Note: This report includes Codex Circular Letter CL 2011/09-PR
To: - Codex Contact Points
 - Interested International Organizations

From: Secretariat,
Codex Alimentarius Commission,
Joint FAO/WHO Food Standards Programme,
E-mail: codex@fao.org,
Fax: +39 06 57054593
Viale delle Terme di Caracalla,
00153 Rome, Italy

The report of the 43rd Session of the Codex Committee on Pesticide Residues will be considered by the 34th Session of the Codex Alimentarius Commission (Geneva, Switzerland, 4 – 9 July 2011).

PART A: MATTERS FOR ADOPTION BY THE 34TH SESSION OF THE CODEX ALIMENTARIUS COMMISSION:

1. Draft Maximum Residue Limits for Pesticides at Step 8 (paras. 31 - 81 and Appendix II);

2. Proposed Draft Maximum Residue Limits for Pesticides at Step 5/8 (with omission of Steps 6/7) (paras. 31 - 81 and Appendix III); and

Governments and international organizations wishing to submit comments on the above draft and proposed draft MRLs, should do so in writing, in conformity with the Procedures for the Elaboration of Codex Standards and Related Texts (Part 3 – Uniform Procedure for the Elaboration of Codex Standards and Related Texts, Procedural Manual of the Codex Alimentarius Commission), preferably by email, to the above address before 15 June 2011.

4. Proposed Draft Maximum Residue Limits for Pesticides at Step 5 (paras. 31 – 81 and Appendix IV); and

5. Proposed Draft Revision of the Codex Classification of Foods and Animal Feeds at Step 5 - Assorted Tropical and Sub-tropical Fruits - Edible Peel and Assorted Tropical and Sub-tropical Fruits - Inedible Peel (para. 100 and Appendix VIII).

Governments and international organizations wishing to submit comments on the above matters, should do so in writing, in conformity with the Procedures for the Elaboration of Codex Standards and Related Texts (Part 3 – Uniform Procedure for the Elaboration of Codex Standards and Related Texts, Procedural Manual of the Codex Alimentarius Commission), preferably by email, to the above address before 15 June 2011.

PART B: OTHER MATTERS FOR ACTION BY THE 34TH SESSION OF THE CODEX ALIMENTARIUS COMMISSION

6. Codex Maximum Residue Limits for Pesticides recommended for Revocation (paras. 31 - 81 and Appendix V); and

Governments and international organizations wishing to submit comments on the proposed revocations on Codex MRLs and other related texts should do so in writing, preferably by email, to the above address before 15 June 2011.
PART C: REQUEST FOR COMMENTS AND INFORMATION ON:

Governments and international organizations wishing to submit comments on the above matter, should do so in writing, in conformity with the Procedures for the Elaboration of Codex Standards and Related Texts (Part 3 – Uniform Procedure for the Elaboration of Codex Standards and Related Texts, Procedural Manual of the Codex Alimentarius Commission), preferably by email, to the above address before 31 August 2011.

9. Matters related to the 2011 JMPR including Concern Forms (paras. 31 - 81)

Those countries and observers specified under individual compounds concerning matters related to the JMPR 2011 (e.g. GAP, residue evaluation, intake assessment, etc.) on specific pesticide/commodity(ies) to be considered by JMPR 2011, including submission of concern forms together with necessary data, are invited to send information or data to: 1) Ms Yong Zhen YANG, Agricultural Officer and JMPR Secretary, Viale delle Terme di Caracalla, Rome 00153, Italy, Fax:+39 06 57053224, E-mail: YoungZhen.Yang@fao.org; 2) Dr Philippe VERGER, WHO JMPR Secretary, Appia Avenue 20, 1211 Geneva 27, Switzerland, Fax: +41 22 791 4807, E-mail: vergerp@who.int; 3) Dr Xiongwu QIAO, Shanxi Academy of Agricultural Sciences, 2 Changfeng Street, Taiyuan, Shanxi Province, 030006, P.R. China, Fax: +86 351 7126215, E-mail: ccpr_qiao@agri.gov.cn, ccpr@agri.gov.cn; and 4) Secretariat, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Viale delle Terme di Caracalla, 00153 Rome, Italy, Fax: +39 06 57054593; E-mail: codex@fao.org) before 15 June 2011.

Those countries and observers specified under individual compounds in REP11/PR, Appendix XI concerning matters related to the future JMPR meetings (GAPs, residue evaluation, intake assessment, etc.) on specific pesticide/commodity(ies) to be considered at subsequent years by JMPR, are invited to send information or data one year before JMPR considers these compounds at the addresses indicated above.
SUMMARY AND CONCLUSIONS

The summary and conclusions of the 43rd Session of the Codex Committee on Pesticide Residues are as follows:

MATTERS FOR ADOPTION BY THE 34TH SESSION OF THE COMMISSION

The Committee agreed to forward:

Draft and proposed draft MRLs for pesticides and other related texts

- Draft and proposed draft MRLs for pesticide at Steps 8 and 5/8 with omission of Steps 6/7 (paras. 31 - 81 and Appendix II);
- Proposed draft revision to the Guidelines on the Estimation of Uncertainty of Results for the Determination of Pesticide Residues (Annex to CAC/GL 59-2006) at Step 5/8 with omission of Steps 6/7 (para. 121 and Appendix X);
- Proposed Draft MRLs for pesticides at Step 5 (paras. 31 - 81 and Appendix IV);
- Proposed Draft Revision of the Codex Classification of Foods and Animal Feeds: Assorted Tropical and Sub-tropical Fruits - Edible peel and Assorted Tropical and Sub-tropical Fruits - Inedible Peel at Step 5 (para. 100 and Appendix VIII);

Revocation of MRLs for pesticides and other related texts

- Revocation of Codex MRLs for pesticides (paras 31 - 81 and Appendix V); and

Approval of new work

- Priority List for the Establishment of MRLs for Pesticides (para. 140 and Appendix XI);

MATTERS OF INTEREST TO THE COMMISSION

The Committee:

- agreed that the revision of the Risk Analysis Principles applied by the Codex Committee on Pesticide Residues in relation to their consistency with the Working Principles for Risk Analysis and their applicability to animal feed should be considered in the framework of the ongoing revision of the Risk Analysis Principles (paras. 8 and 137);
- agreed that further discussion on the revision of the definition of “hazard” was no longer necessary (para. 9);
- noted a number of matters arising from the 2010 JMPR including replies to specific concerns raised by the last session of the Committee (paras. 11 - 30);
- agreed to retain several draft and proposed draft MRLs for pesticides at Steps 7 and 4 awaiting for the JMPR evaluation (paras. 31 - 81);
- agreed that the 2011 JMPR could elaborate MRLs proposals with and without making use of the concept of proportionality so that the result could be compared and discussed at the next session of the Committee (para. 86);
- agreed to hold the three commodity groups on tree nuts, herbs and spices at Step 7 pending finalization of the revision of the Classification of Foods and Animal Feeds (para. 91);
- agreed to return the entry for “Edible Flowers” under the commodity group “Herbs” to Step 6 for comments and consideration at the next session of the Committee (para. 92 and Appendix VII);
- agreed to proceed with the elaboration of new groups for several types of vegetables for comments and consideration at its next session (para. 101);
- agreed to hold the draft Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides for Commodity Groups (including Table 1 on fruit commodities) at Step 7 pending the finalization of the revision of the Classification of Foods and Feeds as per the fruit commodity groups (para. 111 and Appendix IX);
- agreed that the IAEA would continue to support the maintenance of the web-based method database with a direct link to the Codex website (para. 123);
• agreed that Member Countries should monitor the presence of lindane in food commodities and to provide data to JMPR within a period of 2 years for JMPR to review the monitoring data in 2015 prior to decision of conversion of MRLs to EMRLs (para. 150);

• agreed that CCPR could not solve the problem of resource issues faced by JMPR in the provision of scientific advice to CCPR and that this issue should be raised by Member Countries at the highest level including the next session of the Codex Alimentarius Commission (paras. 154-155);

• agreed that, in relation to the capacity of JMPR to provide scientific advice to CCPR, the Working Group on Priorities should consider ranking the compounds eligible for Periodic Review on the basis of health risks to assist in the establishment of the Priority List at the next session of the Committee (para. 156).
TABLE OF CONTENTS

INTRODUCTION .. 1

OPENING OF THE SESSION .. 2

DIVISION OF COMPETENCE .. 3

ADOPTION OF THE AGENDA (AGENDA ITEM 1) .. 4 - 6

APPOINTMENT OF RAPPORTEURS (AGENDA ITEM 2) .. 7

MATTERSREFERRED TO THE COMMITTEE BY THE CODEX ALIMENTARIUS COMMISSION AND CODEX COMMITTEES (AGENDA ITEM 3) .. 8 - 10

REPORT ON GENERAL CONSIDERATIONS BY THE 2010 JOINT FAO/WHO MEETINGS ON PESTICIDE RESIDUES (AGENDA ITEM 4A) .. 11 - 28

REPORT ON 2010 JMPR RESPONSES TO SPECIFIC CONCERNS RAISED BY CPPR (AGENDA ITEM 4B) .. 29 - 30

DRAFT AND PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES IN FOODS AND FEEDS AT STEPS 7 AND 4 (AGENDA ITEM 5) .. 31 - 81

GENERAL REMARKS .. 31

Endosulfan (032) .. 32

Paraquat (057) .. 33

Chlorothalonil (081) .. 34 - 37

Dinocap (087) .. 38 - 40

Chlorpyrifos-Methyl (090) .. 41 - 43

Cypermethrins (including alpha- and zeta- cypermethrin) (118) ... 44

Triazophos (143) .. 45 - 46

Cadusafos (174) .. 47

Bifenthrin (178) .. 48 - 53

Fenpyroximate (193) .. 54 - 55

Haloxyfop (194) .. 56

Fenbuconazole (197) .. 57

Fludioxonil (211) .. 58

Indoxacarb (216) .. 59

Novaluron (217) .. 60 - 61

Bifentarol (219) .. 62

Boscalid (221) .. 63 - 65

Difenoconazole (224) .. 66 - 67

Chlorantraniliprole (230) .. 68 - 69
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX I</td>
<td>LIST OF PARTICIPANTS</td>
<td>20</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td>DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES (AT STEP 8)</td>
<td>44</td>
</tr>
<tr>
<td>APPENDIX III</td>
<td>PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES (AT STEP 5/8)</td>
<td>45</td>
</tr>
<tr>
<td>APPENDIX IV</td>
<td>PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES (AT STEP 5)</td>
<td>54</td>
</tr>
<tr>
<td>APPENDIX V</td>
<td>CODEX MAXIMUM RESIDUE LIMITS FOR PESTICIDES RECOMMENDED FOR REVOCATION</td>
<td>55</td>
</tr>
<tr>
<td>APPENDIX VI</td>
<td>DRAFT REVISION OF THE CODEX CLASSIFICATION OF FOODS AND ANIMAL FEEDS: TREE NUTS, HERBS AND SPICES (AT STEP 7)</td>
<td>60</td>
</tr>
<tr>
<td>APPENDIX VII</td>
<td>DRAFT REVISION OF THE CODEX CLASSIFICATION OF FOODS AND ANIMAL FEEDS: EDIBLE FLOWERS (AT STEP 6)</td>
<td>75</td>
</tr>
<tr>
<td>APPENDIX VIII</td>
<td>PROPOSED DRAFT REVISION OF THE CODEX CLASSIFICATION OF FOODS AND ANIMAL FEEDS: ASSORTED TROPICAL AND SUB-TROPICAL FRUITS: EDIBLE PEEL AND ASSORTED TROPICAL AND SUB-TROPICAL FRUITS: INEDIBLE PEEL (AT STEP 5)</td>
<td>76</td>
</tr>
<tr>
<td>APPENDIX IX</td>
<td>DRAFT PRINCIPLES AND GUIDANCE FOR THE SELECTION OF REPRESENTATIVE COMMODITIES FOR THE EXTRAPOLATION OF MAXIMUM RESIDUE LIMITS FOR PESTICIDES FOR COMMODITY GROUPS (INCLUDING TABLE 1 ON FRUIT TYPES) (AT STEP 7)</td>
<td>91</td>
</tr>
<tr>
<td>APPENDIX X</td>
<td>PROPOSED DRAFT REVISION OF THE GUIDELINES ON THE ESTIMATION OF UNCERTAINTY OF RESULTS FOR THE DETERMINATION OF PESTICIDE RESIDUES (ANNEX TO CAC/GL 59-2006)</td>
<td>100</td>
</tr>
<tr>
<td>APPENDIX XI</td>
<td>PRIORITY LIST OF CHEMICALS SCHEDULED FOR EVALUATION AND RE-EVALUATION BY JMPR</td>
<td>106</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

(Used in this Report)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADI</td>
<td>Acceptable Daily Intake</td>
</tr>
<tr>
<td>ARfD</td>
<td>Acute Reference Dose</td>
</tr>
<tr>
<td>CAC</td>
<td>Codex Alimentarius Commission</td>
</tr>
<tr>
<td>CCFA</td>
<td>Codex Committee on Food Additives</td>
</tr>
<tr>
<td>CCGP</td>
<td>Codex Committee on General Principles</td>
</tr>
<tr>
<td>CCMAS</td>
<td>Codex Committee on Methods of Analysis and Sampling</td>
</tr>
<tr>
<td>CCNFSDU</td>
<td>Codex Committee on Nutrition and Foods for Special Dietary Uses</td>
</tr>
<tr>
<td>CCPR</td>
<td>Codex Committee on Pesticide Residues</td>
</tr>
<tr>
<td>CCRVDF</td>
<td>Codex Committee on Residues of Veterinary Drugs in Foods</td>
</tr>
<tr>
<td>CLI</td>
<td>CropLife International</td>
</tr>
<tr>
<td>CXL</td>
<td>Codex Maximum Residue Limit for Pesticide</td>
</tr>
<tr>
<td>DIE</td>
<td>Daily Intake Estimate</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EMRL</td>
<td>Extraneous Maximum Residue Limit</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EWG</td>
<td>Electronic Working Group</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organization of the United Nations</td>
</tr>
<tr>
<td>GAP</td>
<td>Good Agricultural Practice in the Use of Pesticides</td>
</tr>
<tr>
<td>GEMS/Food</td>
<td>Global Environment Monitoring System - Food Contamination Monitoring and Assessment Programme</td>
</tr>
<tr>
<td>HR</td>
<td>Highest residue in edible portion of a commodity found in trials used to estimate a maximum residue level in the commodity</td>
</tr>
<tr>
<td>IESTI</td>
<td>International Estimated of Short-Term Intake</td>
</tr>
<tr>
<td>JECFA</td>
<td>Joint FAO/WHO Expert Committee on Food Additives</td>
</tr>
<tr>
<td>JMPR</td>
<td>Joint FAO/WHO Meetings on Pesticide Residues</td>
</tr>
<tr>
<td>MRL</td>
<td>Maximum Residue Limit</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Co-operation and Development</td>
</tr>
<tr>
<td>SPS Agreement</td>
<td>Agreement on the Application of Sanitary and Phytosanitary Measures</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
</tbody>
</table>
INTRODUCTION

1. The Codex Committee on Pesticide Residues (CCPR) held its 43rd Session in Beijing, China, from 4 to 9 April 2011 at the kind invitation of the Government of the People’s Republic China. Professor Xiongwu Qiao, Vice-Director of the Shanxi Academy of Agricultural Sciences chaired the session, assisted by Dr Weili Shan, Director of Residue Division of Institute for Control of Agrochemicals, Ministry of Agriculture. The Session was attended by 189 delegates representing 58 Member Countries, 1 Member Organization and Observers from 7 international organizations. The list of participants is attached as Appendix I.

OPENING OF THE SESSION

2. The Session was opened by Mr Chen Xiaohua, Vice-Minister of Agriculture of the People’s Republic of China. Mr Xiaohua extended his sincere appreciation to FAO and WHO for their support and assistance and welcomed all delegates. He indicated that China, as host country of Committee on Pesticide Residues, will continuously enhance cooperation with other countries and make its due contribution to advancing agricultural development in the world.

Division of Competence

3. The Committee noted the division of competence between the European Union (EU) and its Member States, according to paragraph 5, Rule II of the Procedure of the Codex Alimentarius Commission, as presented in CRD 2.

ADOPTION OF THE AGENDA (Agenda Item 1)

4. The Committee agreed to consider Agenda Item 1 Revision of the Risk Analysis Principles Applied by the Codex Committee on Pesticide Residues after Agenda Item 5 Draft and Proposed Draft Maximum Residue Limits for Pesticides in Foods and Feeds and adopted the Provisional Agenda as the Agenda for the Session.

In-session working groups

5. The Committee agreed to establish an in-session Working Group on Methods of Analysis, chaired by Australia to consider: 1) the revision of the Guidelines on the Estimation of Uncertainty of Results for the Determination of Pesticide Residues (Agenda Item 10a); 2) the recommendations of the Discussion Paper on how to address Methods of Analysis for Pesticide Residues by the CCPR (Agenda Item 10b); and 3) the opportunity to convene an expert consultation to provide scientific guidance on the development of performance characteristics for multi-residue analysis and proposed terms of reference for the consultation as requested from the Committee on Residues of Veterinary Drugs in Foods (Agenda Item 3).

6. The Committee also agreed to establish an in-session Working Group on Priorities, chaired by Australia, to consider the revision of the Priority List (Agenda Item 12a) as well as the recommendations on the status of Codex MRLs for Lindane (Agenda Item 12b).

APPOINTMENT OF RAPPORTEURS (Agenda Item 2)

7. The Committee appointed Mr David Lunn (New Zealand) and Mr Kevin Bodnaruk (Australia) to act as rapporteurs.

MATTERS REFERRED TO THE COMMITTEE BY THE CODEX ALIMENTARIUS COMMISSION AND CODEX COMMITTEES (Agenda Item 3)

8. The Committee noted matters for information and agreed that the revision of the Risk Analysis Principles applied by the Codex Committee on Pesticide Residues in relation to their consistency with the Working Principles for Risk Analysis and their applicability to animal feed should be considered in the framework of the ongoing revision of the Risk Analysis Principles (Agenda Item 11).

9. As regards the revision of the definition of “hazard” in the Procedural Manual, the Committee noted that this proposal was related to nutrient risk assessment and that the 32nd Session of the Committee on Nutrition and Foods for Special Dietary Uses (CCNFSDU) had already decided not to amend the definition. The Committee agreed that further discussion on this matter was no longer necessary.

1. CRD 2 (EU Division of Competence).
2. CXPR/11/421.
10. In reply to the request from the Committee on Residues of Veterinary Drugs in Foods (CCRVDF), the in-session Working Group on Methods of Analysis had considered the paper on the development of performance characteristics for multi-residue analysis methods for veterinary drugs in foods and the Committee agreed with the recommendation of the working group that a clearly described request and more background information were necessary for making any specific recommendations for discussion at future sessions.

REPORT ON ITEMS OF GENERAL CONSIDERATION BY THE 2010 JOINT FAO/WHO MEETINGS ON PESTICIDE RESIDUES (JMPR) (Agenda Item 4a)

2.1 Consideration regarding JMPR capacity and resources

11. The FAO JMPR Secretariat gave a brief introduction about the issue of JMPR capacity and resources, and suggested that information in Chapter 2.1 could be helpful when discussing this issue under Agenda item 13(a). The WHO JMPR Secretariat informed delegates that in WHO, the provision of scientific advice is not supported by the core budget but by voluntary contributions from member states. He further informed the Committee that WHO does not have the secured resources to conduct the JMPR related activities in 2012.

2.2 Need for appropriate consumption data

12. The Committee was advised that the JMPR assessment of the dietary exposure is a crucial step in the risk assessment process for pesticides and it can be at the origin of concerns between member states and the Codex Alimentarius. During its last meeting, the JMPR recommended that WHO collect new data on large portions to improve the ability for JMPR assessment to cover a wide range of national consumption patterns. The World Health Organization, with the help of its network of Collaborating Centres, has launched a call to collect these data. WHO urged the delegates to follow up on this issue within their respective countries and to raise the attention of the competent authorities to answer this call.

13. The Committee noted that new data would be provided by Thailand and EU member states. The Delegation of Australia proposed that a call for data be distributed to ensure that all competent authorities will be informed.

2.3 Update about the GEMS/Food programme

14. The Committee was informed that the GEMS/Food programme aims to collect data on food consumption and on the occurrence of chemicals in food. A new web based application was developed this year with the support of the US Food and Drug Administration. This system will allow member states to upload their data directly on the WHO website and will also allow the competent authorities to access the WHO database.

2.4 Information on the use of pesticides required for the estimation of residue levels in minor crops

15. The Committee was informed that the 2010 JMPR reviewed the residue data on minor crops conducted in a number of developing countries and submitted by the Pesticides Initiative Programme (PIP). However, no approved label or an official letter including the authorized GAP was provided from the responsible government agency. The JMPR evaluated the submitted residue data, and conditionally made recommendations for maximum residue levels for some minor crops, leaving the final decision on acceptance to the CCPR. The JMPR emphasized that the official use patterns are one of the essential requirements and that data submitters should comply with the requirements as specified in the FAO Manual.

16. The Delegation of Kenya expressed their appreciation to the JMPR for its consideration of the need for Codex MRLs to be established for minor crops and the diverse GAPs in developing countries. The Delegation of Kenya committed to provide the necessary information on the officially recognized /authorized GAPs, including labels by April, 2011 and suggested advancing the proposed maximum residue limits.

2.5 Principles and guidance on the selection of representative crops for the extrapolation of MRLs

17. As requested by the 42nd Session of the CCPR, the 2010 JMPR reviewed the text of the proposed principles and guidance on the selection of representative crops for the extrapolation of MRLs to commodity groups and provided further guidance on how it estimates group maximum residue levels. The JMPR commented that the guidance will be particularly useful during the planning stages of supervised trials to ensure that the residue data will be sufficient to support group MRLs.

18. The Delegation of the EU supported the initiative to establish clear rules for extrapolations, but was not in favour of extrapolating the highest MRL for the subgroup with the most critical residue situation to the whole crop group.

4 Section 2 of the 2010 JMPR Report. Comments from Kenya (CRD 5); EU (CRD 15); and China (CRD 19).
2.6 Statistical calculation of MRLs

19. The Committee noted that the March 2010 version (30/03/2010) of the OECD MRL Calculator was provided to JMPR for use at its 2010 Meeting (in conjunction with the current NAFTA Calculator). Further comments were provided based on JMPR experiences in using the calculator. The Meeting concluded that the tested version of the OECD Calculator is a helpful tool to supplement expert judgement and to promote consistency in the elaboration of MRLs.

20. The Delegation of the EU shared the view of the JMPR that the OECD MRL calculator is a valuable tool supporting the experts in deriving MRL proposals. However, expert judgment is also important, in particular in cases where the number of trials data is limited and the residue trials do not fully reflect the critical GAPs.

21. The Delegation of Australia informed the Committee that the OECD MRL Calculator has been approved and published by OECD.

22. The Committee agreed to recommend JMPR to use the OECD calculator as a tool to support expert judgment when proposing MRLs.

2.7 Appropriate value from replicate samples from a supervised field trial for use in statistical calculation of the MRL estimate

23. The Committee noted that the JMPR had reconsidered its practice of using the highest value from replicate samples of a given field trial and from 2011, would use the average of replicate field trial residue values in establishing the data set for statistical calculation of maximum residue level estimates. However, JMPR also noted that the interpretation of the estimate must take into account individual replicate values contributing to the data set that exceed the estimate. The Committee supported this new approach.

2.8 The application of proportionality in selecting data for MRL estimation

24. In order to increase the size of the residue database supporting an MRL, the possibility of use a proportionality approach when selecting data for MRL estimation was identified by the JMPR based on the analysis of 10 years residue trial data. The Meeting decided it would only consider the method of proportionality under certain conditions, as outlined in Chapter 2.8 of the 2010 Report. Further discussion was scheduled under Agenda Item 6.

2.9 Further consideration of expert judgement in evaluating residue trials

25. The Committee noted that a new approach was discussed by the JMPR for the prediction of pesticide residue concentrations in food and feed commodities from foliar-treated crops based on zero day data. The approach was used as an adjunct to other considerations and statistical calculations in estimating maximum residue levels.

2.10 Use of the OECD Feed Table

26. The Committee was informed that some further modifications of the OECD feed table has been made by JMPR to avoid situations where commodities with unique codes might be treated as separate feed items. The 2010 JMPR replaced the Codex Commodity Codes allocated to the OECD feed items by the more general Codex Group Codes and corrected some of the Codex Group Codes allocated by the 2009 JMPR. It was noted that these changes did not impact on the existing Codex Classification System, nor on the OECD feed table.

2.11 Training of scientists from developing countries for the establishment of pesticide maximum residue levels in foods and assessment of the risk from dietary intake of residues

27. The Committee was informed that the FAO JMPR Panel developed a Training Manual to meet the need of developing countries for training in the evaluation of pesticide residues. The Training Manual is intended for use at training workshops and also for self-guided study. The Training Manual was used in the international training course held by FAO in November 2010. More regional workshops have been scheduled in 2011 based on the successful experience of the first international training.

28. Many countries, in particular developing countries, expressed their appreciation to FAO for its effort in developing the Training Manual and conducting training courses fostering a better understanding of establishment of pesticide maximum residue levels in foods and assessment of the risk from dietary intake of residues. The Committee encouraged FAO and WHO to continue to provide such technical support to member countries.
REPORT ON 2010 JMPR RESPONSES TO SPECIFIC CONCERNS RAISED BY CCPR (Agenda Item 4b)

29. The Committee noted that specific concerns raised by CCPR at its last meeting will be considered when discussing the relevant chemicals under Agenda Item 5.

30. The Committee expressed its appreciation to JMPR for their work and pointed out that the work of JMPR was essential and important for the CCPR.

DRAFT AND PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES IN FOODS AND FEEDS AT STEPS 7 AND 4 (Agenda Item 5)

GENERAL

31. The Delegation of the EU, supported by Norway, informed the Committee that they had concerns regarding the extrapolations used by the 2010 JMPR to propose crop group MRLs. The Delegation also informed the Committee that an updated version of its extrapolation guidance was published on the European Commission website. While supporting the use of extrapolation, the EU considered that in some cases the key elements for extrapolation (existing, comparable GAP and similar residue behaviour) did not exist. In such cases the EU considered that individual commodity MRLs were preferable to setting group MRLs to avoid setting MRLs higher than necessary. The Committee agreed to consider these concerns when discussing the relevant compounds.

ENDOSULFAN (32)

32. The Committee decided to advance the proposed draft MRL for tea, green, black (black, fermented and dried) for adoption at Step 5/8 and to recommend subsequent revocation of the associated CXL.

PARAQUAT (57)

33. The Committee noted that JMPR had responded to the concern form submitted by the EU in 2010 on their acute intake concern for dried beans and potatoes, and that JMPR had confirmed that the short term dietary intake of paraquat from its uses on pulses and potato was unlikely to present a public health concern.

CHLOROTHALONIL (81)

34. The Committee decided to retain the CXLs for banana; cherries; common bean (pods and/or immature seeds); cranberry; onion, bulb; peach; peppers, chilli; dried; peppers, sweet (including pimento or pimiento) and tomato for four years under the periodic review, noting the manufacturers would submit supporting data for these commodities.

35. The Committee noted the reservations of the Delegations of the EU and Norway on the proposed draft MRLs for brussels sprouts due to a lower MRL of 5 mg/kg derived from use of the OECD calculator, for cucumber due to an insufficient data set, for gherkin; summer squash and root and tuber vegetables due to the extrapolation used by JMPR.

36. The Committee also noted the request from the EU for JMPR to conduct a short term dietary intake risk assessment for chlorothalonil in leeks.

37. The Committee agreed to advance all the proposed draft MRLs to Step 5/8 and to recommend revocation of the CXLs for barley; barley straw and fodder, dry; beans (dry); broccoli; brussels sprouts; cabbages head; carrot; cauliflower; celery; celery leaves; cucumber; currants, black, red, white; grapes; melon, except watermelon; parsley; peanut; potato; squash, summer; sugar beet; sweet corn (corn on the cob); wheat; wheat straw and fodder, dry and winter squash as recommended by 2010 JMPR, noting that the manufacturer will submit new data for carrots.

DINOCAP (87)

38. The Delegation of Australia informed the Committee that dinocap and meptyldinocap were closely related compounds and that the CXL for dinocap needed to be revised to accommodate residues from the use of meptyldinocap, as recommended by the 2010 JMPR.

5 Section 3 of the 2010 JMPR Report.
6 CX/PR 11/43/3; CX/PR 11/43/3-Corrigendum; CX/PR 11/43/3-Add.1 (comments from Australia, Brazil, Canada, Iran and Thailand). Additional comments from Kenya (CRD 5); EU (CRDs 14, 16, and 17); and China (CRD 19).
39. The Committee agreed to recommend the revision of the existing CXL for fruiting vegetables; cucurbits, to exclude cucumber; squash, summer and melons, except watermelons, and to recommend higher proposed draft MRLs at Step 5/8 for cucumber; melon, except watermelon and squash, summer to support uses of meptyldinocap (244), following the evaluation for meptyldinocap by the JMPR.

40. The Committee also agreed that the source of the residue should be indicated for each proposed draft MRL.

CHLORPYRIFOS-METHYL (90)

41. The Committee decided to advance the draft MRLs for edible offal (mammalian); eggs; grape pomace, dry; meat (from mammals other than marine mammals); milk fats; milks; poultry meat and poultry, edible offal of for adoption to Step 8 and to delete the CXLs for cattle fat; cattle meat; cattle, edible offal of; chicken fat; chicken meat and chicken, edible offal of as they would be replaced by commodity group MRLs.

42. The Committee also agreed to retain the draft MRLs for barley; oats; rice; wheat; wheat bran, unprocessed and wheat, germ at Step 7 awaiting the 2012 JMPR review of alternative GAP for cereal grains.

43. The Committee noted that the Delegation of Egypt would provide data for JMPR evaluation to support a higher MRL of 0.1 mg/kg for potato.

CYPERMETHRINS (including alpha- and zeta- cypermethrin) (118)

44. The Committee was informed by the Delegation of Thailand that data supporting the draft MRL for asparagus had been already submitted to JMPR.

TRIAZOPHOS (143)

45. The Committee was informed by the JMPR Secretariat that a short-term intake concern for rice, husked could not be excluded based on the 2010 JMPR evaluation and that there were no data available to support a review of an alternative GAP. The Delegation of China informed the Committee that processing data for rice, husked would be submitted next year for the 2013 JMPR evaluation. The Committee agreed to hold the proposed draft MRL of 2 mg/kg for rice, husked at Step 4 due to short term intake concern.

46. The Committee decided to advance the proposed draft MRL for soya bean (immature seeds) to Step 5/8 and the draft MRL for soya bean (young pod) with a new commodity code VP 0546 to Step 8, as these commodities were not considered animal feeds and therefore not affected by the lack of animal metabolism studies and no residue definition for animal commodities.

CADUSAfos (174)

47. The Committee decided to advance the proposed draft MRL for banana to Step 5/8 with the subsequent revocation of the associated CXL, and to recommend the withdrawal of the CXL for potato as recommended by the 2010 JMPR.

BIFENTHRIN (178)

48. The Committee decided to advance the proposed draft MRLs for banana; blackberries; brassica (cole or cabbage) vegetables, head cabbage, flowerhead brassicas; citrus fruits; cotton seed; dewberries (including boysenberry and loganberry); edible offal (mammalian); eggplant; hops, dry; maize; maize fodder (dry); meat (from mammals other than marine mammals); milk fats; milks; mustard greens; pea hay or pea fodder (dry); peppers; peppers chilli, dried; pulses; radish leaves (including radish tops); rape seed; rape seed oil, edible; raspberries, red, black; root and tuber vegetables; tea, green, black (black, fermented and dried); tomato; tree nuts; wheat; wheat bran, unprocessed and wheat germ to Step 5/8.

49. The Committee noted that the Delegations of the EU and Norway expressed their reservation on the advancement of the proposed draft MRL for brassica (cole or cabbage) vegetables, head cabbage, flowerhead brassicas and pulses due to the data extrapolation used by JMPR and for hops, dry; tea, green, black (black, fermented and dried) due to insufficient number of trials.

50. The Committee also noted that the manufacturer would submit supporting data for barley, barley straw and fodder, dry, and decided to retain these CXLs under 4 years Periodic Review Procedure.

51. The Committee decided to recommend the revocation of the CXLs for cattle fat; cattle kidney; cattle liver; cattle meat; cattle milk; chicken eggs; chicken fat; chicken meat; chicken, edible offal of; grapefruit; hops, dry; lemon; maize; orange, sweet; pear; potato; wheat flour; wheat bran, unprocessed; wheat straw and fodder, dry; wheat wholemeal, as some of them were being replaced by group MRLs.
52. The Committee decided to advance the proposed draft MRLs for mango, okra and papaya to Step 5, awaiting the authorized GAP to be submitted by Kenya.

53. Due to short term intake concern identified by JMPR, the Committee decided to retain the proposed draft MRL for strawberry at Step 4, awaiting data from the manufacturer to support a review of alternative GAP by JMPR in 2014.

FENPYROXIMATE (193)

54. The Committee decided to advance the proposed draft MRLs for citrus fruit; cucumber; dried grapes (=currants, raisins and sultanas); fruiting vegetables other than cucurbits, except sweet corn and mushrooms; grapes; melons, except watermelon; peppers chilli, dried; pome fruit and tree nuts to Step 5/8.

55. The Committee decided to recommend the revocation of the CXLs for apple and oranges, sweet and sour (including orange-like hybrids): several cultivars, as these were being replaced by commodity group MRLs.

HALOXYFOP (194)

56. The Committee decided to advance all draft MRLs to Step 8 with the subsequent revocation of the associated CXLs, noting the reservation of the Delegations of the EU and Norway due to chronic intake concern for children, arising from their national evaluation. The Delegation of the EU informed the Committee that a concern form will be submitted in due time.

FENBUCONAZOLE (197)

57. The Committee decided to retain all draft MRLs at Step 7, awaiting ARfD evaluation by 2012 JMPR.

FLUDIOXONIL (211)

58. The Committee decided to advance all proposed draft MRLs to Step 5/8 with the subsequent deletion of the existing CXL for citrus fruits.

INDOXACARB (216)

59. The Committee decided to retain existing CXL for lettuce, leaf awaiting alternative GAP review by 2011 JMPR.

NOVALURON (217)

60. The Committee decided to advance all proposed draft MRLs to Step 5/8 for adoption noting the reservations of the Delegations of the EU and Norway regarding the MRL for brassica (cole or cabbage) vegetable, head cabbage, flowerhead brassicas; fruiting vegetable, cucurbits; fruiting vegetable other than cucurbits (except sweet corn); stone fruits due to the extrapolation used by JMPR and the subsequent revocation of the associated CXLs for edible offal (mammalian); eggs; milk fats; milks; poultry meat; poultry, edible offal of.

61. The Committee also decided to delete the CXL for Tomato which was being replaced by the Group MRL as recommended by the 2010 JMPR.

BIFENAZATE (219)

62. The Committee decided to advance all proposed draft MRLs to Step 5/8 for adoption noting the reservation of the Delegations of the EU and Norway regarding the MRL for legume vegetable due to the extrapolation used by JMPR.

BOSCALID (221)

63. The Committee decided to advance all proposed draft MRLs to Step 5/8 for adoption with the subsequent revocation of the CXL for leafy vegetables, noting the reservations of the Delegations of the EU and Norway regarding the MRLs for leafy vegetable; stalk and stem vegetables due to the extrapolation used by JMPR.

64. The Committee noted that the proposed draft MRL of 50 mg/kg for citrus oil was not in the database and requested the Delegation of Netherlands to allocate the code for citrus oil to resolve this issue.

65. The Committee therefore assigned a new code for citrus oil, edible OR 0001.
66. The Committee decided to advance the proposed draft MRL for papaya to Step 5 awaiting authorized GAP to be submitted by Kenya.

67. The Committee also decided to advance all other proposed draft MRLs to Step 5/8 for adoption, including those MRLs for common bean and peas (with pod) that were recommended by 2010 JMPR but listed in the database as legume vegetables with the subsequent revocation of the existing CXLs for edible offal (mammalian); meat (from mammals other than marine mammals) and milks.

CHLORANTRANILIPROLE (230)

68. The Committee decided to advance all proposed draft MRLs to Step 5/8 and the subsequent revocation of the associated CXLs for edible offal (mammalian); eggs; meat (from mammals other than marine mammals); milk fats; milks and poultry, edible offal of, noting the reservations of the Delegations of the EU and Norway regarding the extrapolation used by JMPR for brassica (cole or cabbage) vegetables, head Cabbage, flowerhead brassicas.

69. The Committee also decided to revoke the CXL for grapes as recommended by the 2010 JMPR to be replaced by a group CXL.

FLUOPICOLIDE (235)

70. The Committee decided to advance all draft MRLs to Step 8 for adoption, noting that acute intake concern expressed by the Delegations of the EU and Switzerland in 2010 had been considered by JMPR and their conclusions were presented in chapter 3 of the 2010 JMPR report.

CLOTHIANIDIN (238)

71. The Committee noted that clothianidin is also a metabolite of thiamethoxam (245) and that new data to support a reconsideration of the residue definition were available from the manufacturer for consideration by JMPR in 2011.

72. The Committee decided to advance the proposed draft MRL for banana; dried grapes; edible offal (mammalian); eggs; grapes; mammalian fats (except milk fats); meat (from mammals other than marine mammals); milks; pome fruits; poultry fats; poultry meat; rice; root and tuber vegetable; sorghum; sorghum straw and fodder dry; stalk and stem vegetables; sugar cane; and sweet corn (corn on the cob) to Step 5 because the source of the residue is clothianidin, for which the residue definition is being reconsidered.

73. The Committee decided to advance all other proposed draft MRLs to Step 5/8 noting the reservation of the Delegations of the EU and Norway regarding the extrapolation used by JMPR for berries and other small fruits; brassica (cole or cabbage) vegetables, head cabbage, flower-head brassicas; root and tuber vegetables and stone fruits.

CYPROCONAZOLE (239)

74. The Committee decided to advance all the proposed draft MRLs for adoption at Step 5/8.

DICAMBA (240)

75. The Committee decided to advance all the proposed draft MRLs for adoption at Step 5/8, noting that the manufacturer will be submitting revised labels to support the assessment of residue data for soya beans by the 2011 JMPR.

ETOXAZOLE (241)

76. The Committee decided to advance all the proposed draft MRLs for adoption at Step 5/8. The Delegation of the USA indicated that they would lodge a concern form over storage stability correction factors for assessed commodities for which no MRLs were recommended and the Committee noted that the manufacture will submit supporting information on storage stability for evaluation by the 2011 JMPR.
FLUBENDIAMIDE (242)

77. The Committee decided to advance all the proposed draft MRLs for adoption at Step 5/8 noting the reservations of the Delegations of the EU and Norway regarding the proposed draft MRLs for brassica (cole or cabbage) vegetables, head cabbage, flowerhead brassicas; fruiting vegetables, cucurbits; legume vegetables, stone fruits due to the extrapolations used by JMPR and for peppers; tomato and tea, green, black (black, fermented and dried) due to insufficient number of trials.

FLUOPYRAM (243)

78. The Committee decided to advance all the proposed draft MRLs for adoption at Step 5/8.

MEPTYLDINOCAP (244)

79. The Committee decided to advance all proposed draft MRLs to Step 5/8 and agreed that the source of the residue be indicated for each proposed MRL. The Committee noted that the residue definition of meptyldinocap for MRL compliance was corrected to align it with the JMPR recommendation.

THIAMETHOXAM (245)

80. The Committee decided to advance all the proposed draft MRLs for adoption at Step 5/8 in line with the recommendations for clothianidin (238) noting the reservations of the Delegations of the EU and Norway regarding the extrapolations used by JMPR for berries and other small fruits; brassica (cole or cabbage) vegetables, head cabbage, flowerhead brassicas; citrus fruits; fruiting vegetables other than cucurbits; fruiting vegetables, cucurbits; leafy vegetables; root and tuber vegetables and stone fruits.

81. The Committee noted that the Delegation of Brazil would submit data and GAP for papaya to JMPR to support a higher MRL.

DISCUSSION PAPER ON THE APPLICATION OF PROPORTIONALITY IN SELECTING DATA FOR MRL ESTIMATION (Agenda Item 6)\(^8\)

82. The Committee recalled that at its last session it had noted the concerns expressed by a delegation that JMPR had not recommended MRLs for some commodities as application rates in supporting residue trials were more than 25% greater than the critical GAP (cGAP) application rates (the JMPR/OECD cut-off point). The Committee agreed that the Delegation of Australia would prepare a discussion paper to address the application of proportionality in selecting data for MRL estimation for consideration at its next session.\(^9\)

83. The Delegation of Australia made a presentation based on the information provided in CX/PR 11/43/4 including practical examples of application of proportionality based on types and rates of application, chemical/commodity combinations and associated MRLs. The Delegation drew the attention of the Committee to the recommendation in the working paper by which JMPR could apply proportionality in those cases where the residue data according to GAP were not sufficient for a recommendation. The Delegation noted that this approach would give greater flexibility to JMPR in the use of residue field trial data and would allow MRL estimates to be made in situations where the current ±25% rules excluded such estimates.

84. The Committee noted that there was general support for the application of proportionality by using supporting residue trials with application rates beyond ±25% in those cases where the residue data according to GAP were not sufficient for a recommendation. However, it was noted that this situation usually applied to minor crops and should therefore be limited to these crops as opposed to major crops where availability of data usually allowed for normal residue evaluations. It was also noted that, when applying proportionality, all data points under consideration, i.e. within/outside the acceptable range of ±25%, should be adjusted to 1X to prevent issues of bias. It was further noted that the concept of proportionality should be further tested to ensure reliable results before the Committee endorse this approach for use by JMPR. It would thus be helpful to gather information on what compound/crop combinations the proportionality principles could apply, statistical methods used, number of tests needed, criteria for application of the proportionality method, etc.

85. The FAO JMPR Secretariat informed the Committee that relevant information on the proportionality approach was provided by the 2010 JMPR (General Consideration 2.8 of the 2010 JMPR Report). In this regard, the 2010 JMPR had also recommended principles for use of proportionality, including general aspects, commodity and application types, etc. The 2010 JMPR Report also presented examples on how to use these principles and the statistical method.

\(^8\) CX/PR 11/43/4, Comments from the EU (CRD16), Section 2.8, 2010 JMPR Report.

\(^9\) ALINORM 10/33/24 paras 72-73.
Conclusion

86. The Committee agreed that it would be useful if JMPR could elaborate MRLs proposals with and without making use of the concept of proportionality so that the result could be compared and that this exercise could be done as part of the general consideration issues of the 2011 JMPR for discussion by the next session of the Committee.

DRAFT REVISION OF THE CLASSIFICATION OF FOODS AND ANIMAL FEEDS: TREE NUTS, HERBS AND SPICES (Agenda Item 7a)\(^\text{10}\)

87. The Committee recalled that the Draft Revision had been adopted by the Commission at Step 5, circulated for comments at Step 6 and revised by an electronic working group led by the Netherlands and the United States of America. The Delegation of the Netherlands highlighted the commodities which had been added to the lists as a result of the proposals made at the last session and in the working group. On the basis of these proposals, the Committee made the following amendments and comments to the Classification.

Tree Nuts

88. Under Pine Nuts, following the addition of “other Pinus species”, the Committee agreed to exclude *Pinus armandii* and *Pinus massoniana* as the nuts have a bitter taste and are not fit for consumption.

Herbs

89. The Committee confirmed the inclusion of Wild betel leaf bush, proposed at the last session. The following additions were also made in square brackets for further consideration: Calendula leaves [and flowers]; Geranium (lemon rose); and Pepper, leaves which might also be included under leafy vegetables. It was agreed to insert a new sub-group “Edible Flowers” in square brackets for further comments and consideration at the next session. Some editorial amendments and corrections were also made to the section.

Spices

90. Under “Root or Rhizome”, the Committee confirmed the inclusion of Lovage, roots proposed at the last session. Under “Citrus Peel”, it was agreed to replace Yuzu peel with Yuja peel as the main common name for *Citrus junos*.

STATUS OF THE DRAFT REVISION OF THE CLASSIFICATION OF FOODS AND ANIMAL FEEDS: TREE NUTS, HERBS AND SPICES

91. The Committee agreed to hold the three commodity groups: tree nuts, herbs and spices at Step 7 pending finalization of the revision of the Classification (Appendix VI).

92. The Committee agreed to return the new entry for “Edible Flowers” to Step 6 for comments and consideration at the next session (Appendix VII).

PROPOSED DRAFT REVISION OF THE CLASSIFICATION OF FOODS AND ANIMAL FEEDS: ASSORTED TROPICAL AND SUB-TROPICAL FRUITS - EDIBLE PEEL AND ASSORTED TROPICAL AND SUB-TROPICAL FRUITS - INEDIBLE PEEL (Agenda Item 7b)\(^\text{11}\)

93. The Committee recalled that its last session had established an electronic working group led by the Netherlands and the United States of America to prepare new proposals for the revision of the Classification. The Delegation of the Netherlands introduced the new drafts for Assorted Tropical and Sub-Tropical Fruits- edible peel and Assorted Tropical and Sub-Tropical Fruits- inedible peel, and highlighted the main amendments. The title of the group had been amended to “Miscellaneous Fruits” instead of “Tropical and Sub-Tropical Fruits” and the category “Assorted Tropical and Sub-Tropical Fruits - edible peel” had been divided into three sub-groups: small, large and palms.

94. The Committee agreed with the proposal from several delegations to retain the title “Assorted tropical and sub-tropical fruits” as it was more representative of the commodities concerned, the term “miscellaneous” would allow the inclusion of other fruits that were not tropical, and this would affect the selection of representative commodities.

\(^{10}\) CX/PR 11/43/5; CX/PR 11/43/5-Add.1 (comments from Canada, Cuba and Thailand). Additional comments from Kenya (CRD 5); EU (CRD 14); Nigeria (CRD 20); and Republic of Korea (CRD 25).

\(^{11}\) CX/PR 11/43/6; CX/PR 11/43/6-Add.1 (comments from Canada, Costa Rica, Cuba, Japan and Thailand). Additional comments from Panama (CRD 3); Republic of Korea (CRD 4); Kenya (CRD 5); EU (CRD 14); China (CRD 19); Nigeria (CRD 20); and Mali (CRD 21).
Assorted tropical and sub-tropical fruits - edible peel

95. Some delegations proposed to transfer jujube, Chinese to the group for stone fruit as it was more similar to that group and grew in temperate climates. It was retained in square brackets for further consideration.

96. Some delegations proposed to transfer kumquats and limequats to the citrus fruits group as they are classified as citrus taxonomically and they are traded as such in Asia. Other delegations did not support this amendment as this would result in many MRLs for citrus becoming applicable to kumquat although it has an edible peel, which is not the case of other citrus species. The Committee agreed to retain kumquats and limequats in square brackets for further consideration.

97. Some delegations proposed to transfer persimmon to the pome fruits group in view of their botanical characteristics, climatic growing conditions, trade and pesticide residue pattern, and noted that the inclusion in the group for tropical fruits would result in a decrease in the number of MRLs available. The Committee agreed that further consideration should be given to the consequences of such a change as regards the establishment of MRLs and persimmon was retained in square brackets for further consideration.

98. It was proposed to transfer tamarind to the "inedible smooth peel-large" group as tamarind peel is hard and inedible, and it was placed in square brackets for further discussion.

Assorted tropical and sub-tropical fruits - inedible peel

99. The following species was placed in square brackets for further consideration: Madras thorn, which has a pod similar to tamarind; two additional synonyms for the scientific name of langsat; and sapodilla. Baobab fruit was inserted as an alternative to monkey bread. It was also agreed to insert a specific entry for coconut, young in the sub-group for palms.

Status of the Proposed Draft Revision of the Classification of Foods and Animal Feeds: Assorted Tropical and Sub-Tropical Fruits - Edible Peel and Assorted Tropical and Sub-Tropical Fruits - Inedible Peel

100. The Committee agreed to advance the Proposed Draft Revision to Step 5 for adoption by the 34th Session of the Codex Alimentarius Commission (Appendix VIII).

101. The Committee agreed to reconvene the electronic working group led by the Netherlands and the United States to proceed with the elaboration of new drafts of the groups for several types of vegetables for comments at Step 3 and consideration at the next session.

Draft Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides for Commodity Groups (Agenda Item 8a)12

Proposed Draft Addenda to the Draft Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides for Commodity Groups (Agenda Item 8b)13

102. The Committee recalled that at its last session it had revised the Principles and Guidance including Table 1 – Example of the Selection of Representative Commodities and had forwarded the revised text to the 33rd Session of the Commission for adoption at Step 5. The Commission adopted the document as proposed by the Committee and advanced it to Step 6 for comments and finalization by the next session of the Committee. It was also recalled that Addendum I – Justification on bulb vegetables and fruiting vegetables other than cucurbits and Addendum II – Background information regarding representative commodities had been returned to Steps 2/3 for revision, comments and further consideration by the next session of the Committee. The Committee had also agreed to re-establish the electronic working group led by the Netherlands and the United States of America to revise Table 1 and the Addenda based on the comments submitted and the considerations made in plenary.

12 CXPR 11/43/7; CX/11/43/7/Add.1 (comments from Canada, Cuba and Japan). Additional comments from Kenya (CRD 5); Colombia (CRD 9); European Union (CRD 15); China (CRD 19); and Mali (CRD 21).
103. The Committee noted that the working group had produced two revised documents as contained in CX/PR 11/43/7 (Principles and Guidance including Table 1) and CX/PR 11/43/8 (Addenda). The Committee also noted that the two items were correlated and agreed to discuss them together. The Delegation of the United States of America introduced both documents and gave a brief summary of the main outcome of the discussions in the working group. In this regard, it was noted that Table 1 had been revised by including fruit commodity groups with a view to facilitating the finalization of the Principles/Guidance and Table 1 (fruit types) at the next session of the Committee vis-à-vis the corresponding fruit commodity groups in the Classification of Foods and Animal Feeds and the decision of the 42nd Session of the Committee that, if all fruit types were completed by 2012, consideration would be given to advancing them to Step 8 for final adoption by the Commission and inclusion in the Classification of Foods and Animal Feeds.

104. The Committee agreed that Table 1 should be an integral part of the final document. However, the information contained in the Addenda was considered useful supportive information for the development of Table 1 (Addendum I) and to provide background information on the development of the document (Addendum II) but they should not be part of the final document. The Committee noted that this information was available in the reports and relevant working documents prepared for the discussion of this item at different sessions of the Committee and that Codex documents were available for consultation on the Codex website. As a result, the Committee agreed to delete or adjust all references to Addenda I and II in the document.

105. The Committee noted that the reference to “similar (as opposed to same) use pattern or GAP” for the selection of representative commodities covered by a group MRL was entered to provide for some degree of flexibility in the application of the Principles and that this term was limited to the relevant provisions provided for in the FAO Manual on the Submission and Evaluation of Pesticide Residue Data for the Estimation of Maximum Residue Level in Food and Feed.

Consideration of the Principles and Guidance

106. The Committee made a number of amendments by removing or transferring some provisions to other sections as not necessary or more relevant for the given section.

107. The Delegation of the EU noted that extrapolation of results of residue trials is a possibility to establish MRLs for crops/commodities for which the number of trials would not be sufficient to derive individual MRLs. However, the setting of MRLs by extrapolation introduced an additional source of uncertainty. Therefore, extrapolation should be restricted to cases where the GAP was comparable and similar residue behaviour was expected. If available residue trials demonstrated that the use of a pesticide would result in different residue concentrations in the crops belonging to the same crop group, it is preferable to derive individual MRLs instead of extrapolating the highest MRL calculated for the crop with the highest residue to the other members of the commodity group. In these cases, the ALARA Principles should be applied to set MRLs at appropriate lower levels. Based on this consideration, the Committee agreed to introduce a reference to the ALARA Principles when considering representative commodity to extrapolate to other members of a commodity group.

Consideration of Table 1

108. The Committee agreed to change the title to more appropriately reflect the purpose of and information contained in Table 1. In Group 001 Citrus Fruits, the Committee agreed that, in order to extrapolate maximum residue limits for pesticides to the whole citrus fruits group (FC 0001), data should be provided on lemon or lime; and mandarin; and orange; and pummelo or grapefruit. In lemons and limes (FC 0002), the name of “yuzu” was changed to “yuja” for consistency with the discussion on this commodity under Agenda Item 7(b) (see para. 90).

109. In Group 003 Stone Fruits, apricot was added as an alternative representative commodity to peach for extrapolation of MRLs to the whole stone fruits group (FP 0009) hence a consequential amendment was made to Subgroup 003C, Peaches. It was noted that in some countries apricot was the commodity most likely to contain the highest residues. It was however noted that peaches have large cultivation areas in many countries therefore the decision on which commodity would be considered as representative of the relevant group could be taken based on information provided on dietary consumption and/or production area.

110. In Group 006 Assorted Tropical and Subtropical Fruits – inedible peel, the reference to “dragonfruit” was changed to “pitahaya” for consistency with Subgroup 006D, Assorted tropical and sub-tropical, inedible peel – cactus where pitahaya, as opposed to dragonfruit, was indicated as a representative commodity for inedible peel – cactus (FI 2024). Along these lines, “Spanish lime” was included in addition to “litchi” in the general Group 006 for consistency with Subgroup 006A, Assorted Tropical and Sub-tropical, inedible peel, small where Spanish lime was indicated as a representative commodity for inedible peel – small (FI 2021). In this regard, the Committee agreed to include longans as a representative commodity in addition to litchi as they were similar to litchis in morphology, growth habit, pest problems, similar GAPs, and edible portion for the determination of the residue. In addition, longans produce similar or higher residues than litchis and were widely produced and traded within the Asian region.

ALINORM 10/33/24, para. 104.
STATUS OF THE DRAFT PRINCIPLES AND GUIDANCE ON THE SELECTION OF REPRESENTATIVE COMMODITIES FOR THE EXTRAPOLATION OF MRLS TO COMMODITY GROUPS

111. The Committee agreed to hold the Draft Principles and Guidance (including Table 1 on fruit commodities) at Step 7 pending the finalization of the revision of the Classification of Foods and Animal Feeds as per the fruit types (Appendix IX).

DISCUSSION PAPER ON THE GUIDANCE TO FACILITATE THE ESTABLISHMENT OF MAXIMUM RESIDUE LIMITS FOR PESTICIDES FOR MINOR USE AND SPECIALTY CROPS (Agenda Item 9)\(^5\)

112. The Delegation of the United States of America, as Chair of the electronic Working Group on Minor Use and Specialty Crops, introduced the document highlighting the major issues associated with the establishment of maximum residue limits for pesticides for minor use and specialty crops as presented in CX/PR 11/43/9. As regards the definition of minor use and specialty crops, the Delegation recalled that the last session of the Committee did not endorse the recommendation for guidance from JMPR on the number of residue field trials necessary to perform the evaluation as there was not an agreed international definition nor any agreed data requirements for minor use. The Delegation noted that there is currently no agreement on a definition due to difficulties in reaching consensus as per what could be considered a minor use and specialty crop vis-à-vis the production and consumption of the same commodity in different countries and regions. In view of this, criteria as opposed to definition, for use by CCPR and JMPR to determine the minimum number of field trials necessary to support the establishment of MRLs for minor use and specialty crops could be more appropriate to assist member countries in the identification of minor use/specialty crops and the submission of data to JMPR.

113. Several delegations supported the development of criteria for use by CCPR/JMPR and generally favoured the dietary intake contribution and total production/cultivation area as relevant criteria to address risk assessment for the establishment of MRLs for minor use and specialty crops. Therefore, economic factors should not be taken into account when further developing the criteria. Some of these delegations noted that the development of criteria could later on assist in the elaboration of a definition for minor use and specialty crops that could then be agreed upon by Codex members.

114. In regard to the two criteria identified, several delegation were of the opinion that, in order to provide for more flexibility in their application worldwide, the cut off figures for dietary intake contribution and the total production area should rather be expressed in percentages of the global total daily diet (based on GEMS Food Data) and of the world food production (based on FAOSTAT) however a higher tonnage production than currently presented in the discussion paper should be considered.

115. The Delegation of the EU noted that clarity was needed on the terminology used in the discussion paper to address these commodities i.e. minor use, minor crops and specialty crops. The Delegation indicated that the terms minor/major crops are used to define a food safety issue and the number of trials necessary for MRLs setting hence the daily intake contribution and cultivation area are relevant criteria to identify minor crops. In this regard, the Delegation noted that the discussion paper did not clearly differentiate between minor crop and minor use and that the latter was more related to the economic return on the use of a pesticide in relation to the registration costs which in no case would reduce the number of trials required for the establishment of MRLs for the minor crop. It was noted that, in this framework, there could be major crops with minor use and vice-versa. The delegation also noted that the discussion paper neither clearly differentiate between "minor crop" and "specialty crop" and that both terms should clearly be understood for the purposes of MRLs setting by CCPR.

Conclusion

116. Based on the above considerations, the Committee agreed to re-establish the electronic working group chaired by the United States of America and co-chaired by Kenya and Thailand to work on the development of criteria for use by CCPR and JMPR to determine the minimum number of field trials necessary to support the establishment of MRLs for minor crops/specialty crops in order to facilitate data submission to JMPR. The Committee agreed that the electronic working group will hold a meeting prior to the 44th Session of the CCPR and that both the electronic and physical working groups will work in English only.

PROPOSED DRAFT REVISION OF THE GUIDELINES ON THE ESTIMATION OF UNCERTAINTY OF RESULTS FOR THE DETERMINATION OF PESTICIDE RESIDUES (Agenda Item 10a)\(^6\)

117. The Committee recalled that its last session had agreed to return the proposed draft Guidelines to Step 3 for consideration at this session.

\(^{25}\) CX/PR 11/43/9. Comments from Kenya (CRD 5); CropLife (CRD 6); Thailand (CRD 8); Colombia (CRD 9); Argentina (CRD 10); China (CRD 19); Nigeria (CRD 20); Mali (CRD 21); EU (CRD 22); and OECD (CRD 29).

\(^{26}\) CX/PR 11/4310; CX/PR 11/43/10-Add.1 (Comments from Canada and Cuba). Additional comments from Kenya (CRD 5); Colombia (CRD 9); Japan (CRD 13); EU (CRD 15); China (CRD 19); Mali (CRD 21); and Japan (CRD 23). Report of the in-session Working Group on Methods of Analysis (CRD 30).
118. The Delegation of Australia, as Chair of the in-session Working Group on Methods of Analysis, introduced CRD 30 which contained a revised version of the Guidelines on the estimation of uncertainty of results for the determination of pesticide residues.

119. The Delegation of Egypt pointed out that uncertainty of sampling and sampling preparation should be considered as in many cases it would be larger than that of analytical measurement and proposed the inclusion of a default uncertainty component for sampling in the Guidelines. The Committee was reminded that, in general, sampling is outside the control of analytical laboratories and that the estimation of sampling uncertainty is outside the scope of these Guidelines. Uncertainty associated with laboratory sample preparation is normally expected to be addressed and incorporated as part of the method validation process for specific food commodities. It was noted that the question of sampling uncertainty had been considered in the Committee on Methods of Analysis and Sampling (CCMAS) from a general point of view.

120. The Delegation also indicated that, in addition to the Guidelines applicable to pesticide residues, there were Guidelines on measurement uncertainty developed by the CCMAS, which would cause confusion and that one harmonized guideline rather than several guidelines should be developed. The Committee however recalled that the Guidelines on Measurement Uncertainty (GL 54-2004) were of general application, while the Guidelines discussed in CCPR are specific guidelines for the determination of pesticide residues.

STATUS OF THE PROPOSED DRAFT REVISION OF THE GUIDELINES ON THE ESTIMATION OF UNCERTAINTY OF RESULTS FOR THE DETERMINATION OF PESTICIDE RESIDUES (ANNEX TO CAC/GL 59-2006)

121. The Committee agreed to forward the revised Proposed Draft Guidelines to the 34th Session of the Commission for adoption at Step 5/8 (Appendix X).

DISCUSSION PAPER ON HOW TO ADDRESS METHODS OF ANALYSIS FOR PESTICIDE RESIDUES BY THE CODEX COMMITTEE ON PESTICIDE RESIDUES (Agenda Item 10b)

122. The Committee recalled that at its last session it had agreed to consider the status of the repository list of analytical methods maintained by the IAEA and the implications of maintaining the list as either a resource list or as preferred/obligatory methods at this session.

123. The Delegation of Australia, as Chair of the in-session working group, referred to CRD 30. The Committee agreed with the recommendation of the working group to revoke Analysis of Pesticide Residues: Recommended Methods (CODEX STAN 229-1993) and that the IAEA would continue to support the maintenance of the web-based method database with a direct link from the Codex website.

REVISION OF THE RISK ANALYSIS PRINCIPLES APPLIED BY THE CODEX COMMITTEE ON PESTICIDE RESIDUES (Agenda Item 11)

124. The Committee recalled that its last session had returned the Revision for redrafting by an electronic working group led by Argentina in the light of the comments received, to identify issues of concern and prepare proposals on how to resolve these issues.

125. The Delegation of Argentina recalled the initial mandate of the working group when the revision of the Risk Analysis Principles was initiated in 2008 and summarized the main discussions held in the Committee so far. The Delegation highlighted the main issues for consideration, especially the revision of the Periodic Review Procedure, and the reordering of the text in order to align it with the Working Principles for Risk Analysis, as discussed in the Committee on General Principles. As regards section 5.5 Periodic Review Procedure, two alternative proposals had been put forward.

126. The Committee agreed to focus on the alternative proposals for the revision of the periodic review. Many delegations supported the first alternative as they considered MRL setting should be consistent with general Codex texts and the Working Principles for Risk Analysis and therefore MRLs should not be revoked without scientific justification. These delegations also pointed out that retaining MRLs which were still valid would save resources for the purpose of risk assessment and would limit potential trade problems.

127. Many other delegations expressed the view that the periodic review was based on science and should be retained especially for the following reasons: MRLs should be revised when GAP change; MRLs for foods of animal origin should be revised as appropriate to take into account the update of the OECD Feedstuffs Derived from Crops Table in 2009; and JMPR should consider establishing an ARfD for the older compounds.

18 CX/PR 11/43/12, CX/PR 11/43/12-Add.1 (comments from Argentina, Brazil, Canada, Chile, Japan, Uruguay and CropLife International), Additional comments from Kenya (CRD 5); Colombia (CRD 9); Chile (CRD); Uruguay (CRD 12); Argentina (CRD 18); China (CRD 19); Nigeria (CRD 20); Mali (CRD 21); Australia (CRD 24); and Brazil (CRD 28).
128. Some delegations pointed out that MRLs could always be revised when new data became available and therefore both alternatives could be considered provided the conditions for revision or revocation of MRLs were clearly specified on a scientific basis.

129. The Delegation of Australia indicated that in CRD 24 they had proposed an approach that would allow existing CXLs to be retained without a residue re-evaluation provided a toxicological assessment by JMPR does not raise any health concerns; dietary exposure estimates are below the ADI and the ARfD; and there is evidence of GAP relevant to existing CXLs. The Delegation also highlighted the role of the priorities working group to give advance notice of the periodic re-evaluation and the need for providing relevant data in a timely manner.

130. The Committee considered whether the rest of the document could be reviewed at the current session. However several delegations pointed out that it would be preferable to resolve the issue of the periodic review before reviewing the text as a whole to ensure consistency with the Working Principles for Risk Analysis.

131. Following further consultations between interested countries, the Committee considered a new proposal put forward by Brazil in CRD 28 as a basis for future discussion of the periodic review, as follows:

1) When a CXL is not supported by the manufacturers: the interested member countries can support the MRL submitting the GAP or to provide new residue data and GAP to JMPR for a new recommendation.

2) When the whole compound is not supported by the manufacturers: the interested member countries can support the re-evaluation of the compound by submitting residue data and the monograph of toxicological data to JMPR. If the monograph is not enough, JMPR can request for additional data.

The Delegation of Brazil also suggested to request JMPR advice on the minimum data requirement for submission in case the complete toxicological database was not available (e.g. summary data).

132. The Committee agreed that reference to monographs referred to national monographs of toxicological data for submission to JMPR.

133. The Committee also agreed to use these proposals as a basis for further work, with the understanding that more detailed discussion would be needed to develop specific recommendations.

134. The Observer from CropLife expressed the view that both recommendations seemed to conflict with JMPR responsibilities as they implied that JMPR would work with reduced data sets for the re-evaluation of MRLs; it was unclear how JMPR could update dietary risk assessment based only on GAP; JMPR can only make an informed decision when they have access to the full data set as currently required and to what extent they need to make use of these data has to be decided on a case-by-case. The Observer expressed concern that these changes may undermine the public confidence in Codex MRL, and generally supported retaining the principle of the current Periodic Review Procedure, with possible amendments for clarification purposes.

135. The JMPR Secretariat recalled that data requirements for submission to JMPR were already defined and applied to any set of data submitted for assessment; when any information was missing, the submissions would be evaluated on a case by case basis; and only nationally approved GAP should be submitted to JMPR. Toxicological monographs would not need to be re-submitted, but only updated additional information, including toxicological data if available.

136. The Committee discussed how to proceed further. Some delegations pointed out that the revision of the periodic review might affect other sections of the document and therefore the Risk Analysis Principles as a whole should also be revised concurrently, according to the initial mandate of the Committee. The Chair also recalled that the revision should be completed by 2013 in accordance with the Strategic Plan 2008-2013.

Conclusion

137. The Committee therefore agreed to re-convene the electronic working group chaired by Argentina and Brazil, working in English and Spanish, to develop proposals for the revision of the periodic review as a priority and, if feasible, to review the entire text of the Risk Analysis Principles, for consideration by the next session. It was also agreed that, if necessary, a physical working group chaired by Argentina and Brazil and working in English would be held prior to the next session in order to facilitate discussion in the plenary. The Delegation of Brazil emphasized the importance of effective participation and contribution of member countries in the work of the working group in order to advance work on the revision of the Risk Analysis Principles.
ESTABLISHMENT OF THE PRIORITY LISTS OF PESTICIDES (Agenda Item 12a)

138. The Delegation of Australia, as Chair of the in-session Working Group on Priorities introduced the report of the working group. The Chair mentioned the addition of new information on registration status, expected residues and residue trials available in order to help setting priorities. He also mentioned new appendixes to the schedule, mentioning compounds which are no longer supported by industry (Table 5) and commodities which are no longer supported by industry (Table 6). These two appendixes will increase the transparency and will allow member states to be prepared to support compounds and commodities no longer supported by industry.

Periodic Re-evaluation

139. Procymidone (136) and Vinclozolin (159) are no longer supported by industry and member countries. Therefore, the Committee decided that all CXLs for these 2 compounds should be revoked.

140. After some discussions and adjustments, the Committee agreed on the Priority List for 2012 provided as Appendix XI.

Scheduling of chemicals

141. The Committee was informed that 12 chemicals had been nominated for inclusion on the schedule for new compounds and periodic re-evaluation for 2012. The Chair listed the seven new chemical evaluations (ametoctradin, chlorfenapyr, dinotefuran, fluxapyroxad, MCPA, picloram, sedaxane), and the five chemicals listed for periodic re-evaluation (bentazone, cycloxydim, dichlorvos, fenvalerate, glufosinate-ammonium). The delegations of Thailand and the United States of America confirmed their support to the re-evaluation of fenvalerate which is no longer supported by the primary manufacturer.

142. The Committee nominated 21 chemicals for follow-up evaluations namely fenbuconazole for consideration of the establishment of an ARfD and 20 substances for new compounds and periodic re-evaluation for 2012. The Chair listed the seven new chemical evaluations (ametoctradin, chlorfenapyr, dinotefuran, fluxapyroxad, MCPA, picloram, sedaxane), and the five chemicals listed for periodic re-evaluation (bentazone, cycloxydim, dichlorvos, fenvalerate, glufosinate-ammonium). The delegations of Thailand and the United States of America confirmed their support to the re-evaluation of fenvalerate which is no longer supported by the primary manufacturer.

143. The Committee was informed that this number of compounds exceed the possibilities of the JMPR regarding the establishment of MRUs. It was therefore proposed by CropLife to postpone the periodic re-evaluation of residue limits for bentazone until 2013 but to keep this compound for toxicological re-evaluation in 2012. The Committee was advised that with these adjustments, the 2012 schedule had reached its quota and technically could not accept any further nominations.

144. The Committee noted the chemicals listed for new evaluation and follow-up evaluation for the years 2013 to 2018 and that for 2013, 12 new compounds are listed for evaluation and 13 compounds are listed for periodic re-evaluation. This is clearly exceeding the capacities of the JMPR. Moreover, the Committee also noted that more than 40 substances are already on the list for periodic re-evaluation following the rule of 15 years. The Committee agreed to give the mandate to the Working Group on Priorities to propose a list of 2 to 3 chemicals every year, from the full list of substances candidate for periodic re-evaluation, based on their potential higher concern regarding public health.

145. The Chair indicated that the work of the EWG for 2012 would commence in August with the broadcast email to all member countries and observers. In that correspondence, the Chair will highlight chemicals for which there is no manufacturer support and chemicals for which commodity listings are required. The Chair will also propose a re-ordering of the list of chemicals candidate for periodic re-evaluation based of the potential health concerns. The Committee agreed to reconvene the electronic working group chaired by Australia for 2012.

CONSIDERATION OF THE STATUS OF CODEX MRLs for LINDANE (Agenda Item 12b)

146. The Delegation of Australia, as Chair of the on in-session Working Group on Priorities introduced this item vis-à-vis the relation between the status of Codex MRLs for lindane and the Priority List as per the eligibility of this compound for re-evaluation in the future.

147. The Committee noted that lindane is currently listed in Annex A of the Stockholm Convention by which Parties must take measures to eliminate the production and use of the chemicals listed under this Annex. The Committee considered the possible replacement of the existing lindane MRLs with EMRLs based on the different options provided for in the discussion paper.
148. The Committee noted that several signatory countries of the Stockholm Convention had not yet ratified the revision of Annex A and that decisions taken at the Convention did not have an immediate effect on the work of the Committee on Pesticide Residues which should follow the procedures laid down in the Procedural Manual, i.e. Risk Analysis Principles applied by CCPR, for the revocation of CX MRLs or the conversion of Codex MRLs into EMRLs.

149. A number of delegations informed the Committee that uses of lindane for agricultural purposes are prohibited in their countries. Some of these delegations noted that, as this compound is a persistent organic pollutant in the environment (e.g. soil), presence of lindane in foods may warrant monitoring.

Conclusion

150. The Committee agreed that, because lindane is prohibited in certain countries and is also persistent in the environment, member states should monitor presence of lindane in food commodities and to provide data to JMPR within a period of 2 years for JMPR to review the monitoring data in 2015 prior to decision of conversion of MRLs to EMRLs.

DISCUSSION PAPER ON JMPR RESOURCE ISSUES IN THE PROVISION OF SCIENTIFIC ADVICE TO CCPR (Agenda Item 13a)21

151. The Delegation of the United States of America presented the discussion paper on the resource issues faced by JMPR, as requested by the 42nd Session of the CCPR and also referred to information and comments provided by the 2010 JMPR (General Consideration, section 2.1). The Delegation highlighted that the demand on JMPR has increased in recent years and the resource constraints are limiting the number of reviews able to be completed each year with the review schedule for new chemicals is expected to be at capacity up to 2014.

152. The discussion paper identified three primary issues of concern: funding, the availability of expertise, and the timing/frequency of JMPR meetings. The Committee noted that this increase in demand is indicative of the success of the process improvements that have been implemented in the past several years by the CCPR and the improved decision-making process in CCPR. The Committee agreed that lack of funding and the availability of expertise must be addressed before any of the options suggested in the paper could be implemented (such as holding more frequent meetings and increasing the number of experts.)

153. Various opinions presented at the discussion on the points raised in the paper. The JMPR Secretariat mentioned that there is an option for member countries to provide targeted funding for JMPR under the Scientific Advice Initiatives.

Conclusion

154. The Committee concluded that the CCPR itself could not solve the problem, but need to be addressed at high level.

155. The Committee agreed that the JMPR resource issues should be raised by the member countries of FAO and WHO at the highest level possible, and that member countries could express their concerns at the next session of the Codex Alimentarius Commission.

156. In light of the large number of compounds eligible for periodic review, the Committee agreed that, the electronic Working Group on Priorities should consider ranking them on the basis of health risks to assist setting the priority list at the next meeting.

ASSESSMENT OF MRLS FOR PESTICIDES IN TEA (Agenda Item 13b)22

157. The Committee was informed that the FAO Intergovernmental Group (IGG) on Tea has proposed to change the risk assessment associated with in the establishment of MRLs of pesticides in tea and the analytical methods used to identify the presence of pesticides in tea from the leaf to brew, or to pay equal attention to both, the leaf and brew, to provide correct and direct information to consumers as tea was used to make an infusion in water in most cases. The Committee noted that the rationale for this proposal was presented in CX/PR 11/43/16.

158. The JMPR Secretariat noted that transfer of residues into tea infusion is already part of risk assessment and information on standard procedure of testing methodology and relevant scientific studies (in particular processing factors) would be welcome. The Secretariat also advised that MRLs are set on tea leaves, not on tea brew as the leaves are the product commonly and internationally traded.

159. Some delegations informed the Committee that tea was an important crop in their countries and they might submit data and information if requested.

21 CX/PR 11/43/15. Comments from Kenya (CRD 5) and Australia (CRD 26).
22 CX/PR 11/43/16.
Conclusion

160. The Committee emphasized the need for processing studies to refine the dietary risk assessment of tea and supported the comments of the FAO JMPR Secretariat.

DATE AND PLACE OF THE NEXT SESSION (Agenda Item 14)

161. The Committee was informed that its 44th Session was tentatively scheduled to be held in Shanghai, China, in April 2012, the final arrangements being subject to confirmation by the Host Country and the Codex Secretariat.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Step</th>
<th>Action by</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft MRLs for pesticides</td>
<td>8</td>
<td>Governments 34th CAC</td>
<td>Paras. 31 - 81 and Appendix II</td>
</tr>
<tr>
<td>Proposed Draft MRLs for pesticides</td>
<td>5/8</td>
<td>Governments 34th CAC</td>
<td>Paras. 31 – 81 and Appendix III</td>
</tr>
<tr>
<td>Draft Revision of the Classification of Foods and Animal Feeds: Tree Nuts, Herbs and Spices</td>
<td>7</td>
<td>44th CCPR [awaiting the finalization of the revision of the Classification of Foods and Animal Feeds – fruit commodity groups]</td>
<td>Para. 91 and Appendix VI</td>
</tr>
<tr>
<td>Draft Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides for Commodity Groups (including Table 1 on fruit commodities)</td>
<td>7</td>
<td>44th CCPR [awaiting the finalization of the revision of the Classification of Foods and Animal Feeds – fruit commodity groups]</td>
<td>Para. 111 and Appendix IX</td>
</tr>
<tr>
<td>Draft Revision of the Classification of Foods and Animal Feeds: Herbs - Edible Flowers</td>
<td>6</td>
<td>Governments EWG (The Netherlands and the United States of America) 44th CCPR</td>
<td>Para. 92 and Appendix VII</td>
</tr>
<tr>
<td>Proposed Draft MRLs for pesticides</td>
<td>5</td>
<td>Governments 34th CAC 44th CCPR</td>
<td>Paras. 31 – 81 and Appendix IV</td>
</tr>
<tr>
<td>Proposed Draft Revision of the Classification of Foods and Animal Feeds: Assorted Tropical and Sub-tropical Fruits – edible peel and Assorted Tropical and Sub-tropical Fruits – inedible peel</td>
<td>5</td>
<td>Governments 34th CAC EWG (The Netherlands and the United States of America) 44th CCPR</td>
<td>Para. 100 and Appendix VIII</td>
</tr>
<tr>
<td>Proposed Draft Revision of the Classification of Foods and Animal Feeds: Other vegetable commodity groups</td>
<td>2/3</td>
<td>EWG (The Netherlands and the United States of America) Governments 44th CCPR</td>
<td>Para. 101</td>
</tr>
<tr>
<td>Establishment of Codex Priority Lists of Pesticides (Evaluation of New Pesticides and Pesticides under the Periodic Re-evaluation)</td>
<td>1/2/3</td>
<td>34th CAC Governments EWG on Priorities (Australia) 44th CCPR</td>
<td>Para. 140 and Appendix XI</td>
</tr>
<tr>
<td>Codex Maximum Residue Limits for pesticides Recommended for Revocation</td>
<td>-----</td>
<td>Governments 34th CAC</td>
<td>Paras. 31 – 81 and Appendix V</td>
</tr>
<tr>
<td>Analysis of Pesticide Residues: Recommended Methods (CODEX STAN 229-1993) Recommended for Revocation</td>
<td>-----</td>
<td>Governments 34th CAC</td>
<td>Para. 123</td>
</tr>
<tr>
<td>Subject</td>
<td>Step</td>
<td>Action by</td>
<td>Reference REP11/PR</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Application of Proportionality in Selecting Data for MRL Estimation</td>
<td>-----</td>
<td>2011 JMPR 44th CCPR</td>
<td>Para. 86</td>
</tr>
<tr>
<td>Methods of analysis for pesticide residues by the Codex Committee</td>
<td>-----</td>
<td>IAEA Codex Secretariat</td>
<td>Para. 123</td>
</tr>
<tr>
<td>on Pesticide Residues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision of the Risk Analysis Principles applied by the Codex</td>
<td>-----</td>
<td>EWG (Argentina and Brazil) Governments</td>
<td>Para. 137</td>
</tr>
<tr>
<td>Committee on Pesticide Residues</td>
<td></td>
<td>44th CCPR</td>
<td></td>
</tr>
<tr>
<td>Consideration of the status of Codex MRLs for Lindane</td>
<td>-----</td>
<td>Governments 2015 JMPR 48th CCPR (2016)</td>
<td>Para. 150</td>
</tr>
<tr>
<td>Assessment of MRLs for Pesticides in Tea</td>
<td>-----</td>
<td>Governments JMPR</td>
<td>Paras. 158 and 160</td>
</tr>
<tr>
<td>Discussion Paper on the Guidance to facilitate the establishment of</td>
<td>-----</td>
<td>EWG (The United States of America with the</td>
<td>Para. 116</td>
</tr>
<tr>
<td>Maximum Residue Limits for Pesticides for Minor Use and Specialty</td>
<td></td>
<td>assistance of Kenya and Thailand) 44th CCPR</td>
<td></td>
</tr>
<tr>
<td>Crops</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX I

LIST OF PARTICIPANTS
LISTE DES PARTICIPANTS
LISTA DE PARTICIPANTES

Chairperson
Président
Presidente
Dr QIAO Xiongwu
Shanxi Academy of Agricultural Sciences
2 Changfeng Street Taiyuan
Shanxi Province, 030006,
P.R. China
Tel: +86 351 7581865
Fax: +86 351 7040092
Email: ccpr_qiao@agri.gov.cn

ALGERIA/ALGÉRIE/ARGELIA

Wahiba HARRAT
Ingénieur
12 Boulevard Colonel Amirouche, Alger- Algérie. 16000
Phone: 00 213 21 71 17 12
Fax: 00 213 21 42 93 49
E-mail: w.harrat@yahoo.fr

ANGOLA/ANGOLA/ANGOLA

Dr Cláudia R. SICATO DIAS
Ministério da Agricultura, do Desenvolvimento Rural e das Pescas –
7º Andar C. P Nº 527
Largo António Jacinto, Edifício B do
Phone: 00244 923 40 30 39
Fax: 00244 222 32 37 24
E-mail: claudiasicato@yahoo.com.br

ARGENTINA/ARGENTINE/ARGENTINA

Dr Laura Ester BERNARDI BONOMI
Asesora Jurídica
Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA)
Avda.Paseo Colón 439, 2do.Piso
Ciudad de Buenos Aires
República Argentina
Phone: +5411-4342-2502
Fax: +5411-4121-5069
E-mail: lbonomi@senasa.gov.ar

Dr Carlos Enrique CAPPARELLI
Rivadavia 1367 7º B Buenos Aires -
Argentina
Phone: 54-11-4381-2742
Fax: 54-11-4383-1562
E-mail: carloscapparelli@ciafa.org.ar

Mr Pablo GROSSO
Reconquista 661 Piso "A"C1003ABM
Buenos Aires Argentina
Phone: +54-11-5779-4056
Fax: +54-11-5779-4059
E-mail: pgrosso@casafe.org

Mr Omar Ernesto ODARDA
Agricultural Attaché
Embassy of Argentina in P.R.C
San Li Tun Dong 5 jie#11, 100600 Beijing
Phone: +86-10-6532 0789/90 int.10/50
Fax: +86-10-65320270
E-mail: odarda@agrichina.org

AUSTRALIA/AUSTRALIE/ AUSTRALIA

Mr Ian REICHSTEIN
Director-National Residue Survey
PO Box 858, Canberra City, ACT 2601. Australia
Phone: +61 2 6272 5668
E-mail: ian.reichstein@daff.gov.au
Dr Rajumati BHULA
Program Manager Pesticides
18 Wormald Street Symonston ACT 2604
Australia
Phone: +61 2 6210 4826
Fax: +61 2 6210 4776
E-mail: raj.bhula@apvma.gov.au

Mr Kevin BODNARUK
Horticulture Australia
26/12 Philip Mall, West Pymble NSW 2073
Australia
Phone: +61 2 94993833
Fax: +61 2 94996055
E-mail: akc_con@zip.com.au

Mr William MURRAY
GRDC Grains
22 Thornley Close, Femtree Gully, Victoria 3156
Australia
Phone: 61 3 9763 8396
E-mail: wjmurray@bigpond.net.au

Dr Pieter SCHEELINGS
Principal Scientist
39 Kessels Road, Coopers Plains Queensland 4108
Australia
Phone: +617 3274 9095
Fax: +617 3274 9186
E-mail: Pieter_Scheelings@health.qld.gov.au

Dr Dr Abdul Aziz MOHAMED
Acting Director
Plant Wealth Directorate, Agriculture Affairs
Ministry of Municipalities and Urban Planning Affairs
P.O.Box 251
KINGDOM OF BAHRAIN
Phone: +973 1779 6688
Fax: +973 1769 3386
E-mail: amamohamed@mun.gov.bh

Mr Ahmed Eid
Senior Plant Protection Specialist
Plant Wealth Directorate, Agriculture Affairs
Ministry of Municipalities and Urban Planning Affairs
P.O.Box 251
KINGDOM OF BAHRAIN
Phone: + 973 1779 6698
Fax: +973 1769 3386
E-mail: ashamed@mun.gov.bh

Mr Abdul MD. RAHIM
Director
Food Crops Wing,
Department of Agricultural Extension,
Room # 229, Middle Building, 1st Floor
Khambari, Farm Gate, Dhaka-1215,
Phone: +88-02-9117030
Fax: +88-02-9115791
E-mail: dfcw@dae.gov.bd; nahimdae@gmail.com

Mr Ahmed EID
Senior Plant Protection Specialist
Plant Wealth Directorate, Agriculture Affairs
Ministry of Municipalities and Urban Planning Affairs
P.O.Box 251
KINGDOM OF BAHRAIN
Phone: +973 1779 6698
Fax: +973 1769 3386
E-mail: ashamed@mun.gov.bh

Mr Carlos GOMES
Federal Surveillance Agent
SIA TRECHO 5, Area Especial 57, Lote 200 – Brasilia – DF
Zip Code: 71205-050
Phone: 55 61 3462-6786
Fax: 55 61 3462 5726
E-mail: carlos.gomes@anvisa.gov.br
Mrs Lidia GONÇALVES
Federal Surveillance Agent
SIA TRECHO 5, Area Especial 57, Lote 200 – Brasília – DF Zip Code: 71205-050
Phone: 55 61 3462-6507
Fax: 55 61 3462 5726
E-mail: lidia.nunes@anvisa.gov.br

Dr. Esequiel LIUSON
Agricultural Attaché
27, GUANG HUA LU 100600 BEIJING CHINA
Phone: 8610 6532 2881 EXT 905
Fax: 8610 6532 2751
E-mail: esequiel.liuson@agricultura.gov.br

Mrs Cleide OLIVEIRA
Av.Ipiranga, 318-16 andar Cj.1601-B.R-Republica
São Paulo/SP - Brazil
Phone: +55 11 3124-4455
Fax: +55 11 3259-6399
E-mail: cleide@vignabrasil.com.br

Mrs Heloisa TOLEDO, H.B.
Health Regulatory Expert
Rua Carlos Gomes, 539 CEP: 14.800-270 – Araraquara – São Paulo - Brazil
Phone: 55 16 33224380
Fax: 55 61 3462-5315
E-mail: he.toledo@hotmail.com

Mrs Wanda GIMENEZ
Regulatory
Basf Croplife-Brazil
Avenida Brigadeiro Faria Lima, 3600
Phone: 55 11 30432760
Fax: 55 11 30432285
E-mail: wanda.gimenez@basf.com

Mrs Donna GRANT
Chemist, Pesticide Residues Unit
3650-36 Street, N.W, Calgary, Alberta, Canada T2L 2L1
Phone: 403-299-7636
Fax: 403-221-3239
E-mail: DONNA.GRANT@INSPECTION.GC.CA

Ms Louise ROBERGE
President
133 Richmond Street West Suite 602, Toronto, Ontario
M5H 2L3
Phone: 416-510-8647
E-mail: louise.roberge@tea.ca

CHILE/CHILI/CHILE
Sylvia Soledad FERRADA
Head International Negotiations Subdepartment
International Affairs Division
Agricultural and Livestock Service (SAG)
Bulnes 140 piso 5
Phone: 56-2-3451427/56993095335
E-mail: soledad.ferrada@sag.gob.cl

Juan Rodrigo SOTOMAYOR
Agronomist
Agricultural and Forestry Exports Subdepartment
Plant Protection Division
Agricultural and Livestock Service (SAG)
BULNES 140 PISO 3
Phone: 56-2-3451445
E-mail: rodrigo.sotomayor@sag.gob.cl

Mr. ALVARO ASPEE ROA
Agricultural Attaché, Embassy of Chile
No.1 Dongsijie, Sanlitun, Beijing 10060, China
Phone: +86-10-65321591
Fax: +86-10-65322925

Paulina Alejandra CHAVEZ
Asesor Departamento de Alimentos y Nutricion
Ministerio de Salud
Mac Iver 459, Octavo Piso, Santiago, Chile
Phone: 56-2-5740619
Fax: 56-2-6649150
E-mail: pchavez@aminsal.cl
Dr. Tomislav CURKOVIC SEKUL
University of Chile
PO Box 1004, Santiago, Chile
Phone: 56 2 9785714
Fax: 56 2 9785812
E-mail: tcurkovi@uchile.cl

Mr. Francisco SÁNCHEZ TAKY
Almirante Pastene 300, Providencia, Santiago, Chile
Importadores y Productores de Productos
Fitosanitarios Para La Agricultura A.G (IMPPA)
Phone: 56 2 4869103
Fax: 56 2 4869100
E-mail: fcosan@anasac.cl

Ms. María Elvira Lernanda Fuchslocher
AFIPA A.G. Manager
Felix de Amesti 124 OF 31 Las Condes
Santiago, Chile
Phone: 56 2 2066792
E-mail: info@afipa.cl

Marcela Triviño
Agronomist
Asociación de Exportadores de Chile A.G (ASOEX)
Cruz del Sur 133, Piso 2, Las Condes
Santiago, Chile
Phone: 56-2-4724717
E-mail: mtrvino@asoex.cl

Ms Fang Xiaohua
Bureau of Quality and Safety Supervision of agricultural products,
Ministry of Agriculture
No.11 Nongzhannanli, Chaoyang District
Beijing, 100125 P. R. China
Phone: +86-10-59192313
Fax: +86-10-59193315
E-mail: fangxiaohua@agri.gov.cn

Dr CUI Yehan
Director
Development Center for Science and Technology,
Ministry of Agriculture
No. 96 Dongsanhuan Nanlu, Chaoyang District
Beijing 100122 P. R. China
Phone: +86-10-59193747
Fax: +86-10-59193777
E-mail: cuiyehan@agri.gov.cn

Ms Ji Ying
Director
Registration and Regulation Division,
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22 Maizidian St, Chaoyang District
Beijing 100125 P.R. China
Phone: +86-10-59194106
Fax: +86-10-59194063
E-mail: jying@agri.gov.cn

Prof LIU Guangxue
Professor
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No.22 Maizidian St, Chaoyang District
Beijing 100125 P.R. China
Phone: +86-10-589194105
Fax: +86-10-59194107
E-mail: liuguangxue@agri.gov.cn

Prof. ZHENG Yongquan
Deputy Director
Institute of Plant Protection, Chinese Academy of Agricultural Sciences
No. 2 West Yuanming yuan Road
Beijing 100193 P.R. China
Phone: +86-10-62815908
Fax: +86-10-62815908
E-mail: yqzheng@ippcaas.cn
Dr PAN Canping
Professor
Department of Applied Chemistry, China Agricultural University
Yuanmingyuan Rd, Haidian District
Beijing 100193, P.R.China
Phone: +86-10-62731978
Fax: +86-10-62733620
E-mail: panc@cau.edu.cn

Prof. MIAO Hong
Department of Monotoring and Control for Contaminants and Residues
Chinese Center for Disease Control Prevention
No.7 Panjiayuan Nanli, Chaoyang District
Beijing 100021 P.R.China
Phone: +86-10-67776790
Fax: +86-10-67776790
E-mail: Miaohong0827@163.com

Dr WANG Wei
Professor
Inner Mongolia Institute for Food and Drug Control
No.60 University West Street, Saihan District, Huhehaote City, Inner Mongolia, Autonomous Region, P. R. China
Phone: +86-471-6922 967
Fax: +86-471-6922 967
E-mail: wangwei6922967@126.com

Dr MA Shuangcheng
Professor
National Institute for Control of pharmaceutical & Biological Products
No. 2 Tiantanxili, Dongcheng District
Beijing, 100050, P.R.China
Phone: +86-10-67095272
Fax: +86-10-67095887
E-mail: masc@nicpbp.org.cn

Prof SHI Jieping
Director
Division of State Food and Drug Administration
No.2 Dong Chang An St
Beijing, 100014, P.R.China
Phone: +86-10-88330558
Fax: +186-10-88370947
E-mail: Shmily369@yahoo.com.cn

Dr XU Changxing
Director
Standardization Administration Division
9 Madian East Road Haidian District, 100088
Beijing, P.R. China
Tel: +86-10-82262657
Fax: +86-10-82260687
E-mail: xuchx@sac.gov.cn

Dr WANG Jianhua
Senior Chemist
Shandong Exit & Entry Inspection and Quarantine Bureau, AQSIQ
P.R.China
Room 714, No. 70 Qutanxia Rd, Shinan District
Qingdao 266002 P.R.China
Phone: 13954215719
Fax: +86-532-80885761
E-mail: whywrs@yahoo.com.cn

WANG Songxue
Deputy Dean
Academy of State Administration of Grain
No. 11 Baiwangzhuang St, Xicheng District
Beijing, 100037
Phone: +861058523708
Fax: +861058523599
E-mail: wsx@chinagrain.org

LU Xiaolei
Engineer
Hangzhou Tea Research Institute, China CO-OP
NO.41 Caihe Road, Hangzhou, Zhejiang 310016
P.R.China
Phone: 0571-8604388/13858082532
E-mail: zjulxl@gmail.com

Prof XIE Weiyu
All China Federation of Supply and Marketing Co-operatives
Jinan Fruit Research Institute/Yan Zi Shan Xiao Qu Dong Lu No.240, 250014 Jinan, China
Phone: +8653188193700
Fax: +8653188936851
E-mail: xiewy56@163.com
Cheung Wing Lok
Chief Health Inspector (Food Complaint)
Center for Food Safety
Food and Environmental Hygiene Department
43/F, Queensway Government Offices
66 Queensway, Hong Kong
Phone: (852)2867 5697
Fax: (852)2893 3537
E-mail: winglcheung@fehd.gov.hk

Dr LUM Hon Kei
Scientific Officer
Center for Food Safety
Food and Environmental Hygiene Department
No.4 Hospital Road, Sai Ying Pun, Hong Kong
Phone: (852)3962-2068
Fax: (852)2893 3545
E-mail: jhklum@fehd.gov.hk

Dr Choi Sik Man
Senior Chemist
Center for Food Safety
Food and Environmental Hygiene Department
43/F, Queensway Government Offices
66 Queensway, Hong Kong
Phone: (852)28675022
Fax: (852)28922547
E-mail: smchoi@fehd.gov.hk

COLOMBIA/COLOMBIE/COLOMBIA

Mrs Maria Cristina TORRES VILLAMIL
SUBGERENTE DE REGULACION SANITARIA Y FITOSANITARIA-ICA-Instituto Colomiano Agropecuario
Carrera 41 17-81 piso 2 Zona Industrial
Phone: Directo(57-1) 3323769 PBX: (57-1)3323700
Fax: (57-1)3323769
E-mail: cristina.torres@ica.gov.co

COSTA RICA/COSTA RICA/COSTA RICA

Mr Roger RUIZ ZAPATA
Jefe Laboratorio de Residuos
Servicio Fitosanitario del Estado
Ministerio de Agricultura y Ganadería
Phone: (506) 2549-3538
Fax: (506) 2549-3599
E-mail: rruiz@sfe.go.cr

DEMOCRATIC REPUBLIC OF THE CONGO
RÉPUBLIQUE DÉMOCRATIQUE DU CONGO
REPÚBLICA DEMOCRÁTICA DEL CONGO

Mr LUMBE RAMAZANI LAMBERT
Head de Division/Expérimentation Agricole
Institut National Pour l’Etude et la Recherche Agronomique
13, Avenue des Cliniques
BP 2037, Kinshasa Gombe
Phone: (243) 5168294
E-mail: lambertlambre@yahoo.fr

DEMOCRATIC PEOPLE’S REPUBLIC OF KOREA
RÉPUBLIQUE POPULAIRE DÉMOCRATIQUE DE COREÉ
REPÚBLICA POPULAR DEMOCRÁTICA DE COREA

Mr/Dr Yong San KIM
Head, Plant Protection Department
P.O.BOX 901
Phone: 850-2-381-8835
Fax: 850-2-381-4420
E-mail: ahfs421@star-co.net.kp

Mr Kwang Hyok RI
Researcher, Chemical Analysis Department
P.O.BOX 901
Phone: 850-2-381-8835
Fax: 850-2-381-4420
E-mail: ahfs421@star-co.net.kp

DENMARK/DANEMARK/DINAMARCA

Mrs Gudrun HILBERT
Scientific Advisor
Moerkhoej Bygade 19, DK-2860 Soeborg, Denmark
Phone: +4572276631
E-mail: guh@fvst.dk

Mrs Annette GROSSMANN
Scientific advisor
Moerkhoej Bygade 19, DK-2860 Soeborg, Denmark
Phone: +4572276622
E-mail: ang@fvst.dk

Mrs Bodil Hamborg JENSEN
Senior adviser
Markhøj Bygade 19, 2860 Søborg
Phone: +4535887468
E-mail: bhje@food.dtu.dk
ECUADOR/ÉQUATEUR/ECUADOR
Margoth Hipatia NOGALES PAREDES
Coordinator of Systems for managing food safety-
AGROCALIDAD
Ministry of Agriculture, Livestock, Aquaculture and Fisheries-MAGAP,
floor 9, Av. Amazonas-Eloy Alfaro
corner, Quito-Ecuador, PC. 17-01-108,
Fax: +593- 2-2548 823
Phone: +59322548823
E-mail: hipatia.nogales@agrocalidad.gob.ec

EGYPT/ÉGYpte/EGIPTO
Dr Abir El-GOHARY
Senior Chemist, Ministry of Agriculture
Central Laboratory of Pesticide Residue Analysis of Pesticides and
Heavy Metals in Food.
7 Nadi el-saied, Dokki, Giza
Phone: 20101536936
E-mail: abirelgohary@hotmail.com

Dr Emad ATTALLAH
Quality Manager, Ministry of Agriculture
Central Laboratory of Pesticide Residue Analysis of Pesticides and
Heavy Metals in Food.
7 Nadi el-saied, Dokki, Giza
Phone: 20105239370
E-mail: emadatala@yahoo.com

ETHIOPIA/ÉTHIOPIE/ETIOPÍA
Dr. Dereje Gorfu HAILEGIORGIS
Ethiopian Institute of Agricultural Research
P.O.Box 2003 Addis Ababa, Ethiopia
Phone: 251 116460380
E-mail: dgorfu@gmail.com

EUROPEAN UNION
UNION EUROPÉENNE
UNIÓN EUROPEA
Eva ZAMORA ESCRIBANO
Administrator Responsible for Codex Issues
European Commission, Directorate General for Health
And Consumers, Rue Froissart 101, B-1049 Brussels
Phone: +32 2 299 86 82
Fax: +32 2 299 85 66
E-mail: eva-maria.zamora-escribano@ec.europa.eu

Luis Martin PLAZA
Administrator
Froissart 101, Oficina 4/88, 1040 Bruselas
Belgica
Phone: 003222993736
Fax: 003222965963
E-mail: LUIS.MARTIN-PLAZA@EC.EUROPA.EU

Mrs Hermine REICH
Senior Scientific Officer
Largo N. Palli 5A, 43121 Parma, Italy
Phone: 0039 0521 036 662
Fax: 0039 0521 036 0662
E-mail: hermine.reich@efsaeuropa.eu

FINLAND/FINLANDE/FINLANDIA
Mrs Tiia MÄKINEN-TÖYKKÄ
Finnish Food Safety Authority Eura
Mustialankatu 3, FI-00790 Helsinki, Finland
Phone: +385-(0) 40-552 1859
Fax: +358 2077 24277
E-mail: tiia.makinen@evira.fi

FRANCE/FRANCE/FRANCIA
Mrs Florence GERAULT
Expert référent national "Résidus de pesticides et autres contaminants"
SRAL pays de Loire 10 rue Le Notre 49044 ANGERS
Cedex
Phone: 33241723234
Fax: 33241360035
E-mail: florence.gerault@agriculture.gouv.fr

Dr Xavier G SARDA
Evaluateur Scientifique
Anses, DPR, URSA, 253 avenue du Général Leclerc,
94701 Maisons-Alfort Cedex, France
Phone: 33 1 49 77 21 66
Fax: 33 1 49 77 21 60
E-mail: xavier.sarda@anses.fr

GERMANY/ALLEMAGNE/ALEMANIA
Monika SCHUMACHER
Regierungsdirektorin
Rochusstrasse 1, D-53123 Bonn
Phone: +49 228 99 529 4662
Fax: +49 228 99 529 4943
E-mail: 322@bmelv.bund.de
Dr Ursula BANASIAK
Director and Professor
Thielallee 88-92
Phone: 0049 30 18412 3337
Fax: 0049 30 18412 3008
E-mail: ursula.banasiak@bfr.bund.de

Dr Karsten HOHGARDT
Wissenschaftlicher Direktor
Messeweg 11-12, 38104 Braunschweig
Phone: +49-531-299-3503
Fax: +49-531-299-3002
E-mail: Karsten.hohgardt@bvl.bund.de

Dr Hans-Dieter JUNGBLUT
Advisor
BASF SE, Speyerer Straße 2, 67117 Limburgerhof
Phone: +49-621 60 27774
Fax: +49-621 60 27092
E-mail: hans-dieter.jungblut@basf.com

Dr Otto KLEIN
Dietary Safety Expert
Alfred-Nobel-Str.50, Building 6610,
40789 Monheim, Germany
Phone: +49-2173-383463
Fax: +49-2173-385866
E-mail: otto.klein@bayer.com

Dr Hubert ZIPPER
Senior Chemist
70736 Fellbach, Schafflandstr.3/2
Phone: #49-711-3426-1141
Fax: #49-711-588176
E-mail: Hubert.Zipper@cvuas.bwl.de

GHANA/GHANA/GHANA

Mr Cheetham Lawrence MINGLE
Senior Regulatory Officer, Food and Drugs Board
P.O.BOX CT2783
CANTONMENTS, ACCRA, GHANA
Phone: +233 302673664/ +233 0244080666
E-mail: cmingle@fdbghana.gov.gh

Mr JOSEPH CANTAMANTO EDMUND
Deputy Director
Environmental Protection Agency
P.O.BOX m326, ACCRA, GHANA
Phone: +233208168907
E-mail: jedmunde@epaghana.org

Dr Yaw ADU-AMPOMAH
Deputy Chief Executive
P.O.BOX 933 ACCRA
Phone: +233302661756
E-mail: adu.ampomah@cocobod.gov.gh

Mrs Felicia ANSAH-AMPROFI
Deputy Director
P.O.BOX M37, ACCRA
Phone: +233244951912
E-mail: famprog@yahoo.co.uk

Dr Cudjoe ANTHONY RICHMOND
P. O. BOX 8, NEW TAFO-AKIM
Phone: +233244256239
E-mail: tonycudjoe@yahoo.co.uk

Paul OSEI-FOSU
Head, Pesticide Residue Laboratory
Ghana Standards Board
P.O.BOX MB 245, ACCRA, GHANA
Phone: +233 208150469
Fax: +233 302 500231, 50092
E-mail: posei@gsb.gov.gh

HUNGARY/HONGRIE/HUNGRÍA

Mr Tamás GRIFF
Head of department
H-1118 Budapest, Budaörsi út 141-145
Phone: +36 1 309 1058
Fax: +36 1 246 2960
E-mail: griff.tamas@ntai.ontsz.hu

Mr Gábor KELEMEN
Chief Councillor
H-1055 Budapest, Kossuth Lajos tér 11.
Phone: +36 1 301 4808
Fax: +36 1 301 4808
E-mail: gabor.kelemen@vm.gov.hu
Mr. ISTVAN BIRO
Second Secretary, Hungarian Embassy
Dongzhimenwai st.10., 100600 Beijing CHINA
Phone: +86 10 6532-1431/2/3
Fax: +86 10 6532-5053
E-mail: ibiro@kum.hu

Mr. Rajendran THEKEPAT PISHARATH
Assistant Director General (Plant Protection), Indian Council of Agricultural Research,
215-Krishi Bhavan, New Delhi-110 114
Phone: +9111-23384414
Fax: +9111-23384414
E-mail: adgpp.icar@nic.in

Mr Balsavar Prashanth KUMAR
Director (DD&Trade), 228, Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi – 110 114
Phone: 011-23388688
Fax: 011-23388688
E-mail: prashant65@hotmail.com

Rakesh NAYAL
Under Secretary
752-A, Nirman Bhawan
Maulana Agad Road
New Delhi 110108
Phone: 9111 23063068
Fax: 9111 23063068
E-mail: rakeshnayal@nic.in; rakeshnayal1416@yahoo.com

Dr Krishan SHARMA
Network Coordinator
Network Coordinator, Project Coordinating Cell, All India Network Project on Pesticide Residues, Indian Agricultural Research Institute, New Delhi – 110 012
Phone: 011-25846396
Fax: 011-25846396
E-mail: kksaicrp@yahoo.co.in

Joint Director Ram Mohan SHUKLA
Joint Director Entomology
Directorate of Plant Protection Quarantine and Storage, Ministry of Agriculture
NH iv Faridabad, India 121001
Phone: 011-0129-2429067
E-mail: rmshukla1977@yahoo.co.in

Dr GARDJITA BUDI
Director, Directorate of Quality and Standardization
Ministry of Agriculture
Jl. Harsono, Ragunan
Jakarta 12550
Phone: +621 7815881
Fax: +621 7811468
E-mail: gbudi@deptan.go.id

Ms. KRISTRISASI HELENANDARI
Testing and Certification Center of Quality for Agricultural and Forest Products, Jakarta
Jl. Jambore Raya No.1 Jakarta Timur,
Jakarta-Indonesia
Phone: +6221 87752692
Fax: +6221 87752692
E-mail: sesisuwadi@yahoo.com

Mr ZAINUL ABIDIN
Center for Plant Variety Protection and Agricultural Permit
Ministry of Agriculture
JL. Harsono rm. Ragunan
Jakarta 12550
Phone: +6221 78836171
Fax: +6221 78836171
Hp.0815825 7393

Mr CIRO IMPAGNATIELLO
MINISTRY OF AGRICULTURAL FOOD AND FORESTRY POLICIES
VIA 20 SETTEMBRE, 20
I-00187 ROME
Phone: +39-06-46656046
Fax: +39-6-4880273
E-mail: c.impagnatiello@politicheagricole.gov.it

Mr ORAZIO SUMMO
MINISTRY OF AGRICULTURAL FOOD AND FORESTRY POLICIES
VIA 20 SETTEMBRE, 20
I-00187 ROME
Phone: +3906 46656047
Fax: +3906 4880273
E-mail: o.summo@politicheagricole.gov.it
JAMAICA/JAMAÏQUE/JAMAICA

Mr Michael RAMSAY
Ministry of Health Building, 2-4 King Street
Kingston
Jamaica
Phone: 876 - 967 1281, 876 – 922 2829
Fax: 876 – 967 1285
E-mail: ramsay@caribpesticides.net,
pca@cwjamaica.com

JAPAN/JAPON/JAPÓN

Dr Eiji HINOSHITA
Director
Office of International Food Safety,
Department of Food Safety,
Ministry of Health, Labour and Welfare
1-2-2 Kasumigaseki, Chiyoda-ku,
Tokyo 100-8916,
Japan
Phone: +81-3-3595-2326
Fax: +81-3-3503-7965
E-mail: codexj@mhlw.go.jp

Mr Makoto IRIE
Assistant Director
Agricultural Chemicals Office, MAFF
1-2-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8950,
Japan
Phone: +81-3-3502-5969
Fax: +81-3-3501-3774
E-mail: makoto_ire@nm.maff.go.jp

Mr Yoshihiko KUDOH
Food Safety Commission Secretariat
Akasaka Park Bld. 22nd F. Akasaka 5-2-20, Minatoku, Tokyo 107-6122, Japan
Phone: 81-3-6234-1164
Fax: 81-3-3584-7391
E-mail: yoshihiko.kudo@cao.go.jp

Dr Rieko MATSUDA
Director, National Institute of Health Sciences, Division of Foods
1-18-1. kamiyoga, Setagaya-ku, Tokyo 158-8501
Phone: 81-3-3700-2158
Fax: 81-3-3700-9348
E-mail: matsuda@nihs.go.jp

Dr Katsushiro SHIGENO
Deputy Director
2-2-1 Chome Kasumigaseki Chiyoda-ku Tokyo Japan
100-8916
Phone: +81-3-3595-2341
Fax: +81-3-3501-4868
E-mail: codexj@mhlw.go.jp

Mr Yoshiyuki TAKAGISHI
Section Chief, Agricultural Chemicals Office, MAFF
1-2-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8950,
Japan
Phone: +81-3-3502-5969
Fax: +81-3-3501-3774
E-mail: yoshiyuki_takagishi@nm.maff.go.jp

KENYA/KENYA/KENYA

Miss Lucy NAMU
Chief Analytical Chemist, Kenya Plant Health Inspectorate Service
Oloolua Ridge off Ngong Road, P.O. Box 49592, 00100 GPO, Nairobi,
KENYA
Phone: +254-020-3536171/2
Fax: +254-020-3536175
E-mail: lnamu@kephas.org

Dr Peter KIOKO
Senior Assistant Director
Veterinary Research Laboratories
P.O.Box Private Bag, Kangemi, Nairobi
Phone: +254 20 722897402
Fax: +25420 631273
E-mail: pmkioko2003@yahoo.com

Dr Henry ROTICH
Chief Manager, Research &Development
Box 54974 Popo Road, off Mombasa Road
Phone: +254-02-605490
Fax: +254-02 609660
E-mail: rotichh@kebs.org

Ms Grace MUCHEMI
Assistant Manager Analytical Services
Pest Control Products Board
P.O. Box 13794-00800 Nairobi
Kenya
Phone: +254 723-809619
Fax: +25-20-444 9072
E-mail: muchemi.grace@gmail.com
MALAYSIA/MALAYSIE/MALASIA

Ms Nursiah BINTI MOHAMAD TAJOL AROS
Director
Pesticide Control Division, Department of Agriculture, 4th-6th Flrs, Wisma Tani, Jalan Sultan Salahuddin, 50632 Kuala Lumpur, Malaysia
Phone: +603 20301472
Fax: +603 26917551
E-mail: nursiah@doa.gov.my

Mr Chai Keong NGAN
Strategic Resources Research Centre, MARDI Headquarters, PO Box 12301, 50774 Kuala Lumpur, Malaysia
Phone: 6 03 8943 7672
Fax: 6 03 8948 7639
E-mail: cngan@mardi.gov.my

Mr Ulah ANGGAT
Pesticide Control Division, Department of Agriculture, Level 4-6, Wisma Tani, Jalan Sultan Salahuddin, 50632 Kuala Lumpur, Malaysia
Phone: 6 0320301400
Fax: 6 03 26917551
E-mail: ulahanggat@rocketmail.com

MALDIVES/MALDIVES/MALDIVAS

Mr Ibrahim SHABAU
Director
Ministry of Fisheries and Agriculture
7th Floor, Velaanaage Building, Male’, Maldives
Phone: +9603322625
Fax: +9603326558
E-mail: ibrahim.shabau@fishagri.gov.mv

MOZAMBIQUE/MOZAMBIQUE/MOZAMBIQUE

Mr Julaya MUSSÁ
Anthropologist
EDUARDO MONDLANE/SALVADOR ALLENDE AVENUE
Phone: +258 21310281
Fax: +258 21326164
E-mail: juamussa@gmail.com

Dr Omar ELLENIZHI
Ministère de la Santé
71, Av Ibn Sina Agdal, Rabat
Phone: 212537671271
Fax: 212537671298
E-mail: omarellenzhi@yahoo.fr

Mr Ahmed JAAFAAR
Ingenieur D’etat principal
Avenue Hadj Ahmed Cherraoui, Agdal, Rabat, Maroc
Phone: +212 537681351
Fax: +212 537682049
E-mail: ahmedjaafar@yahoo.fr

Mr Ahmed ZOUAOU
Chef service Pesticides—L.O.A.R.C.
N° 25 Rue Nichakra Rahal (Ex Rue de Tours) Casablanca 20110 Morocco
Phone: +212 52230 2196/98
Fax: +212 522301972
E-mail: zouaouiloarc@yahoo.fr

MYANMAR/MYANMAR/MYANMAR

Dr Shwe-Sin HLAING
Food Control Officer
Office No 47, FDA, Dept of Health, Naypyidaw
Phone: 95-67-431134/431136
Fax: 95-67-411016
E-mail: drmyinmyintfta@gmail.com; linkyawdr@gmail.com

Dr Mohamed BENZINE
Chef Departement—EACCE
72, Angle Rue Mohamed Smiha ET Rue Mohammed EL Baarmani – Casablanca – Maroc
Phone: 212 6 18 53 22 83
Fax: 212 5 22 30 25 67
E-mail: benzine@eacce.org.ma

Dr Omar ELMENZHI
Ministère de la Santé
71, Av Ibn Sina Agdal, Rabat
Phone: 212537671271
Fax: 212537671298
E-mail: omarellenzhi@yahoo.fr

Mr Ahmed JAAFAAR
Ingenieur D’etat principal
Avenue Hadj Ahmed Cherraoui, Agdal, Rabat, Maroc
Phone: +212 537681351
Fax: +212 537682049
E-mail: ahmedjaafar@yahoo.fr

Mr Ahmed ZOUAOU
Chef service Pesticides—L.O.A.R.C.
N° 25 Rue Nichakra Rahal (Ex Rue de Tours) Casablanca 20110 Morocco
Phone: +212 52230 2196/98
Fax: +212 522301972
E-mail: zouaouiloarc@yahoo.fr

MOZAMBIQUE/MOZAMBIQUE/MOZAMBIQUE

Mr Julaya MUSSÁ
Anthropologist
EDUARDO MONDLANE/SALVADOR ALLENDE AVENUE
Phone: +258 21310281
Fax: +258 21326164
E-mail: juamussa@gmail.com

Mr Sualei IMEDE
LABORATORY TECHNICIAN
P. BOX Nr. 2769
Phone: +258 21 31 52 30
Fax: +258 21 31 52 30
E-mail: sualei2007@yahoo.com.br

MYANMAR/MYANMAR/MYANMAR

Dr Shwe-Sin HLAING
Food Control Officer
Office No 47, FDA, Dept of Health, Naypyidaw
Phone: 95-67-431134/431136
Fax: 95-67-411016
E-mail: drmyinmyintfta@gmail.com; linkyawdr@gmail.com
NETHERLANDS/PAYS-BAS/PAÍSES BAJOS

Mrs Erica MULLER
ir. Food and Consumer Product Safety Authority.
P.O. BOX. 9102, 6700 HC Wageningen,
The Netherlands
Phone: +31317496881
Fax: 31317421701
E-mail: e.muller@minlnv.nl

NEW ZEALAND
NOUVELLE-ZÉLANDE
NUEVA ZELANDIA

Mr Warren HUGHES
Manager (ACVM Standards), ACVM Group, Ministry of Agricultural and Forestry
P.O. Box 2835, Wellington, New Zealand 6140
Phone: +64 4 284 2560
E-mail: warren.hughes@maf.govt.nz

Ms Nikki JOHNSON
Market Access Solutions Ltd.
P.O. Box 10629 Wellington
Phone: 64 4 473-6040
Fax: 64 4 473-6041
E-mail: nikki@solutionz.co.nz

Mr David LUNN
Principal Adviser (Residues and Plants), Ministry of Agriculture and Forestry
P.O. Box 2835 Wellington
Phone: +64 4 894-2654
Fax: +64 4 894-2675
E-mail: Dave.Lunn@maf.govt.nz

NIGERIA/NIGÉRIA/NIGERIA

Miss Omolara FASANMI
Scientific Officer,
Federal Ministry of Agricultural and Rural Development
FCDA Building, Area 11, Garki, Abuja
Phone: +234-8065315605
E-mail: faslara27@yahoo.com

Dr.Nwaneri Mike KANAYOCHUKWU
Nigeria Agricultural Quarantine Service
Plot 80 Raph Sodenide Street, Central Area, Abuja
Phone: +234-8023282163
E-mail: michaelnwaneri@yahoo.com

NORWAY/NORVÈGE/NORUEGA

Dr Hanne Marit GRAN
Senior Adviser
Moervein 12, 1430 ÅS,
NORWAY
Phone: +47 950 20 771
Fax: +47 64 34 44 10
E-mail: hamgr@mattilsynet.no

PARAGUAY/PARAGUAY/PARAGUAY

Mr Jose Eduardo GIMENEZ DUARTE
Ingeniero Agronomo
Humaitá 145 c‘ Nuestra Señora de la Asunción –Código Postal 1229.
Phone: +59521- 441549
Fax: +59521-441549
E-mail: josegd78@hotmail.com

PHILIPPINES/PHILIPPINES/FILIPINAS

Miss Maria Lourdes DE MATA
Officer In Charge, Laboratory Services Division
Bureau of Plant Industry, 692 San Andres ST., Malate, Mania, Philippines
Phone: +6325240708
Fax: +632 528 7154
E-mail: lsdbpi@yahoo.com
maloudemata@rocketmail.com

Cristina BAJET
Researcher, University of The Philippines Los Banos College, Laguna Philippines 4031
Phone: +63 49 536 0959
Fax: +63 49 536 2410
E-mail: cmbajet@yahoo.com, cmbajet@gmail.com

Mrs Joeve CALLEJA
Senior Science Research Specialis
Bureau of Agriculture and Fisheries Product standards
3F Agricultural Training Institute Bldg., Elliptical Road, Diliman, Quezon City 1101
Philippines
Phone: (632) 920-6131
Fax: (632) 920-6131
E-mail: batipads@yahoo.com.ph
Dr Kisung KWON
Div. Director
Food Chemical Residue Div,
Korea Food and Drug Administration
Osong Health Technology Administration Complex,
187 Osongsaengmyeong2(i)-ro, Gango-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Korea
Phone: 82-43-719-4203
Fax: 82-43-719-4200
E-mail: kisungk@korea.kr

Dr Moo Hyeog IM
Deputy Director
Food Standard Div,
Korea Food and Drug Administration
Osong Health Technology Administration Complex,
187 Osongsaengmyeong2(i)-ro, Gango-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Korea
Phone: 82-43-719-2416
Fax: 82-43-719-2400
E-mail: imh0119@korea.kr

Miss Jung Ah DO
Scientific Officer
Food Chemical Residue Div,
Korea Food and Drug Administration
Osong Health Technology Administration Complex,
187 Osongsaengmyeong2(i)-ro, Gango-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Korea
Phone: 82-43-719-4207
Fax: 82-43-719-4200
E-mail: jado@korea.kr

Miss Seung Yun JUNG
Senior researcher
Food Import Div,
Korea Food and Drug Administration
Osong Health Technology Administration Complex,
187 Osongsaengmyeong2(i)-ro, Gango-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Korea
Phone: 82-43-719-2167
Fax: 82-43-719-2150
E-mail: sy0511@korea.kr

Dr Jae-Eup PARK
National Academy of Agricultural Science
150 Suiro, Gwonseonggu 441-707, Suwon, Korea
Phone: +82-31-290-581
Fax: +82-31-290-0508
E-mail: jepark73@korea.kr

Dr Jin-Bae KIM
National Academy of Agricultural Science
150 Suiro, Gwonseonggu 441-707, Suwon, Korea
Phone: +82-31-290-0587
Fax: +82-31-290-0508
E-mail: jinbkim@korea.kr

Mrs Chae-Mi LIM
Research Scientist
National Veterinary Research and Quarantine Service
430-824480, Anyang-dong, Manan-gu, Anyang-si, Gyeonggi-do, Korea
Phone: +82-31-467-1982
Fax: +82-31-467-1833
E-mail: hayashi@korea.kr

Mr Min Ho LEE
Pesticide Analyst
Korea Health Industry Development Institute
102/1207 Woobang-APT /Shinum-dong, Gimcheon city,
Province of Gyeong Buk, Korea
Phone: +82.54.533.3194
Fax: +82.54.334.2170
E-mail: minho@naqs.go.kr

Dr Gichoul KWON
Deputy director
Ministry of Health and Welfare
(110-793) 75 Yulgong-ro, Jongno-gu, Seoul, Korea
Phone: +82-2-2023-7783
Fax: +82-2-2023-7780
E-mail: kgc0709@korea.kr

Dr Joong Keun LEE
Head Researcher
Korea Health Industry Development Institute
643 Yeonri Gangoe-myeon, Cheongwon-gun, Chungcheongbuk-do 363-951, Korea
Phone: 82-43-713-8488
Fax: 82-43-713-8909
E-mail: leejk@khidi.or.kr
Miss Hyehyun KIM
Research Scientist
Food Certification Center, Korea Food Research Institute
516 Baekhyn-dong, Bundang-gu, Seongnam-Si, Gyeonggi-do, 463-746, Korea
Phone: +82-31-780-9049
Fax: +82-31-780-9153
E-mail: gpgus0617@naver.com

Mr In-Ho Baeg
Safety Research Center, Korea Ginseng Corp.
302, Shinseong-dong, Yuseong-gu, Daejeon, 305-805, Rep. of Korea
E-mail: ginsegking@kgc.or.kr

Ms Shi-Nai Choi
Nutrition for the Future INC.
856-5 Nakseongdae-dong, Gwanak-gu, Seoul, Korea
Phone: +82-2-563-8662
E-mail: shinai@paran.com

Dr. Mi-Gyung Lee
Professor
Andong National University
#388 Songcheondong, Andong-si, Gyeungbuk 760-749, Republic of Korea
Phone: +82-54-820-6011
Fax: +82-54-820-6264
Email leemig@andong.ac.kr

SAUDI ARABIA/ARABIE SAOUDITE/ARABIA SAUDITA
Mr Mohammed AL ZAYER
Pesticide Specialist
3292 Northern Ring Road Al Nafel Area Unit (1) – Riyadh 13312 – 6288 Kingdom of Saudi Arabia
Phone: +966 1 2759222 Ext: 3167
Fax: +966 1 2105643
E-mail: mazayer@sfda.gov.sa

Mr Abdullah ASIRI
Pesticide Specialist
3292 Northern Ring Road Al Nafel Area Unit (1) – Riyadh 13312 – 6288 Kingdom of Saudi Arabia
Phone: +966 1 2759222 Ext: 3187
Fax: +966 1 2105643
E-mail: ahasiri@sfda.gov.sa

SIERRA LEONE/SIERRA LEONE/SIERRA LEONA
Dr Ibrahim SHAMIE
Head Crop Protection
Ministry of Agriculture, Youyi Building, Freetown, Sierra Leone
Phone: (232) 78542939
E-mail: imo1shamie@yahoo.co.uk

SENEGAL/SÉNÉGAL/SENEGAL
ALIOU SALL
MINISTER COUNSELOR
305 23 Dongzhimen wai Dajie, Chaoy Beijing, 100600
Phone: （0086）13601037970
Fax: 00-8610-6532 7330

SINGAPORE/SINGAPOUR/SINGAPUR
Dr Yuan Sheng WU
Assistant Director, Food and Nutrition Chemistry Section
Veterinary Public Health Laboratory Agri-Food & Veterinary Authority of Singapore
10 Perahu Road Singapore 718837
Phone: (65)6795 2807
Fax: (65)68619491
E-mail: wu_yuan_sheng@ava.gov.sg
Mr Poh Leong LIM
Senior Scientist, Pesticide Residue Section
Veterinary Public Health Laboratory Agri-Food & Veterinary Authority of Singapore
10 Perahu Road Singapore 718837
Phone: (65)6795 2818
Fax: (65)68619491
E-mail: lim_poh_leong@ava.gov.sg

SPAIN/ESPAGNE/ESPAÑA
Mr César CASADO De SANTIAGO
Head of the Pesticide Residues Service
Aesan.Alcala Street.56, 28071 Madrid.Spain
Phone: 0034 913380620
E-mail: CCASADO@MSPSI.ES

SUDAN/SOUDAN/SUDÁN
Mr Hatim Hassan ALI
Director
Manager Inter –Relation-Sudanese Standarded and Metrology Organization
Phone: +24901221953
Fax: +24983774852
E-mail: hatimali78@yahoo.com

Miss Ula MAKKAWI ABDELRAHMAN
Senior Quality Control Inspector/Ministry of Agriculture
P.O. BOX 285
Phone: +249918075475
Fax: 83-781748
E-mail: ula_123@live.com

SWEDEN/SUÈDE/SUECIA
Mr Magnus CARNWALL
Senior Administrative Officer
BOX 622, SE 75126, SWEDEN
Phone: +46 - 18 - 17 55 00
Fax: +46 - 18 - 10 58 48
E-mail: maca@shv.se

Mr Anders JANSSON
Chief Government Inspector
BOX 622, SE 75126, SWEDEN
Phone: +46 - 18 - 17 55 00
Fax: +46 - 18 - 10 58 48
E-mail: andi@shv.se

SWITZERLAND/SUISSE/SUIZA
Dr/Mrs Lucia KLAUSER
Scientific advisor
Food Safety Division, 3003 Berne, Switzerland
Phone: 0041 31 322 95 69
Fax: 0041 31 322 9574
E-mail: lucia.klauser@bag.admin.ch

Mr Henri DISERENS
Nestlé Research CenterPO Box 44, CH-1000 Lausanne
26 - Switzerland
Phone: 0041 21 785 82 39
Fax: 0041 21 785 85 53
E-mail: henri.diserens@rdls.nestle.com

Dr Thomas MUELLER
Global Product Registration Manager Insecticides
Syngenta Crop Protection AG, Schwarzwaldallee 215. 4058 Basel. Switzerland
Phone: +41 61 323 8035
Fax: +41 61 323 8970
E-mail: thomas.mueller@syngenta.com

THAILAND/THAÏLANDE/TAILANDIA
Dr Manthana MILNE
Deputy Director-General, Department of Agriculture
50 Phaholyothin Road, Ladyao, Chatuchak, Bangkok 10900 Thailand
E-mail: manthana2001@yahoo.com

Mr Anders JANSSON
Chief Government Inspector
BOX 622, SE 75126, SWEDEN
Phone: +46 - 18 - 17 55 00
Fax: +46 - 18 - 10 58 48
E-mail: andi@shv.se

SWITZERLAND/SUISSE/SUIZA
Dr/Mrs Lucia KLAUSER
Scientific advisor
Food Safety Division, 3003 Berne, Switzerland
Phone: 0041 31 322 95 69
Fax: 0041 31 322 9574
E-mail: lucia.klauser@bag.admin.ch

Mr Henri DISERENS
Nestlé Research CenterPO Box 44, CH-1000 Lausanne
26 - Switzerland
Phone: 0041 21 785 82 39
Fax: 0041 21 785 85 53
E-mail: henri.diserens@rdls.nestle.com

Dr Thomas MUELLER
Global Product Registration Manager Insecticides
Syngenta Crop Protection AG, Schwarzwaldallee 215. 4058 Basel. Switzerland
Phone: +41 61 323 8035
Fax: +41 61 323 8970
E-mail: thomas.mueller@syngenta.com

THAILAND/THAÏLANDE/TAILANDIA
Dr Manthana MILNE
Deputy Director-General, Department of Agriculture
50 Phaholyothin Road, Ladyao, Chatuchak, Bangkok 10900 Thailand
E-mail: manthana2001@yahoo.com

Dr Nuansri TAYAPUTCH
Consultant Central Laboratory (Thailand)
Kasetsart Campus Paholyothin Rd Bangkok Thailand
Phone: 662 9406681
Mobile: 6687 8287658
E-mail: nuantaya@hotmail.com
Mr Pisan PONGSAPITCH
Director of the Office of Commodity and System Standards
National Bureau of Agricultural Commodity and Food Standard.
50 Phaholyothin Road, Lad Yao, Chatuchak, Bangkok 10900
Thailand
Phone: 66-2-561-2277 ext. 1401
Fax: 66-2-561-3357
E-mail: pisan@acfs.go.th

Mrs Nunchana LUETRAKOOL
Director, Agricultural Production Science Research and Development Office
Department of Agriculture
50 Phaholyothin Road, Lad Yao, Chatuchak, Bangkok 10900,
Phone: +66 2 5793579
Fax: +66 2 9405736
E-mail: nunchana.l@doa.in.th

Ms Chitra SETTAUDOM
Senior Expert in Food Standards
Food and Drug Administration Ministry of Public Health
Nonthaburee 11000 Thailand
Phone: 66 2 5907140
Fax: 66 2 5918446
E-mail: schitra@fda.moph.go.th

Mrs Prapassara PIMPAN
Senior Scientist, Pesticide Research Group, Department of Agriculture
50 Phaholyothin Road, Lad Yao, Chatuchak, Bangkok 10900
Thailand
Phone: 66-2-579-3577
Fax: 66-2-561-4695
E-mail: ppimpan04@yahoo.com

Ms Ing-orn PANYAKIT
Senior Standard Officer
National Bureau of Agricultural Commodity and Food Standard.
50 Phaholyothin Road, Lad Yao, Chatuchak, Bangkok 10900
Thailand
Phone: 66-2-561-2277 ext. 1424
Fax: 66-2-561-3357
E-mail: p_ingorn@yahoo.co.th

Ms Julaporn SRINHA
Senior Veterinary Officer
Bureau of Livestock Standard and Certification
Department of Livestock Development
697 Phya Thai Rd. Rajthewi, Bangkok 10400
Thailand
Phone: 66 2 6534444 Ext 3145
Fax: 66 2 6534917
E-mail: Julaporn19_dld@yahoo.com

Mr Charoen KAOWSUUKSAI
Deputy Secretary General of Food Processing Industry Club
Queen Sirikit National Convention Center, Zone C,
4th Floor, 60 New Rachadapisek Rd., Klongtoey, Bangkok
Phone: 66 2 976 3088
Fax: 66 2 976 2265
E-mail: charoen@cpram.co.th

UGANDA/UGANDA/UGANDA
Mr Onen GEOFFREY
Principal Government Analyst/Directorate of Government Analytical Laboratory
Plot No 2 Lourdel Road P.O.BOX 2174, Kampala-Uganda
Phone: 256712832871
Fax: 256414250474
E-mail: onengff@hotmail.com

UNITED REPUBLIC OF TANZANIA
RÉPUBLIQUE-UNIE DE TANZANIE
REPÚBLICA UNIDA DE TANZANÍA

Mr. Charys UGULLUM
Director of Laboratory Services
P. O. BOX 77150, DAR ES SALAAM,
Phone: + 255 713265014
Fax: + 255 22 2450793
E-mail: cha_ug@yahoo.com
Ms Lois ROSSI
Director of Registration Division, Office of Pesticide Programs,
US Environmental Protection Agency
MAIL CODE 7505P 1200 Pennsylvania Ave.N.W
Washington, D.C. 20460
Phone: 703-308-8162
Fax: 703 305 6920
E-mail: rossi.lois@epa.gov

Dr Parthapratim BASU
Senior Leader-Chemistry, Toxicology and Related Sciences, Office of
Public Health & Science, Food Safety & Inspection Service
U.S. Department of Agriculture
Aerospace Building, Room 318, 1400 Independence
Avenue, SW, Washington, DC 20250
Phone: 202-690-6558
Fax: 202-690-2364
E-mail: pat.basu@fsis.usda.gov

Dr RAUL GUERRERO
Consultant
793 Ontare Road. Santa Barbara. CA 93105
Phone: 805-898-1830
Fax: 805-898-1830
E-mail: guerrero_raul_j@yahoo.com

Dr Lori BERGER
Executive Director California Specialty Crops Council
4500 S. Laspina Suite 214 Tulare, CA93274 U.S.A.
Phone: 559.688.5700
Fax: 559.688.5527
E-mail: lori@specialtycrops.org

Dr William DONOVAN
Chemist, Office of Pesticide Programs
U.S. Environmental Protection Agency Mail code
7509P 1200 Pennsylvania Ave., N.W.
Washington D.C.20460
Phone: 703-305-7330
E-mail: donovan.william@epa.gov

Dr Jamin HUANG
Senior Regulatory Manager, Bayer Crop Science
P.O.Box 12014, 2 T.W.Alexander Drive
Research Triangle Park, North Carolina USA 27709
Phone: 919-549-2634
Fax: 919-549-2475
E-mail: jamin.huang@bayer.com

Dr Daniel KUNKEL
Associate Director, IR-4 Program
IR-4 Program, 500 College Road East, 201 W, Princeton New Jersey,
08540, USA
Phone: 001 – 732- 932 – 9575 Ext: 4616
Fax: 001 - 609 - 514 - 2612
E-mail: kunkel@aesop.rutgers.edu

Ms Barbara ADDEN
Minor Use Officer,
Office of Pesticide Programs, U.S. Environmental Protection Agency
7505P 1200 Pennsylvania Ave, NW
Washington DC 20460
Phone: 703 305 6463
Fax: 703 605 0781
E-mail: MADDEN.BARBARA@EPA.GOV

Miss Caitrin MARTIN
Agricultural Scientific Specialist, USDA—Foreign Agricultural Service
1400 Independence Ave. SW, Washington, D.C.
20250 stop 1010 USA
Phone: 202-720-5461
Fax: 202-720-0433
E-mail: caitrin.martin@fas.usda.gov

Mr SVEN-ERIK NIELSEN
Manager, Chemical & Technical services
Bryant Christie INC
500 Union St., Suite 701 Seattle WA 98122 USA
Phone: +1 206 292 6340
Fax: +1 206 292 6341
E-mail: svenn@bryantchristie.com

Mr Mark RASMUSSEN
Deputy Director
Plant Division, Office of Agreement and Scientific Affairs, Foreign
Agricultural Service, USDA
1400 Independence Ave SW Washington DC 20250
Phone: 202-720-2165
Fax: 202-690-0677
E-mail: Mark.Rasmussen@fas.usda.gov

Dr Jason SANDAHL
Senior Program Manager, USDA—Foreign Agricultural Service
1400 Independence Avenue, Washington DC, 20850
Phone: 703-201-4108
E-mail: Jason.Sandahl@fas.usda.gov
<table>
<thead>
<tr>
<th>Country</th>
<th>Person Name</th>
<th>Position/Function</th>
<th>Address/Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr Joseph SIMRANY</td>
<td>President, Tea Association of the USA</td>
<td>362 5th Avenue, Suite 801, New York, NY 10001</td>
<td>Phone: 212.968-9415, Fax: 212-697-8658, Email: simrany@Tea.usa.ORG</td>
</tr>
<tr>
<td>Mrs Cynthia SMITH</td>
<td>Chief Operating Officer Gowan Group</td>
<td>370 South Main Street, Yuma, Arizona 85364</td>
<td>Phone: +01928 819 1554, Fax: +01 928 373 1822, Email: cbakersmith@gowanco.com</td>
</tr>
<tr>
<td>VIET NAM/VIET NAM/VIET NAM</td>
<td>Tram VUTHI</td>
<td>Principal Specialist</td>
<td>Ministry of Agriculture and Rural development</td>
</tr>
<tr>
<td>ZIMBABWE/ZIMBABWE/ZIMBABWE</td>
<td>Mr Munyaradzi Livingstone MUSIYAMBIRI</td>
<td>Director, Government Analyst, Ministry of Health and Child Welfare</td>
<td>P.O. BOX CY 231, Causeway, Harare, Phone: +236 712 874 588, Email: mlmusiyambiri@yahoo.com</td>
</tr>
<tr>
<td>INTERNATIONAL GOVERNMENTAL ORGANIZATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr Peter Josef BRODESSER</td>
<td>Food Safety Specialist</td>
<td>Wagramer Stresses 5, 1400 Vienna, Austria</td>
<td>Phone: 43-1-2600-26058, Email: J_Brodesser@iaea.org</td>
</tr>
<tr>
<td>INTERNATIONAL NON-GOVERNMENTAL ORGANIZATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROP LIFE INTERNATIONAL</td>
<td>Dr Michael KAETHNER</td>
<td>Head of Development Affairs Bayer Crop Science</td>
<td>D-40789 Monheim, Germany, Phone: *49 2173 38 7521, Fax: *49 2173 38 3572, Email: michael.kaethner@bayer.com</td>
</tr>
<tr>
<td>Dr Philip BRINDLE</td>
<td>Sr Manager, Global MRLs&Import Tolerances</td>
<td>BASF Agricultural Solutions</td>
<td>26 Davis Drive, Research Triangle Park, NC27709, USA, Phone: +1 919 547 2654, Fax: +1 919 547 2850, Email: philip.brindle@basf.com</td>
</tr>
<tr>
<td>Dr Peter CHALMERS</td>
<td>Head of Development and Registration Asia Pacific Makhteshim-Agan</td>
<td>9 Temasek Boulevard, #16-03A, Suntec Tower Two, Singapore 038989 Singapore, Phone: 65 64999 326, Fax: 65 64999 324, Email: peter.chalmers@ma-apac.com</td>
<td></td>
</tr>
<tr>
<td>Mr Kenneth CHISHOLM</td>
<td>Vice president, Nichino</td>
<td>4550 New Linden Hill Rd, Suite 501, Wilmington, De19808 USA, Phone: 302-636-9001, Fax: 302-636-9122, Email: kchisholm@nichino.net</td>
<td></td>
</tr>
<tr>
<td>Mr Yoshiyuki EGUCHI</td>
<td>Manager, Regulatory Affairs Dept., Agro Product Div., Nippon Soda Co., Ltd.</td>
<td>2-1, Otemachi 2-Chome, Chiyoda-ku, Tokyo 100-8165, JAPAN, Phone: +81 3 3245 6042, Fax: +81 3 3245 6289, Email: y.eguchi@nippon-soda.co.jp</td>
<td></td>
</tr>
<tr>
<td>Mr Ricky HO</td>
<td>Regional Regulatory Affairs Manager, Asia Pacific Bayer (South East Asia) Pte. Ltd.</td>
<td>63 Chulia Street, OCBC Centre East, 14th Floor, Singapore 049514, Phone: +65-6496 1719, Fax: +65-6496 1494, Email: ricky.ho@bayer.com</td>
<td></td>
</tr>
<tr>
<td>Dr Peter HORNE</td>
<td>Global Regulatory Affairs Manager</td>
<td>Du Pont Crop Protection</td>
<td>1090 Elkton Road, P/O.Box 30, Newark, DE 19714-0030, USA, Phone: +1 302 366 6228, Fax: +1 302 351 7022, Email: peter.horne-1@usa.dupont.com</td>
</tr>
</tbody>
</table>
Mr Mika Chiba
Manager, Regulatory Affairs Team, Product Promotion Dept.
Summit Agro International Ltd.
1-8-12, Harumi, Chuo-ku, Tokyo, 104-6223, Japan
Phone: +81-3-6221-3216
Fax: +81-3-6221-3035
E-mail: mika.chiba@summit-agro.co.jp

Dr Mitsuhiro ICHINARI
Acting General Manager, Summit Agro International Ltd.
Harumi Island Triton Square Office Tower Z, 1-8-23, Harumi, Chuo-ku, Tokyo, 104-6223 Japan
Phone: +81 3 6221 3224
Fax: +81 3 6221 3035
E-mail: mitsuhiro.ichinari@summit-agro.co.jp

Ms Heidi IRRIG
Regulatory Residue Manager, Syngenta
Post Office Box 18300-Greensboro, NC 27419-8300
Phone: 336-632-7243
Fax: 336-632-5688
E-mail: heidi.irrig@syngenta.com

Ms Sandra KELLER
Croplife International
Manager, International Regulatory Policy
326 avenue Louise, box 35-1050 Brussels, Belgium
Phone: +32 2 542 04 10
Fax: +32 2 542 04 19
E-mail: sandra.keller@croplife.org

Mr Yukio KIMURA
Manager, Nihon Nohyaku Co., LTD
2-5, Nihonbashi 1-chome, chou-ku, Tokyo 103-8237, JAPAN
Phone: +81 3 3274 3383
Fax: +81 3 3281 5462
E-mail: kimura-yukio@nichino.co.jp

Mr Kaguhisa GOH
Regulatory Manager, Nihon Nohyaku Co. Ltd.
2-5, Nihonbashi 1-chome, chou-ku, Tokyo 103-8237, Japan
Phone: +81 3 3274 3415
Fax: +81 3 3281 5462
E-mail: goh-kaguhisa@nichino.co.jp

Mr Neil LISTER
Technical Manager-Operator and Consumer Safety
Syngenta
Jealott’s Hill Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
Phone: +44 1344 414381
Fax: +44 1344 413688
E-mail: neil.lister@syngenta.com

Yanjing LIU
Regulatory Manager for Northeast Asia FMC Crop
Room 906, Tower B, Xin Zhong Guan Building, No.19, Zhong Guan Cun Street, Beijing, P.R, China
P.C. 100080
Phone: +86-10-82515675 Ext 606
Fax: +66-10-82513132
E-mail: Christina.liu@fmc.com

Mrs Mary Jean MEDINA
Regulatory Affairs Manager
4 F 111 Paseo De Roxas Bldg.111 Paseo De Roxas St., Makati City, Philippines
Phone: +63-2-9201100
E-mail: jean.medina@fmc.com

Mr Makoto NABESHIMA
Supervisor (Zen-Noh)
1-3-1 Otemachi Chiyoda-ku, Tokyo JAPAN
Phone: +81-3-6271-8289
Fax: +81-3-5218-2536
E-mail: nabeshima-makoto@zennoh.or.jp

Mr Nik Ab Razak NIK YAHYA
Regulatory Leader (Asean)
Dow Agrosciences Level 6, Cp Tower, Jln 16/11 Pusat Dagang Section 16 46350 P.J Malaysia
Phone: +60379655255
Fax: +6037955 6292
E-mail: nyarazak@dow.com

Mr Yoshihiro NISHIMOTO
Manager of Registration & Regulatory Affairs
Sumitomo Chemical Co., Ltd.
27-1, Shinkawa 2-chome, Chuo-ku, Tokyo 104-8261, Japan
Phone: +81-3-5543-5692
Fax: +81-3-5543-5695
E-mail: nishimotoy@sc.sumitomo-chem.co.jp
Dr Vasant PATIL
Director – Regulatory Affairs
CropLife Asia, 150 Cantonment Road, Singapore 089373
Phone: 65 6221 1615
Fax: 65 6222 1615
E-mail: vasant.patil@croplifeasia.org

Mrs Juliana PRANDO FRANCO
Food Engineer/Risk Assessor Analyst
Av. Das Nações Unidas, 18.001 – 2º andar, 04795-900, São Paulo – SP - Brazil
Phone: + 55 11 5643-3970
Fax: + 55 11 5643-2353
E-mail: juliana.prando@syngenta.com

Ms Natalie SHEVCHUK
Global Regulatory Operation Manager
1735 Market Street, Philadelphia, PA 19103
Phone: 215-299-6680
Fax: 215-299-6468
E-mail: natalie.shevchuk@fmc.com

Dr Hiroyuki SUZUKI
Manager, Registration & Regulatory Affairs Department
Sumitomo Chemical Co. Ltd.
27-1, Shinkawa 2-chome, Chuo-ku, Tokyo 104-8260, Japan
Phone: +81-3-5543-5692
Fax: +81-3-5543-5695
E-mail: suzukih12@sc.sumitomo-chem.co.jp

Mr Yukiharu TANAKA
Manager, Japan & North Asia Regulatory Affairs, Arysta Lifescience
St. Luke’s Tower, 8-1, Akashi-cho, Chuo-ku, Tokyo 104-6591, JAPAN
Phone: +81 3 3547 4687
Fax: +81 3 3547 4695
E-mail: yukiharu.tanaka@arystalifescience.com

Mr Shimomura THOSIO
Consultant (for Zen-Noh)
1-3-1 Otemachi Chiyoda-ku, Tokyo Japan
Phone: +81 3 6271 8289
Fax: +81 3 5218 2536
E-mail: shimomura-tosio-q1@zennoh.or.jp

Mr Yoshihiro WADA
Manager, SDS BioTech K.K
1-1-5, Higashi-Nihombashi, Chou-ku, Tokoy 103-0004, Japan
Phone: +81-3-5825-5516
Fax: +81-3-5825-5501
E-mail: yoshihiro_wada@sdbsbio.co.jp

Mr Hiroo WAKIMORI
Chemical Regulatory Affairs Lead
Ginza Sannou Bldg. 4-10-10, Ginza, Chuo-ku, Tokyo 104 0061
Phone: +81 3 6226 6080
Fax: +81 3 3546 6191
E-mail: hiroo.wakimori@monsanto.com

Mr Peter WATSON
Product Registration Specialist
Dow AgroSciences Limited, European Development Centre.3
Milton Park Abingdon, OX144RN, United Kingdom
Phone: +44 1235 437968
Fax: +44 1235 437996
E-mail: pwatson@dow.com

Dr Song YING
China R&D Manager, Du Pont
Building 11, 399 Keyuan Road, Pudong, Shanghai
Phone: 86-21-3862-2039
E-mail: ying.song-1@chn.dupont.com

Mr Tokunori YOKOTA
Manager/Technical Affairs Division, JCPA
Sowa-bldg. 2-3-6 Kayabacho.Nihonbashi Chuo-ku Tokyo 103-0025, Japan
Phone: +81-3-5649-7193
Fax: +81-3-5649-7245
E-mail: yokota@jcpa.or.jp

Miss Hiromi YOSHINO
Group Manager, Regulatory Affairs Team,
Kyoyu Agri Co., Ltd.
YTT BLDG. 14-10 FUTAGO 6-COMME, TAKATSU-KU,
KAWASAKI-SHIKANAGAWA 213-0002 JAPAN
Phone: +81-44-813-4207
Fax: +81-44-813-5299
E-mail: yoshino-hiromi@kyoyu-agri.co.jp

INTERNATIONAL FRUIT JUICE UNION (IFJU)

Dr David HAMMOND
President of International Fruit Juice Union Analytical Commission
5 Allendale RD, Earley, Reading RG67PD
Phone: 44 1189354028
E-mail: davidfruitjuice@aol.com
INTER-AMERICAN INSTITUTE FOR COOPERATION ON AGRICULTURE (IICA)

Dr María de Lourdes FONALLERAS
Agricultural Health Food Safety International Specialist
Phone: (5982) 4101676 ext. 118
Fax: (5982) 4101778
E-mail: lourdes.fonalleras@iica.int

INTERNATIONAL NUT AND DRIED FRUIT COUNCIL FOUNDATION (INC)

Dr Gabriele LUDWIG
Almond Board of California, 1150 9th ST Modesto, CA 95394, USA
Tel: (+1) 209-745-0528
Phone (INC): (+34) 977.331.416
Fax: (+34) 977.331.416
E-mail: gludwig@almondboard.com
inc@nutfruit.org

INTERNATIONAL SOCIETY OF CITRICULTURE (ISC)

Mr James R CRANNEY
President, California Citrus Quality Council
853 Lincoln Way, suite 204, AUBURN CA 95603
Phone: (530)885-1894
Fax: (530)885-1546
E-mail: jcranney@calcitrusquality.org
cprice@calcitrusquality.org

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY (IUPAC)

Dr Caroline HARRIS
Exponent International Ltd., The Lenz, Hornbeam Park,
Harrogate HG2 8RE, UK
Phone: +44 1423 853201
Fax: +44 1423 810431
E-mail: charris@UK.exponent.com

Dr Fan CHEN
Assistant Professor
No. 64. Wunhua Rd., Huwei township, Yunlin County, 63201, Taiwan
Phone: 886-918-262605
E-mail: fan6636@gmail.com

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO)

Ms Yongzhen YANG
Agricultural Officer and FAO JMPR Secretary
00153, Viale delle Terme di Caracalla
Rome, Italy
Phone: +39 0657054246
Fax: +39 06 57053224
E-mail: Yongzhen.Yang@fao.org

WORLD HEALTH ORGANIZATION (WHO)

Dr Philippe VERGER
JMPR secretariat
Avenue Appia 20, CH-1211 Geneva 27, Switzerland
Phone: +41 22 791 3053
Fax: + 41 22 791 48 07
E-mail: vergerp@who.int

CODEX SECRETARIAT
SECRTARIAT DU CODEX
SECRETARÍA DEL CODEX

Ms Gracia BRISCO
Food Standards Officer
Secretariat, Codex Alimentarius Commission
Viale delle Terme di Caracalla 00153
Rome, Italy
Phone: +39 06 5705 2700
Fax: +39 06 5705 4593
E-mail: Gracia.Brisco@fao.org

Ms Selma DOYRAN
Secretary, Codex Alimentarius Commission
Joint FAO/WHO Food Standards Programme
Viale delle terme di Caracalla 00153
Rome, Italy
Tel: +39 06 5705 5826
Fax: +39 06 5705 4593
E-mail: Selma.Doyran@fao.org
Dr Hidetaka KOBAYASHI
Food Standards Officer
Secretariat, Codex Alimentarius Commission
Joint FAO/WHO Food Standards Programme
Nutrition and Consumer Protection Division
Viale delle Terme di Caracalla – 00153 Rome, Italy
Phone: (+39) 06 570 53218
Fax: (+39) 06 570 54593
E-mail: Hidetaka.Kobayashi@fao.org

CCPR SECRETARIAT

Mr YE Jiming
Deputy Director
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22, Maizidian Street, Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 5919 4081
Fax: +86 10 6502 5929
E-mail: yejiming@agri.gov.cn

Dr SHAN Weili
Director
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22 Maizidian Street Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 5919 4253
Fax: +86 10 5919 4107
E-mail: shanweili@agri.gov.cn

Ms DUAN Lifang
Chemist
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22, Maizidian Street, Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 5919 4105
Fax: +86 10 5919 4107
E-mail: duanlifang@agri.gov.cn

Mr SONG Wencheng
Environmental Specialist
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22, Maizidian Street, Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 5919 4105
Fax: +86 10 5919 4107
E-mail: songwencheng@agri.gov.cn

Ms QIN Dongmei
Professor
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22, Maizidian Street, Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 5919 4078
Fax: +86 10 5919 4107
E-mail: qindongmei@agri.gov.cn

Mr GONG Yong
Senior Agronomist
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22, Maizidian Street, Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 5919 4077
Fax: +86 10 5919 4107
E-mail: gongyong@agri.gov.cn

Ms JIAN Qiu
Deputy Director
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No.22 Maizidian Street Chaoyang District
Beijing 100125, P.R. China
Tel: +86 10 5919 4033
Fax: +86 10 5919 4107
E-mail: jianqiu@agri.gov.cn
Mr ZHENG Zuntao
Chemist
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22, Maizidian Street, Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 5919 4078
Fax: +86 10 5919 4107
E-mail: zjuzzt@hotmail.com

Ms PIAO Xiuying
Chemist
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22, Maizidian Street, Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 5919 4077
Fax: +86 10 5919 4107
E-mail: piaoxiuying@agri.gov.cn

Ms QU Mengmeng
Environmental Specialist
Environmental Fate and Effect Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22 Maizidian Street Chaoyang District,
Beijing, 100125, P.R. China
Phone: +86 10 5919 4056
Fax: +86 10 5919 4111
E-mail: qumengmeng@agri.gov.cn

Ms SONG Junhua
Quality Control Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22 Maizidian Street Chaoyang District,
Beijing, 100125, P.R. China
Phone: +86 10 5919 4056
Fax: +86 10 5919 4111
E-mail: junesong@agri.gov.cn

Ms ZHANG Liying
Health Effects Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22 Maizidian Street, Chaoyang District,
Beijing, 100125, P.R. China
Phone: +86 10 5919 4084
Fax: +86 10 5919 4244
E-mail: zhangliying@agri.gov.cn

Ms LI Min
Health Effect Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22 Maizidian Street, Chaoyang District,
Beijing, 100125, P. R. China
Phone: +86 10 5919 4062
Fax: +86 10 5919 4244
E-mail: limin@agri.gov.cn

Ms KE Changjie
CCPR Secretariat
Institute for Control of the Agrochemicals
Ministry of Agriculture
Room 906, No. 18, Maizidian Street,
Chaoyang District
Beijing, 100125, P. R. China
Phone: +86 10 5919 4255
Fax: +86 10 5919 4252
E-mail: ccpr@agri.gov.cn

Ms XU Jun
Associate Professor
Institute of Plant Protection, Chinese Academy of Agricultural Sciences.
No.2 West Yuan Ming yuan Road Beijing 100193 P.R. China
Phone: 86-10-62815938
Fax: 86-10-62815938
E-mail: xujun19770927@163.com

Mr YOU Xiangwei
Department of Applied Chemistry, China Agricultural University
Yuanmingyuan Road, Haidian District, Beijing, 100193, P.R.China
Tel: +86-10-62731978
E-mail: youxiangwei001@163.com

Mr SUN Jianpeng
Residue Division
Institute for Control of the Agrochemicals
Ministry of Agriculture
No. 22, Maizidian Street, Chaoyang District
Beijing 100125, P.R. China
Phone: +86 10 6593 6997
Fax: +86 10 5919 4107
E-mail: cat186@163.com
Mr ZHANG Zhiyong
Institute of Food Safety, Jiangsu Academy of Agricultural Sciences
No.50, Zhongling Street, Xiaolingwei, Xuanwu District, Nanjing, Jiangsu, 210014, P. R. China
Phone: +86 25 8439 0401
Fax: +86 25 8439 0401
E-mail: yuzzy@163.com

Mr ZHAO Zuncheng
Institute of Plant Protection, Chinese Academy of Agricultural Sciences
No. 2 West Yuanming yuan Road
Beijing 100193 P.R. China
Phone: +86-10-62815938
Fax: +86-10-62815938
E-mail: zhaozuncheng@126.com
DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES

(At Step 8)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Chlorpyrifos-Methyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.01</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>AB 0269 Grape pomace, Dry</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.1 (fat)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.01 (*)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>FM 0183 Milk fats</td>
<td>0.01 (*)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.01 (*)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.01 (fat)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>143 Triazophos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP 0546 Soya bean (young pods)</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>194 Haloxyfop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP 0061 Beans, except broad bean and soya bean</td>
<td>0.5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VD 0524 Chick-pea (dry)</td>
<td>0.05</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.02 (*)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>AM 1051 Fodder beet</td>
<td>0.4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>0.02 (*)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.5 (fat)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>FM 0183 Milk fats</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>AL 0697 Peanut fodder</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VD 0072 Peas (dry)</td>
<td>0.2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VP 0063 Peas (pods and succulent-immature seeds)</td>
<td>0.7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VP 0064 Peas, Shelled (succulent seeds)</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.02 (*)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.7 (fat)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VR 0596 Sugar beet</td>
<td>0.4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SO 0702 Sunflower seed</td>
<td>0.3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>235 Fluopicolide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB 0041 Cabbages, Head</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VS 0624 Celery</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VL 0053 Leafy vegetables</td>
<td>30</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>10</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DT 1114 Tea, Green, Black (black, fermented and dried)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>6</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0402 Brussels sprouts</td>
<td>6</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VS 0624 Celery</td>
<td>20</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0021 Currants, Black, Red, White</td>
<td>20</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0042 Flowerhead brassicas (includes Broccoli: Broccoli, Chinese and Cauliflower)</td>
<td>5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0425 Gherkin</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0268 Gooseberry</td>
<td>20</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VA 0384 Leek</td>
<td>40</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0046 Melons, except watermelon</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VA 0386 Onion, Chinese</td>
<td>10</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VA 0387 Onion, Welsh</td>
<td>10</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0350 Papaya</td>
<td>20</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0697 Peanut</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0113 Poultry skin</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0070 Pulses</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0075 Root and tuber vegetables</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VA 0389 Spring Onion</td>
<td>10</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0431 Squash, summer</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Dinocap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0046 Melons, except watermelon</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0431 Squash, summer</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Cadusafos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI 0327 Banana</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Triazophos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP 0541 Soya bean (immature seeds)</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI 0327 Banana</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0264 Blackberries</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0040 Brassica (Cole or Cabbage) Vegetables, Head Cabbage, Flowerhead Brassicas</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0266 Dewberries (including boysenberry and loganberry)</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0440 Egg plant</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DH 1100 Hops, Dry</td>
<td>20</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.05 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>3 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FM 0183 Milk fats</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0485 Mustard greens</td>
<td>4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AL 0072 Pea hay or pea fodder (dry)</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0051 Peppers</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0070 Pulses</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0494 Radish leaves (including radish tops)</td>
<td>4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>OR 0495 Rapeseed oil, Edible</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0272 Raspberries, Red, Black</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0075 Root and tuber vegetables</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DT 1114 Tea, Green, Black (black, fermented and dried)</td>
<td>30</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>0.5 Po</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>CM 0654 Wheat bran, Unprocessed</td>
<td>2 PoP</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>CF 1210 Wheat germ</td>
<td>1 Po</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Fenpyroximate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.03</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DF 0269 Dried grapes (=currants, raisins and sultanas)</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0050 Fruiting vegetables other than cucurbits</td>
<td>0.2</td>
<td>5/8</td>
<td>Except sweet corn and mushrooms</td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0046 Melons, except watermelon</td>
<td>0.05 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.05 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>211 Fludioxonil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>10</td>
<td>Po</td>
<td>5/8</td>
</tr>
<tr>
<td>FI 0355 Pomegranate</td>
<td>2</td>
<td>Po</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0508 Sweet potato</td>
<td>10</td>
<td>Po</td>
<td>5/8</td>
</tr>
<tr>
<td>VR 0600 Yams</td>
<td>10</td>
<td>Po</td>
<td>5/8</td>
</tr>
<tr>
<td>217 Novaluron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0020 Blueberries</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0040 Brassica (Cole or Cabbage) Vegetables, Head Cabbage, Flowerhead Brassicas</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0464 Chard</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0526 Common bean (pods and/or immature seeds)</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0050 Fruiting vegetables other than cucurbits</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>10 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FM 0183 Milk fats</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0485 Mustard greens</td>
<td>25</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.5 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DF 0014 Prunes</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 0012 Stone fruits</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GS 0659 Sugar cane</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>219 Bifenazate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0264 Blackberries</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0266 Dewberries (including boysenberry and loganberry)</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0060 Legume vegetables</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0272 Raspberries, Red, Black</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>221 Boscalid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>OR 0001 Citrus oil, edible</td>
<td>50</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AB 0001 Citrus pulp, dry</td>
<td>6</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DH 1100 Hops, Dry</td>
<td>60</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0053 Leafy vegetables</td>
<td>40</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VS 0078 Stalk and Stem Vegetables</td>
<td>30</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>224 Difenoconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP 0061 Beans, except broad bean and soya bean</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0604 Ginseng</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.05 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.005 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0351 Passion fruit</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0063 Peas (pods and succulent=immature seeds)</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.03</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>230 Chlorantraniliprole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL 1020 Alfalfa fodder</td>
<td>50</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0018 Berries and other small fruits</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0040 Brassica (Cole or Cabbage) Vegetables, Head Cabbage, Flowerhead Brasicas</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>25</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.2 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FM 0183 Milk fats</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HH 0738 Mints</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GS 0659 Sugar cane</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0447 Sweet corn (corn-on-the-cob)</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>238 Clothianidin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS 0620 Artichoke, Globe</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>0.04</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0640 Barley straw and fodder, Dry</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0018 Berries and other small fruits</td>
<td>0.07</td>
<td>5/8</td>
<td>Except grapes</td>
</tr>
<tr>
<td>VB 0040 Brassica (Cole or Cabbage) Vegetables, Head Cabbage, Flowerhead Brasicas</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SB 0715 Cacao beans</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VS 0624 Celery</td>
<td>0.04</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SB 0716 Coffee beans</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0050 Fruiting vegetables other than cucurbits</td>
<td>0.05</td>
<td>5/8</td>
<td>Except sweet corn</td>
</tr>
<tr>
<td>VL 0053 Leafy vegetables</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0060 Legume vegetables</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>MO 0099 Liver of cattle, goats, pigs & sheep</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0088 Oilseed</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0350 Papaya</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AL 0072 Pea hay or pea fodder (dry)</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0672 Pecan</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0353 Pineapple</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0656 Popcorn</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DF 0014 Prunes</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0070 Pulses</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 0012 Stone fruits</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DT 1114 Tea, Green, Black (black, fermented and dried)</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0654 Wheat straw and fodder, Dry</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>239 Cyproconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0080 Cereal grains</td>
<td>0.08</td>
<td>5/8</td>
<td>Except maize, rice and sorghum</td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.02 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0072 Peas (dry)</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0064 Peas, Shelled (succulent seeds)</td>
<td>0.01</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>0.4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0541 Soya bean (dry)</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AL 0541 Soya bean fodder</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>OR 0541 Soya bean oil, Refined</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0081 Straw and fodder (dry) of cereal grains</td>
<td>5</td>
<td>5/8</td>
<td>Except maize, rice and sorghum</td>
</tr>
<tr>
<td>VR 0596 Sugar beet</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>240 Dicamba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS 0621 Asparagus</td>
<td>5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0640 Barley straw and fodder, Dry</td>
<td>50</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0691 Cotton seed</td>
<td>0.04 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>AS 0162 Hay or fodder (dry) of grasses</td>
<td>30</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>0.6</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.03</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.07</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.04</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0651 Sorghum</td>
<td>4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0651 Sorghum straw and fodder, Dry</td>
<td>8</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GS 0659 Sugar cane</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 1275 Sweet corn (kernels)</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0654 Wheat straw and fodder, Dry</td>
<td>50</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>

241 Etoxazole

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 0660 Almond hulls</td>
<td>3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>0.5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DH 1100 Hops, Dry</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.01 (*) (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HH 0738 Mints</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DT 1114 Tea, Green, Black (black, fermented and dried)</td>
<td>15</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0085 Tree nuts</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
</tbody>
</table>

242 Flubendiamide

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 0660 Almond hulls</td>
<td>10</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VB 0040 Brassica (Cole or Cabbage)</td>
<td>4</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MH 0105 Edible offal (mammalian)</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VC 0045 Fruiting vegetables, Cucurbits</td>
<td>0.2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VP 0060 Legume vegetables</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>5</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VL 0483 Lettuce, Leaf</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>2 (fat)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>FM 0183</td>
<td>Milk fats</td>
<td>5</td>
<td>5/8</td>
</tr>
<tr>
<td>AL 0072</td>
<td>Pea hay or pea fodder (dry)</td>
<td>40</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0051</td>
<td>Peppers</td>
<td>0.7</td>
<td>5/8</td>
</tr>
<tr>
<td>HS 0444</td>
<td>Peppers Chili, dried</td>
<td>7</td>
<td>5/8</td>
</tr>
<tr>
<td>FP 0009</td>
<td>Pome fruits</td>
<td>0.8</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0070</td>
<td>Pulses</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>AL 0541</td>
<td>Soya bean fodder</td>
<td>60</td>
<td>5/8</td>
</tr>
<tr>
<td>FS 0012</td>
<td>Stone fruits</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0447</td>
<td>Sweet corn (corn-on-the-cob)</td>
<td>0.02</td>
<td>5/8</td>
</tr>
<tr>
<td>DT 1114</td>
<td>Tea, Green, Black (black, fermented and dried)</td>
<td>50</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0448</td>
<td>Tomato</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>TN 0085</td>
<td>Tree nuts</td>
<td>0.1</td>
<td>5/8</td>
</tr>
</tbody>
</table>

243 Fluopyram

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC 0424</td>
<td>Cucumber</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>DF 0269</td>
<td>Dried grapes (=currants, raisins and sultanas)</td>
<td>5</td>
<td>5/8</td>
</tr>
<tr>
<td>MO 0105</td>
<td>Edible offal (mammalian)</td>
<td>0.7</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0269</td>
<td>Grapes</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>MM 0095</td>
<td>Meat (from mammals other than marine mammals)</td>
<td>0.1</td>
<td>5/8</td>
</tr>
<tr>
<td>ML 0106</td>
<td>Milks</td>
<td>0.07</td>
<td>5/8</td>
</tr>
</tbody>
</table>

244 Meptyldinocap

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC 0424</td>
<td>Cucumber</td>
<td>0.07</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0269</td>
<td>Grapes</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0046</td>
<td>Melons, except watermelon</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0431</td>
<td>Squash, summer</td>
<td>0.07</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0275</td>
<td>Strawberry</td>
<td>0.3</td>
<td>5/8</td>
</tr>
</tbody>
</table>

245 Thiamethoxam

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS 0620</td>
<td>Artichoke, Globe</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>FI 0327</td>
<td>Banana</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>GC 0640</td>
<td>Barley</td>
<td>0.4</td>
<td>5/8</td>
</tr>
<tr>
<td>AS 0640</td>
<td>Barley straw and fodder, Dry</td>
<td>2</td>
<td>5/8</td>
</tr>
<tr>
<td>FB 0018</td>
<td>Berries and other small fruits</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>VB 0040</td>
<td>Brassica (Cole or Cabbage) Vegetables, Head Cabbage, Flowerhead Brassicas</td>
<td>5</td>
<td>5/8</td>
</tr>
<tr>
<td>SB 0715</td>
<td>Cacao beans</td>
<td>0.02 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VS 0624</td>
<td>Celery</td>
<td>1</td>
<td>5/8</td>
</tr>
<tr>
<td>FC 0001</td>
<td>Citrus fruits</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>SB 0716</td>
<td>Coffee beans</td>
<td>0.2</td>
<td>5/8</td>
</tr>
<tr>
<td>MO 0105</td>
<td>Edible offal (mammalian)</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>PE 0112</td>
<td>Eggs</td>
<td>0.01 (*)</td>
<td>5/8</td>
</tr>
<tr>
<td>VC 0045</td>
<td>Fruiting vegetables, Cucurbits</td>
<td>0.5</td>
<td>5/8</td>
</tr>
<tr>
<td>VO 0050</td>
<td>Fruiting vegetables other than cucurbits</td>
<td>0.7</td>
<td>5/8</td>
</tr>
<tr>
<td>VL 0053</td>
<td>Leafy vegetables</td>
<td>3</td>
<td>5/8</td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>VP 0060</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0645</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0645</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>MM 0095</td>
<td>0.02</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>ML 0106</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>SO 0088</td>
<td>0.02 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0350</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AL 0072</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>TN 0672</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>HS 0444</td>
<td>7</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FI 0353</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FP 0009</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0656</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PO 0111</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>PM 0110</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VD 0070</td>
<td>0.04</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VR 0075</td>
<td>0.3</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>FS 0012</td>
<td>1</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>VO 0447</td>
<td>0.01 (*)</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>DT 1114</td>
<td>20</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>GC 0654</td>
<td>0.05</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>AS 0654</td>
<td>2</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Codex Number</td>
<td>Commodity</td>
<td>Pesticide</td>
<td>Recommended MRL mg/kg</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>028B</td>
<td>Fruit or berry</td>
<td>Carbaryl</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbendazim</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cypermethrin</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aldicarb</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifenthrin</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbosulfan</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyfluthrin</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyhalothrin</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deltamethrin</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fenvalerate</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methidathion</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methiocarb</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methomyl</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omethoate</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxamyl</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Profenofos</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triazophos</td>
<td>0.07</td>
</tr>
<tr>
<td>028D</td>
<td>Root or rhizome</td>
<td>Deltamethrin</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aldicarb</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifenthrin</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Captan</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbaryl</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbendazim</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbosulfan</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyfluthrin</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyhalothrin</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fenvalerate</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methidathion</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methiocarb</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omethoate</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxamyl</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Profenofos</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triazophos</td>
<td>0.1</td>
</tr>
</tbody>
</table>
PROPOSED DRAFT MAXIMUM RESIDUE LIMITS FOR PESTICIDES

(At Step 5)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>178 Bifenthrin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI 0345 Mango</td>
<td>0.5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>VO 0442 Okra</td>
<td>0.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>FI 0350 Papaya</td>
<td>0.4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>224 Difenoconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI 0350 Papaya</td>
<td>0.3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>238 Clothianidin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI 0327 Banana</td>
<td>0.02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DF 0269 Dried grapes (=currants, raisins and sultanas)</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.02 (*)</td>
<td>5</td>
<td>Except liver</td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>0.7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MF 0100 Mammalian fats (except milk fats)</td>
<td>0.02 (*)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.02 (*)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PF 0111 Poultry fats</td>
<td>0.01 (*)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.01 (*)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>GC 0649 Rice</td>
<td>0.5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>VR 0075 Root and tuber vegetables</td>
<td>0.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>GC 0651 Sorghum</td>
<td>0.01 (*)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>AS 0651 Sorghum straw and fodder, Dry</td>
<td>0.01 (*)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>VS 0078 Stalk and Stem Vegetables</td>
<td>0.04</td>
<td>5</td>
<td>Except artichoke and celery</td>
</tr>
<tr>
<td>GS 0659 Sugar cane</td>
<td>0.4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>VO 0447 Sweet corn (corn-on-the-cob)</td>
<td>0.01 (*)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Endosulfan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT 1114 Tea, Green, Black (black, fermented and dried)</td>
<td>30</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 0640 Barley</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>AS 0640 Barley straw and fodder, Dry</td>
<td>20</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VD 0071 Beans (dry)</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VB 0400 Broccoli</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VB 0402 Brussels sprouts</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VB 0401 Cabbages, Head</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0577 Carrot</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VB 0404 Cauliflower</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VS 0624 Celery</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HH 0624 Celery leaves</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0021 Currants, Black, Red, White</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0046 Melons, except watermelon</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HH 0740 Parsley</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>SO 0697 Peanut</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0431 Squash, summer</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0596 Sugar beet</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0447 Sweet corn (com-on-the-cob)</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>AS 0654 Wheat straw and fodder, Dry</td>
<td>20</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0433 Winter squash</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos-Methyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO 0812 Cattle, Edible offal of</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MF 0812 Cattle fat</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0812 Cattle meat</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PO 0840 Chicken, Edible offal of</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PF 0840 Chicken fat</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PM 0840 Chicken meat</td>
<td>0.05</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Procymidone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB 0041 Cabbages, Head</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0013 Cherries</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>VP 0526 Common bean (pods and/or immature seeds)</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VP 0528 Garden pea (young pods) (=succulent, immature seeds)</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VP 0529 Garden pea, Shelled (succulent seeds)</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0425 Gherkin</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0247 Peach</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0230 Pear</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0511 Peppers</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>50</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0014 Plums (including prunes)</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0272 Raspberries, Red, Black</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>SO 0702 Sunflower seed</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>OR 0702 Sunflower seed oil, Edible</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
</tbody>
</table>

159 **Vinclozolin**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB 0264 Blackberries</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0020 Blueberries</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VB 0041 Cabbages, Head</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0812 Cattle meat</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0812 Cattle milk</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VB 0404 Cauliflower</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0013 Cherries</td>
<td>5 Po</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PE 0840 Chicken eggs</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PM 0840 Chicken meat</td>
<td>(*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0469 Chicory, roots</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VP 0526 Common bean (pods and/or immature seeds)</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0424 Cucumber</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0021 Currants, Black, Red, White</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0266 Dewberries (including boysenberry and loganberry)</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VP 0529 Garden pea, Shelled (succulent seeds)</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0425 Gherkin</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0268 Gooseberry</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>DH 1100 Hops, Dry</td>
<td>40</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FI 0341 Kiwifruit</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VL 0482 Lettuce, Head</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VC 0046 Melons, except watermelon</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VA 0385 Onion, Bulb</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FS 0247 Peach</td>
<td>5 Po</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>HS 0444 Peppers Chili, dried</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0445 Peppers, Sweet (including pimento or pimiento)</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>SO 0495 Rape seed</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0272 Raspberries, Red, Black</td>
<td>5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0275 Strawberry</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VS 0469 Witloof chicory (sprouts)</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
</tbody>
</table>

174 Cadusafos

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 0327 Banana</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.02</td>
<td>CXL-D</td>
<td></td>
</tr>
</tbody>
</table>

178 Bifenthrin

<table>
<thead>
<tr>
<th>Commodity</th>
<th>MRL (mg/kg)</th>
<th>Step</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF 0812 Cattle fat</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 1280 Cattle kidney</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MO 1281 Cattle liver</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0812 Cattle meat</td>
<td>0.5 (fat)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0812 Cattle milk</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PO 0840 Chicken, Edible offal of</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PE 0840 Chicken eggs</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PF 0840 Chicken fat</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PM 0840 Chicken meat</td>
<td>0.05 (*) (fat)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FC 0203 Grapefruit</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>DH 1100 Hops, Dry</td>
<td>10</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FC 0204 Lemon</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0645 Maize</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>AS 0645 Maize fodder (dry)</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FC 0208 Orange, Sweet</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0230 Pear</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VR 0589 Potato</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>GC 0654 Wheat</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>CM 0654 Wheat bran, Unprocessed</td>
<td>2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>CF 1211 Wheat flour</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>AS 0654 Wheat straw and fodder, Dry</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>CF 1212 Wheat wholemeal</td>
<td>0.5</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>MRL (mg/kg)</td>
<td>Step</td>
<td>Note</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Fenpyroximate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 0226 Apple</td>
<td>0.3</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FC 0004 Oranges, Sweet, Sour (including Orange-like hybrids): several cultivars</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Haloxyfop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FP 0009 Pome fruits</td>
<td>0.05 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Fludioxonil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC 0001 Citrus fruits</td>
<td>7</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Novaluron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.7</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>10 (fat)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.4</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FM 0183 Milk fats</td>
<td>7</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PM 0110 Poultry meat</td>
<td>0.01 (*) (fat)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>VO 0448 Tomato</td>
<td>0.02 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Boscalid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL 0053 Leafy vegetables</td>
<td>30</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Difenoconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.2</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.05 (fat)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.005 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>Chlorantraniliprole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO 0105 Edible offal (mammalian)</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PE 0112 Eggs</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FB 0269 Grapes</td>
<td>1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>MM 0095 Meat (from mammals other than marine mammals)</td>
<td>0.01 (fat)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>ML 0106 Milks</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>FM 0183 Milk fats</td>
<td>0.1</td>
<td>CXL-D</td>
<td></td>
</tr>
<tr>
<td>PO 0111 Poultry, Edible offal of</td>
<td>0.01 (*)</td>
<td>CXL-D</td>
<td></td>
</tr>
</tbody>
</table>
MRLs for Spices recommended for Revocation

<table>
<thead>
<tr>
<th>Codex Number</th>
<th>Commodity</th>
<th>Pesticide</th>
<th>MRL mg/kg</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>028B</td>
<td>Fruit or berry</td>
<td>Cypermethrin</td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>
DRAFT REVISION OF THE CODEX CLASSIFICATION OF FOODS AND ANIMAL FEEDS:
“TREE NUTS”, “HERBS” AND “SPICES”

(At Step 7)

TREE NUTS

Class A

Type 4 Nuts and seeds

Group 022

Group Letter Code TN

Group 022, Tree nuts are the seeds of a variety of trees and shrubs, which are characterized by an inedible shell enclosing an oily seed. The seed is protected from pesticides applied during the growing season by the shell and other parts of the fruit. The edible portion of the nut is consumed in natural, dried or processed forms.

Portion of the commodity to which the MRL applies (and which is analysed): Whole commodity after removal of shell. Chestnuts: whole in skin.

Group 022

Tree nuts

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN 0085</td>
<td>Tree nuts (includes all commodities in this group)</td>
</tr>
<tr>
<td>TN 3100</td>
<td>African nut</td>
</tr>
<tr>
<td></td>
<td>Ricinodendron heudelotii (Baill.) Heckel</td>
</tr>
<tr>
<td>TN 0660</td>
<td>Almonds</td>
</tr>
<tr>
<td>TN 3101</td>
<td>Araucaria nut</td>
</tr>
<tr>
<td></td>
<td>Araucaria bidwillii Hook; A. angustifolia (Bertol.) Kuntze; A. araucana (Molina) K. Koch</td>
</tr>
<tr>
<td>TN 0661</td>
<td>Beech nuts</td>
</tr>
<tr>
<td></td>
<td>Fagus sylvatica L.; F. grandifolia Ehrh.</td>
</tr>
<tr>
<td>TN 3102</td>
<td>Betel nut</td>
</tr>
<tr>
<td></td>
<td>Areca catechu L.</td>
</tr>
<tr>
<td>TN 0662</td>
<td>Brazil nut</td>
</tr>
<tr>
<td></td>
<td>Bertholletia excelsa Humb. & Bonpl.</td>
</tr>
<tr>
<td></td>
<td>Brazilian pine, see Araucaria nut, TN 3101</td>
</tr>
<tr>
<td></td>
<td>Araucaria angustifolia (Bertol.) Kuntze</td>
</tr>
<tr>
<td></td>
<td>Bunya, see Araucaria nut, TN 3101</td>
</tr>
<tr>
<td></td>
<td>Araucaria bidwillii Hook</td>
</tr>
<tr>
<td></td>
<td>Bur oak, see Oak nut, TN 3107</td>
</tr>
<tr>
<td></td>
<td>Quercus macrocarpa Michx.</td>
</tr>
<tr>
<td></td>
<td>Bush nut, see Macadamia nut, TN 0669</td>
</tr>
<tr>
<td>Code</td>
<td>Name</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>TN 0663</td>
<td>Butter nut</td>
</tr>
<tr>
<td></td>
<td>- Cajou, see Cashew nut, TN 0295</td>
</tr>
<tr>
<td>TN 3103</td>
<td>Candle nut</td>
</tr>
<tr>
<td>TN 0295</td>
<td>Cashew nut</td>
</tr>
<tr>
<td></td>
<td>- Castanha-do-maranhão, see Pachira nut, TN 0670</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 0664</td>
<td>Chestnuts</td>
</tr>
<tr>
<td></td>
<td>- Chinquapin, see Chestnuts, TN 0664</td>
</tr>
<tr>
<td>TN 0665</td>
<td>Coconut</td>
</tr>
<tr>
<td>TN 3104</td>
<td>Dika nut</td>
</tr>
<tr>
<td></td>
<td>- Filberts, see Hazelnuts, TN 0666</td>
</tr>
<tr>
<td>TN 3105</td>
<td>Ginkgo</td>
</tr>
<tr>
<td></td>
<td>- Guiana chestnut, see Pachira nut, TN 0670</td>
</tr>
<tr>
<td></td>
<td>- Heartnut, see Walnuts, TN 0678</td>
</tr>
<tr>
<td>TN 0666</td>
<td>Hazelnuts</td>
</tr>
<tr>
<td>TN 0667</td>
<td>Hickory nuts</td>
</tr>
<tr>
<td>TN 0668</td>
<td>Japanese horse-chestnut</td>
</tr>
<tr>
<td></td>
<td>- Java almonds, see Pili nuts, TN 0673</td>
</tr>
</tbody>
</table>
TN 0669 Macadamia nuts

Macadamia ternifolia F. Muell.; _M. tetraphylla_ L.A.S. Johnson;
M.intregifolia Maiden & Betche

TN 3106 Mongongo

Schinziophyton rautanenii Schinz) Radcl.-Sm

- **Monkey-pot**, see Sapucaia nut, TN 0676

 Lecythis pisonis Cambess.

- **Monkey-puzzle**, see Araucaria nut, TN 3101

 Araucaria araucana (Molina) K. Koch

TN 3107 Oak nut

Quercus spp.

TN 3108 Okari nut

Terminalia kaembbachii Warb.

TN 0670 Pachira nut

Pachira insignis Savigny; _Pashira glabra_ Pasq.; _Pachira aquatica_ Aubl.

TN 0671 Paradise nut, see Sapucaia nut

Lecythis zabucajo Aubl.

TN 0672 Pecan

Carya illinoensis (Wangenh.) K. Koch

TN 3109 Pequi seed

Caryocar brasiliense Cambess.

- **Pignolia or Pignoli**, see Pine nuts, TN 0673

TN 0674 Pili nuts

Canarium ovatum Engl.; _C. luzonicum_ A Gray; _C. vulgare_ Leenh.;
C indicum L.

TN 0673 Pine nuts

Mainly _Pinus pinea_ L.; also

and other _Pinus_ species, except _P. armandii_ Franch. and _P. massoniana_ Lamb.

- **Pinocchi**, see Pine nuts, TN 0673

- **Piñon nut**, see Pine nuts, TN 0673

TN 0675 Pistachio nut

Pistachio vera L.

- **Queensland nut**, see Macadamia nut, TN 0669

TN 0676 Sapucaia nut

Lecythis zabucajo Aubl.; _L. minor_ Jacq.; _L. ollaria_ Loefl.; _L. pisonis_ Cambess
Tropical almond

Terminalia catappa L.

Walnuts

Juglans regia L.; *J. nigra* L.; *J. hindsii* Jeps. Ex R.E. Sm.; *J. microcarpa* Berland var. *microcarpa*;

Juglans ailantifolia var. *cordiformis* (Makino) Rehder

- Walnut, Black, see Walnuts, TN 0789

 Juglans nigra L.; *J. hindsii* Jeps. Ex R.E. Sm.; *J. microcarpa* Berland var. *microcarpa*

- Walnut, English; Walnut, Persian, see Walnuts, TN 0678

 Juglans regia L.

Yellow-horn

Xanthoceras sorbifolium Bunge

HERBS

Class A

Type 5

Herbs and spices Group 027 Group Letter Code HH

Herbs consist of leaves, flowers, stems and roots from a variety of (herbaceous) plants, used in relatively small amounts as condiments to flavour foods or beverages. They are used either in fresh or naturally dried form.

Herbs are fully exposed to pesticides applied during the growing season. Post-harvest treatments are often carried out on dried herbs.

Herbs are consumed as components of other foods in succulent and dried forms or as extracts of the succulent products.

The group Herbs is divided in two subgroups:

- 027A Herbs (herbaceous plants)
- 027B Leaves of woody plants (leaves of shrubs and trees)

Portion of the commodity to which the MRL applies (and which is analysed): **Whole commodity as marketed, mainly in the fresh form.**

Group 027 Herbs

Code No.

| HH 0092 | Herbs (includes all commodities in this group) |

Group 027A Herbs (herbaceous plants)

Code No.

| HH 2095 | Herbs (herbaceous plants) (includes all commodities in this subgroup) |

| HH 0720 | Angelica |

| HH 3190 | Anise |

| HH 0721 | Balm leaves |

Angelica archangelica L.; *A. sylvestris* L.

Pimpinella anisum L.

Melissa officinalis L.
HH 0722 Basil
 Ocimum basilicum L. Ocimum x citrodorum Vis.; O. minimum L.;
 O. americanum L.; O. gratissimum L.; O. tenuiflorum L.

HH 0724 Borage
 Borago officinalis L.

HH 3191 Borage, Indian
 Plectranthus amboinicus (Lour.) Spreng.

HH 0725 Burnet
 Sanguisorba officinalis L.; Sanguisorba minor Scop.

HH 3192 Calamint
 Calamintha grandiflora (L.) Moench; Calamintha nepeta (L.) Savi

HH 0737 Calendula, leaves [and flowers]
 Calendula officinalis L.

HH 3193 Caraway leaves
 Carum carvi L.

HH 0726 Catmint
 Nepeta cataria L.
 - Catnip, see Catmint, HH 0726

HH 0624 Celery leaves
 Apium graveolens L.; var. seccalinum (Alef) Mansf.
 - Chervil, leaves and flowers, VL 0465, see Group 013: Leafy vegetables

HH 0727 Chives, VA 2605, see Group 009: Bulb vegetables
 - Cilantro, see Coriander leaves HH 3194
 - Clary, see Sage (and related Salvia species), HH 0743
 Salvia sclarea L.

HH 3194 Coriander leaves
 Coriandrum sativum L.

HH 3195 Coriander, Bolivian
 Porophyllum ruderale (Jacq.) Cass.

HH 3196 Coriander, Vietnamese
 Persicaria odorata (Lour.) Sojak.

HH 0748 Costmary
 Tanacetum balsamita L.;

HH 3197 Cover fern
 Marsilea crenata C. Presl.

HH 3198 Culantro
 Eryngium foetidum L.
HH 3199 Curry plant
 Helichrysum italicum (Roth.) G. Don
- Daylily, see Group 009: Bulb vegetables, VA 2600
- Daylily flowers, see Edible flowers, HH 3200

HH 0730 Dill
 Anethum graveolens L.

HH 3201 Epazote
 Dysphania ambrosioides (L.) Mosyakin & Clemants
- Estragon, see Tarragon, HH 0749
- Fennel, Bulb, see Group 017: Stalk and Stem vegetables, VA 0380

HH 0731 Fennel leaves
 Foeniculum vulgare Mill.;

HH 3202 Fennel, Spanish
 Nigella hispanica L. and Nigella damascena L.

HH 3203 Fenugreek leaves
 Trigonella foenum-graecum L.

HH 3204 Geranium (lemon, rose)
 Pelargonium crispum (P.J. Bergius) L’Her and Pelargonium graveolens L’Her; Pelargonium tomentosum Jacq.; Pelargonium quercifolium (L.f.) L’Hér. ex Aiton and other scented varieties

HH 0732 Horehound
 Marrubium vulgare L.

HH 0733 Hyssop
 Hyssopus officinalis L.

HH 3205 Hyssop, anise
 Agastache foeniculum (Pursh) Kuntze; Agastache rugosa (Fisch. & C.A. Mey) Kuntze

HH 0734 Lavender
 Lavandula angustifolia Mill.;

HH 3206 Lemongrass
 Cymbopogon citratus (DC.) Stapf; C. flexuosus (Nees ex Steud.) Will. Watson

HH 0735 Lovage, leaves
 Levisticum officinale Koch.

HH 3207 Marigold
 Tagetes erecta L.; T. patula L.; T. lucida Cav.; T. tenuifolia Cav.

HH 0736 Marjoram
 Origanum marjorana L.; O. vulgare L. O. onites L.

HH 3208 Meadowsweet
 Filipendula ulmaria (L.) Maxim.
HH 0738 Mints
 Several Mentha species and hybrids; (see also individual Mints)
 including Mentha spicata L., syn: M. cordifolia Opiz ex Fresen.;
 M. x piperata L.; Mentha x gracilis Sole; M. aquatica L.; M. longifolia (L.) Huds.; M. arvensis L.; M. suaveolens Ehrh.

HH 3209 Mioga (shoots and flower buds)
 Zingiber mioga (Thunb.) Roscoe

HH 3210 Monarda
 - Mugwort, see see Southernwood, HH 0754
 Artemisia vulgaris L.
 - Myrrh, see Sweet Cicely, HH 0747

HH 0739 Nasturtium, leaves
 Tropaeolum majus L.; T. minus L.

HH 3211 Nettle
 Urtica dioica L.
 - Oregano, see Marjoram, HH 0736
 Origanum vulgare L.; O. onitus L.

HH 3212 Oregano, Mexican
 Lippia graveolens Kunth; L. micromera Schauer

HH 3213 Pandan leaves
 Pandanus amaryllifolius Roxb.

HH 0740 Parsley
 Petroselinum crispum (Mill.) Nyman ex A. W. Hill;
 syn: P. sativum Hoffm.; P. hortense auct.
 P. crispum var. neapolitanum Danert

HH 3214 Pennywort
 Centella asiatica (L.) Urb.
 - Peppermint, see Mints, HH 0738
 Mentha x piperita L.

HH 3215 Perilla
 Perrilla frutescens (L.) Britton var. crispa
 - Phak ka yaeng, see Rice paddy herb, HH 3217

HH 3216 Phak paew
 Trichodesma indicum (L.) Sm.

HH 3217 Rice paddy herb
 Limnophila chinensis (Osbeck) Merr.
 syn: Limnophila aromatica (Lam.) Merr.
HH 0741 Rosemary
 Rosmarinus officinalis L.

HH 0743 Sage and related Salvia species
 Salvia officinalis L.; S. sclarea L.; S. triloba L.

HH 0745 Savory, Summer; Winter
 Satureja hortensis L.; S. montana L.

HH 0746 Sorrel, Common, and related Rumex species
 among others Rumex acetosa L.; R. scutatus L.; R. patientia L.

HH 0754 Southernwood
 Artemisia abrotanum L.; A. pontica L.

- Spearmint, see Mints, HH 0738
 Mentha spicata L.;

HH 3218 Stevia
 Stevia rebaudiana (Bertoni) Bertoni

- Stink weed or Stinking, see Culantro, HH 3198
 Eryngium foetidum L.

- Swamp leaf, see Rice paddy herb, HH 3217

HH 0747 Sweet Cicely
 Myrrhis odorata (L.) Scop.

HH 0749 Tarragon
 Artemisia dracunculus L.; A. drancunculoides Pursh.

HH 0750 Thyme
 Thymus vulgaris L.; T. serpyllum L.;
 T. citriodorus (Pers.) Schreb. and Thymus hybrids.

- Vietnamese mint, see Coriander, Vietnamese, HH 3196
 Polygonum odoratum Lour.

HH 3219 Violet
 Viola odorata L.: V. tricolor L.

HH 3220 Wasabi leaves
 Wasabia japonica (Miq.) Matsum.

- Watercress, see Group 013: Leafy vegetables, VL 0473

HH 3221 Waterpepper, Japanese
 Persicaria hydropiper (L.) Delabre

HH 3322 Wild betle leaf bush
 Piper sarmentosum Roxb.

HH 0751 Winter cress, Common; American
 Barbarea vulgaris W.T. Aiton.; B. verna (Mill.) Asch.
HH 0752 Wintergreen leaves
 Gaultheria procumbens L.
 (not including herbs of the Wintergreen family (*Pyrolaceae*))

HH 3223 Yarrow
 Achillea millefolium L.

HH 3224 Yomogi
 Artemisia indica Willd. var. *maximowizii* (Nakai) H. Hara

Group 027B Leaves of woody plants

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH 2096</td>
<td>Leaves of woody plants (includes all commodities in this subgroup)</td>
</tr>
</tbody>
</table>
| HH 3230 | Aniseed myrtle
 Syzygium anisatum (Vickery) Craven & Bifen |
| | Bay leaves, see Laurel leaves HH 0723 |
| HH 3231 | Boldo |
| | *Peumus boldus* Molina |
| HH 0729 | Curry leaves
 Bergera koenigii L.
 syn: *Murraya koenigii* L. Sprengel |
| HH 3232 | Japanese pepper leaves
 Zanthoxylum piperitum (L.) DC. |
| HH 3233 | Kaffir lime leaves
 Citrus hystrix DC. |
| HH 0723 | Laurel leaves
 Laurus nobilis L. |
| HH 3234 | Lemon myrtle
 Backhousia citriodora F. Muell. |
| | Malabar leaf, see Tejpat leaves, HH 3237 |
| | Malabathrum, see Tejpat leaves, HH 3237 |
| HH 3235 | Native mint
 Prostanthera incise R. Br, *P. rotundifolia* R. Br. |

HH XXXX Pepper, leaves
 Piper spp.

HH 3236 Pepperbush, leaves
 Tasmiania lanceolata (Poir.) A.C. Sm.; *T. stipitata* (Vick.)

HH 0742 Rue
 Ruta graveolens L.
SPICES

Class A

Type 5 Herbs and spices Group 028 Group Letter Code HS

Group 028. Spices consist of the aromatic seeds, buds, roots, rhizomes, bark, pods, flowers or parts thereof, berries or other fruits from a variety of plants, which are used in relatively small quantities to flavour foods.

Spices are exposed in varying degrees to pesticides applied during the growing season. Also post harvest treatment may be applied to spices in the dried form.

They are consumed primarily in the dried form as condiments.

The group Spices is divided in eight subgroups:

028A Spices, seeds
028B Spices, fruit or berry
028C Spices, bark
028D Spices, root or rhizome
028E Spices, buds
028F Flower or stigma
028G Spices, aril
028H Spices, Citrus peel

Portion of the commodity to which MRL applies (and which is analysed): Unless specified, whole commodity as marketed, mainly in the dried form.

Group 028 Spices

Code No. Commodity
HS 0093 Spices (includes all commodities in this group)

Group 028A Seeds

Code No. Commodity
HS 0190 Spices, seeds (includes all commodities in this subgroup)
HS 3280 Achiote seeds
 Bixa orellana L.
HS 3281 Ajwain
 Trachyspermum ammi (L.) Sprague ex Turrill
 syn: T. copticum L.
HS 0720 Angelica seed
 Angelica archangelica L.; A. sylvestris L.
 - Aniseed, see Anise seed, HS 0771
HS 0771 Anise seed
 Pimpinella anisum L.
HS 0722 Basil seed
 Ocimum spp.

HS 3282 Black caraway
 Nigella sativa L.

HS 0774 Caraway seed
 Carum carvi L.

HS 0624 Celery seed
 Apium graveolens L.

HS 3283 Chia
 Salvia hispanica L.

HS 0779 Coriander, seed
 Coriandrum sativum L.

HS 3284 Culantro seed
 Eryngium foetidum L

HS 0780 Cumin seed
 Cuminum cyminum L.

HS 0730 Dill seed
 Anethum graveolens L.

HS 0731 Fennel, seed
 Foeniculum vulgare Mill.;
 syn: F. officinale All; F. capilaceum Gilib.

HS 0782 Fenugreek, seed
 Trigonella foenum-graecum L.; T. caerulea (L.) Ser.

HS 3285 Honewort seed
 Cryptotaenia japonica Hassk.

HS 0735 Lovage, seed
 Levisticum officinale Koch.

HS 3286 Mahaleb
 Prunus mahaleb L

HS 0789 Nutmeg
 Seed of Myristica fragrans Houtt.

HS 0740 Parsley seed
 Petroselinum crispum (Mill.) Nyman ex A. W. Hill;

- Poppy seed, SO 0495, see Group 023: Oilseed
- Sesame seed, SO 01700, see Group 023: Oilseed

HS 3287 Wattle seed
 Acacia victoriae Bent. and other spp.
Group 028B Fruit or berry

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0191</td>
<td>Spices, fruit or berries (includes all commodities in this subgroup)</td>
</tr>
<tr>
<td></td>
<td>Allspice fruit, see Pimento, HS 0792</td>
</tr>
<tr>
<td>HS 3290</td>
<td>Caper berries</td>
</tr>
<tr>
<td></td>
<td>Capparis spinosa L.</td>
</tr>
<tr>
<td>HS 0775</td>
<td>Cardamom (pods and seeds)</td>
</tr>
<tr>
<td></td>
<td>Elettaria cardamomum (L.) Maton</td>
</tr>
<tr>
<td></td>
<td>Amomum tsao-ko Crevost & Lemarié; A. subulatum Roxb.;</td>
</tr>
<tr>
<td></td>
<td>A. compactum Sol.ex Maton</td>
</tr>
<tr>
<td></td>
<td>Cardamom, black, see Cardamom, HS 0775</td>
</tr>
<tr>
<td>HS 3291</td>
<td>Cumin, black</td>
</tr>
<tr>
<td></td>
<td>Bunium persicum (Boiss.) B. Fedtsch.</td>
</tr>
<tr>
<td>HS 3292</td>
<td>Eucalyptus fruit</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus spp.</td>
</tr>
<tr>
<td>HS 3293</td>
<td>Gardenia fruit</td>
</tr>
<tr>
<td></td>
<td>Gardenia jasminoides J.Ellis</td>
</tr>
<tr>
<td>HS 0785</td>
<td>Grains of paradise</td>
</tr>
<tr>
<td></td>
<td>Aframomum melegueta (Rosc.) K Schum.;</td>
</tr>
<tr>
<td></td>
<td>syn: Amomum melegueta Rosc.</td>
</tr>
<tr>
<td>HS 3294</td>
<td>Grains of Selim</td>
</tr>
<tr>
<td></td>
<td>Xylopia aethiopica (Dunal) A. Rich.</td>
</tr>
<tr>
<td>HS 0786</td>
<td>Juniper, berry</td>
</tr>
<tr>
<td></td>
<td>Juniperis communis L.</td>
</tr>
<tr>
<td>HS 3295</td>
<td>Luo han guo</td>
</tr>
<tr>
<td></td>
<td>Siraitia grosvenorii (Swingle) C. Jeffry ex. A.M. Lu & Zhi Y. Zhang</td>
</tr>
<tr>
<td>HS 3296</td>
<td>Miracle fruit</td>
</tr>
<tr>
<td></td>
<td>Synsepalum dulciferum (Scumach. & Thonn.) Daniell</td>
</tr>
<tr>
<td>HS 0739</td>
<td>Nasturtium pods</td>
</tr>
<tr>
<td></td>
<td>Tropaeolum majus L.; T. Minus L.</td>
</tr>
<tr>
<td>HS 0790</td>
<td>Pepper, Black; White; Pink; Green (see Note 1)</td>
</tr>
<tr>
<td></td>
<td>Piper nigrum L.</td>
</tr>
<tr>
<td>HS 3297</td>
<td>Pepper, Cubeb</td>
</tr>
<tr>
<td></td>
<td>Piper cuceba L. f.</td>
</tr>
<tr>
<td>HS 0791</td>
<td>Pepper, Long</td>
</tr>
<tr>
<td></td>
<td>Piper longum L.; P. retrofractum Vahl.;</td>
</tr>
</tbody>
</table>
Group 028C Bark

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0192</td>
<td>Spices, bark (includes all commodities in this subgroup)</td>
</tr>
<tr>
<td></td>
<td>- Cassia bark, see Cinnamon bark (including Cinnamon, Chinese bark), HS 0777</td>
</tr>
<tr>
<td></td>
<td>Cinnamomum aromaticum Nees;</td>
</tr>
<tr>
<td>HS 0777</td>
<td>Cinnamon bark (including Cinnamon, Chinese bark)</td>
</tr>
<tr>
<td></td>
<td>Cinnamomum verum J. Presl., syn: Cinnamomum zeylanicum Blume;</td>
</tr>
<tr>
<td></td>
<td>C. aromaticum Nees; C. burmannii (Nees & T. Nees) Blume; C. loureiroi Nees;</td>
</tr>
<tr>
<td>HS 3310</td>
<td>Eucalyptus bark</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus spp.</td>
</tr>
<tr>
<td>HS 3311</td>
<td>Mastic</td>
</tr>
<tr>
<td></td>
<td>Pistacia lentiscus L.</td>
</tr>
<tr>
<td></td>
<td>- Quinine, see Red cinchona, HS 3312</td>
</tr>
<tr>
<td>HS 3312</td>
<td>Red cinchona</td>
</tr>
<tr>
<td></td>
<td>Cinchona pubescens Vahkl; C. officinalis L.</td>
</tr>
</tbody>
</table>

Group 028D Root or rhizome

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0193</td>
<td>Spices, root or rhizome (includes all commodities in this subgroup)</td>
</tr>
<tr>
<td></td>
<td>- Angelica, root, stem and leaves, see Group 027: Herbs, Angelica HH 0720</td>
</tr>
<tr>
<td>HS 3320</td>
<td>Asafoetida (see Note 2)</td>
</tr>
<tr>
<td></td>
<td>Ferula foetida (Bunge) Regel; F. assa-foetida L.</td>
</tr>
</tbody>
</table>
HS 3321 Coriander, root
Coriandrum sativum L.

HS 3322 Fingerroot
Boesenbergia rotunda (L.) Mansf.
syn: B. pandurata (Roxb.) Schltr.

HS 0783 Galangal, rhizomes
Languas galanga (L.) Stunz; syn: Alpinia galanga Sw.;
Languas officinarum (Hance) Farwell;
syn: Alpinia officinarum Hance
Kaempferia galanga L.

HS 0784 Ginger, rhizomes
Zingiber officinale Rosc.
- Horseradish, see VR 0583, Group 016: Root and Tuber vegetables
- Krachai, see Fingerroot, HS 3322
- Licorice, see Liquorice, roots, HS 0787

HS 0787 Liquorice, roots
Glycyrrhiza glabra L.

HS 3323 Lovage, roots
Levisticum officinale Koch.

HS 0794 Turmeric, root
Curcuma longa L.; C. mangga Valeton & van Zijp

HS 3324 Zedoary
Curcuma zedoaria (Cristm.) Roscoe

Group 028E Buds

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0194</td>
<td>Spices, buds (includes all commodities in this subgroup)</td>
</tr>
</tbody>
</table>
| HS 0773 | Caper buds
Capparis spinosa L. |
| HS 0776 | Cassia buds
Cinnamomum aromaticum (L.) Nees |
| HS 0778 | Cloves, buds
Syzygium aromaticum (L.) Merr. & Perr.;
syn: Eugenia caryophyllus (Sprengel) Bullock & Harrison; E. aromatica Kuntze; E. caryophyllata Thunb.; Caryophyllus aromaticus L. |

Group 028F Flower or stigma

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0195</td>
<td>Spices, flower or stigma (includes all commodities in this subgroup)</td>
</tr>
</tbody>
</table>
HS 3340 Saffron
Crocus sativus L.

Group 028G Aril

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0196</td>
<td>Spices, aril (includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>HS 0788</td>
<td>Mace</td>
</tr>
</tbody>
</table>

Dried aril of *Myristica fragrans* Hout.

Group 028H Citrus Peel

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS 0197</td>
<td>Spices, Citrus peel (includes all commodities in this subgroup)</td>
</tr>
</tbody>
</table>
| HS 2206 | Kaffir lime peel
Citrus histrix DC. |
| HS 3350 | Satsuma mandarin peel
Citrus unshiu Marcow. |
| HS 2211 | Yuja peel
Citrus junos Siebold ex Tanaka |

Yuzu peel, see Yuja peel, HS 2211

Note 1: Although white pepper is in principle a processed food belonging to Type 13: Derived products of plant origin, it is listed for convenience in Group 028 Spices. White pepper is prepared from Black pepper, *Piper nigrum* L.: The seeds are retted in water and dried after removal of the mesocarp. The resulting white pepper may or may not be ground into powder. The scientific name of green pepper and pink pepper is *Piper nigrum* L. Pink pepper is mature pepper. Green pepper is an immature stage of pink pepper.

Note 2: Asafoetida is not only marketed as root, but also as products (resin, powder, flour), which are produced from a gum of the root.
APPENDIX VII

DRAFT REVISION OF THE CODEX CLASSIFICATION OF FOODS AND ANIMAL FEEDS: "HERBS"

(At Step 6)

<table>
<thead>
<tr>
<th>Group 027</th>
<th>Herbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 027A</td>
<td>Herbs (herbaceous plants)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[HH 3200</td>
<td>Edible flowers</td>
</tr>
</tbody>
</table>

Calendula flowers, *Calendula officinalis* L.; Geranium (lemon, rose), *Pelargonium crispum* (P.J. Bergius) L’Her and *Pelargonium graveolens* L’Her; Common daisy, *Bellis perennis* L. and other edible flowers]
APPENDIX VIII

PROPOSED DRAFT REVISION OF THE CODEX CLASSIFICATION OF FOODS AND ANIMAL FEEDS: “ASSORTED TROPICAL AND SUB-TROPICAL FRUITS EDIBLE PEEL” AND “ASSORTED TROPICAL AND SUB-TROPICAL FRUITS-INEDIBLE PEEL”

(At Step 5)

ASSORTED TROPICAL AND SUB-TROPICAL FRUITS - EDIBLE PEEL

Class A

Type 1 Fruits Group 005 Group Letter Code FT

The Assorted tropical and sub-tropical fruits - edible peel are derived from the immature or mature fruits of a large variety of perennial plants, usually shrubs or trees. The fruits are fully exposed to pesticides during the growing season (period of fruit development).

The whole fruit may be consumed in a succulent or processed form.

The group 005 Miscellaneous fruits – edible peel is divided in 3 subgroups:

005 A Assorted tropical and sub-tropical fruits - edible peel – small
005 B Assorted tropical and sub-tropical fruits - edible peel – medium to large
005 C Assorted tropical and sub-tropical fruits - edible peel – palms

Portion of the commodity to which the MRL applies (and which is analysed): Whole commodity. Dates and Olives: Whole commodity after removal of stems and stones but residue calculated and expressed on the whole fruit.

Group 005 Assorted tropical and sub-tropical fruits - edible peel

Code No. Commodity
FT 0026 Assorted tropical and sub-tropical fruits - edible peel

Group 005A Assorted tropical and sub-tropical fruits - edible peel – small

Code No. Commodity
FT 2011 Assorted tropical and sub-tropical fruits - edible peel – small
 (includes all commodities in this subgroup)
 - Acerola, see Barbados cherry, FT 0287
FT 2300 African plum
 Vitex doniana Sweet
FT 2301 Almondette
 Buchanania lanzan Spreng.
FT 2302 Apple berry
 Billardiera scandens Sm.
FT 0286 Arbutus berry
 Arbutus unedo L.
FT 0287 Barbados cherry
 Malpighia emarginata DC.; syn: M. glabra L.
FT 2303 Bayberry, Red
 Morella rubra Lour
FT 2304 Bignay
 Antidesma bunius (L.) Spreng.
FT 2305 Breadnut
Bosimum alicastrum Sw.
- Brazilian cherry, see Grumichana, FT 0298

FT 2306 Cabeluda
Plinia glomerata (O. Berg) Amshoff
- Camu-camu, see Rumberry, FT 2328
- Caranda, see Karanda FT 0290

FT 2307 Carandas plum
Carissa edulis Vahl.

FT 2308 Ceylon iron wood
Manilkara hexandra (Roxb.) Dubard

FT 2309 Ceylon olive
Elaeocarpus serratus L.

FT 2310 Cherry-of-the-Rio-Grande
Eugenia aggregate (Vell.) Kiaersk.

FT 0293 Chinese olive, Black, White
Canarium tramdenuem C.D.Dai&Yakovlev; Syn: C pimela Koenig
Canarium album (Lour.) Raeusch.

FT 2311 Chiraulinut
Buchanania latifolia Roxb.

FT 0294 Coco plum
Chrysobalanus icaco L.

FT 0296 Desert date
Balanites aegiptiacus (L.)Delile

FT 2312 False sandalwood
Ximenia americana L.

FT 2313 Fragrant manjack
Cordia dichotoma G. Forst.

FT 2314 Gooseberry, Abyssinian
Dovyalis abyssinica (A. Rich.) Warb.

FT 2315 Gooseberry, Ceylon
Dovyalis hebecarpa (Gardner) Warb.

FT 2316 Governor's plum
Flacourtia indica (Burm.1F) Merr.;
Flacourtia inermis Roxb.;
Flacourtia rukam Zoll.&Moritzi;
Flacourtia jangomas (Lour.)Raeusch.
FT 0298 Grumichama
 Eugenia brasiliensis Lam.
 Syn: *Eugenia dombeyi* (Spreng.) Skeels

FT 2317 Guabiroba
 Campomanesia xanthocarpa O. Berg

FT 2318 Guava berry
 Myrciaria floribunda (H. West ex Willd.) O. Berg
- Icaco plum, See Coco plum, FT 0294

FT 2319 Illawara plum
 Podocarpus elatus R. Br. Ex Endl.
- Herbert river cherry, See Bignay, FT 2304

FT 0299 Hog plum (= Mombin, yellow)
 Spondias mombin L.;
 syn: *S. lutea* L.
- Indian plum, See Governor's plum, FT 2316

FT 2320 Jamaica cherry
 Muntingia calabura L.

FT 0339 Jambolan
 Zygisium cuminii (L.) Skeels;
 syn: *Eugenia cuminii* (L.) Druce;

FT 0340 Java apple (=Wax jambu)
 Syzigium samarangense (Bl.) Merr. & Perry;
 Syn: *Eugenia javanica* Lam

FT 0302 Jujube, Chinese
 Ziziphus jujuba Mill.

FT 2321 Kaffir plum
 Harpephyllum caffrum Bernh. Ex C. Krauss

FT 2322 Kakadu plum
 Terminalia latipes Benth. Subsp. *psilicarpa* Pedley

FT 2323 Kapundung
 Baccaurea racemosa (Reinw.) Müll. Arg.

FT 0290 Karanda)
 Carissa carandas L.

FT 0303 Kumquats
 Fortunella japonica (Thunberg) Swingle;
 F. margarita (Loureiro) Swingle
- **Kumquat, Marumi**, see Kumquats, FT 0303
 Fortunella japonica (Thunberg) Swingle

- **Kumquat, Nagami**, see Kumquats, FT 0303
 Fortunella margarita (Loureiro) Swingle

FT 2324 *Lemon aspen*
 Acronychia acidula F. Muell.

[FT 2325 *Limequats*](#)

 Citrus japonica × *Citrus aurantifolia*

- **Maya breadfruit**, See Breadnut

FT 2326 *Monos plum*
 Pseudanamomis umbellulifera (Kunth) Kausel

FT 2327 *Mountain cherry*
 Bunchosia cornifolia Kunth

FT 0306 **Otaheite gooseberry**
 Phyllantus acidus (L.) Skeels

 syn: *Ph. distichus* (L.) Muell.-Arg.

- **Olives for oil production**, see Group 023 Oilseed

FT 2328 **Persimmon, Black**
 Diospyros texana Scheele

FT 2329 **Pitomba**
 Eugenia luschnathiana Klotzsch ex O. Berg

- **Plum-of-Martinique**, See Governor's plum, FT 2316

- **Rukam**, See Governor's plum, FT 2316

FT 2330 **Rumberry**
 Myrciaria dubia (Kunth) Mc Vaugh

FT 0310 **Sea grape**
 Coccoloba uvifera Jacq.

FT 2331 **Sete-capotes**
 Campomanesia guazimifolia (Cambess.) O. Berg

FT 2332 **Silver aspen**
 Acronychia wilcoxiana (F. Muell.) T.G. Hartley

FT 0305 **Table Olives**
 Olea europaea L., var. *europaea*

- **Tree strawberry**, see Arbutus berry, FT 0286

FT 2333 **Water apple**
 Syzygium aqueum (Burm. F.) Alston
FT 2334 Water berry
 Syzygium cordatum Hochst. Ex C. Krauss

FT 2335 Water pear
 Syzygium guineense (Willd.) DC

- Yumberry, See Bayberry, Red, FT 2303

Group 005B Assorted tropical and sub-tropical fruits - edible peel – medium to large

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT 2012</td>
<td>Assorted tropical and sub-tropical fruits - edible peel – large</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in this subgroup)</td>
</tr>
</tbody>
</table>

FT 0285 Ambarella
 Spondias dulcis Sol. Ex Parkinson;
 syn: S. cytherea Sonn.

- Aonla, See Gooseberry, Indian, FT 2356

FT 2350 Arazá
 Eugenia stipitata Mac Vaugh

FT 2351 Babaco
 Vasconcella x heilbornii (V.M. Badillo) V.M. Badillo

FT 0288 Bilimbi
 Averrhoa bilimbi L.

FT 2352 Cajou (pseudofruit)
 Anacardium giganteum Hance ex Engl.

FT 2353 Cambucá
 Marlierea edulis Nied.

FT 0289 Carambola
 Averrhoa carambola L.

FT 0291 Carob
 Ceratonia siliqua L.

FT 0292 Cashew apple
 Anacardium occidentale L.

FT 2354 Ciruela verde
 Bunchosia armeniaca (Cav.) DC.

FT 2355 Davidson plum
 Davidsonia pruriens F. Muell

FT 0297 Fig
 Ficus carica L.

FT 2356 Gooseberry, Indian
 Phyllanthus emblica L.
FT 0336 Guava
Psidium guajava L.

FT 2357 Guava, Brazilian
Psidium guineense Sw.

FT 2358 Guava, Cattley
Psidium cattleianum Sabine

FT 2359 Guava, Costa Rican
Psidium friedrichstalianum (O. Berg) Nied.

FT 2360 Guava, Para
Psidium acutangulum DC.

FT 2361 Guayabillo
Psidium sartorianum (O. Berg) Nied.

FT 2362 Imbé
Garcinia livingstonei T. Anderson

FT 2363 Imbu
Spondias tuberosa Arruda ex Kost.

- Indian mulberry, See Noni, FT 2371

FT 0300 Jaboticaba
Myrciaria cauliflora O. Berg.;
syn: Eugenia cauliflora DC.

FT 0301 Jujube, Indian
Ziziphus mauritania Lam.;

- Kaki or Kaki fruit, See Persimmon, japanese, FT 0307

FT 2364 Kwai muk
Artocarpus hypargyreus Hance ex Benth.

- Locust tree, See carob, FT 0291

FT 2365 Mangaba
Hancornia speciosa Gomes

FT 2366 Marian plum
Bouea macrophylla Griff

FT 2367 Mombin, Malayan
Spondias pinnata (J. Koenig. ex L. f.) Kurz

FT 2368 Mombin, Purple
Spondias purpurea L.
REP11/PR Appendix VIII

FT 2369
Monkey fruit
Autocarpus lacucha Buch.-Ham.

- **Muriti**, see Nance, FT 2370

FT 2370
Nance
Byrsonima crassifolia (L.) Kunth

FT 0304
Natal plum
Carissa macrocarpa (Eckl.) A.DC.

Syn: *C. grandiflora* (E, Mey) A.DC.

FT 2371
Noni
Morinda citrifolia L.

FT 2372
Papaya, Mountain
Vasconcellea pubescens A. DC.

[FT 0307
Persimmon Chinese, see Persimmon, Japanese, FT 0307

FT 0307
Persimmon, Japanese
Diospyros Kaki Thunb.;

syn: *D. chinensis* Blume]

- **Pitanga**, see Surinam Cherry, FT 0311

FT 0308
Pomerac
Syzygium Malaccense (L.) Merr. et Perry;

syn: *Eugenia malaccensis* L.

- **Pomarrosa**, see Rose apple, FT 0309
- **Pomarrosa, Malay**, see Pomerac, FT 0308
- **Purple strawberry guava**, see Guava, Cattley, FT 2357

FT 2373
Rambai
Baccaurea motleyana (Müll. Arg.) Müll. Arg

FT 0309
Rose apple
Syzigium jambos (L.) Alston;

syn: *Eugenia jambos* L.

FT 0364
Sentul
Sandoricum koetjape (Burm.F) Merr.

- **Strawberry guava**, see Gauva, Cattley, FT 2357
- **St. John's bread**, see Carob, FT 0291

FT 0311
Surinam cherry
Eugenia uniflora L.

[FT 0369
Tamarind, see also Subgroup 28B Spices: Fruit or berry

Tamarindus indica L., sweet varieties]

- **Umbu**, see Imbu FT 2362
Uvalha

Eugenia pyriformis Cambess

- **Yellow strawberry guava**, See Guava, Cattley, FT 2357

Group 005C Assorted tropical and sub-tropical fruits - edible peel – palms

Code No.

Commodity

FT 2013 Assorted tropical and sub-tropical fruits - edible peel - palms

(includes all commodities in this subgroup)

FT 2400 Açaí

Euterpe oleracea Mart.

FT 2401 Apak palm

Brahea dulcis (Kunth) Mart.

- **Assai palm**, see Açaí, FT 2400

FT 2402 Bacaba palm

Oenocarpus bacaba Mart.

FT 2403 Babaca-de-leque

Oenocarpus distichus

FT 0295 Date

Phoenix dactylifera L.

FI 0333 Doum or Dum palm

Hyphaene thebaica (L.) Mart.

FT 2404 Jelly palm

Butia capitata (Mart.) Becc.

FT 2405 Patauá

Oenocarpus bataua Mart.

FT 2406 Peach palm

Bactris gasipaes Kunth var. *gasipaes*

ASSORTED TROPICAL AND SUB-TROPICAL FRUITS - INEDIBLE PEEL

Class A

Type 1

Fruits Group 006 Group Letter Code FI

The Assorted tropical and sub-tropical fruits - inedible peel are derived from the immature or mature fruits of a large variety of perennial plants, usually shrubs or trees. Fruits are fully exposed to pesticides applied during the growing season (period of fruit development) but the edible portion is protected by skin, peel or husk. The edible part of the fruits may be consumed in a fresh or processed form.

The group Miscellaneous fruits – inedible peel is divided in 5-6 subgroups:

- **006A** Assorted tropical and sub-tropical fruits - inedible peel – small
- **006B** Assorted tropical and sub-tropical fruits - inedible smooth peel - large
- **006C** Assorted tropical and sub-tropical fruits - inedible rough or hairy peel - large
- **006D** Assorted tropical and sub-tropical fruits - inedible peel - cactus
- **006E** Assorted tropical and sub-tropical fruits - inedible peel - vines
- **006F** Assorted tropical and sub-tropical fruits - inedible peel - palms
Portion of the commodity to which the MRL applies (and which is analysed): Whole fruit unless qualified: e.g., banana pulp. Pineapple after removal of crown. Avocado, mangos and similar fruit with hard seeds: Whole commodity after removal of stone but calculated on whole fruit.

Group 006 Assorted tropical and sub-tropical fruits - inedible peel

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 0030</td>
<td>Assorted tropical and sub-tropical fruits - inedible peel</td>
</tr>
</tbody>
</table>

006A Assorted tropical and sub-tropical fruits - inedible peel – small

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 2021</td>
<td>Assorted tropical and sub-tropical fruits - inedible peel – small</td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>FI 2450</td>
<td>Ai-sen</td>
</tr>
<tr>
<td></td>
<td>Boscia senegalensis (Pers.) Lam</td>
</tr>
<tr>
<td>FI 2451</td>
<td>Bael fruit</td>
</tr>
<tr>
<td></td>
<td>Aegle marmelos (L.) Corrêa</td>
</tr>
<tr>
<td>FI 2452</td>
<td>Burmnese grape</td>
</tr>
<tr>
<td></td>
<td>Baccaurea ramiflora Lou.</td>
</tr>
<tr>
<td>-</td>
<td>Cat’s eyes</td>
</tr>
<tr>
<td></td>
<td>Dimocarpus Longan Lou. subsp. malesianus Leenh., see Longan FI 0342</td>
</tr>
<tr>
<td>FI 2453</td>
<td>Ingá</td>
</tr>
<tr>
<td></td>
<td>Inga vera Willd. subsp affinis (DC.) T.D. Penn.</td>
</tr>
<tr>
<td>FI 0343</td>
<td>Litchi</td>
</tr>
<tr>
<td></td>
<td>Litchi chinensis Sonn.; syn: Nephelium litchi Camb.</td>
</tr>
<tr>
<td>FI 0342</td>
<td>Longan, see Codex stan. 220-1999</td>
</tr>
<tr>
<td></td>
<td>Dimocarpus longan Lou. syn: Nephelium longana (Lam.) Camb.; Euphoria longana Lam.</td>
</tr>
<tr>
<td>FI 2454</td>
<td>Madras-thorn</td>
</tr>
<tr>
<td></td>
<td>Pithecellobium dulce (Roxb.) benth</td>
</tr>
<tr>
<td>FI 2455</td>
<td>Manduro</td>
</tr>
<tr>
<td></td>
<td>Balanites maughamii Sprague</td>
</tr>
<tr>
<td>FI 2456</td>
<td>Matisia</td>
</tr>
<tr>
<td></td>
<td>Matisia cordata Humb. & Bonpl.</td>
</tr>
<tr>
<td>FI 2457</td>
<td>Mesquite</td>
</tr>
<tr>
<td></td>
<td>Prosopis juliflora (Sw.) DC.</td>
</tr>
<tr>
<td>FI 2458</td>
<td>Mongongo</td>
</tr>
<tr>
<td></td>
<td>Schinziophyton rautanenii (Schinz) Radcl.-Sm</td>
</tr>
<tr>
<td>FI 2459</td>
<td>Pawpaw, Small-flower</td>
</tr>
<tr>
<td></td>
<td>Asimina parviflora (Michx.) Dunal</td>
</tr>
</tbody>
</table>
FI 2460 Satinleaf
Chrysophyllum oliviforme L.

FI 2461 Sierra Leone-tamarind
Dallium guineense Willd.

FI 0366 Spanish lime
Melicocca bijugatus Jacq.;
syn: *Melicocca bijuga* L.

FI 2462 Velvet tamarind
Dallium indicum L.

FI 2463 Wampi
Clausena lansium (Lour.) Skeels

FI 2464 White star apple
Chrysophyllum albidum G. Don

006B Assorted tropical and sub-tropical fruits - inedible smooth peel - large

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
</table>
| FI 2022 | Assorted tropical and sub-tropical fruits - inedible smooth peel – large
(includes all commodities in this subgroup) |
| FI 2480 | Abiu
Pouteria caimito (Ruiz & Pav.) Radlk. |
| FI 0325 | Akee apple
Blighia sapida K.D. Koenig |
| FI 0326 | Avocado
Persea americana Mill. |
| FI 2481 | Bacuri
Platonia insignis Mart. |
| FI 0327 | Banana
Subsp. and cultivars of *Musa* ssp. and hybrids
- Banana, Dwarf, See Banana, FI 0327
 Musa hybrids, AAA group;
 syn: *M. cavendishii* Lambert; *M. nana* Lour. |
| FI 2482 | Binjai
Mangifera caesia Jack |
| FI 0330 | Canistel
Pouteria campechiana (Kunth.) Baenhi; this species includes former *Lacuna nervosa* A.DC. and *L. salicifolia* Kunth. |
| FI 2483 | Cupuaçú
Theobroma grandiflorum (Willd. ex Spreng.) K. Schum.
- Egg fruit, see Canistel, FI 0330 |
FI 2484 Etambe
Mangifera zeylanica (Blume) Hook. F.

FI 0335 Feijoa
Acca sellowiana (O. Berg) Burret
syn: Feijoa sellowiana (O. Berg) O. berg

FI 2485 Jatobá
Hymenaea courbaril L.

FI 2486 Kei apple
Dovyalis caffra (Hook. F. & Harv.) Warb.

FI 2487 Kokam
Garcinia indica (Thouars) Choisy

FI 2488 Langsat
Lansium domesticum Corrêa
Syn: Aglaia domestica; A. dookoo

FI 2489 Lanjut
Mangifera legenifera Griff.

FI 2490 Lucuma
Pouteria lucuma (Ruiz & Pav.) Kuntze

FI 2491 Mabolo
Diospyros blancoi A. DC.

FI 0345 Mango
Mangifera indica L.

FI 2492 Mango, Horse
Mangifera foetida Lour.

FI 2493 Mango, Saipan
Mangifera odorata Griff.

FI 0346 Mangostan
Garcinia mangostana L.

FI 0349 Naranjilla
Solanum quitoense Lam.

FI 2494 Paho
Mangifera altissima Blanco

FI 0350 Papaya
Carica papaya L.
FI 2495 Pawpaw
 Asimina triloba (L.) Dunal

FI 2496 Pelipisan
 Mangifera casturi Kosterm.

FI 2497 Pequi
 Caryocar brasiliense Cambess.; *C villosum* (Aubl.) Pers

FI 0352 Persimmon, American
 Diospyros virginiana L.
 - Plantain, See Banana, FI 0327
 Musa x paradisiaca L., var. *sapientum* (L.) Kuntze

FI 0355 Pomegranate
 Punica granatum L.

FI 2498 Quandong
 Satalum acuminatum (R. Br.) DC.
 - Quito orange, see Naranjilla, FI 0349

FI 0360 Sapote, Black
 Diospyros digyna Jacq.
 Syn: *D.ebenaster* Retz.

FI 0361 Sapote, Green
 Pouteria viridis (Pittier) Cronquist
 Syn: *Calocarpum viride* Pitt.

FI 0363 Sapote, White
 Casimiroa edulis La Llave & Lex

FI 2499 Sataw
 Parkia speciosa Hassk

FI 0367 Star apple
 Chrysophyllum cainito L.

FI 0312 Tamarillo,
 Solanum betaceum Cav.
 Syn: *Cyphomandra betacea* (Cav.) Sendt

FI 2500 Tamarind-of-the-Indies
 Vangueria madagascariensis J.F/Gmel.
 - Tree tomato, See Tamarillo, FI 0312

FI 2501 Wild loquat
 Uapaca kirkiana Müll. Agr.
<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 2023</td>
<td>Assorted tropical and sub-tropical fruits – inedible rough or hairy peel - large</td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>FI 2520</td>
<td>Atemoya</td>
</tr>
<tr>
<td></td>
<td>Annona x atemoya Mabb.</td>
</tr>
<tr>
<td></td>
<td>- Baobab fruit, see Monkey-bread tree FI 2524</td>
</tr>
<tr>
<td>FI 2521</td>
<td>Biriba</td>
</tr>
<tr>
<td></td>
<td>Rollinia mucosa (Jacq.) Baill.</td>
</tr>
<tr>
<td>FI 0329</td>
<td>Breadfruit</td>
</tr>
<tr>
<td></td>
<td>Artocarpus altilis (Parkinson) Fosberg</td>
</tr>
<tr>
<td></td>
<td>syn: Artocarpus communis J.R. et G. Forster;</td>
</tr>
<tr>
<td>FI 2522</td>
<td>Champedak</td>
</tr>
<tr>
<td></td>
<td>Artocarpus integer (Thunb.) Merr.</td>
</tr>
<tr>
<td>FI 0331</td>
<td>Cherimoya</td>
</tr>
<tr>
<td></td>
<td>Annona cherimola Mill.</td>
</tr>
<tr>
<td>FI 0332</td>
<td>Custard apple</td>
</tr>
<tr>
<td></td>
<td>Annona reticulata L.</td>
</tr>
<tr>
<td>FI 0334</td>
<td>Durian</td>
</tr>
<tr>
<td></td>
<td>Durio zibethinus L..</td>
</tr>
<tr>
<td>FI 0371</td>
<td>Elephant apple</td>
</tr>
<tr>
<td></td>
<td>Limonia acidissima L.</td>
</tr>
<tr>
<td></td>
<td>syn: Feronia limonia (L.) Swing; Feronia elephantum Corrêa</td>
</tr>
<tr>
<td></td>
<td>- Guanabana, see Soursop, FI 0365</td>
</tr>
<tr>
<td>FI 0337</td>
<td>Ilama</td>
</tr>
<tr>
<td></td>
<td>Annona macroprophyllata Donn. Sm.</td>
</tr>
<tr>
<td></td>
<td>Syn: A. diversifolia Saff.</td>
</tr>
<tr>
<td></td>
<td>- Indian wood apple, see Elephant apple, FI 0371</td>
</tr>
<tr>
<td>FI 0338</td>
<td>Jackfruit</td>
</tr>
<tr>
<td></td>
<td>Artocarpus heterophyllus Lam.;</td>
</tr>
<tr>
<td></td>
<td>syn: A. integrifolius auct</td>
</tr>
<tr>
<td>FI 0344</td>
<td>Mammey apple</td>
</tr>
<tr>
<td></td>
<td>Mammea americana L.</td>
</tr>
<tr>
<td>FI 2523</td>
<td>Marang</td>
</tr>
<tr>
<td></td>
<td>Artocarpus odoratissimus Blanco</td>
</tr>
<tr>
<td>FI 0347</td>
<td>Marmalade-box</td>
</tr>
<tr>
<td></td>
<td>Genipa americana L.</td>
</tr>
<tr>
<td>Code No.</td>
<td>Commodity</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
</tbody>
</table>
| FI 2524 | Monkey-bread tree
Adansonia digitata L. |
| FI 0353 | Pineapple
Ananas comosus (L.) Merril; |
| FI 2525 | Poshte
Annona liebmaniana Baill. |
| FI 0357 | Pulasan
Nephelium ramboutan-ake (labill.) Leenh. |
| FI 0358 | Rambutan
Nephelium lappaceum L. |
| FI 0359 | Sapodilla
Manilkara zapota (L.) P. Royen
syn. *Manilkara achrás* (Mill.) Fosberg; *Achrás zapota* L. |
| FI 0362 | Sapote, Mammey
Pouteria sapota (Jacq.) H.E. Moore & Stearn
Syn: *Calocarpum sapota* (Jacq.) Merr. |
| FI 2526 | Screwpine
Pandanus tectorius Parkinson; *P. utilus* Bory; *P. leram* Jones ex Fontana; *P. julianettii* Martelli |
| FI 2527 | Soncoya
Annona purpurea Moc. &Sessé ex Dunal |
| FI 0365 | Soursop
Annona muricata L. |
| FI 2528 | Sun sapote
Licania platypus (Hemsl.) Fritsch |
| FI 0368 | Sugar apple
Annona squamosa L. |
| | - Sweetssop, see Sugar apple, FI 0368 |

006D Assorted tropical and sub-tropical fruits - inedible peel - cactus

Commodity

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
</table>
| FI 2024 | Assorted tropical and sub-tropical fruits - inedible peel - cactus
(includes all commodities in this subgroup) |
| | - Dragon fruit, see Pitaya, FI 2540
H. undatus (Haw.) Britton & Rose |
| | - Indian fig, see Prickly pear, FI 0356 |
| FI 2540 | Pitaya
Hylocereus spp. , H. undatus (Haw.) Britton & Rose; *H. Megalanthus*
<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 2025</td>
<td>Assorted tropical and sub-tropical fruits - inedible peel - vines</td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>-</td>
<td>Chinese gooseberry, see Kiwifruit, FI 0341</td>
</tr>
<tr>
<td>FI 2560</td>
<td>Grandilla</td>
</tr>
<tr>
<td></td>
<td>Passiflora ligularis Juss.</td>
</tr>
<tr>
<td>FI 2561</td>
<td>Grandilla, Giant</td>
</tr>
<tr>
<td></td>
<td>Passiflora quadrangularis L.</td>
</tr>
<tr>
<td>FI 0341</td>
<td>Kiwifruit</td>
</tr>
<tr>
<td></td>
<td>Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferguson;</td>
</tr>
<tr>
<td></td>
<td>A. chinensis Planch. and hybrids</td>
</tr>
<tr>
<td>FI 2562</td>
<td>Monstera</td>
</tr>
<tr>
<td></td>
<td>Monstera deliciosa Liebm.</td>
</tr>
<tr>
<td>FI 2563</td>
<td>Passionflower, Winged-stem</td>
</tr>
<tr>
<td></td>
<td>Passiflora alata Curtis</td>
</tr>
<tr>
<td>FI 2564</td>
<td>Passion fruit, Banana</td>
</tr>
<tr>
<td>FI 0351</td>
<td>Passion fruit</td>
</tr>
<tr>
<td></td>
<td>Cultivars of Passiflora edulis Sims</td>
</tr>
</tbody>
</table>

006E Assorted tropical and sub-tropical fruits - inedible peel - vines

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 2026</td>
<td>Assorted tropical and sub-tropical fruits - inedible peel - palms</td>
</tr>
<tr>
<td></td>
<td>(includes all commodities in this subgroup)</td>
</tr>
<tr>
<td>FI 2580</td>
<td>Coconut, Young</td>
</tr>
<tr>
<td></td>
<td>Cocos nucifera L.</td>
</tr>
<tr>
<td>FI 2581</td>
<td>Guriri</td>
</tr>
<tr>
<td></td>
<td>Allagoptera arenaria (Gomes) Kuntze</td>
</tr>
<tr>
<td>FI 2582</td>
<td>Muriti</td>
</tr>
<tr>
<td></td>
<td>Mautitia flexuosa L.f.</td>
</tr>
<tr>
<td>FI 2583</td>
<td>Palmyra palm fruit</td>
</tr>
<tr>
<td></td>
<td>Borassus flabellifer L.</td>
</tr>
<tr>
<td>FI 2584</td>
<td>Salak</td>
</tr>
<tr>
<td></td>
<td>Salacca zalacca (Gaertn.) Voss</td>
</tr>
</tbody>
</table>
INTRODUCTION

Residue extrapolation is the process by which the residue levels on representative commodities are utilized to estimate residue levels on related commodities in the same commodity group or subgroup for which trials have not been conducted. Representative commodities are chosen based on their commercial importance and the similarity of their morphology and residue characteristics to other related commodities in the group or subgroup. Ideally representative commodities are the most economically important commodities in production and/or consumption in a group or subgroup and have a greater dietary burden and have residue characteristics similar to other members of the group or subgroup. Residue extrapolation is a common consideration utilized by regulators internationally for ensuring that data requirements are only at a level that is scientifically justified in conducting risk assessment and to ensure the regulatory process does not become unnecessarily burdensome especially for minor crops.

The objective of this document is to (1) propose criteria for the selection of representative commodities; (2) propose example representative commodities and (3) provide a detailed justification for the selection of the representative commodities.

GENERAL PRINCIPLES

Representative commodities within each Codex Classification commodity group and subgroup will be selected and proposed, based on consideration of all available information. The following principles will be used for the selection of representative commodities:

- A representative commodity is most likely to contain the highest residues.
- A representative commodity is likely to be major in terms of production and/or consumption.
- A representative commodity is most likely similar in morphology, growth habit, pest problems and edible portion to the related commodities within a group or subgroup.

The application of the three principles in the selection of representative commodities is based on the assumption that all of the commodities, covered by the commodity group MRL, are produced following a similar use pattern or GAP.

To facilitate the global use of the commodity groups for MRLs, alternative representative commodities may be selected giving flexibility for use of residue research conducted in different countries or regions that may vary due to regional differences in dietary consumption and/or areas of production for certain commodities.

Note: Table 1 in this document is provided to (1) separate the selection of representative commodities from the Codex Classification itself; (2) propose examples of representative commodities in parallel with the respective Codex commodity grouping classification revisions; (3) provide flexibility on the selection of representative crops and (4) provide guidance not only to CCPR and CCPR members, but also to JMPR, product manufacturers and other data generators.

Detailed background information regarding production, consumption, MRLs and characteristics and justification for selection of the representative commodities according to the indicated principles were provided in working documents considered by the Committee when developing the representative commodities for each commodity group.

GUIDANCE AND PROCEDURES

As proposals for the revision of the Codex Classification are made and revised commodity groupings are developed and provided to the CCPR for their review, proposals on representative commodities will also be provided in parallel with the respective commodity grouping revisions and will advance through the CCPR step process for adoption by the CAC.

As comments are addressed on the revisions of the classification and the proposed representative commodities and these are approved by the CCPR and accepted by the CAC, two separate documents will be created and maintained: (1) the revised Codex Classification (without mention of representative commodities) and (2) principles and guidance on the selection of representative commodities.

The JMPR may be advised to use the representative commodities adopted by the CAC. However, JMPR may use other representative commodities (including those which may be specifically requested by member nations) on a case-by-case basis. The JMPR will be requested to provide to the CCPR justification for the use of any alternative representative commodities, based on all available data.

Alternative Representative Commodities

To facilitate the global use of the commodity groups for MRLs, alternative representative commodities may be selected giving flexibility for use of residue research conducted in different countries or regions that may vary due to regional differences in dietary consumption and/or areas of production for certain commodities. Table 1 in this document proposes examples of representative commodities for commodity groups. Depending on country or regional differences, alternative representative commodities may be proposed by a country. For example, leeks may be proposed as an alternative representative commodity for green onions in the green onion subgroup of Bulb Vegetables.

Precedence in Selection of Representative Commodities

In situations where a representative commodity does not meet all three of the above principles, a representative commodity should at least meet the first two principles (likely to contain the highest residues and also major in terms of production and/or consumption).

Definition of Similar Residues

When representative commodities are utilized to extrapolate to other members of a commodity group, it is based on the assumption that the representative commodities will have similar residues. “Similar residues” are difficult to define numerically, because this would require knowing actual residues for all commodities in a group. Rather, the expectation of similar residues is based upon consideration of all of the information available. This information will be prepared for each commodity group and will form the basis of the proposals for representative commodities.

Use and Combination of Data Sets

When representative commodities are utilized to extrapolate MRLs to other members of the commodity group, MRLs may be calculated as either the highest MRL calculated for any of the individual representative commodities, and the ALARA2 principle needs to be considered, or the residue data may be combined and the MRL calculated from the larger combined data set.

Wider Extrapolations

A representative commodity should meet at least the first two principles described above, i.e. likely to contain the highest residues and also major in terms of production and/or consumption. However, it may not always fit well with the growth habits, or pest problems of morphology within one group or subgroup. In such situations, extrapolations beyond the members of a commodity group may be appropriate. These can be considered on a case-by-case basis when commodities (with similar GAPs) have similar size, shape and surface area. Examples of these possible wider extrapolations include (1) translation of certain stone or pome fruit MRLs to a tropical fruit; (2) where residues are all <LOQ for pre-emergent herbicide uses and (3) seed treatments for non systemic pesticides.

2 As low as reasonably achievable.
Table 1. Selection and Examples of Representative Commodities

<table>
<thead>
<tr>
<th>Codex Group / Subgroup</th>
<th>Examples of Representative Commodities</th>
<th>Extrapolation to the following commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 001 Citrus Fruits</td>
<td>Lemon or Lime; and Mandarin; and Orange; and Pummelo or Grapefruit</td>
<td>Citrus Fruit (FC 0001): Australina blood lime; Australian desert lime; Australian round lime; Bergamot; Bigarade; Blood orange; Brown River finger-lime; Calamondin; Chinotto; Chironja; Citron; Clementine; Cleopatra mandarin; Dancy mandarin; Grapefruit; Kaffir Lime; King mandarin; Lemon; Lime; Lime, Sweet; Malta orange; Mandarin; Mediterranean mandarin; Mexican Lime; Mount White-lime; Myrtle-leaf orange; Natsudaidai; New guinea wild lime; Orange, Bitter; Orange Sour; Orange, Sweet; Pomelo; Pummelo; Russell River-lime; Satsuma mandarin; Seville Orange; Shaddock; Tachibana orange; Tahiti Lime; Tangelo (small and medium cultivars); Tangelo (large size cultivars); Tangelodo; Tangerine; Tangors; Tankan mandarin; Trifoliate orange; Ugli/Uniq Fruit; Unshu orange; Willowleaf mandarin; Yuja</td>
</tr>
<tr>
<td>Subgroup 001A, Lemons and Limes</td>
<td>Lemon or Lime</td>
<td>Lemons and Limes (FC 0002): Australina blood lime; Australian desert lime; Australian round lime; Brown River finger-lime; Citron; Kaffir Lime; Lemon; Lime; Lime, Sweet; Malta Orange; Mount White-lime; New guinea wild lime; Russell River-lime; Tahiti Lime; Yuja</td>
</tr>
<tr>
<td>Subgroup 001B, Mandarin</td>
<td>Mandarin</td>
<td>Mandarins (FC 003): Calamondin; Clementine; Cleopatra mandarin; Dancy mandarin; King mandarin; Mandarin; Mediterranean mandarin; Satsuma mandarin; Tangelo (small and medium size cultivars); Tangerine; Tangors; Tankan mandarin; Unshu orange; Willowleaf mandarin</td>
</tr>
<tr>
<td>Subgroup 001C, Oranges, Sweet, Sour</td>
<td>Orange</td>
<td>Oranges, Sweet, Sour (FC 004): Bergamot; Bigarade; Blood orange; Chinotto; Chironja; Malta orange; Myrtle-leaf orange; Orange, Bitter; Orange Sour; Orange, Sweet; Seville Orange; Tachibana orange; Trifoliate orange</td>
</tr>
<tr>
<td>Subgroup 001D, Pummelos</td>
<td>Pummelo or Grapefruit</td>
<td>Pummelos and Grapefruit (FC 005): Grapefruit; Natsudaidai; Pomelo; Pummelo; Shaddock; Tangelo (large size cultivars); Tangelodo; Ugli/Uniq Fruit</td>
</tr>
</tbody>
</table>

1. Alternative representative commodities may be selected based on documented regional/country differences in dietary consumption and/or areas of production.
2. Detailed information considered at the 43rd session of the Codex Committee on Pesticide Residues.
Table 1 Selection and Examples of Representative Commodities (continued)

<table>
<thead>
<tr>
<th>Codex Group / Subgroup</th>
<th>Examples of Representative Commodities</th>
<th>Extrapolation to the following commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 002 Pome Fruits</td>
<td>Apple and Pear</td>
<td>Pome Fruit (FP 0009): Apple; Azarole; Chinese quince; Crab-apple; Japanese medlar; Loquat; Mayhaw; Medlar; Nashi pear; Pear; Oriental pear; Quince; Sand pear; Tejocote; Wild pear</td>
</tr>
<tr>
<td>Group 003 Stone Fruits</td>
<td>Cherry, Sweet or Cherry, Sour; and Plum or Prune Plum; and Peach or Apricot</td>
<td>Stone fruits (FS 0012): Cherry, black; Cherry, Nanking; Cherry Sour; Cherry, Sweet; Cherry, tart; Choke cherry; Morello; Bullace; Cherry plum; Chicksaw plum; Damsons plums; Greengage plums; Klamath plum; Myrobolan plum; Plum American; Plum beach; Plum, Japanese, Plum Mirabelle; Plumcot; Prunes; Sloe; Apricot; Japanese apricot; Nectarine; Peach</td>
</tr>
<tr>
<td>Subgroup 003A, Cherries</td>
<td>Cherry, Sweet or Cherry, Sour</td>
<td>Cherries (FS 0013): Cherry, black; Cherry, Nanking; Cherry Sour; Cherry, Sweet; Cherry, tart; Choke cherry; Morello</td>
</tr>
<tr>
<td>Subgroup 003B, Plums</td>
<td>Plum or Prune Plum</td>
<td>Plums (FS 0014): Bullace; Cherry plum; Chicksaw plum; Damsons plums; Greengage plums; Klamath plum; Myrobolan plum; Plum American; Plum beach; Plum, Japanese, Plum Mirabelle; Plumcot; Prunes; Sloe</td>
</tr>
<tr>
<td>Subgroup 003C, Peaches</td>
<td>Peach or Apricot</td>
<td>Peaches (FS 2001): Apricot; Japanese apricot; Nectarine; Peach</td>
</tr>
<tr>
<td>Codex Group / Subgroup</td>
<td>Examples of Representative Commodities 1,2</td>
<td>Extrapolation to the following commodities</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Group 004 Berries and other small fruits</td>
<td>Blackberry or Raspberry; and Blueberry or Currants, black, red or white; and Elderberry; and Grape; and Strawberry</td>
<td>Berries and other small fruits (FB 0018): Blackberries; Boysenberry; Dewberries; Korean Black Raspberry; Korean Raspberry; Loganberry; Olallie berry; Raspberries, Red, Black; Youngberry; Vaccinium berries; Blueberries; Aronia berries; Bearberry; Bilberry; Bilberry, Bog; Bilberry, Red; Blueberry, Highbush; Blueberry, Lowbush; Blueberry, Raspberry; Buffalo currant; Chilean guava; Cowberry; Currants, Black, Red, White; Gooseberry; European barberry; Huckleberries; Jostaberries; Juneberries; Native currant; Ribberries; Rose hips; Salal; Sea buckthorn; Whortleberry, Red; Bayberries; Buffaloberry; Che; Elderberries; Guelder rose; Mulberries; Phalsa; Rowan; Service berries; Silverberry, Russian; Arguta kiwifruit; Amur river grape; Grapes; Schisandraberry; Table grapes; Tara vine; Wine grapes; Bakeapple; Cranberry; Cloudberry; Muntries; Partridge berry; Squaw vine; Strawberry; Strawberries, Wild; Strawberry, Musky</td>
</tr>
</tbody>
</table>

<p>| Subgroup 004A, Cane berries | Blackberry or Raspberry | Cane berries (FB 2005): Blackberries; Boysenberry; Dewberries; Korean Black Raspberry; Korean Raspberry; Loganberry; Olallie berry; Raspberries, Red, Black; Youngberry |
| Subgroup 004B, Bush berries | Blueberry or Currants, black, red or white | Bush berries (FB 2006): Vaccinium berries; Blueberries; Aronia berries; Bearberry; Bilberry; Bilberry, Bog; Bilberry, Red; Blueberry, Highbush; Blueberry, Lowbush; Blueberry, Raspberry; Buffalo currant; Chilean guava; Cowberry; Currants, Black, Red, White; Gooseberry; European barberry; Huckleberries; Jostaberries; Juneberries; Native currant; Ribberries; Rose hips; Salal; Sea buckthorn; Whortleberry, Red |
| Subgroup 004C, Large shrub/tree berries | Elderberry | Large shrub/tree berries (FB 2007): Bayberries; Buffaloberry; Che; Elderberries; Guelder rose; Mulberries; Phalsa; Rowan; Service berries; Silverberry, Russian |
| Subgroup 004D, Small fruit vine climbing | Grapes | Small fruit vine climbing (FB 2008): Arguta kiwifruit; Amur river grape; Grapes; Schisandraberry; Table grapes; Tara vine; Wine grapes |
| Subgroup 004E, Low growing berries | Strawberry | Low growing berries (FB 2009): Bakeapple; Cranberry; Cloudberry; Muntries; Partridge berry; Squaw vine; Strawberry; Strawberries, Wild; Strawberry, Musky |</p>
<table>
<thead>
<tr>
<th>Codex Group / Subgroup</th>
<th>Examples of Representative Commodities</th>
<th>Extrapolation to the following commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 005 Assorted tropical and sub-tropical fruits – edible peel</td>
<td>Olive; and Fig or Guava; and Date</td>
<td>Assorted tropical and sub-tropical fruits – edible peel (FT 0026): Açai; African plum; Almondette; Ambarella; Apak palm; Apple berry; Arazá; Arbutus berry; Babaco; Bacaba palm; Bacaba-de-leque; Barbados cherry (acerola); Bayberry, Red; Bignay; Bilimbi; Breadnut; Cabeluda; Caju (pseudofruit); Cambucá; Carandas-plum; Carob; Cashew apple; Ceylon iron wood; Ceylon olive; Cherry-of-the-Rio-Grande; Chinese olive, black; Chinese olive, white; Chirauli-nut; Ciruela verde; Coco plum; Date; Davidson's plum; Desert date; Doum palm; False sandalwood; Fig; Fragrant Manjack; Gooseberry; Abyssinian; Gooseberry, Ceylon; Gooseberry, Indian; Gooseberry, Otaheite; Governor's plum; Grumichama; Guabiroba; Guava; Guava, Brazilian; Guava, Cattley, Guava, Costa Rican; Guava, Para; Guava berry; Guayabillo; Hog plum (yellow mombin); Illawarra plum; Imbé; Imbu; Jaboticaba; Jamaica cherry; Jambolan; Java apple (wax jambu); Jelly palm; Jujube, Chinese; Jujube, Indian; Kaffir plum; Kakadu plum; Kapundung; Karnada (Caranda); Kumquats; Kwai muk; Lemon aspen; Limequats; Mangaba; Marian plum; Mombin, Malayan; Mombin, purple; Monkeyfruit; Monos plum; Mountain cherry; Nance; Natal plum; Noni; Olives (table olives); Papaya, Mountain; Patauá; Peach Palm; Persimmon, Black; Persimmon, Japanese; Pitomb; Pomera; Rambai; Rose apple; Rumberry; Sea grape; Sentul; Sete-capotes; Silver aspen; Star fruit (carambola); Surinam cherry; Tamarind (sweet varieties); Uvalha; Water apple; Water berry; Water pear</td>
</tr>
<tr>
<td>Subgroup 005A, Assorted tropical and sub-tropical, Edible Peel – Small</td>
<td>Olive</td>
<td>Edible Peel - Small (FT 2011): African plum; Almondette; Apple berry; Arbutus berry; Barbados cherry (acerola); Bayberry, Red; Bignay; Breadnut; Cabeluda; Carandas-plum; Ceylon iron wood; Ceylon olive; Cherry-of-the-Rio-Grande; Chinese olive, black; Chinese olive, white; Chirauli-nut; Coco plum; Desert date; False sandalwood; Fragrant Manjack; Gooseberry; Abyssinian; Gooseberry, Ceylon; Gooseberry, Otaheite; Governor's plum; Grumichama; Guabiroba; Guava berry; Hog plum (yellow mombin); Illawarra plum; Jamaica cherry; Jambolan; Java apple (wax jambu); Jujube, Chinese; Kaffir plum; Kakadu plum; Karnada (Caranda); Kumquats; Kapundung; Lemon aspen; Limequats; Monos plum; Mountain cherry; Olives (table olives); Persimmon, Black; Pitomb; Rumberry; Sea grape; Sete-capotes; Silver aspen; Water apple; Water berry; Water pear</td>
</tr>
</tbody>
</table>
Table 1. Selection and Examples of Representative Commodities (continued)

<table>
<thead>
<tr>
<th>Codex Group / Subgroup</th>
<th>Examples of Representative Commodities</th>
<th>Extrapolation to the following commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 005B, Assorted tropical and subtropical, Edible Peel – Large</td>
<td>Fig or Guava</td>
<td>Edible Peel - Large (FT 2012): Ambarella; Arazá; Babaco; Bilimbi; Cajou (pseudofruit); Cambucá; Carob; Cashew apple; Ciruela verde; Davidson’s plum; Fig; Gooseberry, Indian; Guava; Guava, Brazilian; Guava, Cattley, Guava, Costa Rican; Guava, Para; Guayabillo; Imbé; Imbu; Jaboticaba; Jujube, Indian; Kwai muk; Mangaba; Marian plum; Mombin, Malayan; Mombin, purple; Monkeyfruit; Nance; Natal plum; Noni; Papaya, Mountain; Persimmon, Japanese; Pomerac; Rambai; Rose apple; Sentul; Star fruit (carambola); Surinam cherry; Tamarind (sweet varieties); Uvalha</td>
</tr>
<tr>
<td>Subgroup 005C, Assorted tropical and subtropical, Edible Peel – Palms</td>
<td>Date</td>
<td>Edible Peel - Palms (FT 2013): Açai; Apak palm; Bacaba palm; Bacaba-de-leque; Date; Doum palm; Jelly palm; Patauá; Peach Palm</td>
</tr>
</tbody>
</table>
Table 1. Selection and Examples of Representative Commodities (continued)

<table>
<thead>
<tr>
<th>Codex Group / Subgroup</th>
<th>Examples of Representative Commodities</th>
<th>Extrapolation to the following commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 006 Assorted tropical and sub-tropical fruits – inedible peel</td>
<td>Litchi (lychee) or Spanish Lime or Longan; Avocado; Pomegranate or Mango; Banana and Papaya; Atemoya; Pineapple; Pitahaya; Prickly pear; Kiwifruit or Passionfruit and Muriti or Palmyra Palm</td>
<td>Assorted tropical and sub-tropical fruits – inedible peel (FI 0030): Abiu; Aisen; Akee apple; Atemoya; Avocado; Bacuri; Bael fruit; Banana; Binjai; Biriba; Breadfruit; Burmese grape; Canistel; Cupuaçu; Champedak; Cherimoya; Custard apple; Durian; Elephant apple; Etambe; Feijoa; Grandilla; Grandilla, Giant; Guriti; Ilama; Ingâ; Jackfruit; Jabotá; Kei apple; Kiwifruit; Kokam; Langstat; Lanjut; Longan; Lucuma; Litchi (lychee); Mabolo; Madras-thorn; Mammy apple; Manduro; Mango; Mango, horse; Mango, Saipan; Mangosteen; Marang; Marmalade-box; Matisia; Mesquite; Mongongo; Monkey-bread tree; Monstera; Murti; Naranjilla; Paho; Palmyra palm; Papaya; Passionflower, Winged-stem; Passion fruit; Passion fruit, banana; Pawpaw; Pawpaw, small flower; Pelipisan; Pequi; Persimmon, American; Pineapple; Pitaya; Pomegranate; Posthe; Prickly pear; Pulasan; Quandong; Rambutan; Saguaro; Salak; Sapodilla; Sapote, black; Sapote, green; Sapote, Mammy; Sapote, white; Satav; Satinleaf; Screwpine; Sierra Leone-tamarind; Soncota; Soursop; Spanish lime; Star apple; Sugar apple; Sun sapote; Tamarillo (tree tomato); Tamarind-of-the-Indies; Velvet tamarind; Wampi; White star apple; Wild loquat;</td>
</tr>
<tr>
<td>Subgroup 006A, Assorted tropical and sub-tropical, Inedible Peel, Small</td>
<td>Litchi (lychee) or Spanish Lime or Longan</td>
<td>Inedible Peel - Small (FI 2021): Aisen; Atee fruit; Burmese grape; Ingâ; Litchi (lychee); Longan; Madras-thorn; Manduro; Matisia; Mesquite; Mongongo; Pawpaw, small flower; Satinleaf; Sierra Leone-tamarind; Spanish lime; Velvet tamarind; Wampi; White star apple</td>
</tr>
<tr>
<td>Subgroup 006B, Assorted tropical and sub-tropical, Inedible Smooth Peel - Large</td>
<td>Avocado; Pomegranate or Mango; Banana and Papaya</td>
<td>Inedible Smooth Peel - Large (FI 2022): Abiu; Akee apple; Avocado; Bacuri; Banana; Binjai; Canistel; Cupuaçu; Etambe; Feijoa; Jabotá; Kei apple; Kokam; Langstat; Lanjut; Lucuma; Mabolo; Mango; Mango, horse; Mango, Saipan; Mangosteen; Naranjilla; Paho; Papaya; Pawpaw; Pelipisan; Pequi; Persimmon, American; Pomegranate; Quandong; Sapote, black; Sapote, green; Sapote, white; Satav; Star apple; Tamarind-of-the-Indies; Tamarillo (tree tomato); Wild loquat</td>
</tr>
</tbody>
</table>
Table 1. Selection and Examples of Representative Commodities (continued)

<table>
<thead>
<tr>
<th>Codex Group / Subgroup</th>
<th>Examples of Representative Commodities</th>
<th>Extrapolation to the following commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 006C, Assorted tropical and subtropical, Inedible, Rough or Hairy Peel - Large</td>
<td>Atemoya and Pineapple</td>
<td>Inedible rough or hairy peel - Large (FI 2023): Atemoya; Biriba; Breadfruit; Champedak; Cherimoya; Custard apple; Durian; Elephant apple; Ilama; Jackfruit; Mammy apple; Marmalade-box; Marang; Monkey-bread tree; Pineapple; Poshte; Pulasan; Rambutan; Sapodilla; Sapote; Mamme; Screwpine; Soncoya; Soursop; Sugar apple; Sun sapote</td>
</tr>
<tr>
<td>Subgroup 006D, Assorted tropical and subtropical, Inedible Peel - Cactus</td>
<td>Pitahaya and Prickly pear</td>
<td>Inedible Peel - Cactus (FI 2024): Pitahaya; Prickly pear; Saguaro</td>
</tr>
<tr>
<td>Subgroup 006E, Assorted tropical and subtropical, Inedible Peel - Vines</td>
<td>Kiwifruit or Passionfruit</td>
<td>Inedible Peel - Vines (FI 2025): Granadilla; Granadilla, Giant; Kiwifruit; Monstera; Passionflower, Winged-stem; Passionfruit; Passionfruit, banana</td>
</tr>
<tr>
<td>Subgroup 006F, Assorted tropical and subtropical, Inedible Peel - Palms</td>
<td>Muriti or Palmyra Palm</td>
<td>Inedible Peel - Palms (FI 2026): Guriri; Muriti; Palmyra Palm; Salak</td>
</tr>
</tbody>
</table>
APPENDIX X

DRAFT REVISION OF THE GUIDELINES ON THE ESTIMATION OF MEASUREMENT UNCERTAINTY OF RESULTS FOR THE DETERMINATION OF PESTICIDE RESIDUES (ANNEX TO CAC/GL 59-2006)

(At Step 5/8)

Introductory notes

1. As noted in the Guideline document CAC/GL 59-2006, the estimation of measurement uncertainty (MU) associated with analytical data is a requirement for laboratories accredited under ISO/IEC 17025 and an expectation for all laboratories operating under Good Laboratory Practice (GLP) in pesticide residue analysis. Decisions in regard to compliance of food, whether for domestic or international standards for chemical residues and contaminants, need to take into consideration the uncertainty associated with the test results reported by laboratories for analysis of specific lots or consignments.

2. It is not uncommon for laboratories to report widely different estimates of MU in Proficiency Tests (PT) despite the fact that they employ very similar test methods for analysis. This evidence suggests that the estimation of MU still appears to be a developing science for a number of food laboratories. This annex is intended to describe some of the options laboratories might employ in estimating measurement uncertainty, particularly the use of in-house method validation, quality control and long-term precision data for multi-residue pesticide methods. It is also anticipated that a more harmonised approach to the estimation of MU for pesticide residue results will minimise possible disputes in compliance decisions for residue levels near MRLs.

3. There are broadly two approaches commonly employed for the determination of MU; the so-called GUM (Guide to the Expression of Uncertainty in Measurement) or ‘bottom-up’ approach and the ‘top-down’ procedures based around application of analytical precision and bias.

4. The GUM approach is based on a rigorous analysis of all the individual components of an analytical process and the estimation of random and systematic errors assigned to these steps. This process, whilst initially very laborious, requires the analyst to have or develop a detailed understanding of the analytical steps on the process and identify the critical control points in the method. Unless all steps are considered in the process, it is possible to underestimate the MU. On the other hand, some operational errors may cancel out which, if ignored, could provide an overestimate of the uncertainty. It is generally acknowledged that the bottom-up approach is more suited to physical metrology than to analytical chemistry activities and, in particular, to the more complex multi-pesticide residue methods.

5. Proponents of the top-down approach note that laboratory data collected from in-house validation, long-term precision and analytical quality control (QC) is likely to provide more reliable information on MU. Where available, PT data can also be used to estimate MU, either as the sole basis for estimates or more often in combination with in-house data. The inter-laboratory reproducibility data from PT studies can also provide a useful ‘benchmark’ for single laboratory estimates.

6. All options should be considered in the estimation of MU. The initial aim should be to obtain the best possible estimate using the information available. Initial laboratory estimates should be verified by comparison with alternative methods, literature reports and comparisons from PT studies. Furthermore professional judgement has an important role when estimating and verifying measurement uncertainty. Estimates should be reviewed as more precision data becomes available, for example, within-batch QC data routinely generated during the course of an analytical program.

7. This Annex focuses on the estimation of MU using the top-down approach, based on data obtained from different sources.

Applying a default value for MU for pesticide residues in foods

8. EU member states have adopted a MU ‘default’ value of +/- 50% for pesticide residues in food consignments entering the EU. The default value is based around the statistical results of a number of EU-based PT studies involving competent residue laboratories participating in a number of multi-residue studies on fruit and vegetables. The mean relative standard deviations reported from a number of these studies have ranged between 20 to 25% providing a MU approximating to 50%.

9. In the absence of other statistical data, a laboratory testing food commodities for compliance with EU pesticide MRL regulations can adopt a default MU of 50% provided it could establish its analytical proficiency through participation in EU or similar PT studies and/or it can demonstrate acceptable long-term precision and bias associated with its test results. In the longer term however, it should be incumbent on the laboratory to verify its adoption of the default MU by independently estimating MU based on in-house precision and validation data.

Precision data derived from the use of the Horwitz relationship

10. In the absence of data from inter-laboratory studies on a particular method, the reproducibility standard deviation, and hence MU, may be determined from an equation reported by Horwitz which correlates reproducibility standard deviation with analyte concentration. The Horwitz relationship between coefficient of variation (CV) and analyte concentration is based on the results from a large number of food-based collaborative studies reported in the literature. The Horwitz Equation is also a helpful tool to compare in-house MU estimates against the expected value derived from published inter-laboratory studies.
Precision data derived from inter-laboratory studies (Collaborative Studies and PT Studies)

11. The results reported for inter-laboratory studies are subject to both imprecision and bias. If such studies involve a sufficient number of laboratories and are designed to cover real test conditions (range of analytes and matrices), the reproducibility standard deviations obtained will reflect the typical errors likely to be encountered in practice. PT study data therefore may be used to provide reasonable estimates of measurement uncertainty.

12. Collaborative studies on methods are generally well defined with well documented instructions on the analytical process and usually only involve expert laboratories with reputable experience in residue analysis. Under these conditions the analytical variance is likely to be the best achievable when applying the method under reproducibility conditions, particularly as error contributions from sample in-homogeneity are likely to be negligible. Providing a laboratory can demonstrate an ability to achieve the analytical performance associated with a particular collaborative study, the reproducibility standard deviation obtained for the study will be a good basis for estimating MU. A competent laboratory however, should be able to improve on the inter-laboratory method precision when conducting the method under within-laboratory reproducibility conditions, and hence reduce the MU.

13. If certified reference materials (CRMs) are employed in collaborative studies, the study report should provide an estimate of the bias of the method against the ‘certified’ value and this will need to be taken into consideration when estimating the MU.

14. In PT studies, it is normal for laboratories to employ their own test method for analysis. The method may be a standard method, a modified standard method or a method developed and validated in-house. Furthermore, there is generally greater variability in the analytical competence of the participating laboratories than is the case for collaborative studies. Because of these factors, the reproducibility standard deviation obtained for PT studies is likely to be larger than that anticipated from a method-based collaborative study. MU based on such data may be larger than the estimates reported by many participant laboratories. Nevertheless, an estimate of MU based on a PT study involving laboratories with a range of expertise using a variety of methods may be more pragmatic and useful for judging compliance of food commodities with respect to pesticide residues in international trade. The 50% default MU applied by the EU member states is based on PT data for a range of pesticides and food matrices.

15. Whether or not a laboratory uses PT data to estimate MU, the information from PT studies is useful to compare and verify estimates based on data such as in-house validation or quality control experiments.

MU derived from in-house validation and quality control data

16. There is general consensus amongst chemical metrologists that the best source of uncertainty data on the analytical process is derived from the laboratory’s method validation and/or verification studies and long-term quality control data. This is based on the assumption that the laboratory has undertaken validation and/or verification studies and has sufficient experience to have built up long-term bias and reproducibility data on suitable quality control (QC) samples, CRMs, reference materials (RMs) or matrix spikes.

17. The limited availability of CRMs for pesticide residues in food matrices usually requires laboratories to focus on spiked samples or other suitably characterised samples for internal quality control. The use of matrix-based QC samples such as samples with incurred residues, left-over PT study samples or spiked residue-free laboratory samples provides laboratories with a capability to monitor and control method (and analyst) performance while gathering information on both bias and precision. Control charts are excellent tools for evaluating long-term precision and monitoring statistical control of the analytical process.

18. Bias, where significant, and the uncertainty of bias, should be considered when estimating MU. This is illustrated in the example discussed under paragraph 5.4.

19. Bias can best be determined from the use of CRMs. However given the paucity of CRMs for pesticides in food and the large number of pesticides normally incorporated into a multi-residue screen, it is generally necessary to rely on the recoveries of spiked matrix samples to provide information on method bias.

20. The performance of laboratories in PT studies can further provide a useful indication of the bias of individual laboratories against the consensus values and, in some instances, the spiking level of the PT samples. However, bias should be based on or confirmed by the results from a number of PT studies before it is used as an input in the estimation of MU.

Worked Examples

21. The following worked examples describe acceptable procedures for estimating MU based on different combinations of in-house validation data, in-house precision data and inter-laboratory data. The Horwitz Equation and results from PT studies further provide useful benchmarks for comparison with in-house MU estimates.

The following worked examples use hypothetical data for chlorpyrifos as a typical pesticide residue and draw heavily on examples presented in Eurolab Technical report No 1/2007 [1] and the Nordtest Report TR537 [2].

5.1 Estimating MU using the Horwitz Equation

The Horwitz Equation expresses reproducibility standard deviation as a function of analyte concentration.

\[u' = 2^{0.5 \log c} \]

where

- \(u' \) = relative reproducibility standard deviation
- \(c \) = concentration of analyte (in g/g).
The relative expanded MU, U' (at 95% confidence level) may then be estimated by

$$U' = 2u'.$$

Since the Horwitz Equation is a function of analyte concentration, it will provide a range of MU values depending on pesticide concentration as noted in the following table:

<table>
<thead>
<tr>
<th>Concentration (mg/kg)</th>
<th>u' (%)</th>
<th>U' (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>0.1</td>
<td>22.6</td>
<td>45</td>
</tr>
<tr>
<td>0.01</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Example 1:

A laboratory measures 0.40 mg/kg chlorpyrifos in a sample of tomato.

The Horwitz Equation predicts a relative reproducibility standard deviation of 18.4% at a concentration of 0.40 mg/kg.

$$u' = 18.4\%$$

$$U' = 2u' = 37\%$$

The laboratory would therefore report the result as 0.40 ± 0.15 mg/kg

The laboratory report should state that the reported uncertainty was an expanded uncertainty with a coverage factor of 2 to give a level of confidence of approximately 95%. Unless stated otherwise, this is generally assumed for results reported with expanded uncertainties.

In the absence of supporting data, the Horwitz Equation should be used with some caution and only as an indicator of the likely uncertainty associated with test results. Advances in analytical methodologies, particularly instrumental techniques, have provided the capability to achieve very low limits of quantitation with much less uncertainty then predicted by the Horwitz Equation. Thompson and Lowthian [3] have reported that laboratories tend to out-perform the Horwitz function at low concentrations. It should be noted however that the Thompson concept limits the maximum value for u' for concentrations below 0.1 mg/kg to 22% independent of the concentration.

5.2 Estimating MU by application of the EU default value of 50%

Before applying a default MU, laboratories should ensure that they are able to routinely achieve uncertainties not greater than the default value.

Example 2:

A laboratory measures 0.40 mg/kg chlorpyrifos in a sample of tomatoes. An agreed default value of ± 50% is to be applied to the measured result.

Accordingly, the laboratory would report the result as 0.40 ± 0.20 mg/kg.

5.3 Estimating MU based on Intra-laboratory QC and data from PT Studies

5.3.1 Using the assigned (or consensus) value from PT studies

$$U' = 2u'$$ \hspace{1cm} \text{Equation 1}$$

$$u' = \sqrt{u'(Rw)^2 + u'(bias)^2}$$ \hspace{1cm} \text{Equation 2}$$

where

U' = expanded relative uncertainty

u' = combined relative standard uncertainty

$u'(Rw)$ = relative standard uncertainty due to within-laboratory imprecision (relative intra-laboratory reproducibility standard deviation)

$u'(bias)$ = relative standard uncertainty component due to bias

Example 3:

In this example, $u'(Rw)$ is obtained from within-laboratory QC data, preferably long-term QC data and $u'(bias)$ is estimated from PT data.

Laboratory result for chlorpyrifos in tomato = 0.40 mg/kg
Relative standard deviation from analysis of in-batch QC samples of tomato spiked at 0.5 mg/kg with chlorpyrifos (one spiked sample per week for previous 3 months) = 15%.

The laboratory has participated in 6 PT studies where the analytes have included chlorpyrifos in different vegetables and fruit matrices. For these studies, the relative differences between the laboratory’s result and the assigned value were -15%, 5%, -2%, 7%, -20% and -12%. An average of 16 laboratories participated in each of the PT studies. The average relative reproducibility standard deviation (S_R) reported for chlorpyrifos in the six studies was 25%.

\[u'(bias) = \sqrt{\text{RMS}^2_{\text{bias}} + u'(C_{\text{ref}})^2} \] \hspace{1cm} \text{Equation 3} \\
where \text{RMS}^2_{\text{bias}} = \text{root mean square of relative bias value} \\
u'(C_{\text{ref}}) = \text{average relative uncertainty of the assigned values for chlorpyrifos in the six studies.} \\

\[\text{RMS}^2_{\text{bias}} = \frac{\sum (\text{bias})^2}{n} \] \hspace{1cm} \text{(n = Number of PT studies)} \hspace{1cm} \text{Equation 4} \\

\[= \sqrt{(-15)^2 + (5)^2 + (-2)^2 + (7)^2 + (-20)^2 + (-12)^2} \] \hspace{1cm} = 11.9% \\
u'(C_{\text{ref}}) = \frac{S_R}{\sqrt{m}} \\

\text{Equation 5} \\
where \text{S}_R = \text{average relative standard deviation for chlorpyrifos from the six studies} \\
m = \text{average number of participants per study} \\

\[= \frac{25}{\sqrt{16}} \] \hspace{1cm} = 6.3% \\

So, \[u'(bias) = \sqrt{(11.9)^2 + (6.3)^2} = 13.5% \]

From Equation 2, \[u' = \sqrt{(15)^2 + (13.5)^2} = 20% \]

From Equation 1, the expanded relative uncertainty (95% confidence) = 40%

The Laboratory should report the result as 0.40 ± 0.16 mg/kg

Notes:
1. The RMS$^2_{\text{bias}}$ value accounts for both bias and the uncertainty of bias.
2. The calculated MU is a best estimate only since the PT data is for different matrices and different concentrations of chlorpyrifos.
3. If possible, MU should be calculated based on data generated at or near the most critical concentration, for example the Codex MRL.

5.3.2 PT Studies with Certified Reference Materials (CRMs)

If a suitable CRM containing chlorpyrifos is distributed as a sample in a PT study, then there would be no need to calculate $u'(C_{\text{ref}})$ from the PT results.

In this case, $u'(C_{\text{ref}})$ would be the uncertainty stated for the certified concentration, converted to a relative standard deviation.

For example, if the 95% confidence range for the certified value for chlorpyrifos in the CRM was 0.489 ± 0.031 mg/kg, then:

\[u(C_{\text{ref}}) \text{ (standard deviation)} = \frac{0.031}{2} = 0.0155 \text{ mg/kg}, \text{ and} \]
\[
u'(C_{\text{ref}}) \quad \text{(relative standard deviation)} = \frac{0.0155 \times 100}{0.489} = 3.17\%
\]

In the unlikely event that several CRMs containing chlorpyrifos were distributed in different rounds of the PT studies, then the mean \(u(C_{\text{ref}}) \) would be used to calculate \(U \).

In both cases, \(\text{RMS}'_{\text{bias}} \) would be calculated using Equation 4.

Example 4:

<table>
<thead>
<tr>
<th>Study No.</th>
<th>CRM</th>
<th>relative bias</th>
<th>(u'(C_{\text{ref}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>-12%</td>
<td>2.3%</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>-15%</td>
<td>1.7%</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>-3%</td>
<td>2.0%</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>5%</td>
<td>2.0%</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>-20%</td>
<td>2.0%</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

Mean \(u'(C_{\text{ref}}) \) = 2.05 %

From Equation 4, \(\text{RMS}'_{\text{bias}} \) = 11.6 %

From Equation 3, \(u'(\text{bias}) \) = 11.8 %

Note:

4. The relative uncertainty associated with CRMs is likely to be less than that associated with assigned or consensus values.

If the laboratory’s relative standard uncertainty due to analytical imprecision \(u'(R_W) \) remained the same i.e., 15%, then from Equations 1 and 2.

\[
u' = 19% \\
U' = 38%
\]

The laboratory could report the result as 0.40 ± 0.15 mg/kg

5.4 Estimating MU using Intra-laboratory QC data

Example 5:

- Laboratory result for chlorpyrifos in tomato = 0.40 mg/kg
- Stated purity of chlorpyrifos calibration material used to prepare the spiking solution = 95±2% (certificate of analysis)
- Fourteen recoveries (%) recorded for in-batch QC samples spiked at 0.5 mg/kg chlorpyrifos over the past 3 months; 90, 100, 87, 89, 91, 79, 75, 65, 80, 82, 115, 110, 65, 73 provided a mean recovery of 86 % and a relative standard deviation of 15 %.

Assuming the uncertainty stated for the reference material to be an expanded uncertainty \(U \) (95% confidence range),

\[
u'(C_{\text{ref}}) = \frac{2}{2} = 1%
\]

Note:

5. This assumes that the uncertainties associated with the preparation of the spiking solution and the spiking of the tomatoes are both insignificant. This is likely to be the case, but, if not, \(u'(C_{\text{ref}}) \) will nevertheless still be only a very minor contribution to the overall uncertainty.

\(u'(R_W) = 15\% \) (relative intra-lab reproducibility standard deviation).

Using Equation 4, and taking bias to be 100 - % recovery,

\[
\text{RMS}'_{\text{bias}} = 20\%
\]
From Equation 3, \(u'(\text{bias}) = 20\% \)

From Equation 2, \(u' = 25\% \)

From Equation 1, \(U' = 50\% \)

The laboratory could report the result as \(0.40 \pm 0.20 \text{ mg/kg} \).

Note:
6. This uncertainty would apply to results not corrected for recovery. If, at the end of the analytical program, the results were corrected for the average recovery achieved over the 3 month period of analysis, then \(u'(\text{bias}) \) need only reflect the uncertainty associated with the mean recovery. Then \(u'(\text{bias}) \) may be calculated as the relative standard uncertainty of the recovery factor applied (the relative uncertainty of the mean recovery) combined with the relative standard uncertainty of the spike concentration, \(u'(\text{C}_{\text{ref}}) \).

Relative Standard Uncertainty of mean recovery,
\[
u'_{\text{Re}} = \frac{u'(\text{RW})}{\sqrt{n}}
\]

where
\(n = \) the number of replicates from which the mean recovery is calculated.

\[
u'_{\text{Re}} = \frac{15}{\sqrt{14}} = 4\%
\]

\[
u'(\text{bias}) = \sqrt{u'(\text{Re})^2 + u'(\text{C}_{\text{ref}})^2}
\]

thus \(u'(\text{bias}) = \sqrt{(4)^2 + (1)^2} = 4.1\% \)

Then, from Equation 2 and 1, using the \(u'(\text{RW}) \) value of 15\% calculated previously
\(u' = 15.5\% \) and \(U' = 31\% \)

If results were corrected for recovery, the result should be reported as \(0.40 \pm 0.12 \text{ mg/kg} \).

Note:
7. This example shows that if results are corrected for a mean recovery based on nine or more replicate recovery experiments conducted during the course of an analytical program, using a reference material for which the purity is known with a high level of certainty, a reasonable estimate of measurement uncertainty may be calculated from solely the intra-lab reproducibility standard deviation.
Table 1: Schedule

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Prioritisation Criteria</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>ametoccticrin [BASF] – USA PRIORITY 1</td>
<td>ametoccticrin -</td>
<td>Registered MRLS > LOQ</td>
<td>potato, cucumber, zucchini, melon, tomato, peppers, table and wine grapes, lettuce and lamb’s lettuce, brassica vegetables, bulb vegetables and hops</td>
<td>Tomato (20), Pepper (10), Cucumber (8), Squash (10), Melon (8), Head lettuce (8), Leaf lettuce (9), Spinach (8), Grapes (13), Potatoes (21), Bulb onions (10), Spring Onion (5), Broccoli (10), Cabbage (10), Mustard greens (7), Celery (9), Hops (5)</td>
</tr>
<tr>
<td>chlorfenapyr [BASF] – Brazil moved to 2012 on request</td>
<td>chlorfenapyr [BASF] - Brazil</td>
<td>Registered MRLS > LOQ</td>
<td>citrus fruits, papaya, peppers, tomato, garlic, eggplant, onion, melon, tea and potato</td>
<td>Potato (8 trials LA), Tomato (8 trials LA), Red Pepper (8 trials LA), Citrus (16 trials LA + 2 PF trials LA), Melons (8 trials LA), Papaya (5 trials LA), Eggplant (4 trials LA), Onion (8 trials LA), Garlic (5 trials LA), and Tea (6 trials)</td>
</tr>
<tr>
<td>dinotefuran [Mitsui Chemicals Agro] – Japan PRIORITY 1</td>
<td>dinotefuran</td>
<td>Registered MRLS > LOQ</td>
<td>apple, cabbage, chinese cabbage, citrus, cotton seeds, cruciferous vegetables, cucurbits, eggplant, grape, green soybeans, lettuce, mango, melon, okra, peach, pear, persimmon, potato, rice, soy bean, spinach, sweet peppers, tea, tomato, meat from mammals (other than marine mammals), edible offals (mammalian), milks, cranberry (USA)</td>
<td>Rice (6 reports), tomato and cherry tomato (4 reports), cucumber (3), eggplant (3), green pepper and chilli (5), okura (1), cabbage (2), chinese cabbage (1), shungiku (1), komatsuna (10), mizuna (1), pachoy (1), radish (3), turnip (1), carrot (2), melon (2), citrus-natsumikan (2), citrus-kabosa-sudachi (2), citrus-unschor orange (2), persimmon (2), peach (1), biwa (1), mango (1), nectarin (2), pear (2), apple (2), plum (3), grape (3), strawberry (1), cherry (3), kiwi fruit (1), water melon (1), welsh onion (3), lettuce-head and leaf (4), tea (2), sugar beet (1), broccoli and stem (2), celery (1), spinach (1), shungiku (1), green peas (1), soy bean (1), green soy bean (2), rakkyo (1), kuwai (1), pumpkin (1), potato (1), wasabi (1), basil (1), chinese nira (1), asparagus (1) Cranberry (5)</td>
</tr>
</tbody>
</table>
2012 JMPR FOLLOW-UP EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat grain, barley grain, peas, corn</td>
<td>Wheat grain, barley grain, peas, corn</td>
<td>Barley grain (49), Barley forage (11), Barley straw (50), Barley hay (26), Wheat grain (54), Wheat forage (75), Wheat straw (76), Wheat hay (66), Wheat processing (2), Corn (field) grain (24), Corn forage (24), Corn stover (24), Peas with pods (4), Peas without pods (5), Peas, dry (8), Pea forage (8), Pea hay (8), Flax seed (22), Grass forage (26), Grass hay (14)</td>
<td></td>
</tr>
<tr>
<td>Cereal grains (wheat, barley, oats, triticale, rye), oilseed (rapeseed), soybean and tomato, canola, maize (sweet, field), and pulses.</td>
<td>Cereal grains (wheat, barley, oats, triticale, rye), oilseed (rapeseed), soybean and tomato, canola, maize (sweet, field), and pulses.</td>
<td>Canola (2), Cereals (Barley, Oats, Rye, Triticale, Wheat) (38), Cereals (Barley, Triticale, Wheat) (10), Cereals (Barley, Wheat, 47), Cereals (Barley, Wheat) (6), Field Corn (16), Oilseed Rape (13), Oilseed Rape (18), Pulses (chick peas, lentils, dry beans) (22), Soybean (30), Sweet Corn (11)</td>
<td></td>
</tr>
<tr>
<td>wheat grain (67), wheat forage (67), wheat hay (36), wheat straw (67), oat grain (8), oat forage (4), oat straw (4), barley grain (26), barley forage (4), barley straw (4), canola seed (24)</td>
<td>wheat grain (67), wheat forage (67), wheat hay (36), wheat straw (67), oat grain (8), oat forage (4), oat straw (4), barley grain (26), barley forage (4), barley straw (4), canola seed (24)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2012 JMPR FOLLOW-UP EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>buprofezin (173) [Nihon Nohyaku] USA</td>
<td>Coffee (USA), tea (Japan)</td>
<td>Coffee (6), Tea (6)</td>
<td></td>
</tr>
<tr>
<td>captan (7) [Arysta] - Pesticide Initiative Project - mango</td>
<td>Pesticide Initiative Project - mango</td>
<td>Await further advice</td>
<td></td>
</tr>
<tr>
<td>carbofuran (96) [FMC]</td>
<td>banana</td>
<td>Await further advice</td>
<td></td>
</tr>
<tr>
<td>chlorpyrifos-methyl (090) [Dow AgroSciences]</td>
<td>Alternative GAP for cereal commodities (wheat, barley, oat, sorghum, wheat germ, wheat bran – unprocessed – excluding maize)</td>
<td>Cereal commodities (wheat, barley, oat, sorghum) (24)</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil (4 year rule)</td>
<td>Banana (Brazil)</td>
<td>Soybean (20 trials + 1 processing trial)</td>
<td></td>
</tr>
<tr>
<td>cyfluthrin (157) - [Bayer CropScience]</td>
<td>soybean, cabbage</td>
<td>Cabbage (confirmation required)</td>
<td></td>
</tr>
<tr>
<td>cyproconazole (239)</td>
<td>Coffee (Brazil)</td>
<td>Coffee (10)</td>
<td></td>
</tr>
<tr>
<td>cyromazine (169) [Syngenta]</td>
<td>Pesticide Initiative Project – beans with pods</td>
<td>Await further advice</td>
<td></td>
</tr>
<tr>
<td>2,4-D (020) [Dow AgroSciences]</td>
<td>New GAP for soya bean</td>
<td>Soya bean (24)</td>
<td></td>
</tr>
<tr>
<td>dithiocarbamates - mancozeb (105) [Dow AgroSciences]</td>
<td>Pesticide Initiative Project – mango, okra, papaya mandarin (ROK)</td>
<td>Number of trials for mango, okra, and papaya being developed by COLEACP PIP. await advice</td>
<td></td>
</tr>
<tr>
<td>fenbuconazole (197) – ARfD – Dow AgroSciences</td>
<td></td>
<td>Await further advice</td>
<td></td>
</tr>
<tr>
<td>fludioxonil (211) [Syngenta]</td>
<td>mango</td>
<td>Mango (8),</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flupyram (243)</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banana, almonds, pecans, apples, pears, peanuts, strawberries, potato, carrots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid (206)</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pesticide Initiative Project - mango</td>
<td></td>
<td></td>
</tr>
<tr>
<td>methoxyfenozide (209)</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New GAP for on spinach; alfalfa forage; alfalfa fodder; citrus fruits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pesticide Initiative Project – beans with pods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cucurbit vegetables: cucumber, Summer squash, melon (USA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxamyl (126) [DuPont]</td>
<td>residue definitions, methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phorate (112) [AMVAC]</td>
<td>potato – awaiting confirmation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinetoram (233)</td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New GAP for stone fruits; cabbage, head; broccoli; citrus fruits; grapes; dried grapes; onion, bulb; leafy vegetables; broad bean; tree nuts, blueberries; raspberries, red and black; onions, green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiacloprid (223)</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pesticide Initiative Project – beans with pods, papaya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiamethoxam (245)</td>
<td>papaya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trifloxystrobin (213)</td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pesticide Initiative Project – beans with pods, mango, papaya, passionfruit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2012 JMPR PERIODIC RE-EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICOLOGY</td>
</tr>
<tr>
<td>bentazone (172) (BASF)</td>
</tr>
<tr>
<td>(residues - 2013)</td>
</tr>
<tr>
<td>cycloxydim (179) [BASF] -</td>
</tr>
<tr>
<td>(all existing commodity CXLs appear to be supported)</td>
</tr>
<tr>
<td>Chemical Name</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>dichlorvos (025)</td>
</tr>
<tr>
<td>fenvalerate (119)</td>
</tr>
<tr>
<td>glufosinate-ammonium (175)</td>
</tr>
<tr>
<td>2013 JMPR NEW COMPOUND EVALUATIONS</td>
</tr>
<tr>
<td>bixafen [Bayer CropScience] Germany</td>
</tr>
<tr>
<td>cyantraniliprole [Dupont] – USA PRIORITY 1</td>
</tr>
<tr>
<td>fluensulfone</td>
</tr>
<tr>
<td>imazapic BASF Brazil priority 1 – moved from 2012</td>
</tr>
<tr>
<td>Active Ingredient</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Imazapyr</td>
</tr>
<tr>
<td>Imazapyr</td>
</tr>
<tr>
<td>Isoxaflutole</td>
</tr>
<tr>
<td>Mesotrione</td>
</tr>
<tr>
<td>Pymetrozine</td>
</tr>
<tr>
<td>Tolfenpyrad</td>
</tr>
<tr>
<td>Triflumizole</td>
</tr>
<tr>
<td>Trinexapac</td>
</tr>
<tr>
<td>SYN545192</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>azoxystrobin [Syngenta] USA (229)</td>
</tr>
<tr>
<td>cypprodinil (207) [Syngenta] USA</td>
</tr>
<tr>
<td>difenoconazole (224) [Syngenta] USA</td>
</tr>
<tr>
<td>fenbuconazole (197) [Dow AgroSciences]</td>
</tr>
<tr>
<td>fenpyroximate (193) [Nihon Nohyaku] USA</td>
</tr>
<tr>
<td>fludioxonil (211) [Syngenta] USA</td>
</tr>
<tr>
<td>flutolanil (205) [Nihon Nohyaku]</td>
</tr>
<tr>
<td>Insecticide</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>chlorantraniliprole (230) [Dupont] - USA</td>
</tr>
<tr>
<td>malathion (49) [Cheminova] - USA</td>
</tr>
<tr>
<td>mandipropamid (231) [Syngenta] - USA</td>
</tr>
<tr>
<td>propiconazole (160) [Syngenta] - USA</td>
</tr>
<tr>
<td>spirotetramate (234) [Bayer CropScience] - USA</td>
</tr>
<tr>
<td>triazophos (143)</td>
</tr>
<tr>
<td>TOXICOLOGY</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
2014 JMPR - NEW COMPOUND EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Prioritisation Criteria</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>Registered</td>
<td>Cranberry, blackberry, blueberry, raspberry, grapes, cherry, pome fruit, hazelnut, and rhubarb</td>
<td>Apple (5), Blueberry (2), Blackberry (3), Cherry (12), Cranberry (4), Filberts (3), Grapes (12), Peach (4), Plum (3)</td>
</tr>
<tr>
<td>dichlobenil – [Chemtura] USA</td>
<td>dichlobenil</td>
<td>MRLs > LOQ</td>
<td>Broccoli, Brussels sprouts, Carrots, Chinese cabbage, Cauliflower, Courgettes (Summer squash), Cucumber, Eggplant, Gherkin, Grapes (Table and wine), Head cabbage, Kale, Leek, Lettuce (Head and leafy), Melon, Onion, Pepper (Bell and sweet), Potato, Pumpkin (Winter squash), Spinach, Strawberries, Sunflower seeds, Tomato, Watermelon</td>
<td>Fruiting vegetables (75), Leafy vegetables (30), Bulb vegetables (12), Brassica vegetables (20), Potato and tuberous vegetables (34), Root vegetables (13), Berries and small fruit (34), Oilseeds (23)</td>
</tr>
<tr>
<td>fenamidone [Bayer CropScience] Germany priority 1 – moved from 2013</td>
<td>fenamidone</td>
<td>Registered</td>
<td>Soybean, pomefruit (apple, pear), orange, melon, tomato, grape</td>
<td>Soybean (4 BR), pome-fruit (3), orange (1), melon, tomato (5), grape (14)</td>
</tr>
<tr>
<td>flufenoxuron BASF Brazil priority 1 – moved from 2012</td>
<td>flufenoxuron</td>
<td>Registered</td>
<td>Grape (table, wine, raisin), Pome fruits (apple, pears), Cherries, Fruiting vegetables (tomatoes, peppers, eggplant), Cucurbits (cucumber, squash, melon), Cereals (wheat, barley, oats, rye, triticale), Hops</td>
<td>Grapes (table and wine) (24 US) (14 EU), Raisins (dried grapes), (1 US), Pome fruits (apples, pears) (18), Cherries (16), Fruiting vegetables (tomatoes, peppers, eggplant) (28), Cucurbits (cucumber, squash, cantaloupe) (32), Cereals (wheat, barley, oats rye, triticale) (67), Hops (6 EU) (5 US)</td>
</tr>
<tr>
<td>metrafenone [BASF] USA</td>
<td>metrafenone</td>
<td>Registered</td>
<td>almond, apple, apricot, asparagus, avocado, blackberry, blueberry, cranberry, cherry (sweet and tart), citrus fruits group, cottonseed, grape, hazelnut, hops, nectarine, peach, peanut, pear, pecan, plums and prunes, raspberry, soybean, and walnut.</td>
<td>Almond: 7; Apple: 8; Apricot: 2; Asparagus: 6; Avocado: 3; Blackberry: 1; Blueberry: 6; Cranberry: 5; Cherry: 3; Citrus Fruits: 8; Cottonseed: 10; Filberts: 3; Grapes: 14; Nectarine: 2; Peach: 4; Peanut: 10; Pear: 4; Pecans: 4; Plums: 6; Raspberry: 6; Soybeans: 22; Walnuts: 2</td>
</tr>
<tr>
<td>norflurazon – [Syngenta] -USA</td>
<td>norflurazon</td>
<td>Registered</td>
<td>More advice required on relevant manufacturer and data package</td>
<td>More advice required on relevant manufacturer and data package</td>
</tr>
</tbody>
</table>
2014 JMPR - FOLLOW-UP EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bifenthrin (4 year rule)</td>
<td>Barley, barley (straw fodder), strawberry (alternative GAP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorothalonil (4 year rule)</td>
<td>Banana, carrot, cherry, cranberry, bulb onion, peach, sweet and chilli pepper, tomato, common beans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosmet [Gowan] - USA</td>
<td>Cranberry, tart cherry</td>
<td>cranberry (5), tart cherry (15) - tart cherry- 5 pre-GLP trials (2 US, 3 Canada), 6 GLP (Italy), 4 GLP (France)</td>
</tr>
</tbody>
</table>

2014 JMPR - PERIODIC RE-EVALUATION

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azinphos-methyl (002) [Makhteshim – Agan]</td>
<td>Waiting advice on commodities</td>
<td>Support unknown</td>
</tr>
<tr>
<td></td>
<td>Bromide ion (47)</td>
<td>No support</td>
<td>No Croplife manufacturer responsible - support unknown</td>
</tr>
<tr>
<td></td>
<td>Bromopropylate (70) [Syngenta]</td>
<td>No support</td>
<td>No support</td>
</tr>
<tr>
<td></td>
<td>Myclobutanil (181) [Dow AgroSciences]</td>
<td>Pome fruits, stone fruits, black currant, grapes, strawberry, banana, hops, tomato</td>
<td>Awaiting advice</td>
</tr>
<tr>
<td></td>
<td>Penconazole (182) [Syngenta]</td>
<td>Brassica Vegetables (Broccoli, Brussels sprouts, Cauliflower, Chinese cabbage), Pome Fruit, Fruiting Vegetables (Tomato, Pepper, Aubergine), Root and Tuber Vegetables (Carrot, Parsnip, Turnip), Cucurbit vegetables (Cucumber, Melon, Watermelon, Pumpkin, Zucchini), Berries (Blackberry, Blueberry, Blackcurrant, Gooseberry, Raspberry, Cranberry), Stone Fruit (Apricot, Cherry, Peach, Plum), Legume Vegetables (peas, beans), Nuts (Almond, Pecan, Cashew, Jujube, Pistachio, Hazelnut, Pine nut, Macadamia, Chestnut), Soya, Strawberry, Loganberry, Sugarbeet, Tobacco, Potato, Clementine, grapefruit, Nectarine, Cumquat, Mango, Gherkin, Leek, Banana, Lamb Lettuce, Rocket, Chicory, Canola, Parsley, Mint, Papaya, Alfalfa, Barley, Rice, Wheat, Sweet Corn, Hops, Lentil, Persimmon, Avocado, Artichoke, Grapes, Onion, Fennel</td>
<td>Information on number of available trials is under development. await advice</td>
</tr>
<tr>
<td></td>
<td>Tecnazene (115)</td>
<td>No Croplife manufacturer listed - support unknown</td>
<td></td>
</tr>
</tbody>
</table>
2015 JMPR - NEW COMPOUND EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>abamectin (177) [Syngenta]</td>
<td>abamectin (177)</td>
<td>Pome fruits, cucurbits (edible and inedible peel), grapes, citrus fruits, stone fruits, strawberries, hops, leafy vegetables (lettuce, spinach, endive, celery), potato, almond, walnut, bean, coffee, cotton, Fruiting vegetables (tomato, aubergine, pepper, sweet pepper), avocado, papaya, mango, avocado, onion</td>
</tr>
<tr>
<td>chlormequat (15) [BASF]</td>
<td>chlormequat (15)</td>
<td>Cereals, cottonseed, maize, rapeseed, maize fodder, cereals fodder/straw, meat, milk, eggs</td>
</tr>
<tr>
<td>clethodim (187) [Sumitomo - Valent USA] USA</td>
<td>clethodim (187)</td>
<td>bean, broccoli, cabbage, carrot, cranberry, cucurbits, hops, lettuce, pea, strawberry, blueberry</td>
</tr>
<tr>
<td>ethephon (106) [Bayer CropScience]</td>
<td>ethephon (106)</td>
<td>Apple, Barley, Barley straw and fodder, Blueberries, Cantaloupe, Cherries, Chili peppers (dry), Cotton seed, Dried grapes, Figs, Grapes, Hazelnuts, Peppers, Pineapple, Rye, Rye straw and fodder, Tomato, Walnuts, Wheat, Wheat straw and fodder, Chicken eggs, Edible offal of cattle, goats, horses, pigs & sheep, Meat of cattle, goats, horses, pigs & sheep, Milk of cattle, goats & sheep, Poultry meat, Poultry, edible offal.</td>
</tr>
<tr>
<td>fenpropimorph (188) [BASF]</td>
<td>fenpropimorph (188)</td>
<td>banana, cereals, sugar beet, cereals fodder/straw, meat, milk, eggs</td>
</tr>
<tr>
<td>hydrogen phosphide (46)</td>
<td>hydrogen phosphide (46)</td>
<td>no CropLife manufacturer responsible - support unknown</td>
</tr>
<tr>
<td>phosalone (60) [Cheminova]</td>
<td>phosalone (60)</td>
<td>awaiting advice on commodities</td>
</tr>
<tr>
<td>teflubenzuron (190) [BASF]</td>
<td>teflubenzuron (190)</td>
<td>apple, orange, coffee, field corn, soybean, sugarcane, sunflower, tomato, melon, broccoli, cauliflower, grape, papaya</td>
</tr>
</tbody>
</table>

2015 JMPR - FOLLOW-UP EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
</tr>
</thead>
</table>

2015 JMPR - PERIODIC RE-EVALUATION

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
</tr>
</thead>
</table>
| abamectin (177) [Syngenta] | abamectin (177) | Pome fruits, cucurbits (edible and inedible peel), grapes, citrus fruits, stone fruits, strawberri
| chlormequat (15) [BASF] | chlormequat (15) | Cereals, cottonseed, maize, rapeseed, maize fodder, cereals fodder/straw, meat, milk, eggs |
| clethodim (187) [Sumitomo - Valent USA] USA | clethodim (187) | bean, broccoli, cabbage, carrot, cranberry, cucurbits, hops, lettuce, pea, strawberry, blueberry |
| ethephon (106) [Bayer CropScience] | ethephon (106) | Apple, Barley, Barley straw and fodder, Blueberries, Cantaloupe, Cherries, Chili peppers (dry), Cotton seed, Dried grapes, Figs, Grapes, Hazelnuts, Peppers, Pineapple, Rye, Rye straw and fodder, Tomato, Walnuts, Wheat, Wheat straw and fodder, Chicken eggs, Edible offal of cattle, goats, horses, pigs & sheep, Meat of cattle, goats, horses, pigs & sheep, Milk of cattle, goats & sheep, Poultry meat, Poultry, edible offal. |
| fenpropimorph (188) [BASF] | fenpropimorph (188) | banana, cereals, sugar beet, cereals fodder/straw, meat, milk, eggs |
| hydrogen phosphide (46) | hydrogen phosphide (46) | no CropLife manufacturer responsible - support unknown |
| phosalone (60) [Cheminova] | phosalone (60) | awaiting advice on commodities |
| teflubenzuron (190) [BASF] | teflubenzuron (190) | apple, orange, coffee, field corn, soybean, sugarcane, sunflower, tomato, melon, broccoli, cauliflower, grape, papaya |

Apple (12), orange (16), coffee (9), field corn (6), soybean (5), sugarcane (5), sunflower (8), tomato (12), melon (8), broccoli (8), cauliflower (8), grape (12), papaya (4), mango (4), cucumber (8), gherkin (4), sweet pepper (4)
2016 JMPR - NEW COMPOUND EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Residue trials provided</td>
</tr>
</tbody>
</table>

2016 JMPR - FOLLOW-UP EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Residue trials provided</td>
</tr>
</tbody>
</table>

2016 JMPR - PERIODIC RE-EVALUATION

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>bioresmethrin (93)</td>
<td>bioresmethrin (93)</td>
<td></td>
<td>not supported by manufacturer</td>
</tr>
<tr>
<td>diazinon (22)</td>
<td>diazinon (22)</td>
<td>awaiting advice on commodities</td>
<td></td>
</tr>
<tr>
<td>iprodione (111)</td>
<td>iprodione (111)</td>
<td>tree nuts, cereals, beans, (dried), blackberry, broccoli, carrots, cheery,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cucumber, grapes, kiwi, lettuce (head and leafy), onion, stone fruit, pome</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fruit, rapeseed, raspberry, sugar beet, sunflower, tomato, witloof.</td>
<td></td>
</tr>
<tr>
<td>permethrin (120)</td>
<td>permethrin (120)</td>
<td></td>
<td>not supported by manufacturer</td>
</tr>
<tr>
<td>tolclofos-methyl (191)</td>
<td>tolclofos-methyl (191)</td>
<td>awaiting advice on commodities</td>
<td>ginseng (ROK)</td>
</tr>
</tbody>
</table>

2017 JMPR - NEW COMPOUND EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Residue trials provided</td>
</tr>
</tbody>
</table>

2017 JMPR - FOLLOW-UP EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Residue trials provided</td>
</tr>
</tbody>
</table>
2017 JMPR - PERIODIC RE-EVALUATION

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>fenarimol (192) [Gowan]</td>
<td>fenarimol</td>
<td>awaiting advice on commodities</td>
<td></td>
</tr>
<tr>
<td>fenpyroximate (193) [Nihon Nohyaku]</td>
<td>fenpyroximate</td>
<td>awaiting advice on commodities</td>
<td></td>
</tr>
<tr>
<td>fenthion (39) [Bayer CropScience]</td>
<td>fenthion</td>
<td>awaiting advice on commodities</td>
<td></td>
</tr>
<tr>
<td>quintozene (64) [Crompton – AMVAC]</td>
<td>quintozene</td>
<td>awaiting advice on commodities</td>
<td></td>
</tr>
</tbody>
</table>

2018 JMPR - NEW COMPOUND EVALUATIONS

<table>
<thead>
<tr>
<th>TOXICOLOGY</th>
<th>RESIDUE</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>ferbam, ziram (105) [Taminco]</td>
<td>ferbam, ziram (105)</td>
<td>awaiting advice on commodities</td>
<td></td>
</tr>
<tr>
<td>flumethrin (195) [Bayer CropScience]</td>
<td>flumethrin (195)</td>
<td>awaiting advice on commodities</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Record of periodic re-evaluations (not required for CCPR report)

Table 3: Chemical-commodity combinations for which specific GAP is no longer supported (not required for CCPR report)

Table 4: Chemicals with extraneous MRLs and recent deletions (not required for CCPR report)

Table 5: Periodic re-evaluation - chemicals no longer supported
<table>
<thead>
<tr>
<th>Year</th>
<th>Chemical</th>
<th>Support</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Aldicarb (117)</td>
<td>No longer supported by the manufacturer</td>
<td>Confirmation of support is required</td>
</tr>
<tr>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Dichlofluanid (82)</td>
<td>Not supported by manufacturer</td>
<td>Confirmation of support is required</td>
</tr>
<tr>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinocap (87)</td>
<td>Not supported by manufacturer</td>
<td>Confirmation of support is required</td>
</tr>
<tr>
<td></td>
<td>Dow AgroSciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disulfoton (74)</td>
<td>Support from USA - awaiting advice on commodities</td>
<td>Confirmation of support is required</td>
</tr>
<tr>
<td></td>
<td>Bayer CropScience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methidathion (51)</td>
<td>Not supported by manufacturer</td>
<td>Confirmation of support is required</td>
</tr>
<tr>
<td></td>
<td>Syngenta</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Periodic re-evaluation – some commodities no longer supported

<table>
<thead>
<tr>
<th>2012</th>
<th>Commodities</th>
<th>Residue trials provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>diquat (031) [Syngenta]
priority 1 - moved on request March 2011</td>
<td>Cereals (including barley, wheat, maize, oats, rice, sorghum), Oilseeds (including linseed, oilseed rape, soya bean, sunflower, cotton, poppy), Legume vegetable group (including peas, beans, lentils), Head brassica group (including cabbage), Flowering brassica group, Leafy brassica group, Fruiting vegetable group (including tomato, pepper), Root and tuber group (including carrot, radish, beetroot, sugarbeet, potato), Stem vegetable group (including asparagus, celery, leek), Cucurbits (edible and inedible peel), Bulb vegetables (including onion), Citrus fruit, Lettuce group, spinach, canary, lupine, mustard, apple, banana, chicory witloof, coffee, sweet corn, grape, herbs (including parsley and sage), hop, kohlrabi, lucerne, olive, peach, strawberry, clover, grass, alfalfa, sugarcane.</td>
</tr>
<tr>
<td></td>
<td>fenbutatin oxide (109) [BASF]</td>
<td>Tree nuts, pome fruit, banana, cherry, citrus fruit, cucumber, grapes, raisins, stone fruit, strawberry, tomato, meat, milk, eggs</td>
</tr>
<tr>
<td></td>
<td>fenpropathrin (185) [Sumitomo Chemical] – USA
priority 1 – moved from 2012</td>
<td>Cattle meat, cattle milk, cattle edible offal, cotton seed, cotton seed oil, eggplant, eggs, gherkin, grapes, chili pepper, sweet pepper, pome fruits, poultry meat, poultry edible offal, tea, tomato, Cherries, Stone fruit (Peach, Apricots, Nectarine, Plums), Strawberries, Bushberries, Caneberries, Tree nuts including pistachio, Olive, Citrus (Oranges, Grapefruit, Lemons)</td>
</tr>
<tr>
<td></td>
<td>metalaxyl (138) Quimicas del Vallés - SCC GmbH</td>
<td>Review in 2004 for residues was for evaluation of metalaxyl-M, Support from Quimicas del Vallés - SCC GmbH, USA - Supervised trials by Thailand</td>
</tr>
</tbody>
</table>