codex alimentarius commission

JOINT FAO/WHO FOOD STANDARDS PROGRAMME

CODEX COMMITTEE ON FOOD ADDITIVES AND CONTAMINANTS Thirty-fifth Session
 Arusha, United Republic of Tanzania, 17-21 March 2003

COMMENTS SUBMITTED ON THE DRAFT MAXIMUM LEVEL FOR PATULIN IN APPLE JUICE AND APPLE JUICE INGREDIENTS IN OTHER BEVERAGES IN RESPONSE TO CL 2002/10-FAC

The following comments have been received from Denmark, Canada :

DENMARK:

In the circular letter governments have been invited to supply more data in connection with the possible reduction of the maximum level of $50 \mu \mathrm{~g} / \mathrm{kg}$ for patulin in apple juice and apple juice ingredients in other beverages.

Danish investigations on content of patulin in apple juice has given the following result:

Product	No of samples	Range	Average	Median	Year
Apple juice	46	$<\mathrm{dl}-27 \mu \mathrm{~g} / \mathrm{l}$	$5.1 \mu \mathrm{~g} / \mathrm{l}$	$4,1 \mu \mathrm{~g} / \mathrm{l}$	1985
Applejuice	57	$<\mathrm{dl}-18 \mu \mathrm{~g} / \mathrm{l}$	$4.9 \mu \mathrm{~g} / \mathrm{l}$	-	1994

These data shows that it is possible to produce apple juice with a content below $25 \mu \mathrm{~g} / \mathrm{kg}$ and that this limit only rarely will be exceeded. Therefore, Denmark supports a limit of $25 \mu \mathrm{~g} / \mathrm{kg}$ and cannot support a limit of $50 \mu \mathrm{~g} / \mathrm{kg}$.

CANADA:

In response to Circular Letter 2002/10-FAC (April 2002), Canada is pleased to offer the following comments on Item 8, Part C:

Canada has previously provided comments concerning toxicology, exposure and risk assessment information in connection with the Discussion Paper on Patulin. Canada continues to support adherence to good manufacturing practices which suggest that rotted or mouldy fruit not be used in order to minimise the formation of patulin.

With respect to the ML for patulin, Canada presently uses an ML of $50 \mu \mathrm{~g} / \mathrm{kg}$ as an unofficial guideline and supports continuance of this tolerance for several reasons.

First, in light of the relatively recent establishment of the current ML, it is considered that a reduction in this value is premature. Companies that have adjusted their technology and practices in order to meet this standard often achieve a much greater reduction in patulin than is necessary to meet the ML of $50 \mu \mathrm{~g} / \mathrm{kg}$. Canada recommends that CCFAC monitor the effect that the current ML is having on patulin levels in apple produce of Member States for a period of time before a determination is made of whether to revisit the ML or not.

Second, the detection limits that are routinely attainable for analytical methods that measure patulin are not sufficiently low to allow the enforcement of the proposed ML of $25 \mu \mathrm{~g} / \mathrm{kg}$. For instance, a 1998/99 survey of samples taken in the Ontario region of Canada utilised a method based on an AOAC method ($995: 10$). The detection limit was 20 ppb , which may be prohibitively high for enforcement of a $25 \mu \mathrm{~g} / \mathrm{kg}$ ML. Of interest is the fact that, for the Ontario samples, all 89 apple juices and drinks were <50 $\mu \mathrm{g} / \mathrm{kg}$ (see table below). One apple juice sample contained $31 \mu \mathrm{~g} / \mathrm{kg}$ and another sample contained 34 $\mu \mathrm{g} / \mathrm{kg}$.

Third, Canada considers that a reduction in the patulin ML could impose unnecessary economic hardship for some countries without having a significant impact on the reduction of health effects.

With respect to the levels of patulin found in apple juice sampled in Canada, the following table summarises survey results for a three-year period beginning 1996/97 to 1998/99.

Commodity	\boldsymbol{N}	Mean, $\boldsymbol{\mu g} / \mathbf{k g}$	Range, $\boldsymbol{\mu \mathrm { g } / \mathrm { kg }}$	no. $<\mathbf{L D}$	No. $>\mathbf{5 0} \boldsymbol{\mu \mathrm { g } / \mathrm { kg }}$			
1998/1999 Survey Year								
Apple Juice (pure, concentrate, or reconstituted)	85	<20	$<20-34$	83	nil			
Apple Cider	3	<20	all <20	3	nil			
Apple Beverage	1	<20	all <20	1	nil			
$1997 / 1998$ Survey Year								
Apple Juice	11	<22.9	$<20-37$	9	nil			
Apple Juice Concentrate	2	<20	all <20	2	nil			
Apple Juice Reconstituted	23	<34.7	$<20-183$	18	3			
	$1996 / 1997$ Survey Year							
Apple Juice	36	<23.4	$<5-96$	24	2			
Apple Juice Unsweetened	99	<13.3	$<5-107$	72	3			
Apple Juice Reconstituted	20	<17.6	$<5-43$	14	nil			

