codex alimentarius commission

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS WORLD HEALTH ORGANIZATION

JOINT OFFICE: Viale delle Terme di Caracalla 00100 ROME Tel: 39 06 57051 www.codexalimemarius.net Email: codex@fao.org Facsimile: 39 06 5705 4593

Agenda Item 10(b)

CX/FAC 03/13 February 2003

JOINT FAO/WHO FOOD STANDARDS PROGRAMME

CODEX COMMITTEE ON FOOD ADDITIVES AND CONTAMINANTS Thirty-fifth Session Arusha, Tanzania, 17 - 21 March 2003

CONSIDERATION OF A REVISION OR AMENDMENTS TO THE GUIDELINE LEVELS FOR RADIONUCLIDES IN FOODS FOLLOWING ACCIDENTAL NUCLEAR CONTAMINATION FOR USE IN INTERNATIONAL TRADE (CAC/GL 5-1989), INCLUDING GUIDELINE LEVELS FOR RADIONUCLIDES FOR LONG-TERM USE

BACKGROUND

1. The 50th Session of the Executive Committee (June 2002) considered a request arising from the International Atomic Energy Agency (IAEA) to broaden the Guideline Levels for Radionuclides in Foods Following Accidental Nuclear Contamination for Use in International Trade (CAC/GL 5-1989) to other radionuclides and to consider the establishment of guideline levels for radionuclides for long-term use as new work (CX/EXEC 02/50/7, Annex 1). The Executive Committee decided not to approve the elaboration of the above documents on guideline levels at this stage and referred them to the CCFAC for consideration together with additional information from the IAEA regarding a possible approach to deriving new levels (ALINORM 03/3A, para. 67 and Appendix III).

ISSUES FOR CONSIDERATION

2. As indicated in the attached letter (see Annex I) from the IAEA Division of Radiation and Waste Safety, and as requested by the 50th Session of the Executive Committee, the CCFAC is invited to consider the following:

- whether or not the current levels contained in the Codex Guideline Levels for Radionuclides in Foods Following Accidental Nuclear Contamination for Use in International Trade (CAC/GL 5-1989) can be applied to long term situations or, if not, the values that would be appropriate for long term use.
- the broadening of the list of radionuclides contained in CAC/GL 5-1989 to include most of the radionuclides, including those of natural origin, that are currently listed in Schedule 1 of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (see Annex III).

3. Additional information on this subject has also been provided by the IAEA Division of Radiation and Waste Safety in Annex II (Derivation of the Codex Guidelines in Foods Following Nuclear Contamination).

LETTER FROM THE INTERNATIONAL ATOMIC ENERGY AGENCY

Vienna, 30 April 2002

Dear Mr. Randell,

During the 44th General Conference of the International Atomic Energy Agency (the Agency) in 2000, a resolution (GC(44)/RES/15) was passed which requested the Agency's Secretariat "to develop, using the Agency's radiation protection advisory mechanisms and in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, during the next two years and within available resources, radiological criteria for long-lived radionuclides in commodities, particularly foodstuffs and wood, and to submit them to the Board of Governors for its approval".

In response to this resolution, the Agency is developing a Safety Guide entitled "*Radionuclide Content in Commodities not requiring Regulation for Purposes of Radiation Protection*". During the development of this document, a number of issues were raised concerning the derivation of guidance levels for radionuclides in foods that can be traded on the free market, most notably, during a recent Technical Meeting. These are as follows:

- a) The guideline levels presented in the Codex Alimentarius (CAC/GL 5) are applicable for one year following a nuclear accident but may not be applicable to longer term situations. It was suggested that consideration should be given to whether the Codex Alimentarius levels can be applied to long term situations or, if not, the values that would be appropriate for long-term use.
- b) The Codex Alimentarius guideline levels are for a very limited set of radionuclides. There is however the potential for other radionuclides to be present in foodstuffs. It was therefore suggested that the list should be broadened to include most of the radionuclides, including those of natural origin, that are currently listed in Schedule I of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, which have been co-sponsored by inter alia, FAO, WHO and the Agency.

In view of the obligation placed on the Agency by the afore-mentioned resolution, the issues raised during the Agency's subsequent response and the responsibilities of the Codex Alimentarius Commission, I am writing to request the Commission to consider guideline levels for radionuclides in foodstuffs for long-term use and also broadening the guidance levels as mentioned above. The Agency would be pleased to assist the Commission in this and is prepared to make available the results of preliminary work carried out by its Secretariat on the derivation of such levels.

Yours sincerely,

Abel J. Gonzalez Director Division of Radiation and Waste Safety

DERIVATION OF THE CODEX GUIDELINES IN FOODS FOLLOWING NUCLEAR CONTAMINATION (Information Provided by the IAEA Division of Radiation and Waste Safety)

These Guidelines have been reconsidered for three reasons:

- 1. The International Commission on Radiological Protection has recommended a generic intervention exemption level of around 1 mSv for individual annual dose from radionuclides in major commodities¹.
- 2. The perceived threats of a war in which nuclear weapons are used and terrorist activity have increased so these possibilities must be considered in addition to accidental releases of radionuclides.
- 3. The earlier guidelines assumed a reference level of dose (5 mSv^2) and were applicable only for one year following a nuclear accident. This is illogical because the nature of the 'nuclear accident' was not specified and there may be confusion in applying them to concurrent accidents. There is no radiological reason why the Guidelines should not be generally applicable and in practice they have been widely used.

The Guideline Levels recommended to the Codex Alimentarius Commission were calculated using the following formula:

Level = RLD/(m x df x d)

Where: RLD = Reference Level of Dose

m = mass of food consumed (kg)

df = dilution factor

d = dose per unit intake coefficient (Sv/Bq)

Controlling radionuclide contamination of foods moving in international trade requires simple, uniform and easily applied values. This approach is one that can be uniformly applied by government authorities and yet one that achieves a level of public health protection to individuals that is considered more than adequate.

In making these recommendations the following assumptions were made in calculating the levels:

- 1. the reference level of dose adopted was 1 mSv per year in accordance with the most recent recommendations of the International Commission on Radiological Protection;
- 2. 550 kg of food is consumed per year by an adult;
- 3. 275 kg of milk is consumed per year, by an infant;
- 4. 20% of the diet is of imported food³, all of which is contaminated; this gives a dilution factor of 0.2.
- 5. Dose per unit intake coefficients for the radionuclides of concern can be conveniently divided into two classes and applied to the general population:

a) those with dose per unit intake coefficient of 10^{-7} Sv/Bq such as ²³⁹Pu and other actinides

b) those with dose per unit intake coefficient of 10^{-8} Sv/Bq such as 90 Sr, 131 I, 134 Cs and 137 Cs.

¹ [ICRP-82] International Commission on Radiological Protection. Principles for the Protection of the Public in Situations of Prolonged Exposure. Annals of the ICRP, V. 29, No 1-2 (1999).

² WHO (World Health Organization). 1989. Derived intervention levels for radionuclides in food. Guidelines for application after widespread radioactive contamination of resulting from a major radiation accident, Geneve.

³ On a global basis just over 13% of the per caput supply of food was traded internationally in 1999 (FAO Food Balance Sheet). The highest level of imported food was over 15% in Europe so this figure has been rounded up to the next decade to give 20%.

As in the 1989 Guidelines, dose per unit intake coefficients for the radionuclides in milk and infant foods were divided into three classes. The sensitivity of infants was taken into account by increasing the dose per unit intake value for alpha-emitting nuclides to 10^{-6} Sv/Bq and assigning 90 Sr, 131 I to the 10^{-7} Bq/kg class.

These assumptions are extremely conservative and it is most unlikely that the application of the Guideline Levels will result in an annual dose to an individual greater than a small fraction of 1mSv. This is confirmed by experience since the promulgation of the 1989 Guidelines.

Applying these assumptions to the above formula, the level for the general population for radionuclides in the 10^{-8} Sv/Bq class is:

 $1 \ge 10^{-3}/(550 \ge 0.2 \ge 10^{-8}) = 909 \text{ Bq/kg}$

which can be rounded to 1000 Bq/kg. Corresponding values for the 10^{-6} and 10^{-7} mSv/Bq classes are 10 Bq/kg and 100 Bq/kg.

For infant foods and milk, the Guideline levels are 10 Bq/kg for the alpha emitters of the actinide series and any other radionuclide with a dose per unit intake coefficient of 10^{-6} Sv/Bq and 100 Bq/kg for 90 Sr, 131 I and any other radionuclides with a dose per unit intake coefficient of 10^{-7} Sv/Bq.

Infant foods are those prepared specifically for consumption by infants less than one year old. Such foods are packaged and identified as being for this purpose.

Annex III

List of radionuclides included in Schedule 1 of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (SS-115), IAEA, 1996

H-3	Cu-64
Be-7	Zn-65
C-14	Zn-69
O-15	Zn-69m
F-18	Ga-72
Na-22	Ge-71
Na-24	As-73
Si-31	As-74
P-32	As-76
P-33	As-77
S-35	Se-75
Cl-36	Br-82
CI-38	Kr-74
Ar-37	Kr-74 Kr-76
Ar-41	Kr-77
K-40	Kr-79
K-42	Kr-81
K-43	Kr-83m
Ca-45	Kr-85
Ca-47	Kr-85m
Sc-46	Kr-87
Sc-47	Kr-88
Sc-48	Rb-86
V-48	Sr-85
Cr-51	Sr-85m
Mn-51	Sr-87m
Mn-52	Sr-89
Mn-52m	Sr-90a
Mn-53	Sr-91
Mn-54	Sr-92
Mn-56	Y-90
Fe-52	Y-91
Fe-55	Y-91m
Fe-59	Y-92
Co-55	Y-93
Co-56	Zr-93a
Co-57	Zr-95a Zr-95
Co-58	Zr-97a
Co-5 8m	Nb-93m
Co-60	Nb-94
Co-60m	Nb-95
Co-61	Nb-97
Co-62m	Nb-98
Ni-59	Mo-90
Ni-63	Mo-93
Ni-65	Mo-99

Mo-101	Xe-135
Tc-96	Cs-129
Tc-96m	Cs-131
Tc-97	Cs-132
Tc-97m	Cs-134m
Tc-99	Cs-134
Tc-99m	Cs-135
Ru-97	Cs-136
Ru-103	Cs-137a
Ru-105	Cs-138
Ru-106a	Ba-131
Rh-103m	Ba-140a
Rh-105	La- 140
Pd-103	Ce-139
Pd-109	Ce-141
Ag-105	Ce-143
Ag-llOm	Ce-144a
Ag-111	Pr-142
Cd-109	Pr-143
Cd-115	Nd-147
Cd-115m	Nd-149
In-111	Pm-147
In- 11 3m	Pm-149
In- 114m	Sm-151
In- 11 5m	Sm-151 Sm-153
Sn-113	Eu-152
Sn-125	Eu-152 Eu-152m
Sb-122	Eu-15211 Eu-154
Sb-122 Sb-124	Eu-154 Eu-155
Sb-124 Sb-125	Gd-153
Te-123m	Gd-159
Te-125m	Tb-160
Te-127	Dy-165
Te-127	Dy-166
Te-129	•
Te-129	Ho- 166 Er-169
Te-131	
	Er-171 Tm-170
Te-131m	
Te-132	Tm-171
Te-133	Yb-175
Te-133m	Lu-177
Te-134	Hf-181
1-123	Ta-182
1-125	W-181
1-126	W-185
1-129	W-187
1-130	Re- 186
1-131	Re- 188
1-132	Os-185
1-133	Os-191
1-134	Os-191m
1-135	Os-193
Xe-13lm	Ir-190
Xe-133	Ir-192

Ir-194	U-233
Pt-191	U-234
Pt-193m	U-2353
Pt-197	U-236
Pt-197m	U-237
Au-198	U-2383
Au-199	U-nat
Hg-197	U-239
Hg-197m	U-240
Hg-203	U-2403
TI-200	Np-237a
TI-201	Np-239
Tl-202	Np-240
Tl-204	Pu-234
Pb-203	Pu-235
Pb-210a	Pu-236
Pb-212a	Pu-237
Bi-206	Pu-238
Bi-207 Bi-210	Pu-239
Bi-210 Bi-212	Pu-240
Bi-212a	Pu-241
Po-203	Pu-242
Po-205	Pu-243
Po-207	Pu-244
Po-210	Am-241
At-211	Am-242
Rn-220a	Am-242ma
Rn-222a	Am-243a
Ra-223a	Cm-242
Ra-224a	Cm-243
Ra-225	Cm-244
Ra-226a	Cm-245
Ra-227	Cm-246
Ra-228a	Cm-247
Ac-228	Cm-248
Th-226a	Bk-249
Th-227	Cf-246
Th-228a	Cf-248
Th-229a	Cf-249
Th-230	Cf-250
Th-231	Cf-251
Th-nat	Cf-252
(incl. Th-232)	Cf-253
Th-234a	Cf-254
Pa-230	Es-253
Pa-231	Es-255 Es-254
Pa-233	Es-254 Es-254m
U-2308	Es-254m Fm-254
U-231	Fm-255
U-232a	1111-233
$0^{-2}J2a$	

Parent nuclides and their progeny included in secular equilibrium are listed in the following:

Sr-90	Y-90
Zr-93	Nb-93m
Zr-97	Nb-97
Ru-106	Rh-106
Cs-137	Ba-137m
Ce-134	La- 134
Ce-144	Pr-144
Ba-140	La- 140
Bi-212	Tl-208 (0.36), Po-212 (0.64)
Pb-210	Bi-210, Po-210
Pb-212	Bi-212, Tl-208
Rn-220	Po-216
Rn-222	Po-218, Pb-214 (0.36), Po-212 (0.64), Bi-214, Po-214
Ra-223	Rn-219, Po-215, Pb-211, Bi-211, Tl-207
Ra-224	Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36), Po-212 (0.64)
Ra-226	Rn-222, Po-218, Pb-214, Bi-214, Po-214, Pb-210, Bi-210, Po-210
Ra-228	Ac-228
Th-226	Ra-222, Rn-218, Po-214
Th-228	Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36), Po-212 (0.64)
Th-229	Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209
Th-nat	Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36),
	Po-212 (0.64)
Th-234	Pa-234m
U-230	Th-226, Ra-222, Rn-218, Po-214
U-232	Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36), Po-212 (0.64)
U-235	Th-231
U-238	Th-234, Pa-234m
U-nat	Th-234, Pa-234m, U-234, Th-230, Ra-226, Rn-222, Po-218, Pb-214, Bi-214,
	Po-214, Pb-210, Bi-210, Po-210
U-240	Np-240m
Np-237	Pa-233
Am-242m	Am-242
Am-243	Np-239