted the Provisional Agenda as presented in CX/MAS 01/1.

MATTERS REFERRED BY THE CODEX ALIMENTARIUS COMMISSION AND OTHER CODEX COMMITTEES (Agenda Item 2)¹

Sampling Plan for Aflatoxins in Peanuts

4) The Committee recalled that the 23rd Session of the Commission had adopted the maximum level of 15µg/kg for total aflatoxins in peanuts for further processing and adopted the corresponding sampling plan on an interim basis, with the understanding that proposals for revision would be further considered by the Committee on Additives and Contaminants (CCFAC) and the CCMAS. The Proposed Draft Revised Sampling Plan was circulated for comments at Step 3 in the framework of the CCFAC² and forwarded to the CCMAS for consideration.

5) The Observer from the EC informed the Committee that the EC supported the provisions of the revised sampling plan for total aflatoxins in peanuts for further processing.

6) The Delegation of India proposed to amend sections A. Definitions, B. Sampling and C. Sample Preparation in order to reflect that the aggregate sample should be divided into two sub-samples (10 kg each) to be separately homogenized; the sub-samples would be analysed and the acceptance of the lot would be decided by the average of the results of the two final samples.

7) The Delegation of the United States pointed out that the first amendment proposed by the Delegation of India was already covered in section A. Definition - Test Portion indicating that the aggregate sample could be divided into equal size samples. The Delegation also proposed to replace the Horwitz equation with its simplified version in the current text.

8) The Committee agreed that in section C. Sample Preparation, the reference to “All the material received by the laboratory” should be replaced with “All laboratory sample obtained from aggregate sample”, as proposed by the Delegation of India for clarification purposes.

¹ CX/MAS 01/2
² CX/FAC 01/21
9) The Committee was of view that the other amendments proposed by the Delegation of India might entail further changes to the sampling and analysis provisions for aflatoxins, and that the document should remain unchanged. The Committee noted that since the Committee on Food Additives and Contaminants had the main responsibility for the development of the revised sampling plan, and it had not yet been sent for endorsement to the CCMA, there was no need to discuss the text in detail at this stage. The Committee agreed that no further change should be made and noted that the Delegation of India and interested delegations had the opportunity to provide their comments directly to the CCFAC.

Biotechnology

10) The Committee recalled that the Committee on Food Labelling, while discussing the labelling provisions for foods derived from biotechnology, had asked the CCMA to consider the methods of analysis for such foods. The first Session of the Ad hoc Intergovernmental Task Force on Foods Derived from Biotechnology had also agreed to initiate work on the methods and to ask for proposals in this area through CL 2000/29-FBT/MAS. The Committee noted that the document prepared for the Task Force (CX/FBT 01/8) had been available too late to allow for specific discussion of the methods proposed therein at the present session.

11) Several delegations supported the establishment of methods for foods derived from biotechnology in the CCMA. The Delegation of the United Kingdom, supported by other delegations, pointed out that, under its terms of reference, the Committee had the possibility to examine specific analysis and sampling questions referred by other committees, when general guidance was required in areas of concern for all Codex committees. Some delegations and observers stressed the need to take into account the work of relevant international organizations, and to ask the Inter Agency Meeting (IAM) to encourage its members to initiate work on methodology in relevant areas even when no specific Codex provisions existed. The Secretariat indicated that international organizations received all Codex working documents and had the opportunity to submit proposals and relevant information in the framework of commodity Committees and general committees, in addition to CCMA.

12) The Committee agreed that it should exercise a general coordinating role as regards methods for the detection or identification of foods derived from biotechnology and that it was ready to consider the proposals made by the Task Force at its next session, and the proposals which might originate from other Codex Committees in the future. The Committee also agreed that the work of relevant international organizations would be taken into account in the process and invited them to provide relevant information in this area.

Dioxins

13) The Committee noted that the CCFAC had considered a discussion paper on dioxins at its last session and asked the CCMA to provide information on methods of analysis for dioxins.

14) It was also noted that there was no level for dioxins in foods under consideration in the CCFAC, and that dioxins had not yet been evaluated by JECFA. The Committee was also informed that the methods of analysis for feeds, including the determination of contaminants, would be considered by the Ad Hoc Intergovernmental Task Force on Animal Feeding on the basis of the information provided by governments and international organizations. Some delegations expressed the view that although there were no limits in Codex for dioxins, it would be useful to consider the selection of appropriate methods in the Committee, taking into account the work underway in different international organizations.

15) Several delegations and observers informed the Committee about ongoing work on the analysis and sampling for dioxins in food and feed. The Committee agreed that the Delegation of Germany would collect information on methodology for the determination of dioxins, and invited interested delegations to provide the Delegation with relevant information, in order to prepare a paper for consideration by the next session.
PROPOSED DRAFT GENERAL GUIDELINES ON SAMPLING (Agenda Item 3)\(^4\)

16) The Delegation of France introduced the Proposed Draft Guidelines, prepared in cooperation with Australia, Hungary, Netherlands, United Kingdom, United States, and IDF, as agreed at the last session, and highlighted the objectives, structure and main aspects of the text. The Preamble presented the main issues and stressed the importance of sampling in the framework of Codex, and considered the consequences of differences in sampling procedures in international trade. The situations covered or excluded by the Guidelines were summarized in Table 1 and the relationship with the ISO and ANSI standards was addressed in section 1.4. The Delegation indicated that the Definitions were based on ISO terminology as far as possible, with the addition of new terms where necessary. The guidelines considered the difference types of sampling plans (by attributes or by variable) and discussed the criteria for their selection in different cases.

17) Some delegations, while recognizing the need for a statistical approach, expressed the view that the document was too complex to provide effective guidance to governments in the selection of sampling plans in its present form, and also stressed the need for practical examples to facilitate its application. It was also pointed out that different sampling plans would apply to processed foods and fresh produce.

18) Some delegations proposed that a simplified document should be prepared to provide practical guidance to Codex Committees and governments in the selection of sampling plans. The Delegation of France agreed that simplified recommendations should be prepared but pointed out that the scientific aspects of sampling should be retained in a specific document, in view of the earlier decision to apply a statistical approach.

19) The Committee agreed to establish a Working Group during the session to revise the text in the light of the comments received and facilitate the discussion in the Plenary. The Committee decided to proceed with its work on the Guidelines on the basis of the recommendations of the Working Group included in CRD 7.

20) The Committee agreed to change the structure of the document as follows: the Foreword would be transferred from the Guidelines to another document which would address the use of analytical results: sampling, relationship between the analytical result, the measurement uncertainty, recovery factors and the specification in Codex standards, to be prepared by the United Kingdom (see also para. 64).

21) The sampling guidelines would consist of a new first section on “Basic recommendations for the selection of Codex sampling procedures” with a flow chart to facilitate the selection of sampling plans, and the following sections would correspond to the current draft (from section 2 onwards).

22) The Delegation of France indicated that it had not been possible to incorporate all the detailed comments received, including those of New Zealand, in a revised document at the current session due to lack of time and that the drafting group would be prepared to continue its task in order to complete the revision of the text.

23) The Committee agreed that the Delegation of France would continue its work with the assistance of a drafting group working by electronic mail in order to complete the revision of the text for circulation at Step 3. The Committee also agreed that if required there would be a meeting of the Working Group prior to the next session in order to allow for detailed consideration of the comments and facilitate discussion in the Committee.

Status of the Proposed Draft General Guidelines on Sampling

24) The Committee agreed to return the Proposed Draft to Step 3 for redrafting by the Delegation of France with the assistance of a drafting group\(^5\), for circulation at Step 3 and consideration by the next session of the Committee.

\(^4\) CX/MAS 01/3, CX/MAS 01/3-Corrigendum, CX/MAS 01/3-Add.1 (comments of Brazil, Czech Republic, Denmark, Ireland, New Zealand, United States, CX/MAS 01/3-Add. 2 (comments of Cuba, Finland, Norway, ISO), CRD 4 (Argentina), CRD 7 (revised structure of the document proposed by the WG)

\(^5\) Brazil, Egypt, Finland, Greece, Hungary, Netherlands, New Zealand, Norway, Poland, Sweden, United Kingdom, United States, Uruguay, ISO, OIE, FAO/IAEA, IDF, NMKL.
The Committee expressed its appreciation to the Delegation of France and the drafting group for their considerable work in the preparation and revision of this important document.

CRITERIA FOR EVALUATING ACCEPTABLE METHODS OF ANALYSIS FOR CODEX PURPOSES (Agenda Item 4)

PROPOSED DRAFT GUIDELINES ON THE APPLICATION OF THE CRITERIA APPROACH (Agenda Item 4a)

The Delegation of the United Kingdom introduced the document which had been prepared in cooperation with other countries, following the decision of the last session to develop guidelines for the implementation of the criteria approach. The Delegation stressed the need to provide guidance to Codex Committees and CCMAS to allow more flexibility in the selection of methods on a rational and scientific basis.

The Codex Secretariat recalled that the matter was approved as new work in 1996 in general terms and that the Committee might need to clarify the status of the document as Codex Guidelines providing guidance to governments and included in Volume 13, or as instructions for Codex Committees included in the Codex Procedural Manual.

The Delegation of Japan while supporting the principles of the criteria approach and its application to all validated methods, excluding defining methods, expressed concern on its implementation at the national level. The Delegation was of the opinion that the Guidelines should be redrafted in the format of Codex guidelines and should provide guidance not only to Codex committees but also to laboratories of Member countries especially on how to use the criteria approach in selecting methods of analysis.

Many delegations supported the criteria approach as being more scientific and flexible and as a consequence more easily applicable for Codex purposes. Some delegations were of the opinion that the criteria approach should be limited to Type III methods while other delegations indicated that it could be also applied to Type II methods in order to allow the use of more modern methods. It was pointed out that there was no need for Type II methods from the scientific point of view.

The Delegation of the United States, while fully supporting the criteria approach for Type III methods, supported retaining Type II methods especially for dispute situations and for that purpose Type II methods should be selected by the technical experts of the Commodity Committees or CCMAS. If reference methods were no longer available in legal proceedings, differences in results would eventually be interpreted by the legal profession and not on scientific grounds. Type II methods were therefore necessary to provide guidance to laboratories on specific methods and to eliminate method selection bias in dispute situations. The Delegation also pointed out that the simpler form of the Horwitz equation should be used in Appendix I of the document.

Some delegations indicated that dispute situations might occur not only because of methods but also due to inadequate sampling and indicated that in order to minimize situations with different results and disputes, it was necessary to rely more on the use of laboratory accreditation systems and proficiency testing, as already recommended by the CCFICS.

As a compromise, the Committee agreed that the criteria approach would be applied to Type III methods and that Type II methods would be prescribed by the CCMAS to be used in dispute situations.

Status of the Proposed Draft Guidelines on the Application of the Criteria Approach

The Committee noted that the current text provided recommendations to the CCMAS and Codex Committees and agreed that it should therefore be included in the Procedural Manual at the end of the current section on “Principles for the Establishment of the Codex Methods of Analysis”. The Committee agreed to forward the Proposed “Guidelines and Working Instructions to Aid the Implementation of the Criteria APPROACH”.

6 CX/MAS 01/4, CX/MAS 01/4-Add.1 (comments of Ireland, USA), CX/MAS 01/4-Add.2 (Dispute situations – extracts from reports of the CCMAS 23 and CCFICS 7).
34) The Committee also agreed that the Delegation of the United Kingdom with the assistance of the
Delegation of Sweden would redraft the current Guidelines to make them generally applicable to governments,
for circulation at Step 3 and consideration at the next session of the Committee.

Dispute situations

35) The Observer from OIV drew the attention of the Committee to the fact that disputes were more likely to
originate from differences in legal practices than from analytical problems and stressed the necessity of suitable
analytical methods when the criteria approach was not applicable.

36) The Committee was informed about the existence of ISO standards 5725:1994 and 4259:1992 which provide
advice in some dispute situations.

37) The Committee supported the general recommendations made by the Committee on Food Import and
Export Inspection and Certification Systems7 as regards dispute situations and noted that it did not prevent the
development of more specific guidance in this area. Several delegations expressed the view that the Committee
should address dispute situations from the practical point of view.

38) The Committee agreed that the Delegation of France with the assistance of Australia, Belgium, Brazil,
Canada, Denmark, Egypt, Greece, the Netherlands, Norway, South Africa, the United Kingdom and the United
States would prepare a discussion paper addressing dispute situations for consideration by the next session.
Governments would be requested by Circular Letter to provide information on the current practices in this
regard in member countries, in order to facilitate the preparation of the above discussion paper.

CRITERIA FOR THE EVALUATING ACCEPTABLE METHODS OF ANALYSIS FOR CODEX
PURPOSES (Agenda Item 4b)8

39) The Delegation of Sweden, speaking on behalf of the member states of the EU present at the session, and
presenting a common EC position, proposed the following amendments: in the new section on General Criteria,
to refer to Codex Type II and Type III (deleting the square brackets); to replace “Normal Process” with
“Normal Practice” in the Relations between Commodity Committees and General Committees; and to clarify the
presentation of the sections.

40) In view of the above discussion and the decision to apply criteria only to Type III methods at this stage, the
Committee agreed to delete the reference to Type II methods in the new section. The Committee agreed to the
editorial amendments proposed for clarification purposes.

41) The Committee agreed to forward the amendments to the Principles for the Establishment of Methods of Analysis
and Relations between Commodity Committees and General Committees – Methods of Analysis and Sampling to the
Committee on General Principles for endorsement and to the 24th Session of the Commission for adoption and
inclusion in the Procedural Manual (see Appendix II, Part 1).

CONSIDERATION OF HARMONIZED GUIDELINES FOR THE USE OF RECOVERY
INFORMATION ON ANALYTICAL MEASUREMENT (Agenda Item 59)

42) The Delegation of the United Kingdom while introducing the document pointed out the complexity of the
matter and indicated that there were differences in the use of recovery factors: for example in the determination

7 ALINORM 01/30 para 102.
8 CX/MAS 01/5-Add.1, CX/MAS 01/5 (comments of Cuba, Spain and the European Community).
9 CX/MAS 01/6, CX/MAS 01/6-Add.1 (comments of Finland and the USA), CX/MAS 01/6-Add.2 (comments of
Cuba and Germany).
of aflatoxins recovery factors was often used, while for residues of pesticides and veterinary drugs the use of recovery factors was variable. The Delegation also indicated that differences regarding the use and the application of the recovery factors existed in the legislation of Member Governments and might create problems in trade.

43) Some delegations indicated that generalized use of recovery factors for each and every matrix would place substantial economic burden on food laboratories and would make it impractical, especially in the case of multi-residue analysis, e.g. pesticide residues. They pointed out that the decision to use or not to use the recovery factors should be left to chemical analysts to decide. However in all cases it should be specified whether the results had been corrected or not, and the method used to derive the correction should be provided.

44) Some delegations indicated that the aim of Codex was not to find the “best estimate of the result” while performing chemical analysis but to obtain comparable results, and that could be achieved by giving information on the application of the recovery factors and the methodology used for that purpose.

45) Many delegations recognised the scientific value of the Guidelines, but emphasised the limitations of the universal application of recovery factors in reporting analytical results. Amongst others it was pointed out that recovery rates were affected by different factors, such as processing or extraction and there were several areas where recovery factors were not applicable.

46) The Committee recognized that the acceptance of the first two sentences of Recommendation 1 in the IUPAC Guidelines would create difficulties, as correction of analytical results would then be a general requirement. However, the other recommendations were acceptable. The Committee decided to endorse the IUPAC, ISO and AOAC International Harmonized Guidelines for the Use of Recovery Information in Analytical Measurement with the exception of first two sentences of Recommendation 1 regarding the general request for correction. It agreed to recommend to the 24th Session of the Commission its adoption by reference for Codex purposes (see Appendix III).

HARMONIZATION OF ANALYTICAL TERMINOLOGY IN ACCORDANCE WITH INTERNATIONAL STANDARDS: MEASUREMENT LIMITS (Agenda Item 6)11

47) The Delegation of the United States introduced the document, which considered the need for the attributes of Limit of Determination and Limits of Detection, following the decision of the last session of the Committee. The Delegation concluded that there was no need to determine these limits on a routine basis once the method had been selected and proposed to consider a definition of the “Lowest Validated Level” as an alternative to measurement limits. It was also noted that methods of analysis must have "direct pertinence to the Codex Standard to which they are directed” and that Codex MRLs were not set at the limit of detection.

48) Some delegations indicated that the limit of detection was included in the general criteria for the selection of methods and differences in terminology in this respect should be addressed. The Delegation of Uruguay proposed to take into account ISO Standard 11843:1999 Capability of Detection. It was also noted that the use of “Lowest Validated Level” instead of limit of determination in relation to method validation was consistent with the use of the term “Lowest Calibrated Level” in relation to analytical quality control.

49) Some delegations and the Observer from COMISA expressed the view that there was no need for additional definitions in this area. It was also noted that the issue of measurement limits was more relevant for residues of pesticides and veterinary drugs, which were not the responsibility of CCMAS.

10 “Quantitative analytical results should be corrected for recovery unless there are specific reasons for not doing so. Reasons for not estimating or using correction factors include the situations where (a) the analytical method is regarded as empirical, (b) a contractual or statutory limit has been established using uncorrected data, or (c) recoveries are known to be close to unity. However,.....”

11 CX/MAS 01/7
50) The Observer from AOAC indicated that the harmonization of definitions and terminology was included in
the future activities of the Inter Agency Meeting (IAM), and that the Committee would be kept informed of
further developments in this area.

51) The Committee agreed that there was no need for further consideration of measurement limits at this stage,
and that it might consider this issue again at a later date if needed.

MEASUREMENT UNCERTAINTY (Agenda Item 7)

PROGRESS REPORT BY RELEVANT INTERNATIONAL ORGANIZATIONS
(Agenda Item 7a)

52) The Delegation of Ireland informed the Committee that the second edition of the EURACHEM/CITAC
Guide Quantifying Uncertainty in Analytical Measurement had been published. The changes dealing with the
use of method performance data and method validation data in order to determine the components of
uncertainty were of particular importance to the Committee. The Delegation pointed out that the examples had
been revised and that the Guide also included a new section on traceability. It was noted that a summary was
included in document CX/MAS 01/8 and that the complete Guide was available from the EURACHEM
website: http://www.vtt.fi/ket/eurachem

53) The Delegation of Finland also informed the Committee that the NMKL procedure for the expression of
measurement uncertainty was under revision and would be harmonized with the EURACHEM Guide.

RELATIONSHIP BETWEEN THE ANALYTICAL RESULT, THE MEASUREMENT
UNCERTAINTY AND THE SPECIFICATION IN CODEX STANDARDS (Agenda Item 7b)12

54) The Delegation of the United Kingdom, while presenting the document, highlighted the main issues to be
addressed: the terminology, the methodology to estimate measurement uncertainty and its incidence on the
interpretation of the result and the assessment of compliance. The Delegation pointed out that the term
uncertainty was now widely accepted in the analytical community; that laboratories complying with the principles
of laboratory quality did not need a further estimate of the measurement uncertainty according to the ISO
component-by-component approach, and that results should be generally reported with the measurement
uncertainty. The Committee also noted that the ISO/IEC Guide 25 (endorsed by Codex) had been replaced by
ISO/IEC 17025, which referred to measurement uncertainty.

55) The Committee considered the Recommendations presented at the end of the document and agreed that
they should be drafted as Guidelines on Measurement Uncertainty intended for governments, to be circulated at
Step 3, subject to approval as new work by the Commission. The Committee had an extensive discussion and
made a number of amendments and additions to the initial text.

56) The Introduction was reworded for clarification purposes and to reflect the importance of the issue. Some
delегations questioned the provision that “food analysis laboratories are required to be in control”. The
Delegation of the United Kingdom pointed out that this was a well understood expression to reflect that
laboratories applied Codex principles related to the quality of laboratory results.

57) The Delegation of Finland made the following proposals in order to clarify the text; in point 1) the
measurement uncertainty should be “estimated” rather than “quantified”; in point 2) it would be preferable to
refer first to data available through the use of internal quality control; in point 4) reference to single-laboratory
validation could be included.

58) The Delegation of the United States, supported by the Delegation of Thailand, expressed the view that, as
measurement uncertainty was a relatively new concept, it might not be well known in some countries, and the
Committee should therefore recognize that “reliability” might still be used. The Delegation of Ireland pointed
out that “uncertainty” was an accepted term at the international level and that Codex was a reference in

12 CX/MAS 01/8, CRD 6 (comments of France)
international trade, and proposed that the ISO definition should be used with an appropriate explanation in the text of the Guidelines.

59) The Committee agreed to include the ISO definition of measurement uncertainty in order to clarify the issue of terminology. As a compromise, an explanatory note was added in square brackets after Note 3) to reflect that “measurement reliability” might also be used.

60) The Observer from IOFI indicated that the question of measurement uncertainty was especially important for the analysis of compounds which were present at low concentrations like flavours, as related to statutory provisions or compliance with specifications. The Committee noted that the question of compliance had also been discussed in relation to recovery factors and would need to be addressed from a general perspective (see also para. 64).

61) The Committee agreed to merge Recommendations 3 and 4 as they both referred to the methodology used to evaluate uncertainty. The Delegation of the United States proposed to add an additional sentence to indicate how the overall uncertainty might be determined.

62) The Delegations of Spain and Uruguay pointed out that the term “reliability” had negative implications and should not be used in Spanish. It was therefore important to specify that the expression used should be equivalent to “uncertainty” and had the same meaning. The Committee agreed to refer to an “alternative, equivalent term” and noted that member countries would have the possibility to make comments on the appropriate terminology in different languages. The Delegation of Ireland informed the Committee that the journal Accreditation and Quality Assurance (AQAL) (Volume 1, No. 1, January 1996) included a Glossary of Analytical Terms in which “uncertainty of measurement” was translated into several languages.

63) The Committee agreed to circulate at Step 3 a first draft of the Proposed Draft Guidelines on Measurement Uncertainty for Governments, as attached in Appendix V, subject to approval by the Commission as new work.

64) The Delegation of the United Kingdom proposed to prepare a discussion paper addressing the compliance aspects associated with measurement uncertainty, recovery factors and sampling since these different issues were related, and invited interested delegations to participate in the preparation of the paper. The Committee welcomed this proposal as there was a need for practical guidance to governments and food control laboratories in this area, and agreed to consider this question at the next session (see para. 60).

IN-HOUSE METHOD VALIDATION (Agenda Item 8)13

65) The Committee recalled that the last session had agreed to consider the next draft of the IUPAC Harmonized Guidelines for the In-House Validation of Methods of Analysis when it became available. It had also agreed that the Delegation of the Netherlands would prepare a discussion paper on the characteristics of in-house validated methods for consideration by the next session.

66) The Committee agreed that it was preferable to use the term “single-laboratory validation” instead of “in-house validation” as proposed by the Delegation of the Czech Republic.

67) The Delegation of the Netherlands recalled that this question was essentially relevant for the determination of residues of pesticides and veterinary drugs, as relatively few collaboratively tested methods were available, and proposed the following recommendations for consideration by the Committee: to recognize the use of single laboratory validation for Codex purposes; to adopt criteria for in-house validated methods for Codex purposes; and to adopt the guidelines prepared by FAO/IAEA/OAC for this purpose.

68) The Delegation of the United Kingdom indicated that the IUPAC Guidelines provided guidance on in-house validation but that it should not generally replace collaborative testing, and pointed out that two separate issues should be considered by the Committee: in-house validation, and the use of proficiency testing. The

13 CX/MAS 01/9
Delegation also drew the attention of the Committee to the examples presented in Annexes II and III as reflecting the practical experience of the United Kingdom in this area.

IUPAC Guidelines

69) The Committee noted that the Guidelines were not yet published in their final form by IUPAC, and therefore it was not possible to propose their adoption by reference at the present session.

70) The Observer from AOAC indicated that AOAC did not harmonize yet with the approach of the IUPAC Guidelines as they did no provide practical guidance on how to proceed with single laboratory validation. This view was supported by some delegations. The Delegation of the United Kingdom pointed out that the IUPAC Guidelines were intended as an overarching document rather than a detailed manual for food laboratories, and invited governments and international organizations to provide their comments to IUPAC.

71) The Delegation of Ireland informed the Committee that the EURACHEM Guide “Fitness for purpose of analytical methods, A Laboratory Guide to method validation and related topics” could provide useful guidance for food laboratories on single-laboratory validation. The Committee noted that NMKL had also established a procedure on in-house method validation and that NMKL had recently published guidelines on how to use certified reference materials: NMKL Procedure No. 9 (2001) Evaluation of Results Derived from the Analysis of Certified Reference Materials.

72) The Delegation of the United States proposed to reword the end of the second paragraph in section 4.4 Method and Laboratory Effects to the effect that "the Horwitz function deviates at concentrations lower than about 120 ppb".

Requirements for single-laboratory validation

73) The Committee had an exchange of views on the criteria proposed in the working document (page 2).

74) The Delegation of Germany, supported by other delegations and observers, expressed the view that the use of single-laboratory validation should not be restricted to multi-residue methods and that this recommendation should be revised (paragraph 8a). Some delegations pointed out that this problem was more general as laboratories had to develop new methods to detect substances which posed a hazard to health for food control purposes, such as dioxins or contaminants in contact material.

75) The Delegation of Germany also pointed out that the recommendations might be in contradiction with the criteria approach already approved by the Committee, especially as in the future certain methods might be presented only as criteria. The Committee agreed that these points should be addressed further in the revision of the “Requirements” section.

Relationship with the CCPR and CCRVDF

76) The Representative of FAO/IAEA informed the Committee that the lectures presented at the AOAC/FAO/IAEA/IUPAC International Workshop on Principles and Practices of Method Validation (4-6 November 1999) had been published in scientific literature14, including the Guidelines for Single Laboratory Validation of Analytical Methods for Trace-Level Concentrations of Organic Chemicals, which were subsequently finalized by the FAO/IAEA/AOAC Consultation (8-11 November 1999).

77) The Representative drew the attention of the Committee to the need for a harmonized approach to single/laboratory validation in the areas of veterinary drug residues and pesticide residues and stressed the

importance of the work of FAO/IAEA in this area. The Delegation of the Netherlands proposed to forward the Guidelines to the CCPR and CCRVDF.

78) The Delegation of Sweden recalled that under part (g) of its terms of reference the Committee could make general recommendations to other committees on procedures and protocols, such as the IUPAC Guidelines, even when those committees were responsible for the development of their own methods.

79) The Secretariat confirmed that the CCMAS could address general recommendations on methodology to all other Committees, and that would apply to the IUPAC Guidelines. However it was not within its mandate to consider and make recommendations on a document covering exclusively chemical residues, such as the FAO/IAEA/AOAC Guidelines mentioned above.

80) The Secretariat also recalled that the usual practice for UN Agencies was to distribute the reports of expert consultations to Codex Committees when the recommendations put forward by these consultations required specific consideration by the Committees. This had been the case for example with the 1997 FAO/IAEA Consultation on Validation of Analytical Methods for Food Control15 and was standard practice for FAO/WHO Consultations. According to the usual procedure, it was expected that the next sessions of the CCPR and the CCRVDF would have the opportunity to consider the reports of both the AOAC/FAO/IUPAC/IAEA Workshop and the FAO/IAEA/AOAC Consultation including the Guidelines, when distributed by FAO/IAEA.

81) The Committee was informed that the last session of the CCRVDF had noted the general results the AOAC/FAO/IUPAC/IAEA Workshop and the FAO/IAEA/AOAC Consultation16, and the CCPR had noted the results of the FAO/IAEA/AOAC Consultation17 but the relevant reports and guidelines had not been published at the time. The Committees had already agreed that they would take into account the relevant recommendations made in these meetings while developing criteria for the assessment of suitable analytical methods.

82) The Committee took note that the Workshop and the Consultation had made a number of recommendations concerning single-laboratory validation, including the Guidelines, and invited CCPR and CCRVDF to consider them further, in order to ensure a harmonized approach throughout Codex for single laboratory validation.

Further action

83) The Committee generally recognized that single-laboratory validation could be used for Codex purposes and agreed that the next session would consider the inclusion of a specific text in the Procedural Manual to that effect.

84) The Committee agreed that it would consider the published version of the IUPAC Harmonized Guidelines for the In-House Validation of Methods of Analysis at its next session, with a view to adopting them by reference. The Delegation of the Netherlands, with the assistance of interested countries, would revise the paper on Requirements for Single-Laboratory Validation in the light of the discussion held at the present session. In addition, the Delegation of the United Kingdom would prepare a paper on the validation of methods through the use of results from proficiency testing schemes as a separate issue.

15 Food and Nutrition Paper No. 68, Rome 1998
16 ALINORM 01/313, para 99-101
17 ALINORM 01/24, paras. 152–153
ENDORSEMENT OF METHODS OF ANALYSIS PROVISIONS IN CODEX STANDARDS (Agenda Item 9) ¹⁸

85) The report of the ad hoc Working Group on Endorsement of Methods of Analysis (CRD 1) was presented by its chairperson Dr. William Horwitz (USA). Dr. Gregory Diachenko served as rapporteur. The following countries and international organizations participated in the Working Group: Brazil, Finland, Germany, Hungary, Japan, Malaysia, the United Kingdom, the United States, AOAC International, CEN, EC, IDF, ISO and NMKL.

86) The Committee agreed to replace the Codex General Method for copper (AOAC 971.20) by the NMKL Method 139 (1991) for lead, cadmium, copper, iron and zinc in foods by AAS after dry ashing which is also identical to AOAC 999.11 (as Type II method). The Committee also agreed to endorse the NMKL Method 161 (1998), which uses AAS following microwave digestion, and the identical method AOAC 991.10 as a Type III Codex General Method for lead, cadmium, zinc, copper and iron in foods.

87) The Committee concluded that the NMKL method proposed by the Committee on Food Additives and Contaminants for the analysis of Ochratoxin A in cereals and cereal products appeared to work well for the commodities specified at a level of >2ng/g. The Committee also felt that it would not be procedurally correct to endorse a method before relevant Codex provisions had been established. It was also pointed out that other methods were currently being validated for Ochratoxin A, and that CCFAC might also consider them.

88) The Committee was informed that the reference to ICUMSA GS 2/3-5 to measure invert sugar in soft sugars and brown sugar was not correct and that the correct reference was ICUMSA GS 1/3/7-3.

89) The Committee noted the written comments of CEFS regarding the difference in the results of determination of colour values for sugar with a colour higher than 60 IU using different ICUMSA methods. However the ICUMSA GS 2/3-10 (1998) method was retained on the basis of the recommendation of the Commodity Committee.

90) The Committee decided to delete the methods for determination of arsenic and lead in the sugar standards as there were no provisions for those contaminants there.

91) The Committee changed the status from “endorsed” to “temporarily endorsed” for several methods in the honey standard, due to lack of information on collaborative studies and to be consistent with earlier decisions.

92) The Committee agreed to request clarification of the Committee on Sugars regarding the availability of the specific reagent for the Phadebas method.

93) The Committee accepted the information of the Delegation of Norway regarding the availability of the collaborative studies and endorsed the WEFTA method for determination of salt in Salted Fish of the Gadidae Family as a Type II method, with the understanding that the result will be calculated on the basis of the chloride content. The Committee also agreed that the method of determination of histamine in Salted Atlantic Herring (AOAC 977.13) was applicable to all fish species were histamine was a concern and endorsed the method for “fish and fishery products”, as this would apply to all relevant standards.

94) As there were separate provisions for moisture and for solids in different cheese standards, the Committee decided to include separate entries for these provisions.

95) The Committee decided to delete the reference to a deviation of ±2°C in Whey Cheese standard as the precise information for that value had been provided in the standard, and the endorsement document included only the principle of the method.

96) The Committee deleted the reference to unpublished ISO standard for the determination of Streptococcus thermophilus in Fermented Milks (yoghurt) and decided not to endorse methods for protein and dry matter in the Standard for Unripened Cheese including Fresh Cheese as these provisions were not specified in the standard.

¹⁸ CX/MAS 01/10, CX/MAS 01/10-Add.1 CRD 1 (report of the ad hoc Working Group).
97) The Committee did not endorse the methods for the determination of fat content in the draft Standard for Cocoa Powders and requested the CCCPC to provide evidence of collaborative study validation and information regarding the purpose and the type of method. The Committee did not endorse the method for the determination of copper in the Proposed Draft Standard for Chocolate and Chocolate Products and requested the Committee to consider adopting one of the Codex general methods for copper that to determine the percentage of fat in these products.

98) The reference to the Committee on Processed Fruits and Vegetables was included in the section on Aqueous Coconut Products as the draft standard (initiated by the CCASIA) was currently under consideration in that Committee. The Committee also agreed to request the CCPVF to consider its earlier questions concerning the draft Standard for Pickles while finalizing the Standard.

Endorsement of Methods of Sampling Provisions

99) The Committee endorsed the sampling provisions in several standards for milk products. The Committee also endorsed sampling provisions in the Draft Standard for Wheat Protein Products and amended the reference to the ISO standard.

Methods for Detection of Irradiated Foods

100) The Delegation of Sweden, speaking on behalf of the Member States of the EU participating at the present Session and presenting a common EC position, introduced CRD 3 and CRD 3 Addendum and recalled that the Codex General Standard for the Labelling of Prepackaged Foods required mandatory labelling of irradiated foods and it was therefore necessary to establish methods for control purposes. The Delegation pointed out that with the assistance of FAO/IAEA Joint Division of Nuclear Techniques in Agriculture, a number of methods were elaborated and validated and that those methods were subsequently standardized by CEN. The Delegation proposed to consider and endorse five methods for the detection of different irradiated foods as presented in CRD 3.

101) The Observer from AOAC pointed out that the Committee on Food Additives and Contaminants had not proposed any methods for the detection of irradiation of foods, and indicated that methods are proposed by commodity committees well in advance of the meeting in order to be considered by the Working Group on the endorsement of methods under the CCMAS. Some delegations and the Secretariat recalled that the Codex provision concerned was the requirement for the labelling of irradiated foods in the General Standard for the Labelling of Prepackaged Foods, that it was under the terms of reference of the Committee to consider general methods and that this was not an endorsement of methods proposed by commodity committees.

102) The Delegation of the United States indicated that despite numerous references there was no bibliography provided for the methods and that the usual procedure for the Committee was to consider such a matter through the Working Group.

103) Following the request of the Delegation of Australia regarding false positive or negative results, the Observer from the EC indicated that methods provided a very high percentage of correctly identifiable samples which in some cases reached even 100%. It was pointed out that these methods were currently used in practice in some countries with a significant success and were thoroughly validated.

104) The Delegation of the United Kingdom urged the Committee to take a more proactive position on such important issues and supported the consideration and endorsement of the proposed methods at the current session. This view was supported by some other delegations and the Representative from FAO/IAEA.

105) The Committee had an extensive debate on the typing of proposed methods. Some delegations indicated that these methods could be attributed to Type I as they provide only an estimate of positive or negative results while other delegations pointed out that methods could be differentiated between Type II and Type III.
106) The Committee decided to endorse the proposed methods and concluded that the method EN 1785:1996 for detection of irradiated foods containing fat on the basis of GC/MS analysis of 2-alkylcyclobutanones should be endorsed as Type III and the remaining methods were specified as Type II (see Appendix IV).

REPORT OF AN INTER-AGENCY MEETING ON METHODS OF ANALYSIS
(Agenda Item 10)\(^{19}\)

107) The draft report of the 14th Interagency Meeting was presented by the Observer of AOAC International. The Committee was informed that 20 international organizations attended the meeting and noted that the meeting appreciated very much the chairmanship of Dr Roger Wood (UK).

108) The Committee was informed and that three new organizations (American Oil Chemists’ Society, National Food Processors Association and AOAC Research Institute) were accepted as new members. The Observer pointed out that several matters might be of direct relevance to the CCMAS and other Codex Committees, such as: harmonization of analytical terminology in accordance with international standards, quality assurance in food analysis, policies and practices regarding the use of proprietary techniques, assessment of the standard method of analysis - effects of proficiency testing etc.

109) The Observer drew the attention of the Committee to the list of actions and indicated that the draft report, when finalized, would be placed on the AOAC webpage at: www.aoac.org.

110) The Committee noted the report of the 14th IAM and expressed its appreciation to the IAM for providing technical support to the work of Committee in many fields.

OTHER BUSINESS AND FUTURE WORK (Agenda Item 11)

111) The Committee noted that its future work would consist of the following matters:

- Proposed Draft General Guidelines on Sampling
- Proposed Draft Guidelines on Measurement Uncertainty
- Consideration of Guidelines for the Use of Criteria Approach including consideration of dispute situations
- Single-Laboratory Validation
- Validation of methods using the results of proficiency testing
- The use of analytical results: sampling, relationship between the analytical results, the measurement uncertainty, recovery factors and the specifications in Codex Standards
- Methods of Analysis for the detection and identification of GMOs
- Methods of Analysis for the determination of dioxins
- Endorsement of Methods in Codex Standards

DATE AND PLACE OF THE NEXT SESSION (Agenda Item 12)

112) The Committee was informed that the next session of the Committee was tentatively scheduled to be held in Budapest in November 2002. The exact date and venue would be determined between the Host government and the Codex Secretariat, subject to the approval of the CAC.

\(^{19}\) CRD 2 (Draft Report of the 14th Interagency Meeting (IAM-14)).
SUMMARY STATUS OF WORK

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Step</th>
<th>Action by</th>
<th>Document Reference in ALINORM 01/23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed amendments to the Procedural Manual:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Criteria for the Selection of Methods of Analysis Using the Criteria Approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Relations between Commodity Committees and General Committees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Guidelines and Working Instructions to Aid the Implementation of the Criteria Approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IUPAC Guidelines for the Use of Recovery Information in Analytical Measurement (for adoption by reference)</td>
<td>(*)</td>
<td>Governments 24th CAC</td>
<td>para. 46 Appendix III</td>
</tr>
<tr>
<td>Endorsement of methods of analysis and sampling, including general methods</td>
<td></td>
<td>Governments 24th CAC</td>
<td>para. 86 to 106 Appendix IV</td>
</tr>
<tr>
<td>Proposed Draft General Guidelines on Sampling</td>
<td>3</td>
<td>France Governments 24th CCMAS</td>
<td>para. 24</td>
</tr>
<tr>
<td>Proposed Draft Guidelines on Measurement Uncertainty</td>
<td>1/2/3</td>
<td>24th CAC Governments 24th CCMAS</td>
<td>para. 63 Appendix V</td>
</tr>
<tr>
<td>Proposed Draft Guidelines for evaluating acceptable methods of analysis</td>
<td>1/2/3</td>
<td>24th CAC United Kingdom 24th CCMAS</td>
<td>para. 34</td>
</tr>
<tr>
<td>Validation of methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Single Laboratory Validation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Use of Proficiency Testing Schemes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*) Equivalent to Step 8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF PARTICIPANTS
LISTE DES PARTICIPANTS
LISTA DE PARTICIPANTES

Chairperson: Prof. Peter Biacs
Président: Scientific Advisor
Precedente: Central Food Research Institute
Herman Ottó út 15
H-1022 Budapest, Hungary

Vice-Chairperson: Prof. Pál Molnár
Vice-Président: Head of Food Quality Department
Vicepresidente: Central Food Research Institute
Herman Ottó út 15
H-1022 Budapest, Hungary

MEMBER COUNTRIES
PAYS MEMBRES /PAISES MEMBROS

ARGENTINA/ARGENTINE

Horacio A. Chalian
Embajador
Embajada de la República Argentina
Budapest, H-1023
Vérhalom u. 12/16., Húngria
Tel: + 36 1 326 0492
Fax: + 36 1 326 0494
e-mail: embargen@pronet.hu

Rolando Olmos
Secretario de la
Embajada de la República Argentina
Budapest, H-1023
Vérhalom u. 12/16, Húngria
Tel: + 36 1 326 0492
Fax: + 36 1 326 0494
e-mail: embargen@pronet.hu

AUSTRALIA/AUSTRALIE

Dr. Penny Darmos
Scientific & Client Liaison Officer
Australian Government Analytical Laboratories
GPO Box 1844
Canberra ACT 2601, Australia
Tel.: + 61 2 6213 6546
Fax: + 61 2 6213 6815
e-mail: penny.darmos@agal.gov.au

AUSTRIA/AUTRICHE

Dr. Rudolf Kapeller
Chemist, director
Bundesanstalt für Lebensmitteluntersuchung in Linz
Bürgerstrasse 47, A-4020 Linz
Austria
Tel: + 43 732 7790 7112
Fax: + 43 732 7790 7115

BELGIUM/BELGIQUE
BÉLGICA

Mr. Jean-Marie Degroodt
Chef de section ff
Section Denrées alimentaires
Institut scientifique de Santé publique
rue J. Wytsman 14
1050, Bruxelles, Belgique
Tel: + 32 2 642 5125
Fax: + 32 2 642 5691
e-mail: Jean-Marie.Degroodt@iph.fgov.be

BRAZIL/BRÉSIL/BRASIL

Dr. Shirley de Mello Pereira Abrantes
Chemist, Researcher
Quality Control National Institute of Health – INQS-FIOCRUZ - Ministry of Health
Av Brasil 4365 –Manguinhos
Rio de Janeiro / Brasil
Tel: + 55 21 573 1072 - + 55 91 948 283
Fax: + 55 21 290 0915
e-mail: shirley@alpha.fiocruz.br or s.abrantes@ig.com.br

Francisco Bezerra da Silva
Coordenador do PNCR
Medico veterinario
Ministerio da Agricultura e do Abastecimento
Esplanada dos Ministerios – Brasilia/DF
Tel: + 34 61 226 9771, 6182
Fax: + 34 61 218 2316, 224 3995
e-mail: f.silva@agricultura.gov.br

Marta P. de Freitas Severo
Fiscal Federal Agropecuário-Analista de Alimentos – LARS/RS - Laboratorio Regional de Apolo Animal-RS
Ministerio da Agricultura e do Abastecimento
Estrada da Ponta Grossa, No. 3036
Porto Alegre-RS/Brasil
Tel: + 55 51 248 2133 R:19
Fax: + 55 51 248 1926
e-mail: lara-rs@agricultura.gov.br
Josefa Abucáter Lima
Farmaceutica
Ministerio da Agricultura/LARA/MG
CX P. 50 CEP 336.000-000/MG/Brasil
Tel: + 55 31 3661 3680
Fax: + 55 31 3661 2383
e-mail: labmg@yahoo.com

CANADA/CANADÁ
Dr. James F. Lawrence
Head of delegation
Food Research Division
Food Directorate, Health Protection Branch, Health Canada
Sir Frederick Banting Building
3rd Floor East (2203D)
Ottawa, Ontario, K1A OL, Canada
Tel.: + 1 613 957 0947
Fax: + 1 613 941 4775
e-mail: jim_lawrence@hc-sc.gc.ca

Barbara Lee
Special Projects
Laboratories Directorate
Canadian Food Inspection Agency
59 Camelot Drive
Nepean, Ontario K1A 0V9, Canada
Tel.: + 1 613 225 2342 (4622)
Fax: + 1 613 228 6656, 759 1277
e-mail: blee@em.agr.ca

CROATIA/CROATIE/CROACIA
Marijan Katalenic
Biochemist
Head of Food Additives and Object of Common Use Department
Croatian National Institute of Public Health
Rockefellerova 7, HR-10000 Zagreb, Croatia
Tel.: + 385 1 486 3255
Fax: + 385 1 4683 007
e-mail: marijan.katalenic@zg.tel.hr

Jasminka Papic
Biochemist
Head of Flavours and Fragrance Unit Department
Croatian National Institute of Public Health
Rockefellerova 7, HR-10000 Zagreb, Croatia
Tel.: + 385 1 486 3296
Fax: + 385 1 4683 007
e-mail: jasminka.papic@zg.tel.hr or jpapic@inet.hr

CUBA
Dra. Maritza L. Garcia Hernández
Investigadora Auxiliar dela
Vice Dirección General del
Instituto de Investigaciones de la
Industria Alimentica
Ministerio de la Industria Alimentica de la Republica Cuba
Carretura a Guatao KM.341/2
La Lisa C. Habana,
Cuba
Tel.: + 53 7 22 0580, 22 0919, 22 0588
Fax: + 53 7 24 6553
e-mail: agv@iiia.edu.cu

CZECH REPUBLIC/RÉPUBLIQUE TCHÉQUE/REPÚBLICA CHECA
Petr Cuhra
Head of Department of Laboratories
Czech Agricultural and Food Inspection
Pobrezni 10
186 00 Prague 8, Czech Republic
Tel: + 420 2 232 7117
Fax: +420 2 232 7117
e-mail: czpikarlin@mbox.vol.cz

DENMARK/DANEMARK/DINAMARCA
Inge Meyland
Senior Scientific Adviser
Danish Veterinary and Food Administration
Morkhoj Bygade 19
DK 2860 Soborg, Denmark
Tel.: + 45 33 95 6404
Fax: + 45 33 95 6619
e-mail: ime@fdir.dk

EGYPT/EGYPTE/EGIPTO
Dr. Ashraf Mahmoud Elmarsafy
Technical and Quality control manager
Central Laboratory of Analysis of Pesticide Residues and Heavy Metals in Food - Agricultural Research Center
Ministry of Agriculture
7 Nadi El Said St. Dokki Giza – Cairo, Egypt
Tel: + 20 2 761 1395
Fax: + 20 2 761 1216
e-mail: qcapi@intouch.com

FINLAND/FINLANDE/FINLANDIA
Harriet Wallin
Senior Food Control Officer
National Food Agency
P.O. Box 28, FIN-00581, Helsinki, Finland
Tel.: + 358 9 393 1557
Fax: + 358 9 393 1593
e-mail: harriet.wallin@nfa.fi

FRANCE/FRANCIA
Alain Félix Duran
Inspecteur chargé des questions de contrôle statistique de la qualité
Ministère de L’Économie des Finances et de l’Industrie
DGCCRF - 59, Bd Vincent Auriol
75013 Paris, Cedex 13, France
Tel.: + 33 1 44 97 32 31
Fax: + 33 1 44 97 32 31
e-mail: alain.duran@dgccrf.finances.gouv.fr

Jean-Bernard Bourguignon
Direction Générale de la Concurrence, de la Consommation et de la Répression des Fraudes
75703 Paris, Cedex 13, France
Tel.: + 33 1 44 97 30 70
Fax: + 33 1 44 97 30 43
e-mail: jean-bernard.bourguignon @dgccrf.finances .gouv.fr
Francoise Janin
Directeur - AFSSA LERHQA
10, rue Pierre Curie
94700 Maison Alfort, France
Tel: + 33 01 49 77 27 48
e-mail: f.janin@afssa.fr

Bertrand Lombard
Co-ordinateur EU LCR "Lait"
AFSSA-LERHQA
41, rue du 11 novembre 1918
94700 Maisons-Alfort, France
Tel.: + 33 1 49 77 11 23
Fax: + 33 1 49 77 11 02
e-mail: b.lombard@afssa.fr

Nadine Normand
Association francaise de normalisation (AFNOR)
Département Dévéloppement
Tour Europe, 92049 Paris la Defense Cedex, France
Tel.: + 33 01 42 91 58 24
Fax.: + 33 01 42 91 56 56
e-mail: nadine.normand@email.afnor.fr

Lilian Puech
Ministère de l'agriculture et de la Pêche - DGAL
251, rue de Vaugirard
75732 Paris Cedex 15
Tel: + 33 01 49 55 47 78
Fax: + 33 01 49 55 49 61
e-mail: lilian.puech@agriculture.gouv.fr

GERMANY/ ALLEMAGNE/ALEMANIA

Dr. Klaus Werner Bögl
Food Chemist, Director
Federal Institute for Health Protection of Consumers and Veterinary Medicine
Berlin, D-14191, Germany
Tel.: + 49 1 888 4120
Fax: + 49 1 888 4124 741
e-mail: k.boegl@bgvv.de

Hermann Broll
Bundesinstitut für gesundheitlichen Verbraucherschutz un Veterinärmedizin Berlin, D-14191, Germany
Tel: + 49 1 888 412 3639
Fax: + 49 1 888 412 3635
e-mail: h.broll@bgvv.de

Dr. Alice Stelz
Hessisches Sozialministerium
Staatliches Mediinal-Lebensmittel und Veterinäruntersuchungsamt Mittelhessen
Marburger Strasse 54
D-35396 Giessen, Germany
Tel: + 49 641 300 633

Dr. Axel Preuss
Chemisches Landes- und Staatliches veterinäruntersuchungsamt
D-48007 Münster, P.O. Box 1980, Germany
Tel.: + 49 251 9821 215
Fax: + 49 251 9821 250
e-mail: preuss@cvua.nrw.de

Carola Schenzler
Food chemist
DIN Deutsches Institut für Normung
Normenausschuss Lebensmittel und landwirtschaftliche Produkte (NAL)
10772 Berlin, Burggrafenstr. 6, Germany
Tel: + 49 30 2601 2198
Fax: + 49 30 2601 42198
e-mail: carola.schenzler@din.de

GREECE/GRÈCE/GRECIA

Dr. Eugénia Lampi
Chemist
General Chemical State Laboratory
Tsocha St. 16, Athens 11521, Greece
Tel: + 30 1 647 9335 ext.344
Fax: + 30 1 646 5123
e-mail: gsk-pest@ath.forthnet.gr

Dr. Mária Várdai
Scientific deputy director
Central Food Research Institute
H-1022 Budapest
Herman Ottó út 15., Hungary
Tel.: + 36 1 3558 982
Fax: + 36 1 212 9853
e-mail: m.varadi@cfri.hu

Ilona Boros
Head of department
Research Institute of Hungarian Sugar Industry
Tolnai L. u. 25
H-1084 Budapest, Hungary
Tel.: + 36 1 333 0578
Fax: + 36 1 210 4616
e-mail: cukorkutato@mail.datanet.hu

Dr. Marianna Tóth-Markus
Chemist
Central Food Research Institute
Herman Ottó út. 15
H-1022 Budapest, Hungary
Tel.: + 36 1 355 8244
Fax: + 36 1 355 8928
e-mail: m.toth@cfri.hu

Dr. Anna Gergely
Head of Department
National Institute of Food Hygiene and Nutrition
Gyáli út 3/a
H-1097 Budapest, Hungary
Tel.: + 36 1 215 4130
Fax: + 36 1 215 1545
Csilla Niklós
Standardization manager
Hungarian Standards Institute
Úllói út 25.
Budapest, H-1091, Hungary
Tel.: + 36 1 456 6920
Fax: + 36 1 456 6823
e-mail: cs.niklos@mszt.hu

Dr. Éva Deák
Chemist
National Office of Measures (OMH)
H-1124 Budapest
Németvölgyi út 37.
Tel.: + 36 1 458 5836
Fax: + 36 1 458 5809
e-mail: e.deal@omh.hu

Prof. Örsi Ferenc
Chem. Ing.
Budapest University of Technology
Budapest, H-1111
Műegyetem rkp. 3.
Tel.: + 36 1 463 2283
Fax: + 36 1 463 3855
e-mail: orsi.bet@chem.bme.hu

INDIA

Anil Kumar Goyal
Deputy Secretary
Dept. of Food Processing Industries
Ministry of Agriculture & Coop.
Panchsheel Bhawan August Kranti Marg
New Delhi - 110049
India
Tel: + 91 11 649 2113
Fax: + 91 11 649 3228

Dr. S. K. Saxena
Director
Food Research & Analysis Centre
Federation House, Tansen Marg
New Delhi – 110 001
India
Tel: + 91 11 372 3554, 335 9856 (direct)
Fax: + 91 11 335 9855, 372 1504
e-mail: frac@del3.vsnl.net.in

IRAN, THE ISLAMIC REPUBLIC OF
IRAN, RÉPUBLIQUE ISLAMIQUE DE
IRÁN, REPÚBLICA ISLÁMICA DE

Dr. Seyyed Mehdi Mortazavi Ravari
ISIRI general director
for Kerman Province
Iran

Dr. Abdollah Nazarinia
Head of Food Microbiology & Chemical Labs of FDCL
Ministry of Health & Medical Education
No 31 Imam Khomeini Ave.
Tehran
Iran
Tel: + 98 21 670 7556
Fax: + 98 21 670 7330

Eng. Mohamad Chegini
managing director, Inspection
International Goods Inspection (IGI)
Ministry of Commerce
314 Motahary St., Tehran, Iran
Tel: + 98 21 883 3176-5
Fax: + 98 21 883 3179
e-mail: igi@igico.com

Masoumeh Takalo
Expert of food stuff
Iran’s Food Hygienic and Cosmetic Control Department
Ministry of Health
No. 3 Fakhr Razi Engelab Ave, Tehran, Iran
Tel: + 98 21 646 4268
Fax: + 98 21 646 7265

IRELAND/IRLANDE/IRLANDA

Márie Walsh
State Chemist
State Laboratory
Abbotstown, Dublin 15, Ireland
Tel.: + 353 1 802 5800
Fax: + 353 1 821 7320
e-mail: mwalsh@statelab.ie

Ita Kinahan
Senior Chemist - State Laboratory
Abbotstown, Dublin 15, Ireland
Tel: +353 1 802 5800
Fax: +353 1 821 7320
e-mail: ikinahan@statelab.ie

Paul Rafter
Veterinarian, Dept. Agriculture, Food & Rural Development
Central Meat Control Laboratory
State Laboratory
Abbotstown, Dublin 15, Ireland
Tel: + 353 1 607 2950
Fax: + 1 821 4966
e-mail: cmclda@indigo.ie

ISRAEL

Dr. Abraham Mates
Director of Laboratory - Laboratories Division
Ministry of Health
Yaakov Elian St. 9
Jerusalem 94467, Israel
Tel.: + 972 2 655 1855
Fax: + 972 2 652 8079
e-mail: lbm.abraham@matat.health.gov.il

JAPAN/JAPON/JAPÓN

Yoshitoku Yoshida
Assistant director - Inspection and Safety Division
Dept. of Food Sanitation
Pharmaceutical and Medical safety bureau
Ministry of Health, Labour and Welfare
1-2-2 Kasumigaseki, Chiyoda-ku
Tokyo 100-8916, Japan
Tel: + 81 3 3595 2337
Fax: + 81 3 3503 7964
e-mail: yoshida-yoshitoku@mhlw.go.jp
Yasuhiro Araki
Standards Division
Dept. of Food Sanitation
Pharmaceutical and Medical safety bureau
Ministry of Health, Labour and Welfare
1-2-2 Kasumigaseki, Chiyoda-ku,
Tokyo 100-8916, Japan
Tel: + 81 3 3595 2341
Fax: + 81 3 3501 4868
e-mail: araki-yasuhiro@mhlw.go.jp

Dr. Rieko Matsuda
Section Chief - Government employer, researcher
Division of Foods, 2nd Section
National Institute of Health Sciences
1-18-1, Kamiyoga, Setagaya-ku, Japan
Tel: +81 3 3700 9359
Fax: + 81 3 3706 6950
e-mail: matsuda@nihs.go.jp

Toshifumi Fujita
Section Chief - Technical Department
International Affairs Division
Tokyo Center for Quality Control and Consumer Service
Ministry of Agriculture, Forestry and Fisheries
Tokyo, Japan
Tel: + 81 48 600 2370
Fax: + 81 48 600 2372
e-mail: toshifumi-fujita@cqccs.go.jp

Kenji Tanno
Technical Adviser - Japan Food Hygiene Association
2-6-1 Jingumae Shibuya-ku
Tokyo 150-0001, Japan
Tel.: + 81 3 3403 2111
Fax: + 81 3 3478 0059

KOREA, REPUBLIC OF
CORÉE, RÉPUBLIQUE DE
COREA, REPÚBLICA DE

Dr. Jong-Seok Park
Researcher
Korea Food and Drug Administration
5, Nokbun-dong, Eunpyung-gu,
Seoul, 122-704, Rep. of Korea
Tel.: + 82 2 380 1682
Fax: + 82 2 382 4892
e-mail: johnspak@kfda.go.kr

MALAYSIA/MALASIE/MALASIA

Hoong Seng Hong
Deputy Director General - Department of Chemistry
Jalan Sultan
46661 Petaling Jaya
Selangor, Malaysia

Norlia Bt. Musa
Manager - Chemical Testing Section
SIRIMQAS Sdn Bhd - Banguran 16
No. 1, Persiaran Dato’ Menteri
40911 Shah Alam, Selangor, Malaysia
Tel: + 60 3 544 6652
Fax: + 60 3 544 6688
e-mail: norlia_musa@sirim.my

MOLDOVA/MOLDAVIE

Dr. Roman Corobov
Leading researcher - National Expert on project execution
UNDP-Moldova/FAO project
67a. Gh. Asaki, Room 401
MD2028 Chisinau, Moldova
Tel: + 373 2 735 813
Fax: + 373 2 735 804
e-mail: codex@mednet.md

Dr. Anjela Nimigean
National Codex Contact Point Officer
National Center of Preventive Medicine
67a. Gh. Asaki, Room 401
MD2028 Chisinau, Moldova
Tel: + 373 2 735 813
Fax: + 373 2 729 725
e-mail: NCP@mednet.md

MOROCCO/MAROC/MARRUECOS

El-Maâti Benazzouz
Ingénieur
Chef de la Division Recherche et Développement au Laboratoire Officielle
d’Analyses et de Recherches Chimiques
Département del’Agriculture
Ministere de l’Agriculture , du Développement Rural et des Eaux et Forêts
25, Rue Nichakra Rahal
Casablanca, Maroc
Tel: +212 22 30 2196
Fax: +212 22 30 19 72
e-mail: kvarc@casanet.net.ma

Mohammed Boujnah
Chef de Département de Technologie Agro-alimentaire
INRA - DTA-INRA, BP 415
Maroc
Tel: + 212 37 73 0601
Fax: + 212 37 77 0049
e-mail: boujnah@awamia.inra.org.ma

NETHERLANDS/PAYS-BAS/PAÍSES BAJOS

Henk van der Schee
Regional Inspectorate for Health Protection
Hooge Kadijk
1018 BK Amsterdam
Tel: +31 20 524 4600
Fax: + 31 20 524 4700
e-mail: henk.van.der.schee@kvw.nl

NORWAY/NORVÊGE/NORUEGA

Liv Christie Barratt
Head of Section
Central Laboratory
Directorate of Fisheries
P. O. B. 185, N-5804, Bergen
Norway
Tel.: + 55 23 80 00
Fax: + 55 23 80 90
Astrid Nordbotten
Senior Scientist
National Veterinary Institute
P.O. Box 8156, Dep., N-0033 OSLO
Norway
Tel.: + 47 22 5974 61
Fax.: + 47 22 5974 53
e-mail: astrid.nordbotten@vetinst.no

POLAND/POLOGNE/Polonia

Dr. Renata Jedrzejczak
Chairman of ISO TC 34 SC3
Head of Spectrometry Lab.
Institute of Agricultural and Food Biotechnology
Rakowiecka 36, 02-532 Warsaw
Poland
Tel.: +48 22 606 3876
Fax.: +48 22 490 426
e-mail: jedrzejczak@ibprs.pl

Aleksandra Andruszkiewicz
Senior Assistant
Laboratory of Agricultural and Food Quality Inspection
Laboratory in Gdynia
Plisudskiego 8/12, 81-378 Gdynia
Poland
Tel.: + 48 58 661 6730
Fax.: + 48 58 661 6814
e-mail: cislab@mega.com.pl

Elzbieta Brulinska-Ostrowska
Assistant
National Insitute of Hygiene
Chocimska 24, 00-791 Warsaw
Poland
Tel.: + 48 22 5421 362
Fax.: + 48 22 849 7445
e-mail: ebbrulinska@pzh.gov.pl

PORTUGAL

Maria Fernanda Ramalho
Engenheira Química
Laboratorio Central de Qualidade Alimentar – DGFCQA
Av. Conde Valbom, 98
1050 Lisboa, Portugal
Tel.: + 351 217 983 712
Fax.: + 351 217 983 834
e-mail: dgfcqa.leqca@mail.telepac.pt

SINGAPORE/SINGAPOUR

SINGAPUR

Joanne S. H. Chan, MDM
Deputy Head
Food Laboratory Institute of Science and Forensic Medicine
Centre for Analytical Science
11 Outram Road,
Singapore 169078
Tel.: + 65 22 90 722
Fax.: + 65 22 90 749
e-mail: CHAN_Sheot_Harn@MOH.gov.sg

SLOVAKIA/SLOVAQUIE

ESLOVAQUIA

Lubomir Dasko
Head of Department
SAFI Department of Chromatography
Slovak Agriculture and Food Inspection
Priemyselná 4, 81549 Bratislava
Slovak Republic
Tel.: + 421 7 555 66 119
Fax.: + 421 7 555 24 731
e-mail: dasko@sppi.sk

SLOVENIA/SLOVÉNIE/ESLOVENIA

Jana Frantar
Chemist - Counsellor to the Minister - Food Section
Ministry of Agriculture, Forestry and Food
Dunajska 56-58, 1000 Ljubljana, Slovenia
Tel.: + 386 61 478 9000
Fax.: + 386 61 478 9021
e-mail: jana.frantar@gov.si

SOUTH AFRICA/AFRIQUE DU SUD

SUDÁFRICA

Pieter Broere
Analytical Services North
Directorate: Plant Health and Quality National Department of Agriculture
Private Bag X258, Pretoria 0001, South Africa
Tel.: + 27 12 319 6089
Fax.: + 27 12 319 6038
e-mail: pieterb@nda.agric.za

SPAIN/ESPAGNE/ESPAÑA

Pedro A. Burdaspal Pérez
Jefe del Area Quimica - Centro Nacional de Alimentación
Instituto de Salud Carlos III
Ministerio de Sanidad y Consumo
Ctra Majadahonda a Pozuelo Km 2
28220 Majadahonda, Madrid, Espana
Tel.: + 34 91 509 7931
Fax.: + 34 91 509 79 26
e-mail: pburdas@isciii.es

Dra. Elia de la Hera, Macias
Jefe de Servicio de Técnicas Instrumentales
Centro de Investigación y Control de la Calidad I.N.C.
Ministerio de Sanidad y Consumo
Av. Cambrícia S/N, 28042 Madrid, Espana
Tel.: + 34 91 747 1500
Fax.: + 34 91 747 9517
e-mail: elia.Hera@consumo-inc.es

SWEDEN/SUÈDE/SUECIA

Eva Lönberg
Codex Coordinator - National Food Administration
P.O.Box 622
SE-751 26 Uppsala, Sweden
Tel.: +46 18 175 500
Fax.: +46 18 105 848
e-mail: cvlo@svl.se
THAILAND/THAILANDE/TAILANDIA

Chanchai Chaichalermsak
Senior Trade Technical Officer
Department of Foreign Trade - Ministry of Commerce
44/100 Sanambinnam –
Nonthaburi Road, Nonthaburi 11000 , Thailand
Tel: + 66 2 547 4801-3
Fax: + 66 2 547 4802
e-mail: chaichaic@moc.go.th

Charun Pornkuntham
Chief of Center of Export Inspection and Certification for Agricultural Products
Department of Agriculture
Kaset-Klang, Chatuchak
Bangkok 10900, Thailand
Tel: + 66 2 940 7474
Fax: + 66 2 940 7448
e-mail: charun@doa.go.th

Yupa Laojindapun
Standard Officer - Thai Industrial Standards Institute
Ministry of Industry
Rama VI Str., Rachathewee
10400 Bangkok, Thailand
Tel: + 66 2 246 1993
Fax: + 66 2 248 7987
e-mail: yupalao@tisi.go.th

TURKEY/TURQUIE/TURQUÍA

Günaş Sibel
Agricultural engineer
Republic of Turkey Ministry of Agriculture and Rural Affairs
Province Directorate of Ankara
General Directorate of Protection and Control
Province Control Laboratory
Sehit Cem Ersever cad. No. 12 PK 36
Yenimahalle, Ankara, Turkey
Tel: + 90 312 315 0089
Fax: + 90 312 315 7934

UNITED KINGDOM/ROYAUME-UNI
REINO UNIDO

Dr. Roger Wood
Food Standards Agency
c/o Institute of Food Research
Norwich Research Park - Colney
Norwich NR4 7UA, United Kingdom
Tel.: + 44 1603 255 231
Fax: + 44 1603 507 723
e-mail: roger.wood@foodstandards.gsi.gov.uk

E. B. Reynolds
Tickle and Reynolds - Public Analyst’s Laboratory
83 Heavitree Road
Exeter, EX1 2PD, United Kingdom
Tel: + 44 1392 272 836/434 309
Fax: + 44 1392 422 691
e-mail: ebr@tandr.freeserve.co.uk

UNITED STATES OF AMERICA
ETATS-UNIS D'AMÉRIQUE
ESTADOS UNIDOS DE AMÉRICA

Dr. Gregory Diachenko
Director - Division of Product Manufacture and Use
Center for Food Safety and Applied Nutrition
Food and Drug Administration
200 C Street SW, (HFS-245)
Washington, DC 20204, USA
Tel: + 1 202 205 5320
Fax: + 1 202 401 8531
e-mail: gxd@cfsan.fda.gov

Mr. Syed Ali
Staff Officer
U.S. Codex Office - U.S. Department of Agriculture
Room 4861 – South Building
Washington D.C. 20250-3700, USA
Tel.: + 1 202 205 0574
Fax: + 1 202 720 3157
e-mail: syed.ali@usda.gov

Dr. Foster McClure
Director - Division of Mathematics
Center for Food Safety and Applied Nutrition
Food and Drug Administration
200 C Street SW (HFS-705)
Washington D.C. 20204, USA
Tel.: + 1 202 205 5051
e-mail: fdm@cfsan.fda.gov

Dr. I-Pin Ho
Senior Scientist - National Food Processors Association
1350 I Street, NW, Suite 300
Washington, D.C. 20005, USA
Tel: + 1 202 639 5977
Fax: + 1 202 639 5991
e-mail: IHO@nfpa-food.org

Dr. William Horwitz
Editor - Official Books of Methods
AOAC International
481 Frederick Ave suite 500
Gaithersburg, MD 20877, USA
Tel.: + 1 301 460 5499
e-mail: wxhor@aol.com
URUGUAY
Quím. Far. Annamaria Narizano
Quimica Farmaceutica
Laboratorio Tecnológico del Uruguay (LATU)
Sector Análisis Químico
Av. Italia 6201 11500 Montevideo, Uruguay
Tel: + 598 2 601 3724 ext. 327
Fax: + 598 2 601 85 54
e-mail: anarizan@latu.org.uy

INTERNATIONAL ORGANIZATIONS
ORGANIZATIONS INTERNATIONALES
ORGANIZACIONES INTERNACIONALES

ASSOCIATION OF AMERICAN FEED CONTROL
OFFICIALS (AAFCO)
Dr. Alan R. Hanks
Indiana State Chemist - Office Indiana State Chemist
Purdue University - 1154 Biochemistry
West Lafayette, Indiana 47907-1154, USA

AOAC INTERNATIONAL
Dr. Albert E. Pohland
Chemist - Office of International Activities
AOAC International Secretariat
481 N. Frederick Ave., Suite 500
Gaithersburg, MD 20877-2417
Tel: + 1 301 924 1011
Fax: + 1 301 924 7089
e-mail: apohland@aoac.org

Scott Coates
Director - AOAC Research Institute
481 N. Frederick Ave, suite 500
Gaithersburg, MD 20877-2417, USA
Tel.: + 1 301 924 7090
Fax: + 1 301 924 7089

Margreet Lauwaars
AOAC International
P. O. Box 153, 6720 AD Bennekom
The Netherlands
Tel: + 31 318 418 725
Fax: + 31 318 418 359
e-mail: lauwaars@worldonline.nl

AMERICAN OIL CHEMISTS' SOCIETY (AOCS)
Dr. Kimberly Magin
Monsanto
700 Chesterfield Parkway N.
St. Louis, MO 63198, USA
e-mail: kimberly.m.magin@monsanto.com

COUNCIL FOR RESPONSIBLE NUTRITION (CRN)
Eddie F. Kimbrell
13209 Moss Ranch Lane - Fairfax, VA 22033, USA
Tel: + 1 703 631 9187
Fax: + 1 703 631 3866
e-mail: edkim@aol.com

COMISA
Dr. Lal Weerasinghe
PFIZER
Eastern Point Rd - Groton, CT 06340, U. S. A.
Tel: + 1 860 441 8022
Fax + 1 860 715 8029
e-mail: lal_weerasinghe@groton.pfizer.com

Dr. Yu Yang
PFIZER
Eastern Point Rd - Groton, CT 06340, U. S. A.
Tel: + 1 860 715 1589
Fax: + 1 860 715 5779
e-mail: ju_yang@groton.pfizer.com

EUROPEAN COMMUNITY (EC)/
COMMUNAUTE EUROPEENNE
Dr. Georg A. Schreiber
European Commission
Health and Consumer Protection Directorate-General
200 rue de la Loi - B-1049, Brussels, Belgium
Tel.: + 32 2 29 56540
Fax: + 32 2 29 91856
e-mail: georg.schreiber@cec.eu.int

Hermann Glaeser
European Commission - Agriculture Directorate-General
Office LOI 130 08/53
200 rue de la Loi
B-1049, Brussels, Belgium
Tel.: + 32 2 295 3238
Fax: + 32 2 295 3310
e-mail: hermann.glaeser@cec.eu.int

INTERNATIONAL DAIRY FEDERATION (IDF)
Edward Hopkin
Secretary General - IDF
41, Square Vergote B-1030 Bruxelles, Belgique
Tel.: + 32 2 733 9888
Fax: + 32 2 733 0413
e-mail: EHopkin@fil-idf.org

INTERNATIONAL FRUIT JUICE UNION (IFU)
Dr. Hans Hofsommer
General Manager
Ges. F. Lebensmittel-Forschung mbH
Landgrafenstrasse 16, D-10787 - Berlin, Germany
Tel.: + 49 30 261 9075
Fax: + 49 30 261 9076
e-mail: gfl.berlin@t-online.de

INTERNATIONAL ORGANIZATION OF THE
FLAVOUR INDUSTRY (IOFI)
Peter Liddle
Group Scientific Coordinator (Europe)
European Production & Quality Control
BACARDI-MARTINI
19, Av. Michelet
F-93400 Saint Ouen, France
Tel: + 33 1 49 45 48 73
Fax: + 33 1 49 45 49 05
e-mail: peliddle@bacardi.com
INTERNATIONAL ORGANIZATION OF STANDARDIZATION (ISO)

Dr. Martha Petró-Turza
Chemical engineer
Secretary of ISO/TC 34
Magyar Szabványügyi Testület
H-1091 Budapest
Úllói út 25., Hungary
Tel.: + 36 1 456 6859
Fax: + 36 1 456 6823
e-mail: o.petro@mszt.hu

OFFICE INTERNATIONAL DES ÉPIZOOTIES (OIE)

Dr. Barbara Röstel
Centre Collaborateur de l’OIE pour les médicaments vétérinaires
ANMV-AFSSA Fougeres
F-35302 Fougeres Cedex, France
Tel.: + 33 2 99 94 78 87
Fax: + 33 2 99 94 78 99
e-mail: h.rostel@anmv.afssa.fr

INTERNATIONAL VINE AND WINE OFFICE (OIV)

Bernadette Mandrou
Professeur Faculté de Pharmacie
Faculté de Pharmacie
F-34060 Montpellier Cedex 2, France
Tel.: + 33 4 67 54 45 20
Fax: + 33 4 67 54 45 26
e-mail: ablaise@pharma.univ-montpl.fr

Yann Juban
Administrateur de l’Unité ”Droit, Réglementation et Organisations Internationales” Office International de la Vigne et du Vin
18, rue d’Aguesseau
F-75008 Paris, France
Tel: + 33 1 44 94 80 95
Fax: + 33 1 42 66 90 63
e-mail: yjuban@oiv.int

NORDIC COMMITTEE ON FOOD ANALYSIS (NMKL)

Hilde Skar Norli
NMKL Secretary General
c/o National Veterinary Institute
P.O. Box 8156, Dep., N-0033 OSLO, Norway
Tel.: + 47 64 8700 46
Fax: + 47 22 5974 75
e-mail: nmkl@vetinst.no

WORLD SUGAR RESEARCH ORGANISATION (WSRO)

Dr. Hans-Joachim Puke
Dipl.-Chem. - Suedzucker AG
Wormser Strasse 11
D-67283 Obrigheim/Pfalz, Germany
Tel: + 49 6359 803 139
Fax: + 49 6359 803 331
e-mail: hans-joachim.puke@suedzucker.de

FAO / INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)

Dr. Árpád Ambrus
Head, Agrochemicals Unit
FAO/IAEA Agriculture and Biotechnology Laboratory
IAEA Laboratories
Seibersdorf A-2444
Austria
Tel.: + 43 1 260 028 395
Fax: + 43 1 260 028 222
e-mail: a.ambrus@iaea.org

FAO SUBREGIONAL OFFICE FOR CENTRAL AND EASTERN EUROPE (FAO-SEUR)

Jaroslav Suchman
Representative
Benczúr u. 34.
Budapest, H-1068, Hungary
Tel: + 36 1 351 7026
Fax: + 36 1 351 7029
e-mail: jaroslav.suchman@fao.org

Michael A. Canon
Food Standards Officer
Benczúr u. 34.
Budapest, H-1068, Hungary
Tel: + 36 1 461 2021
Fax: + 36 1 351 7029
e-mail: michael.canon@fao.org

WORLD HEALTH ORGANIZATION (WHO)

Dr. Marco Jermini
Food Safety Regional Adviser
World Health Organization
Regional Office for Europe
Via Francesco Crispi, 10
00187 Rome, Italy
Tel: + 39 06 48 77 525
Fax: + 39 06 48 77 599
e-mail: maj@who.it

JOINT FAO/WHO SECRETARIAT

Dr. Selma Doyran
Food Standards Officer
FAO - Via delle Terme di Caracalla
00100 Rome, Italy
Tel: + 39 06 5705 5826
Fax: + 39 06 5705 4593
e-mail: Selma.Doyran@fao.org

Dr. Jeronimas Maskeliunas
Food Standards Officer
FAO - Via delle Terme di Caracalla
00100 Rome, Italy
Tel: + 39 06 5705 3967
Fax: + 39 06 5705 4593
e-mail: Jeronimas.Maskeliunas@fao.org
PROPOSED AMENDMENTS TO THE PROCEDURAL MANUAL

PART 1 – AMENDMENTS TO CURRENT SECTIONS

1. PRINCIPLES FOR THE ESTABLISHMENT OF CODEX METHODS OF ANALYSIS

Addition of a new subsection at the end of General Criteria for the Selection of Methods of Analysis as follows:

General Criteria for the Selection of Methods of Analysis using the Criteria Approach

In the case of Codex Type III methods, method criteria may be identified and values quantified for incorporation into the appropriate Codex commodity standard. Method criteria which are developed will include the criteria in section Methods of Analysis, paragraph (c) above together with other appropriate criteria, e.g., recovery factors.

2. RELATIONS BETWEEN COMMODITY COMMITTEES AND GENERAL COMMITTEES - METHODS OF ANALYSIS AND SAMPLING

Addition of new paragraphs at the end of “Normal Practice” section as follows:

“The Codex Committee on Methods of Analysis and Sampling will assess the actual analytical performance of the method which has been determined in its validation. This will take account of the appropriate precision characteristics obtained in collaborative trials which may have been carried out on the method together with results from other development work carried out during the course of the method development. The set of criteria that are developed will form part of the report of the endorsement by the Codex Committee on Methods of Analysis and Sampling and will be inserted in the appropriate Codex Commodity Standard.

In addition, the Codex Committee on Methods of Analysis and Sampling will identify numeric values for the criteria for which it would wish such methods to comply.”

PART 2 – ADDITION OF A NEW SECTION IN THE PRINCIPLES FOR THE
ESTABLISHMENT OF CODEX METHODS OF ANALYSIS

PROPOSED GUIDELINES AND WORKING INSTRUCTIONS TO AID THE
IMPLEMENTATION OF THE CRITERIA APPROACH TO THE SELECTION OF
METHODS OF ANALYSIS FOR CODEX PURPOSES

(for inclusion at the end of the Principles for the Establishment of Codex Methods of Analysis)

INTRODUCTION AND BACKGROUND

The Codex Alimentarius Commission (CAC) has historically endorsed specific methods of analysis for Codex purposes. These methods of analysis have to comply with the quality criteria given in the Codex Procedural Manual. However, the Commission has recently adopted the “criteria approach” (aka performance based approach) for the acceptance of methods of analysis for Codex purposes in some situations. This approach allows the endorsement of method criteria by the Commission rather than only the adoption of identified methods of analysis.

These Guidelines outline Working Instructions on how and when this new approach should be employed by Codex Commodity Committees when recommending methods of analysis for endorsement by the Codex Committee on Methods of Analysis and sampling, and their final acceptance by the Commission.

PRESENT SYSTEM

The present procedure for the adoption of methods of analysis within the Codex System requires Codex Committee on Methods of Analysis and Sampling (CCMAS) to consider and endorse methods of analysis proposed by Commodity Committees in the elaboration of their Codex Standards. In addition CCMAS may propose methods of analysis of general applicability (e.g. for trace elements). Methods of analysis proposed by Commodity Committees or by CCMAS may be Codex Type I, II, III or IV procedures; these types are defined in the Guidelines on Codex Methods of Analysis and Sampling given in the Codex Procedural Manual. These Guidelines recognise that there are, in essence, 2 sorts of methods of analysis, i.e.

- defining or empirical procedures, where the analytical result is method dependent (e.g. the determination of “fat” in a food), and
- the determination of a discrete chemical entity where the analytical result is not, in principle, method dependent (sometimes known as rational methods).

In addition, for specific methods of analysis, preference should be given to methods of analysis the reliability of which have been established in respect of the following criteria, selected as appropriate:

- specificity
- accuracy
- precision; repeatability intra-laboratory (within laboratory), reproducibility inter-laboratory (within laboratory and between laboratories
- limit of detection
- sensitivity
- practicability and applicability under normal laboratory conditions
- other criteria which may be selected as required.

and, in addition,

- the method selected should be chosen on the basis of practicability and preference should be given to methods which have applicability for routine use,
- all proposed methods of analysis must have direct pertinence to the Codex Standard to which they are directed.
- methods of analysis which are applicable uniformly to various groups of commodities should be given preference over methods which apply only to individual commodities.
• official methods of analysis elaborated by international organisations occupying themselves with a food or group of foods should be preferred.

THE NEW APPROACH

The new approach will only apply to the determination of specific chemical analytes (i.e. Type III methods). It will not apply to Type I defining methods of analysis: however, it should be noted, that most of the empirical methods (i.e. the Type I methods) required by the Codex Alimentarius Commission have already been adopted by the Commission. Specific empirical methods already adopted by the Commission remain attached to the appropriate standard. They need not be reviewed unless the Standard itself is reviewed. Then the Codex Commodity Committee will still have to recommend a single Type I method which will be assessed by the Codex Committee on Methods of Analysis and Sampling on its own merits.

When a Codex Commodity Committee has developed a standard and the method of analysis to be attached to it, the Committee shall decide whether the method also to be developed is a Type I empirical procedure, a Type II method, a Type III rational procedure or a Type IV procedure. The Codex Commodity Committee will then proceed along the following lines:

Type I Methods

In the present system this is a method which determines a value that can only be arrived at in terms of the method per se and serves by definition as the only method for establishing the accepted value of the item measure.

The procedure for Type I methods remains as at present, i.e. specific methods are attached to the Commodity Standard and then considered for endorsement by the CCMAS. As type I methods are empirical, i.e. the analytical result is intimately linked to the method used to obtain that result, it is not appropriate to separate the specification and the method to determine the specification.

The Commodity Committee will select the appropriate Type I method as at present. It will be required to meet the existing criteria as given above. It will be sent to CCMAS for consideration and endorsement. There will be no change to the present system.

The number of Type I methods to be endorsed by CCMAS should decline in future as the number of specific commodity linked specifications without methods attached declines. Internationally, there is a tendency to consider that safety aspects of food have a greater importance than compositional/commodity aspects. Codex is following that tendency, and thus the majority of methods from “active” Codex Committees will be concerned with an identifiable, discreet chemical substance (i.e. be Type II or III methods).

Type II and III Methods

Type II: Reference Method: Type II methods are retained.

Type III: Alternative Approved Method: In the present system this is a method which meets the criteria required by the Codex Committee on Methods of Analysis and Sampling for methods that may be used for control, inspection or regulatory purposes.

The Codex Commodity Committee may continue to propose an appropriate method of analysis for the chemical entity being determined or develop a set of criteria to which a method used for the determination must comply. It is expected that the Codex Commodity Committee will find it easier to recommend a specific method and request CCMAS to “convert” that method into appropriate criteria. The criteria would then be endorsed by CCMAS and will form part of the Codex Commodity Standard replacing the recommended method of analysis. If the Codex Commodity Committee which is to develop the criteria itself rather than allowing the endorsement working party of CCMAS to do so, then it should follow instructions given for the development of specific criteria as outlined below. These criteria must be approved/recommended for the determination in question.

However, the primary responsibility for supplying methods of analysis and criteria resides with the Commodity Committee. If the Commodity Committee fails to provide a method of analysis or criteria
despite numerous requests, then CCMAS may supply an appropriate method and “convert” that method into appropriate criteria.

When CCMAS endorses, or recommends, a Type II or III method it is considering the applicability of the method in a given situation. On occasions a number of methods for the same determination are considered for endorsement by CCMAS: one of these will be selected, on often arbitrary grounds, as the Type II method, the rest being treated as Type III methods.

In future any method capable of being shown that it meets the given analytical characteristics will be “approved” for use for Codex purposes as a Type III method.

The minimum “approved” Codex analytical characteristics will include the following numeric criteria as well as the general criteria for methods laid down in the Codex Procedural Manual:

- precision (within and between laboratories, but generated from collaborative trial data rather than measurement uncertainty considerations)
- recovery
- selectivity (interference effects etc.)
- applicability (matrix, concentration range and preference given to 'general' methods)
- detection/determination limits if appropriate for the determination being considered
- linearity

CCMAS will generate the data corresponding to the above criteria. CCMAS has defined the terms to be used for each of the characteristics to be evaluated. These are given in Annex I. It will be necessary for a laboratory to demonstrate that whatever method it uses, its application conforms to the laboratory quality standards adopted by the Codex Alimentarius Commission.

Much of the data that will be required by CCMAS should be submitted to the Committee by the Codex Commodity Committees as result of the adoption of the Checklist of information required to evaluate methods of analysis submitted to the Codex Committee on Methods of Analysis and Sampling for endorsement.

In practice it must be appreciated that such information rarely, if ever, is provided by the Commodity Committees.

Type IV Methods

In the present system this is a method which has been used traditionally or else has been recently introduced but for which the validation criteria required for acceptance by the Codex Committee on Methods of Analysis and Sampling have not yet been determined.

Type IV methods will be considered as at present, i.e. they will be “noted” by CCMAS but not formally endorsed. Type IV methods are candidate Type I, II and III methods.

Type IV methods will continue to be treated in their own right as tentative procedures. It will not be possible to convert them to criteria as their precision characteristics would be unknown: Type IV methods have not been subjected to a collaborative trial.

CONVERSION OF SPECIFIC METHODS OF ANALYSIS TO METHOD CRITERIA BY THE CCMAS

The CCMAS endorses specific methods of analysis which are sent to it by Codex Commodity Committees. It also recommends adoption of certain Codex general methods of analysis which are not linked to a specific quality standard. The CCMAS will take the information that should be supplied by the Codex Committee seeking endorsement of the method and convert it into suitable generalised analytical characteristics. The CCMAS will convert to criteria those Type II and III methods which are sent to it for endorsement.

Information on the following criteria will be required to enable the conversion to be undertaken:
• accuracy
• applicability (matrix, concentration range and preference given to 'general' methods)
• detection limit
• determination limit
• precision; repeatability intra-laboratory (within laboratory), reproducibility inter-laboratory (within laboratory and between laboratories), but generated from collaborative trial data rather than measurement uncertainty considerations
• recovery
• selectivity
• sensitivity
• linearity

These terms are defined in Annex I, as are other terms of importance. Comments on each of the terms, if appropriate, together with suggested acceptable numeric values is also included in the Annex.

The CCMAS will assess the actual analytical performance of the method which has been determined in its validation. This will take account of the appropriate precision characteristics obtained in collaborative trials which may have been carried out on the method together with results from other development work carried out during the course of the method development. The set of criteria that are developed will form part of the report of the CCMAS and will be inserted in the appropriate Codex Commodity Standard.

In addition, the CCMAS will identify numeric values for the criteria for which it would wish such methods to comply, i.e. it will be pro-active as well as reactive.

ACCEPTABILITY OF THE VALUES USED

The definitions required to implement the Instructions are given in the Codex Procedural Manual as supplemented by the comments given in Annex II.

RETROSPECTIVE ACTION

There are a large number of methods already adopted by Codex. These will be left as at present and, if the criteria approach is adopted, then only methods which are still to be elaborated in Codex Standards or endorsed by CCMAS be displayed as criteria, except in cases where a multiplicity of methods are considered for endorsement as Type III methods by CCMAS, e.g. for trace element determinations.

ANNEX I: ANALYTICAL TERMINOLOGY FOR CODEX USE AND INFORMATION OF ACCEPTABLE NUMERIC VALUES

Information on Analytical Terminology for Codex Use is given in the CAC Procedural Manual. Where the terminology is to be amended or expanded, this is indicated below. Information on the terms which may be used in the elaboration of the criteria are given below:

TERMINOLOGY

The following terms are defined in the Procedural Manual:

- Accuracy
- Applicability
- Precision
- Selectivity
- Sensitivity
OTHER TERMS TO BE USED IN THE CRITERIA APPROACH

Detection Limit

The detection limit is conventionally defined as field blank + 3σ, where σ is the standard deviation of the field blank value signal (IUPAC definition).

However, an alternative definition which overcomes most of the objections to the above approach (i.e. the high variability at the limit of measurement can never be overcome) is to base it on the rounded value of the reproducibility relative standard deviation when it goes out of control (where 3 σR = 100%; σR = 33%, rounded to 50% because of the high variability). Such a value is directly related to the analyte and to the measurement system and is not based on the local measurement system.

Determination limit

As for detection limit except that 6σ or 10σ is required rather than 3σ.

However, an alternative definition that corresponds to that proposed for the detection limit is to use σR = 25%. This value does not differ much from that assigned to the detection limit because the upper limit of the detection limit merges indistinguishably into the lower limit of the determination limit.

Recovery

Proportion of the amount of analyte present or added to the test material which is extracted and presented for measurement.

Selectivity

Selectivity is the extent to which a method can determine particular analyte(s) in mixtures or matrices without interferences from other components.

Selectivity is the recommended term in analytical chemistry to express the extent to which a particular method can determine analyte(s) in the presence of interferences from other components. Selectivity can be graded. The use of the term specificity for the same concept is to be discouraged as this often leads to confusion.

Linearity

The ability of a method of analysis, within a certain range, to provide an instrumental response or results proportional to the quality of analyte to be determined in the laboratory sample. This proportionality is expressed by an a priori defined mathematical expression. The linearity limits are the experimental limits of concentrations between which a linear calibration model can be applied with a known confidence level (generally taken to be equal to 1%).

ASSESSMENT OF THE ACCEPTABILITY OF THE PRECISION CHARACTERISTICS OF A METHOD OF ANALYSIS

The calculated repeatability and reproducibility values can be compared with existing methods and a comparison made. If these are satisfactory then the method can used as a validated method. If there is no method with which to compare the precision parameters then theoretical repeatability and reproducibility values can be calculated from the Horwitz equation.

Horwitz trumpet and equation is RSDR = 2C^{-0.1505}

The values derived from this equation are:
<table>
<thead>
<tr>
<th>Concentration ratio</th>
<th>RSDR</th>
<th>Concentration ratio</th>
<th>RSDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (100%)</td>
<td>2</td>
<td>10^{-5}</td>
<td>11</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>2.8</td>
<td>10^{-6} (ppm)</td>
<td>16</td>
</tr>
<tr>
<td>10^{-2} (1%)</td>
<td>4</td>
<td>10^{-7}</td>
<td>23</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>5.6</td>
<td>10^{-8}</td>
<td>32</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>8</td>
<td>10^{-9} (ppb)</td>
<td>45</td>
</tr>
</tbody>
</table>

Horwitz has derived the equation after studying the results from many (~3,000) collaborative trials. Although it represents the average RSDR values and is an approximation of the possible precision that can be achieved, the data points from “acceptable” collaborative trials lie within a range of one half to twice the values derived from the equation. This idealised smoothed curve is found to be independent of the analyte, method, matrix, laboratory and time (state of the art). In general the values taken from this curve are indicative of the precision that is achievable and acceptable of an analytical method by different laboratories. Its use provides a satisfactory and simple means of assessing method precision acceptability.

It may be conveniently demonstrated for any particular method/concentration combination by calculating the HORRAT values, i.e.

The HORRAT value for reproducibility = $\frac{\text{RSDR} \text{ (observed)}}{\text{RSDR} \text{ (predicted)}}$

The HORRAT value for repeatability is calculated similarly using the observed RSDr in the numerator and assuming the predicted RSDr = 0.66 RSDR, i.e.

HORRATr = $\frac{\text{RSDr (observed)}}{\text{RSDr (predicted)}}$

VALUES LESS THAN 120 µG/KG

It should be noted that the equation has been recalculated in the light of recent collaborative trials. This has now been published by Thompson1, who recommends that for values less than 120 µg/kg, the a constant value for the relative standard deviation of 22% is used. However, for many purposes, e.g. mycotoxins and pesticide residues, the original form is still applicable in many cases.

REFERENCE

1. “Recent Trends in Inter-Laboratory Precision at ppb and sub-ppb Concentrations in Relation to Fitness for Purpose Criteria in Proficiency Testing”, M. Thompson, Analyst, 2000, 125, 385-386.
HARMONIZED IUPAC GUIDELINES FOR THE USE OF RECOVERY INFORMATION IN ANALYTICAL MEASUREMENT

(Recommended to the Commission for adoption by reference)

The Harmonized IUPAC Guidelines for the Use of Recovery Information in Analytical Measurement are recommended for adoption for Codex purposes by the 24th Session of the Commission with the exception of the first two sentences of Recommendation 13.

Recommendation 1 of the IUPAC Guidelines should therefore read as follows:

It is of over-riding importance that all data, when reported, should (a) be clearly identified as to whether or not a recovery correction has been applied and (b) if a recovery correction has been applied, the amount of the correction and the method by which it was derived should be included with the report. This will promote direct comparability of data sets. Correction functions should be established on the basis of appropriate statistical considerations, documented, archived and available to the client.

Reference

3 "Quantitative analytical results should be corrected for recovery unless there are specific reasons for not doing so. Reasons for not estimating or using correction factors include the situations where (a) the analytical method is regarded as empirical, (b) a contractual or statutory limit has been established using uncorrected data, or (c) recoveries are known to be close to unity. However,....."
APPENDIX IV

STATUS OF ENDORSEMENT OF METHODS OF ANALYSIS AND SAMPLING

This Appendix consists of three sections:

- **Part I** Methods of Analysis for Commodity Standards
- **Part II** Methods of Sampling for Commodity Standards
- **Part III** General Methods of Analysis

PART I. METHODS OF ANALYSIS FOR COMMODITY STANDARDS

<table>
<thead>
<tr>
<th>Type</th>
<th>Status</th>
<th>Commodity</th>
<th>Provision</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>I</td>
<td>Sugars (white sugar, plantation or mill white sugar, soft white sugar, soft brown sugar, powdered sugar, powdered dextrose, raw cane sugar)</td>
<td>Sulphur dioxide ICUMSA GS 2-3 (1998)</td>
<td>sprayy procedure</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>Sugars (powdered sugar)</td>
<td>Polarisation ICUMSA (1994) GS 2/3-1</td>
<td>Corrected reference to the method II</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>Sugars (fructose)</td>
<td>Conductivity ash ICUMSA GS 2/3-17 (1994)</td>
<td>Conductimetry</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>Sugars (soft sugars, brown sugar)</td>
<td>Invert sugar ICUMSA GS 1/3/7-3 (1994)</td>
<td>Titrimetry (Lane & Eynon)</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>Sugars (plantation or mill white sugar, soft white sugar, soft brown sugar, powdered sugar, powdered dextrose, raw cane sugar)</td>
<td>Invert sugar ICUMSA GS 2-6 (1998)</td>
<td>Titrimetry</td>
</tr>
</tbody>
</table>

Note:
- Corrected reference to the method II: Conductimetry
- Conductimetry procedure
- Sulphur dioxide ICUMSA GS 2-33 (1994)
- General Committee on Sugars

4. **CODEX COMMITTEE ON SUGARS**

PART I. METHODS OF ANALYSIS FOR COMMODITY STANDARDS

- Part III. General Methods of Analysis
- Part II. Methods of Sampling for Commodity Standards
- Part I. Methods of Analysis for Commodity Standards

This Appendix consists of three sections:

STATUSES OF ENDORSEMENT OF METHODS OF ANALYSIS AND SAMPLING

APPENDIX IV

ALINORM 01/23
<table>
<thead>
<tr>
<th>COMMODITY</th>
<th>METHOD</th>
<th>PRINCIPLE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugars</td>
<td>Colour ICUMSA GS 2/3-10 (1998) Photometry</td>
<td>Method was recommended on this provision.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>Honey Sample preparation AOAC 920.180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Honey Moisture content AOAC 969.38B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAFF validated method V21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HPLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>Honey Fructose and Glucose</td>
<td>Harmonised method of the EHC, Apidologie,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special Issue 28, 1997, Chapter 1.7...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>Honey Sucrose content</td>
<td>Harmonised method of the EHC, Apidologie,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special Issue 28, 1997, Chapter 1.7...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>Honey Sugars added: for sugar profile</td>
<td>Carbon isotope ratio mass spectrometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>Honey Water-insoluble solids</td>
<td>MAFF validated method V22, MAFF validated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>method V22, J A Public Analyst 1992, 28(4) 189-193?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>Honey Electrical conductivity</td>
<td>Harmonised method of the EHC, Apidologie,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special Issue 28, 1997, Chapter 1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>Honey Acidity</td>
<td>MAFF validated method V19, J A Public Analyst</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1992, 28(4) 171-175.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey</td>
<td>Both methods cited identical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method Provision

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Principle</th>
<th>Type</th>
<th>Status</th>
<th>Method</th>
<th>Refereces</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.E.</td>
<td>II.</td>
<td>III.</td>
<td>E.</td>
<td>F.</td>
<td>EF.</td>
</tr>
<tr>
<td>Honey</td>
<td>Diastase activity Phadebas – Harmonised method of the EHC</td>
<td>Enzyme</td>
<td>The Commodity Committee is requested to verify that the reagents for the method are available, and a collaborative study has been performed on this method and to provide a method reference.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td>Chloride</td>
<td>Gravimetry</td>
<td>The Commodity Committee is requested to provide a method reference.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I. Codex Committee on Fish and Fishery Products

1. Methods referred to **CCFPP**

II. **Codex Committee on Fish and Fishery Products**

1. **Quick Frozen Fish Sticks (fish fingers) and Fish Portions—Breaded and in Batter (except for certain fish species with soft flesh)**
 - **Proportion of fish fillet and minced fish**
 - **AOAC 996.15**
 - **Gravimetry**
 - **AOAC 996.15** is a modified method of AOAC 971.13 which was endorsed previously.

2. **Salted Fish of the Gadidae Family**
 - **Salt determined as chloride expressed as sodium chloride**
 - **Titrimetry (Mohr)**
 - **WEFTA Method**
 - **WEFTA Method**

Note: Please refer to the Codex Committee on Fish and Fishery Products for further details and references.
<table>
<thead>
<tr>
<th>Commodity</th>
<th>Provision</th>
<th>Method</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milkfat Products</td>
<td>Butter</td>
<td>Copper</td>
<td>102 °C, diethyldithiocarbamate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>107 °C, diethyldithiocarbamate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commodity Committee</td>
<td>Method</td>
<td>Type Status</td>
<td>Note</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Whey, Cheese</td>
<td>Dry matter</td>
<td>IDF Standard 11A:1998</td>
<td>Gravimetry, drying at 88 °C</td>
</tr>
<tr>
<td>Creams, Whipped Creams and Fermented Creams</td>
<td>Dry matter</td>
<td>IDF Standard 4A:1991</td>
<td>Gravimetry, drying at 102 °C</td>
</tr>
<tr>
<td>Creams, Whipped Creams and Fermented Creams</td>
<td>Dry matter</td>
<td>IDF Standard 5B:1986</td>
<td>Gravimetry</td>
</tr>
<tr>
<td>Creams, Whipped Creams and Fermented Creams</td>
<td>Dry matter</td>
<td>IDF Standard 5B:1986</td>
<td>Gravimetry</td>
</tr>
</tbody>
</table>

The Working Group was interested in obtaining information on the difference in results between the previous method and the newly adopted method and to determine whether the previous method is still valid.

2. Methods of analysis proposed for standards under elaboration (advanced to Step 5 or 6)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Method</th>
<th>Type Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whey, Cheese</td>
<td>Dry matter</td>
<td>IDF Standard 29B:1991</td>
<td>Lactose</td>
</tr>
<tr>
<td>Whey, Cheese</td>
<td>Dry matter</td>
<td>IDF Standard 29B:1991</td>
<td>Lactose</td>
</tr>
<tr>
<td>Whey, Cheese</td>
<td>Dry matter</td>
<td>IDF Standard 29B:1991</td>
<td>Lactose</td>
</tr>
</tbody>
</table>

NOTE: The commodity Committee should review to assure that this method is for milk solids in butter or cream.
<table>
<thead>
<tr>
<th>Category</th>
<th>Method Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creams Lowered in Milkfat</td>
<td>Milkfat content determined by gravimetry.</td>
</tr>
<tr>
<td>Fermented Milks</td>
<td>Protein content determined by titrimetry (Kjeldahl).</td>
</tr>
<tr>
<td>Edible Casein Products</td>
<td>Casein content determined by Kjeldahl.</td>
</tr>
<tr>
<td>Fermented Milks (Yoghurt)</td>
<td>Colony count of Streptococcus thermophilus & Lactobacillus delbrueckii</td>
</tr>
</tbody>
</table>

The Commodity Committee should provide information on whether a collaborative study has been performed. If not, they should determine if the method determines total acidity or lactic acid as per the provision.
<table>
<thead>
<tr>
<th>Test Type</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermented Milks (Yoghurt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus thermophilus & Lactobacillus delbrueckii subsp. bulgaricus</td>
<td>>= 10^7 cfu/g</td>
<td></td>
</tr>
<tr>
<td>IDF Standard 20B:1993 Test for identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Commodity Committee should provide information on whether a collaborative study has been performed and the type of the method used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk Products obtained from Fermented Milks Heat-Treated after Fermentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDF Standard 20B:1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unripened Cheese Including Fresh Cheese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDF Standard 4A:1982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 5534:1985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravimetry, drying at 102 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unripened Cheese Including Fresh Cheese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDF Standard 4A:1982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 5534:1985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravimetry, drying at 102 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unripened Cheese Including Fresh Cheese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDF Standard 20B:1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 9869 Part I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Commodity Committee should list subprocedures used for determination.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unripened Milks (Yoghurt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for Identification of Emulsified Milks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDF Standard 146A:1998</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D. CODEX COMMITTEE ON COCOA PRODUCTS AND CHOCOLATE

Cocoa (Cacao) Mass, Cocoa/Chocolate (liquor) and Cocoa Cake

- **Fat content**
 - AOAC 963.15 or IOCCC 14 (1972)
 - Sohxlet extraction

Cocoa powders (cocoas) and dry mixtures of cocoa and sugars

- **Fat content**
 - IOCCC 37 (1990) and IOCCC 14 (1972)
 - Total fat and total sterol content by GLC

The Commodity Committee is requested to provide evidence of collaborative study validation and information regarding the purpose and type of the method.

E. CODEX COORDINATING COMMITTEE FOR ASIA AND CODEX COMMITTEE ON PROCESSED FRUITS AND VEGETABLES

Aqueous Coconut Products

- **Total solids**
 - AOAC 925.23A (IDF-ISO-AOAC method)
 - Gravimetry (AOAC 925.23kA has been repealed)

The Commodity Committee should provide information on validation of the cited method for this application.

- **Total Fats**
 - AOAC 945.48G
 - Gravimetry (Röse-Gotlieb method)

The Commodity Committee should provide information on validation of the cited method for this application.

Note:
- **NE** indicates information on validation of the cited method for this application.
- **I** indicates the Commodity Committee should provide information on validation of the cited method for this application.

Provision Method

- **Current (Provisional)**
 - None

Status

- **Provision Method**
<table>
<thead>
<tr>
<th>Type</th>
<th>Principle</th>
<th>Method</th>
<th>Specification</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>Guidance for Nutrition Labelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>Guidelines for Commodities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>Guidelines for Domestic Provisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>Guidelines for International Provisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>Guidelines for Export Provisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td>Guidelines for Import Provisions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I. CODEX COMMITTEE ON SOUPS AND BROTHS

- Soups and Broths Creatinine
 - AIIBP Method 2/5 (2000) HPLC
 - AOAC 920.115 Colorimetry
 - Based on the recommendation of the Commodity Committee, this method should be deleted.

- Soups and Broths Total Nitrogen
 - AOAC 928.08 Kjeldahl
 - Sodium Chloride
 - AIIBP No. 2/4 Potentiometric titration
 - Specification should be for chloride expressed as sodium chloride.

II. CODEX COMMITTEE ON VEGETABLE PROTEINS

- Wheat Protein Products
 - Vital wheat gluten and devitalized wheat gluten: AOAC 979.09 (Wheat protein in grain N x 5.7) Kjeldahl
 - Soluble wheat protein: AOAC 920.87 (wheat protein in flour N x 5.7) Kjeldahl

III. COMMITTEE ON NUTRITION AND FOODS FOR SPECIAL DIETARY USES

- Commodity
 - Type II Codex General method.
 - Gas liquid chromatography
 - Specification: 40 mg/kg
 - AOAC 996.06

IV. CODEX COMMITTEE ON PROCESSED FRUITS AND VEGETABLES

- Pickles
 - Benzoic acid
 - ISO 5518:1978
 - Spectrophotometry
 - Method II

V. CODEX COMMITTEE ON SOUPS AND BROTHS

- Sodium Chloride
 - AIIBP Method 2/4 Potentiometric titration
 - Specification should be for chloride expressed as sodium chloride.

VI. CODEX COMMITTEE ON VEGETABLE PROTEINS

- Wheat Protein Products
 - Soluble wheat protein: AOAC 920.87 (wheat protein in flour N x 5.7) Kjeldahl
 - Vital wheat gluten and devitalized wheat gluten: AOAC 979.09 (Wheat protein in grain N x 5.7) Kjeldahl

VII. COMMITTEE ON NUTRITION AND FOODS FOR SPECIAL DIETARY USES

- Type II Codex General method.
 - Gas liquid chromatography
 - Specification: 40 mg/kg
 - AOAC 996.06

VIII. CODEX COMMITTEE ON PROCESSED FRUITS AND VEGETABLES

- Pickles
 - Benzoic acid
 - ISO 5518:1978
 - Spectrophotometry
 - Method II
A. Committee on Milk and Milk Products

PART II. METHODS OF SAMPLING FOR COMMODITY STANDARDS

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>ISO 2447:1998</td>
<td>Tin in pickles</td>
</tr>
<tr>
<td>NE</td>
<td>ISO 5522:1981</td>
<td>Sulfur dioxide in pickles</td>
</tr>
<tr>
<td>NE</td>
<td>ISO 5522:1981</td>
<td>Sulfur dioxide in pickles</td>
</tr>
<tr>
<td>IV</td>
<td>ISO 6334-1994</td>
<td>Lead in pickles</td>
</tr>
</tbody>
</table>
Sampling of Cheese in Brine (Amendment at Step 3 of the Accelerated Procedure)

Amend Section 8.1 of the Codex Standard for Cheeses in Brine (CODEX STAN 208-1999) concerning sampling as follows (struck-out text to be deleted):

8.1 Sampling

Special requirements for cheeses in brine: A representative piece of cheese is placed on a cloth or on a sheet of non-absorbent paper for 5 to 10 min. A slice of 2-3 cm is cut off and sent to the laboratory in a sealed insulated box for analysis.

B. COMMITTEE ON VEGETABLE PROTEINS

Draft Standard for Wheat Protein Products

Sampling: ISO 13690:1999 - Endorsed
PART III GENERAL CODEX METHODS

1. Methods for contaminants

All foods Lead, cadmium, copper, iron and zinc

NMKL 139 (1991)
AOAC 999.11
AAS after dry ashing Type II E

All foods Lead, cadmium, copper, iron and zinc

NMKL 161 (1998)
AOAC 991.10
AAS after microwave digestion Type III E

2. Methods for the detection of irradiated foods

Food containing fat detection of irradiated food containing fat

EN 1784:1996 Gas chromatographic analysis of hydrocarbons III E

Food containing fat detection of irradiated food containing fat

EN 1785:1996 Gas chromatographic/spectrophotometric analysis of 2/alkylcyclobutanones III E

Food containing bone detection of irradiated food containing bones

EN 1786:1996 ESR spectroscopy II E

Food containing cellulose detection of irradiated food containing cellulose

EN 1787:2000 ESR spectroscopy II E

Food from which silicate minerals can be isolated detection of irradiated food from which silicate minerals can be isolated

EN 1788:1996 Thermoluminescence II E

3. Methods for contaminants

Iron and zinc VVS after microwave digestion Type III

(8961) NMR, 1961 L-cadmum, copper, lead, iron All foods

Iron and zinc VVS after dry ashing Type II

(1699) NMR, 1961 L-cadmum, copper, lead, iron All foods

PART III GENERAL CODEX METHODS
PROPOSED DRAFT GUIDELINES ON MEASUREMENT UNCERTAINTY
(At Step 3 of the Codex Procedure)\(^5\)

Introduction

It is important that analysts are aware of the uncertainty associated with each analytical result and estimates that uncertainty. The measurement uncertainty may be derived by a number of procedures. Food analysis laboratories are required, for Codex purposes, to be in control, use collaboratively tested methods when available, and verify their application before taking them into routine use. Such laboratories therefore have available to them a range of analytical data which can be used to estimate their measurement uncertainty.

Terminology

The accepted definition for Measurement Uncertainty\(^1\) is:

"Parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand."

NOTES:

1. The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-width of an interval having a stated level of confidence.

2. Uncertainty of measurement comprises, in general, many components. Some of these components may be evaluated from the statistical distribution of results of a series of measurements and can be characterised by experimental standard deviations. The other components, which can also be characterised by standard deviations, are evaluated from assumed probability distributions based on experience or other information.

3. It is understood that the result of a measurement is the best estimate of the value of a measurand, and that all components of uncertainty, including those arising from systematic effects, such as components associated with corrections and reference standards, contribute to the dispersion.

[It is recognised that the term "measurement uncertainty" is the most widely used term by International Organisations and Accreditation Agencies. However The Codex Committee on Methods of Analysis and Sampling has commented on a number of occasions that the term "Measurement Uncertainty" has some negative associations in a legal context and so has noted that an alternative, equivalent, term, "measurement reliability", may be used.]

Recommendations

The following recommendations are made to governments:

1. For Codex purposes the term “measurement uncertainty” [or "measurement reliability"] shall be used.

2. The measurement uncertainty [or "measurement reliability"] associated with all analytical results is to be estimated and must, on request, be made available to the user (customer) of the results.

3. The measurement uncertainty [or "measurement reliability"] of an analytical result may be estimated in a number of procedures, notably those described by ISO\(^1\) and EURACHEM\(^2\). These documents recommend procedures based on a component-by-component approach, method validation data, internal

\(^{5}\) Subject to approval as new work by the Commission.
quality control data and proficiency test data. The need to undertake an estimation of the measurement uncertainty [or "measurement reliability"] using the ISO component-by-component approach is not necessary if the other forms of data are available and used to estimate the uncertainty [or reliability]. In many cases the overall uncertainty may be determined by an inter-laboratory (collaborative) study by a number of laboratories and a number of matrices by the IUPAC/ISO/AOAC INTERNATIONAL3 or by the ISO 5725 Protocols4.

References

