Clenter.

Genomic Resources and Gene/QTL Discovery in Livestock

Jerry Taylor **University of Missouri**

FAO Intl Tech Conf on Agric Biotech in Dev Count, Guadalajara, March 2nd 2010 Livestock Decoded

Outline

Available Genomic Tools

- Next generation sequencers
- High throughput SNP genotyping
- Arrays
- Available Populations
- Prospects for QTL Discovery
 - Or why we need Genomic Selection!!

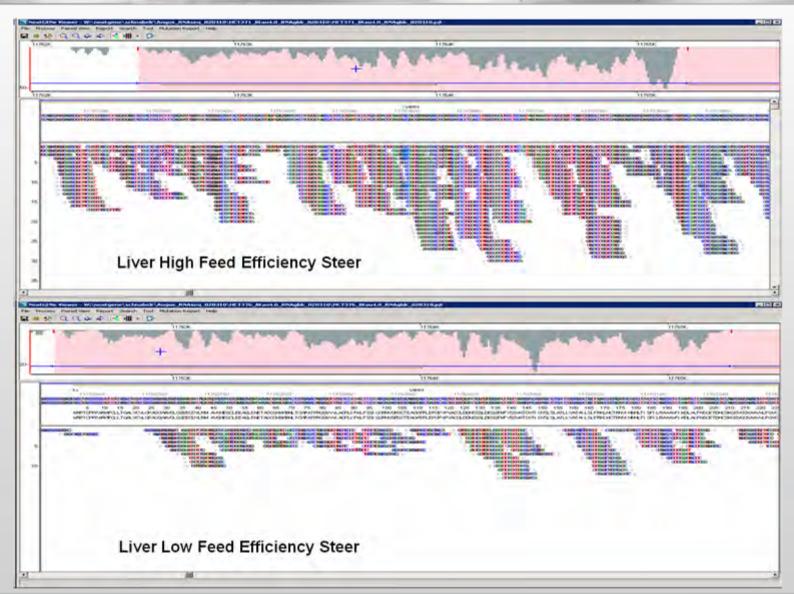
Next-Gen Sequencers

Rapidly Evolving

- MU GAIIx (v4.0 chemistry & v1.4 base calling) yields 2.8 Gb/lane
- New platforms with enhanced capabilities
- Cost/Mb is decreasing
- Numerous Applications
 - RNAseq
 - Genome resequencing
 - De novo assembly
 - Mutation discovery
 - ChIPseq
 - Small non-coding RNAs
 - DNA methylation (esp. Pac Biosciences)
- Democratizing Genomics!
 - Developing countries and small labs can be genome centers!!!

MU DNA Core Service Costs

Library Preparation	USD
Genome Sequencing Sample Preparation* (Paired-End Adapters)	\$225
Digital Gene Expression (DGE)- small RNA Sample Preparation	\$445
cDNA Sample Preparation*	\$225
ChIP-Seq Sample Preparation*	\$225
mRNA-Seq Sample Preparation**	\$500



Analysis	USD	Raw Data Output/Flow Cell (Gb)
Single Read (42 bases)	\$828.57/lane (\$5,800/Flow Cell)	5-6Gb
Single Read (84 bases)	\$1,414.29/lane (\$9,900/Flow Cell)	11-12Gb
Paired-End Read (2x42 bases)	\$1,657.14/lane (\$11,600/Flow Cell)	11-12Gb
Paired-End Read (2x84 bases)	\$2157.14/lane (\$15,100/Flow Cell)	22-23Gb

\$3000 for 1X mammalian genome sequence coverage!!!

RNASeq pileup over VIPR1

Public Genomic Resources

Whole genome sequence on African, Asian, European cattle breeds will soon be publicly available

> Whole genome sequencing of 120 animals from 12 breeds

				Genome Coverage Average Read Length Unfiltered SNPs		
Library	GAIIx Lanes	Post-Filter Reads	Total Bases	(2.685 Gb = 1X)	(bp)	and Indels
Brahman (10)	20	335,962,867	23,485,537,782	8.74	69.91	19,901,328
East Asian (15)	32	497,458,572	35,220,941,134	13.11	70.80	18,662,313
Angus (3)	54	877,918,406	67,112,512,237	24.99	76.45	14,797,621
AN626	18	310,024,359	23,565,486,109	8.77	76.01	
AN828	18	289,562,373	22,621,184,219	8.42	78.12	
AN1717	18	278,331,674	20,925,841,909	7.79	75.18	
All libraries	106	1,711,339,845	125,818,991,153	46.85	73.52	

Advantages/Disadvantages

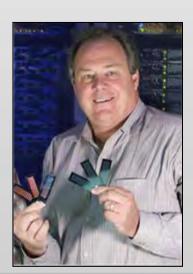
Advantages

- Relatively inexpensive and fast
- Enormous information content
- Species independent technology

- Microarrays
- Genotyping

Disadvantages

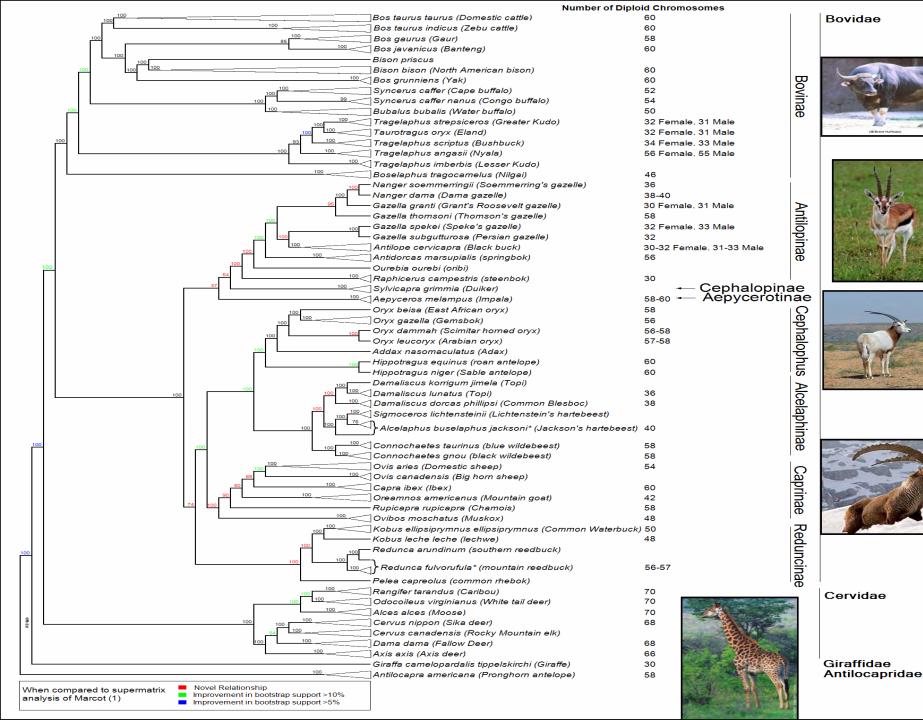
- Suites of analysis tools only just becoming available
- Require major compute horsepower (~\$40K Servers)
 - Analysis is non-trivial requires training/experience



High-Throughput SNP Chips

- First generation assays (~50K SNPs) available for Chicken, Pig, Sheep, Cow, Horse, Dog
 - Under development for salmon, tilapia, catfish
- Second generation assays (~800K SNPs) available summer 2010
- Utility:
 - Genome-wide association mapping (GWAS)
 - Genomic Selection
 - Population genetics/conservation biology

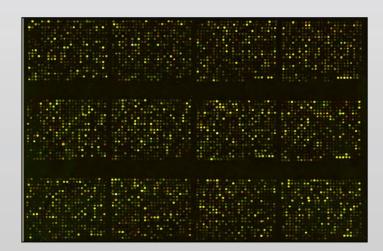
Advantages/Disadvantages


Advantages

- Rapid data generation
- Highly accurate and complete data
- Work across species (30 MY evolution)
- Relatively inexpensive (research)
- Rapid research to commercialization for GS
- Data analysis very similar to BLUP genetic evaluation
- Service providers available (e.g., GeneSeek)
- Available in 96, 384, 1536, 3072, 50K, 800K

Disadvantages

- Relatively expensive (commercialization)
- Available analysis tools (e.g., PLINK, ASREML)
- Contain common variants (SNP ascertained)



Arrays

- Genome-wide oligo microarrays available for chicken, cattle, sheep, pigs
- Availably commercially (Agilent, Illumina, Affymetrix) or through species consortia (BOM: bovineoligo.org; SPAM: pigoligoarray.org)
- CNV, Sequence Capture (e.g., exon, target regions), CpG arrays by custom design (e.g., Nimblegen, Agilent)

Gene Expression Microarrays

Advantages

- Relatively inexpensive (\$55 per array + RNA extraction and labeling kits etc = ~\$250 per sample) but require replication!!!!!
- Analysis tools readily available (e.g., R open source)
- Available for many species

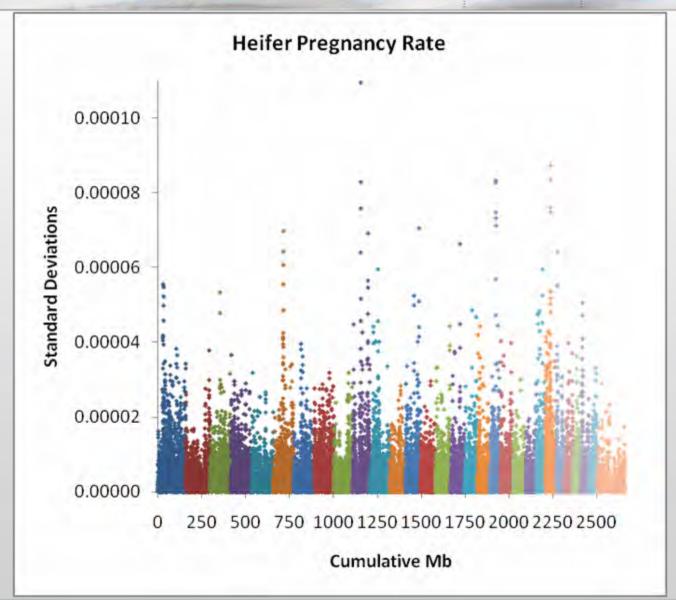
Disadvantages

- Nontrivial chemistry
- Non exhaustive (not all genes are queried)
- Probes only for one exon (alternate splicing, promoter and 3' UTR utilization missed)
- Not available for all species

• All Arrays

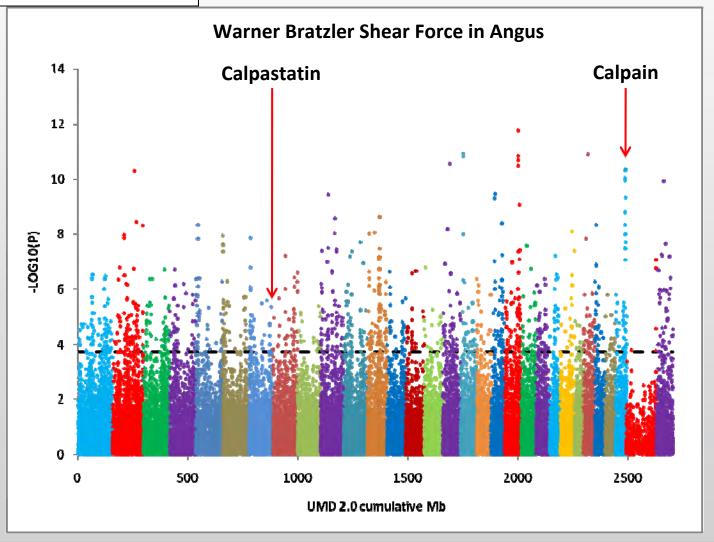
NextGen sequencing will make most arrays redundant

Available Populations

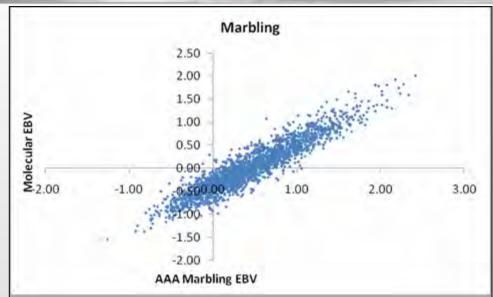

The greatest limitation to all genomic technologies previous and imminent is that we do not have populations of animals with high-quality DNA, tissue samples and phenotypes...

In the US

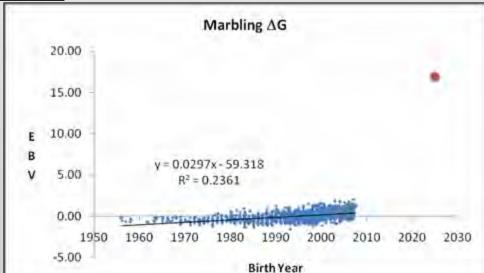
- The only population with adequate numbers of animals to build accurate GS prediction models is Holsteins
- Angus 2,700 AI bulls with EPDs
- Angus 3,500 steers with growth and carcass composition
- Angus 700 steers with feed intake
- Limousin 2,200 registered males and females with EPDs
- Angus (660), Limousin (285), Charolais (702), Hereford (1192), Simmental (521) with meat tenderness
- Worldwide priority is assembly of populations and phenotypes



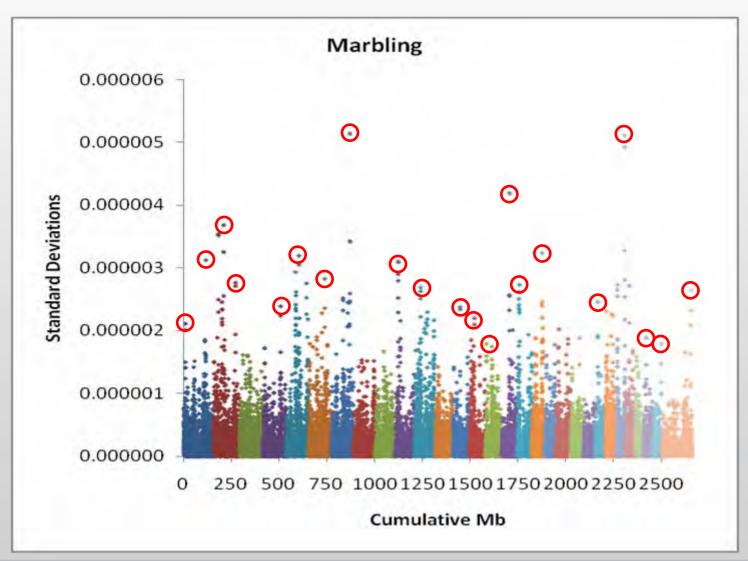
Too Many Genes for MAS!!!


Breed	No. Sires	Sire Identified Steers	Sire Unknown Steers	Total
	20	F30	140	
Angus	20	520	140	660
Hereford	29	566	626	1192
Limousin	23	285	0	285
Charolais	18	350	352	702
Simmental	24	374	147	521
Total	114	2095	1265	3360

Use Experimental Populations to Produce EBVs for an Entire Breed



Genomic Selection!



Genomic Selection with Reduced SNP Sets

