## HALOXYFOP (194) AND HALOXYFOP-P

The first draft was prepared by Mr. D. J. Hamilton Department of Primary Industries and Fisheries Brisbane, Australia

# **EXPLANATION**

Residue and analytical aspects of haloxyfop were evaluated by the JMPR in 1995, 1996 and 2001. The compound was listed in the Periodic Re-Evaluation Program at the 39<sup>th</sup> Session of the CCPR for periodic review by the 2009 JMPR. The most recent toxicological review was in 2006 when a group ADI of 0–0.0007 mg/kg bw was established for racemic haloxyfop, haloxyfop-R and their methyl esters. The 2006 JMPR also established a group ARfD of 0.08 mg/kg bw for racemic haloxyfop, haloxyfop-R and their methyl esters.

The primary manufacturer provided a full residue data package. GAP information was also provided by Australia and The Netherlands.

## **IDENTITY**

HALOXYFOP

Haloxyfop was developed as a selective herbicide for the control of grass weeds in broad-leaf crops. Originally it was produced as a racemic mixture. The R-isomer is the herbicidal active compound. Currently, the only compound available commercially is haloxyfop-R as methyl ester. When applied to plants, the ester is rapidly hydrolysed to acid, which has herbicidal activity.

ISO common name (Wood, 2009) IUPAC name (Wood, 2009)

Chemical Abstracts name (Wood, 2009) CAS Number (Wood, 2009) CIPAC Number Molecular formula Molecular mass (RS)-2-{4-[3-chloro-5-(trifluoromethyl)-2pyridyloxy]phenoxy}propionic acid

haloxyfop

pyridyloxy]phenoxy}propionic acid 2-[4-[[3-chloro-5-(trifluoromethyl)-2pyridinyl]oxy]phenoxy]propanoic acid 69806-34-4 438 C<sub>15</sub>H<sub>11</sub>ClF<sub>3</sub>NO<sub>4</sub> 361.7

COC

haloxyfop-P

haloxyfop-P: DE-535 acid, haloxyfop-R haloxyfop-P-methyl: XRD-535 (until 1989); XDE-535 (1990-1993); DE-535 (since 1993) (*R*)-2-{4-[3-chloro-5-(trifluoromethyl)-2pyridyloxy]phenoxy}propionic acid (2*R*)-2-[4-[[3-chloro-5-(trifluoromethyl)-2pyridinyl]oxy]phenoxy]propanoic acid haloxyfop-P: 95977-29-0 haloxyfop-P-methyl: 72619-32-0

Synonyms:

2009)

Structural formula

HALOXYFOP-P

IUPAC name (Wood, 2009)

ISO common name (Wood,

Chemical Abstracts name (Wood, 2009)

CAS Number (Wood, 2009)

CIPAC Number

Molecular formula

Molecular mass

Structural formula

haloxyfop-P: 526 haloxyfop-P-methyl: 526.201 haloxyfop-P:  $C_{15}H_{11}CIF_3NO_4$ haloxyfop-P-methyl:  $C_{16}H_{13}CIF_3NO_4$ haloxyfop-P: 361.7 haloxyfop-P-methyl: 375.7

CH, -OCH3 CF:

haloxyfop-P-methyl

haloxyfop-P

## Physical and chemical properties

Pure active ingredient: Haloxyfop-P-methyl

| Property                                                                                                                                                                               | Result                                                                                                                                                                                                                                                                                                           | Ref        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Description (purity 99%)                                                                                                                                                               | Viscous, clear, colourless liquid                                                                                                                                                                                                                                                                                | GHE P 2140 |
| Vapour pressure (purity 99.7%)                                                                                                                                                         | $2.6 \times 10^{-5}$ Pa at 20 °C<br>$5.5 \times 10^{-5}$ Pa at 25 °C                                                                                                                                                                                                                                             | GHE-P-4060 |
| Water solubility (purity 99.7%) at<br>20 °C, OECD 105                                                                                                                                  | 9.1 mg/L purified water<br>6.9 mg/L pH 5 buffer<br>7.9 mg/L pH 7 buffer                                                                                                                                                                                                                                          | GHE-P-4060 |
| Water solubility (purity 99%) at 25 °C,<br>OECD 105                                                                                                                                    | 8.7 mg/L distilled water<br>9.3 mg/L pH 5 buffer<br>7.8 mg/L pH 7 buffer                                                                                                                                                                                                                                         | GHE P 2140 |
| Octanol/water partition coefficient (purity 99%), OECD 107                                                                                                                             | $\log K_{OW} = 4.05 \text{ at } 20 ^{\circ}\text{C}$                                                                                                                                                                                                                                                             | GHE P 2140 |
| Octanol/water partition coefficient (purity 99.7%), OECD 107                                                                                                                           | $\log K_{OW} = 4.00 \text{ at } 20 ^{\circ}\text{C}$                                                                                                                                                                                                                                                             | GHE-P-4060 |
| Hydrolysis rate (radiochemical purity<br>96.5–> 99% <sup>2</sup> ), 31 days at 0.5 mg/L at<br>20 °C.                                                                                   | pH 4 buffer, sterile: approx 5% loss in 31 days<br>pH 7 buffer, sterile: $DT_{50} = 43$ days<br>pH 9 buffer, sterile: $DT_{50} = 0.63$ days<br>Natural water, pH 8: $DT_{50} = 3$ days.<br>Main hydrolysis product: haloxyfop-P acid, stable to further<br>hydrolysis. Minor products < 3% of starting material. | 000133     |
| Photolysis rate (radiochemical purity<br>97.8% and 98.2% <sup>2</sup> ), 2 mg/L aqueous at<br>20 °C. Average summer sunlight at 40°N<br>latitude. 400 hours continuous<br>irradiation. | pH 5 buffer, sterile: photolysis $DT_{50}$ 135 hours<br>pH 5 buffer, sterile: dark control, stable<br>Natural water, pH 8.5, non-sterile: photol $DT_{50}$ 11 hours<br>Natural water, pH 8.5, non-sterile: dark control $DT_{50}$ 37 hours                                                                       | 000421     |
| Dissociation constant in water                                                                                                                                                         | Dissociation not predicted for haloxyfop-P-methyl                                                                                                                                                                                                                                                                |            |

<sup>2</sup> [<sup>14</sup>C]phenyl label and [<sup>14</sup>C]3,5-pyridine label.

|                                                           |                                                                                                                                                                                                             | Ref        |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Description (purity 91.7%)                                | Viscous brown liquid                                                                                                                                                                                        | GHE P 2140 |
| Description (purity 98.6%)                                | A light amber, viscous liquid with a faint, characteristic odour.                                                                                                                                           | FAPC003116 |
| Vapour pressure (purity 91.7%) OECD 104                   | $3.28 \times 10^{-4}$ Pa at 25 °C                                                                                                                                                                           | GHE P 2140 |
| Solubility in organic solvents<br>at 20 °C (purity 98.6%) | Highly soluble (more than 50% by weight) in these solvents:<br>acetone, Aromatic 100, cyclohexanone, dichloromethane, DMF,<br>ethanol, ethyl acetate, hexane, isopropanol, methanol, toluene and<br>xylene. | GH-C 2162  |

#### Technical material: Haloxyfop-P-methyl

#### Pure active ingredient: Haloxyfop-P

|                                                                                                                                                                                        |                                                                                                                                                                                                      | Ref                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Melting point (purity 99.3%)                                                                                                                                                           | 70.4–74.5 °C                                                                                                                                                                                         | NAFST272                                   |
| Vapour pressure, EEC Test A4                                                                                                                                                           | $3.5 \times 10^{-6}$ Pa at 25 °C <sup>a</sup>                                                                                                                                                        | NAFST272<br>9 <sup>d</sup> 1314<br>DES/182 |
| Water solubility (purity 99.3%) at<br>20 °C, EEC Test A6                                                                                                                               | 375 mg/Lpurified water28.2 g/Lbuffer pH 5.0 (solubility of Na salt)> 25% w/Vbuffer pH 7.0 (solubility of Na salt)> 25% w/Vbuffer pH 9.0 (solubility of Na salt)                                      | NAFST272                                   |
| Octanol-water partition coefficient (purity 99.3%), EEC Test A8                                                                                                                        | $\begin{array}{l} \log \mathrm{K_{OW}} = 2.8 & \text{buffer pH 4} \\ \log \mathrm{K_{OW}} = 0.27 & \text{buffer pH 7} \end{array} \\ \log \mathrm{K_{OW}} = 0.21 & \text{buffer pH 10} \end{array} $ | NAFST272                                   |
| Photolysis rate (radiochemical purity<br>97.5% and 99.5% <sup>a</sup> ), 1 mg/L aqueous at<br>20 °C. Average summer sunlight at<br>40°N latitude. 210 hours continuous<br>irradiation. | pH 5 buffer, sterile: photolysis $DT_{50}$ 68 hours pH 5 buffer, sterile: dark control, stable                                                                                                       | 000421                                     |
| Dissociation constant (purity 99.3%),<br>OECD 112                                                                                                                                      | pKa = 4.27                                                                                                                                                                                           | NAFST272                                   |
| Solubility in organic solvents (purity<br>99.3%) at 20 °C, CIPAC MT 157.1 and<br>a flask shaking method <sup>c</sup>                                                                   | Haloxyfop-P was highly soluble (> 2000 g/L) in acetone,acetonitrile, ethyl acetate and methanol; also in dichloroethane(> 1300 g/L).Xylene639 g/Ln-Octanol1510 g/Ln-Heptane3.93 g/L                  | NAFST272                                   |

<sup>a</sup> The test material may have been haloxyfop rather than haloxyfop-P. Report DES/182 described the test material as a white lumpy powder with melting point 107–108 °C. Vapour pressure measurements were made over a temperature range of 59.35 °C to 103.9 °C, where the material was assumed to be solid, for extrapolation to the solid at 25 °C.

<sup>b</sup> The buffers were sodium and potassium salts, so haloxyfop-P would be present as a sodium or potassium salt.

<sup>c</sup> Method MT 157.1 is a method for water solubility (Dobrat and Martijn, 1995), but here adapted for solvents. Although report NAFST272 mentions MT 157.2, it was not used. In addition to MT 157.1, a flask shaking method was used for measuring solubility in xylene, n-octanol and n-heptane.

#### Identified photolytic products



Figure 1 Identified products of photolysis of haloxyfop-P-methyl in a sterile pH 5 buffer (Cook and Balcer, 2002, 000421)



Figure 3 Identified products of photolysis (and hydrolysis) of haloxyfop-P-methyl in a non-sterile natural water (Cook and Balcer, 2002, 000421)



Figure 3 Identified products of photolysis of haloxyfop-P in a sterile pH 5 buffer (Cook and Balcer, 2002, 000421)

Technical material: Haloxyfop-P

|                            |                               | Ref        |
|----------------------------|-------------------------------|------------|
| Description (purity 98.8%) | Off-white, odourless, powder. | FAPC003117 |
| Density (purity 98.8%)     | 1.46 g/mL at 21 °C            | 46028      |

## **Formulations**

The main formulation type is EC with haloxyfop or haloxyfop-P formulated as esters. Neither haloxyfop nor haloxyfop-P is co-formulated with other pesticides.

| Code | Description              |                              | Examples                                                |
|------|--------------------------|------------------------------|---------------------------------------------------------|
| EC   | emulsifiable concentrate | haloxyfop-P, methyl ester    | Galant R, Mirage, Verdict R, Verdict 600,<br>Dowco 535. |
| EC   | emulsifiable concentrate | haloxyfop, ethoxyethyl ester | Galant, Gallant.                                        |

## METABOLISM AND ENVIRONMENTAL FATE

Metabolism and environmental fate studies used haloxyfop (as esters)  $^{14}$ C labelled in the phenyl ring or in the 3,6 positions of the pyridine ring. Haloxyfop-P-methyl labelled in the 3,5 positions of the pyridine ring was also used .



phenyl ring

3,6 positions of pyridine ring

3,5 positions of pyridine ring

## Animal metabolism

The Meeting received animal metabolism studies with haloxyfop in lactating goats and laying hens. The 2006 JMPR received information on the metabolism in laboratory animals.

After oral dosing of livestock with haloxyfop, much of the residue is readily excreted. Parent compound and its conjugates constitute the main component of the residue in tissues, milk and eggs. The residue, including the triacylglycerides, is fat soluble.

### Laboratory animals

The metabolic fate of orally administered racemic haloxyfop and haloxyfop-P-methyl in mice, rats, dogs and monkeys was reported by the 2006 JMPR (JMPR, 2006). Oral doses were rapidly and extensively absorbed. The pharmacokinetics and metabolic data on haloxyfop-R methyl ester (haloxyfop-P-methyl) and haloxyfop suggest that the results of studies of oral toxicity with racemic haloxyfop methyl ester, haloxyfop or haloxyfop sodium salt should be relevant to the investigation of the toxicity of haloxyfop–R methyl ester and haloxyfop-R (haloxyfop-P), as all stereoisomeric forms and esterified forms end up as the de-esterified R enantiomer.

## Lactating goats

Two lactating goats were dosed with [ $^{14}$ C]phenyl ring labelled haloxyfop via gelatin capsule twice daily for 10 consecutive days at the equivalent of 16 ppm haloxyfop in the feed, i.e. approximately 0.6 mg/kg bw per day (Yackovich and Miller, 1983, GH-C 1624). The feed consumption during dosing for one goat was 1.6 kg/day and for the other was 0.80 kg/day (it had been 1.6 kg/day during the acclimatisation period). The feed was high efficiency dairy ration and alfalfa hay (1 + 1). Initial body weights were 45.5 and 39.5 kg. Milk was collected twice daily. Average milk production during the dosing period was 1.1 and 0.67 litres per milking for the two goats. Animals were slaughtered approximately 12 hours after the final dose for tissue collection.

Accountability of the administered <sup>14</sup>C was 96% and 90% for the two goats. Most of the administered dose (92% and 84%) was excreted in urine, with 1.9% and 1.5% in faeces. Milk accounted for 1.9% and 3.2% of the dose. Tissues accounted for less than 0.5% of the dose. Expired air was monitored from one goat for 10 hours, but no <sup>14</sup>CO<sub>2</sub> or [<sup>14</sup>C]volatiles were detected. The level of residues in tissues and milk are summarised in Table 1.

Table 1 <sup>14</sup>C radiolabel, expressed as haloxyfop, in tissues and milk from 2 lactating goats dosed with  $[^{14}C]$ phenyl ring labelled haloxyfop via gelatin capsule for 10 consecutive days at the equivalent of 16 ppm haloxyfop in the feed (Yackovich and Miller, 1983, GH-C 1624)

|              | <sup>14</sup> C expressed as haloxyfop, mg/kg |         |  |  |
|--------------|-----------------------------------------------|---------|--|--|
| Tissue, Milk | Goat #3                                       | Goat #4 |  |  |
| Muscle       | 0.02                                          | < 0.01  |  |  |
| Heart        | 0.07                                          | 0.04    |  |  |

|                                                           | <sup>14</sup> C expressed as haloxyfop, mg/kg |         |  |
|-----------------------------------------------------------|-----------------------------------------------|---------|--|
| Tissue, Milk                                              | Goat #3                                       | Goat #4 |  |
| Fat                                                       | 0.06                                          | 0.11    |  |
| Liver                                                     | 0.45                                          | 0.31    |  |
| Kidney                                                    | 1.45                                          | 1.07    |  |
| Milk, day 10                                              | 0.25                                          | 0.20    |  |
| Milk fat (ether extracted from milk), day 10 <sup>a</sup> | 1.2                                           | 2.8     |  |

<sup>a</sup> Report GH-C 1624 explains that milk fat was extracted from acidified whole milk with ether. The Appendix document (McConnell *et al.*, 1982, ADC #704) explains that whole milk was separated into milk fat and skim milk by centrifugation. The data should not be used for determining the distribution of the residue between fat and non-fat portions of the milk because of doubts about the procedure.

The <sup>14</sup>C residues in extracted milk fat were nonpolar and were susceptible to alkaline hydrolysis or lipase hydrolysis to release haloxyfop. The behaviour was consistent with haloxyfop conjugated as triacylglycerides. Residues in body fat were of the same nature as the residues in milk fat. Residues in milk reached a plateau very quickly, within 24 hours of the first dose.

The residues in kidney and liver consisted mostly of parent haloxyfop, but some may have been present as labile conjugates.

#### Laying hens

Four laying hens were dosed with  $[{}^{14}C]$  phenyl ring labelled haloxyfop via gelatin capsule for 11 consecutive days at 1.1 to 1.3 mg/kg bw/day, the equivalent of 12 ppm haloxyfop in the feed (Yackovich and Miller, 1983, GH-C 1635). Eggs were collected daily. Birds were slaughtered 24 hours after the final dose for tissue collection.

Accountability of the administered <sup>14</sup>C was high at 93–102% for the four hens, with most (81.9–89.7%) of the <sup>14</sup>C excreted in the droppings or present as gut contents (5.8–8.6%). Eggs accounted for an average of 1.6% of the <sup>14</sup>C and tissues approximately 2%. <sup>14</sup>C residue levels were highest in kidney and liver and lowest in muscle tissues (Table 2). <sup>14</sup>C residue levels were much higher in the yolk than in the whites and reached a plateau in yolks on approximately the 7<sup>th</sup> day of dosing (Figure 4).

Table 2 <sup>14</sup>C radiolabel, expressed as haloxyfop, in tissues and eggs from 4 laying hens dosed with [<sup>14</sup>C]phenyl ring labelled haloxyfop via gelatin capsule for 11 consecutive days at the equivalent of 12 ppm haloxyfop in the feed (Yackovich and Miller, 1983, GH-C 1635)

|                    | <sup>14</sup> C expressed as haloxyfop |                       |  |  |  |
|--------------------|----------------------------------------|-----------------------|--|--|--|
| Tissue, Eggs       | Mean residue, mg/kg                    | Range (4 hens), mg/kg |  |  |  |
| Light muscle       | 0.06                                   | 0.02–0.11             |  |  |  |
| Dark muscle        | 0.18                                   | 0.06-0.35             |  |  |  |
| Heart              | 0.28                                   | 0.09–0.46             |  |  |  |
| Skin               | 0.39                                   | 0.11-0.93             |  |  |  |
| Fat                | 0.99                                   | 0.46–2.0              |  |  |  |
| Liver              | 1.82                                   | 1.2–2.5               |  |  |  |
| Kidney             | 4.2                                    | 2.5-7.0               |  |  |  |
| Eggs, day 10       | 1.05                                   | 0.74–1.24             |  |  |  |
| Egg yolks, day 10  | 2.87                                   | 2.0-4.0               |  |  |  |
| Egg whites, day 10 | 0.27                                   | 0.12–0.37             |  |  |  |



Figure 4 <sup>14</sup>C radiolabel, expressed as haloxyfop, in yolks and whites of eggs from 4 laying hens dosed with [<sup>14</sup>C]phenyl ring labelled haloxyfop via gelatin capsule for 11 consecutive days at the equivalent of 12 ppm haloxyfop in the feed (Yackovich and Miller, 1983, GH-C 1635). Residues are the mean from eggs of the 4 hens

Approximately 3% of <sup>14</sup>C in egg yolks was present as free haloxyfop with a large part of the residue in the non-polar fraction. Mild alkaline hydrolysis produced haloxyfop as the single product. Lipase hydrolysis of an egg yolk extract also produced haloxyfop as the single product, demonstrating that haloxyfop was incorporated into the triacylglycerides in egg lipids.

Solvent extracts of fat, skin, liver and kidney produced varying proportions of haloxyfop, polar conjugates and non-polar conjugates. Alkaline hydrolysis of the extracts from liver, kidney and fat converted the residues almost quantitatively to a single product, haloxyfop. Most likely, parent haloxyfop was largely incorporated into lipids from which it could be readily released by hydrolysis.



Figure 5 Haloxyfop livestock metabolism

#### Plant metabolism

The Meeting received plant metabolism studies with haloxyfop-butyl in cotton; haloxyfop-methyl, haloxyfop-butyl and haloxyfop-ethoxyethyl in soya beans; and haloxyfop-P-methyl in sugar beet and lettuce.

When applied to plants, the esters of haloxyfop or haloxyfop-P are broken down quickly to release free acid which is readily translocated throughout the plants. The haloxyfop (or haloxyfop-P) becomes conjugated, typically as glycosides (polar metabolites) or as triglycerides (non-polar metabolites).

## Metabolism of haloxyfop butyl ester in cotton

Haloxyfop butyl ester, [<sup>14</sup>C]phenyl ring labelled, was applied as an EC formulation to the foliage of 1month old cotton plants (variety D and PL 16) at a rate equivalent to 0.56 kg ai/ha (Stafford and Miller, 1983, GH-C 1634). Lint and seeds were collected for analysis at two intervals after application, 78 and 105 days. The lint and seeds were separated and air dried. Seeds were further delinted by a brief treatment with concentrated sulfuric acid. All remaining parts of the cotton plant after final harvest of lint and seed became 'field trash', which was also air dried.

Residue levels in seed (0.23 mg/kg) and seed coat (0.16 mg/kg) were similar for the 105 days sample. The plant components were subjected to solvent extraction and partition to separate polar and non-polar metabolites, which were further subjected to alkaline hydrolysis. Enzyme (porcine pancreatic lipase) hydrolysis was also used on non-polar metabolites. Results of the identification are summarised in Table 3. No haloxyfop butyl ester remained as a residue. Haloxyfop free acid and haloxyfop conjugates were major parts of the residue in cotton seed lint and trash.

The <sup>14</sup>C in the oil was associated with the triglycerides. Lipase hydrolysis and alkali hydrolysis released 91–99.8% of the <sup>14</sup>C as haloxyfop, suggesting that the non-polar residues were triglyceride esters of haloxyfop.

Table 3 <sup>14</sup>C radiolabel, expressed as haloxyfop, in cotton seed, oil, lint and dry plant (field trash) sampled 78 and 105 days from cotton plants after treatment with [<sup>14</sup>C]haloxyfop butyl ester at a rate equivalent to 0.56 kg ai/ha (Stafford and Miller, 1983, GH-C 1634). Identified components of the residue are expressed as percentage of the totals

|                              | Cotton seed (seed + seed coat) |          | Oil     |          | Lint    |          | Field trash |
|------------------------------|--------------------------------|----------|---------|----------|---------|----------|-------------|
|                              | 78 days                        | 105 days | 78 days | 105 days | 78 days | 105 days | 105 days    |
| Total <sup>14</sup> C, mg/kg | 0.78                           | 0.20     | 1.12    | 0.38     | 0.19    | 0.04     | 1.09        |
| Haloxyfop-butyl ester        | 0.0%                           | 0.0%     | 0.0%    | 0.0%     | 0.0%    | 0.0%     | 0.0%        |
| Haloxyfop free acid          | 41.5%                          | 31.9%    | 0.0%    | 0.0%     | 76.0%   | 75.5%    | 39.1%       |
| Haloxyfop conjugates         | 54.6%                          | 66.4%    | 100%    | 100%     | 10.0%   | 10.1%    | 55.2%       |
| Non-extractable              | 3.9%                           | 1.7%     | 0.0%    | 0.0%     | 14.0%   | 14.4%    | 5.7%        |

## Metabolism of haloxyfop methyl, n-butyl and ethoxyethyl esters in soya beans

The mature second and developing third trifoliate leaves of 20-days old soya bean plants (Corsoy) were treated with [<sup>14</sup>C]labelled haloxyfop in the form of an ester (Bauriedel and Miller, 1982, GH-C 1507). Haloxyfop methyl ester was available as [<sup>14</sup>C]labelled in the phenyl ring or in the 3,6 positions of the pyridyl ring. The *n*-butyl and ethoxyethyl esters were [<sup>14</sup>C]labelled in the phenyl ring. The dose for each plant was 0.2 mg haloxyfop acid equivalent. Plants were sampled 2, 4 and 8 days after treatment. Two samples were taken from each plant: treated leaves and remainder of above-ground plant. Total <sup>14</sup>C was measured and the constituents of the residue were characterised or identified.Concentrations in the leaves were not reported. The composition of the residues in treated and untreated plant is summarised in Table 4.

Esters were rapidly hydrolysed to haloxyfop. Even after 2 days, little of the applied ester remained in the treated leaves. Applied ester did not appear in untreated portions of the plant. In the treated leaves, polar metabolites increased as a percentage of the residue with time after treatment. The two label positions in the methyl ester apparently produced the same residue behaviour, suggesting that the molecule remained intact. Unconjugated haloxyfop was the main part of the residue in untreated parts of the plant, irrespective of the ester used for treatment.

Mild alkaline hydrolysis of the polar translocated residue released haloxyfop, demonstrating that at least part of the polar fraction consists of haloxyfop conjugates.

|                        | Haloxyfop methyl<br>[ <sup>14</sup> C]phenyl | Haloxyfop methyl<br>[ <sup>14</sup> C]3,6-pyridyl | Haloxyfop n-butyl<br>[ <sup>14</sup> C]phenyl | Haloxyfop ethoxyethyl<br>[ <sup>14</sup> C]phenyl |
|------------------------|----------------------------------------------|---------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| TREATED LEAVES         |                                              | <u> </u>                                          | + +                                           | • •                                               |
| 2 days after treatment |                                              |                                                   |                                               |                                                   |
| Polar metabolites      | 34%                                          | 30%                                               | 29%                                           | 25%                                               |
| Haloxyfop              | 66%                                          | 66%                                               | 60%                                           | 58%                                               |
| Haloxyfop ester        | 0%                                           | 4%                                                | 11%                                           | 17%                                               |
| 4 days after treatment |                                              |                                                   |                                               |                                                   |
| Polar metabolites      | 52%                                          | 49%                                               | 51%                                           | 52%                                               |
| Haloxyfop              | 48%                                          | 50%                                               | 43%                                           | 39%                                               |
| Haloxyfop ester        | 0%                                           | 1%                                                | 6%                                            | 9%                                                |
| 8 days after treatment |                                              |                                                   |                                               |                                                   |
| Polar metabolites      | 58%                                          | 65%                                               | 62%                                           | 65%                                               |
| Haloxyfop              | 40%                                          | 34%                                               | 38%                                           | 34%                                               |
| Haloxyfop ester        | 2%                                           | 1%                                                | 0%                                            | 1%                                                |
| UNTREATED PLANT        |                                              |                                                   |                                               |                                                   |
| 2 days after treatment |                                              |                                                   |                                               |                                                   |
| Polar metabolites      | 17%                                          | 20%                                               | 18%                                           | 22%                                               |
| Haloxyfop              | 83%                                          | 80%                                               | 82%                                           | 78%                                               |
| Haloxyfop ester        | 0%                                           | 0%                                                | 0%                                            | 0%                                                |
| 4 days after treatment |                                              |                                                   |                                               |                                                   |
| Polar metabolites      | 28%                                          | 30%                                               | 27%                                           | 25%                                               |
| Haloxyfop              | 72%                                          | 70%                                               | 73%                                           | 75%                                               |
| Haloxyfop ester        | 0%                                           | 0%                                                | 0%                                            | 0%                                                |
| 8 days after treatment |                                              |                                                   |                                               |                                                   |
| Polar metabolites      | 36%                                          | 38%                                               | 39%                                           | 35%                                               |
| Haloxyfop              | 64%                                          | 62%                                               | 61%                                           | 65%                                               |
| Haloxyfop ester        | 0%                                           | 0%                                                | 0%                                            | 0%                                                |

Table 4 Nature of the residue in treated and untreated portions of soya bean plants after application of [<sup>14</sup>C]labelled esters of haloxyfop (Bauriedel and Miller, 1982, GH-C 1507). Residues are expressed as percentages of the extractable residue.

Soya bean plants (Corsoy) were treated with  $[{}^{14}C]$ haloxyfop butyl ester at two rates (0.28 and 0.56 kg ai/ha)and at two stages of plant growth (Yackovich and Miller,1983, GH-C 1618). The early treatment was 90 days before harvest and the late treatment was 60 days before harvest. Both  $[{}^{14}C]$ phenyl ring labelled and  $[{}^{14}C]$ 3,6-pyridyl labelled haloxyfop were used.

The plant samples were extracted with acetonitrile/water mixtures. Beans were first extracted with hexane to remove lipids before acetonitrile/water extraction. Methanol was routinely avoided for sample extraction, sample solvent and HPLC mobile phase because haloxyfop is very easily methylated in methanol solutions. The distribution and nature of the <sup>14</sup>C are summarised in Table 5.

Table 5 Residue levels and nature of the residue in forage, beans and straw of soya bean plants after application of [<sup>14</sup>C]labelled haloxyfop butyl ester (Yackovich and Miller,1983, GH-C 1618). Residues are expressed as percentages of the total residue in the forage, beans or straw

|                    | Days after<br>treatment | Application rate<br>0.28 kg ai/ha<br>[ <sup>14</sup> C]phenyl ring<br>label | Application rate 0.56 kg ai/ha<br>[ <sup>14</sup> C]phenyl ring label [ <sup>14</sup> C]3,6-pyridyl labe |  |
|--------------------|-------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Forage             | 15                      | 10.5 mg/kg                                                                  | 14.9 mg/kg                                                                                               |  |
| Haloxyfop          |                         | 30%                                                                         | 27%                                                                                                      |  |
| Polar conjugates   |                         | 66%                                                                         | 65%                                                                                                      |  |
| Forage, new growth | 15                      |                                                                             | 5.9 mg/kg                                                                                                |  |
| Haloxyfop          |                         |                                                                             | 42%                                                                                                      |  |
| Polar conjugates   |                         |                                                                             | 57%                                                                                                      |  |

|                      | Days after | Application rate<br>0.28 kg ai/ha      | Application rate 0.56 kg            | ai/ha                               |
|----------------------|------------|----------------------------------------|-------------------------------------|-------------------------------------|
|                      | uoutinont  | [ <sup>14</sup> C]phenyl ring<br>label | [ <sup>14</sup> C]phenyl ring label | [ <sup>14</sup> C]3,6-pyridyl label |
| Beans                | 89         | 0.8 mg/kg                              | 1.3 mg/kg                           |                                     |
| Haloxyfop            |            | 57%                                    | 58%                                 |                                     |
| Polar conjugates     |            | 17%                                    | 17%                                 |                                     |
| Non-polar conjugates |            | 18%                                    | 19%                                 |                                     |
| Beans                | 61         | 3.1 mg/kg                              | 5.8 mg/kg                           | 4.3 mg/kg                           |
| Haloxyfop            |            | 57%                                    | 59%                                 | 58%                                 |
| Polar conjugates     |            | 17%                                    | 18%                                 | 20%                                 |
| Non-polar conjugates |            | 18%                                    | 18%                                 | 17%                                 |
| Straw                | 89         | 1.0 mg/kg                              | 1.6 mg/kg                           |                                     |
| Haloxyfop            |            | 65%                                    | 62%                                 |                                     |
| Polar conjugates     |            | 27%                                    | 32%                                 |                                     |
| Straw                | 61         | 1.3 mg/kg                              | 3.0 mg/kg                           | 2.1 mg/kg                           |
| Haloxyfop            |            | 66%                                    | 64%                                 | 60%                                 |
| Polar conjugates     |            | 24%                                    | 28%                                 | 29%                                 |

The parallel behaviour of the phenyl ring label and 3,6-pyridyl label showed that the molecule remained intact and essentially all of the residue contained both the phenyl and pyridyl rings. HPLC analysis comparisons of residue in treated foliage and new growth showed that the butyl ester was not translocated. The free acid or haloxyfop conjugates were readily translocated.

Alkaline and lipase hydrolysis of the non-polar residue from the beans suggested that haloxyfop was incorporated into the oil triglycerides. Most of the polar conjugates also produced haloxyfop on hydrolysis.

#### Metabolism of haloxyfop-P-methyl in sugar beet

Sugar beet plants (cultivar Wildcat), at the 6-leaf growth stage, in field plots were foliar sprayed with  $[^{14}C]3,5$ -pyridyl haloxyfop-P-methyl formulated as a 108 g ai/L EC at a rate of 0.113 kg ai/ha (Chapleo *et al.*, 2002, 20625). Plants were harvested on the day of application, 28 days later and at maturity (92 days after application). In this study, haloxyfop-P-methyl was described as the active ingredient.

Residue levels (TRR, expressed as haloxyfop-P-methyl) were much lower in the roots than the shoots and decreased with time after treatment (Table 6).

Table 6 Residue levels and nature of the residue in roots and tops of sugar beet after application of  $[^{14}C]3,5$ -pyridyl haloxyfop-P-methyl at a rate of 0.113 kg ai/ha (Chapleo *et al.*, 2002, 20625)

| Residue                                            | Day 0     | Day 28     | Day 28      | Maturity    | Maturity    |
|----------------------------------------------------|-----------|------------|-------------|-------------|-------------|
|                                                    | Plants    | Shoots     | Roots       | Shoots      | Roots       |
| Total <sup>14</sup> C, as haloxyfop-P-methyl (TRR) | 6.6 mg/kg | 0.18 mg/kg | 0.083 mg/kg | 0.079 mg/kg | 0.019 mg/kg |
| Unextracted, % TRR                                 | 1.1%      | 8.1%       | 5.5%        | 12%         | 20%         |
| Extractable residue, % TRR                         | 99%       | 95%        | 97%         | 79%         | 87%         |
| Haloxyfop-P-methyl, % TRR                          | 99%       | n.d        | n.d         | 0.6%        | n.d         |
| Haloxyfop-P acid, % TRR                            | n.d       | 47%        | 74%         | 33%         | 31%         |
| Haloxyfop-P conjugate 1, % TRR                     | n.d       | 17%        | n.d         | 24%         | 19%         |
| Haloxyfop-P glycoside conjugate 1, % TRR           | _         | 18%        | 17%         | 14%         | 20%         |
| Haloxyfop-P glycoside conjugate 2, % TRR           | n.d       | 8.6%       | n.d         | n.d         | n.d         |
| Haloxyfop-P conjugate 2, % TRR                     | n.d       | 3.5%       | n.d         | 4.1%        | n.d         |

n.d = not detected

Apart from one treatment day, haloxyfop-P acid and its conjugates were major parts of the residue. The residue readily translocated to the roots.

#### Metabolism of haloxyfop-P-methyl in lettuce

Lettuce plants (cultivar Set), at approximately <sup>1</sup>/<sub>4</sub> of their final size, in field plots were foliar sprayed with [<sup>14</sup>C]3,5-pyridyl haloxyfop-P-methyl formulated as a 108 g ai/L EC at a rate of 0.106 kg ai/ha (Chapleo and White, 2002, 20626). Lettuces were harvested on the day of application, 14 days later and at maturity (29 days after treatment). In this study, haloxyfop-P-methyl was described as the active ingredient. Results are summarised in Table 7.

Higher residues were found in outer leaves than on inner leaves. Haloxyfop-P-methyl had disappeared by day 14. A large part of the residues in inner and outer leaves consisted of haloxyfop-P in free or conjugated form. Haloxyfop-P was readily translocated to the inner (unsprayed) leaves of the lettuces.

Table 7 Residue levels and nature of the residue in inner and outer leaves of lettuces after application of  $[^{14}C]3,5$ -pyridyl haloxyfop-P-methyl at a rate of 0.106 kg ai/ha (Chapleo and White, 2002, 20626)

|                                                           | Day 0   | Day 14 <sup>a</sup> |        |         | Maturity | a      |         |
|-----------------------------------------------------------|---------|---------------------|--------|---------|----------|--------|---------|
|                                                           | Foliage | Outer               | Inner  | Whole   | Outer    | Inner  | Whole   |
|                                                           |         | leaves              | leaves | lettuce | leaves   | leaves | lettuce |
| Total <sup>14</sup> C, as haloxyfop-P-methyl (TRR), mg/kg | 3.37    | 0.40                | 0.16   | 0.32    | 0.16     | 0.048  | 0.093   |
| Unextracted, % TRR                                        | 0.8%    | 8.7%                | 1.8%   |         | 10.3%    | 0.6%   |         |
| Extractable residue, % TRR                                | 104%    | 93%                 | 98%    |         | 92%      | 101%   |         |
| Haloxyfop-P-methyl, % TRR                                 | 72%     | n.d                 | n.d    |         | n.d      | n.d    |         |
| Haloxyfopn.dP acid, % TRR                                 | 31%     | 55%                 | 97%    | 62%     | 38%      | 93%    | 55%     |
| Haloxyfop-P conjugate 1, % TRR                            | n.d     | 5.8%                | 0.6%   | 4.9%    | 24%      | 1.2%   | 17%     |
| Haloxyfop-P glycoside conjugate 1, % TRR                  | n.d     | 4.1%                | n.d    | 3.4%    | 6.9%     | n.d    | 5.4%    |
| Haloxyfop-P glycoside conjugate 2, % TRR                  | n.d     | 29%                 | 0.8%   | 24%     | 23%      | 2.7%   | 17%     |
| Haloxyfop-P conjugate 2, % TRR                            | n.d     | n.d                 | n.d    |         | 0.4%     | 1.5%   | 1.1%    |

n.d = not detected.

<sup>a</sup> %TRR values for whole lettuce are calculated from the measured values on outer and inner leaves.



Figure 6 Proposed metabolic pathway for haloxyfop-P-methyl in plants

#### Environmental fate in soil

The 2003 JMPR (JMPR, 2003) explained the data requirements for studies of environmental fate. The focus should be on those aspects that are most relevant to MRL setting. For haloxyfop-P-methyl, supervised residue trials data are available for sugar beet, which means that aerobic degradation in soil is relevant, as well as the normal requirements for hydrolysis and rotational crop studies. The 2003 report does not mention soil photolysis studies; however, such studies should be relevant for the same reasons as for aerobic soil degradation—nature and magnitude of residues in soil.

The Meeting received information on soil aerobic metabolism and soil photolysis properties of haloxyfop-P-methyl. Studies were also received on the behaviour of  $[^{14}C]$  labelled haloxyfop-butyl in a rotational crop situation and haloxyfop-methyl in an unconfined rotational crop situation.

Haloxyfop residues are generally not persistent in soils. Haloxyfop residues in soils resulting from recommended uses should not contribute to the residues in root vegetables or to residues in succeeding crops.

#### Soil metabolism

Hale and Trigg (1994, GHE-P-3594) dosed four soils with:  $[^{14}C]3,4$  pyridyl haloxyfop-P-methyl and maintained aerobic conditions for 182 days. The methyl ester was converted to haloxyfop-P very quickly. Haloxyfop-P was also readily metabolised, with half-lives in the range of 8–20 days. After 182 days, 6.5–24% of the dose was mineralised and 23–35% was unextracted.

Goodyear (2001, 295/100) studied the aerobic fate of [ $^{14}$ C]haloxyfop-P-methyl in four soils for 120 or 268 days. Parent haloxyfop-P-methyl typically disappeared with a half-life of approximately 0.5 days. The first metabolite was haloxyfop-P acid, which mostly disappeared with half-lives in the range of 9–21 days, but in subsoils with low organic carbon its disappearance half-lives were 28 and 129 days. After 268 days, mineralization and unextracted residues accounted for approximately 6–33% and 28–46% of the dose, respectively. The metabolites 'phenol metab', 'pyridinone metab' and 'pyridinol metab' were consistently produced, with the 'pyridinone metab' apparently the most persistent. See Figure 7 for structures of these metabolites.

Haloxyfop-P-methyl was hydrolysed just as quickly in a sterile soil as in a fresh soil, demonstrating that the methyl ester is chemically labile. In the sterile soil, haloxyfop-P was persistent and very little of the <sup>14</sup>C was mineralised.

| Aerobic soil metabolism                                    |                 | Ref: Hale and Trigg, 1994, GHE-P-3594       |  |  |  |
|------------------------------------------------------------|-----------------|---------------------------------------------|--|--|--|
| Test material: [ <sup>14</sup> C]3,4 pyridyl haloxyfop-P-m | ethyl           | Dose rate: 0.108 mg ai/kg                   |  |  |  |
| Duration: 182 days                                         | Temp: 20 °C     | Moisture: 40% max water holding capacity    |  |  |  |
| Soil: sandy clayey loam                                    | pH: 8.3         | Organic matter: 3.8%                        |  |  |  |
| Half-life haloxyfop-P-methyl: < 1 day                      | •               | <sup>14</sup> C accountability: 87–100%     |  |  |  |
| % haloxyfop-P-methyl remaining, day $182 = 0$              | 0.52% of dose   | % mineralization, day $182 = 6.5\%$ of dose |  |  |  |
| Half-life haloxyfop-P: 8.8 days                            |                 | % unextracted, day $182 = 35\%$ of dose     |  |  |  |
| Metabolites                                                | Max (% of dose) | Day                                         |  |  |  |
| Haloxyfop-P                                                | 73%             | 1                                           |  |  |  |
| Phenol metab                                               | 12%             | 3                                           |  |  |  |
| Pyridinol metab                                            | 37%             | 91                                          |  |  |  |
| Aerobic soil metabolism                                    |                 | Ref: Hale and Trigg, 1994, GHE-P-3594       |  |  |  |
| Test material: [ <sup>14</sup> C]3,4 pyridyl haloxyfop-P-m | ethyl           | Dose rate: 0.108 mg ai/kg                   |  |  |  |
| Duration: 182 days                                         | Temp: 20 °C     | Moisture: 40% max water holding capacity    |  |  |  |
| Soil: loamy sand                                           | pH: 8.2         | Organic matter: 1.9%                        |  |  |  |
| Half-life haloxyfop-P-methyl: < 1 day                      | -               | <sup>14</sup> C accountability: 86–103%     |  |  |  |
| % haloxyfop-P-methyl remaining, day 182 = 0                | 0.60% of dose   | % mineralization, day $182 = 11%$ of dose   |  |  |  |
| Half-life haloxyfop-P: 9.1 days                            |                 | % unextracted, day $182 = 30%$ of dose      |  |  |  |
| Metabolites                                                | Max (% of dose) | Day                                         |  |  |  |
| Haloxyfop-P                                                | 91%             | 1                                           |  |  |  |
| Phenol metab                                               | 8.3%            | 7                                           |  |  |  |
| Pyridinol metab                                            | 39%             | 91                                          |  |  |  |
| Aerobic soil metabolism                                    |                 | Ref: Hale and Trigg, 1994, GHE-P-3594       |  |  |  |
| Test material: [ <sup>14</sup> C]3,4 pyridyl haloxyfop-P-m | ethyl           | Dose rate: 0.108 mg ai/kg                   |  |  |  |
| Duration: 182 days                                         | Temp: 20 °C     | Moisture: 40% max water holding capacity    |  |  |  |
| Soil: loamy clay                                           | pH: 7.8         | Organic matter: 6.3%                        |  |  |  |
| Half-life haloxyfop-P-methyl: < 1 day                      |                 | <sup>14</sup> C accountability: 86–102%     |  |  |  |
| % haloxyfop-P-methyl remaining, day 182 = 0                | 0.39% of dose   | % mineralization, day $182 = 7.2\%$ of dose |  |  |  |
| Half-life haloxyfop-P: 17 days                             |                 | % unextracted, day $182 = 30%$ of dose      |  |  |  |
| Metabolites                                                | Max (% of dose) | Day                                         |  |  |  |

| Haloxyfop-P                                                                                                                                                                                                                                                                                                                                                         | 82%                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phenol metab                                                                                                                                                                                                                                                                                                                                                        | 12.6%                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pyridinol metab                                                                                                                                                                                                                                                                                                                                                     | 53%                                                                                                                | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aerobic soil metabolism                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    | Ref: Hale and Trigg, 1994, GHE-P-3594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test material: [ <sup>14</sup> C]3,4 pyridyl haloxyfop-P-m                                                                                                                                                                                                                                                                                                          | ethyl                                                                                                              | Dose rate: 0.108 mg ai/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Duration: 182 days                                                                                                                                                                                                                                                                                                                                                  | Temp: 20 °C                                                                                                        | Moisture: 40% max water holding capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Soil: slightly loamy sand                                                                                                                                                                                                                                                                                                                                           | nH: 6.8                                                                                                            | Organic matter: 3.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Half-life haloxyfon-P-methyl: $< 1$ day                                                                                                                                                                                                                                                                                                                             | printoito                                                                                                          | $^{14}$ C accountability: 84–104%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| % haloxyfop-P-methyl remaining day 182 - (                                                                                                                                                                                                                                                                                                                          | 161% of dose                                                                                                       | % mineralization day $182 - 24\%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Half-life haloxyfop-P: 20 days                                                                                                                                                                                                                                                                                                                                      | 5.01 /0 01 dose                                                                                                    | % innertaization, day $182 - 23%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Matabalitas                                                                                                                                                                                                                                                                                                                                                         | Max (0% of dosa)                                                                                                   | $\frac{1}{2}$ $\frac{1}$ |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                    | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Haloxylop-P                                                                                                                                                                                                                                                                                                                                                         | 84%                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phenol metab                                                                                                                                                                                                                                                                                                                                                        | 7.0%                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pyridinol metab                                                                                                                                                                                                                                                                                                                                                     | 36%                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Aerobic soil metabolism                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    | Ref: Goodyear, 2001, 29°100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test material: [ <sup>14</sup> C]3,5 pyridyl haloxytop-P-m                                                                                                                                                                                                                                                                                                          | ethyl                                                                                                              | Dose rate: 0.108 mg ai/kg soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Duration: 268 days                                                                                                                                                                                                                                                                                                                                                  | Temp: 20 °C                                                                                                        | Moisture:?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Soil: Marcham sandy loam                                                                                                                                                                                                                                                                                                                                            | pH: 7.6                                                                                                            | Organic matter: 1.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Half-life haloxyfop-P-methyl: 0.5 days                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | <sup>14</sup> C accountability: 89–99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| % haloxyfop-P-methyl remaining, day 268, no                                                                                                                                                                                                                                                                                                                         | ot detected                                                                                                        | % mineralization, day 268 = 23 $%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Half-life haloxyfop-P: 9.4 days                                                                                                                                                                                                                                                                                                                                     |                                                                                                                    | % unextracted, day $268 = 29\%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Metabolites                                                                                                                                                                                                                                                                                                                                                         | Max (% of dose)                                                                                                    | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Haloxyfop-P                                                                                                                                                                                                                                                                                                                                                         | 59%                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phenol metab                                                                                                                                                                                                                                                                                                                                                        | 7.2%                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pyridinone metab                                                                                                                                                                                                                                                                                                                                                    | 11%                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pyridinol metab                                                                                                                                                                                                                                                                                                                                                     | 29%                                                                                                                | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aerobic soil metabolism                                                                                                                                                                                                                                                                                                                                             | 2770                                                                                                               | Ref: Goodvear 2001 29 <sup>e</sup> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test material: [ <sup>14</sup> C]phenyl haloxyfon_P_methy                                                                                                                                                                                                                                                                                                           | 1                                                                                                                  | Dose rate: $0.108$ mg ai/kg soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Duration: 120 days                                                                                                                                                                                                                                                                                                                                                  | Tomp: 20.9C                                                                                                        | Moisture: <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Saile Marsham and a larm                                                                                                                                                                                                                                                                                                                                            | remp: 20°C                                                                                                         | Oreanic metters 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Soli: Marcham sandy loam                                                                                                                                                                                                                                                                                                                                            | рн: 7.0                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Half-life haloxytop-P-methyl: 0.6 days                                                                                                                                                                                                                                                                                                                              | ( cl                                                                                                               | C accountability: 80–99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| % haloxytop-P-methyl remaining, day 120:0.0                                                                                                                                                                                                                                                                                                                         | 5%                                                                                                                 | % mineralization, day $120 = 33\%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Half-life haloxytop-P: 12 days                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | % unextracted, day $120 = 46$ % of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Metabolites                                                                                                                                                                                                                                                                                                                                                         | Max (% of dose)                                                                                                    | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Haloxyfop-P                                                                                                                                                                                                                                                                                                                                                         | 53%                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phenol metab                                                                                                                                                                                                                                                                                                                                                        | 7.4%                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sterile soil—aerobic conditions                                                                                                                                                                                                                                                                                                                                     |                                                                                                                    | Ref: Goodyear, 2001, 29 <sup>e</sup> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test material: [ <sup>14</sup> C]phenyl haloxyfop-P-methy                                                                                                                                                                                                                                                                                                           | 1                                                                                                                  | Dose rate: 0.108 mg ai/kg soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Duration: 120 days                                                                                                                                                                                                                                                                                                                                                  | Temp: 20 °C                                                                                                        | Moisture: ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Soil: Marcham sandy loam, sterilised by                                                                                                                                                                                                                                                                                                                             | pH: 7.6                                                                                                            | Organic matter: 1.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| gamma irradiation                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                  | C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Half-life haloxyfop-P-methyl: 0.5 days                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | <sup>14</sup> C accountability: 90–99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| % haloxyfop-P-methyl remaining, day 120: 1.                                                                                                                                                                                                                                                                                                                         | 4%                                                                                                                 | % mineralization, day $120 = 0.5\%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Half-life haloxyfop-P: persistent                                                                                                                                                                                                                                                                                                                                   |                                                                                                                    | % unextracted, day $120 = 15\%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Degradation products                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                     | Max (% of dose)                                                                                                    | Dav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Haloxyfon-P                                                                                                                                                                                                                                                                                                                                                         | Max (% of dose)                                                                                                    | Day<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Haloxyfop-P<br>Phenol metab                                                                                                                                                                                                                                                                                                                                         | Max (% of dose)<br>85%                                                                                             | Day<br>30<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Haloxyfop-P<br>Phenol metab                                                                                                                                                                                                                                                                                                                                         | Max (% of dose)<br>85%<br>1.2%                                                                                     | Day<br>30<br>2<br>Ref. Coodwar, 2001, 20°100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism                                                                                                                                                                                                                                                                                                              | Max (% of dose)<br>85%<br>1.2%                                                                                     | Day<br>30<br>2<br>Ref: Goodyear, 2001, 29 <sup>e</sup> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m                                                                                                                                                                                                                                                | Max (% of dose)<br>85%<br>1.2%<br>ethyl                                                                            | Day<br>30<br>2<br>Ref: Goodyear, 2001, 29 <sup>e</sup> 100<br>Dose rate: 0.108 mg ai/kg soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days                                                                                                                                                                                                                          | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C                                                             | Day<br>30<br>2<br>Ref: Goodyear, 2001, 29 <sup>e</sup> 100<br>Dose rate: 0.108 mg ai/kg soil<br>Moisture: ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days<br>Soil: Marcham sandy loam                                                                                                                                                                                              | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C<br>pH: 7.6                                                  | Day<br>30<br>2<br>Ref: Goodyear, 2001, 29 <sup>e</sup> 100<br>Dose rate: 0.108 mg ai/kg soil<br>Moisture: ?<br>Organic matter: 1.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days<br>Soil: Marcham sandy loam<br>Half-life haloxyfop-P-methyl: 0.5 days                                                                                                                                                    | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C<br>pH: 7.6                                                  | Day<br>30<br>2<br>Ref: Goodyear, 2001, 29 <sup>e</sup> 100<br>Dose rate: 0.108 mg ai/kg soil<br>Moisture: ?<br>Organic matter: 1.9%<br><sup>14</sup> C accountability: 88-99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days<br>Soil: Marcham sandy loam<br>Half-life haloxyfop-P-methyl: 0.5 days<br>% haloxyfop-P-methyl remaining, day 268: 2.                                                                                                     | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C<br>pH: 7.6<br>2%                                            | Day302Ref: Goodyear, 2001, 29°100Dose rate: 0.108 mg ai/kg soilMoisture: ?Organic matter: 1.9% <sup>14</sup> C accountability: 88-99%% mineralization, day 268 = 6.1% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days<br>Soil: Marcham sandy loam<br>Half-life haloxyfop-P-methyl: 0.5 days<br>% haloxyfop-P-methyl remaining, day 268: 2.<br>Half-life haloxyfop-P: 21 days                                                                   | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C<br>pH: 7.6<br>2%                                            | Day302Ref: Goodyear, 2001, 29°100Dose rate: 0.108 mg ai/kg soilMoisture: ?Organic matter: 1.9% <sup>14</sup> C accountability: 88-99%% mineralization, day 268 = 6.1% of dose% unextracted, day 268 = 30% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days<br>Soil: Marcham sandy loam<br>Half-life haloxyfop-P-methyl: 0.5 days<br>% haloxyfop-P-methyl remaining, day 268: 2.<br>Half-life haloxyfop-P: 21 days                                                                   | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C<br>pH: 7.6<br>2%<br>Max (% of dose)                         | Day302Ref: Goodyear, 2001, 29e100Dose rate: 0.108 mg ai/kg soilMoisture: ?Organic matter: 1.9% $^{14}$ C accountability: 88-99%% mineralization, day 268 = 6.1% of dose% unextracted, day 268 = 30% of doseDay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days<br>Soil: Marcham sandy loam<br>Half-life haloxyfop-P-methyl: 0.5 days<br>% haloxyfop-P-methyl remaining, day 268: 2.<br>Half-life haloxyfop-P: 21 days<br>Metabolites<br>Haloxyfop-P                                     | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C<br>pH: 7.6<br>2%<br>Max (% of dose)<br>70%                  | Day302Ref: Goodyear, 2001, 29e100Dose rate: 0.108 mg ai/kg soilMoisture: ?Organic matter: 1.9% $^{14}C$ accountability: 88-99%% mineralization, day 268 = 6.1% of dose% unextracted, day 268 = 30% of doseDay2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days<br>Soil: Marcham sandy loam<br>Half-life haloxyfop-P-methyl: 0.5 days<br>% haloxyfop-P-methyl remaining, day 268: 2.<br>Half-life haloxyfop-P: 21 days<br>Metabolites<br>Haloxyfop-P<br>Phenol metab                     | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C<br>pH: 7.6<br>2%<br>Max (% of dose)<br>70%<br>6.3%          | Day302Ref: Goodyear, 2001, 29e100Dose rate: 0.108 mg ai/kg soilMoisture: ?Organic matter: 1.9% $^{14}$ C accountability: 88-99%% mineralization, day 268 = 6.1% of dose% unextracted, day 268 = 30% of doseDay214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Haloxyfop-P<br>Phenol metab<br>Aerobic soil metabolism<br>Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P-m<br>Duration: 268 days<br>Soil: Marcham sandy loam<br>Half-life haloxyfop-P-methyl: 0.5 days<br>% haloxyfop-P-methyl remaining, day 268: 2.<br>Half-life haloxyfop-P: 21 days<br>Metabolites<br>Haloxyfop-P<br>Phenol metab<br>Pyridinone metab | Max (% of dose)<br>85%<br>1.2%<br>ethyl<br>Temp: 10 °C<br>pH: 7.6<br>2%<br>Max (% of dose)<br>70%<br>6.3%<br>11.5% | Day302Ref: Goodyear, 2001, 29e100Dose rate: 0.108 mg ai/kg soilMoisture: ?Organic matter: 1.9% $^{14}$ C accountability: 88-99%% mineralization, day 268 = 6.1% of dose% unextracted, day 268 = 30% of doseDay214268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Aerobic soil metabolism                                  |                 | Ref: Goodyear, 2001, 29 <sup>e</sup> 100  |  |  |  |
|----------------------------------------------------------|-----------------|-------------------------------------------|--|--|--|
| Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P | -methyl         | Dose rate: 0.108 mg ai/kg soil            |  |  |  |
| Duration: 268 days                                       | Temp: 20 °C     | Moisture: ?                               |  |  |  |
| Soil: Borstel (0-30 cm), sandy loam                      | pH: 6.4         | Organic matter: 2.6%                      |  |  |  |
| Half-life haloxyfop-P-methyl: 0.5 days                   |                 | <sup>14</sup> C accountability: 90–98%    |  |  |  |
| % haloxyfop-P-methyl remaining, day 268:                 | not detected    | % mineralization, day $268 = 22%$ of dose |  |  |  |
| Half-life haloxyfop-P: 12 days                           |                 | % unextracted, day $268 = 30\%$ of dose   |  |  |  |
| Metabolites                                              | Max (% of dose) | Day                                       |  |  |  |
| Haloxyfop-P                                              | 72%             | 2                                         |  |  |  |
| Phenol metab                                             | 7.5%            | 7                                         |  |  |  |
| Pyridinone metab                                         | 7.7%            | 120                                       |  |  |  |
| Pyridinol metab                                          | 37%             | 90                                        |  |  |  |
| Aerobic soil metabolism                                  |                 | Ref: Goodyear, 2001, 29e100               |  |  |  |
| Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P | -methyl         | Dose rate: 0.108 mg ai/kg soil            |  |  |  |
| Duration: 268 days                                       | Temp: 20 °C     | Moisture: ?                               |  |  |  |
| Soil: Borstel (30-60 cm), sandy loam                     | рН: 6.5         | Organic matter: 1.2%                      |  |  |  |
| Half-life haloxyfop-P-methyl: 0.7 days                   |                 | <sup>14</sup> C accountability: 93–99%    |  |  |  |
| % haloxyfop-P-methyl remaining, day 268:                 | 0.6%            | % mineralization, day 268 = 26% of dose   |  |  |  |
| Half-life haloxyfop-P: 28 days                           |                 | % unextracted, day $268 = 28\%$ of dose   |  |  |  |
| Metabolites                                              | Max (% of dose) | Day                                       |  |  |  |
| Haloxyfop-P                                              | 68%             | 2                                         |  |  |  |
| Phenol metab                                             | 9.3%            | 14                                        |  |  |  |
| Pyridinone metab                                         | 17%             | 120                                       |  |  |  |
| Pyridinol metab                                          | 29%             | 59                                        |  |  |  |
| Aerobic soil metabolism                                  |                 | Ref: Goodyear, 2001, 29 <sup>e</sup> 100  |  |  |  |
| Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfop-P | -methyl         | Dose rate: 0.108 mg ai/kg soil            |  |  |  |
| Duration: 268 days                                       | Temp: 20 °C     | Moisture: ?                               |  |  |  |
| Soil: Borstel (60-100 cm), sand                          | pH: 6.4         | Organic matter: 0.2%                      |  |  |  |
| Half-life haloxyfop-P-methyl: 0.6 days                   |                 | <sup>14</sup> C accountability: 90–102%   |  |  |  |
| % haloxyfop-P-methyl remaining, day 268:                 | 2.7%            | % mineralization, day 268 = 17% of dose   |  |  |  |
| Half-life haloxyfop-P: 129 days                          |                 | % unextracted, day $268 = 22\%$ of dose   |  |  |  |
| Metabolites                                              | Max (% of dose) | Day                                       |  |  |  |
| Haloxyfop-P                                              | 86%             | 14                                        |  |  |  |
| Phenol metab                                             | 4.0%            | 120                                       |  |  |  |
| Pyridinone metab                                         | 9.5%            | 268                                       |  |  |  |
| Pyridinol metab                                          | 22%             | 181                                       |  |  |  |
|                                                          |                 |                                           |  |  |  |

Cook (2002, 010107) studied the photolysis of  $[^{14}C]$ haloxyfop-P-methyl on the surface of a sandy clay loam. Photolysis had negligible effect compared with hydrolysis and metabolism. Degradation rates in the dark controls and the photolysis samples were similar.

| Soil photolysis                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           | Ref: Cook, 2002, 01010                                                                                                                                                                                                                               | 7                                                                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Test material: [ <sup>14</sup> C]3,5 pyridyl haloxyfo                                                                                                                                                                                                                                                                      | Dose rate: 3.2 mg ai/kg soil                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                |  |  |
| Xenon lamp simulating average summer                                                                                                                                                                                                                                                                                       | r sunlight at 40 °N latitude                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                |  |  |
| Duration: 353 hours                                                                                                                                                                                                                                                                                                        | Temp: 20 °C                                                                                                                                                                                               | Soil conditions: air drie                                                                                                                                                                                                                            | ed, 0.2 cm layer                                                               |  |  |
| Soil: sandy clay loam                                                                                                                                                                                                                                                                                                      | pH: 7.9                                                                                                                                                                                                   | Organic carbon: 2.2%                                                                                                                                                                                                                                 |                                                                                |  |  |
| Half-life haloxyfop-P-methyl: < 22 hour                                                                                                                                                                                                                                                                                    | <sup>14</sup> C accountability: 96–                                                                                                                                                                       | -105%                                                                                                                                                                                                                                                |                                                                                |  |  |
| % haloxyfop-P-methyl remaining after 3                                                                                                                                                                                                                                                                                     | 353  hours = 9.1%  of dose                                                                                                                                                                                | (dark control 1.6%)                                                                                                                                                                                                                                  |                                                                                |  |  |
| Metabolites and photolysis products                                                                                                                                                                                                                                                                                        | Max (% of dose)                                                                                                                                                                                           | Hours                                                                                                                                                                                                                                                |                                                                                |  |  |
| Haloxyfop-P                                                                                                                                                                                                                                                                                                                | 83%                                                                                                                                                                                                       | 209                                                                                                                                                                                                                                                  | 75% dark control                                                               |  |  |
| Phenol metab                                                                                                                                                                                                                                                                                                               | 5.4%                                                                                                                                                                                                      | 118                                                                                                                                                                                                                                                  | 8.3% dark control                                                              |  |  |
| Soil photolysis                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           | Ref: Cook, 2002, 0101                                                                                                                                                                                                                                | 07                                                                             |  |  |
| Test material: [ <sup>14</sup> C]phenyl haloxyfop-P-                                                                                                                                                                                                                                                                       | methyl                                                                                                                                                                                                    | Dose rate: 3.2 mg ai/kg                                                                                                                                                                                                                              | Dose rate: 3.2 mg ai/kg soil                                                   |  |  |
| Xenon lamp simulating average summer                                                                                                                                                                                                                                                                                       | r sunlight at 40 °N latitude                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                |  |  |
| Duration: 353 hours                                                                                                                                                                                                                                                                                                        | Temp: 20 °C                                                                                                                                                                                               | Soil conditions: air dried, 0.2 cm layer                                                                                                                                                                                                             |                                                                                |  |  |
| Soil: sandy clay loam                                                                                                                                                                                                                                                                                                      | pH: 7.9                                                                                                                                                                                                   | Organic carbon: 2.2%                                                                                                                                                                                                                                 |                                                                                |  |  |
| Half-life haloxyfop-P-methyl: < 22 hour<br>% haloxyfop-P-methyl remaining after 3<br>Metabolites and photolysis products<br>Haloxyfop-P<br>Phenol metab<br>Soil photolysis<br>Test material: [ <sup>14</sup> C]phenyl haloxyfop-P-<br>Xenon lamp simulating average summer<br>Duration: 353 hours<br>Soil: sandy clay loam | rs (dark control < 22 hours)<br>353  hours = 9.1%  of dose<br>353  hours = 9.1%  of dose<br>353  hours = 9.1%  of dose<br>83%<br>5.4%<br>methyl<br>r sunlight at 40 °N latitude<br>Temp: 20 °C<br>pH: 7.9 | <ul> <li><sup>14</sup>C accountability: 96–<br/>(dark control 1.6%)</li> <li>Hours</li> <li>209</li> <li>118</li> <li>Ref: Cook, 2002, 0101</li> <li>Dose rate: 3.2 mg ai/kg</li> <li>Soil conditions: air driec<br/>Organic carbon: 2.2%</li> </ul> | 105%<br>75% dark contro<br>8.3% dark contro<br>07<br>g soil<br>1, 0.2 cm layer |  |  |



Figure 7 Soil metabolism of haloxyfop-P-methyl

#### Rotational crops

In a confined rotational crop study, uniformly phenyl-ring-labelled haloxyfop butyl ester was formulated as an EC and applied at 0.56 kg ai/ha to a plot of sandy loam soil in Michigan USA in the late spring (Yackovich and Miller, 1983, GH-C 1598). Thirty days later, the plot was weeded and portions of the plot were sown with spring wheat (var *Eureka*), soya beans (var *Corsoy*), leaf lettuce (var *Black Seeded Simpson*), carrots (var *Denver's half-long*) and turnips (var *Purple Top White Globe*). Crops were harvested at various intervals after sowing: lettuce 49 days, soya bean forage 56 days, turnips 64 days, carrots 124 days, wheat 110 days and soya beans 145 days.

Samples containing high percentages of water were freeze dried and dry tissues were milled ready for combustion to determine the  ${}^{14}$ C content.

The <sup>14</sup>C content of the plant tissues was calculated as haloxyfop and expressed on fresh weight: lettuce 0.01 mg/kg, turnip foliage < 0.01 mg/kg, turnip root < 0.01 mg/kg, wheat grain 0.01 mg/kg, wheat straw 0.02 mg/kg, soya bean forage 0.07 mg/kg, soya bean grain < 0.01 mg/kg, soya bean straw 0.01 mg/kg, carrot foliage < 0.01 mg/kg and carrot root < 0.01 mg/kg.

Attempts at isolation and identification of the residues were not successful. The study demonstrated that very little haloxyfop residue would transfer to rotational crops, at least for conditions similar to those of the study.

In an unconfined rotational crop study, Bjerke *et al.*, (1985, GH-C 1758) applied a formulation of haloxyfop-methyl at 0.28 kg ai/ha to plots of soya beans and at 0.56 kg ai/ha to plots of cotton. Approximately 30 and 120 days after treatment, rotational crops of lettuce, sugar beets and

wheat were sown into the plots. The crops were grown to maturity. Samples of mature crops and wheat forage were taken for residue analysis. The data are summarised in Table 8.

Residues generally did not occur in the rotational crops at levels exceeding LOQs (0.01 and 0.02 mg/kg). Haloxyfop residues of 0.01–0.02 mg/kg were detected in wheat green forage in two trials, but the results were confounded in one case by residues at the LOQ (0.01 mg/kg) in a sample from the control plot and in the other case by detection of apparent residues just below the LOQ in samples from the control plot.

| Table | 8 | Hal | oxy | fop | resi | dues | in | rota | ition | al c | crops | rest | ilting | from | trea | tme | nts | on | the | first | cro | )p |
|-------|---|-----|-----|-----|------|------|----|------|-------|------|-------|------|--------|------|------|-----|-----|----|-----|-------|-----|----|
|       |   |     | ~   |     |      |      |    |      |       |      |       |      |        |      |      |     |     |    |     |       |     |    |

| First crop, country, year, ref.           | Application          |      |    |             | Rotational crop                                    | TSI<br>a | THI<br><sup>b</sup> | Sample                  | Residue,<br>haloxyfop mg/kg          |  |
|-------------------------------------------|----------------------|------|----|-------------|----------------------------------------------------|----------|---------------------|-------------------------|--------------------------------------|--|
|                                           | Compound             | Form | No | kg<br>ai/ha |                                                    | days     | days                |                         |                                      |  |
| Soya beans, USA<br>(MI), 1983             | haloxyfop-<br>methyl | EC   | 1  | 0.28        | lettuce (G-240<br>Montello)                        | 25       | 64                  | lettuce heads           | < 0.01 (4)                           |  |
| GHC 1758                                  |                      |      |    |             |                                                    |          |                     |                         |                                      |  |
| Cotton, USA (MS),<br>1983                 | haloxyfop-<br>methyl | EC   | 1  | 0.56        | lettuce<br>(Romaine)                               | 34       | 99                  | lettuce heads           | < 0.01 (4)                           |  |
| GHC 1758                                  |                      |      |    |             |                                                    |          |                     |                         |                                      |  |
| Cotton, USA (CA),<br>1983                 | haloxyfop-<br>methyl | EC   | 1  | 0.56        | lettuce (Royal<br>Oak Leaf)                        | 31       | 144                 | lettuce heads           | < 0.01 (4)                           |  |
| GHC 1758                                  | 1.1.6                | EC   | 1  | 0.56        | 1                                                  | 110      | 270                 | 1.4. 1. 1               | .0.01.(4)                            |  |
| Collon, USA (CA),<br>1983                 | methyl               | EC   | 1  | 0.50        | Leaf)                                              | 112      | 372                 | lettuce neads           | < 0.01 (4)                           |  |
| GHC 1758                                  | haloxyfon            | FC   | 1  | 0.28        | augar baata                                        | 25       | 110                 | beet tops               | < 0.01 (4)                           |  |
| (MI), 1983                                | methyl               | EC   | 1  | 0.28        | (Monitor<br>Sugar Lot<br>260-201-2)                | 23       | 119                 | beet roots              | < 0.01 (4)                           |  |
| Cotton USA (MS)                           | haloxyfon-           | FC   | 1  | 0.56        | sugar beets                                        | 32       | 139                 | beet tops               | < 0.01(4)                            |  |
| 1983                                      | methyl               | LC   |    | 0.50        | (US-H-9)                                           | 52       | 139                 | beet roots              | < 0.01 (4)                           |  |
| GHC 1758                                  |                      |      |    |             |                                                    |          |                     |                         |                                      |  |
| Soya beans, USA<br>(IL), 1983<br>GHC 1758 | haloxyfop-<br>methyl | EC   | 1  | 0.28        | sugar beets<br>(Monitor<br>Sugar Lot<br>260-201-2) | 31       | 128<br>128          | beet tops<br>beet roots | < 0.01 (4)<br>< 0.01 (4)             |  |
| Cotton, USA (CA),                         | haloxyfop-           | EC   | 1  | 0.56        | sugar beets                                        | 123      | 426                 | beet tops               | < 0.01 (4)                           |  |
| 1983                                      | methyl               |      |    |             | (US-H-9)                                           |          | 426                 | beet roots              | < 0.01 (4)                           |  |
| GHC 1758                                  |                      |      |    |             |                                                    |          |                     |                         |                                      |  |
| Soya beans, USA<br>(MI), 1983             | haloxyfop-<br>methyl | EC   | 1  | 0.28        | wheat (West<br>Bend Aim)                           | 25       | 110                 | green forage            | 0.01 0.01<br>< 0.01 (2)              |  |
| GHC 1758                                  | 1 1 f                | EC   | 1  | 0.29        |                                                    | 02       | 201                 |                         | < 0.01 (4)                           |  |
| (MI), 1983                                | methyl               | EC   | 1  | 0.28        | (Frankenmuth)                                      | 92       | 391<br>391          | straw                   | < 0.01 (4) < 0.02 (4)                |  |
| GHC 1758                                  |                      |      |    |             |                                                    |          |                     |                         |                                      |  |
| Cotton, USA (MS),<br>1983                 | haloxyfop-<br>methyl | EC   | 1  | 0.56        | wheat (Coher<br>747)                               | 34       | 104                 | green forage            | 0.02 < 0.01 (3)<br>c 0.01 < 0.01 (3) |  |
| GHC 1758                                  | halan f              | EC   | 1  | 0.57        | and a set (C. 1                                    | 140      | 409                 |                         | <0.01 (4)                            |  |
| 1983                                      | methyl               | EC   |    | 0.56        | 747)                                               | 148      | 408                 | straw                   | < 0.01 (4) < 0.02 (4)                |  |
| GHC 1758                                  |                      |      |    |             |                                                    |          |                     |                         |                                      |  |

| First crop, country, year, ref.           | Application          |      |    |             | Rotational crop    | TSI<br>a | THI<br><sup>b</sup> | Sample         | Residue,<br>haloxyfop mg/kg |
|-------------------------------------------|----------------------|------|----|-------------|--------------------|----------|---------------------|----------------|-----------------------------|
|                                           | Compound             | Form | No | kg<br>ai/ha |                    | days     | days                |                |                             |
| Soya beans, USA<br>(IL), 1983<br>GHC 1758 | haloxyfop-<br>methyl | EC   | 1  | 0.28        | wheat<br>(Centurk) | 128      | 415                 | grain<br>straw | < 0.01 (4)<br>< 0.02 (4)    |
| Cotton, USA (CA),<br>1983<br>GHC 1758     | haloxyfop-<br>methyl | EC   | 1  | 0.56        | wheat (Anza)       | 31       | 350                 | grain<br>straw | < 0.01 (4)<br>< 0.02 (4)    |
| Cotton, USA (CA),<br>1983<br>GHC 1758     | haloxyfop-<br>methyl | EC   | 1  | 0.56        | wheat (Anza)       | 123      | 353                 | grain<br>straw | < 0.01 (4)<br>< 0.02 (4)    |

<sup>a</sup> TSI: interval between treatment on first crop and sowing of rotation crop, days

<sup>b</sup> THI: interval between treatment on first crop and sampling or harvest of rotation crop, days

## METHODS OF RESIDUE ANALYSIS

#### Analytical methods

The Meeting received descriptions and validation data for analytical methods for residues of haloxyfop in animal and plant matrices.

The methods rely on an initial extraction and hydrolysis step, usually with methanolic NaOH to release haloxyfop from conjugates. After solvent partition cleanup, the haloxyfop is methylated or butylated ready for GC analysis or further cleanup before the GC analysis. Typically, haloxyfop residues can be measured in most matrices to an LOQ of 0.01–0.05 mg/kg.

None of the methods separates the haloxyfop enantiomers. The methods effectively measure 'total' haloxyfop present as acid, salts, esters and conjugates (esters with natural compounds).

Haloxyfop residues are not suitable for analysis by multiresidue methods because the extraction step is typically also a base-hydrolysis step designed to release haloxyfop from non-polar and polar conjugates found in animal and plant tissues. Such an extraction-hydrolysis step is not suitable for many other pesticides.

#### Animal commodities

| Bovine tissues ( | (Kutschinski, 1984, ACR 84.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|--|--|--|--|
| Analyte:         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD | Method ACR 84.1  |  |  |  |  |
| LOQ:             | 0.01 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                  |  |  |  |  |
| Description      | Description Muscle, liver and kidney tissues are homogenised and extracted with methanolic sodium hydroxide extract is cleaned up by solvent partition between ether and aqueous solutions (acid and alkaline) at then by C-18 column chromatography. The residue is methylated with BF <sub>3</sub> -methanol and further cluup on a small alumina column. The eluate, in benzene-isooctane, is analysed by GLC-ECD. Rendered fat is dissolved in benzene and hydrolysed with ethanolic sodium hydroxide for 2 hours a 50 °C to release conjugates. The hydrolysate is cleaned up by solvent partitions between benzene an aqueous solutions (acid and alkaline), followed by a passage through a silica gel column. The elute |         |                  |  |  |  |  |
| Milk, cream (Ga  | ardner RC, 1988, ACR 84.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                  |  |  |  |  |
| Analyte:         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD | Method ACR 84.6R |  |  |  |  |
| LOQ:             | 0.01 mg/kg for milk. 0.02 mg/kg for cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eam.    |                  |  |  |  |  |

| Description         | Haloxyfop residues are extracted from milk or<br>residue is hydrolysed in benzene-KOH-ethance<br>with water, washed with benzene, then acidifi<br>washed with water. The benzene solution is ap<br>eluted with acetic acid in methylene chloride.<br>with BF <sub>3</sub> -methanol and further cleaned up on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r cream with diethyl eth<br>ol at 50 °C to release cor<br>ed and the residues extr<br>oplied to a silica gel colu<br>After evaporation of the<br>a silica gel column, befo                                                                                                                                                                                                                                                  | er. The ether is evaporated and the<br>njugates. The solution is diluted<br>acted into benzene, which is<br>umn and the haloxyfop residue is<br>e solvent the residue is methylated<br>ore GLC-ECD analysis.                                                                                                                                                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Animal tissues, egg | gs, fat, milk (Yeh et al., 2001, GRM 01 09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyte:            | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LC-MS-MS                                                                                                                                                                                                                                                                                                                                                                                                                    | Method GRM 01.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LOQ:                | 0.01 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description         | <u>Kidney, liver and muscle tissue</u> . Tissues are fr<br>a hammer mill before homogenization with m<br>centrifuged and an aliquot of the supernatant l<br>up through a $C_{18}$ SPE column. Haloxyfop resi<br>acetate-acetic acid mixture. The solvent is eva<br>containing deuterium-labelled haloxyfop as an<br><u>Eggs</u> . Egg samples are shaken with ethanolic<br>of the extract is then shaken with water and th<br>after addition of dilute hydrochloric, is ready<br>described for kidney, liver and muscle tissues.<br><u>Fat tissue</u> . The fat sample is mixed with ethan<br>to hydrolyse lipid conjugates. The extract is st<br>and remainder of the procedure described for<br><u>Milk</u> . An aliquot of milk is mixed with ethanon<br>30 minutes to hydrolyse lipid conjugates. The<br>cleanup and remainder of the procedure descri | ozen with liquid nitroge<br>ethanolic sodium hydro<br>iquid is mixed with wat<br>dues are eluted from the<br>porated and the residue<br>n internal standard for L<br>KOH + toluene and the<br>e mixture centrifuged. A<br>for The SPE cleanup and<br>olic KOH and toluene an<br>ibject to partition cleanuk<br>kidney, liver and muscle<br>lic KOH and toluene an<br>extract is subject to par<br>ibed for kidney, liver an | en and then ground or chopped with<br>oxide. The mixture is then<br>ter + hydrochloric acid and cleaned<br>e column with an acetonitrile-ethyl<br>is taken up in water-acetonitrile<br>.C-MS-MS analysis.<br>mixture is centrifuged. An aliquot<br>An aliquot of the aqueous layer,<br>d remainder of the procedure<br>and maintained at 50 °C for 2 hours<br>up followed by the SPE cleanup<br>e tissues.<br>and maintained at 50 °C for<br>tition cleanup followed by the SPE<br>d muscle tissues. |
| Muscle, liver, kidn | ey (Hoogenboom, 2001, NCRL 9901)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyte:            | haloxytop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GC-ECD                                                                                                                                                                                                                                                                                                                                                                                                                      | Method NCRL-PHT-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LOQ:<br>Description | 0.01 mg/kg.<br>Muscle, liver and kidney samples are homoge<br>The extract is cleaned up by solvent partition<br>After methylation, the residue is further clean<br>analysed by GLC-ECD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nised and extracted with<br>between ether and aquee<br>ed up by gel permeation                                                                                                                                                                                                                                                                                                                                              | h methanolic sodium hydroxide.<br>ous solutions (acid and alkaline).<br>a chromatography. The eluate is                                                                                                                                                                                                                                                                                                                                                                                              |
| Fat (Hoogenboom,    | 2001, NCRL 9901)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyte:            | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GC-ECD                                                                                                                                                                                                                                                                                                                                                                                                                      | Method NCRL-PHF-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LOQ:                | 0.01 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description         | Rendered fat is dissolved in toluene. Acetonit:<br>The acetonitrile is evaporated and the residue<br>permeation chromatography (GPC). The fract<br>extraction with an amino cartridge. The soluti<br>Note: Method NCRL-PHF-01 has no hydroly:<br>from glyceride conjugates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rile is added and the mix<br>is methylated and then<br>ion from GPC is then cl<br>on is then ready for ana<br>sis step, so is unlikely to                                                                                                                                                                                                                                                                                   | xture is cooled to precipitate the fat.<br>further cleaned up by gel<br>leaned up using solid phase<br>lysis by GLC-ECD.<br>o recover haloxyfop quantitatively                                                                                                                                                                                                                                                                                                                                       |
| Milk (Hoogenboor    | n, 2001, NCRL 9901)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyte:            | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GC-ECD                                                                                                                                                                                                                                                                                                                                                                                                                      | Method NCRL-PHM-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LOQ:                | 0.01 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description         | Milk is acidified and extracted with ether. The<br>added and the mixture is cooled to precipitate<br>methylated and then further cleaned up by gel<br>GPC is then cleaned up using solid phase extr<br>for analysis by GLC-ECD.<br>Note: Method NCRL-PHM-01 has no hydroly<br>from glyceride conjugates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e concentrated extract is<br>out the fat. The acetoni<br>permeation chromatogn<br>action with an amino ca<br>vsis step, so is unlikely t                                                                                                                                                                                                                                                                                    | dissolved in toluene, acetonitrile is<br>trile is evaporated and the residue is<br>raphy (GPC). The fraction from<br>utridge. The solution is then ready<br>to recover haloxyfop quantitatively                                                                                                                                                                                                                                                                                                      |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## Crop commodities

| Soya bean seed a | and processed commodities (G                                                                                                          | ardner, 1983, GH-C 1625)                                                                                                                                                |                                                                                                                                                              |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte:         | haloxyfop                                                                                                                             | GLC-ECD                                                                                                                                                                 | Method ACR 83.1                                                                                                                                              |
| LOQ:             | 0.05 mg/kg.                                                                                                                           |                                                                                                                                                                         |                                                                                                                                                              |
| Description      | Residues are extracted from<br>extracted from aqueous sol<br>NaOH. The eluate is acidif<br>diazomethane. The methyla<br>ECD analysis. | n the substrate with methanolic NaOH<br>ution into benzene and then adsorbed o<br>ied and the residue is partitioned into e<br>ated residue is further cleaned up on an | by shaking overnight. The residue is<br>on to silica gel and eluted with aqueous<br>ther where it is methylated with<br>acidic alumina column ready for GLC- |

Oilseed rape seed (Yon et al., 1983, ERC 83.17)

| Analyte:<br>LOO:     | haloxyfop<br>0.05 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GLC-ECD                                                                                                   | Method ERC 83.17                                                                                                                              |  |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Description          | Homogenised rape seed is extracted with methanolic NaOH. The mixture is shaken for 2 hours and allowed to stand for at least 4 hours, or overnight. An aliquot of the extract is acidified and the residues are partitioned into diethyl ether. Residues are cleaned up by solvent partition between ether and aqueous solutions (acid and alkaline) before being butylated with a sulphuric acid <i>n</i> -butanol reagent. After further cleanup on a Florisil column, the residue is analysed by GLC-ECD.                                                                                                                                |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Sunflower seed (Ye   | ed (Yon <i>et al.</i> , 1983, ERC 83.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Analyte:             | haloxyfop GLC-ECD Method ERC 83.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| LOQ:                 | 0.05 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Description          | Homogenised sunflower seed is blended and extracted with methanolic NaOH. The mixture is shaken fo 2 hours and allowed to stand for at least 4 hours, or preferably overnight. An aliquot of the supernatant from centrifuged extract is acidified and the residues are partitioned into diethyl ether. Residues are cleaned up by solvent partition between ether and aqueous solutions (acid and alkaline) before being butylated with a sulphuric acid <i>n</i> -butanol reagent. After further cleanup on an activated Florisil column, the residue is analysed by GLC-ECD.                                                             |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Oilseed rape cake    | Yon, 1983, ERC 83.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Analyte:             | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GLC-ECD                                                                                                   | Method ERC 83.23                                                                                                                              |  |  |  |  |  |  |  |
| LOQ:                 | 0.05 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Description          | Similar to ERC 83.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Oilseed rape oil Yo  | on, 1983, ERC 83.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Analyte:             | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GLC-ECD                                                                                                   | Method ERC 83.20                                                                                                                              |  |  |  |  |  |  |  |
| LOQ:                 | 0.01 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Description          | Rape oil is dissolved in diethyl ether and washed with aqueous acid. The ether is evaporated and the oil is reacted with ethanolic KOH in toluene at 50 °C for 30 minutes. The aqueous mixture is acidified and residues are partitioned into dichloromethane. Residues are cleaned up by solvent partition between dichloromethane and aqueous solutions (acid and alkaline) before being butylated with a sulphuric acid                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Coffee beans sunf    | lower seeds (Doege, 1983, BRC 83.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orion corunni, the resid                                                                                  |                                                                                                                                               |  |  |  |  |  |  |  |
| Analyte <sup>.</sup> | haloxyfon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GI C-FCD                                                                                                  | Method BRC 83 1                                                                                                                               |  |  |  |  |  |  |  |
| I OO'                | 0.02  mg/kg coffee beans 0.05 mg/kg sunflower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | seed                                                                                                      | Method Dice 05.1                                                                                                                              |  |  |  |  |  |  |  |
| Description          | Ground coffee beans or sunflower seeds are homogenized and shaken with methanolic NaOH for at least 2 hours. An aliquot is then diluted with water and sodium chloride, acidified with sulphuric acid and extracted with benzene. The benzene solution is cleaned up on a silica Sep-Pak cartridge, with the haloxyfop residue eluted with aqueous NaOH. After acidification of the aqueous phase, the residues are extracted into diethyl ether. Evaporation of the ether leaves the residue, which is methylated with diazomethane. The residue of methyl ester is further cleaned up on a Florisil cartridge, ready for GLC-ECD analysis |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Sugar beet roots, to | ops and immature plants (Yon <i>et al.</i> , 1984, ERC 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.19)                                                                                                    |                                                                                                                                               |  |  |  |  |  |  |  |
| Analyte:             | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GLC-ECD                                                                                                   | Method ERC 83.19                                                                                                                              |  |  |  |  |  |  |  |
| LOQ:                 | 0.01 mg/kg in roots, 0.02 mg/kg in tops and pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nts                                                                                                       |                                                                                                                                               |  |  |  |  |  |  |  |
| Description          | Homogenised matrix is extracted with methano<br>of the extract is acidified and the residues are pro-<br>solvent partition between ether and aqueous sol<br>sulphuric acid <i>n</i> -butanol reagent. After further c<br>GLC-ECD.                                                                                                                                                                                                                                                                                                                                                                                                           | lic NaOH. The mixture<br>artitioned into diethyl e<br>utions (acid and alkalir<br>leanup on a Florisil co | is shaken for 2 hours. An aliquot<br>ther. Residues are cleaned up by<br>be before being butylated with a<br>lumn, the residue is analysed by |  |  |  |  |  |  |  |
| Sugar beet process   | ed commodities (Yon, 1984, GHE-P-1125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Analyte:             | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GLC-ECD                                                                                                   | Method ERC 84.02                                                                                                                              |  |  |  |  |  |  |  |
| LOQ:                 | 0.01 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Description          | White sugar is dissolved in water. Cossettes and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l pulp are macerated wi                                                                                   | th methanolic NaOH.                                                                                                                           |  |  |  |  |  |  |  |
|                      | The extract is acidified and the residue is extract<br>solvent partition between dichloromethane and<br>butylated with a sulphuric acid <i>n</i> -butanol reagen<br>is analysed by GLC-ECD.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ted into dichlorometha<br>aqueous solutions (acio<br>nt. After further cleanup                            | ne. Residues are cleaned up by<br>and alkaline) before being<br>o on a Florisil column, the residue                                           |  |  |  |  |  |  |  |
| Oilseed rape straw   | and immature plants (Yon et al., 1984, ERC 84.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )3)                                                                                                       |                                                                                                                                               |  |  |  |  |  |  |  |
| Analyte:             | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GLC-ECD                                                                                                   | Method ERC 84.03                                                                                                                              |  |  |  |  |  |  |  |
| LOQ:                 | 0.05 mg/kg in straw, 0.02 mg/kg in plants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Description          | Similar to ERC 83.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Grapes (Anon, 198    | 35, ERC 84.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Analyte:             | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GLC-ECD                                                                                                   | Method ERC 84.05                                                                                                                              |  |  |  |  |  |  |  |
| LOQ:                 | 0.01 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Description          | Similar to method ERC 88.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |
| Soya beans and co    | tton seed (Gardner, 1985, ACR 83.1.S1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |                                                                                                                                               |  |  |  |  |  |  |  |

| Analyte:<br>LOQ:                 | haloxyfop<br>0.01 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GLC-ECD                                                                                                                                 | Method ACR 83.1.S1                                                                                                                                                      |  |  |  |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Description                      | Sample matrix is homogenized with methanolic NaOH and then the mixture is shaken overnight. A 25 mL aliquot is evaporated to 5 mL at 60 °C. Water, sodium chloride and sulphuric acid are added and the residue is extracted into benzene. The benzene solution is applied to a silica gel column and the residues are eluted with acetic acid in dichloromethane. The solvent is evaporated to leave a residue which is methylated with BF <sub>3</sub> -methanol. The methylated residue is further cleaned up on a SPE silica gel column and eluted with benzene ready for GLC-ECD analysis. |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Citrus fruits (Rodri             | gues, 1987, GHB-P 040)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                       |                                                                                                                                                                         |  |  |  |  |  |  |
| Analyte:                         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD                                                                                                                                 | Method BRC 85.1                                                                                                                                                         |  |  |  |  |  |  |
| LOQ:                             | 0.1 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Description                      | Citrus fruits are macerated and shaken with methanolic NaOH. After acidification of the extract, the residue is extracted into benzene and the benzene solution passed through a silica gel column. The residue is eluted from the silica gel with aqueous NaOH. The eluant is acidified and the residue extracted into ether, which is evaporated leaving the residue ready for methylation with BF <sub>3</sub> methanol and subsequent GLC-ECD analysis.                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Bulb onions (Anon                | , 1988, ERC 87.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Analyte:                         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD                                                                                                                                 | Method ERC 87.7                                                                                                                                                         |  |  |  |  |  |  |
| LOQ:                             | 0.02 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Description                      | Similar to method ERC 88.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Apples and process               | haloxyfon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLC                                                                                                                                     | Method ACP 83 1P S4                                                                                                                                                     |  |  |  |  |  |  |
| I OO                             | 0.05  mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ULC                                                                                                                                     | Method ACK 85.1K.54                                                                                                                                                     |  |  |  |  |  |  |
| Description                      | The method is a replacement for ACR 83.1R.S2, developed from ACR 83.1.S1. Benzene is replaced by toluene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Sunflower seed (Pe               | erkins and Harrison, 1990, GHE-P-2059)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Analyte:                         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-MSD                                                                                                                                 | Method GHE-P-2059                                                                                                                                                       |  |  |  |  |  |  |
| LOQ:                             | 0.05 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
|                                  | centrifuging. Acid and salt are added and the rest<br>then partitioned into aqueous sodium bicarbonar<br>10 minutes, excess permanganate is removed we<br>and acid and the residue is partitioned into di-ise<br>butylation with a sulphuric acid-butanol reagent                                                                                                                                                                                                                                                                                                                               | idue is extracted into d<br>e where it is treated wi<br>th sodium metabisulph<br>opropyl ether. The solve<br>, the butyl ester is read  | ichloromethane. The residue is<br>th potassium permanganate. After<br>ite, the mixture is treated with salt<br>ent is then evaporated. After<br>y for GLC-MSD analysis. |  |  |  |  |  |  |
| Crude oil, refined o             | bil and soapstock (Phillips, 1991, 89026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Analyte:                         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-MSD                                                                                                                                 | Method ACR 86.6.S2                                                                                                                                                      |  |  |  |  |  |  |
| LOQ:                             | 0.1 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Description                      | Soapstock samples are first extracted with dieth<br>are hydrolysed in 1.5% KOH in ethanol+toluene<br>toluene layer is discarded. The residue is then pa<br>silica gel and eluted with acetic acid in dichloro<br>follows ACR 83.1.S1.                                                                                                                                                                                                                                                                                                                                                           | yl ether. Crude oil, refin<br>e with heating. After co<br>artitioned from aqueous<br>methane. The remainde                              | and the soapstock extract<br>oling and dilution with water the<br>s acid into toluene, adsorbed on<br>or of the cleanup procedure                                       |  |  |  |  |  |  |
| Beans (Butcher, 19               | 92, ERC 91.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Analyte:                         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD                                                                                                                                 | Method ERC 91.7                                                                                                                                                         |  |  |  |  |  |  |
| LOQ:                             | 0.02 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Description                      | Field beans are macerated and extracted with me<br>aliquot of the extract is then cleaned up by solve<br>and alkaline). A sodium bicarbonate solution of<br>metabisulphite solutions before the residue is ex<br>After butylation with a sulphuric acid-butanol re                                                                                                                                                                                                                                                                                                                              | ethanolic NaOH. The n<br>ent partition between to<br>the residue is treated w<br>tracted back into toluer<br>eagent, the butyl ester is | ixture is shaken for 2 hours. An<br>luene and aqueous solutions (acid<br>ith permanganate and<br>ne, which is then evaporated.<br>s ready for GLC-ECD analysis.         |  |  |  |  |  |  |
| Oranges (Long and                | Butcher, 1993, ERC 92.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Analyte:                         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD                                                                                                                                 | Method ERC 92.24                                                                                                                                                        |  |  |  |  |  |  |
| LOQ:                             | 0.02 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Description<br>Cotton seed (Long | Similar to ERC 91.7<br>and Butcher, 1993, ERC 92.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Analyte:                         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD                                                                                                                                 | Method ERC 92.25                                                                                                                                                        |  |  |  |  |  |  |
| LOQ:                             | 0.02 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l                                                                                                                                       |                                                                                                                                                                         |  |  |  |  |  |  |
| Description                      | Also, the sample extraction step leaves the sample methanolic NaOH, which may hydrolyse conjug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ble over night in contac<br>gates.                                                                                                      | t with the extracting solvent,                                                                                                                                          |  |  |  |  |  |  |
| Apples (Perkins, 19              | 994, ERC 88.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                                                                         |  |  |  |  |  |  |
| Analyte:                         | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD                                                                                                                                 | Method ERC 88.4                                                                                                                                                         |  |  |  |  |  |  |

| LOQ:                          | 0.02 mg/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|--|--|--|--|--|
| Description                   | Apple matrix is extracted with methanolic sodium hydroxide and then the extraction mixture is mixed with water, sulphuric acid and dichloromethane. The residue in dichloromethane solution is then cleaned up by solvent partition between dichloromethane and aqueous solutions (acid and alkaline). The residue is then butylated with a sulphuric acid-butanol reagent and the butyl ester is further cleaned up on a small Florisil column before GLC-ECD analysis.                                                                                                                                                                        |                              |                                |  |  |  |  |  |
| Potatoes, sugar bee           | et roots and peas (Perkins, 1994, ERC 89.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                |  |  |  |  |  |
| Analyte:                      | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD                      | Method ERC 89.3                |  |  |  |  |  |
| LOQ:                          | 0.01 mg/kg potato, 0.02 mg/kg sugar beet, 0.05 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng/kg peas.                  |                                |  |  |  |  |  |
| Description                   | Sample matrix is homogenized and extracted with methanolic sodium hydroxide and then the extraction mixture is mixed with water, acid and dichloromethane. The residue in dichloromethane solution is then cleaned up by solvent partition between dichloromethane and aqueous solutions (acid and alkaline). Finally the residue is extracted from an acidified aqueous phase into di-isopropyl ether. After solvent evaporation, the residue is then butylated with a sulphuric acid-butanol reagent and the butyl ester is further cleaned up on a small Florisil column before GLC-ECD analysis.                                            |                              |                                |  |  |  |  |  |
| Soya beans (Perkin            | ns, 1994, ERC 88.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                |  |  |  |  |  |
| Analyte:                      | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLC-ECD                      | Method ERC 88.3                |  |  |  |  |  |
| LOQ:                          | 0.05 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                |  |  |  |  |  |
| Description                   | Similar to method ERC 83.17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                |  |  |  |  |  |
| Canola forage, fode           | der and grain (Cowles <i>et al.</i> , 1998, GHF-P 1700))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                |  |  |  |  |  |
| Analyte:                      | haloxytop-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GLC-ECD                      | Method PA-RM-98-02             |  |  |  |  |  |
| LOQ:                          | 0.02 mg/kg canola forage and grain, 0.05 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | for canola fodder            |                                |  |  |  |  |  |
| Description                   | Haloxyfop-P is extracted from milled canola forage, fodder or grain with methanolic NaOH An aliquot<br>of the mixture, after acidification with hydrochloric acid and addition of sodium chloride, is extracted<br>with toluene. The residue is partitioned into aqueous sodium carbonate and, after addition of acid and<br>sodium chloride, into ethyl acetate. The residue is then butylated and the butyl ester partitioned into<br>hexane. The hexane is evaporated and the residue is further cleaned up on a silica solid phase extraction                                                                                               |                              |                                |  |  |  |  |  |
| Chickpea straw and            | d grain (Cowles, 1998, GHF-P 1718)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                |  |  |  |  |  |
| Analyte:                      | haloxyfop-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GLC-ECD                      | Method PA-RM-98-05             |  |  |  |  |  |
| LOO:                          | 0.02 mg/kg chickpea grain. 0.05 mg/kg for chick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pea straw.                   |                                |  |  |  |  |  |
| Description                   | Similar to PA-RM-98-02, but using a capillary co<br>analyte from an interfering peak in chickpea stray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | blumn instead of a meg<br>w. | gabore column to separate the  |  |  |  |  |  |
| Plant material – me<br>00.02) | edic, clover, lucerne, spinach, lettuce, garlic, aspara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | agus, flax, strawberrie      | es (Clements et al., 2001, GRM |  |  |  |  |  |
| Analyte:                      | haloxyfop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LC-MS-MS                     | Method GRM 00.02               |  |  |  |  |  |
| LOQ:                          | 0.05 mg/kg for medic, clover, lucerne. 0.01 mg/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g for others.                |                                |  |  |  |  |  |
| Description                   | Crop matrix samples are homogenised with methanolic NaOH. Water and sulphuric acid-sodium chloride are added to an aliquot of the extract and haloxyfop residues are partitioned into toluene. The toluene solution is then passed through an anion exchange solid phase extraction cartridge and then haloxyfop residues are eluted with formic acid. The eluate is evaporated to dryness and then taken up in mobile solvent (acetonitrile water) for HPLC MS MS analysis                                                                                                                                                                     |                              |                                |  |  |  |  |  |
| Dry beans, soya be            | ans, cotton seed (Pinheiro, GHB-P 721)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                |  |  |  |  |  |
| Analyte:                      | haloxyfop-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GC-MSD                       | Method GRM 01.10               |  |  |  |  |  |
| LOQ:                          | 0.01 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                |  |  |  |  |  |
| Description                   | Crop matrix samples are extracted with methanolic NaOH. After the methanol is evaporated, the extract is diluted with water, saturated with sodium chloride, acidified with sulphuric acid and then extracted with diethyl ether. Haloxyfop residues are then extracted from the ether phase into aqueous sodium bicarbonate, which is then acidified with sulphuric acid and saturated with sodium chloride. The residues are next extracted into toluene, which is evaporated to dryness to leave a residue ready for diazomethane methylation. The methyl ester is further cleaned up on a silica solid phase column before GC-MSD analysis. |                              |                                |  |  |  |  |  |
| Oilseed rape plant a          | and seed (Balluff, 2007, GHE-P-11656)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                |  |  |  |  |  |
| Analyte:                      | haloxyfop-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS-MS                     | Method GRM 04.03               |  |  |  |  |  |
| LOQ:                          | 0.01 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                |  |  |  |  |  |
| Description                   | Crop matrix samples are homogenised and shaken with methanolic NaOH. Haloxyfop-P-methyl was hydrolysed during this process. An aliquot of the extract is acidified with hydrochloric acid and cleaned up on a solid phase extraction system. An internal standard (deuterated haloxyfop) is added to the eluate, which is then ready for analysis by HPLC with negative-ion electrospray ionization tandem mass spectrometry. A second ion transition is also monitored to assist in identification of the residue.                                                                                                                             |                              |                                |  |  |  |  |  |

Gardner (1983, GH-C 1625) tested the completeness of extraction of haloxyfop and its conjugates and of their conversion to parent acid using method ACR 83.1 to extract soya bean

samples available from the previous metabolism study (Yackovich and Miller, 1983, GH-C 1618). Method ACR 83.1 uses overnight shaking of substrate with 0.1M NaOH in 98% methanol + 2% water for extraction, which extracted 93% of the <sup>14</sup>C from the soya beans. HPLC produced a single peak matching haloxyfop which accounted for 95% of the <sup>14</sup>C in the extract.

Gardner (1984, GH-C 1709) tested the completeness of extraction of haloxyfop present as the free acid, the methyl ester or as conjugates from milk using method ACR 84.6. The milk was goat milk from a dosing study with [<sup>14</sup>C]haloxyfop-butyl. Haloxyfop was quantitatively (99–100%) extracted in the three ether extractions. Completeness of hydrolysis of haloxyfop-methyl and conjugates to haloxyfop acid was checked by measuring the <sup>14</sup>C in the benzene washes after hydrolysis (1.6% of <sup>14</sup>C remained) and the <sup>14</sup>C remaining in the acidified aqueous solution after benzene extraction (5% of <sup>14</sup>C, representing polar degradation products of hydrolysis). A high percentage of the <sup>14</sup>C (91%) was present in the benzene solution (as haloxyfop acid )ready for further cleanup.

Analytical method GRM 01 09 for animal commodities was successfully subjected to independent laboratory validation (Schuster, 2002, CCRL #990109). Recovery testing data are included in Table 9.

Analytical method ERC 83.17 for oilseed rape was successfully subjected to independent laboratory validation (Nicholson and Schultz, 2000, IF-100/18445-00). Recovery testing data are included in Table 9.

Analytical method ERC 89.3 for potatoes, sugar beet roots and peas was successfully subjected to independent laboratory validation (Rawle, 2000, CEMS-1240). Recovery testing data are included in Table 9.

Class (2002, B 579/1) examined the possibilities of including haloxyfop in a multiresidue method of analysis. Haloxyfop requires hydrolysis in the extraction step for release of conjugates and, for GLC analysis, it requires a derivatisation step. These two requirements mean that haloxyfop does not fit into existing multiresidue methods.

Gardner (1988, 2084-21) drew attention to the potential losses of haloxyfop that may occur during the hydrolysis step of some analytical methods. If haloxyfop is exposed to higher temperatures or longer hydrolysis times than ideal, low recoveries may occur. The condition of 35–40 minutes at 70  $^{\circ}$ C was satisfactory.

| Commodity        | Spiked compound | Spike conc,<br>mg/kg | n  | Mean<br>recov% | Range<br>recov% | Method          | Ref          |
|------------------|-----------------|----------------------|----|----------------|-----------------|-----------------|--------------|
| apple dry pomace | haloxyfop       | 0.05                 | 3  | 95%            | 88-100%         | ACR 83.1R       | 2084-24      |
| apple juice      | haloxyfop       | 0.05                 | 4  | 88%            | 72–96%          | ACR 83.1R       | 2084-24      |
| apple wet pomace | haloxyfop       | 0.05                 | 4  | 82%            | 76-86%          | ACR 83.1R       | 2084-24      |
| apples           | haloxyfop       | 0.05-0.10            | 14 | 95%            | 60-134%         | ACR 83.1R       | 2084-24      |
| apples           | haloxyfop       | 0.02–5               | 12 | 93%            | 76-112%         | ERC 88.4        | ERC 88.4+    |
| asparagus        | haloxyfop       | 0.01-15              | 3  | 90%            | 87–93%          | GRM 00.02       | GRM 00.02    |
| bovine fat       | haloxyfop       | 0.01-0.2             | 11 | 77%            | 71–90%          | ACR 84.1        | ACR 84.1     |
| bovine fat       | haloxyfop       | 0.01-0.25            | 12 | 97%            | 60-107%         | NCRL-PHF-01     | NCRL 9902    |
| bovine kidney    | haloxyfop       | 0.01-2.0             | 11 | 90%            | 75-110%         | ACR 84.1        | ACR 84.1     |
| bovine kidney    | haloxyfop       | 0.01-0.5             | 6  | 99%            | 96-101%         | GRM 01.09       | GRM 01.09    |
| bovine kidney    | haloxyfop       | 0.01-0.25            | 12 | 103%           | 92-110%         | NCRL-PHT-01     | GHF-P 1939   |
| bovine liver     | haloxyfop       | 0.01-1.0             | 11 | 90%            | 83-97%          | ACR 84.1        | ACR 84.1     |
| bovine liver     | haloxyfop       | 0.01                 | 5  | 75%            | 72–76%          | GRM 01.09 (ILV) | CCRL #990109 |
| bovine liver     | haloxyfop       | 0.5                  | 5  | 89%            | 86–93%          | GRM 01.09 (ILV) | CCRL #990109 |
| bovine liver     | haloxyfop       | 0.01-0.25            | 12 | 100%           | 83-118%         | NCRL-PHT-01     | NCRL 9902    |
| bovine muscle    | haloxyfop       | 0.01-0.1             | 10 | 91%            | 86–94%          | ACR 84.1        | ACR 84.1     |
| bovine muscle    | haloxyfop       | 0.01-0.5             | 7  | 99%            | 96-100%         | GRM 01.09       | GRM 01.09    |

Table 9 Analytical recoveries for spiked haloxyfop, haloxyfop-P, haloxyfop-P-methyl, haloxyfopmethyl or haloxyfop-ethoxyethyl in various substrates

| Commodity              | Spiked compound        | Spike conc,<br>mg/kg | n  | Mean<br>recov% | Range<br>recov% | Method          | Ref             |
|------------------------|------------------------|----------------------|----|----------------|-----------------|-----------------|-----------------|
| bovine muscle          | haloxyfop              | 0.01-0.25            | 12 | 101%           | 75-114%         | NCRL-PHT-01     | NCRL 9902       |
| bulb onions            | haloxyfop              | 0.02                 | 6  | 109%           | 104-125%        | ERC 87.7        | ERC 87.7        |
| bulb onions            | haloxyfop              | 0.05-5.0             | 18 | 86%            | 70–97%          | ERC 87.7        | ERC 87.7        |
| chicken fat            | haloxyfop              | 0.01–0.5             | 20 | 99%            | 97-102%         | GRM 01.09       | GRM 01.09       |
| chicken liver          | haloxyfop              | 0.01–0.5             | 7  | 99%            | 96-102%         | GRM 01.09       | GRM 01.09       |
| chickpea grain         | haloxyfop-P            | 0.02-0.2             | 11 | 93%            | 81-109%         | PA-RM-98-05     | GHF-P 1718      |
| chickpea straw         | haloxyfop-P            | 0.05-0.5             | 10 | 100%           | 95-102%         | PA-RM-98-05     | GHF-P 1718      |
| citrus fruits          | haloxyfop              | 0.1–1.0              | 12 | 92%            | 88–94%          | BRC 85.1        | GHB-P 040       |
| coffee beans           | haloxyfop              | 0.02-0.20            | 23 | 95%            | 81-114%         | BRC 83.1        | BRC 83.1        |
| cotton seed            | haloxyfop              | 0.01–0.4             | 10 | 89%            | 79–105%         | ACR 83.1        | ACR 83.1.S1     |
| cotton seed            | haloxyfop              | 0.02-0.10            | 5  | 95%            | 88-103%         | ERC 92.25       | ERC 92.25       |
| cream                  | haloxyfop              | 0.02                 | 6  | 94%            | 89–99%          | ACR 84.6R       | ACR 84.6R       |
| cream                  | haloxyfop              | 0.04                 | 7  | 96%            | 89–106%         | ACR 84.6R       | ACR 84.6R       |
| cream                  | haloxyfop              | 0.2                  | 5  | 91%            | 75–99%          | ACR 84.6R       | ACR 84.6R       |
| cream                  | haloxyfop              | 0.4                  | 2  |                | 83, 84%         | ACR 84.6R       | ACR 84.6R       |
| dried beans            | haloxyfop              | 0.02–0.5             | 6  | 91%            | 81–99%          | ERC 91.7        | ERC 91.7+       |
| eggs                   | haloxyfop              | 0.01–0.5             | 20 | 98%            | 95–101%         | GRM 01.09       | GRM 01.09       |
| eggs                   | haloxyfop              | 0.01                 | 5  | 110%           | 104-116%        | GRM 01.09 (ILV) | CCRL #990109    |
| eggs                   | haloxyfop              | 0.5                  | 5  | 97%            | 95–98%          | GRM 01.09 (ILV) | CCRL #990109    |
| fennel                 | haloxyfop              | 0.02-0.10            | 6  | 92%            | 76–103%         | ERC 92.24       | ERC 92.24       |
| flax grain             | haloxyfop              | 0.01–15              | 3  | 83%            | 80–89%          | GRM 00.02       | GRM 00.02       |
| flax straw             | haloxyfop              | 0.01–15              | 3  | 88%            | 83–93%          | GRM 00.02       | GRM 00.02       |
| garlic                 | haloxyfop              | 0.01–15              | 3  | 83%            | 73–89%          | GRM 00.02       | GRM 00.02       |
| grapes                 | ethoxy ethyl haloxyfop | 0.01–0.10            | 4  | 73%            | 66–78%          | ERC 84.05       | ERC 84.05       |
| grapes                 | haloxyfop              | 0.01                 | 8  | 96%            | 71-124%         | ERC 84.05       | ERC 84.05       |
| grapes                 | haloxyfop              | 0.10-1.0             | 6  | 86%            | 68–98%          | ERC 84.05       | ERC 84.05       |
| green bean pods        | haloxyfop              | 0.02-0.5             | 6  | 99%            | 88-104%         | ERC 91.7        | ERC 91.7+       |
| green beans            | haloxyfop              | 0.02-0.5             | 6  | 99%            | 90-109%         | ERC 91.7        | ERC 91.7+       |
| lettuce                | haloxyfop              | 0.01–15              | 3  | 94%            | 90-100%         | GRM 00.02       | GRM 00.02       |
| medic, clover, lucerne | haloxyfop              | 0.05                 | 8  | 98%            | 94-109%         | GRM 00.02       | GRM 00.02       |
| medic, clover, lucerne | haloxyfop              | 0.1                  | 8  | 91%            | 75-106%         | GRM 00.02       | GRM 00.02       |
| medic, clover, lucerne | haloxyfop              | 1.0                  | 8  | 96%            | 86-110%         | GRM 00.02       | GRM 00.02       |
| medic, clover, lucerne | haloxyfop              | 5                    | 3  | 92%            | 89–96%          | GRM 00.02       | GRM 00.02       |
| medic, clover, lucerne | haloxyfop              | 15                   | 5  | 98%            | 85-108%         | GRM 00.02       | GRM 00.02       |
| milk                   | haloxyfop              | 0.01                 | 5  | 90%            | 86–93%          | ACR 84.6R       | ACR 84.6R       |
| milk                   | haloxyfop              | 0.05-0.1             | 6  | 99%            | 92–104%         | ACR 84.6R       | ACR 84.6R       |
| milk                   | haloxyfop              | 0.01-0.5 mg/L        | 20 | 98%            | 90–101%         | GRM 01.09       | GRM 01.09       |
| milk                   | haloxyfop              | 0.01                 | 5  | 90%            | 81-106%         | GRM 01.09 (ILV) | CCRL #990109    |
| milk                   | haloxyfop              | 0.5                  | 5  | 98%            | 94–101%         | GRM 01.09 (ILV) | CCRL #990109    |
| milk                   | haloxyfop              | 0.01-0.25            | 10 | 98%            | 84–108%         | NCRL-PHM-01     | NCRL 9902       |
| oilseed rape           | haloxyfop              | 0.05                 | 6  | 83%            | 73–97%          | ERC 83.17       | ERC 83.17       |
| oilseed rape           | haloxyfop              | 0.1–5.0              | 9  | 75%            | 57-104%         | ERC 83.17       | ERC 83.17       |
| oilseed rape           | haloxyfop              | 0.05                 | 6  | 93%            | 83-102%         | ERC 83.17 (ILV) | IF-100/18445-00 |
| oilseed rape           | haloxyfop              | 0.5                  | 6  | 92%            | 86–99%          | ERC 83.17 (ILV) | IF-100/18445-00 |
| oilseed rape           | haloxyfop-P-methyl     | 0.01–10              | 20 | 83%            | 72–101%         | GRM 04.03       | GHE-P-11656     |
| oilseed rape cake      | haloxyfop              | 0.05-0.5             | 11 | 90%            | 80-114%         | ERC 83.24       | ERC 83.24       |
| oilseed rape oil       | ethoxy ethyl haloxyfop | 0.01                 | 7  | 90%            | 70–100%         | ERC 83.20       | ERC 83.20       |
| oilseed rape oil       | ethoxy ethyl haloxyfop | 0.05-1.0             | 11 | 89%            | 71–102%         | ERC 83.20       | ERC 83.20       |
| oilseed rape oil       | haloxyfop              | 0.02-0.20            | 4  | 88%            | 62–118%         | ERC 83.20       | ERC 83.20       |
| oilseed rape plants    | haloxyfop              | 0.02                 | 7  | 100%           | 88-114%         | ERC 84.03       | ERC 84.03       |
| oilseed rape plants    | haloxyfop              | 0.05–10              | 12 | 91%            | 74–105%         | ERC 84.03       | ERC 84.03       |
| oilseed rape plants    | haloxyfop-P-methyl     | 0.01–2.0             | 12 | 85%            | 68–108%         | GRM 04.03       | GHE-P-11656     |
| oilseed rape straw     | haloxyfop              | 0.05                 | 6  | 72%            | 62-87%          | ERC 84.03       | ERC 84.03       |
| oilseed rape straw     | haloxyfop              | 0.2–1.0              | 12 | 79%            | 69–93%          | ERC 84.03       | ERC 84.03       |
| orange peel            | haloxyfop              | 0.02-0.10            | 6  | 90%            | 76–108%         | ERC 92.24       | ERC 92.24       |
| orange pulp            | haloxyfop              | 0.02-0.10            | 6  | 103%           | 96–110%         | ERC 92.24       | ERC 92.24       |

| Commodity              | Spiked compound       | Spike conc, | n  | Mean   | Range    | Method         | Ref         |
|------------------------|-----------------------|-------------|----|--------|----------|----------------|-------------|
|                        |                       | mg/kg       |    | recov% | recov%   |                |             |
| peas                   | haloxyfop             | 0.05-5.0    | 8  | 93%    | 84-102%  | ERC 89.3       | ERC 89.3    |
| peas                   | haloxyfop             | 0.05-0.50   | 7  | 85%    | 74–97%   | ERC 89.3 (ILV) | CEMS-1240   |
| potatoes               | haloxyfop             | 0.01-5.0    | 13 | 89%    | 76–108%  | ERC 89.3       | ERC 89.3    |
| potatoes               | haloxyfop             | 0.01-0.10   | 7  | 89%    | 85–95%   | ERC 89.3 (ILV) | CEMS-1240   |
| soya beans             | haloxyfop             | 0.05-2.0    | 20 | 86%    | 69–105%  | ARC 83.1       | GH-C 1625   |
| soya bean hulls        | haloxyfop             | 0.05–0.50   | 3  | 96%    | 91-100%  | ARC 83.1       | GH-C 1625   |
| soya bean meal         | haloxyfop             | 0.05-0.50   | 3  | 94%    | 83-100%  | ARC 83.1       | GH-C 1625   |
| soya bean crude oil    | haloxyfop             | 0.05–0.50   | 3  | 61%    | 57–67%   | ARC 83.1       | GH-C 1625   |
| soya bean refined oil  | haloxyfop             | 0.05-0.50   | 3  | 73%    | 67–77%   | ARC 83.1       | GH-C 1625   |
| soya beans             | haloxyfop-methyl      | 0.05        | 2  | 94%    | 90%, 98% | ARC 83.1       | GH-C 1625   |
| soya beans             | haloxyfop             | 0.01-0.10   | 9  | 101%   | 93–108%  | ACR 83.1       | ACR 83.1.S1 |
| soya beans             | haloxyfop             | 0.05-5.0    | 11 | 91%    | 78–104%  | ERC 88.3       | ERC 88.3    |
| soya beans             | haloxyfop-methyl      | 0.10        | 1  | 98%    |          | ACR 83.1       | ACR 83.1.S1 |
| spinach                | haloxyfop             | 0.01–15     | 6  | 92%    | 85–98%   | GRM 00.02      | GRM 00.02   |
| strawberries           | haloxyfop             | 0.01–15     | 3  | 75%    | 68-81%   | GRM 00.02      | GRM 00.02   |
| sugar beet             | haloxyfop             | 0.02–5.0    | 13 | 87%    | 80–94%   | ERC 89.3       | ERC 89.3    |
| sugar beet             | haloxyfop             | 0.02-0.20   | 4  | 86%    | 74–101%  | ERC 89.3 (ILV) | CEMS-1240   |
| sugar beet cossettes   | haloxyfop             | 0.01-1.0    | 4  | 87%    | 84–91%   | ERC 84.02      | GHE-P-1125  |
| sugar beet cossettes   | haloxyfop-ethoxyethyl | 0.01        | 1  | 120%   |          | ERC 84.02      | GHE-P-1125  |
| sugar beet juice       | haloxyfop             | 0.01-1.0    | 3  | 83%    | 73–96%   | ERC 84.02      | GHE-P-1125  |
| sugar beet juice       | haloxyfop-ethoxyethyl | 0.01        | 1  | 96%    |          | ERC 84.02      | GHE-P-1125  |
| sugar beet plants      | haloxyfop             | 0.02        | 4  | 95%    | 81-115%  | ERC 83.19      | ERC 83.19   |
| sugar beet plants      | haloxyfop             | 0.05-5.0    | 12 | 82%    | 70–90%   | ERC 83.19      | ERC 83.19   |
| sugar beet pulp        | haloxyfop             | 0.025-0.05  | 3  | 85%    | 80–92%   | ERC 84.02      | GHE-P-1125  |
| sugar beet pulp        | haloxyfop-ethoxyethyl | 0.025       | 1  | 93%    |          | ERC 84.02      | GHE-P-1125  |
| sugar beet roots       | haloxyfop             | 0.01        | 8  | 76%    | 64-88%   | ERC 83.19      | ERC 83.19   |
| sugar beet roots       | haloxyfop             | 0.02-1.0    | 8  | 71%    | 59-80%   | ERC 83.19      | ERC 83.19   |
| sugar beet roots       | haloxyfop             | 0.02-0.20   | 10 | 91%    | 77–111%  | ERC 91.7       | CEMS-185    |
| sugar beet tops        | haloxyfop             | 0.02        | 8  | 100%   | 79–114%  | ERC 83.19      | ERC 83.19   |
| sugar beet tops        | haloxyfop             | 0.10–10     | 11 | 83%    | 77–89%   | ERC 83.19      | ERC 83.19   |
| sugar beet tops        | haloxyfop             | 0.02-0.20   | 10 | 95%    | 85-104%  | ERC 91.7       | CEMS-185    |
| sugar beet white sugar | haloxyfop             | 0.01, 0.1   | 2  | 81%    | 73%, 89% | ERC 84.02      | GHE-P-1125  |
| sugar beet white sugar | haloxyfop-ethoxyethyl | 0.01, 0.1   | 2  | 85%    | 72%, 97% | ERC 84.02      | GHE-P-1125  |
| sunflower seeds        | haloxyfop             | 0.05-0.20   | 16 | 97%    | 86-108%  | BRC 83.1       | BRC 83.1    |
| sunflower seeds        | haloxyfop             | 0.05        | 4  | 75%    | 73-80%   | ERC 83.18      | ERC 83.18   |
| sunflower seeds        | haloxyfop             | 0.1–5.0     | 8  | 80%    | 70-85%   | ERC 83.18      | ERC 83.18   |

ILV: independent laboratory validation

### Stability of residues in stored analytical samples

Information was received on the freezer storage stability of haloxyfop in plant commodities.

Gardner (1990, GH-C 2037) reported on the frozen storage of haloxyfop fortified into apples, juice and pomace at 1 mg/kg levels. The data had been adjusted for procedural recoveries, which were not available, so the data could not be used.

Table 10 Freezer storage stability data for haloxyfop spiked into matrices of: green peas, cabbage and rice

| Storage        | Procedural          | haloxyfop, mg/kg or % | Storage                                                  | Procedural | haloxyfop, mg/kg or % |  |
|----------------|---------------------|-----------------------|----------------------------------------------------------|------------|-----------------------|--|
| interval       | recov %             | remaining             | interval                                                 | recov %    | remaining             |  |
| GREEN PEAS     | S, (homogenized ma  | atrix) fortified with | CABBAGE, (chopped matrix) fortified with haloxyfop at    |            |                       |  |
| haloxyfop at 0 | .2 mg/kg in small g | lass jars, storage    | 0.2 mg/kg in small glass jars, storage temperature below |            |                       |  |
| temperature be | elow -16 °C (Hastin | gs and Butcher, 1993, | -16 °C (Hastings and Butcher, 1993, GHE-P-3158).         |            |                       |  |
| GHE-P-3157).   |                     |                       | Analytical method ERC 91.7.                              |            |                       |  |
| 0 days         | 105% 110%           | 0.22 0.23             | 0 days                                                   | 102% 99%   | 0.205 0.206           |  |

| Storage interval | Procedural recov %  | haloxyfop, mg/kg or %<br>remaining | Storage interval  | Procedural recov % | haloxyfop, mg/kg or % remaining |
|------------------|---------------------|------------------------------------|-------------------|--------------------|---------------------------------|
| 92 days          | 98% 99%             | 0.22 0.21                          | 91 days           | 101% 96%           | 0.216 0.204                     |
| 483 days         | 108% 110%           | 0.22 0.22                          | 484 days          | 108% 106%          | 0.204 0.203                     |
| residues appar   | ently stable        |                                    | residues apparent | ntly stable        |                                 |
| RICE, fortified  | d with haloxyfop at | 1 mg/kg and stored in a            |                   |                    |                                 |
| freezer, tempe   | rature not reported | (Gardner, 1989, GH-C               |                   |                    |                                 |
| 2175). Proced    | ural recoveries not | reported.                          |                   |                    |                                 |
|                  |                     |                                    |                   |                    |                                 |
| 4 months         |                     | 0.91 0.99 1.09                     |                   |                    |                                 |
| 7 months         |                     | 0.97 1.1                           |                   |                    |                                 |

Gardner (1983, GH-C 1625) tested the freezer storage stability of haloxyfop residues in soya beans matrix. Seventeen months after fortification with 1 mg/kg haloxyfop and storage in a freezer at -20 °C, 93% remained.

Gardner (1983, GH-C 1623) tested the freezer storage stability of haloxyfop fortified into a control sample of cotton seed matrix at 1 mg/kg. Seventeen months after storage in a freezer at -20 °C, 87% of the haloxyfop remained.

Phillips (1991, 89026) reported that haloxyfop residues in soya beans were stable under frozen conditions for 43 months, the period of the test.

No data are available on the freezer storage stability of haloxyfop residues in animal commodities.

## **USE PATTERN**

Haloxyfop-P is a systemic, post-emergent, selective herbicide used for the control of many annual and perennial grass weeds in a number of crops. Because of its penetration and translocation capacity, it acts quickly on competing weeds immediately after its application. Haloxyfop-P products are diluted with water and normally applied with a spraying oil or wetter, either as a directed spray to the ground at the base of the plant, or broadcast treatment using conventional spray equipment.

Haloxyfop-P is usually prepared as the methyl ester and formulated as an emulsifiable concentrate (EC). In some countries, the label concentration is expressed as the ester and in others as the acid equivalent. For the purposes of JMPR the active ingredient is expressed as haloxyfop-P acid.

The label directions for use make it clear that application rates depend on the nature of the weeds to be controlled rather than the crop. Timing is also somewhat dependent on the weeds to be controlled and their growth stages. Some labels rely on crop growth stages for directions on application timing, while others rely on pre-harvest intervals or give very little direction on timing.

The target for haloxyfop application is the weeds, not the crop. This is a different situation from the use of insecticides or fungicides where the crop is the target. For field crops, the amount of applied haloxyfop reaching the crop will depend very much on the degree of area cover provided by the crop. Only small percentages of the applied haloxyfop (on a kg ai/ha basis) will contact the crop in its early growth stages.

The label directions often suggest the addition of crop oil to the spray and sometimes mandate such an addition. Its purpose is to increase efficacy. Labels provide specific instructions on crops and weeds where crop oil should be used and on others where it should not. The complexity of when and when not to use crop oils is not included in Table 11.

Table 11 Registered uses of haloxyfop-P-methyl in horticultural and field crops. The table is based on information from labels and translated labels available to JMPR. The active ingredient (ai) is expressed as haloxyfop-P acid.

| Crop           | Country      | Highest<br>application<br>rate, kg ai/ha | PHI   | Use instructions                                                                                                                                                                             |
|----------------|--------------|------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alfalfa        | Australia    | 0.078                                    |       | Apply from second trifoliate leaf onwards. Grazing or cutting<br>for livestock feed interval, 21 days.                                                                                       |
| Alfalfa        | Chile        | 0.06                                     |       | Grazing or cutting for livestock feed interval, 30 days.                                                                                                                                     |
| Alfalfa        | Mexico       | 0.18                                     |       | Grazing or cutting for livestock feed interval, 21 days.                                                                                                                                     |
| Alfalfa        | South Africa | 0.42                                     |       | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to. Grazing or cutting for livestock feed interval, 28 days. |
| Apple          | Romania      | 0.10                                     | 60–90 |                                                                                                                                                                                              |
| Apple          | Saudi Arabia | 0.06                                     | 90    |                                                                                                                                                                                              |
| Apple orchards | Serbia       | 0.16                                     |       | Before flowering of apple                                                                                                                                                                    |
| Apple trees    | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                                                  |
| Apple, pear    | Algeria      | 0.40                                     |       |                                                                                                                                                                                              |
| Apricot trees  | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                                                  |
| Apricot trees  | Saudi Arabia | 0.06                                     | 90    |                                                                                                                                                                                              |
| Avocado trees  | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                                                  |
| Bean, field    | Switzerland  | 0.16                                     | 56    |                                                                                                                                                                                              |
| Bean, field    | Tunisia      | 0.10                                     |       |                                                                                                                                                                                              |
| Beans          | Argentina    | 0.15                                     | 65    |                                                                                                                                                                                              |
| Beans          | Brazil       | 0.048                                    | 66    | Usually apply between 20 and 30 days after sowing.                                                                                                                                           |
| Beans          | Chile        | 0.09                                     | 30    |                                                                                                                                                                                              |
| Beans          | Costa Rica   | 0.046                                    |       | Apply between 15 and 30 days after sowing, depending upon infestation level.                                                                                                                 |
| Beans          | Guatemala    | 0.046                                    |       | Apply between 15 and 30 days after sowing, depending upon infestation level.                                                                                                                 |
| Beans          | Morocco      | 0.05                                     |       |                                                                                                                                                                                              |
| Beans, dry     | South Africa | 0.42                                     | 60    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                                                          |
| Beans, Faba    | Australia    | 0.039                                    |       | Apply from second leaf, second node or second branch to full<br>flowering. Grazing or cutting for livestock feed interval,<br>28 days.                                                       |
| Beans, green   | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                                                          |
| Beetroot       | Syria        | 0.13                                     |       |                                                                                                                                                                                              |
| Beets          | Algeria      | 0.40                                     |       |                                                                                                                                                                                              |
| Beets          | Iraq         | 0.12                                     |       |                                                                                                                                                                                              |
| Beets          | Morocco      | 0.05                                     |       |                                                                                                                                                                                              |
| Beets          | Romania      | 0.16                                     | 60–90 |                                                                                                                                                                                              |
| Berries        | Switzerland  | 0.16                                     |       |                                                                                                                                                                                              |
| Bush beans     | Switzerland  | 0.16                                     | 28    |                                                                                                                                                                                              |
| Cabbage        | China        | 0.062                                    |       |                                                                                                                                                                                              |
| Canola         | Argentina    | 0.15                                     |       |                                                                                                                                                                                              |
| Canola         | Australia    | 0.052                                    |       | Apply from second leaf to prior to bud formation and stem<br>elongation. Grazing or cutting for livestock feed interval,<br>28 days.                                                         |
| Canola         | Paraguay     | 0.15                                     |       |                                                                                                                                                                                              |
| Canola         | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                                                          |
| Cherry trees   | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                                                  |

| Crop                 | Country      | Highest<br>application<br>rate, kg ai/ha | PHI   | Use instructions                                                                                                                                               |
|----------------------|--------------|------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chickpeas            | Australia    | 0.052                                    |       | Apply from second leaf, second node or second branch prior to<br>flowering. Grazing or cutting for livestock feed interval,<br>28 days.                        |
| Chickpeas            | Israel       | 0.1                                      |       |                                                                                                                                                                |
| Chickpeas            | Tunisia      | 0.10                                     |       |                                                                                                                                                                |
| Citrus fruits        | Saudi Arabia | 0.06                                     | 90    |                                                                                                                                                                |
| Citrus fruits        | Tunisia      | 0.10                                     |       |                                                                                                                                                                |
| Citrus fruits        | Turkey       | 0.25                                     | 15    |                                                                                                                                                                |
| Citrus trees         | New Zealand  | 0.15                                     |       | Apply as a directed spray around the base of the trees, to avoid direct contact with the fruit.                                                                |
| Coffee               | Colombia     | 0.36                                     |       | Apply between the furrows of trees.                                                                                                                            |
| Cotton               | Argentina    | 0.15                                     |       |                                                                                                                                                                |
| Cotton               | Australia    | 0.078                                    |       | Apply from second leaf to before the onset of flowering.<br>Grazing or cutting for livestock feed interval, 28 days.                                           |
| Cotton               | Brazil       | 0.060                                    | 123   | Usually apply between 20 and 45 days after sowing.                                                                                                             |
| Cotton               | China        | 0.14                                     |       | · · ·                                                                                                                                                          |
| Cotton               | Iraq         | 0.12                                     |       |                                                                                                                                                                |
| Cotton               | Israel       | 0.1                                      |       |                                                                                                                                                                |
| Cotton               | Paraguay     | 0.15                                     |       |                                                                                                                                                                |
| Cotton               | Russian Fed  | 0.16                                     |       | 1 treatment                                                                                                                                                    |
| Cotton               | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                            |
| Cotton               | Turkey       | 0.060                                    | 120   |                                                                                                                                                                |
| Cotton               | Turkey       | 0.062                                    | 15    |                                                                                                                                                                |
| Forage legumes       | Uruguay      | 0.060                                    |       |                                                                                                                                                                |
| Fruit                | Switzerland  | 0.16                                     |       |                                                                                                                                                                |
| Fruit trees          | Romania      | 0.052                                    | 60–90 |                                                                                                                                                                |
| Fruit trees          | Syria        | 0.13                                     |       |                                                                                                                                                                |
| Fruit trees          | Uruguay      | 0.15                                     |       |                                                                                                                                                                |
| Fruit, deciduous     | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                            |
| Fruit, orchard crops | Uruguay      | 0.18                                     |       | Apply before blooming                                                                                                                                          |
| Grape vine           | Lebanon      | 0.13                                     |       |                                                                                                                                                                |
| Grapefruit trees     | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                    |
| Grapes               | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                            |
| Grapevine            | Romania      | 0.16                                     | 60–90 |                                                                                                                                                                |
| Grapevine            | Switzerland  | 0.16                                     |       |                                                                                                                                                                |
| Grapevines           | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                    |
| Lemon trees          | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                    |
| Mandarin trees       | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                    |
| Nectarine trees      | Chile        | 0.09                                     | 14    | Maximum 3 times per season. Apply directing to ground level in peach and nectarine trees, since defoliation might take place in leaves that contact herbicide. |
| Oilseed rape         | Belarus      | 0.10                                     |       |                                                                                                                                                                |
| Oilseed rape         | Chile        | 0.06                                     | 30    | Apply with crop in phenological stage of 2–3 leaves, until before floral stem shooting.                                                                        |
| Oilseed rape         | China        | 0.043                                    |       | C.                                                                                                                                                             |
| Oilseed rape         | Moldova      | 0.10                                     |       |                                                                                                                                                                |
| Oilseed rape         | Romania      | 0.10                                     | 60–90 |                                                                                                                                                                |
| Oilseed rape         | Russian Fed  | 0.10                                     |       | 1 treatment                                                                                                                                                    |
| Oilseed rape         | Switzerland  | 0.16                                     |       | Application: autumn                                                                                                                                            |

| Crop                            | Country      | Highest<br>application<br>rate, kg ai/ha | PHI   | Use instructions                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|--------------|------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oilseed rape                    | Ukraine      | 0.10                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Oilseed rape                    | Uruguay      | 0.075                                    |       |                                                                                                                                                                                                                                                                                                                                     |
| Onion,<br>transplanted          | Philippines  | 0.05                                     |       | Spray at 10–14 days after planting                                                                                                                                                                                                                                                                                                  |
| Onions                          | Chile        | 0.09                                     | 30    |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Iran         | 0.12                                     | 28    |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Iraq         | 0.12                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Israel       | 0.1                                      |       |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Lebanon      | 0.13                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Moldova      | 0.10                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | New Zealand  | 0.15                                     | 35    |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Romania      | 0.10                                     | 60–90 |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Saudi Arabia | 0.06                                     | 30    |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                                                                                                                                                                                                 |
| Onions                          | Switzerland  | 0.16                                     | 56    |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Tunisia      | 0.10                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Onions                          | Turkey       | 0.047                                    | 52    |                                                                                                                                                                                                                                                                                                                                     |
| Orange trees                    | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                                                                                                                                                                                         |
| Oranges                         | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                                                                                                                                                                                                 |
| Orchard, vine<br>and plantation | Australia    | 0.42                                     |       | Includes: apples, avocado, banana, blueberry, citrus, custard<br>apple, feijoa, grapevines, guava, kiwifruit, litchi, longan,<br>mango, nashi, nut trees, passionfruit, papaya, pear, persimmon,<br>pineapple, rambutan and stone fruit. Spray should be directed to<br>base of tree or vine. Avoid contact with fruit and foliage. |
| Peach trees                     | Chile        | 0.09                                     | 14    | Maximum 3 times per season. Apply directing to ground level in peach and nectarine trees, since defoliation might take place in leaves that contact herbicide.                                                                                                                                                                      |
| Peach trees                     | Saudi Arabia | 0.06                                     | 90    |                                                                                                                                                                                                                                                                                                                                     |
| Peanuts                         | Argentina    | 0.15                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Peanuts                         | Australia    | 0.078                                    |       | Apply from second leaf to pegging. Grazing or cutting for livestock feed interval, 28 days.                                                                                                                                                                                                                                         |
| Peanuts                         | China        | 0.047                                    |       |                                                                                                                                                                                                                                                                                                                                     |
| Peanuts                         | Israel       | 0.1                                      |       |                                                                                                                                                                                                                                                                                                                                     |
| Peanuts                         | Paraguay     | 0.15                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Peanuts                         | Saudi Arabia | 0.06                                     | 80    |                                                                                                                                                                                                                                                                                                                                     |
| Peanuts                         | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                                                                                                                                                                                                 |
| Peanuts                         | Turkey       | 0.062                                    | 98    |                                                                                                                                                                                                                                                                                                                                     |
| Pear trees                      | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                                                                                                                                                                                                                         |
| Peas                            | Chile        | 0.09                                     | 30    |                                                                                                                                                                                                                                                                                                                                     |
| Peas                            | Israel       | 0.1                                      |       |                                                                                                                                                                                                                                                                                                                                     |
| Peas                            | Morocco      | 0.05                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Peas                            | New Zealand  | 0.15                                     |       | Do not apply later than flowering                                                                                                                                                                                                                                                                                                   |
| Peas                            | Saudi Arabia | 0.06                                     | 60    |                                                                                                                                                                                                                                                                                                                                     |
| Peas                            | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.                                                                                                                                                                                                 |
| Peas                            | Switzerland  | 0.16                                     | 56    |                                                                                                                                                                                                                                                                                                                                     |
| Peas                            | Tunisia      | 0.10                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Peas (grain)                    | Belarus      | 0.10                                     |       |                                                                                                                                                                                                                                                                                                                                     |
| Peas (grain)                    | Ukraine      | 0.10                                     |       |                                                                                                                                                                                                                                                                                                                                     |

| Crop             | Country      | Highest<br>application<br>rate, kg ai/ha | PHI   | Use instructions                                                                                                                        |
|------------------|--------------|------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Peas, field      | Australia    | 0.052                                    |       | Apply from second leaf, second node or second branch prior to<br>flowering. Grazing or cutting for livestock feed interval,<br>28 days. |
| Peas, field      | Switzerland  | 0.16                                     | 28    |                                                                                                                                         |
| Pineapples       | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.     |
| Plum trees       | Chile        | 0.09                                     | 14    | Maximum 3 times per season.                                                                                                             |
| Pome fruit trees | New Zealand  | 0.15                                     |       | Apply as a directed spray around the base of the trees, to avoid direct contact with the fruit.                                         |
| Potatoes         | China        | 0.078                                    |       |                                                                                                                                         |
| Potatoes         | Saudi Arabia | 0.06                                     | 90    |                                                                                                                                         |
| Potatoes         | Ukraine      | 0.10                                     |       |                                                                                                                                         |
| Soya beans       | Argentina    | 0.15                                     |       |                                                                                                                                         |
| Soya beans       | Australia    | 0.078                                    |       | Apply from second leaf to flowering. Grazing or cutting for livestock feed interval, 28 days.                                           |
| Soya beans       | Bolivia      | 0.062                                    |       |                                                                                                                                         |
| Soya beans       | Brazil       | 0.060                                    | 98    | Usually apply between 20 and 45 days after sowing.                                                                                      |
| Soya beans       | China        | 0.14                                     |       |                                                                                                                                         |
| Soya beans       | Moldova      | 0.10                                     |       |                                                                                                                                         |
| Soya beans       | Paraguay     | 0.15                                     |       |                                                                                                                                         |
| Soya beans       | Romania      | 0.16                                     | 60–90 |                                                                                                                                         |
| Soya beans       | Russian Fed  | 0.10                                     |       | 1 treatment                                                                                                                             |
| Soya beans       | Serbia       | 0.16                                     |       | Single application                                                                                                                      |
| Soya beans       | South Africa | 0.42                                     | 60    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.     |
| Soya beans       | Switzerland  | 0.16                                     | 56    |                                                                                                                                         |
| Soya beans       | Thailand     | 0.078                                    |       | Apply when soya beans are 25–28 days old.                                                                                               |
| Soya beans       | Turkey       | 0.062                                    | 15    |                                                                                                                                         |
| Soya beans       | Ukraine      | 0.05                                     |       |                                                                                                                                         |
| Soya beans       | Uruguay      | 0.075                                    |       |                                                                                                                                         |
| Sugar beet       | Belarus      | 0.10                                     |       |                                                                                                                                         |
| Sugar beet       | Chile        | 0.09                                     | 30    |                                                                                                                                         |
| Sugar beet       | Iran         | 0.12                                     | 28    |                                                                                                                                         |
| Sugar beet       | Lebanon      | 0.13                                     |       |                                                                                                                                         |
| Sugar beet       | Moldova      | 0.10                                     |       |                                                                                                                                         |
| Sugar beet       | Russian Fed  | 0.10                                     |       | 1 treatment                                                                                                                             |
| Sugar beet       | Serbia       | 0.16                                     |       | Single application                                                                                                                      |
| Sugar beet       | Switzerland  | 0.16                                     | 56    |                                                                                                                                         |
| Sugar beet       | Ukraine      | 0.10                                     |       |                                                                                                                                         |
| Sunflowers       | Argentina    | 0.15                                     |       |                                                                                                                                         |
| Sunflowers       | Australia    | 0.078                                    |       | Apply from second leaf to head initiation. Grazing or cutting for livestock feed interval, 28 days.                                     |
| Sunflowers       | Israel       | 0.1                                      |       |                                                                                                                                         |
| Sunflowers       | Moldova      | 0.10                                     |       |                                                                                                                                         |
| Sunflowers       | Paraguay     | 0.15                                     |       |                                                                                                                                         |
| Sunflowers       | Romania      | 0.10                                     | 60–90 |                                                                                                                                         |
| Sunflowers       | Russian Fed  | 0.10                                     |       | 1 treatment                                                                                                                             |
| Sunflowers       | Serbia       | 0.16                                     |       | Single application                                                                                                                      |
| Sunflowers       | South Africa | 0.42                                     | 40    | The crop may be treated at any time when the weeds are in the correct stage, providing that the withholding periods are adhered to.     |
| Sunflowers       | Switzerland  | 0.16                                     |       |                                                                                                                                         |
| Sunflowers       | Tunisia      | 0.10                                     |       |                                                                                                                                         |
| Sunflowers       | Ukraine      | 0.05                                     |       |                                                                                                                                         |

| Crop            | Country      | Highest<br>application<br>rate, kg ai/ha | PHI | Use instructions               |
|-----------------|--------------|------------------------------------------|-----|--------------------------------|
| Sunflowers      | Uruguay      | 0.075                                    |     |                                |
| Tangerine trees | Chile        | 0.09                                     | 14  | Maximum 3 times per season.    |
| Vines           | Algeria      | 0.40                                     |     |                                |
| Vines           | Israel       | 0.1                                      |     |                                |
| Vines           | Saudi Arabia | 0.06                                     | 90  |                                |
| Vines           | Syria        | 0.13                                     |     |                                |
| Vines           | Tunisia      | 0.10                                     |     |                                |
| Vineyards       | Serbia       | 0.16                                     |     | Before flowering of grape vine |
| Vineyards       | Turkey       | 0.25                                     | 52  |                                |

The Netherlands provided information that products based on haloxyfop or haloxyfop-P are not authorised for use on agricultural crops in the Netherlands.

## **RESIDUES RESULTING FROM SUPERVISED TRIALS**

The Meeting received information on supervised field trials for haloxyfop uses on crops that produced residue data. The commodities are grouped into Codex commodity groups.

| Commodities                                                                                                                             | Crop group                     | Table    |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|
| Oranges, grapefruit, lemons: <i>Australia, Brazil, Italy, New Zealand.</i> Haloxyfop-P-methyl, haloxyfop-methyl, haloxyfop-ethoxyethyl. | Citrus fruits                  | Table 13 |
| Apples: <i>Australia, Italy, New Zealand, USA</i> . Haloxyfop-ethoxyethyl, haloxyfop-methyl.                                            | Pome fruits                    | Table 14 |
| Peaches: Australia. Haloxyfop-<br>ethoxyethyl.                                                                                          | Stone fruits                   | Table 15 |
| Grapes: <i>Australia, France, Italy.</i><br>Haloxyfop-ethoxyethyl, haloxyfop-P-<br>methyl.                                              | Berries and other small fruits | Table 16 |
| Bananas: Australia. Haloxyfop-<br>ethoxyethyl.                                                                                          | Tropical fruits, inedible peel | Table 17 |
| Onions: <i>Belgium, France, Germany,</i><br><i>New Zealand</i> . Haloxyfop-P-methyl,<br>haloxyfop-ethoxyethyl.                          | Bulb vegetables                | Table 18 |
| Field beans: Belgium, France, Germany, Greece, Spain. Haloxyfop-P-methyl.                                                               | Legume vegetables              | Table 19 |
| Peas: Belgium, France, Italy, Spain.<br>Haloxyfop-P-methyl.                                                                             | Legume vegetables              | Table 20 |
| Pigeon peas: <i>Australia</i> . Haloxyfop-P-<br>methyl, haloxyfop-ethoxyethyl.                                                          | Pulses                         | Table 21 |
| Beans: Argentina, Brazil, Costa Rica,<br>Germany. Haloxyfop-P-methyl.                                                                   | Pulses                         | Table 22 |

| Haloxyfop |
|-----------|
|-----------|

| Commodities                                                                                                                                | Crop group                      | Table    |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|
| Chickpeas: Australia. Haloxyfop-P-<br>methyl.                                                                                              | Pulses                          | Table 23 |
| Peas, pulses: <i>Australia, France.</i><br>Haloxyfop-P-methyl, haloxyfop-<br>ethoxyethyl.                                                  | Pulses                          | Table 24 |
| Soya beans: Argentina, Brazil, France,<br>Germany, Hungary, Italy, Spain, USA.<br>Haloxyfop-P-methyl, haloxyfop-methyl.                    | Pulses                          | Table 25 |
| Sugar beet: <i>Belgium, France, Germany, Italy, Spain.</i> Haloxyfop-P-methyl, haloxyfop-ethoxyethyl.                                      | Root and tuber vegetables       | Table 26 |
| Rice: USA. Haloxyfop-methyl.                                                                                                               | Cereal grains                   | Table 27 |
| Cotton: <i>Brazil, Greece, Spain, USA</i> .<br>Haloxyfop-P-methyl, haloxyfop-methyl.                                                       | Oilseed                         | Table 28 |
| Cotton: USA. Haloxyfop-methyl                                                                                                              | Oilseed                         | Table 29 |
| Oilseed rape: <i>Australia, France,</i><br><i>Germany, Greece, Italy, Poland, Spain.</i><br>Haloxyfop-P-methyl, haloxyfop-<br>ethoxyethyl. | Oilseed                         | Table 30 |
| Peanuts: Argentina, Australia.<br>Haloxyfop-P-methyl.                                                                                      | Oilseed                         | Table 31 |
| Sunflowers: <i>Argentina, France,</i><br><i>Germany, Greece, Spain.</i> Haloxyfop-P-<br>methyl, haloxyfop-ethoxyethyl.                     | Oilseed                         | Table 32 |
| Coffee: <i>Brazil, Colombia</i> . Haloxyfop-methyl.                                                                                        | Seed for beverages              | Table 33 |
| Alfalfa: Australia, France, Germany,<br>Poland. haloxyfop-ethoxyethyl,<br>haloxyfop-P-methyl.                                              | Legume animal feeds             | Table 34 |
| Chickpeas, peanuts, peas and soya<br>beans: <i>Australia, France, Germany,</i><br><i>Hungary, Italy, Spain.</i> Haloxyfop-P-<br>methyl.    | Legume animal feeds             | Table 35 |
| Sugar beet: <i>Belgium, Germany, Italy, Spain.</i> Haloxyfop-P-methyl, haloxyfop-ethoxyethyl.                                              | Miscellaneous fodder and forage | Table 36 |
| Oilseed rape: <i>Australia, France,</i><br><i>Germany, Greece, Italy, Poland, Spain.</i><br>Haloxyfop-P-methyl, haloxyfop-<br>ethoxyethyl. | Miscellaneous fodder and forage | Table 37 |

Trials were generally well documented with laboratory and field reports; trials from the 1980s followed the standards of those times. Laboratory reports included method validation with procedural recoveries from spiking at residue levels similar to those occurring in samples from the supervised trials. Dates of analyses or duration of residue sample storage were also provided. Although trials included control plots, no control data are recorded in the tables except where residues in control

samples exceeded the LOQ. Control samples are indicated in the summary tables with a "c". Residue data are recorded unadjusted for recovery.

Label directions for use of haloxyfop often suggest the addition of crop oil to the spray and crop oils were used in many of the supervised trials. In the tables of residue data, the use of crop oil is indicated in the formulation column by "+ oil".

Various compounds were used in the supervised trials: haloxyfop-P-methyl, haloxyfopmethyl and haloxyfop-ethoxyethyl. The compound used in each trial is indicated in the formulations column. The application rate, kg ai/ha, is expressed in terms of haloxyfop or haloxyfop-P, i.e. the active ingredient is taken as haloxyfop or haloxyfop-P, not the esters.

Residues and application rates have generally been rounded to two significant figures or, for residues near the LOQ, to one significant figure. Residue values from the trials conducted according to maximum GAP have been used for the estimation of maximum residue levels. Those results included in the evaluation are underlined.

Growth stage of the crop at the time of application may be an important determinant of residues in the harvested commodity. For haloxyfop, growth stage at time of application may be more important than PHI. Growth stage data have been included in the trial data summaries where available.

Because of the importance of growth stage at time of treatment and the nature of the field crops being tested, in some residue trials separate plots were treated at various growth stages and then all were harvested at crop maturity on the same day.

Conditions of the supervised residue trials were generally well reported in detailed field reports. Most trial designs used non-replicated plots. Most field reports provided data on the sprayers used, plot size, field sample size and sampling date.

| Crop      | Place          | Year      | Sprayer                                                                      | Plot size                    | Sample size    |
|-----------|----------------|-----------|------------------------------------------------------------------------------|------------------------------|----------------|
| Alfalfa   | Australia      | 1988-89   | precision plot sprayer                                                       | 60–240 m <sup>2</sup>        | ?              |
| Alfalfa   | Australia      | 1998      | precision plot sprayer, LPG precision sprayer                                | 108–120 m <sup>2</sup>       | ?              |
| Alfalfa   | Europe         | 2004      | backpack with boom, plot boom<br>sprayer                                     | 90–120 m <sup>2</sup>        | 1 kg           |
| Apples    | Australia      | 1991      | LPG powered, hand lance                                                      | 2 trees                      | ?              |
| Apples    | Italy          | 1987      | pressure sprayers                                                            | ?                            | ?              |
| Apples    | New<br>Zealand | 1986      | precision plot sprayer                                                       | 9 m <sup>2</sup>             | 2 kg, 15 fruit |
| Apples    | USA            | 1987      | $CO_2$ powered backpack, tractor<br>mounted $CO_2$ sprayer                   | 1 tree, 37–46 m <sup>2</sup> | ?              |
| Banana    | Australia      | 1991      | precision plot sprayer                                                       | ?                            | 25 fruit       |
| Beans     | Argentina      | 1992–93   | CO <sub>2</sub> powered backpack                                             | $13-45 \text{ m}^2$          | 2 kg           |
| Beans     | Brazil         | 2001-2002 | CO <sub>2</sub> powered backpack                                             | 72–180 m <sup>2</sup>        | 2 kg           |
| Beans     | Brazil         | 1997–98   | CO <sub>2</sub> powered backpack                                             | $20-60 \text{ m}^2$          | 2 kg           |
| Beans     | Costa Rica     | 1998      | CO <sub>2</sub> powered backpack                                             | $32 \text{ m}^2$             | 2 kg           |
| Beans     | Europe         | 1999      | hand carried boom sprayer                                                    | $45 \text{ m}^2$             | > 1 kg         |
| Beans     | Europe         | 2000-01   | 3-metre boom, knapsack sprayer, compressed air sprayer                       | $45-90 \text{ m}^2$          | 1–2 kg         |
| Beans     | Germany        | 1990      | plot sprayer with teejet                                                     | 50–100 m <sup>2</sup>        | ?              |
| Chickpeas | Australia      | 1997      | small plot sprayer, all terrain vehicle<br>and precision gas powered sprayer | 120–132 m <sup>2</sup>       | ?              |
| Citrus    | Brazil         | 1986      | CO <sub>2</sub> powered backpack                                             | ?                            | ?              |
| Coffee    | Brazil         | 1983-84   | CO <sub>2</sub> powered backpack, knapsack                                   | $450 \text{ m}^2$            | ?              |
| Coffee    | Colombia       | 1984      | CO <sub>2</sub> powered backpack                                             | 3 trees                      | ?              |
| Cotton    | Brazil         | 1984–85   | CO <sub>2</sub> powered backpack, knapsack                                   | 18–72 m <sup>2</sup>         | ?              |
| Cotton    | Brazil         | 1997      | CO <sub>2</sub> powered backpack                                             | $24 \text{ m}^2$             | 1–2 kg         |

Table 12 Summary of sprayers, plot sizes and field sample sizes in the supervised trials

| Crop         | Place          | Year      | Sprayer                                                                                                    | Plot size                              | Sample size            |
|--------------|----------------|-----------|------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|
| Cotton       | Brazil         | 2001      | CO <sub>2</sub> powered backpack                                                                           | 60–500 m <sup>2</sup>                  | 2 kg                   |
| Cotton       | Greece         | 1999–2000 | A20 sprayer                                                                                                | $40 \text{ m}^2$                       | ?                      |
| Cotton       | Spain          | 1999–2000 | backpack with boom, conventional boom sprayer                                                              | $60-275 \text{ m}^2$                   | 1 kg, 5 kg bolls       |
| Cotton       | Spain          | 1991      | $CO_2$ powered boom spray, flat fan                                                                        | 60 m <sup>2</sup>                      | ?                      |
| Cotton       | USA            | 1982      | backpack, tractor mounted sprayer,<br>hand-held CO <sub>2</sub> sprayer, compressed air<br>sprayer         | 19–465 m <sup>2</sup>                  | ?                      |
| Grapefruit   | New<br>Zealand | 1985      | precision backpack                                                                                         | 10 m <sup>2</sup>                      | 2 kg, > 8 fruit        |
| Grapes       | Australia      | 1990      | precision plot sprayer                                                                                     | 1 vine                                 | ?                      |
| Grapes       | France         | 1982      | knapsack sprayer with boom                                                                                 | ?                                      | ?                      |
| Grapes       | France         | 1985      | Crystal sprayer with boom and teejet                                                                       | ?                                      | 1 kg                   |
| Grapes       | Italy          | 1989      | Crystal sprayer, motor pump and teejet                                                                     | $10-40 \text{ m}^2$                    | 1 kg                   |
| Lemons       | Australia      | 1990      | precision plot sprayer                                                                                     | 1 tree                                 | ?                      |
| Lemons       | New<br>Zealand | 1991      | precision backpack                                                                                         | 1 tree                                 | ?                      |
| Oilseed rape | Australia      | 1997      | precision plot sprayer, all terrain vehicle                                                                | 32–240 m <sup>2</sup>                  | ?                      |
| Oilseed rape | Europe         | 1988–89   | knapsack sprayer, plot sprayer with teejet, Crystal sprayer                                                | 20–15 m <sup>2</sup>                   | 2–5 kg?                |
| Oilseed rape | Europe         | 2000      | conventional boom sprayer, precision plot sprayer                                                          | 60–100 m <sup>2</sup>                  | 1 kg from 12<br>plants |
| Oilseed rape | Europe         | 2006      | conventional boom sprayer                                                                                  | 30–120 m <sup>2</sup>                  | 0.2–2.6 kg             |
| Oilseed rape | France         | 1983      | ?                                                                                                          | ?                                      | ?                      |
| Oilseed rape | France         | 2002      | conventional boom sprayer                                                                                  | $45 \text{ m}^2$                       | > 1 kg                 |
| Oilseed rape | France         | 2002      | conventional boom sprayer                                                                                  | $45 \text{ m}^2$                       | > 1 kg                 |
| Onions       | Europe         | 1999–2000 | 3 metre boom, boom sprayers                                                                                | 42–93 m <sup>2</sup>                   | 1–2.3 kg               |
| Onions       | New<br>Zealand | 1987      | precision plot sprayer                                                                                     | 12 m <sup>2</sup>                      | 2 kg, 12 onions        |
| Orange       | Italy          | 1991      | knapsack                                                                                                   | 3 trees                                | 24 fruits              |
| Peach        | Australia      | 1991      | LPG powered hand lance                                                                                     | 2 trees                                | ?                      |
| Peanuts      | Argentina      | 1992      | CO <sub>2</sub> powered backpack                                                                           | 11 m <sup>2</sup>                      | ?                      |
| Peanuts      | Australia      | 1997      | precision plot sprayers                                                                                    | 120 m <sup>2</sup>                     | ?                      |
| Peas         | Australia      | 1989      | precision plot sprayers                                                                                    | 84–90 m <sup>2</sup>                   | ?                      |
| Peas         | Europe         | 1999–2000 | hand carried boom sprayer, motorised<br>backpack, plot sprayer, 3 metre boom,<br>knapsack                  | 44–90 m <sup>2</sup>                   | 1–6 kg                 |
| Peas         | Europe         | 1988–89   | broadcast backpack, knapsack, Cristal sprayer                                                              | 13–180 m <sup>2</sup>                  | ?                      |
| Peas         | Europe         | 2004      | AUK plot sprayer                                                                                           | 39–60 m <sup>2</sup>                   | 0.3–1 kg               |
| Pigeon peas  | Australia      | 1989      | precision plot sprayer                                                                                     | 32 m <sup>2</sup>                      | ?                      |
| Rice         | USA            | 1987–88   | aircraft, CO <sub>2</sub> powered backpack, small plot sprayers, 4-wheeled CO <sub>2</sub> powered sprayer | 37–3300 m <sup>2</sup>                 | ?                      |
| Soya beans   | Argentina      | 1991      | CO <sub>2</sub> powered backpack                                                                           | 25 m <sup>2</sup>                      | ?                      |
| Soya beans   | Brazil         | 1984      | CO <sub>2</sub> powered backpack                                                                           | $15-30 \text{ m}^2$                    | 2 kg                   |
| Soya beans   | Brazil         | 1990      | CO <sub>2</sub> powered backpack                                                                           | 20 m <sup>2</sup>                      | ?                      |
| Soya beans   | Brazil         | 1992      | CO <sub>2</sub> powered backpack                                                                           | 10–12 m <sup>2</sup>                   | ?                      |
| Soya beans   | Brazil         | 1995      | CO <sub>2</sub> powered backpack                                                                           | $32-72 \text{ m}^2$                    | ?                      |
| Soya beans   | Brazil         | 2000-02   | CO <sub>2</sub> powered handboom                                                                           | 64–184 m <sup>2</sup>                  | 2 kg                   |
| Soya beans   | Europe         | 2000-01   | AUK plot sprayer, plot boom sprayer                                                                        | $30-60 \text{ m}^2$                    | 1–3 kg                 |
| Soya beans   | USA            | 1982      | tractor mounted boom, CO <sub>2</sub> powered backpack, plot sprayers                                      | 20 m <sup>2</sup> to 3 rows of 45 m    | ?                      |
| Soya beans   | USA            | 1982      | tractor mounted boom, CO <sub>2</sub> powered backpack, plot sprayers                                      | 19 m <sup>2</sup> to 8 rows of<br>75 m | ?                      |
| Soya beans   | USA            | 1989      | plot sprayer, hand boom sprayer                                                                            | 37–139 m <sup>2</sup>                  | ?                      |

| Crop       | Place     | Year    | Sprayer                                      | Plot size             | Sample size |
|------------|-----------|---------|----------------------------------------------|-----------------------|-------------|
| Sugar beet | Europe    | 1988    | knapsack with teejet, flat nozzle<br>sprayer | 22–144 m <sup>2</sup> | 5 plants    |
| Sugar beet | Europe    | 2000    | boom sprayers                                | 42–45 m <sup>2</sup>  | 1–6 kg      |
| Sugar beet | Italy     | 1992    | Crystal sprayer with teejet                  | $20 \text{ m}^2$      | ?           |
| Sugar beet | UK        | 1983    | precision plot sprayer                       | ?                     | ?           |
| Sunflower  | Argentina | 1992    | CO <sub>2</sub> backpack sprayer             | 27 m <sup>2</sup>     | ?           |
| Sunflower  | Europe    | 2000    | boom sprayers                                | $42-60 \text{ m}^2$   | 1–1.3 kg    |
| Sunflower  | Europe    | 2001    | boom sprayers, compressed air sprayers       | 45–60 m <sup>2</sup>  | 1 kg        |
| Sunflower  | France    | 1988-89 | Crystal sprayer, knapsack sprayer            | 24–36 m <sup>2</sup>  | ?           |
| Sunflower  | France    | 1999    | hand carried boom sprayer                    | $45-60 \text{ m}^2$   | ?           |

Table 1 Haloxyfop residues in citrus fruits resulting from supervised trials in Australia, Brazil, Italy and New Zealand.

| CITRUS FRUITS                                          | Application                           |                               |             |                 |     | PHI            | Commodity | haloxyfop                          | Ref                  |
|--------------------------------------------------------|---------------------------------------|-------------------------------|-------------|-----------------|-----|----------------|-----------|------------------------------------|----------------------|
| country,<br>year (variety)                             | Form                                  | kg ai/ha                      | kg<br>ai/hL | water<br>(L/ha) | no. | days           |           | mg/kg                              |                      |
| CITRUS<br>Brazil (SP), 1986<br>(Baiana)                | EC + oil<br>haloxyfop-<br>methyl      | 0.24<br>directed <sup>a</sup> |             |                 | 1   | 67             | fruit     | < 0.1 (3)                          | GHB-P 040            |
| CITRUS<br>Brazil (SP), 1986<br>(Baiana)                | EC + oil<br>haloxyfop-<br>methyl      | 0.48<br>directed <sup>a</sup> |             |                 | 1   | 67             | fruit     | < 0.1 (3)                          | GHB-P 040            |
| CITRUS<br>Brazil (SP), 1986<br>(Baiana)                | EC + oil<br>haloxyfop-<br>methyl      | 0.72<br>directed <sup>a</sup> |             |                 | 1   | 67             | fruit     | < 0.1 (3)                          | GHB-P 040            |
| CITRUS<br>Brazil (SP), 1986<br>(Baiana)                | EC + oil<br>haloxyfop-<br>methyl      | 0.96<br>directed <sup>a</sup> |             |                 | 1   | 67             | fruit     | < 0.1 (3)                          | GHB-P 040            |
| CITRUS<br>Brazil (SP), 1986<br>(Baiana)                | EC + oil<br>haloxyfop-<br>methyl      | 1.44<br>directed <sup>a</sup> |             |                 | 1   | 67             | fruit     | < 0.1 (3)                          | GHB-P 040            |
| CITRUS<br>Brazil (SP), 1986<br>(Baiana)                | EC + oil<br>haloxyfop-<br>methyl      | 1.9<br>directed <sup>a</sup>  |             |                 | 1   | 67             | fruit     | < 0.1 (3)                          | GHB-P 040            |
| GRAPEFRUIT<br>New Zealand, 1985<br>(Morrison Seedless) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.21<br>directed <sup>a</sup> |             | 200             | 1   | 29             | fruits    | < 0.01 (2)                         | GHF-P-515<br>011-209 |
| GRAPEFRUIT<br>New Zealand, 1985<br>(Morrison Seedless) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.42<br>directed <sup>a</sup> |             | 200             | 1   | 29             | fruits    | < 0.01 (2)                         | GHF-P-515<br>011-209 |
| LEMONS<br>Australia (NSW),<br>1990 (Lisbon)            | EC<br>haloxyfop-<br>ethoxyethyl       | 0.21                          |             | 100             | 1   | 28<br>58       | fruits    | < 0.05 (2)<br>< 0.05 (2)           | GHF-P 1110           |
| LEMONS<br>Australia (NSW),<br>1990 (Lisbon)            | EC<br>haloxyfop-<br>ethoxyethyl       | 0.42                          |             | 100             | 1   | 28<br>58       | fruits    | < 0 <u>.05</u> (2)<br>< 0.05 (2)   | GHF-P 1110           |
| LEMONS<br>Australia (NSW),<br>1990 (Lisbon)            | EC<br>haloxyfop-<br>ethoxyethyl       | 0.83                          |             | 100             | 1   | 28<br>58<br>87 | fruits    | < 0.05 (2)<br>< 0.05 (2)<br>< 0.05 | GHF-P 1110           |
| LEMONS<br>New Zealand, 1991<br>(Meyer)                 | EC<br>haloxyfop-<br>ethoxyethyl       | 0.42<br>directed <sup>a</sup> |             | 1000            | 1   | 28             | fruits    | < 0.05                             | GHF-P 1147           |
| LEMONS<br>New Zealand, 1991<br>(Meyer)                 | EC<br>haloxyfop-<br>ethoxyethyl       | 0.83<br>directed <sup>a</sup> |             | 1000            | 1   | 28             | fruits    | < 0.05                             | GHF-P 1147           |

| CITRUS FRUITS                                   | Application                        |                               |             |                 |     | PHI  | Commodity                  | haloxyfop                  | Ref                   |
|-------------------------------------------------|------------------------------------|-------------------------------|-------------|-----------------|-----|------|----------------------------|----------------------------|-----------------------|
| country,<br>year (variety)                      | Form                               | kg ai/ha                      | kg<br>ai/hL | water<br>(L/ha) | no. | days |                            | mg/kg                      |                       |
| LEMONS<br>New Zealand, 1991<br>(Meyer)          | EC + oil<br>haloxyfop-P-<br>methyl | 0.21<br>directed <sup>a</sup> |             | 1000            | 1   | 28   | fruits                     | < 0.05                     | GHF-P 1147            |
| LEMONS<br>New Zealand, 1991<br>(Meyer)          | EC + oil<br>haloxyfop-P-<br>methyl | 0.42<br>directed <sup>a</sup> |             | 1000            | 1   | 28   | fruits                     | < 0.05                     | GHF-P 1147            |
| LEMONS<br>New Zealand, 1991<br>(Meyer)          | WG + oil<br>haloxyfop-P-<br>methyl | 0.21<br>directed <sup>a</sup> |             | 1000            | 1   | 28   | fruits                     | < 0.05                     | GHF-P 1147            |
| LEMONS<br>New Zealand, 1991<br>(Meyer)          | WG+ oil<br>haloxyfop-P-<br>methyl  | 0.42<br>directed <sup>a</sup> |             | 1000            | 1   | 28   | fruits                     | < 0.05                     | GHF-P 1147            |
| ORANGE<br>Brazil (SP), 1985–<br>1986 (Pera Rio) | EC + oil<br>haloxyfop-<br>methyl   | 0.24<br>directed <sup>a</sup> |             |                 | 1   | 206  | fruit                      | < 0.1                      | GHB-P 040             |
| ORANGE<br>Brazil (SP), 1985–<br>1986 (Pera Rio) | EC + oil<br>haloxyfop-<br>methyl   | 0.48<br>directed <sup>a</sup> |             |                 | 1   | 206  | fruit                      | < 0.1                      | GHB-P 040             |
| ORANGE<br>Brazil (SP), 1985–<br>1986 (Pera Rio) | EC + oil<br>haloxyfop-<br>methyl   | 0.72<br>directed <sup>a</sup> |             |                 | 1   | 206  | fruit                      | < 0.1                      | GHB-P 040             |
| ORANGE<br>Brazil (SP), 1985–<br>1986 (Pera Rio) | EC + oil<br>haloxyfop-<br>methyl   | 0.96<br>directed <sup>a</sup> |             |                 | 1   | 206  | fruit                      | < 0.1                      | GHB-P 040             |
| ORANGE<br>Brazil (SP), 1985–<br>1986 (Pera Rio) | EC + oil<br>haloxyfop-<br>methyl   | 1.44<br>directed <sup>a</sup> |             |                 | 1   | 206  | fruit                      | < 0.1                      | GHB-P 040             |
| ORANGE<br>Brazil (SP), 1985–<br>1986 (Pera Rio) | EC + oil<br>haloxyfop-<br>methyl   | 1.94<br>directed <sup>a</sup> |             |                 | 1   | 206  | fruit                      | < 0.1                      | GHB-P 040             |
| ORANGES<br>Italy, 1991 (Moro)                   | EC<br>haloxyfop-P-<br>methyl       | 0.16<br>directed <sup>a</sup> |             |                 | 1   | 56   | orange peel<br>orange pulp | < 0.02 (2)<br>< 0.02 (2)   | GHE-P-2771<br>R91-28B |
| ORANGES<br>Italy, 1991<br>(Navelina)            | EC<br>haloxyfop-P-<br>methyl       | 0.16<br>directed <sup>a</sup> |             |                 | 1   | 56   | orange peel<br>orange pulp | < 0.02 (2)<br>< 0.02 (2)a6 | GHE-P-2771<br>R91-28A |

<sup>a</sup> Directed application for grass control.

| Table 14 HaloxZealand and USA | yfop residues in<br>A | n apples | resulting | from | super | vised | trials | in    | Australia, | Italy, | New |
|-------------------------------|-----------------------|----------|-----------|------|-------|-------|--------|-------|------------|--------|-----|
| APPLES                        | Application           |          |           |      | PHI   | Commo | odity  | haloy | cyfop J    | Ref    |     |

| APPLES                                  | Application                     |                                 |             |                 |     | PHI      | Commodity | haloxyfop                | Ref                                       |
|-----------------------------------------|---------------------------------|---------------------------------|-------------|-----------------|-----|----------|-----------|--------------------------|-------------------------------------------|
| country,<br>year (variety)              | Form                            | kg ai/ha                        | kg<br>ai/hL | water<br>(L/ha) | no. | days     |           | mg/kg                    |                                           |
| Australia (Vic), 1991<br>(Granny Smith) | EC<br>haloxyfop-<br>ethoxyethyl | 0.42<br>directed <sup>a</sup>   |             | 220             | 1   | 24<br>56 | apples    | < 0 <u>.05</u><br>< 0.05 | GHF-P 1121                                |
| Australia (Vic), 1991<br>(Granny Smith) | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>a</sup>   |             | 220             | 1   | 24<br>56 | apples    | < 0.05<br>< 0.05         | GHF-P 1121                                |
| Italy, 1987 (Early)                     | EC<br>haloxyfop-<br>ethoxyethyl | 0.10<br>directed <sup>a</sup>   |             |                 | 1   | 132      | apples    | < 0 <u>.02</u>           | GHE-P-1965<br>trial RT 12 <sup>a</sup> 87 |
| Italy, 1987 (Early)                     | EC<br>haloxyfop-<br>ethoxyethyl | 0.21<br>directed <sup>a</sup> / |             |                 | 1   | 132      | apples    | < 0.02                   | GHE-P-1965<br>trial RT 12 <sup>a</sup> 87 |

| APPLES                               | Application                                   |                               |             |                 |     |      | Commodity | haloxyfop      | Ref                                       |
|--------------------------------------|-----------------------------------------------|-------------------------------|-------------|-----------------|-----|------|-----------|----------------|-------------------------------------------|
| country,<br>year (variety)           | Form                                          | kg ai/ha                      | kg<br>ai/hL | water<br>(L/ha) | no. | days |           | mg/kg          |                                           |
| Italy, 1987 (Early)                  | EC<br>haloxyfop-<br>ethoxyethyl               | 0.42<br>directed <sup>a</sup> |             |                 | 1   | 132  | apples    | < 0.02         | GHE-P-1965<br>trial RT 12ª87              |
| Italy, 1987 (Golden<br>Delicious)    | EC<br>haloxyfop-<br>ethoxyethyl               | 0.10<br>directed <sup>a</sup> |             |                 | 1   | 126  | apples    | < 0 <u>.02</u> | GHE-P-1965<br>trial RT 12 <sup>b</sup> 87 |
| Italy, 1987 (Golden<br>Delicious)    | EC<br>haloxyfop-<br>ethoxyethyl               | 0.21<br>directed <sup>a</sup> |             |                 | 1   | 126  | apples    | < 0.02         | GHE-P-1965<br>trial RT 12 <sup>b</sup> 87 |
| Italy, 1987 (Golden<br>Delicious)    | EC<br>haloxyfop-<br>ethoxyethyl               | 0.42<br>directed <sup>a</sup> |             |                 | 1   | 126  | apples    | < 0.02         | GHE-P-1965<br>trial RT 12 <sup>b</sup> 87 |
| New Zealand, 1986<br>(Granny Smith)  | EC<br>haloxyfop-<br>ethoxyethyl +<br>crop oil | 0.21<br>directed <sup>a</sup> |             |                 | 1   | 29   | apples    | < 0.01         | GHF-O-584                                 |
| New Zealand, 1986<br>(Granny Smith)  | EC<br>haloxyfop-<br>ethoxyethyl +<br>crop oil | 0.21<br>directed <sup>a</sup> |             |                 | 1   | 29   | apples    | < 0.01         | GHF-O-584                                 |
| USA (CA), 1987<br>(Golden Delicious) | WG<br>haloxyfop-<br>methyl                    | 0.56<br>directed <sup>a</sup> |             | 190             | 1   | 60   | apples    | < 0.05         | GH-C 2016                                 |
| USA (CA), 1987<br>(Golden Delicious) | EC<br>haloxyfop-<br>methyl                    | 0.28<br>directed <sup>a</sup> |             | 190             | 1   | 60   | apples    | < 0.05         | GH-C 2016                                 |
| USA (CA), 1987<br>(Rome)             | WG<br>haloxyfop-<br>methyl                    | 0.56<br>directed <sup>a</sup> |             | 190             | 1   | 59   | apples    | < 0.05         | GH-C 2016                                 |
| USA (CA), 1987<br>(Rome)             | EC<br>haloxyfop-<br>methyl                    | 0.28<br>directed <sup>a</sup> |             | 190             | 1   | 59   | apples    | < 0.05         | GH-C 2016                                 |
| USA (MI), 1987<br>(Golden Delicious) | WG<br>haloxyfop-<br>methyl                    | 0.28<br>directed <sup>a</sup> |             | 190             | 1   | 60   | apples    | < 0.05         | GH-C 2016                                 |
| USA (MI), 1987<br>(Golden Delicious) | EC<br>haloxyfop-<br>methyl                    | 0.28<br>directed <sup>a</sup> |             | 190             | 1   | 60   | apples    | < 0.05         | GH-C 2016                                 |
| USA (MI), 1987<br>(Macintosh)        | WG<br>haloxyfop-<br>methyl                    | 0.28<br>directed <sup>a</sup> |             | 190             | 1   | 60   | apples    | < 0.05         | GH-C 2016                                 |
| USA (MI), 1987<br>(Macintosh)        | EC<br>haloxyfop-<br>methyl                    | 0.28<br>directed <sup>a</sup> |             | 190             | 1   | 60   | apples    | < 0.05         | GH-C 2016                                 |

<sup>a</sup> Directed application for grass control.

# Table 15 Haloxyfop residues in peaches resulting from supervised trials in Australia

| РЕАСН                 | Application |                       |             |        |     | PHI  | Commodity | haloxyfop      | Ref        |
|-----------------------|-------------|-----------------------|-------------|--------|-----|------|-----------|----------------|------------|
| country,              | Form        | kg ai/ha              | kg<br>· a t | water  | no. | days |           | mg/kg          |            |
| year (variety)        |             |                       | a1/hL       | (L/ha) |     |      |           |                |            |
| Australia (Vic), 1991 | EC          | 0.42                  |             | 220    | 1   | 24   | peaches   | < 0 <u>.05</u> | GHF-P 1122 |
| (Golden Queen)        | haloxyfop-  | directed <sup>a</sup> |             |        |     | 56   |           | < 0.05         |            |
|                       | ethoxyethyl |                       |             |        |     |      |           |                |            |
| РЕАСН                                   | Application F                   |                               |             |                 |     |          | Commodity | haloxyfop        | Ref        |
|-----------------------------------------|---------------------------------|-------------------------------|-------------|-----------------|-----|----------|-----------|------------------|------------|
| country,<br>year (variety)              | Form                            | kg ai/ha                      | kg<br>ai/hL | water<br>(L/ha) | no. | days     |           | mg/kg            |            |
| Australia (Vic), 1991<br>(Golden Queen) | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>a</sup> |             | 220             | 1   | 24<br>56 | peaches   | < 0.05<br>< 0.05 | GHF-P 1122 |

<sup>a</sup> Directed application for grass control.

| Table 16 Haloxyfor | p residues in gra | pes resulting from | supervised trials in | Australia, France and | d Italy. |
|--------------------|-------------------|--------------------|----------------------|-----------------------|----------|
|                    |                   | 0                  | 1                    | ,                     | 2        |

| GRAPES                                           | Application                     |                               |             |                 |     | PHI      | Commodity        | haloxyfop                | Ref                                 |
|--------------------------------------------------|---------------------------------|-------------------------------|-------------|-----------------|-----|----------|------------------|--------------------------|-------------------------------------|
| country,<br>year (variety)                       | Form                            | kg ai/ha                      | kg<br>ai/hL | water<br>(L/ha) | no. | days     | a                | mg/kg                    |                                     |
| Australia (NSW),<br>1990 (Burger)                | EC<br>haloxyfop-<br>ethoxyethyl | 0.21<br>directed <sup>b</sup> |             | 100             | 1   | 21<br>49 | grapes<br>grapes | < 0.05<br>< 0.05         | GHF-P 1150                          |
| Australia (NSW),<br>1990 (Burger)                | EC<br>haloxyfop-<br>ethoxyethyl | 0.42<br>directed <sup>b</sup> |             | 100             | 1   | 21<br>49 | grapes<br>grapes | < 0 <u>.05</u><br>< 0.05 | GHF-P 1150                          |
| Australia (NSW),<br>1990 (Burger)                | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>b</sup> |             | 100             | 1   | 21<br>49 | grapes<br>grapes | < 0.05<br>< 0.05         | GHF-P 1150                          |
| Australia (NSW),<br>1990 (Cabernet<br>Sauvignon) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21<br>directed <sup>b</sup> |             | 100             | 1   | 29<br>56 | grapes<br>grapes | < 0.05<br>< 0.05         | GHF-P 1150                          |
| Australia (NSW),<br>1990 (Cabernet<br>Sauvignon) | EC<br>haloxyfop-<br>ethoxyethyl | 0.42<br>directed <sup>b</sup> |             | 100             | 1   | 29<br>56 | grapes<br>grapes | < 0 <u>.05</u><br>< 0.05 | GHF-P 1150                          |
| Australia (NSW),<br>1990 (Cabernet<br>Sauvignon) | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>b</sup> |             | 100             | 1   | 29<br>56 | grapes<br>grapes | < 0.05<br>< 0.05         | GHF-P 1150                          |
| France, 1983<br>(Cabernay)                       | EC<br>haloxyfop-<br>ethoxyethyl | 0.21<br>directed <sup>b</sup> |             | 650             | 1   | 93       | grapes           | < 0.01 (4)               | GHE-P-1148<br>RT 277-7/83           |
| France, 1983<br>(Cabernay)                       | EC<br>haloxyfop-<br>ethoxyethyl | 0.42<br>directed <sup>b</sup> |             | 650             | 1   | 93       | grapes           | < 0.01 (4)               | GHE-P-1148<br>RT 277-7/83           |
| France, 1983<br>(Cabernay)                       | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>b</sup> |             | 650             | 1   | 93       | grapes           | < 0.01 (4)               | GHE-P-1148<br>RT 277-7/83           |
| France, 1983<br>(Cabernay)                       | EC<br>haloxyfop-<br>ethoxyethyl | 1.7<br>directed <sup>b</sup>  |             | 650             | 1   | 93       | grapes           | < 0.01 (4)               | GHE-P-1148<br>RT 277-7/83           |
| France, 1983<br>(Cabernay)                       | EC<br>haloxyfop-<br>ethoxyethyl | 0.10<br>directed <sup>b</sup> |             | 650             | 1   | 93       | grapes           | < 0.01 (4)               | GHE-P-1148<br>RT 277-7/83           |
| France, 1985 (variety not reported)              | EC<br>haloxyfop-<br>ethoxyethyl | 0.42<br>directed <sup>b</sup> |             |                 | 1   | 119      | grapes           | < 0.01 (4) °             | GHE-P-1523<br>RT 30 <sup>d</sup> 85 |
| France, 1985 (variety not reported)              | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>b</sup> |             |                 | 1   | 119      | grapes           | < 0.01 (4) °             | GHE-P-1523<br>RT 30 <sup>d</sup> 85 |
| France, 1985 (variety not reported)              | EC<br>haloxyfop-<br>ethoxyethyl | 0.42<br>directed <sup>b</sup> |             | 400             | 1   | 115      | grapes           | < 0.01 (4) °             | GHE-P-1523<br>RT 310/85             |
| France, 1985 (variety not reported)              | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>b</sup> |             | 400             | 1   | 115      | grapes           | < 0.01 (4) °             | GHE-P-1523<br>RT 310/85             |

| GRAPES                              | Application                     |                               |             |                 |     | PHI  | Commodity | haloxyfop           | Ref                                 |
|-------------------------------------|---------------------------------|-------------------------------|-------------|-----------------|-----|------|-----------|---------------------|-------------------------------------|
| country,<br>year (variety)          | Form                            | kg ai/ha                      | kg<br>ai/hL | water<br>(L/ha) | no. | days | a         | mg/kg               |                                     |
| France, 1985 (variety not reported) | EC<br>haloxyfop-<br>ethoxyethyl | 0.42<br>directed <sup>b</sup> |             | 300             | 1   | 86   | grapes    | < 0.01 (4) °        | GHE-P-1523<br>RT 31 <sup>a</sup> 85 |
| France, 1985 (variety not reported) | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>b</sup> |             | 300             | 1   | 86   | grapes    | < 0.01 (4) °        | GHE-P-1523<br>RT 31 <sup>a</sup> 85 |
| Italy, 1989 (Dolcetto)              | EC<br>haloxyfop-P-<br>methyl    | 0.21<br>directed <sup>b</sup> |             | 400             | 1   | 51   | grapes    | < 0.05 <sup>d</sup> | GHE-P-2115<br>R89-31C               |
| Italy, 1989<br>(Malvasia)           | EC<br>haloxyfop-P-<br>methyl    | 0.21<br>directed <sup>b</sup> |             | 400             | 1   | 67   | grapes    | < 0.05 <sup>d</sup> | GHE-P-2115<br>R89-31A               |
| Italy, 1989<br>(Trebbiano)          | EC<br>haloxyfop-P-<br>methyl    | 0.21<br>directed <sup>b</sup> |             | 400             | 1   | 63   | grapes    | < 0.05 <sup>d</sup> | GHE-P-2115<br>R89-31B               |

<sup>a</sup> GHF-P 1150: Grape berries, stalks removed.

<sup>b</sup> Directed application for grass control.

<sup>c</sup> GHE-P-1523: 4 replicate samples.

<sup>d</sup> GHE-P-2115. Method ERC 89.3 was modified. The methanolic NaOH extraction step was replaced by a solvent extraction step. Conjugates, if present, may not be included.

| Table 17 Haloxyfop residues in bananas | resulting from supervised | trials in Australia |
|----------------------------------------|---------------------------|---------------------|
|----------------------------------------|---------------------------|---------------------|

| BANANAS                              | Application                     |                                         |  |     |   | PHI     | Commodity          | haloxyfop                | Ref        |
|--------------------------------------|---------------------------------|-----------------------------------------|--|-----|---|---------|--------------------|--------------------------|------------|
| country,<br>year (variety)           | Form                            | kg ai/ha kg water no. d<br>ai/hL (L/ha) |  |     |   |         | a                  | mg/kg                    |            |
| Australia (Qld), 1990<br>(Cavendish) | EC<br>haloxyfop-<br>ethoxyethyl | 0.83<br>directed <sup>c</sup>           |  | 167 | 1 | 14      | bananas            | < 0.05                   | GHF-P 1149 |
| Australia (Qld), 1990<br>(Cavendish) | WG<br>haloxyfop-P-<br>methyl    | 0.42+oil<br>directed <sup>c</sup>       |  | 167 | 1 | 7<br>14 | bananas<br>bananas | < 0 <u>.05</u><br>< 0.05 | GHF-P 1149 |

<sup>a</sup> Banana bunches were bagged.

<sup>b</sup> GHF-P 1149: A QA audit could not verify the application rate from the data supplied. The QA audit report stated that application rates may be 30.7% higher than stated in the report.

<sup>c</sup> Directed application for grass control.

| Table 18 Ha | aloxyfop 1 | residues i | in onions | resulting | from | supervised | trials | in Be | elgium, | France, | Germany |
|-------------|------------|------------|-----------|-----------|------|------------|--------|-------|---------|---------|---------|
| and New Ze  | ealand     |            |           | -         |      | _          |        |       | -       |         |         |

| ONIONS                          | Application                  | Application |              |                 |     |      |                            | haloxyfop, mg/kg | Ref                          |
|---------------------------------|------------------------------|-------------|--------------|-----------------|-----|------|----------------------------|------------------|------------------------------|
| country,<br>year (variety)      | Form                         | kg<br>ai/ha | growth stage | water<br>(L/ha) | no. | days |                            | a                |                              |
| Belgium, 2000<br>(Hygro)        | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 17-41   | 310             | 1   | 28   | onions<br>(whole<br>plant) | <u>0.06</u>      | GHE-P-8870<br>CEMS-1269B     |
| Belgium, 2000<br>(Sumith)       | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 17-41   | 300             | 1   | 28   | onions<br>(whole<br>plant) | 0.12             | GHE-P-8870<br>CEMS-<br>1269A |
| France, 2000 (Doré<br>de Parme) | EC<br>haloxyfop-P-<br>methyl | 0.16        | BBCH 13      | 320             | 1   | 90   | onions<br>(whole<br>plant) | < 0.02           | GHE-P-8871<br>CEMS-<br>1270A |

| ONIONS                                        | Application                           |             | -                                                     |                 |     | PHI Commodity |                            | haloxyfop, mg/kg | Ref                          |
|-----------------------------------------------|---------------------------------------|-------------|-------------------------------------------------------|-----------------|-----|---------------|----------------------------|------------------|------------------------------|
| country,<br>year (variety)                    | Form                                  | kg<br>ai/ha | growth stage                                          | water<br>(L/ha) | no. | days          |                            | a                |                              |
| France, 2000 (Doré<br>de Parme)               | EC<br>haloxyfop-P-<br>methyl          | 0.16        | BBCH 13                                               | 320             | 1   | 90            | onions<br>(whole<br>plant) | < 0.02           | GHE-P-8871<br>CEMS-1270B     |
| France, 2000 (RF 18)                          | EC<br>haloxyfop-P-<br>methyl          | 0.10        | BBCH 45                                               | 300             | 1   | 28            | onions<br>(whole<br>plant) | < 0 <u>.02</u>   | GHE-P-8870<br>CEMS-1269C     |
| France, 2000 (RF 18)                          | EC<br>haloxyfop-P-<br>methyl          | 0.10        | BBCH 45                                               | 280             | 1   | 28            | onions<br>(whole<br>plant) | <u>0.03</u>      | GHE-P-8870<br>CEMS-<br>1269D |
| Germany, 1999<br>(Cardas)                     | EC<br>haloxyfop-P-<br>methyl          | 0.10        | BBCH 45                                               | 400             | 1   | 28            | onions                     | <u>0.04</u>      | GHE-P-8309<br>R99-122A       |
| Germany, 1999<br>(Duralo)                     | EC<br>haloxyfop-P-<br>methyl          | 0.10        | BBCH 47                                               | 400             | 1   | 27            | onions                     | <u>0.09</u>      | GHE-P-8309<br>R99-122D       |
| Germany, 1999 (Elsa)                          | EC<br>haloxyfop-P-<br>methyl          | 0.10        | BBCH 43                                               | 400             | 1   | 26            | onions                     | 0.02             | GHE-P-8309<br>R99-122B       |
| Germany, 1999<br>(Hydon)                      | EC<br>haloxyfop-P-<br>methyl          | 0.10        | BBCH 45                                               | 400             | 1   | 26            | onions                     | 0.03             | GHE-P-8309<br>R99-122C       |
| New Zealand, 1987<br>(Pukehoe Long<br>Keeper) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.052       | semi-mature<br>bulb with<br>green leaves              | 200             | 1   | 30            | onion bulb                 | 0.01             | GHF-P-633                    |
| New Zealand, 1987<br>(Pukehoe Long<br>Keeper) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.21        | semi-mature<br>bulb with<br>green leaves              | 200             | 1   | 30            | onion bulb                 | 0.06             | GHF-P-633                    |
| New Zealand, 1987<br>(Pukehoe Long<br>Keeper) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.052       | mature bulbs<br>with tops<br>beginning to<br>collapse | 200             | 1   | 15            | onion bulb                 | < 0.01           | GHF-P-633                    |
| New Zealand, 1987<br>(Pukehoe Long<br>Keeper) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.10        | mature bulbs<br>with tops<br>beginning to<br>collapse | 200             | 1   | 15            | onion bulb                 | 0.01             | GHF-P-633                    |
| New Zealand, 1987<br>(Pukehoe Long<br>Keeper) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.21        | mature bulbs<br>with tops<br>beginning to<br>collapse | 200             | 1   | 15            | onion bulb                 | 0.03             | GHF-P-633                    |
| New Zealand, 1987<br>(Pukehoe Long<br>Keeper) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.10        | semi-mature<br>bulb with<br>green leaves              | 200             | 1   | 30            | onion bulb                 | 0.02             | GHF-P-633                    |
| Spain, 2000 (Babosa)                          | EC<br>haloxyfop-P-<br>methyl          | 0.15        | BBCH 13                                               | 310             | 1   | 50            | onions<br>(whole<br>plant) | < 0.02           | GHE-P-8871<br>CEMS-<br>1270D |
| Spain, 2000 (Tardia<br>de Lerida)             | EC<br>haloxyfop-P-<br>methyl          | 0.15        | BBCH 13                                               | 320             | 1   | 58            | onions<br>(whole<br>plant) | < 0.02           | GHE-P-8871<br>CEMS-1270C     |

<sup>a</sup> GHF-P-633: Bulb after removal of roots, tops and loose parchment skin.

GHE-P-8309: Roots and leaves discarded.

Bulb vegetables, BBCH growth stages (Meier, 2001)

- 13  $3^{rd}$  leaf (> 3cm)
- 17 7<sup>th</sup> leaf
- 41 Leaf bases begin to thicken or extend.
- 43 30% of the expected bulb or shaft diameter reached.

45 50% of the expected bulb or shaft diameter reached.

47 Bolting begins; in 10% of the plants leaves bent over.

| FIELD BEANS                   | Application                  |          |                              |                 |     | PHI      | Commodity                 | haloxyfop        | Ref                                 |
|-------------------------------|------------------------------|----------|------------------------------|-----------------|-----|----------|---------------------------|------------------|-------------------------------------|
| country,<br>year (variety)    | Form                         | kg ai/ha | growth<br>stage              | water<br>(L/ha) | no. | days     | Note <sup>a</sup>         | mg/kg            |                                     |
| Belgium, 2000<br>(Kylian)     | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 50-<br>51               | 320             | 1   | 28       | whole pod                 | 0.09             | GHE-P-8849<br>CEMS-<br>1246C        |
| Belgium, 2000<br>(Proton)     | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 50-<br>51               | 300             | 1   | 29       | whole pod                 | 0.09             | GHE-P-8849<br>CEMS-<br>1246D        |
| France, 1999<br>(Booster)     | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 51                      | 350             | 1   | 28       | whole pod                 | 0.03             | GHE-P-8577<br>R99-167A              |
| France, 1999 (Filao)          | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 55                      | 336             | 1   | 28       | whole pod                 | 0.06             | GHE-P-8559<br>99 H CL DO<br>P21 (B) |
| France, 1999 (Firato)         | EC<br>haloxyfop-P-<br>methyl | 0.099    | BBCH 14                      | 258             | 1   | 27       | whole pod                 | < 0 <u>.02</u>   | GHE-P-8559<br>99 H CL DO<br>P22 (C) |
| France, 1999 (Lipsos)         | EC<br>haloxyfop-P-<br>methyl | 0.098    | BBCH 59                      | 344             | 1   | 26       | whole pod                 | 0.26             | GHE-P-8559<br>99 H CL DO<br>P20 (A) |
| France, 1999<br>(Tasman)      | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 24                      | 236             | 1   | 25       | whole pod                 | 0.07             | GHE-P-8559<br>99 H CL DO<br>P23 (D) |
| France, 2000 (Autant)         | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 51                      | 270             | 1   | 28       | whole pod                 | 0.10             | GHE-P-8849<br>CEMS-<br>1246B        |
| France, 2000 (Sonore)         | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 59                      | 200             | 1   | 29       | whole pod                 | 0.19             | GHE-P-8849<br>CEMS-<br>1246A        |
| France, 2001<br>(Booster)     | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 14                      | 290             | 1   | 29       | whole pod                 | < 0 <u>.02</u>   | GHE-P-9783<br>CEMS-<br>1570A        |
| Germany, 1990<br>(Alfred)     | EC<br>haloxyfop-P-<br>methyl | 0.052    | EC 29, 6<br>leaves           | 400             | 1   | 76<br>76 | green beans<br>green pods | < 0.02<br>< 0.02 | GHE-P-2444<br>R90-8A                |
| Germany, 1990<br>(Alfred)     | EC<br>haloxyfop-P-<br>methyl | 0.10     | EC 29, 6<br>leaves           | 400             | 1   | 76<br>76 | green beans<br>green pods | < 0.02<br>< 0.02 | GHE-P-2444<br>R90-8A                |
| Germany, 1990 (Herz<br>Freya) | EC<br>haloxyfop-P-<br>methyl | 0.052    | EC 26, 4-5<br>leaves         | 400             | 1   | 70<br>70 | green beans<br>green pods | < 0.02<br>< 0.02 | GHE-P-2444<br>R90-8B                |
| Germany, 1990 (Herz<br>Freya) | EC<br>haloxyfop-P-<br>methyl | 0.10     | EC 26, 4-5<br>leaves         | 400             | 1   | 70<br>70 | green beans<br>green pods | < 0.02<br>< 0.02 | GHE-P-2444<br>R90-8B                |
| Germany, 1990 (Herz<br>Freya) | EC<br>haloxyfop-P-<br>methyl | 0.052    | EC 25, 4<br>leaves           | 400             | 1   | 80<br>80 | green beans<br>green pods | < 0.02<br>< 0.02 | GHE-P-2444<br>R90-8C                |
| Germany, 1990 (Herz<br>Freya) | EC<br>haloxyfop-P-<br>methyl | 0.10     | EC 25, 4<br>leaves           | 400             | 1   | 80<br>80 | green beans<br>green pods | < 0.02<br>< 0.02 | GHE-P-2444<br>R90-8C                |
| Germany, 1990 (Treu)          | EC<br>haloxyfop-P-<br>methyl | 0.052    | EC 61,<br>begin<br>flowering | 400             | 1   | 62<br>62 | green beans<br>green pods | 0.06<br>< 0.02   | GHE-P-2444<br>R90-8D                |

Table 19 Haloxyfop residues in field beans resulting from supervised trials in Belgium, France, Germany, Greece and Spain

| FIELD BEANS                  | Application                  |          |                              |                 |     | PHI      | Commodity                 | haloxyfop    | Ref                          |
|------------------------------|------------------------------|----------|------------------------------|-----------------|-----|----------|---------------------------|--------------|------------------------------|
| country,<br>year (variety)   | Form                         | kg ai/ha | growth<br>stage              | water<br>(L/ha) | no. | days     | Note <sup>a</sup>         | mg/kg        |                              |
| Germany, 1990 (Treu)         | EC<br>haloxyfop-P-<br>methyl | 0.10     | EC 61,<br>begin<br>flowering | 400             | 1   | 62<br>62 | green beans<br>green pods | 0.16<br>0.02 | GHE-P-2444<br>R90-8D         |
| Greece, 2001 (Green<br>Crop) | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 50                      | 300             | 1   | 28       | whole pod                 | 0.18         | GHE-P-9783<br>CEMS-<br>1570B |
| Spain, 1999 (Tabella)        | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 65                      | 400             | 1   | 28       | whole pod                 | 0.22         | GHE-P-8577<br>R99-167B       |

<sup>a</sup> Green beans: fresh bean seed without pods.

#### Beans, BBCH growth stages (Meier, 2001)

- 14 Fourth true leaf (second trifoliate leaf) unfolded.
- 24 Fourth side shoot visible.
- 51 First flower buds visible.
- 55 First flower buds enlarged.
- 59 First petals visible, flowers still closed.
- 65 Full flowering: 50% of flowers open.

| PEAS                                         | Application <sup>a</sup>     |             |              |                 |     | PHI  | Commodity                        | haloxyfop                                           | Ref                      |
|----------------------------------------------|------------------------------|-------------|--------------|-----------------|-----|------|----------------------------------|-----------------------------------------------------|--------------------------|
| country,<br>year (variety)                   | Form                         | kg<br>ai/ha | growth stage | water<br>(L/ha) | no. | days |                                  | mg/kg                                               |                          |
| Belgium, 2000<br>(Vegetable peas,<br>Sigra)  | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 50      | 300             | 1   | 34   | peas<br>empty pod<br>peas in pod | $\frac{0.09}{0.12}$<br>(0.11) <sup>d</sup>          | GHE-P-8851<br>CEMS-1248D |
| Belgium, 2000<br>(Vegetable peas,<br>Style)  | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 50      | 300             | 1   | 31   | peas<br>empty pod<br>peas in pod | $\frac{0.04}{0.09}$<br>( <u>0.07</u> ) <sup>d</sup> | GHE-P-8851<br>CEMS-1248C |
| France, 1999<br>(Vegetable peas,<br>Augusto) | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 61      | 290             | 1   | 28   | peas<br>pod<br>peas in pod       | < 0 <u>.01</u><br>0.38<br><u>0.14</u> <sup>b</sup>  | GHE-P-8573<br>R99-133A   |
| France, 1999<br>(Vegetable peas,<br>Koka)    | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 61      | 310             | 1   | 25   | peas<br>pod<br>peas in pod       | 0.29<br>0.36<br>0.32 <sup>b</sup>                   | GHE-P-8573<br>R99-133D   |
| France, 1999<br>(Vegetable peas,<br>Nina)    | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 61      | 300             | 1   | 27   | peas<br>pod<br>peas in pod       | 0.32<br>0.32<br>0.32 <sup>b</sup>                   | GHE-P-8573<br>R99-133B   |
| France, 1999<br>(Vegetable peas,<br>Nina)    | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 61      | 280             | 1   | 27   | peas<br>pod<br>peas in pod       | < 0 <u>.05</u><br>0.09<br><u>0.07</u> <sup>b</sup>  | GHE-P-8573<br>R99-133C   |
| France, 1999<br>(Vegetable peas,<br>Salsado) | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 65      | 300             | 1   | 25   | peas<br>pod<br>peas in pod       | 0.26<br>0.09<br>0.21 <sup>b</sup>                   | GHE-P-8578<br>R99-168A   |
| France, 2000<br>(Vegetable peas,<br>Bonette) | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 55-59   | 200             | 1   | 31   | peas<br>empty pod<br>peas in pod | $\frac{0.07}{0.08}$ $(0.08)^{d}$                    | GHE-P-8851<br>CEMS-1248A |
| France, 2000<br>(Vegetable peas,<br>Bonette) | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 61      | 250             | 1   | 22   | peas<br>empty pod<br>peas in pod | $\frac{0.44}{0.42}$<br>(0.43) <sup>d</sup>          | GHE-P-8851<br>CEMS-1248B |

Table 20 Haloxyfop residues in peas (legume vegetables) resulting from supervised trials in Belgium, France, Italy and Spain

#### Haloxyfop

| PEAS                                                      | Application <sup>a</sup>     |             |              |                 |     | PHI  | Commodity                        | haloxyfop                                                  | Ref                                            |
|-----------------------------------------------------------|------------------------------|-------------|--------------|-----------------|-----|------|----------------------------------|------------------------------------------------------------|------------------------------------------------|
| country,<br>year (variety)                                | Form                         | kg<br>ai/ha | growth stage | water<br>(L/ha) | no. | days |                                  | mg/kg                                                      |                                                |
| France, 2000<br>(Vegetable peas,<br>variety not recorded) | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 51-60   | 410             | 1   | 29   | peas<br>empty pod                | <u>0.15</u><br>< 0.05                                      | GHE-P-8852<br>CEMS-1249A                       |
| France, 2004<br>(Vegetable peas,<br>Austin)               | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 50      | 300             | 1   | 60   | peas<br>empty pod<br>peas in pod | $\frac{0.07}{0.09}$<br>$(0.08)^{d}$                        | GHE-P-11073<br>CEMS-2339B<br>Note <sup>c</sup> |
| Italy, 2000 (Vegetable<br>peas, Lambado)                  | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 50      | 420             | 1   | 28   | peas<br>empty pod<br>peas in pod | < 0 <u>.05</u><br>< 0.05<br>(< 0 <u>.05</u> ) <sup>d</sup> | GHE-P-8852<br>CEMS-1249B                       |
| Italy, 2004 (Vegetable peas, Corallo)                     | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 50      | 300             | 1   | 36   | peas<br>empty pod<br>peas in pod | $\frac{0.05}{0.05}$<br>$(0.05)^{d}$                        | GHE-P-11073<br>CEMS-2339A<br>Note <sup>c</sup> |
| Italy, 2004 (Vegetable<br>peas, Milor)                    | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 49-50   | 310             | 1   | 31   | peas<br>empty pod<br>peas in pod | $\frac{0.05}{0.09}$<br>( <u>0.07</u> ) <sup>d</sup>        | GHE-P-11073<br>CEMS-2339C<br>Note <sup>c</sup> |
| Spain, 1999<br>(Vegetable peas,<br>Mastin)                | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 59-60   | 400             | 1   | 28   | peas<br>pod<br>peas in pod       | 0.75<br>0.17<br>0.53 <sup>b</sup>                          | GHE-P-8578<br>R99-168B                         |
| Spain, 2004<br>(Vegetable peas,<br>Globo)                 | EC<br>haloxyfop-P-<br>methyl | 0.10        | BBCH 50      | 300             | 1   | 28   | peas<br>empty pod<br>peas in pod | $\frac{0.12}{0.12}$<br>(0.12) <sup>d</sup>                 | GHE-P-11073<br>CEMS-2339D<br>Note <sup>c</sup> |

<sup>a</sup> Spray application.

GHE-P-8578, GHE-P-8573: broadcast application. Interpretation: the spray was applied over the whole area, including the crop.

GHE-P-8851, GHE-P-8852, GHE-P-11073: foliar application.

<sup>b</sup> Residue in peas-in-pod calculated from measured residues in peas and pods and relative weights.

<sup>c</sup> GHE-P-11073. Interval of freezer storage before analysis: 22–24 months.

<sup>d</sup> Residue in peas-in-pod estimated as average of measured residues in peas and pods.

#### Peas, BBCH growth stages (Meier, 2001)

51 First flower buds visible outside leaves.

- 55 First separated flower buds visible outside leaves, but still closed.
- 59 First petals visible, flowers still closed.
- 60 First flowers open (sporadically within the population).
- 61 Beginning of flowering: 10% of flowers open.
- 65 Full flowering: 50% of flowers open.

Table 21 Haloxyfop residues in pigeon peas resulting from supervised trials in Australia

| PIGEON PEAS                     | Application                     |             |                         |                 |     | PHI  | Commodity | haloxyfop | Ref       |
|---------------------------------|---------------------------------|-------------|-------------------------|-----------------|-----|------|-----------|-----------|-----------|
| country,<br>year (variety)      | Form                            | kg<br>ai/ha | growth stage            | water<br>(L/ha) | no. | days |           | mg/kg     |           |
| Australia (Qld), 1989<br>(Hunt) | EC<br>haloxyfop-P-<br>methyl    | 0.038       | 43 days after<br>sowing | 110             | 1   | 85   | grain     | < 0.01    | GHF-P 895 |
| Australia (Qld), 1989<br>(Hunt) | EC<br>haloxyfop-P-<br>methyl    | 0.075       | 43 days after<br>sowing | 110             | 1   | 85   | grain     | 0.01      | GHF-P 895 |
| Australia (Qld), 1989<br>(Hunt) | EC<br>haloxyfop-<br>ethoxyethyl | 0.16        | 43 days after<br>sowing | 110             | 1   | 85   | grain     | 0.03      | GHF-P 895 |

| PIGEON PEAS                | Application |             |               |                 |     | PHI  | Commodity | haloxyfop | Ref       |
|----------------------------|-------------|-------------|---------------|-----------------|-----|------|-----------|-----------|-----------|
| country,<br>year (variety) | Form        | kg<br>ai/ha | growth stage  | water<br>(L/ha) | no. | days |           | mg/kg     |           |
| Australia (Qld), 1989      | EC          | 0.31        | 43 days after | 110             | 1   | 85   | grain     | 0.05      | GHF-P 895 |
| (Hunt)                     | haloxyfop-  |             | sowing        |                 |     |      |           |           |           |
|                            | ethoxyethyl |             |               |                 |     |      |           |           |           |

| Table | 22  | Haloxyfop  | residues | in | beans | (pulses) | resulting | from | supervised | trials | in | Argentina, | Brazil, |
|-------|-----|------------|----------|----|-------|----------|-----------|------|------------|--------|----|------------|---------|
| Costa | Ric | a and Gern | nany.    |    |       |          |           |      |            |        |    |            |         |

| BEANS (PULSES)                      | Application <sup>c</sup> |          |                 |                 |     | PHI      | Commodity         | haloxyfop, mg/kg       | Ref        |
|-------------------------------------|--------------------------|----------|-----------------|-----------------|-----|----------|-------------------|------------------------|------------|
| country,<br>year (variety)          | Form                     | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days     | Note <sup>a</sup> | reps, field sample     |            |
| Argentina (Salta),                  | EC                       | 0.06     | PE 55 days      | 200             | 1   | 30       | beans             | 0.09 0.10 0.12         | GHB-P 283  |
| 1992 (White bean,                   | haloxyfop-P-             | 0.06     | PE 45 days      | 200             | 1   | 43       | beans             | 0.27 0.22 0.14         |            |
| Alubia/Inta Cerrilos)               | methyl                   | 0.06     | PE 35 days      | 200             | 1   | 52       | beans             | 0.07 0.06 <u>0.08</u>  |            |
| Note <sup>b</sup> Note <sup>e</sup> |                          |          |                 |                 |     |          |                   | c 0.29 < 0.01 (2)      |            |
| Argentina (Salta),                  | EC                       | 0.12     | PE 55 days      | 200             | 1   | 30       | beans             | 0.30 0.30 0.31         | GHB-P 283  |
| 1992 (White bean,                   | haloxyfop-P-             | 0.12     | PE 45 days      | 200             | 1   | 43       | beans             | 0.39 0.42 0.30         |            |
| Alubia/Inta Cerrilos)               | methyl                   | 0.12     | PE 35 days      | 200             | 1   | 52       | beans             | 0.09 0.10 <u>0.21</u>  |            |
| Note <sup>b</sup> Note <sup>e</sup> |                          |          |                 |                 |     |          |                   | c 0.29 < 0.01 (2)      |            |
| Argentina (Salta),                  | EC                       | 0.06     | PE 55 days      | 180             | 1   | 89       | beans             | 0.42 0.58              | GHB-P 283  |
| 1993 (Black bean,                   | haloxyfop-P-             | 0.06     | PE 45 days      | 180             | 1   | 98       | beans             | 0.33 0.76 0.24         |            |
| JEO 8702 N)                         | methyl                   | 0.06     | PE 35 days      | 180             | 1   | 110      | beans             | 0.22 0.26 0.24         |            |
| Note <sup>b</sup> Note <sup>e</sup> |                          |          |                 |                 |     |          |                   | c 0.02 < 0.01 (2)      |            |
| Argentina (Salta),                  | EC                       | 0.12     | PE 55 days      | 180             | 1   | 89       | beans             | 0.87 0.84              | GHB-P 283  |
| 1993 (Black bean,                   | haloxyfop-P-             | 0.12     | PE 45 days      | 180             | 1   | 98       | beans             | 0.84 0.73 0.84         |            |
| JEO 8702 N)                         | methyl                   | 0.12     | PE 35 days      | 180             | 1   | 110      | beans             | 0.26 0.26 0.24         |            |
| Note <sup>b</sup> Note <sup>e</sup> |                          |          |                 |                 |     |          |                   | c 0.02 < 0.01 (2)      |            |
| Argentina (Salta).                  | EC                       | 0.040    | BBCH 13-        | 200             | 1   | 63       | beans             | 0.26 0.24 0.19         | GHB-P 402  |
| 1998 (White beans,                  | haloxyfop-P-             |          | 14 and 16       |                 |     | 72       |                   | 0.09 0.10 0.16         |            |
| alubia cerrillos)                   | methyl                   |          | d               |                 |     |          |                   | c 0.02 < 0.01 0.05     |            |
| Argentina (Salta),                  | EC                       | 0.060    | BBCH 13-        | 200             | 1   | 63       | beans             | <u>0.41</u> 0.27 0.24  | GHB-P 402  |
| 1998 (White beans,                  | haloxyfop-P-             |          | 14 and 16 $d$   |                 |     | 72       |                   | 0.24 0.18 0.20         |            |
| alubia cerrillos)                   | methyl                   | 0.000    |                 | 200             | 1   | ()       | 1                 | c 0.02 < 0.01 0.05     | CUD D 402  |
| Argentina (Salta),                  | EC<br>halovyfon D        | 0.080    | BBCH 13-        | 200             | 1   | 63<br>72 | beans             | 0.65 0.45 0.42         | GHB-P 402  |
| alubia cerrillos)                   | methyl                   |          | d and 10        |                 |     | 12       |                   | c = 0.02 < 0.01 = 0.05 |            |
| Argentina (Salta).                  | EC                       | 0.12     | BBCH 13-        | 200             | 1   | 63       | beans             | 1.1 1.1 1.5            | GHB-P 402  |
| 1998 (White beans,                  | haloxyfop-P-             | 0.112    | 14 and 16       | -00             | -   | 72       | o o unio          | 0.62 0.57 0.40         | 0112 1 102 |
| alubia cerrillos)                   | methyl                   |          | d               |                 |     |          |                   | c 0.02 < 0.01 0.05     |            |
| Argentina (Salta),                  | EC                       | 0.16     | BBCH 13-        | 200             | 1   | 63       | beans             | 0.88 <u>1.5</u> 0.98   | GHB-P 402  |
| 1998 (White beans,                  | haloxyfop-P-             |          | 14 and 16       |                 |     | 72       |                   | 0.67 0.64 0.46         |            |
| alubia cerrillos)                   | methyl                   | 0.07     |                 | 200             |     | 10       |                   | c 0.02 < 0.01 0.05     |            |
| Argentina (Santiago                 | EC<br>haloxyfon P        | 0.06     | PE 55 days      | 200             | 1   | 42       | beans             | 1.6 1.1 0.87           | GHB-P 283  |
| (Black bean BAT                     | methyl                   | 0.06     | PE 45 days      | 200             | 1   | 50       | beans             | 0.91 <u>1.2</u> 0.98   |            |
| 304)                                |                          | 0.06     | PE 35 days      | 200             | 1   | 50       | beans             | $0.29\ 0.31\ 0.33$     |            |
| b e                                 |                          |          |                 |                 |     |          |                   | c 0.02 < 0.01 (2)      |            |
| Note Note                           | 50                       | 0.10     | DE 55 1         | 200             |     | 10       |                   | 1.5.0.0.1.0            |            |
| Argentina (Santiago                 | EC<br>halavyfan D        | 0.12     | PE 55 days      | 200             | 1   | 42       | beans             | 1.7 2.2 1.8)           | GHB-P 283  |
| (Black bean BAT                     | methyl                   | 0.12     | PE 45 days      | 200             | 1   | 50       | beans             | 1.8 <u>2.0</u> 1.7     |            |
| 304)                                |                          | 0.12     | PE 35 days      | 200             | 1   | 50       | beans             | $0.60\ 0.22\ 1.6$      |            |
| Note <sup>b</sup> Note <sup>e</sup> |                          |          |                 |                 |     |          |                   | 0.02 (0.01 (2)         |            |

| BEANS (PULSES)                       | Application <sup>c</sup> |          | -               | -               | -              | PHI      | Commodity         | haloxyfop, mg/kg      | Ref         |
|--------------------------------------|--------------------------|----------|-----------------|-----------------|----------------|----------|-------------------|-----------------------|-------------|
| country,<br>year (variety)           | Form                     | kg ai/ha | growth<br>stage | water<br>(L/ha) | no.            | days     | Note <sup>a</sup> | reps, field sample    |             |
| Argentina (Santiago                  | EC                       | 0.06     | PE 55 days      | 180             | 1              | 62       | beans             | <u>0.80</u> 0.58 0.49 | GHB-P 283   |
| del Estero), 1993                    | haloxyfop-P-             | 0.06     | PE 45 days      | 180             | 1              | 70       | beans             | 0.43 0.54 0.44        |             |
| (Black bean, XAN                     | metnyi                   | 0.06     | PE 35 days      | 180             | 1              | 82       | beans             | 0.12 0.14 0.18        |             |
| 112)                                 |                          |          |                 |                 |                |          |                   | c 0.03 < 0.01 (2)     |             |
| Note <sup>b</sup> Note <sup>e</sup>  |                          |          |                 |                 |                |          |                   |                       |             |
| Argentina (Santiago                  | EC                       | 0.12     | PE 55 days      | 180             | 1              | 62       | beans             | <u>1.8</u> 1.1        | GHB-P 283   |
| del Estero), 1993<br>(Diask been XAN | haloxytop-P-             | 0.12     | PE 45 days      | 180             | 1              | 70       | beans             | 0.71 0.38 1.2         |             |
| (Black Deall, AAN                    | meuryi                   | 0.12     | PE 35 days      | 180             | 1              | 82       | beans             | 0.44 0.27 0.27        |             |
|                                      |                          |          |                 |                 |                |          |                   | c 0.03 < 0.01 (2)     |             |
| Note Note                            | 50                       | 0.07     | DE 55 1         | 200             |                | 21       | -                 |                       |             |
| Argentina (Tucumán),                 | EC<br>halovyfan D        | 0.06     | PE 55 days      | 200             | 1              | 31       | beans             | 0.36 0.35 0.27        | GHB-P 283   |
| Alubia/Inta Cerrilos)                | naioxyiop-P-             | 0.06     | PE 45 days      | 200             | 1              | 41       | beans             | 0.52 0.51 0.31        |             |
|                                      | lineuryr                 | 0.06     | PE 35 days      | 200             | 1              | 52       | beans             | 0.27 0.14 0.23        |             |
| Note <sup>b</sup> Note <sup>e</sup>  |                          |          |                 |                 |                |          |                   | c 1.6 0.05 0.01       |             |
| Argentina (Tucumán),                 | EC                       | 0.12     | PE 55 days      | 200             | 1              | 31       | beans             | 0.25 0.27 0.33        | GHB-P 283   |
| 1992 (White bean,                    | haloxyfop-P-             | 0.12     | PE 45 days      | 200             | 1              | 41       | beans             | 0.53 0.56 0.69        |             |
| Alubia/Inta Cerrilos)                | methyl                   | 0.12     | PE 35 days      | 200             | 1              | 52       | beans             | <u>0.39</u> 0.26 0.27 |             |
| Note <sup>b</sup> Note <sup>e</sup>  |                          |          |                 |                 |                |          |                   | c 1.6 0.03 0.01       |             |
| Argentina (Tucumán)                  | EC                       | 0.06     | PE 55 days      | 180             | 1              | 46       | beans             | 0 53 0 59 0 60        | GHB-P 283   |
| 1993 (Black bean,                    | haloxyfop-P-             | 0.06     | PE 45 days      | 180             | 1              | 61       | beans             | 0.66 0.70 0.22        | 01112 1 200 |
| NAG 12)                              | methyl                   | 0.06     | PE 35 days      | 180             | 1              | 67       | beans             | 0.04 0.02 0.03        |             |
| Note <sup>b</sup> Note <sup>e</sup>  |                          |          |                 |                 |                |          |                   |                       |             |
| Argentina (Tucumán).                 | EC                       | 0.12     | PE 55 days      | 180             | 1              | 46       | beans             | 1.0 1.4 0.84          | GHB-P 283   |
| 1993 (Black bean,                    | haloxyfop-P-             | 0.12     | PE 45 days      | 180             | 1              | 61       | beans             | 0.75 0.86 0.58        |             |
| NAG 12)                              | methyl                   | 0.12     | PE 35 days      | 180             | 1              | 67       | beans             | 0.07 0.06 0.07        |             |
| Note <sup>b</sup> Note <sup>e</sup>  |                          |          | 5               |                 |                |          |                   |                       |             |
| Brazil (Parana), 1997                | EC                       | 0.048    | BBCH 12-        | 200             | 1              | 77       | beans             | 0.07 0.06 0.08        | GHB-P 378   |
| (Dry beans, Iapar-44)                | haloxyfop-P-             |          | 14              |                 |                | 88       | beans             | 0.03 0.03 0.02        |             |
|                                      | methyl                   |          | b               |                 |                | 97       | beans             | < 0.01 (2) 0.01       |             |
| Brazil (Parana), 1997                | EC                       | 0.096    | BBCH 12-        | 200             | 1              | 77       | beans             | 0.16 0.36 0.14        | GHB-P 378   |
| (Dry beans, Iapar-44)                | haloxytop-P-             |          | 14<br>b         |                 |                | 88       | beans<br>beans    | 0.08 0.14 0.04        |             |
| Brazil (Darana) 1008                 | FC                       | 0.048    | BBCU 12         | 200             | 1              | 97<br>50 | beans             | 0.03 0.02 0.02        | CHB D 301   |
| (Dry beans Carioca)                  | EC<br>haloxyfon-P-       | 0.046    | ввсп 12-<br>14  | 200             | 1              | 59<br>66 | Dealls            | 0.09 0.08 0.09        | UHD-F 391   |
| (Dif beans, Carloca)                 | methyl                   |          | b               |                 |                | 77       |                   | < 0.01 (3)            |             |
| Brazil (Parana), 1998                | EC                       | 0.096    | BBCH 12-        | 200             | 1              | 59       | beans             | 0.12 0.12 0.16        | GHB-P 391   |
| (Dry beans, Carioca)                 | haloxyfop-P-             |          | 14              |                 |                | 66       |                   | 0.04 0.04 0.04        |             |
|                                      | methyl                   |          | 0               |                 |                | 77       |                   | < 0.01 (2) 0.01       |             |
| Brazil (Parana), 2000                | EC + oil                 | 0.06     | PE: 25 days     | 200             | 1              | 61       | beans             | 0.03 <u>0.03</u>      | GHB-P 713   |
| Dry beans,<br>Carioquinha)           | naloxylop-P-             |          |                 |                 |                |          |                   |                       |             |
| Brazil (Parana) 2000                 | FC + oil                 | 0.12     | PF· 25 days     | 200             | 1              | 61       | beans             | 0.06.0.06             | GHB-P 713   |
| Dry beans,                           | haloxyfop-P-             | 0.12     | 1 E. 25 duys    | 200             | 1              | 01       | ocuns             | 0.00 0.00             |             |
| Carioquinha)                         | methyl                   |          |                 |                 |                |          |                   |                       |             |
| Brazil (Parana), 2000                | EC + oil                 | 0.06     | PE: 32 days     | 200             | 1              | 64       | beans             | 0.11 <u>0.23</u>      | GHB-P 713   |
| Dry beans,                           | haloxyfop-P-             |          |                 |                 |                |          |                   |                       |             |
| Carioquinha)                         | methyl                   | 0.12     |                 | 200             |                | 64       |                   |                       | GUD D C     |
| Brazil (Parana), 2000                | EC + oil                 | 0.12     | PE: 32 days     | 200             | 1              | 64       | beans             | <u>0.08</u> 0.06      | GHB-P 713   |
| Carioquinha)                         | matoxytop-P-             |          |                 |                 |                |          |                   |                       |             |
| Brazil (Parana), 2000                | EC + oil                 | 0.06     | PE: 25 days     | 200             | 1              | 55       | beans             | 0.49 0.20             | GHB-P 732   |
| Dry beans, Pérola)                   | haloxyfop-P-             |          | c uys           |                 | [ <sup>-</sup> |          |                   | <u></u>               |             |
|                                      | methyl                   |          |                 |                 |                |          |                   |                       |             |

| BEANS (PULSES)                                           | Application <sup>c</sup>           | 1        | 1                              | n               | Γ   | PHI                        | Commodity         | haloxyfop, mg/kg                                                           | Ref                  |
|----------------------------------------------------------|------------------------------------|----------|--------------------------------|-----------------|-----|----------------------------|-------------------|----------------------------------------------------------------------------|----------------------|
| country,<br>year (variety)                               | Form                               | kg ai/ha | growth<br>stage                | water<br>(L/ha) | no. | days                       | Note <sup>a</sup> | reps, field sample                                                         |                      |
| Brazil (Parana), 2000<br>Dry beans, Pérola)              | EC + oil<br>haloxyfop-P-<br>methyl | 0.12     | PE: 25 days                    | 200             | 1   | 55                         | beans             | 0.30 <u>0.42</u>                                                           | GHB-P 732            |
| Brazil (Parana), 2000<br>Dry beans, Pérola)              | EC + oil<br>haloxyfop-P-<br>methyl | 0.06     | PE: 32 days                    | 200             | 1   | 48                         | beans             | 0.34 0.52                                                                  | GHB-P 732            |
| Brazil (Parana), 2000<br>Dry beans, Pérola)              | EC + oil<br>haloxyfop-P-<br>methyl | 0.12     | PE: 32 days                    | 200             | 1   | 48                         | beans             | 0.76 0.92                                                                  | GHB-P 732            |
| Brazil (SP), 1996–<br>1997 (Dry beans, IAC<br>Carioca)   | EC<br>haloxyfop-P-<br>methyl       | 0.048    | BBCH 12-<br>14<br><sup>b</sup> | 200             | 1   | 50<br>57                   | beans<br>beans    | 0.02 0.04 0.04<br><u>0.06</u><br>0.03 0.03 0.03<br>0.02                    | GHB-P 377            |
| Brazil (SP), 1996–<br>1997 (Dry beans, IAC<br>Carioca)   | EC<br>haloxyfop-P-<br>methyl       | 0.096    | BBCH 12-<br>14<br><sup>b</sup> | 200             | 1   | 50<br>57                   | beans<br>beans    | 0.13 0.13 0.10<br>0.14<br>0.02 0.03 0.03<br>0.02                           | GHB-P 377            |
| Brazil (SP), 2000 Dry<br>beans, Carioquinha)             | EC + oil<br>haloxyfop-P-<br>methyl | 0.06     | PE: 25 days                    | 200             | 1   | 36<br>43<br>50<br>57<br>64 | beans             | 0.01 0.02<br>< 0.01 0.01<br>0.03 0.04<br>0.03 <u>0.04</u><br>0.03 0.02     | GHB-P 713            |
| Brazil (SP), 2000 Dry<br>beans, Carioquinha)             | EC + oil<br>haloxyfop-P-<br>methyl | 0.12     | PE: 25 days                    | 200             | 1   | 36<br>43<br>50<br>57<br>64 | beans             | 0.03 0.04<br>0.03 0.07<br>0.04 0.05<br>0.06 0.03<br>0.05 <u>0.07</u>       | GHB-P 713            |
| Brazil (SP), 2000 Dry<br>beans, Carioquinha)             | EC + oil<br>haloxyfop-P-<br>methyl | 0.06     | PE: 32 days                    | 200             | 1   | 43<br>50<br>57<br>64<br>71 | beans             | < 0.01 (2)<br>< 0.01 (2)<br>< 0.01 (2)<br>< 0 <u>.01 (2)</u><br>< 0.01 (2) | GHB-P 713            |
| Brazil (SP), 2000 Dry<br>beans, Carioquinha)             | EC + oil<br>haloxyfop-P-<br>methyl | 0.12     | PE: 32 days                    | 200             | 1   | 43<br>50<br>57<br>64<br>71 | beans             | < 0.01 (2)<br>< 0.01 (2)<br>0.04 0.01<br>< 0.01 <u>0.01</u><br>0.01 < 0.01 | GHB-P 713            |
| Brazil (SP), 2001–<br>2002 Dry beans,<br>Carioca pérola) | EC + oil<br>haloxyfop-P-<br>methyl | 0.06     | PE: 25 days                    | 200             | 1   | 57                         | beans             | 0.04 <u>0.04</u>                                                           | GHB-P 786            |
| Brazil (SP), 2001–<br>2002 Dry beans,<br>Carioca pérola) | EC + oil<br>haloxyfop-P-<br>methyl | 0.12     | PE: 25 days                    | 200             | 1   | 57                         | beans             | <u>0.08</u> 0.07                                                           | GHB-P 786            |
| Brazil (SP), 2001–<br>2002 Dry beans,<br>Carioca pérola) | EC + oil<br>haloxyfop-P-<br>methyl | 0.06     | PE: 32 days                    | 200             | 1   | 57                         | beans             | 0.06 <u>0.06</u>                                                           | GHB-P 786            |
| Brazil (SP), 2001–<br>2002 Dry beans,<br>Carioca pérola) | EC + oil<br>haloxyfop-P-<br>methyl | 0.12     | PE: 32 days                    | 200             | 1   | 57                         | beans             | <u>0.32</u> 0.32                                                           | GHB-P 786            |
| Costa Rica, 1998 (Dry<br>beans, Brunca)                  | EC<br>haloxyfop-P-<br>methyl       | 0.060    | BBCH 12-<br>14<br>PS: 20 days  | 201             | 1   | 48                         | beans             | 0.03 0.02 0.03<br>0.02                                                     | GHB-P 384            |
| Costa Rica, 1998 (Dry<br>beans, Brunca)                  | EC<br>haloxyfop-P-<br>methyl       | 0.12     | BBCH 12-<br>14<br>PS: 20 days  | 201             | 1   | 48                         | beans             | 0.03 0.04 0.04<br>0.05                                                     | GHB-P 384            |
| Germany, 1990<br>(Alfred)                                | EC<br>haloxyfop-P-<br>methyl       | 0.052    | EC 29, 6<br>leaves             | 400             | 1   | 91                         | dried beans       | < 0.02                                                                     | GHE-P-2444<br>R90-8A |

| BEANS (PULSES)                | Application <sup>c</sup>     | Application <sup>c</sup> |                              |                 |     | PHI  | Commodity         | haloxyfop, mg/kg   | Ref                  |
|-------------------------------|------------------------------|--------------------------|------------------------------|-----------------|-----|------|-------------------|--------------------|----------------------|
| country,<br>year (variety)    | Form                         | kg ai/ha                 | growth<br>stage              | water<br>(L/ha) | no. | days | Note <sup>a</sup> | reps, field sample |                      |
| Germany, 1990<br>(Alfred)     | EC<br>haloxyfop-P-<br>methyl | 0.10                     | EC 29, 6<br>leaves           | 400             | 1   | 91   | dried beans       | 0.02               | GHE-P-2444<br>R90-8A |
| Germany, 1990 (Herz<br>Freya) | EC<br>haloxyfop-P-<br>methyl | 0.052                    | EC 26, 4-5<br>leaves         | 400             | 1   | 98   | dried beans       | < 0.02             | GHE-P-2444<br>R90-8B |
| Germany, 1990 (Herz<br>Freya) | EC<br>haloxyfop-P-<br>methyl | 0.10                     | EC 26, 4-5<br>leaves         | 400             | 1   | 98   | dried beans       | < 0.02             | GHE-P-2444<br>R90-8B |
| Germany, 1990 (Herz<br>Freya) | EC<br>haloxyfop-P-<br>methyl | 0.052                    | EC 25, 4<br>leaves           | 400             | 1   | 106  | dried beans       | < 0.02             | GHE-P-2444<br>R90-8C |
| Germany, 1990 (Herz<br>Freya) | EC<br>haloxyfop-P-<br>methyl | 0.10                     | EC 25, 4<br>leaves           | 400             | 1   | 106  | dried beans       | 0.02               | GHE-P-2444<br>R90-8C |
| Germany, 1990 (Treu)          | EC<br>haloxyfop-P-<br>methyl | 0.052                    | EC 61,<br>begin<br>flowering | 400             | 1   | 72   | dried beans       | 0.11               | GHE-P-2444<br>R90-8D |
| Germany, 1990 (Treu)          | EC<br>haloxyfop-P-<br>methyl | 0.10                     | EC 61,<br>begin<br>flowering | 400             | 1   | 72   | dried beans       | 0.30               | GHE-P-2444<br>R90-8D |

<sup>a</sup> Beans: bean seed separated from pod by threshing.

<sup>b</sup> Separate plots were treated on 3 different occasions and sampled on the same date at crop maturity.

<sup>c</sup> PE: post emergence. PS: post sowing.

<sup>d</sup> Separate plots were treated on 2 different occasions and sampled on the same date at crop maturity.

<sup>e</sup> GHB-P 283. Interval of freezer storage before analysis: 26–40 months.

### Beans, BBCH growth stages (Meier, 2001)

12 Two full leaves (first leaf pair unfolded).

- 13 Third true leaf (first trifoliate leaf) unfolded.
- 14 Fourth true leaf (second trifoliate leaf) unfolded.
- 16 Sixth true leaf unfolded.

## Table 23 Haloxyfop residues in chickpeas resulting from supervised trials in Australia

| CHICKPEAS                         | Application                        |             |              |                 |     | PHI  | Commodity | haloxyfop | Ref                    |
|-----------------------------------|------------------------------------|-------------|--------------|-----------------|-----|------|-----------|-----------|------------------------|
| country,<br>year (variety)        | Form                               | kg<br>ai/ha | growth stage | water<br>(L/ha) | no. | days |           | mg/kg     |                        |
| Australia (WA), 1997<br>(Koniva)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.052       | 3–7 branch   | 100             | 2   | 118  | grain     | < 0.02    | GHF-P 1718<br>97355.01 |
| Australia (WA), 1997<br>(Koniva)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.10        | 3–7 branch   | 100             | 2   | 118  | grain     | < 0.02    | GHF-P 1718<br>97355.01 |
| Australia (SA), 1997<br>(Desavic) | EC + oil<br>haloxyfop-P-<br>methyl | 0.052       | some bloom   | 100             | 2   | 109  | grain     | 0.02      | GHF-P 1718<br>97355.02 |
| Australia (SA), 1997<br>(Desavic) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10        | some bloom   | 100             | 2   | 109  | grain     | 0.04      | GHF-P 1718<br>97355.02 |

| PEAS (PULSES)                               | Application <sup>a</sup>              |             |                                           |                 |     | PHI  | Commodity         | haloxyfop      | Ref                              |
|---------------------------------------------|---------------------------------------|-------------|-------------------------------------------|-----------------|-----|------|-------------------|----------------|----------------------------------|
| country,<br>year (variety)                  | Form                                  | kg<br>ai/ha | growth stage                              | water<br>(L/ha) | no. | days | Note <sup>b</sup> | mg/kg          |                                  |
| Australia (SA), 1989<br>(Field peas, Alma)  | EC<br>haloxyfop-P-<br>methyl          | 0.052       | 2 cm and<br>14 cm                         | 100             | 2   | 94   | peas (grain)      | < 0 <u>.01</u> | GHF-P 1392                       |
| Australia (SA), 1989<br>(Field peas, Alma)  | EC + oil<br>haloxyfop-P-<br>methyl    | 0.052       | 2 cm and<br>14 cm                         | 100             | 2   | 94   | peas (grain)      | < 0 <u>.01</u> | GHF-P 1392                       |
| Australia (SA), 1989<br>(Field peas, Alma)  | EC<br>haloxyfop-P-<br>methyl          | 0.10        | 2 cm and<br>14 cm                         | 100             | 2   | 94   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (SA), 1989<br>(Field peas, Alma)  | EC + oil<br>haloxyfop-P-<br>methyl    | 0.10        | 2 cm and<br>14 cm                         | 100             | 2   | 94   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (SA), 1989<br>(Field peas, Alma)  | EC<br>haloxyfop-<br>ethoxyethyl       | 0.10        | 2 cm and<br>14 cm                         | 100             | 2   | 94   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (SA), 1989<br>(Field peas, Alma)  | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.10        | 2 cm and<br>14 cm                         | 100             | 2   | 94   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (SA), 1989<br>(Field peas, Alma)  | EC<br>haloxyfop-<br>ethoxyethyl       | 0.21        | 2 cm and<br>14 cm                         | 100             | 2   | 94   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC<br>haloxyfop-P-<br>methyl          | 0.052       | 3 cm, 6–<br>10 cm and<br>50–100%<br>bloom | 100             | 3   | 64   | peas (grain)      | 0.26           | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC<br>haloxyfop-P-<br>methyl          | 0.052       | 3 cm<br>and 6–10 cm                       | 100             | 2   | 93   | peas (grain)      | < 0 <u>.01</u> | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC + oil<br>haloxyfop-P-<br>methyl    | 0.052       | 3 cm<br>and 6–10 cm                       | 100             | 2   | 93   | peas (grain)      | < 0 <u>.01</u> | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC<br>haloxyfop-P-<br>methyl          | 0.10        | 3 cm<br>and 6–10 cm                       | 100             | 2   | 93   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC + oil<br>haloxyfop-P-<br>methyl    | 0.10        | 3 cm<br>and 6–10 cm                       | 100             | 2   | 93   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC<br>haloxyfop-<br>ethoxyethyl       | 0.10        | 3 cm<br>and 6–10 cm                       | 100             | 2   | 93   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.10        | 3 cm<br>and 6–10 cm                       | 100             | 2   | 93   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC<br>haloxyfop-<br>ethoxyethyl       | 0.21        | 3 cm<br>and 6–10 cm                       | 100             | 2   | 93   | peas (grain)      | < 0.01         | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC<br>haloxyfop-P-<br>methyl          | 0.052       | 3 cm                                      | 100             | 1   | 125  | peas (grain)      | < 0 <u>.01</u> | GHF-P 1392                       |
| Australia (Vic), 1989<br>(Field peas, Dunn) | EC + oil<br>haloxyfop-P-<br>methyl    | 0.052       | 3 cm                                      | 100             | 1   | 125  | peas (grain)      | < 0 <u>.01</u> | GHF-P 1392                       |
| France, 1988 (Field<br>peas, Final)         | EC<br>haloxyfop-P-<br>methyl          | 0.052       | 4 leaf                                    |                 | 1   | 109  | dry peas          | < 0.05         | GHE-P-1966<br>R88-39<br>RT 48/88 |

## Table 24 Haloxyfop residues in peas (pulses) resulting from supervised trials in Australia and France

| PEAS (PULSES)                        | Application <sup>a</sup>        |             | -                                       |                 |     | PHI  | Commodity         | haloxyfop      | Ref                                          |
|--------------------------------------|---------------------------------|-------------|-----------------------------------------|-----------------|-----|------|-------------------|----------------|----------------------------------------------|
| country,<br>year (variety)           | Form                            | kg<br>ai/ha | growth stage                            | water<br>(L/ha) | no. | days | Note <sup>b</sup> | mg/kg          |                                              |
| France, 1988 (Field<br>peas, Final)  | EC<br>haloxyfop-P-<br>methyl    | 0.10        | 4 leaf                                  |                 | 1   | 109  | dry peas          | < 0 <u>.05</u> | GHE-P-1966<br>R88-39<br>RT 48/88             |
| France, 1988 (Field<br>peas, Final)  | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | 4 leaf                                  |                 | 1   | 109  | dry peas          | < 0.05         | GHE-P-1966<br>R88-39<br>RT 48/88             |
| France, 1988 (Field<br>peas, Final)  | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | 4 leaf                                  |                 | 1   | 109  | dry peas          | < 0.05         | GHE-P-1966<br>R88-39<br>RT 48/88             |
| France, 1988 (Field<br>peas, Solara) | EC<br>haloxyfop-P-<br>methyl    | 0.052       | 9–10 leaves<br>completely<br>open       | 300             | 1   | 92   | dry peas          | < 0.05         | GHE-P-1966<br>R88-39<br>RT 4 <sup>d</sup> 88 |
| France, 1988 (Field<br>peas, Solara) | EC<br>haloxyfop-P-<br>methyl    | 0.10        | 9–10 leaves<br>completely<br>open       | 300             | 1   | 92   | dry peas          | <u>0.10</u>    | GHE-P-1966<br>R88-39<br>RT 4 <sup>d</sup> 88 |
| France, 1988 (Field<br>peas, Solara) | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | 9–10 leaves<br>completely<br>open       | 300             | 1   | 92   | dry peas          | 0.07           | GHE-P-1966<br>R88-39<br>RT 4 <sup>d</sup> 88 |
| France, 1988 (Field<br>peas, Solara) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | 9–10 leaves<br>completely<br>open       | 300             | 1   | 92   | dry peas          | 0.14           | GHE-P-1966<br>R88-39<br>RT 4 <sup>d</sup> 88 |
| France, 1988<br>(Kapuciner)          | EC<br>haloxyfop-P-<br>methyl    | 0.052       | 8–9 leaf                                |                 | 1   | 39   | peas (grain)      | < 0.05         | GHE-P-1956<br>R88-40                         |
| France, 1988<br>(Kapuciner)          | EC<br>haloxyfop-P-<br>methyl    | 0.10        | 8–9 leaf                                |                 | 1   | 39   | peas (grain)      | <u>0.06</u>    | GHE-P-1956<br>R88-40                         |
| France, 1988<br>(Kapuciner)          | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | 8–9 leaf                                |                 | 1   | 39   | peas (grain)      | < 0.05         | GHE-P-1956<br>R88-40                         |
| France, 1988<br>(Kapuciner)          | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | 8–9 leaf                                |                 | 1   | 39   | peas (grain)      | 0.11           | GHE-P-1956<br>R88-40                         |
| France, 1989<br>(Atisem)             | EC<br>haloxyfop-P-<br>methyl    | 0.052       | flower buds<br>hidden by top<br>foliage | 250             | 1   | 36   | peas (grain)      | 0.03           | GHE-P-2057<br>R89-7B                         |
| France, 1989<br>(Atisem)             | EC<br>haloxyfop-P-<br>methyl    | 0.10        | flower buds<br>hidden by top<br>foliage | 250             | 1   | 36   | peas (grain)      | 0.05           | GHE-P-2057<br>R89-7B                         |
| France, 1989<br>(Atisem)             | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | flower buds<br>hidden by top<br>foliage | 250             | 1   | 36   | peas (grain)      | 0.04           | GHE-P-2057<br>R89-7B                         |
| France, 1989<br>(Atisem)             | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | flower buds<br>hidden by top<br>foliage | 250             | 1   | 36   | peas (grain)      | 0.07           | GHE-P-2057<br>R89-7B                         |
| France, 1989 (Cador)                 | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | 5–6 open<br>leaves                      | 500             | 1   | 36   | peas (grain)      | 0.03           | GHE-P-2057<br>R89-7A                         |
| France, 1989 (Cador)                 | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | 5–6 open<br>leaves                      | 500             | 1   | 36   | peas (grain)      | 0.06           | GHE-P-2057<br>R89-7A                         |
| France, 1989 (Cador)                 | EC<br>haloxyfop-P-<br>methyl    | 0.052       | 5–6 open<br>leaves                      | 500             | 1   | 36   | peas (grain)      | 0.03           | GHE-P-2057<br>R89-7A                         |
| France, 1989 (Cador)                 | EC<br>haloxyfop-P-<br>methyl    | 0.10        | 5–6 open<br>leaves                      | 500             | 1   | 36   | peas (grain)      | 0.04           | GHE-P-2057<br>R89-7A                         |
| France, 1989 (Field peas, Amac)      | EC<br>haloxyfop-P-<br>methyl    | 0.052       | 6-leaf                                  | 330             | 1   | 99   | dry peas          | < 0.02         | GHE-P-2058<br>R89-4C                         |

| PEAS (PULSES)                          | Application <sup>a</sup>        |             |                          |                 |     | PHI  | Commodity         | haloxyfop      | Ref                  |
|----------------------------------------|---------------------------------|-------------|--------------------------|-----------------|-----|------|-------------------|----------------|----------------------|
| country,<br>year (variety)             | Form                            | kg<br>ai/ha | growth stage             | water<br>(L/ha) | no. | days | Note <sup>b</sup> | mg/kg          |                      |
| France, 1989 (Field<br>peas, Amac)     | EC<br>haloxyfop-P-<br>methyl    | 0.10        | 6-leaf                   | 330             | 1   | 99   | dry peas          | < 0.02         | GHE-P-2058<br>R89-4C |
| France, 1989 (Field<br>peas, Amac)     | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | 6-leaf                   | 330             | 1   | 99   | dry peas          | < 0.02         | GHE-P-2058<br>R89-4C |
| France, 1989 (Field<br>peas, Amac)     | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | 6-leaf                   | 330             | 1   | 99   | dry peas          | < 0.02         | GHE-P-2058<br>R89-4C |
| France, 1989 (Field<br>peas, Final)    | EC<br>haloxyfop-P-<br>methyl    | 0.052       | 6 spread out<br>leaves   | 400             | 1   | 80   | dry peas          | < 0.02         | GHE-P-2055<br>R89-6  |
| France, 1989 (Field<br>peas, Final)    | EC<br>haloxyfop-P-<br>methyl    | 0.10        | 6 spread out<br>leaves   | 400             | 1   | 80   | dry peas          | < 0 <u>.02</u> | GHE-P-2055<br>R89-6  |
| France, 1989 (Field<br>peas, Final)    | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | 6 spread out<br>leaves   | 400             | 1   | 80   | dry peas          | < 0.02         | GHE-P-2055<br>R89-6  |
| France, 1989 (Field<br>peas, Final)    | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | 6 spread out<br>leaves   | 400             | 1   | 80   | dry peas          | < 0.02         | GHE-P-2055<br>R89-6  |
| France, 1989 (Field<br>peas, Frijaune) | EC<br>haloxyfop-P-<br>methyl    | 0.052       | 6–7 spread<br>out leaves | 330             | 1   | 99   | dry peas          | < 0.02         | GHE-P-2058<br>R89-4B |
| France, 1989 (Field<br>peas, Frijaune) | EC<br>haloxyfop-P-<br>methyl    | 0.10        | 6–7 spread<br>out leaves | 330             | 1   | 99   | dry peas          | < 0 <u>.02</u> | GHE-P-2058<br>R89-4B |
| France, 1989 (Field<br>peas, Frijaune) | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | 6–7 spread<br>out leaves | 330             | 1   | 99   | dry peas          | < 0.02         | GHE-P-2058<br>R89-4B |
| France, 1989 (Field<br>peas, Frijaune) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | 6–7 spread<br>out leaves | 330             | 1   | 99   | dry peas          | < 0.02         | GHE-P-2058<br>R89-4B |
| France, 1989 (Field<br>peas, Frilene)  | EC<br>haloxyfop-P-<br>methyl    | 0.052       | 5–6 spread<br>out leaves | 330             | 1   | 68   | dry peas          | 0.04           | GHE-P-2058<br>R89-4A |
| France, 1989 (Field<br>peas, Frilene)  | EC<br>haloxyfop-P-<br>methyl    | 0.10        | 5–6 spread<br>out leaves | 330             | 1   | 68   | dry peas          | <u>0.06</u>    | GHE-P-2058<br>R89-4A |
| France, 1989 (Field<br>peas, Frilene)  | EC<br>haloxyfop-<br>ethoxyethyl | 0.10        | 5–6 spread<br>out leaves | 330             | 1   | 68   | dry peas          | 0.04           | GHE-P-2058<br>R89-4A |
| France, 1989 (Field<br>peas, Frilene)  | EC<br>haloxyfop-<br>ethoxyethyl | 0.21        | 5–6 spread<br>out leaves | 330             | 1   | 68   | dry peas          | 0.06           | GHE-P-2058<br>R89-4A |

<sup>a</sup> Spray application.

GHE-P-2058, GHE-P-2057, GHE-P-2055: Sprayer directed at ground. Interpretation: the spray was directed at the ground beside the row, not over the top of the row.

<sup>b</sup> Commodity analysed.

GHE-P-2058, GHE-P-2055, GHE-P-1966: The field peas were allowed to dry on the plant (in accordance with agricultural practice) and samples of peas were taken for residue analysis at normal harvest. Interpretation: samples analysed were dry peas.

GHE-P-2057: Pod samples were shelled and the peas were homogenized. Interpretation: samples analysed were peas without pod.

GHE-P-1956: Pods shelled by machine. . Interpretation: samples analysed were peas without pod.

Table 25 Haloxyfop residues in soya beans resulting from supervised trials in Argentina, Brazil, France, Germany, Hungary, Italy, Spain and USA

| SOYA BEANS                                           | Application <sup>a</sup>         |          |                       |                 |     | PHI  | Commodity  | haloxyfop, mg/kg           | Ref                               |
|------------------------------------------------------|----------------------------------|----------|-----------------------|-----------------|-----|------|------------|----------------------------|-----------------------------------|
| country,<br>year (variety)                           | Form                             | kg ai/ha | growth<br>stage       | water<br>(L/ha) | no. | days |            | b                          |                                   |
| Argentina, 1990–<br>1991 (Hood 75)<br>El Socorro     | EC<br>haloxyfop-P-<br>methyl     | 0.09     | PE 25 days            | 190             | 1   | 134  | soya beans | < 0.01                     | GHB-P 139                         |
|                                                      |                                  | 0.09     | PE 35days             | 190             | 1   | 121  | soya beans | < 0.01                     |                                   |
|                                                      |                                  | 0.09     | PE 45 days            | 190             | 1   | 108  | soya beans | 0.03                       |                                   |
| Argentina, 1990–                                     | EC                               | 0.18     | PE 25 days            | 190             | 1   | 134  | soya beans | 0.01                       | GHB-P 139                         |
| 1991 (Hood 75)                                       | haloxyfop-P-                     | 0.18     | PE 35 days            | 190             | 1   | 121  | soya beans | 0.01                       | _                                 |
| El Socorro                                           | methyl                           | 0.18     | PE 45 days            | 190             | 1   | 108  | soya beans | <u>0.11</u>                |                                   |
| Argentina, 1990-                                     | EC                               | 0.09     | PE 25 days            | 200             | 1   | 133  | soya beans | < 0.01                     | GHB-P 139                         |
| 1991 (Hood 75)                                       | haloxyfop-P-                     | 0.09     | PE 35days             | 200             | 1   | 118  | soya beans | 0.01                       | -                                 |
| Las Rosas                                            | metnyi                           | 0.09     | PE 45 days            | 200             | 1   | 106  | soya beans | 0.03                       |                                   |
| Argentina, 1990-                                     | EC                               | 0.18     | PE 25 days            | 200             | 1   | 133  | soya beans | < 0.01                     | GHB-P 139                         |
| 1991 (Hood 75)                                       | haloxyfop-P-                     | 0.18     | PE 35days             | 200             | 1   | 118  | soya beans | 0.02                       | -                                 |
| Las Rosas                                            | metnyi                           | 0.18     | PE 45 days            | 200             | 1   | 106  | soya beans | 0.03                       |                                   |
| Brazil (GO),                                         | WP                               | 0.060    | PE 38 days            | 200             | 1   | 85   | soya beans | < 0.01                     | GHB-P 301                         |
| 1995 (Doko-RC)                                       | haloxyfop-P-<br>methyl           | 0.060    | PE 43 days            | 200             | 1   | 80   | soya beans | < 0.01                     |                                   |
| Brazil (GO),                                         | WP                               | 0.12     | PE 38 days            | 200             | 1   | 85   | soya beans | < 0.01                     | GHB-P 301                         |
| 1995 (Doko-RC)                                       | haloxyfop-P-<br>methyl           | 0.12     | PE 43 days            | 200             | 1   | 80   | soya beans | < 0 <u>.01</u>             |                                   |
| Brazil (PR),<br>1983–1984<br>(Bossier)<br>Mandaguari | EC + oil<br>haloxyfop-<br>methyl | 0.12     | pre-bloom<br>20–30 cm | 300             | 1   | 98   | soya beans | <u>0.06</u> 0.05 0.05 0.06 | GHB-P-024<br>RT/2 <sup>e</sup> 84 |
| Brazil (PR),<br>1983–1984<br>(Bossier)<br>Mandaguari | EC + oil<br>haloxyfop-<br>methyl | 0.24     | pre-bloom<br>20–30 cm | 300             | 1   | 98   | soya beans | 0.12 0.09 0.10 0.11        | GHB-P-024<br>RT/26/84             |
| Brazil (PR),<br>1983–1984<br>(Bossier)<br>Mandaguari | EC + oil<br>haloxyfop-<br>methyl | 0.12     | in bloom<br>50–60 cm  | 300             | 1   | 78   | soya beans | <u>0.90</u> 0.30 0.22 0.23 | GHB-P-024<br>RT/28/84             |
| Brazil (PR),<br>1983–1984<br>(Bossier)<br>Mandaguari | EC + oil<br>haloxyfop-<br>methyl | 0.24     | in bloom<br>50–60 cm  | 300             | 1   | 78   | soya beans | 0.62 0.50 0.74 0.71        | GHB-P-024<br>RT/29/84             |
| Brazil (PR),<br>1983–1984<br>(Bossier)<br>Marialva   | EC + oil<br>haloxyfop-<br>methyl | 0.12     | pre-bloom<br>~30 cm   | 300             | 1   | 102  | soya beans | < 0 <u>.05</u> (4)         | GHB-P-024<br>RT/3 <sup>b</sup> 84 |
| Brazil (PR),<br>1983–1984<br>(Bossier)<br>Marialva   | EC + oil<br>haloxyfop-<br>methyl | 0.24     | pre-bloom<br>~30 cm   | 300             | 1   | 102  | soya beans | < 0.05 (4)                 | GHB-P-024<br>RT/3 <sup>°</sup> 84 |
| Brazil (PR),<br>1983–84<br>(Bossier)<br>Marialva     | EC +oil<br>haloxyfop-<br>methyl  | 0.36     | pre-bloom<br>~30 cm   | 300             | 1   | 102  | soya beans | 0.05 < 0.05 (3)            | GHB-P-024<br>RT/3 <sup>d</sup> 84 |
| Brazil (PR),<br>1983–1984<br>(Bossier)<br>Marialva   | EC + oil<br>haloxyfop-<br>methyl | 0.12     | in bloom              | 300             | 1   | 77   | soya beans | 0.16 <u>0.19</u> 0.14 0.12 | GHB-P-024<br>RT/3 <sup>e</sup> 84 |
| Brazil (PR),<br>1983–1984<br>(Bossier)<br>Marialva   | EC + oil<br>haloxyfop-<br>methyl | 0.24     | in bloom              | 300             | 1   | 77   | soya beans | 0.33 0.38 0.31 0.39        | GHB-P-024<br>RT/36/84             |

| SOYA BEANS              | Application <sup>a</sup> |           |                         |         |        | PHI       | Commodity   | haloxyfop, mg/kg          | Ref                               |
|-------------------------|--------------------------|-----------|-------------------------|---------|--------|-----------|-------------|---------------------------|-----------------------------------|
| country,                | Form                     | ko ai/ha  | growth                  | water   | no     | davs      |             | b                         |                                   |
| year (variety)          | 1 onn                    | kg al/lla | stage                   | (L/ha)  | no.    | uays      |             |                           |                                   |
| Brazil (PR),            | EC + oil                 | 0.36      | in bloom                | 300     | 1      | 77        | soya beans  | 0.74 0.51 0.45 0.38       | GHB-P-024                         |
| 1983–1984<br>(Bossier)  | haloxyfop-               |           |                         |         |        |           |             |                           | R1737/84                          |
| (Bossier)<br>Marialya   | meuryi                   |           |                         |         |        |           |             |                           |                                   |
| Brazil (PR), 1984       | EC + oil                 | 0.24      | pre-bloom               | 240     | 1      | 105       | sova beans  | < 0.05 (4)                | GHB-P-024                         |
| (IAC-4)                 | haloxyfop-               |           | 3-leaf                  | -       |        |           |             |                           | RT/1°84                           |
| Ponta Grossa            | methyl                   |           |                         |         |        |           |             |                           |                                   |
| Brazil (PR), 1984       | EC + oil                 | 0.36      | pre-bloom               | 240     | 1      | 105       | soya beans  | < 0.05 0.05 0.28          | GHB-P-024                         |
| (IAC-4)                 | haloxyfop-               |           | 3-leaf                  |         |        |           |             | 0.15                      | RT/1°84                           |
| Ponta Grossa            | metnyi                   | 0.12      | in bloom                | 240     | 1      | 60        | aava baana  | 0 78 0 76 1 8 0 75        | CUD D 024                         |
| (IAC-4)                 | EC + 011<br>haloxyfon-   | 0.12      |                         | 240     | 1      | 00        | soya beans  | 0.78 0.70 <u>1.8</u> 0.73 | GпБ-Р-024<br>RT/1 <sup>e</sup> 84 |
| Ponta Grossa            | methyl                   |           |                         |         |        |           |             |                           |                                   |
| Brazil (PR), 1984       | EC + oil                 | 0.24      | in bloom                | 240     | 1      | 60        | soya beans  | 1.0 1.1 0.82 0.22         | GHB-P-024                         |
| (IAC-4)                 | haloxyfop-               |           |                         |         |        |           | -           |                           | RT/16/84                          |
| Ponta Grossa            | methyl                   |           |                         |         |        |           |             |                           |                                   |
| Brazil (PR), 1984       | EC + oil                 | 0.36      | in bloom                | 240     | 1      | 60        | soya beans  | 1.9 1.4 1.1               | GHB-P-024                         |
| (IAC-4)<br>Ponta Grossa | haloxyfop-<br>methyl     |           |                         |         |        |           |             |                           | R1/1//84                          |
| Brazil (PR) 1984        | $FC \pm oil$             | 0.12      | nre-hloom               | 240     | 1      | 105       | sova beans  | < 0.05(2)0.06             | GHB-P-024                         |
| (IAC-4)                 | haloxyfop-               | 0.12      | 3-leaf                  | 240     | 1      | 105       | soya ocalis | < 0.05 (2) <u>0.00</u>    | RT/1 <sup>b</sup> 84              |
| Ponta Grossa            | methyl                   |           |                         |         |        |           |             |                           |                                   |
| Brazil (PR),            | EC                       | 0.06      | PE                      | 200     | 1      | 112       | soya beans  | < 0.01                    | GHB-P 144                         |
| 1991–1992               | haloxyfop-P-             |           |                         |         | 1      | 102       | soya beans  | 0.01                      |                                   |
| (Primavera)             | methyl                   | 0.10      |                         | • • • • | 1      | 91        | soya beans  | 0.03                      |                                   |
| Brazil (PR),            | EC                       | 0.12      | PE                      | 200     | 1      | 112       | soya beans  | < 0.01                    | GHB-P 144                         |
| (Primavera)             | naioxyiop-P-<br>methyl   |           |                         |         | 1<br>1 | 102<br>91 | soya beans  | 0.02                      |                                   |
| Brazil (PR),            | WP                       | 0.060     | PS 20 days              | 200     | 1      | 105       | soya beans  | < 0.01                    | GHB-P 277                         |
| 1994–1995 (BR-          | haloxyfop-P-             | 0.060     | PS 30 days              | 200     | 1      | 95        | soya beans  | < 0.01                    |                                   |
| 4)                      | methyl                   | 0.060     | PS 46 days              | 200     | 1      | 79        | soya beans  | 0.02                      |                                   |
| Brazil (PR),            | WP                       | 0.12      | PS 20 days              | 200     | 1      | 105       | soya beans  | < 0.01                    | GHB-P 277                         |
| 1994–1995 (BR-          | haloxyfop-P-             | 0.12      | PS 30 days              | 200     | 1      | 95        | soya beans  | < 0.01                    |                                   |
| 4)                      | methyl                   | 0.12      | PS 46 days              | 200     | 1      | 79        | soya beans  | 0.03                      |                                   |
| Brazil (PR),            | EC + oil                 | 0.060     | PE 35 days              | 200     | 1      | 73        | soya beans  | < 0.01 (2)                | GHB-P 714                         |
| 2000–2001               | haloxyfop-P-             |           | (5 leaves)              |         |        | 80        |             | < 0.01 (2)                |                                   |
| (Coodetec 205)          | methyl                   | 0.12      |                         | 200     | 1      | 70        | ,           | . 0. 01. (2)              |                                   |
| Brazil (PR),            | EC + 011<br>haloxyfon P  | 0.12      | PE 35 days $(5 \log x)$ | 200     | 1      | 73        | soya beans  | < 0.01 (2)                | GHB-P 714                         |
| (Coodetec 205)          | methyl                   |           | (J icaves)              |         |        | 00        |             | 0.01 0.02                 |                                   |
| Brazil (RS),            | EC + oil                 | 0.060     | PE 35 days              | 200     | 1      | 73        | soya beans  | < 0.01 (2)                | GHB-P 714                         |
| 2000-2001               | haloxyfop-P-             |           | (5 leaves)              |         |        | 80        | 5           | < 0.01 (2)                |                                   |
| (BRS-137)               | methyl                   |           |                         |         |        |           |             |                           |                                   |
| Brazil (RS),            | EC + oil                 | 0.12      | PE 35 days              | 200     | 1      | 73        | soya beans  | < 0.01 (2)                | GHB-P 714                         |
| 2000–2001<br>(DDS 127)  | haloxyfop-P-             |           | (5 leaves)              |         |        | 80        |             | < 0.01(2)                 |                                   |
| (DKS-157)<br>Prozil(PS) | EC L oil                 | 0.060     | DE 25 dave              | 200     | 1      | 70        | sove beens  | < 0.01(2)                 | СНР D 717                         |
| 2000–2001               | EC + 011<br>haloxyfon-P- | 0.000     | (5  leaves)             | 200     | 1      | 70<br>80  | soya beans  | < 0.01(2)                 | ОПБ-Р /1/                         |
| (BRS-137)               | methyl                   |           | (5 ieuves)              |         |        | 90        |             | < 0.01 (2)                |                                   |
| Brazil (RS),            | EC + oil                 | 0.12      | PE 35 days              | 200     | 1      | 70        | soya beans  | < 0.01 (2)                | GHB-P 717                         |
| 2000-2001               | haloxyfop-P-             |           | (5 leaves)              |         |        | 80        | -           | < 0.01 (2)                |                                   |
| (BRS-137)               | methyl                   |           |                         |         |        | 90        |             | < 0 <u>.01</u> (2)        |                                   |
| Brazil (SP), 1990       | EC                       | 0.060     | PE 20 days              | 210     | 1      | 88        | soya beans  | < 0.01                    | GHB-P 117                         |
| (1AS-S)                 | naioxytop-P-             | 0.060     | PE 30days               | 210     | 1      | 78        | soya beans  | < 0.01                    |                                   |
|                         |                          | 0.060     | PE 40 days              | 210     | 1      | 68        | soya beans  | 0.01                      |                                   |
| Brazil (SP), 1990       | EC                       | 0.12      | PE 20 days              | 210     | 1      | 88        | soya beans  | < 0.01                    | GHB-Р 117                         |
| (143-3)                 | mathyl                   | 0.12      | PE 30days               | 210     | 1      | /9        | soya beans  | 0.01                      |                                   |
|                         |                          | 0.12      | PE 40 days              | 210     | 1      | 09        | soya beans  | 0.02                      |                                   |

| SOYA BEANS                                | Application <sup>a</sup>           | -        |                               | -               | -           | PHI                              | Commodity                              | haloxyfop, mg/kg                                                                  | Ref                      |
|-------------------------------------------|------------------------------------|----------|-------------------------------|-----------------|-------------|----------------------------------|----------------------------------------|-----------------------------------------------------------------------------------|--------------------------|
| country,<br>year (variety)                | Form                               | kg ai/ha | growth<br>stage               | water<br>(L/ha) | no.         | days                             |                                        | Ь                                                                                 |                          |
| Brazil (SP),<br>1991–1992<br>(Paranaiba)  | EC<br>haloxyfop-P-<br>methyl       | 0.060    | PE                            | 200             | 1<br>1<br>1 | 115<br>105<br>95                 | soya beans<br>soya beans<br>soya beans | < 0.01<br>< 0.01<br>< 0 <u>.01</u>                                                | GHB-P 144                |
| Brazil (SP),<br>1991–1992<br>(Paranaiba)  | EC<br>haloxyfop-P-<br>methyl       | 0.12     | PE                            | 200             | 1<br>1<br>1 | 115<br>105<br>95                 | soya beans<br>soya beans<br>soya beans | < 0.01<br>< 0.01<br>< 0 <u>.01</u>                                                | GHB-P 144                |
| Brazil (SP),<br>2000–2001<br>(Cometa)     | EC + oil<br>haloxyfop-P-<br>methyl | 0.060    | PE 35 days<br>(4–5<br>leaves) | 200             | 1           | 52<br>59<br>66<br>73<br>80<br>87 | soya beans                             | 0.05 0.06<br>0.18 0.09<br>0.13 0.06<br>0.23 0.13<br>0.13 0.16<br>0.16 0.09        | GHB-P 721                |
| Brazil (SP),<br>2000–2001<br>(Cometa)     | EC + oil<br>haloxyfop-P-<br>methyl | 0.12     | PE 35 days<br>(4–5<br>leaves) | 200             | 1           | 52<br>59<br>66<br>73<br>80<br>87 | soya beans                             | 0.11 0.12<br>0.37 0.30<br>0.32 0.28<br>0.38 0.40<br>0.41 <u>0.45</u><br>0.40 0.39 | GHB-P 721                |
| Brazil (SP),<br>2001–2002 (FT-<br>Cometa) | EC + oil<br>haloxyfop-P-<br>methyl | 0.060    | first bloom                   | 200             | 1           | 56<br>63<br>70<br>77<br>84<br>91 | soya beans                             | 0.03<br>0.03<br>0.05<br>0.07<br>0.05<br>0.06                                      | GHB-P 790                |
| Brazil (SP),<br>2001–2002 (FT-<br>Cometa) | EC + oil<br>haloxyfop-P-<br>methyl | 0.12     | first bloom                   | 200             | 1           | 56<br>63<br>70<br>77<br>84<br>91 | soya beans                             | 0.07<br>0.11<br><u>0.15</u><br>0.12<br>0.10<br>0.09                               | GHB-P 790                |
| France, 2000<br>(Queen)                   | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 12-<br>13                | 290             | 1           | 90                               | soya beans                             | < 0 <u>.05</u>                                                                    | GHE-P-8859<br>CEMS-1257B |
| France, 2000<br>(Queen)                   | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 67-<br>69                | 300             | 1           | 60                               | soya beans                             | 0.31                                                                              | GHE-P-8859<br>CEMS-1257B |
| France, 2000<br>(Sapporo)                 | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 13-<br>14                | 300             | 1           | 90                               | soya beans                             | < 0 <u>.05</u>                                                                    | GHE-P-8859<br>CEMS-1257C |
| France, 2000<br>(Sapporo)                 | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 65-<br>71                | 320             | 1           | 57                               | soya beans                             | <u>0.99</u>                                                                       | GHE-P-8859<br>CEMS-1257C |
| Germany, 2001<br>(Dorena)                 | EC<br>haloxyfop-P-<br>methyl       | 0.11     | BBCH 12                       | 310             | 1           | 94                               | soya beans                             | < 0 <u>.05</u>                                                                    | GHE-P-9782<br>CEMS-1569B |
| Germany, 2001<br>(Dorena)                 | EC<br>haloxyfop-P-<br>methyl       | 0.11     | BBCH 23                       | 310             | 1           | 61                               | soya beans                             | 0.23                                                                              | GHE-P-9782<br>CEMS-1569B |
| Hungary, 2001<br>(Borostyan)              | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 12                       | 250             | 1           | 91                               | soya beans                             | < 0 <u>.05</u>                                                                    | GHE-P-9782<br>CEMS-1569A |
| Hungary, 2001<br>(Borostyan)              | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 33                       | 250             | 1           | 60                               | soya beans                             | 0.11                                                                              | GHE-P-9782<br>CEMS-1569A |
| Italy, 2000 (Silia)                       | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 11-<br>19                | 300             | 1           | 86                               | soya beans                             | < 0 <u>.05</u>                                                                    | GHE-P-8859<br>CEMS-1257D |
| Italy, 2000 (Silia)                       | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 67-<br>71                | 290             | 1           | 56                               | soya beans                             | 0.96                                                                              | GHE-P-8859<br>CEMS-1257D |

| SOYA BEANS                                | Application <sup>a</sup>              |          |                         |                 |        |            | Commodity  | haloxyfop, mg/kg                   | Ref                      |
|-------------------------------------------|---------------------------------------|----------|-------------------------|-----------------|--------|------------|------------|------------------------------------|--------------------------|
| country,<br>vear (variety)                | Form                                  | kg ai/ha | growth<br>stage         | water<br>(L/ha) | no.    | days       |            | Ь                                  |                          |
| Spain, 2000<br>(Osumi)                    | EC<br>haloxyfop-P-<br>methyl          | 0.10     | BBCH 19                 | 300             | 1      | 90         | soya beans | < 0 <u>.05</u>                     | GHE-P-8859<br>CEMS-1257A |
| Spain, 2000<br>(Osumi)                    | EC<br>haloxyfop-P-<br>methyl          | 0.10     | BBCH 55                 | 300             | 1      | 60         | soya beans | <u>0.10</u>                        | GHE-P-8859<br>CEMS-1257A |
| USA (AK), 1982<br>(Davis)                 | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 118<br>77  | soya beans | < 0.05<br>0.25                     | GH-C 1625                |
| USA (AL), 1982<br>(DPL506)                | EC+surfactant<br>haloxyfop-<br>methyl | 0.28     | pre-bloom               |                 | 1      | 98         | soya beans | 0.060                              | GH-C 1625                |
| USA (AL), 1982<br>(Essex)                 | EC+surfactant<br>haloxyfop-<br>methyl | 0.28     | in bloom                |                 | 1      | 90         | soya beans | 0.40                               | GH-C 1625                |
| USA (GA), 1982<br>(Wright)                | EC+surfactant<br>haloxyfop-<br>methyl | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 104<br>76  | soya beans | 0.075<br>0.82                      | GH-C 1625                |
| USA (IA), 1982<br>(Corsoy 79)             | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 96<br>75   | soya beans | 0.081<br>0.60                      | GH-C 1625                |
| USA (IL), 1982<br>(Century)               | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | in bloom                |                 | 1      | 73         | soya beans | 2.3                                | GH-C 1625                |
| USA (IL), 1982<br>(Northrup King<br>1492) | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 91<br>69   | soya beans | < 0.05<br>0.49                     | GH-C 1625                |
| USA (IL), 1982<br>(Williams 79)           | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 98<br>86   | soya beans | 0.30<br>0.96                       | GH-C 1625                |
| USA (IN), 1982<br>(Pella)                 | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 167<br>157 | soya beans | 0.10<br>0.16                       | GH-C 1625                |
| USA (KS), 1982<br>(Essex)                 | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 91<br>69   | soya beans | 0.21<br>1.4                        | GH-C 1625                |
| USA (LA), 1982<br>(Davis)                 | EC<br>haloxyfop-<br>methyl            | 0.28     | pre-bloom<br>full bloom |                 | 1<br>1 | 125<br>106 | soya beans | 0.05<br>0.43                       | GH-C 1625                |
| USA (MI), 1982<br>(Corsoy)                | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | in bloom<br>in bloom    |                 | 1<br>1 | 84<br>82   | soya beans | 1.8 2.4 2.2 1.9<br>1.6 2.4 2.6 2.3 | GH-C 1625                |
| USA (MN), 1982<br>(Hodgson 78)            | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | in bloom<br>in bloom    |                 | 1<br>1 | 86<br>74   | soya beans | 2.0<br>3.1                         | GH-C 1625                |
| USA (MS), 1982<br>(Forrest)               | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 94<br>84   | soya beans | 0.07<br>0.22<br>c 0.04             | GH-C 1625                |
| USA (MS), 1982<br>(Forrest)               | EC+surfactant<br>haloxyfop-<br>methyl | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 94<br>84   | soya beans | 0.07<br>0.19<br>c 0.04             | GH-C 1625                |
| USA (MS), 1982<br>(Forrest)               | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 95<br>86   | soya beans | 0.11<br>0.37                       | GH-C 1625                |
| USA (MS), 1982<br>(Forrest)               | EC+surfactant<br>haloxyfop-<br>methyl | 0.28     | pre-bloom<br>in bloom   |                 | 1<br>1 | 95<br>86   | soya beans | 0.11<br>0.43                       | GH-C 1625                |
| USA (MS), 1982<br>(Forrest)               | EC + oil<br>haloxyfop-<br>methyl      | 0.28     | pre-bloom               |                 | 1      | 109        | soya beans | 0.15 0.25                          | GH-C 1625                |

| SOYA BEANS                      | Application <sup>a</sup>         |          |                       |                 |        | PHI       | Commodity  | haloxyfop, mg/kg          | Ref       |
|---------------------------------|----------------------------------|----------|-----------------------|-----------------|--------|-----------|------------|---------------------------|-----------|
| country,<br>year (variety)      | Form                             | kg ai/ha | growth<br>stage       | water<br>(L/ha) | no.    | days      |            | b                         |           |
| USA (NC), 1982<br>(Forrest)     | EC<br>haloxyfop-<br>methyl       | 0.28     | pre-bloom<br>in bloom |                 | 1<br>1 | 122<br>89 | soya beans | 0.044<br>< 0.05<br>c 0.10 | GH-C 1625 |
| USA (NE), 1982<br>(Century)     | EC + oil<br>haloxyfop-<br>methyl | 0.28     | pre-bloom<br>in bloom |                 | 1<br>1 | 96<br>82  | soya beans | 0.22<br>1.2               | GH-C 1625 |
| USA (OH), 1982<br>(Williams 79) | EC + oil<br>haloxyfop-<br>methyl | 0.28     | pre-bloom<br>in bloom |                 | 1<br>1 | 127<br>99 | soya beans | 0.05<br>0.34              | GH-C 1625 |

<sup>a</sup> PE: post emergence. PS: post sowing

~ = appromimately

<sup>b</sup> GHB-P-024: replicated field samples

#### Soya beans, BBCH growth stages (Meier, 2001)

- 11 First pair of true leaves unfolded (unifoliate leaves on the first node)
- 12 Trifoliate leaf on the second node unfolded.
- 13 Trifoliate leaf on the third node unfolded.
- 14 Trifoliate leaf on the fourth node unfolded.
- 19 Trifoliate leaf on the ninth node unfolded. No side shoots visible.
- 23 Third side shoot of first order visible.
- 55 First flower buds enlarged.
- 65 Full flowering: about 50% of flowers open.
- 67 Flowering declining.
- 69 End of flowering: first pods visible.
- 71 About 10% of pods have reached final length.

Table 26 Haloxyfop residues in sugar beet resulting from supervised trials in Belgium, France, Germany, Italy and Spain

| SUGAR BEET                 | Application <sup>a</sup>        |          |                 |                 |     | PHI  | Commodity  | haloxyfop, mg/kg | Ref                           |
|----------------------------|---------------------------------|----------|-----------------|-----------------|-----|------|------------|------------------|-------------------------------|
| country,<br>year (variety) | Form                            | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days |            |                  |                               |
| Belgium, 2000<br>(Semper)  | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 39         | 310             | 1   | 116  | beet roots | 0.03             | GHE-P-8867<br>CEMAS-<br>1266C |
| France, 1988<br>(Apachee)  | EC<br>haloxyfop-<br>ethoxyethyl | 0.10     | 2 leaf          |                 | 1   | 134  | beet roots | < 0.02           | GHE-P-1972<br>R88-36C         |
| France, 1988<br>(Apachee)  | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | 2 leaf          |                 | 1   | 134  | beet roots | < 0.02           | GHE-P-1972<br>R88-36C         |
| France, 1988<br>(Apachee)  | EC<br>haloxyfop-P-<br>methyl    | 0.052    | 2 leaf          |                 | 1   | 134  | beet roots | < 0.02           | GHE-P-1972<br>R88-36C         |
| France, 1988<br>(Apachee)  | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 2 leaf          |                 | 1   | 134  | beet roots | < 0 <u>.02</u>   | GHE-P-1972<br>R88-36C         |

| SUGAR BEET                  | Application <sup>a</sup>        |          |                                  |                 |     | PHI                    | Commodity                                            | haloxyfop, mg/kg                                        | Ref                           |
|-----------------------------|---------------------------------|----------|----------------------------------|-----------------|-----|------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------------|
| country,<br>year (variety)  | Form                            | kg ai/ha | growth<br>stage                  | water<br>(L/ha) | no. | days                   |                                                      |                                                         |                               |
| France, 1988<br>(Aramis)    | EC<br>haloxyfop-<br>ethoxyethyl | 0.10     | 2 leaf                           |                 | 1   | 165                    | beet roots                                           | < 0.02                                                  | GHE-P-1972<br>R88-36B         |
| France, 1988<br>(Aramis)    | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | 2 leaf                           |                 | 1   | 165                    | beet roots                                           | < 0.02                                                  | GHE-P-1972<br>R88-36B         |
| France, 1988<br>(Aramis)    | EC<br>haloxyfop-P-<br>methyl    | 0.052    | 2 leaf                           |                 | 1   | 165                    | beet roots                                           | < 0.02                                                  | GHE-P-1972<br>R88-36B         |
| France, 1988<br>(Aramis)    | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 2 leaf                           |                 | 1   | 165                    | beet roots                                           | < 0 <u>.02</u>                                          | GHE-P-1972<br>R88-36B         |
| France, 1988<br>(Perfo)     | EC<br>haloxyfop-<br>ethoxyethyl | 0.10     | 2–3 leaf                         | 250             | 1   | 131                    | beet roots                                           | < 0.02                                                  | GHE-P-1972<br>R88-36A         |
| France, 1988<br>(Perfo)     | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | 2–3 leaf                         | 250             | 1   | 131                    | beet roots                                           | < 0.02                                                  | GHE-P-1972<br>R88-36A         |
| France, 1988<br>(Perfo)     | EC<br>haloxyfop-P-<br>methyl    | 0.052    | 2–3 leaf                         | 250             | 1   | 131                    | beet roots                                           | < 0.02                                                  | GHE-P-1972<br>R88-36A         |
| France, 1988<br>(Perfo)     | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 2–3 leaf                         | 250             | 1   | 131                    | beet roots                                           | < 0 <u>.02</u>                                          | GHE-P-1972<br>R88-36A         |
| Germany, 1988<br>(Kaweduka) | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 6 leaf<br>(EC23)                 | 400             | 1   | 15<br>98<br>125        | beet roots<br>beet roots<br>beet roots               | 0.11<br>0.01<br>< 0.01                                  | GHE-P-2036<br>RT 108/88       |
| Germany, 1988<br>(Kaweduka) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | 6 leaf<br>(EC23)                 | 400             | 1   | 15<br>98<br>125        | beet roots<br>beet roots<br>beet roots               | 0.25<br>0.01<br>< 0.01                                  | GHE-P-2036<br>RT 108/88       |
| Germany, 1988<br>(Kawemono) | EC<br>haloxyfop-P-<br>methyl    | 0.10     | crop cover<br>complete<br>(EC45) | 400             | 1   | 24<br>76<br>108<br>128 | beet roots<br>beet roots<br>beet roots<br>beet roots | 0.22 <sup>b</sup><br>0.03 c 0.02<br><u>0.04</u><br>0.03 | GHE-P-2036<br>RT 85&86/88     |
| Germany, 1988<br>(Kawemono) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | crop cover<br>complete<br>(EC45) | 400             | 1   | 24<br>76<br>108<br>128 | beet roots<br>beet roots<br>beet roots<br>beet roots | 0.08 <sup>b</sup><br>0.14 c 0.02<br>0.08<br>0.05        | GHE-P-2036<br>RT 85&86/88     |
| Germany, 1988<br>(Nowadima) | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 6–8 leaf<br>(EC 23-25)           | 400             | 1   | 13<br>76<br>104<br>118 | beet roots<br>beet roots<br>beet roots<br>beet roots | 0.30<br>0.07 c 0.02<br>0.05 c 0.02<br>0.04              | GHE-P-2036<br>RT 76/88        |
| Germany, 1988<br>(Nowadima) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | 6–8 leaf<br>(EC 23-25)           | 400             | 1   | 13<br>76<br>104<br>118 | beet roots<br>beet roots<br>beet roots<br>beet roots | 0.38<br>0.16 c 0.02<br>0.06 c 0.02<br>0.06              | GHE-P-2036<br>RT 76/88        |
| Germany, 2000<br>(Helix)    | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 39                          | 220             | 1   | 92                     | beet root                                            | <u>0.09</u>                                             | GHE-P-8867<br>CEMAS-<br>1266A |
| Germany, 2000<br>(Kontrast) | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 39                          | 310             | 1   | 116                    | beet root                                            | 0.02                                                    | GHE-P-8867<br>CEMAS-<br>1266B |
| Italy, 1992<br>(Break)      | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 8 leaf                           | 400             | 1   | 65                     | beet roots                                           | 0.02                                                    | GHE-P-3078<br>R92-45B         |
| Italy, 1992<br>(Mirto)      | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 8–9 leaf                         | 400             | 1   | 67                     | beet roots                                           | 0.03                                                    | GHE-P-3078<br>R92-45A         |

| SUGAR BEET                 | Application <sup>a</sup>     |          |                 |                 |     | PHI  | Commodity  | haloxyfop, mg/kg | Ref                      |
|----------------------------|------------------------------|----------|-----------------|-----------------|-----|------|------------|------------------|--------------------------|
| country,<br>year (variety) | Form                         | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days |            |                  |                          |
| Spain, 2000<br>(Lola)      | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 39         | 370             | 1   | 99   | beet roots | < 0.02           | GHE-P-8868<br>CEMS-1267A |

<sup>a</sup> GHE-P-1972 (R88-36A), GHE-P-2036, GHE-P-8867, GHE-P-8868: broadcast application. GHE-P-1972 (R88-36B and R88-36C): directed at ground.

<sup>b</sup> RT 85&86/88. The study author suggests these two root samples (0.22 and 0.08 mg/kg) have been incorrectly labelled.

#### Beet, BBCH growth stages (Meier, 2001)

39 Crop cover complete: leaves covering 90% of ground.

## Table 27 Haloxyfop residues in rice resulting from supervised trials in the USA

| RICE Application              |                                            |          |                 |                 |            | PHI  | Commodity  | haloxyfop, mg/kg | Ref       |
|-------------------------------|--------------------------------------------|----------|-----------------|-----------------|------------|------|------------|------------------|-----------|
| country,<br>year (variety)    | Form                                       | kg ai/ha | growth<br>stage | water<br>(L/ha) | no.        | days |            |                  |           |
| USA (LA), 1987<br>(Mercury)   | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4–5 leaf        | 94              | 1          | 99   | rice grain | < 0.01           | GH-C 2175 |
| USA (AR), 1987<br>(Newbonnet) | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4 leaf          | 94              | 1          | 109  | rice grain | < 0.01           | GH-C 2175 |
| USA (AR), 1987<br>(Newbonnet) | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.20     | 4 leaf          | 94              | 1          | 109  | rice grain | < 0.01           | GH-C 2175 |
| USA (AR), 1987<br>(Newbonnet) | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4 leaf          | 94              | 1 →        | 113  | rice grain | < 0.01           | GH-C 2175 |
| USA (TX), 1987<br>(Skybonnet) | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4–5 leaf        | 94              | 1          | 93   | rice grain | < 0.01           | GH-C 2175 |
| USA (TX), 1987<br>(Skybonnet) | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4–5 leaf        | 94              | 1 <b>→</b> | 93   | rice grain | < 0.01           | GH-C 2175 |
| USA (LA), 1987<br>(Lemont)    | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4–5 leaf        | 94              | 1          | 93   | rice grain | < 0.01           | GH-C 2175 |
| USA (LA), 1987<br>(Lemont)    | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.20     | 4–5 leaf        | 94              | 1          | 93   | rice grain | < 0.01           | GH-C 2175 |
| USA (LA), 1987<br>(Lemont)    | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4–5 leaf        | 94              | 1 →        | 86   | rice grain | < 0.01           | GH-C 2175 |
| USA (MS), 1987<br>(Lemont)    | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4–5 leaf        | 94              | 1          | 105  | rice grain | < 0.01           | GH-C 2175 |

| RICE Application              |                                            |          |                 |                 |     | PHI  | I Commodity | haloxyfop, mg/kg | Ref       |
|-------------------------------|--------------------------------------------|----------|-----------------|-----------------|-----|------|-------------|------------------|-----------|
| country,<br>year (variety)    | Form                                       | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days |             |                  |           |
| USA (MS), 1987<br>(Lemont)    | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.20     | 4–5 leaf        | 94              | 1   | 105  | rice grain  | < 0.01           | GH-C 2175 |
| USA (AR), 1987<br>(Tebonnet)  | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4 leaf          | 94              | 1   | 104  | rice grain  | < 0.01           | GH-C 2175 |
| USA (AR), 1987<br>(Tebonnet)  | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.20     | 4 leaf          | 94              | 1   | 104  | rice grain  | < 0.01           | GH-C 2175 |
| USA (AR), 1987<br>(Tebonnet)  | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4 leaf          | 75              | 1 → | 101  | rice grain  | < 0.01           | GH-C 2175 |
| USA (AR), 1987<br>(Newbonnet) | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4 leaf          | 94              | 1 → | 107  | rice grain  | < 0.01           | GH-C 2175 |
| USA (AR), 1987<br>(Rexmont)   | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4 leaf          | 94              | 1 → | 99   | rice grain  | < 0.01           | GH-C 2175 |
| USA (CA), 1988<br>(M201)      | WG +<br>surfactant<br>haloxyfop-<br>methyl | 0.10     | 4–5 leaf        | 110             | 1   | 106  | rice grain  | < 0.01           | GH-C 2175 |

| Table 28 Haloy | kyfop residues | in cotton s | seed resulting | from sup | pervised tr | ials in Braz | il, Greece, | Spain |
|----------------|----------------|-------------|----------------|----------|-------------|--------------|-------------|-------|
| and the USA    |                |             |                |          |             |              |             |       |

| COTTON                                          | Application                  |          |                 |                 |     | PHI                             | Commodity                                 | haloxyfop, mg/kg                                              | Ref       |
|-------------------------------------------------|------------------------------|----------|-----------------|-----------------|-----|---------------------------------|-------------------------------------------|---------------------------------------------------------------|-----------|
| country,<br>year (variety)                      | Form                         | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days                            |                                           |                                                               |           |
| Brazil (Mato<br>Grosso), 2000–<br>2001 (CD-404) | EC<br>haloxyfop-P-<br>methyl | 0.12     | first bloom     | 200             | 1   | 98                              | cotton seed                               | 0.47 <u>0.52</u>                                              | GHB-P 733 |
| Brazil (Mato<br>Grosso), 2000–<br>2001 (CD-404) | EC<br>haloxyfop-P-<br>methyl | 0.060    | first bloom     | 200             | 1   | 98                              | cotton seed                               | 0.23 0.30                                                     | GHB-P 733 |
| Brazil (MG),<br>2000–2001<br>(Delta Opal)       | EC<br>haloxyfop-P-<br>methyl | 0.060    | Pre-bloom       | 200             | 1   | 107                             | cotton seed                               | < 0.01 0.01                                                   | GHB-P 730 |
| Brazil (MG),<br>2000–2001<br>(Delta Opal)       | EC<br>haloxyfop-P-<br>methyl | 0.12     | Pre-bloom       | 200             | 1   | 107                             | cotton seed                               | 0.03 <u>0.03</u>                                              | GHB-P 730 |
| Brazil (Parana),<br>1996–1997 (IAC-<br>22)      | EC<br>haloxyfop-P-<br>methyl | 0.060    |                 | 200             | 1   | 122<br>133<br>142               | cotton seed<br>cotton seed<br>cotton seed | < 0 <u>.01</u> (3)<br>< 0.01 (3)<br>< 0.01 (3)                | GHB-P 372 |
| Brazil (Parana),<br>1996–1997 (IAC-<br>22)      | EC<br>haloxyfop-P-<br>methyl | 0.12     |                 | 200             | 1   | 122<br>133<br>142               | cotton seed<br>cotton seed<br>cotton seed | < 0 <u>.01</u> (3)<br>< 0.01 (3)<br>< 0.01 (3)                | GHB-P 372 |
| Brazil (PR),<br>2000–2001<br>(IAPAR-71)         | EC<br>haloxyfop-P-<br>methyl | 0.060    | Pre-bloom       | 200             | 1   | 105<br>116<br>125<br>134<br>145 | cotton seed                               | 0.03 0.03<br>0.04 0.04<br>0.08 0.06<br>0.06 0.08<br>0.03 0.05 | GHB-P 730 |

| COTTON                                  | Application                      |          |                 |                 |     | PHI                             | Commodity                                 | haloxyfop, mg/kg                                              | Ref                                            |
|-----------------------------------------|----------------------------------|----------|-----------------|-----------------|-----|---------------------------------|-------------------------------------------|---------------------------------------------------------------|------------------------------------------------|
| country,<br>year (variety)              | Form                             | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days                            |                                           |                                                               |                                                |
| Brazil (PR),<br>2000–2001<br>(IAPAR-71) | EC<br>haloxyfop-P-<br>methyl     | 0.12     | Pre-bloom       | 200             | 1   | 105<br>116<br>125<br>134<br>145 | cotton seed                               | 0.06 0.06<br>0.06 0.08<br>0.08 0.08<br>0.09 0.07<br>0.05 0.06 | GHB-P 730                                      |
| Brazil (SP),<br>1983–1984 (IAC-<br>17)  | EC + oil<br>haloxyfop-<br>methyl | 0.12     |                 | 360             | 1   | 111                             | cotton seed                               | < 0 <u>.1</u> (4)                                             | GHB-P-034<br>Araras<br>Note <sup>a</sup>       |
| Brazil (SP),<br>1983–1984 (IAC-<br>17)  | EC + oil<br>haloxyfop-<br>methyl | 0.24     |                 | 360             | 1   | 111                             | cotton seed                               | < 0.1 (4)                                                     | GHB-P-034<br>Araras<br>Note <sup>a</sup>       |
| Brazil (SP),<br>1983–1984 (IAC-<br>17)  | EC + oil<br>haloxyfop-<br>methyl | 0.36     |                 | 360             | 1   | 111                             | cotton seed                               | < 0.1 (4)                                                     | GHB-P-034<br>Araras<br>Note <sup>a</sup>       |
| Brazil (SP),<br>1983–1984 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.24     |                 | 370             | 1   | 112                             | cotton seed                               | < 0.1 (3)                                                     | GHB-P-034<br>Miguelopolis<br>Note <sup>a</sup> |
| Brazil (SP),<br>1983–1984 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.36     |                 | 370             | 1   | 112                             | cotton seed                               | < 0.1 (3)                                                     | GHB-P-034<br>Miguelopolis<br>Note <sup>a</sup> |
| Brazil (SP),<br>1983–1984 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.12     |                 | 370             | 1   | 112                             | cotton seed                               | < 0 <u>.1</u> (3)                                             | GHB-P-034<br>Miguelopolis<br>Note <sup>a</sup> |
| Brazil (SP),<br>1984–1985 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.12     |                 | 300             | 1   | 93                              | cotton seed                               | 0.10 0.12 <u>0.15</u> < 0.10                                  | GHB-P-034<br>Guira<br>Note <sup>b</sup>        |
| Brazil (SP),<br>1984–1985 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.24     |                 | 300             | 1   | 93                              | cotton seed                               | 0.14 0.19 0.19 0.20                                           | GHB-P-034<br>Guira<br>Note <sup>b</sup>        |
| Brazil (SP),<br>1984–1985 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.36     |                 | 300             | 1   | 93                              | cotton seed                               | 0.24 0.23 0.26 0.20                                           | GHB-P-034<br>Guira<br>Note <sup>b</sup>        |
| Brazil (SP),<br>1984–1985 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.36     |                 | 300             | 1   | 93                              | cotton seed                               | 0.29 0.21 0.27 0.20                                           | GHB-P-034<br>Guira<br>Note <sup>b</sup>        |
| Brazil (SP),<br>1984–1985 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.12     |                 | 300             | 1   | 101                             | cotton seed                               | < 0 <u>.1</u> (4)                                             | GHB-P-034<br>Miguelopolis<br>Note <sup>b</sup> |
| Brazil (SP),<br>1984–1985 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.24     |                 | 300             | 1   | 101                             | cotton seed                               | 0.13 0.12 0.12 < 0.1                                          | GHB-P-034<br>Miguelopolis<br>Note <sup>b</sup> |
| Brazil (SP),<br>1984–1985 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.36     |                 | 300             | 1   | 101                             | cotton seed                               | 0.15 0.11 0.10 < 0.1                                          | GHB-P-034<br>Miguelopolis<br>Note <sup>b</sup> |
| Brazil (SP),<br>1984–1985 (IAC-<br>19)  | EC + oil<br>haloxyfop-<br>methyl | 0.48     |                 | 300             | 1   | 101                             | cotton seed                               | < 0.1 (3) 0.11                                                | GHB-P-034<br>Miguelopolis<br>Note <sup>b</sup> |
| Brazil (SP),<br>1996–1997 (IAC-<br>22)  | EC<br>haloxyfop-P-<br>methyl     | 0.060    |                 | 200             | 1   | 102<br>113<br>123               | cotton seed<br>cotton seed<br>cotton seed | 0.02 0.01 0.01 < 0.01<br>< 0.01 (4)<br>< 0 <u>.01 (</u> 4)    | GHB-P 372                                      |
| Brazil (SP),<br>1996–1997 (IAC-<br>22)  | EC<br>haloxyfop-P-<br>methyl     | 0.12     |                 | 200             | 1   | 102<br>113<br>123               | cotton seed<br>cotton seed<br>cotton seed | 0.02 0.01 < 0.01 0.01<br>< 0.01 (4)<br>< 0.01 (4)             | GHB-P 372                                      |
| Greece, 1999<br>(McNair)                | EC<br>haloxyfop-P-<br>methyl     | 0.16     | BBCH 28         | 200             | 1   | 90                              | cotton seed                               | 0.29                                                          | GHE-P-9337<br>R99-134D                         |
| Greece, 1999 (T-<br>16)                 | EC<br>haloxyfop-P-<br>methyl     | 0.16     | BBCH 28-<br>29  | 200             | 1   | 91                              | cotton seed                               | 0.22                                                          | GHE-P-9337<br>R99-134C                         |

| COTTON                             | Application                             |              |                                  |                 |        | PHI      | Commodity               | haloxyfop, mg/kg | Ref                      |
|------------------------------------|-----------------------------------------|--------------|----------------------------------|-----------------|--------|----------|-------------------------|------------------|--------------------------|
| country,<br>year (variety)         | Form                                    | kg ai/ha     | growth<br>stage                  | water<br>(L/ha) | no.    | days     |                         |                  |                          |
| Greece, 2000 (T-<br>16)            | EC<br>haloxyfop-P-<br>methyl            | 0.16         | BBCH 23                          | 200             | 1      | 96       | cotton seed             | < 0.02           | GHE-P-8854<br>CEMS-1251A |
| Greece, 2000 (T-<br>16)            | EC<br>haloxyfop-P-<br>methyl            | 0.16         | BBCH 23                          | 200             | 1      | 96       | cotton seed             | 0.03             | GHE-P-8854<br>CEMS-1251B |
| Spain, 1991<br>(Stoneville 506)    | EC<br>haloxyfop-P-<br>methyl            | 0.16         | 8 leaves                         | 300             | 1      | 123      | cotton seed             | < 0.02 (2)       | GHE-P-2802               |
| Spain, 1999<br>(Corona)            | EC<br>haloxyfop-P-<br>methyl            | 0.16         | BBCH 52                          | 310             | 1      | 98       | cotton seed             | 0.14             | GHE-P-9337<br>R99-134B   |
| Spain, 1999 (La<br>Chata)          | EC<br>haloxyfop-P-<br>methyl            | 0.16         | BBCH 52                          | 300             | 1      | 90       | cotton seed             | 0.23             | GHE-P-9337<br>R99-134A   |
| Spain, 2000<br>(Lachata)           | EC<br>haloxyfop-P-<br>methyl            | 0.16         | BBCH 51                          | 200             | 1      | 90       | cotton seed             | 0.04             | GHE-P-8854<br>CEMS-1251D |
| Spain, 2000<br>(Nata)              | EC<br>haloxyfop-P-<br>methyl            | 0.16         | BBCH 51                          | 200             | 1      | 99       | cotton seed             | 0.03             | GHE-P-8854<br>CEMS-1251C |
| USA (AL), 1982<br>(Stoneville 825) | EC+oil<br>haloxyfop-<br>methyl          | 0.56         | early<br>bloom                   | 190             | 1      | 99       | cotton seed             | 0.19             | GH-C 1623                |
| USA (AL), 1982<br>(Stoneville 825) | EC<br>haloxyfop-<br>methyl              | 0.56         | early<br>bloom                   | 190             | 1      | 99       | cotton seed             | 0.14             | GH-C 1623                |
| USA (AR), 1982<br>(Delta Pine 41)  | EC + oil<br>haloxyfop-<br>methyl        | 0.56         | early<br>bloom                   | 190             | 1      | 72       | cotton seed             | 0.84             | GH-C 1623                |
| USA (CA), 1982<br>(Acala SJ-2)     | EC<br>haloxyfop-<br>methyl              | 0.56         | early<br>bloom                   |                 | 1      | 109      | cotton seed             | < 0.05           | GH-C 1623                |
| USA (CA), 1982<br>(Acala SJ-5)     | EC + oil<br>haloxyfop-<br>methyl        | 0.56         | 3 weeks<br>beyond<br>first bloom | 190             | 1      | 96       | cotton seed             | 0.40             | GH-C 1623                |
| USA (LA), 1982<br>(Delta Pine 41)  | EC<br>haloxyfop-<br>methyl              | 0.56         | early<br>bloom                   | 90              | 1      | 89       | cotton seed             | 0.18             | GH-C 1623                |
| USA (MS), 1982<br>(D+PL-55)        | EC<br>haloxyfop-<br>methyl              | 0.56         | early<br>bloom                   | 190             | 1      | 126      | cotton seed             | < 0.05           | GH-C 1623                |
| USA (MS), 1982<br>(D+PL-55)        | EC <sup>c</sup><br>haloxyfop-<br>methyl | 0.56<br>0.56 | early<br>bloom                   | 190<br>190      | 1<br>1 | 84<br>84 | cotton seed cotton seed | 0.82<br>0.93     | GH-C 1623                |
| USA (MS), 1982<br>(D+PL-55)        | EC <sup>c</sup><br>haloxyfop-<br>methyl | 0.56<br>0.56 | early<br>bloom                   | 190<br>190      | 1<br>1 | 77<br>77 | cotton seed cotton seed | 0.81<br>0.80     | GH-C 1623                |
| USA (MS), 1982<br>(Stoneville 825) | EC<br>haloxyfop-<br>methyl              | 0.56         | early<br>bloom                   | 190             | 1      | 98       | cotton seed             | 0.67             | GH-C 1623                |
| USA (NC), 1982<br>(McNair 235)     | EC<br>haloxyfop-<br>methyl              | 0.56         | early<br>bloom                   | 280             | 1      | 103      | cotton seed             | < 0.05           | GH-C 1623                |
| USA (TX), 1982<br>(GSA-71)         | EC<br>haloxyfop-<br>methyl              | 0.56         | early<br>bloom                   | 140             | 1      | 90       | cotton seed             | 0.64             | GH-C 1623                |

| COTTON                     | Application                |          |                 |                 |     | PHI  | Commodity   | haloxyfop, mg/kg | Ref       |
|----------------------------|----------------------------|----------|-----------------|-----------------|-----|------|-------------|------------------|-----------|
| country,<br>year (variety) | Form                       | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days |             |                  |           |
| USA (TX), 1982<br>(SP 21S) | EC<br>haloxyfop-<br>methyl | 0.56     | early<br>bloom  | 220             | 1   | 96   | cotton seed | < 0.05           | GH-C 1623 |

<sup>a</sup> GHB-P-034: Interval of freezer storage before analysis: 29 months.

<sup>b</sup> GHB-P-034. Interval of freezer storage before analysis: 17 months.

<sup>c</sup> GH-C 1623. Comparison of 2 surfactants as adjuvants.

#### Cotton, BBCH growth stages (Meier, 2001)

23 Three vegetative side shoots (2nd order) visible.

28 Eight vegetative side shots visible.

29 Nine or more vegetative side shoots visible.

51 First floral buds detectable ("pin-head square").

52 First floral buds visible("match-head square").

Gardner (1985, GH-C 1749) examined the effect of growth stage at time of application on the haloxyfop residue levels appearing in cotton seed at harvest. In two sets of trials haloxyfop-methyl was applied once to cotton crops at eight different growth stages from 'two true leaves' up to 'seventh week of bloom.' The residue data are summarised in Table 29.

When the residue levels are expressed as a function of growth stage and of interval between treatment and harvest (PHI) as in Figure 8, the growth stage appears to be a better predictor of likely residues.





Figure 8 Effect of application growth stage and PHI on residue levels in cotton seed (Gardner, 1985, GH-C 1749)

| Table  | 29  | Investigation  | of t  | the | effect  | of  | growth    | stage | at  | time | of | application | on | the | magnitude | of |
|--------|-----|----------------|-------|-----|---------|-----|-----------|-------|-----|------|----|-------------|----|-----|-----------|----|
| haloxy | fop | residues in co | otton | see | ed (Gar | dne | er, 1985, | GH-C  | 217 | 749) |    |             |    |     |           |    |

| COTTON                         | Application                  |          |                             |     | PHI  | Commodity   | haloxyfop, mg/kg | Ref       |
|--------------------------------|------------------------------|----------|-----------------------------|-----|------|-------------|------------------|-----------|
| country,<br>year (variety)     | Form                         | kg ai/ha | growth stage                | no. | days |             |                  |           |
| USA (MS), 1983<br>(D + PL55)   | EC + oil<br>haloxyfop-methyl | 0.56     | 2 true leaves               | 1   | 138  | cotton seed | < 0.01 (2)       | GH-C 1749 |
| USA (MS), 1983<br>(D + PL55)   | EC + oil<br>haloxyfop-methyl | 0.56     | 4 true leaves               | 1   | 131  | cotton seed | < 0.01 (2)       | GH-C 1749 |
| USA (MS), 1983<br>(D + PL55)   | EC + oil<br>haloxyfop-methyl | 0.56     | 6 true leaves               | 1   | 123  | cotton seed | 0.01 0.02        | GH-C 1749 |
| USA (MS), 1983<br>(D + PL55)   | EC + oil<br>haloxyfop-methyl | 0.56     | first square                | 1   | 109  | cotton seed | 0.16 0.14        | GH-C 1749 |
| USA (MS), 1983<br>(D + PL55)   | EC + oil<br>haloxyfop-methyl | 0.56     | first week of<br>bloom      | 1   | 98   | cotton seed | 0.30 0.27        | GH-C 1749 |
| USA (MS), 1983<br>(D + PL55)   | EC + oil<br>haloxyfop-methyl | 0.56     | third week of<br>bloom      | 1   | 85   | cotton seed | 0.79 0.45        | GH-C 1749 |
| USA (MS), 1983<br>(D + PL55)   | EC + oil<br>haloxyfop-methyl | 0.56     | fifth week of<br>bloom      | 1   | 70   | cotton seed | 1.7 2.0          | GH-C 1749 |
| USA (MS), 1983<br>(D + PL55)   | EC + oil<br>haloxyfop-methyl | 0.56     | seventh<br>week of<br>bloom | 1   | 56   | cotton seed | 2.0 1.7          | GH-C 1749 |
| USA (MS), 1983<br>(D + PL55)   | control plot                 | 0        |                             | 0   |      | cotton seed | 0.02 < 0.01      | GH-C 1749 |
| USA (CA), 1983<br>(Acola SJ-2) | EC + oil<br>haloxyfop-methyl | 0.56     | 2 true leaves               | 1   | 180  | cotton seed | < 0.01 (2)       | GH-C 1749 |
| USA (CA), 1983<br>(Acola SJ-2) | EC + oil<br>haloxyfop-methyl | 0.56     | 4 true leaves               | 1   | 168  | cotton seed | < 0.01 (2)       | GH-C 1749 |
| USA (CA), 1983<br>(Acola SJ-2) | EC + oil<br>haloxyfop-methyl | 0.56     | 6 true leaves               | 1   | 159  | cotton seed | 0.02 0.02        | GH-C 1749 |
| USA (CA), 1983<br>(Acola SJ-2) | EC + oil<br>haloxyfop-methyl | 0.56     | first square                | 1   | 141  | cotton seed | 0.11 0.12        | GH-C 1749 |
| USA (CA), 1983<br>(Acola SJ-2) | EC + oil<br>haloxyfop-methyl | 0.56     | first week of<br>bloom      | 1   | 132  | cotton seed | 0.35 0.36        | GH-C 1749 |
| USA (CA), 1983<br>(Acola SJ-2) | EC + oil<br>haloxyfop-methyl | 0.56     | third week of<br>bloom      | 1   | 118  | cotton seed | 0.90 0.85        | GH-C 1749 |

| COTTON                         | Application                  |          |                             |     | PHI  | Commodity   | haloxyfop, mg/kg | Ref       |
|--------------------------------|------------------------------|----------|-----------------------------|-----|------|-------------|------------------|-----------|
| country,<br>year (variety)     | Form                         | kg ai/ha | growth stage                | no. | days |             |                  |           |
| USA (CA), 1983<br>(Acola SJ-2) | EC + oil<br>haloxyfop-methyl | 0.56     | fifth week of<br>bloom      | 1   | 105  | cotton seed | 1.1 1.3          | GH-C 1749 |
| USA (CA), 1983<br>(Acola SJ-2) | EC + oil<br>haloxyfop-methyl | 0.56     | seventh<br>week of<br>bloom | 1   | 91   | cotton seed | 2.3 2.2          | GH-C 1749 |
| USA (CA), 1983<br>(Acola SJ-2) | control plot                 | 0        |                             | 0   |      | cotton seed | 0.035 0.039      | GH-C 1749 |

Table 30 Haloxyfop residues in oilseed rape resulting from supervised trials in Australia, France, Germany, Greece, Italy, Poland and Spain

| OILSEED RAPE                                     | Application <sup>a</sup>           |                   |                                 |                 |     | PHI  | Commodity    | haloxyfop, mg/kg   | Ref                    |
|--------------------------------------------------|------------------------------------|-------------------|---------------------------------|-----------------|-----|------|--------------|--------------------|------------------------|
| country,<br>year (variety)                       | Form <sup>c</sup>                  | kg ai/ha          | growth<br>stage                 | water<br>(L/ha) | no. | days |              |                    |                        |
| Australia (NSW),<br>1997 (Canola,<br>Rainbow)    | EC + oil<br>haloxyfop-P-<br>methyl | 0.052             | 1%<br>flowering                 | 100             | 1   | 96   | canola grain | 0.55               | GHF-P 1700<br>97358.04 |
| Australia (NSW),<br>1997 (Canola,<br>Rainbow)    | EC + oil<br>haloxyfop-P-<br>methyl | 0.10              | 1%<br>flowering                 | 100             | 1   | 96   | canola grain | 0.96               | GHF-P 1700<br>97358.04 |
| Australia (NSW),<br>1997–1998<br>(Canola, Oscar) | EC + oil<br>haloxyfop-P-<br>methyl | 0.052             | early<br>flower                 | 100             | 1   | 64   | canola grain | 0.77               | GHF-P 1700<br>97358.03 |
| Australia (NSW),<br>1997–1998<br>(Canola, Oscar) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10              | early<br>flower                 | 100             | 1   | 64   | canola grain | 1.2                | GHF-P 1700<br>97358.03 |
| Australia (SA),<br>1997–1998<br>(Canola, Siren)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.052             | budding,<br>pre-flower          | 100             | 1   | 94   | canola grain | 0.22               | GHF-P 1700<br>97358.02 |
| Australia (SA),<br>1997–1998<br>(Canola, Siren)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.10              | budding,<br>pre-flower          | 100             | 1   | 94   | canola grain | 0.49               | GHF-P 1700<br>97358.02 |
| Australia (WA),<br>1997–1998<br>(Canola, Karoo)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.052             | pre-flower,<br>bud<br>emergence | 100             | 1   | 98   | canola grain | 0.86               | GHF-P 1700<br>97358.01 |
| Australia (WA),<br>1997–1998<br>(Canola, Karoo)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.10              | pre-flower,<br>bud<br>emergence | 100             | 1   | 98   | canola grain | 1.7                | GHF-P 1700<br>97358.01 |
| France, 1988–<br>1989 (Bienvenu)                 | EC<br>haloxyfop-<br>ethoxyethyl    | 0.10<br>directed  | 4–5 leaf                        |                 | 1   | 248  | rape seed    | < 0 <u>.05</u> (2) | GHE-P-1973<br>R89-5B   |
| France, 1988–<br>1989 (Bienvenu)                 | EC<br>haloxyfop-<br>ethoxyethyl    | 0.21<br>directed  | 4–5 leaf                        |                 | 1   | 248  | rape seed    | < 0.05 (2)         | GHE-P-1973<br>R89-5B   |
| France, 1988–<br>1989 (Bienvenu)                 | EC<br>haloxyfop-P-<br>methyl       | 0.052<br>directed | 4–5 leaf                        |                 | 1   | 248  | rape seed    | < 0.05 (2)         | GHE-P-1973<br>R89-5B   |
| France, 1988–<br>1989 (Bienvenu)                 | EC<br>haloxyfop-P-<br>methyl       | 0.10<br>directed  | 4–5 leaf                        |                 | 1   | 248  | rape seed    | < 0 <u>.05</u> (2) | GHE-P-1973<br>R89-5B   |
| France, 1988–<br>1989 (Bienvenu)                 | EC<br>haloxyfop-<br>ethoxyethyl    | 0.10<br>directed  | 4–5 leaf                        |                 | 1   | 261  | rape seed    | < 0 <u>.05</u> (2) | GHE-P-1973<br>R89-5C   |
| France, 1988–<br>1989 (Bienvenu)                 | EC<br>haloxyfop-<br>ethoxyethyl    | 0.21<br>directed  | 4–5 leaf                        |                 | 1   | 261  | rape seed    | < 0.05 (2)         | GHE-P-1973<br>R89-5C   |

| OILSEED RAPE                      | Application <sup>a</sup>                   |                   |                   |                 |     | PHI  | Commodity | haloxyfop, mg/kg   | Ref                           |
|-----------------------------------|--------------------------------------------|-------------------|-------------------|-----------------|-----|------|-----------|--------------------|-------------------------------|
| country,<br>year (variety)        | Form <sup>c</sup>                          | kg ai/ha          | growth<br>stage   | water<br>(L/ha) | no. | days |           |                    |                               |
| France, 1988–<br>1989 (Bienvenu)  | EC<br>haloxyfop-P-<br>methyl               | 0.052<br>directed | 4–5 leaf          |                 | 1   | 261  | rape seed | < 0.05 (2)         | GHE-P-1973<br>R89-5C          |
| France, 1988–<br>1989 (Bienvenu)  | EC<br>haloxyfop-P-<br>methyl               | 0.10<br>directed  | 4–5 leaf          |                 | 1   | 261  | rape seed | < 0 <u>.05</u> (2) | GHE-P-1973<br>R89-5C          |
| France, 1988–<br>1989 (Darmor)    | EC<br>haloxyfop-<br>ethoxyethyl            | 0.10<br>directed  | 8 leaf            | 250             | 1   | 268  | rape seed | < 0 <u>.05</u> (2) | GHE-P-1973<br>R89-5A          |
| France, 1988–<br>1989 (Darmor)    | EC<br>haloxyfop-<br>ethoxyethyl            | 0.21<br>directed  | 8 leaf            | 250             | 1   | 268  | rape seed | < 0.05 (2)         | GHE-P-1973<br>R89-5A          |
| France, 1988–<br>1989 (Darmor)    | EC<br>haloxyfop-P-<br>methyl               | 0.052<br>directed | 8 leaf            | 250             | 1   | 268  | rape seed | < 0.05 (2)         | GHE-P-1973<br>R89-5A          |
| France, 1988–<br>1989 (Darmor)    | EC<br>haloxyfop-P-<br>methyl               | 0.10<br>directed  | 8 leaf            | 250             | 1   | 268  | rape seed | < 0 <u>.05</u> (2) | GHE-P-1973<br>R89-5A          |
| France, 2000<br>(Capitol)         | EC<br>haloxyfop-P-<br>methyl               | 0.055             | BBCH 57           | 200             | 1   | 104  | rape seed | 0.35               | GHE-P-8857<br>CEMS-1254D      |
| France, 2000<br>(Carolus)         | EC<br>haloxyfop-P-<br>methyl               | 0.055             | BBCH 60           | 215             | 1   | 102  | rape seed | 0.51               | GHE-P-8857<br>CEMS-1254C      |
| France, 2000<br>(Pronto)          | EC<br>haloxyfop-P-<br>methyl               | 0.052             | BBCH 50           | 255             | 1   | 102  | rape seed | 0.33               | GHE-P-8858<br>CEMS-1255       |
| France, 2001–<br>2002 (Synergy)   | EC<br>haloxyfop-P-<br>methyl               | 0.097             | BBCH 16           | 190             | 1   | 233  | rape seed | < 0 <u>.01</u>     | GHE-P-10092<br>CEMS-1572A     |
| France, 2001–<br>2002 (Zenith)    | EC<br>haloxyfop-P-<br>methyl               | 0.10              | BBCH 16           | 200             | 1   | 204  | rape seed | < 0 <u>.01</u>     | GHE-P-10092<br>CEMS-1572B     |
| France, 2006<br>(Prima)           | EC<br>haloxyfop-P-<br>methyl               | 0.079             | BBCH 32           | 300             | 1   | 63   | rape seed | <u>1.9</u>         | GHE-P-11656<br>F06W028R<br>T2 |
| France, 2006<br>(Prima)           | EC<br>haloxyfop-P-<br>methyl               | 0.083             | BBCH 39           | 320             | 1   | 63   | rape seed | <u>1.5</u>         | GHE-P-11656<br>F06W028R<br>T3 |
| France, 2006<br>(Prima)           | EC<br>haloxyfop-P-<br>methyl               | 0.085             | BBCH 50           | 330             | 1   | 61   | rape seed | <u>1.1</u>         | GHE-P-11656<br>F06W028R<br>T4 |
| France, 2006<br>(Prima)           | EC<br>haloxyfop-P-<br>methyl               | 0.056             | BBCH 32           | 320             | 1   | 63   | rape seed | 1.2                | GHE-P-11656<br>F06W028R<br>T5 |
| France, 2006<br>(Prima)           | EC<br>haloxyfop-P-<br>methyl               | 0.052             | BBCH 39           | 300             | 1   | 63   | rape seed | 0.78               | GHE-P-11656<br>F06W028R<br>T6 |
| France, 2006<br>(Prima)           | EC<br>haloxyfop-P-<br>methyl               | 0.052             | BBCH 50           | 310             | 1   | 63   | rape seed | 0.75               | GHE-P-11656<br>F06W028R<br>T7 |
| France, 2006<br>(Prima)           | EC +<br>adjuvant<br>haloxyfop-P-<br>methyl | 0.053             | BBCH 32           | 310             | 1   | 61   | rape seed | 1.3                | GHE-P-11656<br>F06W028R<br>T8 |
| Germany, 1988–<br>1989 (Arabella) | EC<br>haloxyfop-P-<br>methyl               | 0.10              | 6 leaf (EC<br>23) | 400             | 1   | 259  | rape seed | < 0 <u>.05</u> (2) | GHE-P-2144<br>R88-21B         |

| OILSEED RAPE                      | Application <sup>a</sup>                   |                      |                   |                 |     | PHI  | Commodity | haloxyfop, mg/kg | Ref                           |
|-----------------------------------|--------------------------------------------|----------------------|-------------------|-----------------|-----|------|-----------|------------------|-------------------------------|
| country,<br>year (variety)        | Form <sup>c</sup>                          | kg ai/ha             | growth<br>stage   | water<br>(L/ha) | no. | days |           |                  |                               |
| Germany, 1988–<br>1989 (Arabella) | EC<br>haloxyfop-<br>ethoxyethyl            | 0.21                 | 6 leaf (EC<br>23) | 400             | 1   | 259  | rape seed | < 0.05 (2)       | GHE-P-2144<br>R88-21B         |
| Germany, 1988–<br>1989 (Arabella) |                                            | 0<br>control<br>plot |                   |                 | 0   | 259  | rape seed | < 0.05 (2)       | GHE-P-2144<br>R88-21B         |
| Germany, 1988–<br>1989 (Ceres)    | EC<br>haloxyfop-P-<br>methyl               | 0.10                 | 6 leaf (EC<br>23) | 400             | 1   | 272  | rape seed | 0.07 <u>0.07</u> | GHE-P-2144<br>R88-21A         |
| Germany, 1988–<br>1989 (Ceres)    | EC<br>haloxyfop-<br>ethoxyethyl            | 0.21                 | 6 leaf (EC<br>23) | 400             | 1   | 272  | rape seed | 0.13 0.13        | GHE-P-2144<br>R88-21A         |
| Germany, 1988–<br>1989 (Ceres)    |                                            | 0<br>control<br>plot |                   |                 | 0   | 272  | rape seed | < 0.05 (2)       | GHE-P-2144<br>R88-21A         |
| Germany, 2000<br>(Mohican)        | EC<br>haloxyfop-P-<br>methyl               | 0.051                | BBCH 50           | 255             | 1   | 113  | rape seed | 0.42             | GHE-P-8857<br>CEMS-1254A      |
| Germany, 2000<br>(Zenith)         | EC<br>haloxyfop-P-<br>methyl               | 0.052                | BBCH 50           | 300             | 1   | 113  | rape seed | 0.35             | GHE-P-8857<br>CEMS-1254B      |
| Germany, 2006<br>(Heros)          | EC<br>haloxyfop-P-<br>methyl               | 0.081                | BBCH 32           | 310             | 1   | 97   | rape seed | 0.11             | GHE-P-11657<br>G06W018R<br>T2 |
| Germany, 2006<br>(Heros)          | EC<br>haloxyfop-P-<br>methyl               | 0.084                | BBCH 39           | 320             | 1   | 92   | rape seed | 0.10             | GHE-P-11657<br>G06W018R<br>T3 |
| Germany, 2006<br>(Heros)          | EC<br>haloxyfop-P-<br>methyl               | 0.075                | BBCH 50           | 290             | 1   | 91   | rape seed | 0.37             | GHE-P-11657<br>G06W018R<br>T4 |
| Germany, 2006<br>(Heros)          | EC<br>haloxyfop-P-<br>methyl               | 0.055                | BBCH 32           | 320             | 1   | 97   | rape seed | 0.065            | GHE-P-11657<br>G06W018R<br>T5 |
| Germany, 2006<br>(Heros)          | EC<br>haloxyfop-P-<br>methyl               | 0.054                | BBCH 39           | 310             | 1   | 92   | rape seed | 0.055            | GHE-P-11657<br>G06W018R<br>T6 |
| Germany, 2006<br>(Heros)          | EC<br>haloxyfop-P-<br>methyl               | 0.052                | BBCH 50           | 300             | 1   | 91   | rape seed | 0.17             | GHE-P-11657<br>G06W018R<br>T7 |
| Germany, 2006<br>(Heros)          | EC +<br>adjuvant<br>haloxyfop-P-<br>methyl | 0.055                | BBCH 32           | 320             | 1   | 97   | rape seed | 0.065            | GHE-P-11657<br>G06W018R<br>T8 |
| Germany, 2006<br>(Oase)           | EC<br>haloxyfop-P-<br>methyl               | 0.082                | BBCH 32           | 310             | 1   | 88   | rape seed | < 0 <u>.01</u>   | GHE-P-11657<br>G06W017R<br>T2 |
| Germany, 2006<br>(Oase)           | EC<br>haloxyfop-P-<br>methyl               | 0.078                | BBCH 39           | 300             | 1   | 85   | rape seed | 0.57             | GHE-P-11657<br>G06W017R<br>T3 |
| Germany, 2006<br>(Oase)           | EC<br>haloxyfop-P-<br>methyl               | 0.085                | BBCH 50           | 330             | 1   | 82   | rape seed | 0.43             | GHE-P-11657<br>G06W017R<br>T4 |
| Germany, 2006<br>(Oase)           | EC<br>haloxyfop-P-<br>methyl               | 0.053                | BBCH 32           | 310             | 1   | 88   | rape seed | < 0.01           | GHE-P-11657<br>G06W017R<br>T5 |
| Germany, 2006<br>(Oase)           | EC<br>haloxyfop-P-<br>methyl               | 0.056                | BBCH 39           | 320             | 1   | 85   | rape seed | 0.49             | GHE-P-11657<br>G06W017R<br>T6 |

| OILSEED RAPE                  | Application <sup>a</sup>                   | -        |                 | _               |     | PHI  | Commodity | haloxyfop, mg/kg | Ref                            |
|-------------------------------|--------------------------------------------|----------|-----------------|-----------------|-----|------|-----------|------------------|--------------------------------|
| country,<br>year (variety)    | Form <sup>c</sup>                          | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days |           |                  |                                |
| Germany, 2006<br>(Oase)       | EC<br>haloxyfop-P-<br>methyl               | 0.055    | BBCH 50         | 310             | 1   | 82   | rape seed | 0.52             | GHE-P-11657<br>G06W017R<br>T7  |
| Germany, 2006<br>(Oase)       | EC +<br>adjuvant<br>haloxyfop-P-<br>methyl | 0.054    | BBCH 32         | 310             | 1   | 88   | rape seed | 0.43             | GHE-P-11657<br>G06W017R<br>T8  |
| Greece, 2006<br>(Licosmos)    | EC<br>haloxyfop-P-<br>methyl               | 0.081    | BBCH 32         | 210             | 1   | 80   | rape seed | 1.8              | GHE-P-11656<br>GR06W013R<br>T2 |
| Greece, 2006<br>(Licosmos)    | EC<br>haloxyfop-P-<br>methyl               | 0.076    | BBCH 39         | 290             | 1   | 69   | rape seed | 2.7              | GHE-P-11656<br>GR06W013R<br>T3 |
| Greece, 2006<br>(Licosmos)    | EC<br>haloxyfop-P-<br>methyl               | 0.079    | BBCH 50-<br>63  | 300             | 1   | 65   | rape seed | 2.4              | GHE-P-11656<br>GR06W013R<br>T4 |
| Greece, 2006<br>(Licosmos)    | EC<br>haloxyfop-P-<br>methyl               | 0.052    | BBCH 32         | 200             | 1   | 80   | rape seed | 0.37             | GHE-P-11656<br>GR06W013R<br>T5 |
| Greece, 2006<br>(Licosmos)    | EC<br>haloxyfop-P-<br>methyl               | 0.052    | BBCH 39         | 300             | 1   | 69   | rape seed | 1.5              | GHE-P-11656<br>GR06W013R<br>T6 |
| Greece, 2006<br>(Licosmos)    | EC<br>haloxyfop-P-<br>methyl               | 0.051    | BBCH 50-<br>63  | 290             | 1   | 65   | rape seed | 2.9              | GHE-P-11656<br>GR06W013R<br>T7 |
| Greece, 2006<br>(Licosmos)    | EC +<br>adjuvant<br>haloxyfop-P-<br>methyl | 0.054    | BBCH 32         | 210             | 1   | 80   | rape seed | 1.4              | GHE-P-11656<br>GR06W013R<br>T8 |
| Italy, 2006<br>(Heros)        | EC<br>haloxyfop-P-<br>methyl               | 0.082    | BBCH 32         | 319             | 1   | 60   | rape seed | 0.68             | GHE-P-11656<br>I06W023R T2     |
| Italy, 2006<br>(Heros)        | EC<br>haloxyfop-P-<br>methyl               | 0.078    | BBCH 39         | 300             | 1   | 57   | rape seed | 0.72             | GHE-P-11656<br>I06W023R T3     |
| Italy, 2006<br>(Heros)        | EC<br>haloxyfop-P-<br>methyl               | 0.078    | BBCH 50         | 300             | 1   | 53   | rape seed | 1.4              | GHE-P-11656<br>I06W023R T4     |
| Italy, 2006<br>(Heros)        | EC<br>haloxyfop-P-<br>methyl               | 0.051    | BBCH 32         | 290             | 1   | 60   | rape seed | 0.56             | GHE-P-11656<br>I06W023R T5     |
| Italy, 2006<br>(Heros)        | EC<br>haloxyfop-P-<br>methyl               | 0.052    | BBCH 39         | 300             | 1   | 57   | rape seed | 0.46             | GHE-P-11656<br>I06W023R T6     |
| Italy, 2006<br>(Heros)        | EC<br>haloxyfop-P-<br>methyl               | 0.052    | BBCH 50         | 300             | 1   | 53   | rape seed | 0.79             | GHE-P-11656<br>I06W023R T7     |
| Italy, 2006<br>(Heros)        | EC +<br>adjuvant<br>haloxyfop-P-<br>methyl | 0.054    | BBCH 32         | 310             | 1   | 60   | rape seed | 0.70             | GHE-P-11656<br>I06W023R T8     |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl               | 0.082    | BBCH 32         | 320             | 1   | 92   | rape seed | 0.33             | GHE-P-11657<br>PL06W009R<br>T2 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl               | 0.080    | BBCH 39         | 310             | 1   | 89   | rape seed | 0.42             | GHE-P-11657<br>PL06W009R<br>T3 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl               | 0.084    | BBCH 50         | 320             | 1   | 87   | rape seed | 0.62             | GHE-P-11657<br>PL06W009R<br>T4 |

| OILSEED RAPE                  | Application <sup>a</sup>                   |          |                 |                 |     | PHI  | Commodity              | haloxyfop, mg/kg | Ref                            |
|-------------------------------|--------------------------------------------|----------|-----------------|-----------------|-----|------|------------------------|------------------|--------------------------------|
| country,<br>year (variety)    | Form <sup>c</sup>                          | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days |                        |                  |                                |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl               | 0.051    | BBCH 32         | 300             | 1   | 92   | rape seed              | 0.21             | GHE-P-11657<br>PL06W009R<br>T5 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl               | 0.055    | BBCH 39         | 320             | 1   | 89   | rape seed              | 0.27             | GHE-P-11657<br>PL06W009R<br>T6 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl               | 0.052    | BBCH 50         | 300             | 1   | 87   | rape seed              | 0.35             | GHE-P-11657<br>PL06W009R<br>T7 |
| Poland, 2006<br>(Californium) | EC +<br>adjuvant<br>haloxyfop-P-<br>methyl | 0.052    | BBCH 32         | 300             | 1   | 87   | rape seed              | 0.24             | GHE-P-11657<br>PL06W009R<br>T8 |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl               | 0.079    | BBCH 32         | 300             | 1   | 147  | rape seed <sup>b</sup> | 0.02             | GHE-P-11656<br>S06W027R<br>T2  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl               | 0.077    | BBCH 39         | 300             | 1   | 141  | rape seed <sup>b</sup> | 0.03             | GHE-P-11656<br>S06W027R<br>T3  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl               | 0.077    | BBCH 50         | 290             | 1   | 134  | rape seed <sup>b</sup> | 0.087            | GHE-P-11656<br>S06W027R<br>T4  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl               | 0.056    | BBCH 32         | 320             | 1   | 147  | rape seed <sup>b</sup> | 0.02             | GHE-P-11656<br>S06W027R<br>T5  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl               | 0.053    | BBCH 39         | 300             | 1   | 141  | rape seed <sup>b</sup> | 0.02             | GHE-P-11656<br>S06W027R<br>T6  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl               | 0.053    | BBCH 50         | 300             | 1   | 134  | rape seed <sup>b</sup> | 0.03             | GHE-P-11656<br>S06W027R<br>T7  |
| Spain, 2006<br>(Tracia)       | EC +<br>adjuvant<br>haloxyfop-P-<br>methyl | 0.052    | BBCH 32         | 300             | 1   | 147  | rape seed <sup>b</sup> | 0.01             | GHE-P-11656<br>S06W027R<br>T8  |

<sup>a</sup> Directed: spray directed at ground.

<sup>b</sup> Plants were dried at 30 °C in a drying oven for 40 hours and separated afterwards by threshing.

<sup>c</sup> Adjuvant used in European trials: rapeseed oil.

## Oilseed rape, BBCH growth stages (Meier, 2001)

- 16 Six leaves unfolded.
- 32 Two visibly extended internodes.
- 39 Nine or more visibly extended internodes.
- 50 Flower buds present, still enclosed by leaves.
- 57 Individual flower buds (secondary inflorescences) visible but still closed.
- 60 First flowers open.
- 63 30% of flowers on main raceme open.

| PEANUTS                              | Application            |          |                    |         |     | PHI  | Commodity | haloxyfop, mg/kg | Ref                           |
|--------------------------------------|------------------------|----------|--------------------|---------|-----|------|-----------|------------------|-------------------------------|
| country,                             | Form                   | kg ai/ha | growth             | water   | no. | days |           |                  |                               |
| Argenting                            | FC                     | 0.045    | stage              | (L/na)  | 1   | 153  | peopute   | < 0.02(3)        | CHB D 203                     |
| (Cordoba), 1991–                     | haloxyfop-P-           | 0.045    | after              | 200     | 1   | 155  | peanuts   | < 0.02 (3)       | Acequias                      |
| 1992 (Florunner)                     | methyl                 |          | emergence          |         |     |      |           |                  | Note <sup>a</sup>             |
| Argentina                            | EC                     | 0.045    | 45 days            | 200     | 1   | 143  | peanuts   | < 0.02 (3)       | GHB-P 293                     |
| (Cordoba), 1991–<br>1992 (Florunner) | naloxylop-P-<br>methyl |          | atter<br>emergence |         |     |      |           |                  | Acequias<br>Note <sup>a</sup> |
| Argentina                            | EC                     | 0.045    | 53 days            | 200     | 1   | 135  | peanuts   | < 0.02 (3)       | GHB-P 293                     |
| (Cordoba), 1991-                     | haloxyfop-P-           |          | after              |         |     |      |           |                  | Acequias                      |
| 1992 (Florunner)                     | methyl                 | 0.000    | emergence          | 200     | 1   | 152  |           | 10.02 (2)        | Note "                        |
| Argentina<br>(Cordoba), 1991–        | EC<br>haloxyfop-P-     | 0.090    | 35 days<br>after   | 200     | 1   | 155  | peanuts   | < 0.02 (3)       | GHB-P 293<br>Acequias         |
| 1992 (Florunner)                     | methyl                 |          | emergence          |         |     |      |           |                  | Note <sup>a</sup>             |
| Argentina                            | EC                     | 0.090    | 45 days            | 200     | 1   | 143  | peanuts   | < 0.02 (3)       | GHB-P 293                     |
| (Cordoba), 1991–                     | haloxyfop-P-           |          | after              |         |     |      |           |                  | Acequias<br>Note <sup>a</sup> |
| Argentina                            | EC                     | 0.090    | 53 davs            | 200     | 1   | 135  | peanuts   | 0.02 < 0.02 (2)  | GHB-P 293                     |
| (Cordoba), 1991–                     | haloxyfop-P-           |          | after              |         | _   |      | r         |                  | Acequias                      |
| 1992 (Florunner)                     | methyl                 |          | emergence          | • • • • |     | 10-  |           |                  | Note <sup>a</sup>             |
| Argentina<br>(Cordoba) 1991–         | EC<br>haloxyfon-P-     | 0.045    | 35 and<br>81 days  | 200     | 2   | 107  | peanuts   | 0.02 < 0.02 (2)  | GHB-P 293<br>Acequias         |
| (Cordoba), 1991–<br>1992 (Florunner) | methyl                 |          | after              |         |     |      |           |                  | Note <sup>a</sup>             |
|                                      | -                      |          | emergence          |         |     |      |           |                  |                               |
| Argentina                            | EC                     | 0.045    | 45 and             | 200     | 2   | 97   | peanuts   | < 0.02 (3)       | GHB-P 293                     |
| (Cordoba), 1991–<br>1992 (Florunner) | matoxytop-P-           |          | 91 days<br>after   |         |     |      |           |                  | Acequias<br>Note <sup>a</sup> |
| (1101000)                            |                        |          | emergence          |         |     |      |           |                  | 1,000                         |
| Argentina                            | EC                     | 0.045    | 53 and             | 200     | 2   | 85   | peanuts   | < 0.02 (2) 0.02  | GHB-P 293                     |
| (Cordoba), 1991 - 1992 (Elorupper)   | haloxytop-P-           |          | 103 days           |         |     |      |           |                  | Acequias                      |
|                                      | metnyi                 |          | emergence          |         |     |      |           |                  | 11010                         |
| Argentina                            | EC                     | 0.045    | 35 and             | 200     | 2   | 107  | peanuts   | 0.03 0.03 0.03   | GHB-P 293                     |
| (Cordoba), 1991–                     | haloxyfop-P-           |          | 81 days            |         |     |      |           |                  | Acequias                      |
| 1992 (Florunner)                     | methyi                 |          | emergence          |         |     |      |           |                  | note                          |
| Argentina                            | EC                     | 0.045    | 45 and             | 200     | 2   | 97   | peanuts   | 0.03 0.02 0.03   | GHB-P 293                     |
| (Cordoba), 1991–                     | haloxyfop-P-           |          | 91 days            |         |     |      |           |                  | Acequias                      |
| 1992 (Florunner)                     | metnyi                 |          | atter<br>emergence |         |     |      |           |                  | Note                          |
| Argentina                            | EC                     | 0.045    | 53 and             | 200     | 2   | 85   | peanuts   | 0.02 0.02 0.03   | GHB-P 293                     |
| (Cordoba), 1991-                     | haloxyfop-P-           |          | 103 days           |         |     |      | -         |                  | Acequias                      |
| 1992 (Florunner)                     | methyl                 |          | after              |         |     |      |           |                  | Note "                        |
| Argentina                            | EC                     | 0.045    | 35 davs            | 200     | 1   | 163  | peanuts   | < 0.02 (3)       | GHB-P 293                     |
| (Cordoba), 1991–                     | haloxyfop-P-           |          | after              |         | _   |      | r         | (2)              | Coronel                       |
| 1992 (Florunner)                     | methyl                 | 0.045    | emergence          | 200     | 1   | 1.50 |           |                  | Note <sup>a</sup>             |
| Argentina<br>(Cordoba) 1991–         | EC<br>haloxyfon-P-     | 0.045    | 45 days<br>after   | 200     | 1   | 153  | peanuts   | < 0.02 (3)       | GHB-P 293<br>Coronel          |
| 1992 (Florunner)                     | methyl                 |          | emergence          |         |     |      |           |                  | Note <sup>a</sup>             |
| Argentina                            | EC                     | 0.045    | 57 days            | 200     | 1   | 141  | peanuts   | < 0.02 (3)       | GHB-P 293                     |
| (Cordoba), 1991–                     | haloxyfop-P-           |          | after              |         |     |      |           |                  | Coronel<br>Note <sup>a</sup>  |
| Argentina                            | EC                     | 0.090    | 35 davs            | 200     | 1   | 163  | peanuts   | < 0.02 (3)       | GHB-P 293                     |
| (Cordoba), 1991–                     | haloxyfop-P-           |          | after              |         |     |      | 1         |                  | Coronel                       |
| 1992 (Florunner)                     | methyl                 | 0.007    | emergence          |         |     |      |           |                  | Note <sup>a</sup>             |
| Argentina                            | EC<br>haloxyfon P      | 0.090    | 45 days<br>after   | 200     | 1   | 153  | peanuts   | < 0.02 (3)       | GHB-P 293<br>Coronel          |
| 1992 (Florunner)                     | methyl                 |          | emergence          |         |     |      |           |                  | Note <sup>a</sup>             |

# Table 31 Haloxyfop residues in peanuts resulting from supervised trials in Argentina and Australia

| PEANUTS                                           | Application                  |          |                                          |                 |     | PHI  | Commodity | haloxyfop, mg/kg   | Ref                                         |
|---------------------------------------------------|------------------------------|----------|------------------------------------------|-----------------|-----|------|-----------|--------------------|---------------------------------------------|
| country,<br>year (variety)                        | Form                         | kg ai/ha | growth<br>stage                          | water<br>(L/ha) | no. | days |           |                    |                                             |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.090    | 57 days<br>after<br>emergence            | 200             | 1   | 141  | peanuts   | < 0.02 (3)         | GHB-P 293<br>Coronel<br>Note <sup>a</sup>   |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.045    | 35 and<br>83 days<br>after<br>emergence  | 200             | 2   | 115  | peanuts   | < 0.02 (3)         | GHB-P 293<br>Coronel<br>Note <sup>a</sup>   |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.045    | 45 and<br>97 days<br>after<br>emergence  | 200             | 2   | 101  | peanuts   | < 0.02 (3)         | GHB-P 293<br>Coronel<br>Note <sup>a</sup>   |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.045    | 57 and<br>107 days<br>after<br>emergence | 200             | 2   | 91   | peanuts   | < 0.02 (3)         | GHB-P 293<br>Coronel<br>Note <sup>a</sup>   |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.090    | 35 and<br>83 days<br>after<br>emergence  | 200             | 2   | 115  | peanuts   | 0.03 0.03 0.02     | GHB-P 293<br>Coronel<br>Note <sup>a</sup>   |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.090    | 45 and<br>97 days<br>after<br>emergence  | 200             | 2   | 101  | peanuts   | < 0.02 0.02 < 0.02 | GHB-P 293<br>Coronel<br>Note <sup>a</sup>   |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.090    | 57 and<br>107 days<br>after<br>emergence | 200             | 2   | 91   | peanuts   | < 0.02 (3)         | GHB-P 293<br>Coronel<br>Note <sup>a</sup>   |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.045    | 48 days<br>after<br>emergence            | 200             | 1   | 131  | peanuts   | < 0.02 (3)         | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.045    | 54 days<br>after<br>emergence            | 200             | 1   | 125  | peanuts   | < 0.02 (3)         | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.090    | 35 days<br>after<br>emergence            | 200             | 1   | 144  | peanuts   | < 0.02 (3)         | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.090    | 48 days<br>after<br>emergence            | 200             | 1   | 131  | peanuts   | < 0.02 (3)         | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.090    | 54 days<br>after<br>emergence            | 200             | 1   | 125  | peanuts   | < 0.02 (3)         | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.045    | 35 and<br>85 days<br>after<br>emergence  | 200             | 2   | 94   | peanuts   | < 0.02 (3)         | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |
| Argentina<br>(Cordoba), 1991–<br>92 (Florunner)   | EC<br>haloxyfop-P-<br>methyl | 0.045    | 48 and<br>95 days<br>after<br>emergence  | 200             | 2   | 84   | peanuts   | < 0.02 (3)         | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.045    | 54 and<br>105 days<br>after<br>emergence | 200             | 2   | 74   | peanuts   | < 0.02 (3)         | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl | 0.090    | 35 and<br>85 days<br>after<br>emergence  | 200             | 2   | 94   | peanuts   | < 0.02 (2) 0.03    | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |

| PEANUTS                                           | Application                        |          |                                          |                 |     | PHI  | Commodity | haloxyfop, mg/kg | Ref                                         |  |
|---------------------------------------------------|------------------------------------|----------|------------------------------------------|-----------------|-----|------|-----------|------------------|---------------------------------------------|--|
| country,<br>year (variety)                        | Form                               | kg ai/ha | growth<br>stage                          | water<br>(L/ha) | no. | days |           |                  |                                             |  |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl       | 0.090    | 48 and<br>95 days<br>after<br>emergence  | 200             | 2   | 84   | peanuts   | 0.02 < 0.02 (2)  | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |  |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl       | 0.090    | 54 and<br>105 days<br>after<br>emergence | 200             | 2   | 74   | peanuts   | 0.02 < 0.02 (2)  | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |  |
| Argentina<br>(Cordoba), 1991–<br>1992 (Florunner) | EC<br>haloxyfop-P-<br>methyl       | 0.045    | 35 days<br>after<br>emergence            | 200             | 1   | 144  | peanuts   | < 0.02 (3)       | GHB-P 293<br>Espinillo<br>Note <sup>a</sup> |  |
| Australia (Qld),<br>1997–1998 (A46)               | EC + oil<br>haloxyfop-P-<br>methyl | 0.078    | 4–6 leaf<br>pegging                      | 100             | 2   | 56   | peanuts   | 0.02             | GHF-P 1773<br>974040GW                      |  |
| Australia (Qld),<br>1997–1998 (A46)               | EC + oil<br>haloxyfop-P-<br>methyl | 0.16     | 4–6 leaf<br>pegging                      | 100             | 2   | 56   | peanuts   | 0.03             | GHF-P 1773<br>974040GW                      |  |
| Australia (Qld),<br>1997–1998<br>(Streeton)       | EC + oil<br>haloxyfop-P-<br>methyl | 0.078    | 5–6 leaf<br>pegging                      | 100             | 2   | 56   | peanuts   | 0.02             | GHF-P 1773<br>974039GW                      |  |
| Australia (Qld),<br>1997–1998<br>(Streeton)       | EC + oil<br>haloxyfop-P-<br>methyl | 0.16     | 5–6 leaf<br>pegging                      | 100             | 2   | 56   | peanuts   | 0.05             | GHF-P 1773<br>974039GW                      |  |
| Australia (Qld),<br>1997–98<br>(Streeton)         | EC + oil<br>haloxyfop-P-<br>methyl | 0.078    | 6–8 leaf<br>late<br>pegging              | 100             | 2   | 56   | peanuts   | < 0 <u>.02</u>   | GHF-P 1773<br>974042GW                      |  |
| Australia (Qld),<br>1997–1998<br>(Streeton)       | EC + oil<br>haloxyfop-P-<br>methyl | 0.16     | 6–8 leaf<br>late<br>pegging              | 100             | 2   | 56   | peanuts   | 0.03             | GHF-P 1773<br>974042GW                      |  |
| Australia (Qld),<br>1997–1998<br>(White Spanish)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.078    | 6–7 leaf<br>late<br>pegging              | 100             | 2   | 56   | peanuts   | < 0 <u>.02</u>   | GHF-P 1773<br>974043GW                      |  |
| Australia (Qld),<br>1997–1998<br>(White Spanish)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.16     | 6–7 leaf<br>late<br>pegging              | 100             | 2   | 56   | peanuts   | < 0.02           | GHF-P 1773<br>974043GW                      |  |

<sup>a</sup> GHB-P 293. Interval of freezer storage before analysis: 42 months.

| SUNFLOWER                  | Application <sup>a b</sup>   |                                           |                      |      |   | PHI | Commodity      | haloxyfop, mg/kg | Ref                  |
|----------------------------|------------------------------|-------------------------------------------|----------------------|------|---|-----|----------------|------------------|----------------------|
| country,<br>year (variety) | Form                         | kg ai/ha growth water<br>stage (L/ha) no. |                      | days |   |     |                |                  |                      |
| Argentina, 1991–           | EC                           | 0.18                                      | PS 26 days           | 200  | 1 | 100 | sunflower seed | 0.01             | GHB-P 199            |
| 1992 (Cargill              | haloxyfop-P-                 | 0.18                                      | PS 37 days           | 200  | 1 | 89  | sunflower seed | 0.01             | Note <sup>c</sup>    |
| 407)                       | methyl                       | 0.18                                      | PS 47 days           | 200  | 1 | 79  | sunflower seed | 0.14             |                      |
| Argentina, 1991–           | EC<br>haloxyfop-P-           | 0.090                                     | PS 26 days           | 200  | 1 | 100 | sunflower seed | 0.01             | GHB-P 199            |
| 1992 (Cargill              |                              | 0.090                                     | PS 37 days           | 200  | 1 | 89  | sunflower seed | 0.01             | Note <sup>c</sup>    |
| 407)                       | methyl                       | 0.090                                     | PS 47 days           | 200  | 1 | 79  | sunflower seed | 0.05             |                      |
| France, 1988<br>(Cargisol) | EC<br>haloxyfop-P-<br>methyl | 0.050                                     | 3 pairs of<br>leaves | 330  | 1 | 118 | sunflower seed | < 0.05           | GHE-P-2059<br>R88-37 |
| France, 1988<br>(Cargisol) | EC<br>haloxyfop-P-<br>methyl | 0.10                                      | 3 pairs of leaves    | 330  | 1 | 118 | sunflower seed | < 0 <u>.05</u>   | GHE-P-2059<br>R88-37 |

Table 32 Haloxyfop residues in sunflower seed resulting from supervised trials in Argentina, France, Germany, Greece and Spain

| SUNFLOWER                    | Application <sup>a b</sup>      |          |                      |                 |     | PHI  | Commodity       | haloxyfop, mg/kg | Ref                      |  |
|------------------------------|---------------------------------|----------|----------------------|-----------------|-----|------|-----------------|------------------|--------------------------|--|
| country,<br>year (variety)   | Form                            | kg ai/ha | growth<br>stage      | water<br>(L/ha) | no. | days |                 |                  |                          |  |
| France, 1988<br>(Cargisol)   | EC<br>haloxyfop-<br>ethoxyethyl | 0.10     | 3 pairs of<br>leaves | 330             | 1   | 118  | sunflower seed  | < 0 <u>.05</u>   | GHE-P-2059<br>R88-37     |  |
| France, 1988<br>(Cargisol)   | EC<br>haloxyfop-<br>ethoxyethyl | 0.20     | 3 pairs of<br>leaves | 330             | 1   | 118  | sunflower seed  | <u>0.09</u>      | GHE-P-2059<br>R88-37     |  |
| France, 1989<br>(Agrisol)    | EC<br>haloxyfop-P-<br>methyl    | 0.050    | 6 pairs of<br>leaves | 330             | 1   | 105  | sunflower seed  | < 0.05           | GHE-P-2059<br>R89-8A     |  |
| France, 1989<br>(Agrisol)    | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 6 pairs of<br>leaves | 330             | 1   | 105  | sunflower seed  | <u>&lt; 0.05</u> | GHE-P-2059<br>R89-8A     |  |
| France, 1989<br>(Agrisol)    | EC<br>haloxyfop-<br>ethoxyethyl | 0.10     | 6 pairs of<br>leaves | 330             | 1   | 105  | sunflower seed  | < 0 <u>.05</u>   | GHE-P-2059<br>R89-8A     |  |
| France, 1989<br>(Agrisol)    | EC<br>haloxyfop-<br>ethoxyethyl | 0.20     | 6 pairs of<br>leaves | 330             | 1   | 105  | sunflower seed  | <u>0.07</u>      | GHE-P-2059<br>R89-8A     |  |
| France, 1989<br>(Albena)     | EC<br>haloxyfop-P-<br>methyl    | 0.050    | 8 pairs of<br>leaves | 330             | 1   | 89   | sunflower seed  | < 0.05           | GHE-P-2059<br>R89-8B     |  |
| France, 1989<br>(Albena)     | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 8 pairs of<br>leaves | 330             | 1   | 89   | sunflower seed  | 0.07             | GHE-P-2059<br>R89-8B     |  |
| France, 1989<br>(Albena)     | EC<br>haloxyfop-<br>ethoxyethyl | 0.10     | 8 pairs of<br>leaves | 330             | 1   | 89   | sunflower seed  | 0.05             | GHE-P-2059<br>R89-8B     |  |
| France, 1989<br>(Albena)     | EC<br>haloxyfop-<br>ethoxyethyl | 0.20     | 8 pairs of<br>leaves | 330             | 1   | 89   | sunflower seed  | 0.16             | GHE-P-2059<br>R89-8B     |  |
| France, 1999<br>(Albena)     | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 32              | 300             | 1   | 98   | sunflower seed  | 0.10             | GHE-P 8999<br>R99-136B   |  |
| France, 1999<br>(Sanluca)    | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 31              | 300             | 1   | 114  | sunflower seed  | <u>0.06</u> Note | GHE-P 8999<br>R99-136A   |  |
| France, 2000<br>(Allstar RM) | EC<br>haloxyfop-P-<br>methyl    | 0.15     | BBCH 20              | 290             | 1   | 81   | sunflower seed  | 0.14             | GHE-P 8861<br>CEMS-1259A |  |
| France, 2000<br>(Melody)     | EC<br>haloxyfop-P-<br>methyl    | 0.15     | BBCH 20              | 290             | 1   | 89   | sunflower seed  | < 0 <u>.05</u>   | GHE-P 8861<br>CEMS-1259B |  |
| France, 2001<br>(Albena)     | EC<br>haloxyfop-P-<br>methyl    | 0.15     | BBCH 19-<br>20       | 290             | 1   | 75   | sunflower seed  | <u>0.05</u>      | GHE-P-9784<br>CEMS-1571A |  |
| Germany, 2000<br>(Alnika)    | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 30              | 290             | 1   | 123  | sunflower plant | < 0 <u>.05</u>   | GHE-P 8860<br>CEMS-1258B |  |
| Germany, 2000<br>(Alnika)    | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 30              | 290             | 1   | 123  | sunflower seed  | < 0 <u>.05</u>   | GHE-P 8860<br>CEMS-1258B |  |
| Germany, 2000<br>(Coril)     | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 33              | 370             | 1   | 84   | sunflower seed  | 0.17             | GHE-P 8860<br>CEMS-1258A |  |
| Germany, 2000<br>(Coril)     | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 33              | 370             | 1   | 84   | sunflower plant | 0.17             | GHE-P 8860<br>CEMS-1258A |  |
| Greece, 2001<br>(Sena)       | EC<br>haloxyfop-P-<br>methyl    | 0.15     | BBCH 20              | 300             | 1   | 107  | sunflower seed  | < 0 <u>.05</u>   | GHE-P-9784<br>CEMS-1571C |  |

| SUNFLOWER                  | Application <sup>a b</sup>   |          |                 |                 |       | PHI  | Commodity      | haloxyfop, mg/kg | Ref                      |
|----------------------------|------------------------------|----------|-----------------|-----------------|-------|------|----------------|------------------|--------------------------|
| country,<br>year (variety) | Form                         | kg ai/ha | growth<br>stage | water<br>(L/ha) | no.   | days |                |                  |                          |
| Greece, 2001<br>(Sena)     | EC<br>haloxyfop-P-<br>methyl | 0.15     | BBCH 20         | 290             | 1     | 76   | sunflower seed | < 0 <u>.05</u>   | GHE-P-9784<br>CEMS-1571C |
| Spain, 2000<br>(Florasol)  | EC<br>haloxyfop-P-<br>methyl | 0.16     | BBCH 20         | 370             | 1     | 79   | sunflower seed | < 0 <u>.05</u>   | GHE-P 8861<br>CEMS-1259D |
| Spain, 2000<br>(Sambro)    | EC<br>haloxyfop-P-<br>methyl | 0.16     | BBCH 20         | 390             | 1     | 82   | sunflower seed | < 0 <u>.05</u>   | GHE-P 8861<br>CEMS-1259C |
| Spain, 2001<br>(Almazon)   | EC<br>haloxyfop-P-<br>methyl | 0.16     | BBCH 20         | 370             | 1     | 76   | sunflower seed | <u>0.17</u>      | GHE-P-9784<br>CEMS-1571B |
| a<br>GHB-P                 | GHE-P-2059: spray<br>199:    |          |                 |                 | direc | ted  | at             | the              | ground.<br>broadcast     |

GHE-P-8999, GHE-P 8861, GHB-P 8860, GHE-P-9784: foliar application-broadcast

<sup>b</sup> PS: post-sowing.

<sup>c</sup> GHB-P 199. Interval of freezer storage before analysis: 20 months.

## Sunflowers, BBCH growth stages (Meier, 2001)

- 19 Nine or more leaves unfolded.
- 30 Beginning of stem elongation.
- 31 One visibly extended internode.
- 32 Two visibly extended internodes.
- 33 Three visibly extended internodes.

| Table  | 33 | Hal | loxvfop | residues | in | coffee | resulting | from s    | upervised  | tria | ls ir | n Brazil | and | Col | lombia |
|--------|----|-----|---------|----------|----|--------|-----------|-----------|------------|------|-------|----------|-----|-----|--------|
| 1 4010 |    | TTM | ionjiop | 1001000  |    | 001100 | reserving | II OIII D | aper incea |      | 10 11 | Dialli   | unu | 001 | omora  |

| COFFEE                            | Application                  |                               |                 |     | PHI               | Commodity    | haloxyfop                              | Ref                     |
|-----------------------------------|------------------------------|-------------------------------|-----------------|-----|-------------------|--------------|----------------------------------------|-------------------------|
| country,<br>year (variety)        | Form                         | kg ai/ha                      | water<br>(L/ha) | no. | days              | a            | mg/kg                                  |                         |
| Brazil (SP), 1983<br>(Mundo Novo) | EC<br>haloxyfop-methyl       | 0.12<br>directed <sup>b</sup> |                 | 1   | 110               | coffee beans | < 0.02 (4)                             | GHB-P 019               |
| Brazil (SP), 1983<br>(Mundo Novo) | EC<br>haloxyfop-methyl       | 0.24<br>directed <sup>b</sup> |                 | 1   | 110               | coffee beans | < 0.02 (4)                             | GHB-P 019               |
| Brazil (SP), 1983<br>(Mundo Novo) | EC<br>haloxyfop-methyl       | 0.48<br>directed <sup>b</sup> |                 | 1   | 110               | coffee beans | < 0.02 (4)                             | GHB-P 019               |
| Brazil (SP), 1983<br>(Mundo Novo) | EC<br>haloxyfop-methyl       | 0.96<br>directed <sup>b</sup> |                 | 1   | 110               | coffee beans | < 0.02 (4)                             | GHB-P 019               |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.24<br>directed <sup>b</sup> |                 | 1   | 74<br>119         | coffee beans | < 0.02 (4)<br>< 0.02 (4)               | GHB-P 023<br>Cravinhos  |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.48<br>directed <sup>b</sup> |                 | 1   | 74<br>119         | coffee beans | < 0.02 (4)<br>< 0.02 (4)               | GHB-P 023<br>Cravinhos  |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.96<br>directed <sup>b</sup> |                 | 1   | 74<br>119         | coffee beans | < 0.02 (4)<br>< 0.02 (4)               | GHB-P 023<br>Cravinhos  |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.24<br>directed <sup>b</sup> |                 | 1   | 103<br>165<br>201 | coffee beans | < 0.02 (3)<br>< 0.02 (3)<br>< 0.02 (3) | GHB-P 023<br>São Carlos |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.48<br>directed <sup>b</sup> |                 | 1   | 103<br>165<br>201 | coffee beans | < 0.02 (3)<br>< 0.02 (3)<br>< 0.02 (3) | GHB-P 023<br>São Carlos |

| COFFEE                            | Application                  |                                 |                 |     | PHI               | Commodity    | haloxyfop                                      | Ref                     |
|-----------------------------------|------------------------------|---------------------------------|-----------------|-----|-------------------|--------------|------------------------------------------------|-------------------------|
| country,<br>year (variety)        | Form                         | kg ai/ha                        | water<br>(L/ha) | no. | days              | а            | mg/kg                                          |                         |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.96<br>directed <sup>b</sup>   |                 | 1   | 103<br>165<br>201 | coffee beans | < 0.02 (3)<br>< 0.02 (3)<br>< 0.02 (3)         | GHB-P 023<br>São Carlos |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.24<br>directed <sup>b</sup>   |                 | 2   | 137               | coffee beans | < 0.02 (3)                                     | GHB-P 023<br>São Carlos |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.48<br>directed <sup>b</sup>   |                 | 2   | 137               | coffee beans | < 0.02 (3)                                     | GHB-P 023<br>São Carlos |
| Brazil (SP), 1984<br>(Mundo Novo) | EC + oil<br>haloxyfop-methyl | 0.96<br>directed <sup>b</sup>   |                 | 2   | 137               | coffee beans | < 0.02 (3)                                     | GHB-P 023<br>São Carlos |
| Colombia, 1983<br>(Caturra)       | EC<br>haloxyfop-methyl       | 0.18<br>directed <sup>b c</sup> |                 | 1   | 43<br>75<br>105   | coffee beans | < 0.02 (3)<br>< 0.02 (3)<br>< 0.02 (3)         | GHB-P 020               |
| Colombia, 1983<br>(Caturra)       | EC<br>haloxyfop-methyl       | 0.36<br>directed <sup>b c</sup> |                 | 1   | 43<br>75<br>105   | coffee beans | < 0 <u>.02</u> (3)<br>< 0.02 (3)<br>< 0.02 (3) | GHB-P 020               |

<sup>a</sup> GHB-P 023 GHB-P 019: Coffee berries were sun dried and depulped following normal commercial procedures to yield coffee beans.

GHB-P 020: Harvested coffee berries were air dried under shade for 2 days, followed by a 3 hours drying at 30 °C.

<sup>b</sup> Directed application for grass control.

<sup>c</sup> The product sometimes contacted the lower leaves, but phytotoxicity symptoms were not observed.

| ALFALFA                                 | Application                        |          |                                                   |     | PHI                               | Commodity                         | haloxyfop                                  | Ref                     |
|-----------------------------------------|------------------------------------|----------|---------------------------------------------------|-----|-----------------------------------|-----------------------------------|--------------------------------------------|-------------------------|
| country,<br>year (variety)              | Form                               | kg ai/ha | water<br>(L/ha)                                   | no. | days                              |                                   | mg/kg                                      |                         |
| Australia (NSW),<br>1988 (Hunter River) | EC<br>haloxyfop-<br>ethoxyethyl    | 0.10     | 100 1 4 alfalfa foliage   7 (fresh weight   14 21 |     | alfalfa foliage<br>(fresh weight) | 4.6<br>4.7<br>2.5<br>2.1          | GHF-P 857                                  |                         |
| Australia (NSW),<br>1988 (Hunter River) | EC<br>haloxyfop-<br>ethoxyethyl    | 0.21     | 100                                               | 1   | 4<br>7<br>14<br>21                | alfalfa foliage<br>(fresh weight) | 8.4<br>8.2<br>3.1<br>3.1                   | GHF-P 857               |
| Australia (NSW),<br>1988 (Hunter River) | EC<br>haloxyfop-<br>ethoxyethyl    | 0.31     | 100                                               | 1   | 4<br>7<br>14<br>21                | alfalfa foliage<br>(fresh weight) | 11.8<br>10.1<br>5.9<br>2.9                 | GHF-P 857               |
| Australia (NSW),<br>1989 (CUF 101)      | EC<br>haloxyfop-P-<br>methyl       | 0.052    | 99                                                | 1   | 8<br>14<br>22<br>32               | alfalfa foliage<br>(fresh weight) | 1.3<br>1.3<br>0.76<br>0.65                 | GHF-P 1355<br>GHF-P 997 |
| Australia (NSW),<br>1989 (CUF 101)      | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | 99                                                | 1   | 8<br>14<br>22<br>32               | alfalfa foliage<br>(fresh weight) | 1.6<br>1.9<br>1.6<br>1.0                   | GHF-P 1355              |
| Australia (NSW),<br>1989 (CUF 101)      | EC<br>haloxyfop-P-<br>methyl       | 0.10     | 99                                                | 1   | 8<br>14<br>22<br>32               | alfalfa foliage<br>(fresh weight) | 3.2 Note <sup>d</sup><br>2.4<br>1.8<br>1.9 | GHF-P 1355<br>GHF-P 997 |
| Australia (NSW),<br>1989 (CUF 101)      | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | 99                                                | 1   | 8<br>14<br>22<br>32               | alfalfa foliage<br>(fresh weight) | 3.5<br>3.4<br>2.2<br>1.9                   | GHF-P 1355              |

| Table | 34   | Halox | yfop | residues | in | alfalfa | resulting | g from | supervi | sed | trials | in . | Australia, | France, | Germany |
|-------|------|-------|------|----------|----|---------|-----------|--------|---------|-----|--------|------|------------|---------|---------|
| and P | olar | nd    |      |          |    |         |           |        |         |     |        |      |            |         |         |
| ALFALFA                                                      | Application                           |          |                 |     | PHI                                | Commodity                         | haloxyfop                                               | Ref                                         |
|--------------------------------------------------------------|---------------------------------------|----------|-----------------|-----|------------------------------------|-----------------------------------|---------------------------------------------------------|---------------------------------------------|
| country,<br>year (variety)                                   | Form                                  | kg ai/ha | water<br>(L/ha) | no. | days                               |                                   | mg/kg                                                   |                                             |
| Australia (NSW),<br>1989 (CUF 101)                           | EC<br>haloxyfop-<br>ethoxyethyl       | 0.10     | 99              | 1   | 8<br>14<br>22<br>32                | alfalfa foliage<br>(fresh weight) | 3.1<br>2.8<br>1.5<br>1.1                                | GHF-P 1355<br>GHF-P 925<br>GHF-P 997        |
| Australia (NSW),<br>1989 (CUF 101)                           | EC + oil<br>haloxyfop-<br>ethoxyethyl | 0.10     | 99              | 1   | 8<br>14<br>22<br>32                | alfalfa foliage<br>(fresh weight) | 3.6<br>4.4<br>3.4<br>1.9                                | GHF-P 1355                                  |
| Australia (NSW),<br>1989 (CUF 101)                           | EC<br>haloxyfop-<br>ethoxyethyl       | 0.21     | 99              | 1   | 8<br>14<br>22<br>32                | alfalfa foliage<br>(fresh weight) | 8.4<br>6.5<br>2.5<br>1.3                                | GHF-P 1355<br>GHF-P 925<br>GHF-P 997        |
| Australia (NSW),<br>1998 (Auroa)                             | EC + oil<br>haloxyfop-P-<br>methyl    | 0.052    | 100             | 1   | 0<br>1<br>3<br>7<br>14<br>21<br>28 | alfalfa foliage<br>(fresh weight) | 4.0<br>3.3<br>3.3<br>2.4<br>1.4<br>1.0<br>0.57          | GHF-P 1943<br>98453-01<br>Note <sup>b</sup> |
| Australia (NSW),<br>1998 (Auroa)                             | EC + oil<br>haloxyfop-P-<br>methyl    | 0.10     | 100             | 1   | 0<br>1<br>3<br>7<br>14<br>21<br>28 | alfalfa foliage<br>(fresh weight) | 7.3<br>6.1<br>6.5<br>5.1<br>3.1<br>2.0<br>1.0           | GHF-P 1943<br>98453-01<br>Note <sup>b</sup> |
| Australia (NSW),<br>1998 (Pioneer brand,<br>unknown variety) | EC + oil<br>haloxyfop-P-<br>methyl    | 0.052    | 100             | 1   | 0<br>1<br>3<br>7<br>14<br>21<br>28 | alfalfa foliage<br>(fresh weight) | 4.3<br>3.1<br>3.5<br>2.5<br>2.0<br>1.7<br>0.74          | GHF-P 1943<br>98453-02<br>Note <sup>b</sup> |
| Australia (NSW),<br>1998 (Pioneer brand,<br>unknown variety) | EC + oil<br>haloxyfop-P-<br>methyl    | 0.10     | 100             | 1   | 0<br>1<br>3<br>7<br>14<br>21<br>28 | alfalfa foliage<br>(fresh weight) | 8.1<br>6.9<br>6.5<br>4.7<br>3.5<br>2.9<br>0.76          | GHF-P 1943<br>98453-02<br>Note <sup>b</sup> |
| Australia (NSW),<br>1998–1999 (not<br>recorded)              | EC + oil<br>haloxyfop-P-<br>methyl    | 0.078    | 100             | 1   | 0<br>1<br>3<br>7<br>14<br>21<br>28 | alfalfa foliage<br>(fresh weight) | 7.6<br>6.4<br>6.2<br>5.7<br>4.3<br>2.2<br><u>3.1</u>    | GHF-P 1943<br>98453-04<br>Note <sup>b</sup> |
| Australia (NSW),<br>1998–1999 (not<br>recorded)              | EC + oil<br>haloxyfop-P-<br>methyl    | 0.16     | 100             | 1   | 0<br>1<br>3<br>7<br>14<br>21<br>28 | alfalfa foliage<br>(fresh weight) | 18.5<br>13<br>11<br>13<br>7.5<br>4.8<br>5.5             | GHF-P 1943<br>98453-04<br>Note <sup>b</sup> |
| Australia (Qld), 1998<br>(Scepture)                          | EC + oil<br>haloxyfop-P-<br>methyl    | 0.078    | 100             | 1   | 0<br>1<br>3<br>7<br>14<br>21<br>28 | alfalfa foliage<br>(fresh weight) | 6.5<br>3.9<br>3.3<br>2.2<br>0.90<br>0.34<br><u>0.10</u> | GHF-P 1943<br>98453-03<br>Note <sup>b</sup> |

| ALFALFA                                                                | Application                                                        |          |                 |     | PHI                                                      | Commodity                                                                                                                                                        | haloxyfop                                                                          | Ref                                                                                           |
|------------------------------------------------------------------------|--------------------------------------------------------------------|----------|-----------------|-----|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| country,<br>year (variety)                                             | Form                                                               | kg ai/ha | water<br>(L/ha) | no. | days                                                     |                                                                                                                                                                  | mg/kg                                                                              |                                                                                               |
| Australia (Qld), 1998<br>(Scepture)<br>France, 2004<br>(Bellefeuilles) | EC + oil<br>haloxyfop-P-<br>methyl<br>EC<br>haloxyfop-P-<br>methyl | 0.16     | 100<br>280      | 1   | 0<br>1<br>3<br>7<br>14<br>21<br>28<br>0<br>4<br>10<br>15 | alfalfa foliage<br>(fresh weight)<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage                                                    | 8.9<br>7.8<br>6.1<br>4.2<br>0.93<br>1.3<br>0.30<br>8.1<br>4.3<br>4.5 ° 0.01<br>3.5 | GHF-P 1943<br>98453-03<br>Note <sup>b</sup><br>GHE-P-11071<br>CEMS-2337B<br>Note <sup>c</sup> |
| France, 2004 (Diane)                                                   | EC<br>haloxyfop-P-<br>methyl                                       | 0.10     | 290             | 1   | 13<br>28<br>28<br>0<br>4<br>10<br>15<br>28               | alfalfa foliage<br>32 alfalfa hay <sup>a</sup><br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage | 3.2<br>8.1<br>10.7<br>7.0<br>3.6<br>3.1 ° 0.01<br>2.5                              | GHE-P-11071<br>CEMS-2337A<br>Note <sup>c</sup>                                                |
| Germany, 2004<br>(Mercedes)                                            | EC<br>haloxyfop-P-<br>methyl                                       | 0.10     | 300             | 1   | 28<br>0<br>5<br>10<br>15<br>28<br>28                     | 32 alfalfa hay "<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>35 alfalfa hay "                              | 5.6<br>13<br>6.1<br>3.0<br>2.6<br>0.46<br>1.2                                      | GHE-P-11071<br>CEMS-2337C<br>Note <sup>°</sup>                                                |
| Poland, 2004 (variety<br>not recorded)                                 | EC<br>haloxyfop-P-<br>methyl                                       | 0.10     | 310             | 1   | 0<br>4<br>11<br>14<br>28<br>28                           | alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>alfalfa foliage<br>35 alfalfa hay <sup>a</sup>                                       | 10.5<br>3.8 ° 0.12<br>2.4 ° 0.04<br>1.4<br>0.64<br>2.0                             | GHE-P-11071<br>CEMS-2337D<br>Note <sup>c</sup>                                                |

<sup>a</sup> Cut on day 28, left to dry in field and sampled on indicated day.

<sup>b</sup> GHF-P 1943. Interval of freezer storage before analysis: 19-23 months.

<sup>c</sup> GHE-P-11071. Interval of freezer storage before analysis: 2 years.

<sup>d</sup> GHF-P 977 reports 3.20 mg/kg for this sample while GHF-P 1355 reports 3.36 mg/kg.

<sup>e</sup>: sample from control plot.

| LEGUME CROP                                    | Application                        |             |                          |                 |        | PHI                             | Commodity                                                                                          | haloxyfop                                     | Ref                    |
|------------------------------------------------|------------------------------------|-------------|--------------------------|-----------------|--------|---------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------|
| country,<br>year (variety)                     | Form                               | kg<br>ai/ha | growth stage             | water<br>(L/ha) | no.    | days                            | a                                                                                                  | mg/kg                                         |                        |
| CHICKPEAS<br>Australia (SA), 1997<br>(Desavic) | EC + oil<br>haloxyfop-P-<br>methyl | 0.052       | 1–3 branch<br>some bloom | 100             | 1      | 0<br>7<br>14<br>28<br>42<br>109 | whole plant dw<br>whole plant dw<br>whole plant dw<br>whole plant dw<br>whole plant dw<br>straw dw | 33<br>19<br>9.4<br><u>2.9</u><br>0.95<br>0.13 | GHF-P 1718<br>97355.02 |
| CHICKPEAS<br>Australia (SA), 1997<br>(Desavic) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10        | 1–3 branch<br>some bloom | 100             | 1<br>2 | 0<br>7<br>14<br>28<br>42<br>109 | whole plant dw<br>whole plant dw<br>whole plant dw<br>whole plant dw<br>whole plant dw<br>straw dw | 65<br>31<br>18<br>6.7<br>0.93<br>0.28         | GHF-P 1718<br>97355.02 |

Table 35 Haloxyfop residues in legume animal feeds resulting from supervised trials in Australia, France, Germany, Hungary, Italy and Spain. Crops: chickpeas, pea nuts, peas and soya beans

| LEGUME CROP                                                 | Application                        |             |              |                 |     | PHI                | Commodity                                          | haloxyfop                         | Ref                    |
|-------------------------------------------------------------|------------------------------------|-------------|--------------|-----------------|-----|--------------------|----------------------------------------------------|-----------------------------------|------------------------|
| country,<br>year (variety)                                  | Form                               | kg<br>ai/ha | growth stage | water<br>(L/ha) | no. | days               | a                                                  | mg/kg                             |                        |
| CHICKPEAS<br>Australia (WA), 1997<br>(Koniva)               | EC + oil<br>haloxyfop-P-<br>methyl | 0.052       | 8–9 leaf     | 100             | 1   | 0<br>7<br>14       | whole plant dw<br>whole plant dw<br>whole plant dw | 46<br>23<br>11.4                  | GHF-P 1718<br>97355.01 |
|                                                             |                                    |             | 3–7 branch   |                 | 2   | 28<br>42<br>118    | whole plant dw<br>whole plant dw                   | $\frac{4.3}{1.9} < 0.05$          |                        |
| CHICKPEAS<br>Australia (WA), 1997                           | EC + oil<br>haloxyfop-P-           | 0.10        | 8–9 leaf     | 100             | 1   | 0<br>7             | whole plant dw<br>whole plant dw                   | 87<br>52                          | GHF-P 1718<br>97355.01 |
| (Koniva)                                                    | methyl                             |             |              |                 |     | 14<br>28<br>42     | whole plant dw<br>whole plant dw<br>whole plant dw | 29<br>10.2<br>4.6                 |                        |
|                                                             |                                    |             | 3–7 branch   |                 | 2   | 118                | straw                                              | < 0.05                            |                        |
| PEANUTS<br>Australia (Qld),<br>1997–1998 (A46)              | EC + oil<br>haloxyfop-P-<br>methyl | 0.078       | 4–6 leaf     | 100             | 1   | 0<br>7<br>14       | forage dw<br>forage dw<br>forage dw                | 29<br>7.7<br>2.6                  | GHF-P 1773<br>974040GW |
|                                                             |                                    |             | pegging      | 100             | 2   | 28<br>42<br>56     | forage<br>straw dw                                 | $\frac{0.28}{< 0.02}$             |                        |
| PEANUTS<br>Australia (Qld),                                 | EC + oil<br>haloxyfop-P-           | 0.16        | 4–6 leaf     | 100             | 1   | 0<br>7             | forage dw<br>forage dw                             | 60<br>17                          | GHF-P 1773<br>974040GW |
| 1997–1998 (A46)                                             | metnyi                             |             |              | 100             | 2   | 14<br>28<br>42     | forage<br>forage dw<br>forage                      | < 0.02<br>1.5<br>< 0.02           |                        |
|                                                             |                                    |             | pegging      | 100             | 2   | 56<br>56           | straw dw<br>shell                                  | 1.1<br>0.03                       |                        |
| PEANUTS<br>Australia (Qld),<br>1997–1998 (Streeton)         | EC + oil<br>haloxyfop-P-<br>methyl | 0.078       | 5–6 leaf     | 100             | 1   | 0<br>7<br>14       | forage dw<br>forage dw<br>forage dw                | 33<br>9.8<br>4.4                  | GHF-P 1773<br>974039GW |
|                                                             |                                    |             | pegging      | 100             | 2   | 28<br>42<br>56     | forage dw<br>forage dw<br>straw dw                 | <u>1.1</u><br>0.25<br><u>1.2</u>  |                        |
|                                                             | FG . 1                             | 0.16        | 5 ( ) (      | 100             | 1   | 56                 | shell                                              | 0.03                              | CUE D 1770             |
| PEANUIS<br>Australia (Qld),<br>1997–1998 (Streeton)         | EC + oil<br>haloxyfop-P-<br>methyl | 0.16        | 5–6 leaf     | 100             | 1   | 0<br>7<br>14<br>28 | forage dw<br>forage dw<br>forage dw<br>forage dw   | 65<br>18<br>7.8<br>2.3            | 974039GW               |
|                                                             |                                    |             | pegging      | 100             | 2   | 42<br>56<br>56     | forage dw<br>straw dw<br>shell                     | 0.25<br>1.9<br>0.10               |                        |
| PEANUTS<br>Australia (Qld),<br>1997–1998 (Streeton)         | EC + oil<br>haloxyfop-P-<br>methyl | 0.078       | 6–8 leaf     | 100             | 1   | 0<br>7<br>15<br>28 | forage dw<br>forage dw<br>forage dw<br>forage      | 35<br>11<br>2.2<br>< 0 <u>.02</u> | GHF-P 1773<br>974042GW |
|                                                             |                                    |             | late pegging | 100             | 2   | 42<br>56<br>56     | forage<br>straw dw<br>shell                        | < 0.02<br><u>3.0</u><br>0.04      |                        |
| PEANUTS<br>Australia (Qld),<br>1997–1998 (Streeton)         | EC + oil<br>haloxyfop-P-<br>methyl | 0.16        | 6–8 leaf     | 100             | 1   | 0<br>7<br>15<br>28 | forage dw<br>forage dw<br>forage dw<br>forage dw   | 84<br>26<br>4.7<br>0.14           | GHF-P 1773<br>974042GW |
|                                                             |                                    |             | late pegging | 100             | 2   | 42<br>56<br>56     | torage dw<br>straw dw<br>shell                     | 0.08<br>5.4<br>0.09               |                        |
| PEANUTS<br>Australia (Qld),<br>1997–1998 (White<br>Spanish) | EC + oil<br>haloxyfop-P-<br>methyl | 0.078       | 6–7 leaf     | 100             | 1   | 0<br>7<br>15<br>28 | forage dw<br>forage dw<br>forage dw<br>forage dw   | 45<br>15<br>2.7<br>0.13           | GHF-P 1773<br>974043GW |
|                                                             |                                    |             | late pegging | 100             | 2   | 42<br>56<br>56     | iorage<br>straw dw<br>shell                        | < 0.02<br><u>2.9</u><br>0.03      |                        |

| LEGUME CROP                                                       | Application                        |             |                          | 1               | 1      | PHI                                  | Commodity                                                                          | haloxyfop                                       | Ref                          |
|-------------------------------------------------------------------|------------------------------------|-------------|--------------------------|-----------------|--------|--------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|
| country,<br>year (variety)                                        | Form                               | kg<br>ai/ha | growth stage             | water<br>(L/ha) | no.    | days                                 | a                                                                                  | mg/kg                                           |                              |
| PEANUTS<br>Australia (Qld),<br>1997–1998 (White<br>Spanish)       | EC + oil<br>haloxyfop-P-<br>methyl | 0.16        | 6–7 leaf<br>late pegging | 100<br>100      | 1<br>2 | 0<br>7<br>15<br>28<br>42<br>56<br>56 | forage dw<br>forage dw<br>forage dw<br>forage dw<br>forage dw<br>straw dw<br>shell | 106<br>29<br>4.0<br>0.26<br>0.06<br>3.8<br>0.05 | GHF-P 1773<br>974043GW       |
| PEAS<br>France, 2000<br>(Vegetable peas,<br>variety not recorded) | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 51-60               | 410             | 1      | 29                                   | plant                                                                              | 0.08                                            | GHE-P-8852<br>CEMS-<br>1249A |
| PEAS<br>Italy, 2000 (Vegetable<br>peas, Lambado)                  | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 50                  | 420             | 1      | 28                                   | plant                                                                              | < 0.05                                          | GHE-P-8852<br>CEMS-<br>1249B |
| SOYA BEANS<br>France, 2000 (Queen)                                | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 12-13               | 290             | 1      | 90                                   | plant                                                                              | < 0 <u>.05</u>                                  | GHE-P-8859<br>CEMS-<br>1257B |
| SOYA BEANS<br>France, 2000 (Queen)                                | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 67-69               | 300             | 1      | 60                                   | plant                                                                              | <u>0.12</u>                                     | GHE-P-8859<br>CEMS-<br>1257B |
| SOYA BEANS<br>France, 2000<br>(Sapporo)                           | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 13-14               | 300             | 1      | 90                                   | plant                                                                              | < 0 <u>.05</u>                                  | GHE-P-8859<br>CEMS-<br>1257C |
| SOYA BEANS<br>France, 2000<br>(Sapporo)                           | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 65-71               | 320             | 1      | 57                                   | plant                                                                              | <u>0.13</u>                                     | GHE-P-8859<br>CEMS-<br>1257C |
| SOYA BEANS<br>Germany, 2001<br>(Dorena)                           | EC<br>haloxyfop-P-<br>methyl       | 0.11        | BBCH 12                  | 310             | 1      | 94                                   | plant                                                                              | < 0 <u>.05</u>                                  | GHE-P-9782<br>CEMS-<br>1569B |
| SOYA BEANS<br>Germany, 2001<br>(Dorena)                           | EC<br>haloxyfop-P-<br>methyl       | 0.11        | BBCH 23                  | 310             | 1      | 61                                   | plant                                                                              | <u>0.10</u>                                     | GHE-P-9782<br>CEMS-<br>1569B |
| SOYA BEANS<br>Hungary, 2001<br>(Borostyan)                        | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 12                  | 250             | 1      | 91                                   | plant                                                                              | < 0 <u>.05</u>                                  | GHE-P-9782<br>CEMS-<br>1569A |
| SOYA BEANS<br>Hungary, 2001<br>(Borostyan)                        | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 33                  | 250             | 1      | 60                                   | plant                                                                              | <u>0.18</u>                                     | GHE-P-9782<br>CEMS-<br>1569A |
| SOYA BEANS<br>Italy, 2000 (Silia)                                 | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 11-19               | 300             | 1      | 86                                   | plant                                                                              | < 0 <u>.05</u>                                  | GHE-P-8859<br>CEMS-<br>1257D |
| SOYA BEANS<br>Italy, 2000 (Silia)                                 | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 67-71               | 290             | 1      | 56                                   | plant                                                                              | <u>0.08</u>                                     | GHE-P-8859<br>CEMS-<br>1257D |
| SOYA BEANS<br>Spain, 2000 (Osumi)                                 | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 19                  | 300             | 1      | 90                                   | plant                                                                              | <u>0.07</u>                                     | GHE-P-8859<br>CEMS-<br>1257A |
| SOYA BEANS<br>Spain, 2000 (Osumi)                                 | EC<br>haloxyfop-P-<br>methyl       | 0.10        | BBCH 55                  | 300             | 1      | 60                                   | plant                                                                              | 0.06                                            | GHE-P-8859<br>CEMS-<br>1257A |

<sup>a</sup> dw: dry weight

Peas, BBCH growth stages (Meier, 2001)

51 First flower buds visible outside leaves.

60 First flowers open (sporadically within the population)

Soya beans, BBCH growth stages (Meier, 2001)

- 11 First pair of true leaves unfolded.
- 12 Trifoliolate leaf on the  $2^{nd}$  node unfolded.
- 13 Trifoliolate leaf on the 3<sup>rd</sup> node unfolded.
- 19 Trifoliolate leaf on the 9<sup>th</sup> node unfolded. No side shoots visible.
- 23 3<sup>rd</sup> side shoot of first order visible.
- 55 First flower buds enlarged.
- 65 Full flowering: about 50% of flowers open.
- 67 Flowering declining.
- 69 End of flowering: first pods visible.
- 71 About 10% of pods have reached final length

Table 36 Haloxyfop residues in sugar beet plants and tops resulting from supervised trials in Belgium, Germany, Italy and Spain

| SUGAR BEET                  | Application <sup>a</sup>        |          |                                  |                 |     | PHI                         | Commodity                                           | haloxyfop, mg/kg                                             | Ref                           |
|-----------------------------|---------------------------------|----------|----------------------------------|-----------------|-----|-----------------------------|-----------------------------------------------------|--------------------------------------------------------------|-------------------------------|
| country,<br>year (variety)  | Form                            | kg ai/ha | growth<br>stage                  | water<br>(L/ha) | no. | days                        |                                                     |                                                              |                               |
| Belgium, 2000<br>(Semper)   | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 39                          | 310             | 1   | 116                         | beet tops                                           | 0.07                                                         | GHE-P-8867<br>CEMAS-<br>1266C |
| Germany, 1988<br>(Kaweduka) | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 6 leaf<br>(EC23)                 | 400             | 1   | 1<br>15<br>98<br>125        | whole plant<br>leaves<br>leaves<br>leaves           | 2.2 c 0.10<br><u>0.17</u><br>< 0.02<br>< 0.02                | GHE-P-2036<br>RT 108/88       |
| Germany, 1988<br>(Kaweduka) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | 6 leaf<br>(EC23)                 | 400             | 1   | 1<br>15<br>98<br>125        | whole plant<br>leaves<br>leaves<br>leaves           | 3.9 c 0.10<br>0.21<br>< 0.02<br>< 0.02                       | GHE-P-2036<br>RT 108/88       |
| Germany, 1988<br>(Kawemono) | EC<br>haloxyfop-P-<br>methyl    | 0.10     | crop cover<br>complete<br>(EC45) | 400             | 1   | 0<br>24<br>76<br>108<br>128 | whole plant<br>leaves<br>leaves<br>leaves<br>leaves | 2.0<br>0.42 Note <sup>b</sup><br>0.10 c0.02<br>0.09<br>0.08  | GHE-P-2036<br>RT 85&86/88     |
| Germany, 1988<br>(Kawemono) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | crop cover<br>complete<br>(EC45) | 400             | 1   | 0<br>24<br>76<br>108<br>128 | whole plant<br>leaves<br>leaves<br>leaves<br>leaves | 4.4<br>0.18 Note <sup>b</sup><br>0.28 c 0.02<br>0.18<br>0.16 | GHE-P-2036<br>RT 85&86/88     |
| Germany, 1988<br>(Nowadima) | EC<br>haloxyfop-P-<br>methyl    | 0.10     | 6-8 leaf<br>(EC 23-25)           | 400             | 1   | 1<br>13<br>76<br>104<br>118 | whole plant<br>leaves<br>leaves<br>leaves<br>leaves | 2.5<br><u>0.38</u><br>0.14 c 0.02<br>0.10<br>0.09            | GHE-P-2036<br>RT 76/88        |
| Germany, 1988<br>(Nowadima) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21     | 6-8 leaf<br>(EC 23-25)           | 400             | 1   | 1<br>13<br>76<br>104<br>118 | whole plant<br>leaves<br>leaves<br>leaves<br>leaves | 4.5<br>0.76<br>0.30 c 0.02<br>0.20<br>0.16                   | GHE-P-2036<br>RT 76/88        |
| Germany, 2000<br>(Helix)    | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 39                          | 220             | 1   | 92                          | beet tops                                           | 0.12                                                         | GHE-P-8867<br>CEMAS-<br>1266A |
| Germany, 2000<br>(Kontrast) | EC<br>haloxyfop-P-<br>methyl    | 0.10     | BBCH 39                          | 310             | 1   | 116                         | beet tops                                           | 0.08                                                         | GHE-P-8867<br>CEMAS-<br>1266B |

| SUGAR BEET                 | Application <sup>a</sup>     |          |                 |                 |     | PHI  | Commodity | haloxyfop, mg/kg | Ref                      |
|----------------------------|------------------------------|----------|-----------------|-----------------|-----|------|-----------|------------------|--------------------------|
| country,<br>year (variety) | Form                         | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days |           |                  |                          |
| Italy, 1992<br>(Break)     | EC<br>haloxyfop-P-<br>methyl | 0.10     | 8 leaf          | 400             | 1   | 65   | beet tops | <u>0.09</u>      | GHE-P-3078<br>R92-45B    |
| Italy, 1992<br>(Mirto)     | EC<br>haloxyfop-P-<br>methyl | 0.10     | 8–9 leaf        | 400             | 1   | 67   | beet tops | <u>0.09</u>      | GHE-P-3078<br>R92-45A    |
| Spain, 2000<br>(Lola)      | EC<br>haloxyfop-P-<br>methyl | 0.10     | BBCH 39         | 370             | 1   | 99   | beet tops | 0.07             | GHE-P-8868<br>CEMS-1267A |

<sup>a</sup> GHE-P-2036, GHE-P-8867, GHE-P-8868: broadcast application.

<sup>b</sup> RT 85&86/88. The study author suggests these two leaf samples (0.42 and 0.18 mg/kg) have been incorrectly labelled.

# Beet, BBCH growth stages (Meier, 2001)

39 Crop cover complete: leaves cover 90% of ground.

Table 37 Haloxyfop residues in oilseed rape plant resulting from supervised trials in Australia, France, Germany, Greece, Italy, Poland and Spain

| OILSEED RAPE                                     | Application <sup>a</sup>           |          |                        |                 |     | PHI                      | Commodity                                                     | haloxyfop, mg/kg                 | Ref                    |
|--------------------------------------------------|------------------------------------|----------|------------------------|-----------------|-----|--------------------------|---------------------------------------------------------------|----------------------------------|------------------------|
| country,<br>year (variety)                       | Form <sup>°</sup>                  | kg ai/ha | growth<br>stage        | water<br>(L/ha) | no. | days                     |                                                               |                                  |                        |
| Australia (NSW),<br>1997 (Canola,<br>Rainbow)    | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | cotyledon<br>to 8 leaf | 100             | 1   | 0<br>14<br>28<br>42      | forage dw<br>forage dw<br>forage dw<br>forage                 | 30<br>1.0<br>0.32<br>< 0.02      | GHF-P 1700<br>97358.04 |
| Australia (NSW),<br>1997 (Canola,<br>Rainbow)    | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | 1%<br>flowering        | 100             | 1   | 96                       | fodder dw                                                     | 0.13                             | GHF-P 1700<br>97358.04 |
| Australia (NSW),<br>1997 (Canola,<br>Rainbow)    | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | 1%<br>flowering        | 100             | 1   | 96                       | fodder dw                                                     | 0.25                             | GHF-P 1700<br>97358.04 |
| Australia (NSW),<br>1997 (Canola,<br>Rainbow)    | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | cotyledon<br>to 8 leaf | 100             | 1   | 0<br>14<br>28<br>42      | forage dw<br>forage dw<br>forage dw<br>forage                 | 65<br>2.2<br>0.81<br>0.14        | GHF-P 1700<br>97358.04 |
| Australia (NSW),<br>1997–1998<br>(Canola, Oscar) | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | 6 leaf                 | 100             | 1   | 0<br>7<br>42             | forage dw<br>forage dw<br>forage dw                           | 43<br>7.2<br>0.38                | GHF-P 1700<br>97358.03 |
| Australia (NSW),<br>1997–1998<br>(Canola, Oscar) | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | early<br>flower        | 100             | 1   | 64                       | fodder dw                                                     | 0.29                             | GHF-P 1700<br>97358.03 |
| Australia (NSW),<br>1997–1998<br>(Canola, Oscar) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | early<br>flower        | 100             | 1   | 64                       | fodder dw                                                     | 0.41                             | GHF-P 1700<br>97358.03 |
| Australia (NSW),<br>1997–1998<br>(Canola, Oscar) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | 6 leaf                 | 100             | 1   | 0<br>7<br>14<br>28<br>42 | forage dw<br>forage dw<br>forage dw<br>forage dw<br>forage dw | 52<br>13<br>6.4<br>1.4<br>0.75   | GHF-P 1700<br>97358.03 |
| Australia (SA),<br>1997–1998<br>(Canola, Siren)  | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | 4–8 leaf               | 100             | 1   | 0<br>7<br>14<br>28<br>42 | forage dw<br>forage dw<br>forage dw<br>forage dw<br>forage dw | 27<br>10.2<br>3.7<br>1.3<br>0.32 | GHF-P 1700<br>97358.02 |

| OILSEED RAPE                                    | Application <sup>a</sup>           |          |                                 |                 |     | PHI                      | Commodity                                                     | haloxyfop, mg/kg              | Ref                           |
|-------------------------------------------------|------------------------------------|----------|---------------------------------|-----------------|-----|--------------------------|---------------------------------------------------------------|-------------------------------|-------------------------------|
| country,<br>year (variety)                      | Form <sup>c</sup>                  | kg ai/ha | growth<br>stage                 | water<br>(L/ha) | no. | days                     |                                                               |                               |                               |
| Australia (SA),<br>1997–1998<br>(Canola, Siren) | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | budding,<br>pre-flower          | 100             | 1   | 94                       | fodder dw                                                     | 0.06                          | GHF-P 1700<br>97358.02        |
| Australia (SA),<br>1997–1998<br>(Canola, Siren) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | budding,<br>pre-flower          | 100             | 1   | 94                       | fodder dw                                                     | 0.17                          | GHF-P 1700<br>97358.02        |
| Australia (SA),<br>1997–1998<br>(Canola, Siren) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | 4–8 leaf                        | 100             | 1   | 0<br>7<br>14<br>28<br>42 | forage dw<br>forage dw<br>forage dw<br>forage dw<br>forage dw | 56<br>21<br>6.9<br>4.1<br>1.5 | GHF-P 1700<br>97358.02        |
| Australia (WA),<br>1997–1998<br>(Canola, Karoo) | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | 6–8 leaf                        | 100             | 1   | 1<br>7<br>14<br>28<br>42 | forage dw<br>forage dw<br>forage dw<br>forage dw<br>forage dw | 19<br>13<br>7.7<br>5.0<br>3.3 | GHF-P 1700<br>97358.01        |
| Australia (WA),<br>1997–1998<br>(Canola, Karoo) | EC + oil<br>haloxyfop-P-<br>methyl | 0.052    | pre-flower,<br>bud<br>emergence | 100             | 1   | 98                       | fodder dw                                                     | 0.22                          | GHF-P 1700<br>97358.01        |
| Australia (WA),<br>1997–1998<br>(Canola, Karoo) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | pre-flower,<br>bud<br>emergence | 100             | 1   | 98                       | fodder dw                                                     | 0.39                          | GHF-P 1700<br>97358.01        |
| Australia (WA),<br>1997–1998<br>(Canola, Karoo) | EC + oil<br>haloxyfop-P-<br>methyl | 0.10     | 6–8 leaf                        | 100             | 1   | 1<br>7<br>14<br>28<br>42 | forage dw<br>forage dw<br>forage dw<br>forage dw<br>forage dw | 47<br>19<br>17<br>8.9<br>5.5  | GHF-P 1700<br>97358.01        |
| France, 2000<br>(Capitol)                       | EC<br>haloxyfop-P-<br>methyl       | 0.055    | BBCH 57                         | 200             | 1   | 104                      | plant                                                         | 0.28                          | GHE-P-8857<br>CEMS-1254D      |
| France, 2000<br>(Carolus)                       | EC<br>haloxyfop-P-<br>methyl       | 0.055    | BBCH 60                         | 215             | 1   | 102                      | plant                                                         | 0.08                          | GHE-P-8857<br>CEMS-1254C      |
| France, 2000<br>(Pronto)                        | EC<br>haloxyfop-P-<br>methyl       | 0.052    | BBCH 50                         | 255             | 1   | 102                      | plant                                                         | 0.15                          | GHE-P-8858<br>CEMS-1255       |
| France, 2001–<br>2002 (Synergy)                 | EC<br>haloxyfop-P-<br>methyl       | 0.097    | BBCH 16                         | 190             | 1   | 233                      | plant                                                         | < 0.01                        | GHE-P-10092<br>CEMS-1572A     |
| France, 2001–<br>2002 (Zenith)                  | EC<br>haloxyfop-P-<br>methyl       | 0.10     | BBCH 16                         | 200             | 1   | 204                      | plant                                                         | < 0.01                        | GHE-P-10092<br>CEMS-1572B     |
| France, 2006<br>(Prima)                         | EC<br>haloxyfop-P-<br>methyl       | 0.079    | BBCH 32                         | 300             | 1   | 63                       | plant                                                         | 0.14                          | GHE-P-11656<br>F06W028R<br>T2 |
| France, 2006<br>(Prima)                         | EC<br>haloxyfop-P-<br>methyl       | 0.083    | BBCH 39                         | 320             | 1   | 63                       | plant                                                         | 0.37                          | GHE-P-11656<br>F06W028R<br>T3 |
| France, 2006<br>(Prima)                         | EC<br>haloxyfop-P-<br>methyl       | 0.085    | BBCH 50                         | 330             | 1   | 61                       | plant                                                         | 0.36                          | GHE-P-11656<br>F06W028R<br>T4 |
| France, 2006<br>(Prima)                         | EC<br>haloxyfop-P-<br>methyl       | 0.056    | BBCH 32                         | 320             | 1   | 63                       | plant                                                         | 0.17                          | GHE-P-11656<br>F06W028R<br>T5 |
| France, 2006<br>(Prima)                         | EC<br>haloxyfop-P-<br>methyl       | 0.052    | BBCH 39                         | 300             | 1   | 63                       | plant                                                         | 0.20                          | GHE-P-11656<br>F06W028R<br>T6 |
| France, 2006<br>(Prima)                         | EC<br>haloxyfop-P-<br>methyl       | 0.052    | BBCH 50                         | 310             | 1   | 63                       | plant                                                         | 0.27                          | GHE-P-11656<br>F06W028R<br>T7 |

| OILSEED RAPE                              | Application <sup>a</sup>                | -                    | -                 | _               |     | PHI                          | Commodity                                                         | haloxyfop, mg/kg                                                                  | Ref                           |
|-------------------------------------------|-----------------------------------------|----------------------|-------------------|-----------------|-----|------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|
| country,<br>year (variety)                | Form <sup>c</sup>                       | kg ai/ha             | growth<br>stage   | water<br>(L/ha) | no. | days                         |                                                                   |                                                                                   |                               |
| France, 2006<br>(Prima)                   | EC+adjuvant<br>haloxyfop-P-<br>methyl   | 0.053                | BBCH 32           | 310             | 1   | 61                           | plant                                                             | 0.10                                                                              | GHE-P-11656<br>F06W028R<br>T8 |
| France, 2006<br>(variety not<br>recorded) | EC<br>haloxyfop-P-<br>methyl            | 0.080                | BBCH 30-<br>34    | 200             | 1   | 0<br>7<br>14<br>21<br>28     | plant<br>plant<br>plant<br>plant<br>plant                         | 3.1<br>0.77<br>0.47<br>0.36<br>0.37                                               | GHE-P-11657<br>F06W080R<br>T2 |
| France, 2006<br>(variety not<br>recorded) | EC<br>haloxyfop-P-<br>methyl            | 0.079                | BBCH 34-<br>50    | 200             | 1   | 0<br>7<br>14<br>21<br>28     | plant<br>plant<br>plant<br>plant<br>plant                         | 5.4<br>1.4<br>0.72<br>0.34<br>0.50                                                | GHE-P-11657<br>F06W080R<br>T3 |
| France, 2006<br>(variety not<br>recorded) | EC<br>haloxyfop-P-<br>methyl            | 0.053                | BBCH 30-<br>34    | 200             | 1   | 0<br>7<br>14<br>21<br>28     | plant<br>plant<br>plant<br>plant<br>plant                         | 2.7<br>0.66<br>0.49<br>0.33<br>0.26                                               | GHE-P-11657<br>F06W080R<br>T5 |
| France, 2006<br>(variety not<br>recorded) | EC<br>haloxyfop-P-<br>methyl            | 0.083                | BBCH 50           | 200             | 1   | 0<br>7<br>14<br>21<br>28     | plant<br>plant<br>plant<br>plant<br>plant                         | 1.5<br>1.0<br>0.64<br>0.24<br>0.26                                                | GHE-P-11657<br>F06W080R<br>T7 |
| France, 2006<br>(variety not<br>recorded) | EC + adjuvant<br>haloxyfop-P-<br>methyl | 0.052                | BBCH 30-<br>34    | 200             | 1   | 0<br>7<br>14<br>21<br>28     | plant<br>plant<br>plant<br>plant<br>plant                         | 3.1<br>0.64<br>0.30<br>0.25<br>0.13                                               | GHE-P-11657<br>F06W080R<br>T8 |
| Germany, 1988–<br>1989 (Arabella)         | EC<br>haloxyfop-P-<br>methyl            | 0.10                 | 6 leaf (EC<br>23) | 400             | 1   | 1<br>34<br>184<br>229<br>259 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>straw | 1.4 1.6<br>0.80 0.77<br>< 0.02 (2)<br>< 0.02 (2)<br>< 0.05 (2)                    | GHE-P-2144<br>R88-21B         |
| Germany, 1988–<br>1989 (Arabella)         | EC<br>haloxyfop-<br>ethoxyethyl         | 0.21                 | 6 leaf (EC<br>23) | 400             | 1   | 1<br>34<br>184<br>229<br>259 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>straw | < 0.02 0.02<br>0.11 0.19<br>< 0.02 (2)<br>< 0.02 (2)<br>< 0.05 (2)                | GHE-P-2144<br>R88-21B         |
| Germany, 1988–<br>1989 (Arabella)         |                                         | 0<br>control<br>plot |                   |                 | 0   | 1<br>34<br>184<br>229<br>259 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>straw | < 0.02 0.02<br>< 0.02 (2)<br>< 0.02 (2)<br>< 0.02 (2)<br>< 0.02 (2)<br>< 0.05 (2) | GHE-P-2144<br>R88-21B         |
| Germany, 1988–<br>1989 (Ceres)            | EC<br>haloxyfop-P-<br>methyl            | 0.10                 | 6 leaf (EC<br>23) | 400             | 1   | 1<br>42<br>189<br>241<br>272 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>straw | 4.9 5.7<br>1.2 1.3<br>0.04 0.04<br>0.03 0.02<br>< 0.05 (2)                        | GHE-P-2144<br>R88-21A         |
| Germany, 1988–<br>1989 (Ceres)            | EC<br>haloxyfop-<br>ethoxyethyl         | 0.21                 | 6 leaf (EC<br>23) | 400             | 1   | 1<br>42<br>189<br>241<br>272 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>straw | 8.7 7.9<br>1.9 1.7<br>0.03 < 0.02<br>0.04 0.04<br>< 0.05 (2)                      | GHE-P-2144<br>R88-21A         |
| Germany, 1988–<br>1989 (Ceres)            |                                         | 0<br>control<br>plot |                   |                 | 0   | 1<br>42<br>189<br>241<br>272 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>straw | 0.06 0.05<br>< 0.02 (2)<br>< 0.02 (2)<br>0.02 0.03<br>< 0.05 (2)                  | GHE-P-2144<br>R88-21A         |
| Germany, 2000<br>(Mohican)                | EC<br>haloxyfop-P-<br>methyl            | 0.051                | BBCH 50           | 255             | 1   | 113                          | plant                                                             | 0.25                                                                              | GHE-P-8857<br>CEMS-1254A      |

| OILSEED RAPE               | Application <sup>a</sup>                |          |                 |                 |     | PHI                            | Commodity                                                   | haloxyfop, mg/kg                              | Ref                           |
|----------------------------|-----------------------------------------|----------|-----------------|-----------------|-----|--------------------------------|-------------------------------------------------------------|-----------------------------------------------|-------------------------------|
| country,<br>year (variety) | Form <sup>c</sup>                       | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days                           |                                                             |                                               |                               |
| Germany, 2000<br>(Zenith)  | EC<br>haloxyfop-P-<br>methyl            | 0.052    | BBCH 50         | 300             | 1   | 113                            | plant                                                       | 0.16                                          | GHE-P-8857<br>CEMS-1254B      |
| Germany, 2006<br>(Heros)   | EC<br>haloxyfop-P-<br>methyl            | 0.081    | BBCH 32         | 310             | 1   | 0<br>7<br>14<br>21<br>28<br>97 | plant<br>plant<br>plant<br>plant<br>plant<br>plant          | 6.8<br>0.84<br>0.36<br>0.19<br>0.10<br>0.034  | GHE-P-11657<br>G06W018R<br>T2 |
| Germany, 2006<br>(Heros)   | EC<br>haloxyfop-P-<br>methyl            | 0.084    | BBCH 39         | 320             | 1   | 0<br>7<br>14<br>21<br>28<br>92 | plant<br>plant<br>plant<br>plant<br>plant<br>plant<br>plant | 5.6<br>0.83<br>0.53<br>0.28<br>0.10<br>0.077  | GHE-P-11657<br>G06W018R<br>T3 |
| Germany, 2006<br>(Heros)   | EC<br>haloxyfop-P-<br>methyl            | 0.075    | BBCH 50         | 290             | 1   | 91                             | plant                                                       | 0.092                                         | GHE-P-11657<br>G06W018R<br>T4 |
| Germany, 2006<br>(Heros)   | EC<br>haloxyfop-P-<br>methyl            | 0.055    | BBCH 32         | 320             | 1   | 0<br>7<br>14<br>21<br>28<br>97 | plant<br>plant<br>plant<br>plant<br>plant<br>plant          | 4.0<br>0.53<br>0.24<br>0.16<br>0.065<br>0.037 | GHE-P-11657<br>G06W018R<br>T5 |
| Germany, 2006<br>(Heros)   | EC<br>haloxyfop-P-<br>methyl            | 0.054    | BBCH 39         | 310             | 1   | 92                             | plant                                                       | 0.01                                          | GHE-P-11657<br>G06W018R<br>T6 |
| Germany, 2006<br>(Heros)   | EC<br>haloxyfop-P-<br>methyl            | 0.052    | BBCH 50         | 300             | 1   | 0<br>7<br>14<br>21<br>28<br>91 | plant<br>plant<br>plant<br>plant<br>plant<br>plant          | 1.9<br>0.52<br>0.22<br>0.21<br>0.19<br>0.055  | GHE-P-11657<br>G06W018R<br>T7 |
| Germany, 2006<br>(Heros)   | EC + adjuvant<br>haloxyfop-P-<br>methyl | 0.055    | BBCH 32         | 320             | 1   | 0<br>7<br>14<br>21<br>28<br>97 | plant<br>plant<br>plant<br>plant<br>plant<br>plant          | 4.8<br>0.48<br>0.23<br>0.10<br>0.090<br>0.03  | GHE-P-11657<br>G06W018R<br>T8 |
| Germany, 2006<br>(Oase)    | EC<br>haloxyfop-P-<br>methyl            | 0.082    | BBCH 32         | 310             | 1   | 0<br>7<br>14<br>21<br>28<br>88 | plant<br>plant<br>plant<br>plant<br>plant<br>plant          | 4.3<br>1.1<br>0.66<br>0.60<br>0.42<br>0.35    | GHE-P-11657<br>G06W017R<br>T2 |
| Germany, 2006<br>(Oase)    | EC<br>haloxyfop-P-<br>methyl            | 0.078    | BBCH 39         | 300             | 1   | 0<br>7<br>14<br>21<br>28<br>85 | plant<br>plant<br>plant<br>plant<br>plant<br>plant          | 3.9<br>1.2<br>0.77<br>0.62<br>0.44<br>0.35    | GHE-P-11657<br>G06W017R<br>T3 |
| Germany, 2006<br>(Oase)    | EC<br>haloxyfop-P-<br>methyl            | 0.085    | BBCH 50         | 330             | 1   | 82                             | plant                                                       | 0.41                                          | GHE-P-11657<br>G06W017R<br>T4 |
| Germany, 2006<br>(Oase)    | EC<br>haloxyfop-P-<br>methyl            | 0.053    | BBCH 32         | 310             | 1   | 0<br>7<br>14<br>21<br>28<br>88 | plant<br>plant<br>plant<br>plant<br>plant<br>plant          | 3.6<br>0.75<br>0.46<br>0.32<br>0.29<br>0.13   | GHE-P-11657<br>G06W017R<br>T5 |

| OILSEED RAPE               | Application <sup>a</sup>                |          |                 |                 |     | PHI                            | Commodity                                          | haloxyfop, mg/kg                            | Ref                            |
|----------------------------|-----------------------------------------|----------|-----------------|-----------------|-----|--------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------|
| country,<br>year (variety) | Form <sup>c</sup>                       | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days                           |                                                    |                                             |                                |
| Germany, 2006<br>(Oase)    | EC<br>haloxyfop-P-<br>methyl            | 0.056    | BBCH 39         | 320             | 1   | 85                             | plant                                              | 0.26                                        | GHE-P-11657<br>G06W017R<br>T6  |
| Germany, 2006<br>(Oase)    | EC<br>haloxyfop-P-<br>methyl            | 0.055    | BBCH 50         | 310             | 1   | 0<br>7<br>14<br>21<br>28<br>82 | plant<br>plant<br>plant<br>plant<br>plant<br>plant | 2.3<br>0.84<br>0.53<br>0.47<br>0.26<br>0.27 | GHE-P-11657<br>G06W017R<br>T7  |
| Germany, 2006<br>(Oase)    | EC + adjuvant<br>haloxyfop-P-<br>methyl | 0.054    | BBCH 32         | 310             | 1   | 0<br>7<br>14<br>21<br>28<br>88 | plant<br>plant<br>plant<br>plant<br>plant<br>plant | 1.5<br>0.74<br>0.44<br>0.32<br>0.27<br>0.11 | GHE-P-11657<br>G06W017R<br>T8  |
| Greece, 2006<br>(Licosmos) | EC<br>haloxyfop-P-<br>methyl            | 0.081    | BBCH 32         | 210             | 1   | 80                             | plant                                              | 0.16                                        | GHE-P-11656<br>GR06W013R<br>T2 |
| Greece, 2006<br>(Licosmos) | EC<br>haloxyfop-P-<br>methyl            | 0.076    | BBCH 39         | 290             | 1   | 69                             | plant                                              | 0.092                                       | GHE-P-11656<br>GR06W013R<br>T3 |
| Greece, 2006<br>(Licosmos) | EC<br>haloxyfop-P-<br>methyl            | 0.079    | BBCH 50-<br>63  | 300             | 1   | 65                             | plant                                              | 0.073                                       | GHE-P-11656<br>GR06W013R<br>T4 |
| Greece, 2006<br>(Licosmos) | EC<br>haloxyfop-P-<br>methyl            | 0.052    | BBCH 32         | 200             | 1   | 80                             | plant                                              | 0.05                                        | GHE-P-11656<br>GR06W013R<br>T5 |
| Greece, 2006<br>(Licosmos) | EC<br>haloxyfop-P-<br>methyl            | 0.052    | BBCH 39         | 300             | 1   | 69                             | plant                                              | 0.062                                       | GHE-P-11656<br>GR06W013R<br>T6 |
| Greece, 2006<br>(Licosmos) | EC<br>haloxyfop-P-<br>methyl            | 0.051    | BBCH 50-<br>63  | 290             | 1   | 65                             | plant                                              | 0.065                                       | GHE-P-11656<br>GR06W013R<br>T7 |
| Greece, 2006<br>(Licosmos) | EC + adjuvant<br>haloxyfop-P-<br>methyl | 0.054    | BBCH 32         | 210             | 1   | 80                             | plant                                              | 0.055                                       | GHE-P-11656<br>GR06W013R<br>T8 |
| Italy, 2006<br>(Heros)     | EC<br>haloxyfop-P-<br>methyl            | 0.082    | BBCH 32         | 319             | 1   | 60                             | plant                                              | 0.17                                        | GHE-P-11656<br>I06W023R T2     |
| Italy, 2006<br>(Heros)     | EC<br>haloxyfop-P-<br>methyl            | 0.078    | BBCH 39         | 300             | 1   | 57                             | plant                                              | 0.17                                        | GHE-P-11656<br>I06W023R T3     |
| Italy, 2006<br>(Heros)     | EC<br>haloxyfop-P-<br>methyl            | 0.078    | BBCH 50         | 300             | 1   | 53                             | plant                                              | 0.23                                        | GHE-P-11656<br>I06W023R T4     |
| Italy, 2006<br>(Heros)     | EC<br>haloxyfop-P-<br>methyl            | 0.051    | BBCH 32         | 290             | 1   | 60                             | plant                                              | 0.075                                       | GHE-P-11656<br>I06W023R T5     |
| Italy, 2006<br>(Heros)     | EC<br>haloxyfop-P-<br>methyl            | 0.052    | BBCH 39         | 300             | 1   | 57                             | plant                                              | 0.091                                       | GHE-P-11656<br>I06W023R T6     |
| Italy, 2006<br>(Heros)     | EC<br>haloxyfop-P-<br>methyl            | 0.052    | BBCH 50         | 300             | 1   | 53                             | plant                                              | 0.14                                        | GHE-P-11656<br>I06W023R T7     |
| Italy, 2006<br>(Heros)     | EC + adjuvant<br>haloxyfop-P-<br>methyl | 0.054    | BBCH 32         | 310             | 1   | 60                             | plant                                              | 0.13                                        | GHE-P-11656<br>I06W023R T8     |

| OILSEED RAPE                  | Application <sup>a</sup>                |          |                 |                 |     | PHI                            | Commodity                                          | haloxyfop, mg/kg                             | Ref                            |
|-------------------------------|-----------------------------------------|----------|-----------------|-----------------|-----|--------------------------------|----------------------------------------------------|----------------------------------------------|--------------------------------|
| country,<br>year (variety)    | Form <sup>c</sup>                       | kg ai/ha | growth<br>stage | water<br>(L/ha) | no. | days                           |                                                    |                                              |                                |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl            | 0.082    | BBCH 32         | 320             | 1   | 0<br>7<br>14<br>21<br>28<br>92 | plant<br>plant<br>plant<br>plant<br>plant<br>plant | 3.4<br>0.63<br>0.23<br>0.20<br>0.16<br>0.16  | GHE-P-11657<br>PL06W009R<br>T2 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl            | 0.080    | BBCH 39         | 310             | 1   | 0<br>7<br>14<br>21<br>28<br>89 | plant<br>plant<br>plant<br>plant<br>plant<br>plant | 2.2<br>0.51<br>0.49<br>0.35<br>0.13<br>0.21  | GHE-P-11657<br>PL06W009R<br>T3 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl            | 0.084    | BBCH 50         | 320             | 1   | 87                             | plant                                              | 0.27                                         | GHE-P-11657<br>PL06W009R<br>T4 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl            | 0.051    | BBCH 32         | 300             | 1   | 0<br>7<br>14<br>21<br>28<br>92 | plant<br>plant<br>plant<br>plant<br>plant<br>plant | 1.6<br>0.44<br>0.19<br>0.21<br>0.097<br>0.14 | GHE-P-11657<br>PL06W009R<br>T5 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl            | 0.055    | BBCH 39         | 320             | 1   | 89                             | plant                                              | 0.097                                        | GHE-P-11657<br>PL06W009R<br>T6 |
| Poland, 2006<br>(Californium) | EC<br>haloxyfop-P-<br>methyl            | 0.052    | BBCH 50         | 300             | 1   | 0<br>7<br>14<br>21<br>28<br>87 | plant<br>plant<br>plant<br>plant<br>plant<br>plant | 3.0<br>0.49<br>0.29<br>0.20<br>0.16<br>0.15  | GHE-P-11657<br>PL06W009R<br>T7 |
| Poland, 2006<br>(Californium) | EC + adjuvant<br>haloxyfop-P-<br>methyl | 0.052    | BBCH 32         | 300             | 1   | 0<br>7<br>14<br>21<br>28<br>87 | plant<br>plant<br>plant<br>plant<br>plant<br>plant | 1.5<br>0.41<br>0.24<br>0.16<br>0.12<br>0.069 | GHE-P-11657<br>PL06W009R<br>T8 |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl            | 0.079    | BBCH 32         | 300             | 1   | 147                            | plant <sup>b</sup>                                 | < 0.01                                       | GHE-P-11656<br>S06W027R<br>T2  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl            | 0.077    | BBCH 39         | 300             | 1   | 141                            | plant <sup>b</sup>                                 | < 0.01                                       | GHE-P-11656<br>S06W027R<br>T3  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl            | 0.077    | BBCH 50         | 290             | 1   | 134                            | plant <sup>b</sup>                                 | 0.02                                         | GHE-P-11656<br>S06W027R<br>T4  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl            | 0.056    | BBCH 32         | 320             | 1   | 147                            | plant <sup>b</sup>                                 | < 0.01                                       | GHE-P-11656<br>S06W027R<br>T5  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl            | 0.053    | BBCH 39         | 300             | 1   | 141                            | plant <sup>b</sup>                                 | < 0.01                                       | GHE-P-11656<br>S06W027R<br>T6  |
| Spain, 2006<br>(Tracia)       | EC<br>haloxyfop-P-<br>methyl            | 0.053    | BBCH 50         | 300             | 1   | 134                            | plant <sup>b</sup>                                 | < 0.01                                       | GHE-P-11656<br>S06W027R<br>T7  |
| Spain, 2006<br>(Tracia)       | EC + adjuvant<br>haloxyfop-P-<br>methyl | 0.052    | BBCH 32         | 300             | 1   | 147                            | plant <sup>b</sup>                                 | < 0.01                                       | GHE-P-11656<br>S06W027R<br>T8  |

<sup>a</sup> Directed: spray directed at ground.

<sup>b</sup> Plants were dried at 30 °C in a drying oven for 40 hours and separated afterwards by threshing.

<sup>c</sup> Adjuvant used in European trials: rapeseed oil.

Oilseed rape, BBCH growth stages (Meier, 2001)

16 6 leaves unfolded.

- 30 Beginning of stem elongation: no internodes ("rosette").
- 32 2 visibly extended internodes.
- 34 4 visibly extended internodes.
- 39 9 or more visibly extended internodes.
- 50 Flower buds present, still enclosed by leaves.
- 57 Individual flower buds (secondary inflorescences) visible but still closed.
- 60 First flowers open.
- 63 30% of flowers on main raceme open.

## FATE OF RESIDUES IN STORAGE AND PROCESSING

## In processing

The Meeting received information on the fate of haloxyfop residues during the processing of oilseed rape for oil and meal, soya beans for oil and meal and sugar beet for sugar. A processing study was also provided for apples, but haloxyfop uses as a directed spray on weeds around apple trees did not produce detectable residues in the apples or processed commodities.

Processing studies were available on the following commodities.

| Apples $\rightarrow$ |               | juice, pomace                               | Table 38 |
|----------------------|---------------|---------------------------------------------|----------|
| Oilseed rape         | $\rightarrow$ | crude oil, refined and deodorised oil, meal | Table 39 |
| Soya beans           | $\rightarrow$ | crude oil, refined oil, meal                | Table 40 |
| Sugar beet           | $\rightarrow$ | sugar, green syrup                          | Table 41 |

Processing factors have been calculated for haloxyfop residues in oilseed rape, soya beans and sugar beet.

Haloxyfop-methyl was applied to the grassy area under apple trees (Gardner and Schotts, 1988, GHC-2037) from which apples were subsequently harvested and processed into chopped apples, juice and pomace. Approximately 9–10 kg of apples were harvested and processed in each trial. The haloxyfop residue data are summarised in Table . No residues of haloxyfop occurred in the apples, juice or pomace.

Table 38 Haloxyfop residues in apples and processed commodities resulting from supervised trials in the USA

| APPLES                               | Application                        |                  |             |                 |     | PHI  | Commodity                                           | haloxyfop                            | Ref      |
|--------------------------------------|------------------------------------|------------------|-------------|-----------------|-----|------|-----------------------------------------------------|--------------------------------------|----------|
| country,<br>year (variety)           | Form                               | kg ai/ha         | kg<br>ai/hL | water<br>(L/ha) | no. | days |                                                     | mg/kg                                |          |
| USA (CA), 1987<br>(Golden Delicious) | WG + oil<br>haloxyfop-P-<br>methyl | 1.7 <sup>a</sup> |             | 190             | 1   | 60   | chopped apples<br>juice<br>wet pomace<br>dry pomace | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | GHC-2037 |

| APPLES                               | Application                        |                   |             |                 |     | PHI  | Commodity                                           | haloxyfop                            | Ref      |
|--------------------------------------|------------------------------------|-------------------|-------------|-----------------|-----|------|-----------------------------------------------------|--------------------------------------|----------|
| country,<br>year (variety)           | Form                               | kg ai/ha          | kg<br>ai/hL | water<br>(L/ha) | no. | days |                                                     | mg/kg                                |          |
| USA (CA), 1987<br>(Rome)             | WG + oil<br>haloxyfop-P-<br>methyl | 0.56 <sup>a</sup> |             | 190             | 1   | 59   | chopped apples<br>juice<br>wet pomace<br>dry pomace | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | GHC-2037 |
| USA (MI), 1987<br>(Macintosh)        | WG + oil<br>haloxyfop-P-<br>methyl | 1.7 <sup>a</sup>  |             | 220             | 1   | 60   | chopped apples<br>juice<br>wet pomace<br>dry pomace | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | GHC-2037 |
| USA (MI), 1987<br>(Golden Delicious) | WG + oil<br>haloxyfop-P-<br>methyl | 1.7 <sup>a</sup>  |             | 220             | 1   | 60   | chopped apples<br>juice<br>wet pomace<br>dry pomace | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | GHC-2037 |

<sup>a</sup> Directed application for grass control.

Yon (1987, GHE-P-1313R) examined the fate of incurred haloxyfop residues in oilseed rape during processing. Rapeseed (1 kg) was processed in the laboratory simulating commercial practice. Seeds were coarsely ground and extracted with hot hexane. Solvent was evaporated from the oil and the meal. Crude oil was degummed by agitation with 10% phosphoric acid at 90 °C for 20 minutes. The mixture was then cooled to 40 °C, neutralized with NaOH and then a 30% alkali was added and the soap was allowed to settle. The oil was decanted, filtered and washed free of soap and dried. The oil was bleached by agitation at 90 °C for 30 minutes with added Fuller's earth followed by filtration. Deodorisation was effected by steam distillation at 240 °C under reduced pressure for 1 hour. The oil was then cooled to 100 °C and citric acid was added as a trace metal sequestrant. Residues in the rape seed and processed fractions are summarised in Table 39.

| Table 39    | Haloxyfop | residues | in c | oilseed | rape | and | processed | commodities | resulting | from | supervised |
|-------------|-----------|----------|------|---------|------|-----|-----------|-------------|-----------|------|------------|
| trials in F | rance     |          |      |         |      |     |           |             |           |      |            |

| OILSEED RAPE                                                | Application                     | Application          |                    |                 |     |      |                                                 | haloxyfop, mg/kg                                                               | Ref                            |
|-------------------------------------------------------------|---------------------------------|----------------------|--------------------|-----------------|-----|------|-------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------|
| country,<br>year (variety)                                  | Form                            | kg ai/ha             | growth<br>stage    | water<br>(L/ha) | no. | days | Note <sup>a</sup>                               |                                                                                |                                |
| France, 1982–<br>1983 (Winter<br>oilseed rape, Jet<br>Neuf) | EC<br>haloxyfop-<br>ethoxyethyl | 0.10                 | 5–6 leaves         | 400             | 1   | 228  | rape seed<br>oil, crude<br>oil, ref & d<br>meal | < 0.05 (3)<br>0.05 0.06 0.06<br>0.09 0.07 0.08<br>0.04 0.03 0.04               | GHE-P-<br>1313R<br>RT97-100/83 |
| France, 1982–<br>1983 (Winter<br>oilseed rape, Jet<br>Neuf) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21                 | 5–6 leaves         | 400             | 1   | 228  | rape seed<br>oil, crude<br>oil, ref & d<br>meal | < 0.05 (3)<br>0.06 0.06 0.06<br>0.05 0.04 0.05<br>0.05 0.04 0.05               | GHE-P-<br>1313R<br>RT97-100/83 |
| France, 1982–<br>1983 (Winter<br>oilseed rape, Jet<br>Neuf) | EC<br>haloxyfop-<br>ethoxyethyl | 0.63                 | 5–6 leaves         | 400             | 1   | 228  | rape seed<br>oil, crude<br>oil, ref & d<br>meal | 0.06 0.06 0.06<br>0.09 0.11 0.10<br>0.08 0.07 0.08<br>0.11 0.09 0.10           | GHE-P-<br>1313R<br>RT97-100/83 |
| France, 1982–<br>1983 (Winter<br>oilseed rape, Jet<br>Neuf) |                                 | 0<br>control<br>plot |                    |                 | 0   | 228  | rape seed<br>oil, crude<br>oil, ref & d<br>meal | < 0.01 (3)<br>0.02 0.01 0.02<br>0.03 0.03 0.02 0.03<br>< 0.02 (3)              | GHE-P-<br>1313R<br>RT97-100/83 |
| France, 1982–<br>1983 (Winter<br>oilseed rape, Jet<br>Neuf) | EC<br>haloxyfop-<br>ethoxyethyl | 0.10                 | Blooming<br>begins | 400             | 1   | 122  | rape seed<br>oil, crude<br>oil, ref & d<br>meal | 0.27 0.29 0.28<br>0.36 0.36 0.49 0.40<br>0.26 0.41 0.22 0.30<br>0.24 0.25 0.25 | GHE-P-<br>1313R<br>RT93-96/83  |
| France, 1982–<br>1983 (Winter<br>oilseed rape, Jet<br>Neuf) | EC<br>haloxyfop-<br>ethoxyethyl | 0.21                 | Blooming<br>begins | 400             | 1   | 122  | rape seed<br>oil, crude<br>oil, ref & d<br>meal | 0.40 0.33 0.37<br>0.73 0.72 0.73<br>0.83 0.79 0.81<br>0.27 0.40 0.34           | GHE-P-<br>1313R<br>RT93-96/83  |

| OILSEED RAPE                                                | Application                     | pplication           |                    |                 |     |      |                                                 | haloxyfop, mg/kg                                                             | Ref                           |
|-------------------------------------------------------------|---------------------------------|----------------------|--------------------|-----------------|-----|------|-------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|
| country,<br>year (variety)                                  | Form                            | kg ai/ha             | growth<br>stage    | water<br>(L/ha) | no. | days | Note <sup>a</sup>                               |                                                                              |                               |
| France, 1982–<br>1983 (Winter<br>oilseed rape, Jet<br>Neuf) | EC<br>haloxyfop-<br>ethoxyethyl | 0.63                 | Blooming<br>begins | 400             | 1   | 122  | rape seed<br>oil, crude<br>oil, ref & d<br>meal | 1.25 1.20 1.23<br>2.27 2.12 2.20<br>2.31 2.36 2.33<br>1.09 1.10 1.10         | GHE-P-<br>1313R<br>RT93-96/83 |
| France, 1982–<br>1983 (Winter<br>oilseed rape, Jet<br>Neuf) |                                 | 0<br>control<br>plot |                    |                 | 0   | 122  | rape seed<br>oil, crude<br>oil, ref & d<br>meal | 0.017 0.025 0.02<br>0.067 0.047 0.06<br>0.059 0.066 0.07<br>0.031 0.036 0.03 | GHE-P-<br>1313R<br>RT93-96/83 |

<sup>a</sup> Oil, ref & d: refined and deodorised oil.

Gardner (1983, GH-C 1625) reported on the haloxyfop residue levels in soya bean commodities that resulted from laboratory scale processing of soya beans treated in the field with haloxyfop-methyl (Table 40)

Phillips (1991, 89026) described the small-scale processing of soya bean used in that residue study. After bringing the moisture content to a suitable level, ideally 7–10%, the hull and kernel can be separated and the seed can be cleaned of light impurities such as dust and soil by aspiration. Passage over a screen of suitable size is used to separate whole seed from small and large pieces of plant material. Kernels are cracked in a mill and the kernel material is heated to 66–74 °C in a small cooker. Crude oil is then extracted from the flaked kernels with hexane in a steam-jacketed extractor. The extracted flakes are milled to a smaller particle size—the meal. Crude oil is obtained by evaporation of the hexane. Crude oil is refined by an AOCS method that removes free fatty acids.

Soya beans, hulls and meal were analysed for haloxyfop residues by method ACR 83.1R.s1, while crude oil, refined oil and soapstock relied on method ACR 86.6.S2 (Phillips, 1991, 89026).

| SOYA BEANS                                | Application                        |          |                            |                 |     | PHI  | Commodity                                                            | haloxyfop, mg/kg                             | Ref       |
|-------------------------------------------|------------------------------------|----------|----------------------------|-----------------|-----|------|----------------------------------------------------------------------|----------------------------------------------|-----------|
| country,<br>year (variety)                | Form                               | kg ai/ha | growth<br>stage            | water<br>(L/ha) | no. | days |                                                                      |                                              |           |
| USA (IL), 1982<br>(Northrup King<br>1492) | EC + oil<br>haloxyfop-<br>methyl   | 0.28     | in bloom                   |                 | 1   | 69   | soya beans<br>hulls<br>meal<br>crude oil<br>refined oil<br>soapstock | 0.68<br>0.56<br>0.81<br>0.85<br>0.83<br>0.72 | GH-C 1625 |
| USA (MI), 1989<br>(Harden)                | EC + oil<br>haloxyfop-P-<br>methyl | 0.70     | 5 <sup>th</sup> trifoliate | 190             | 1   | 97   | soya beans<br>hulls<br>meal<br>crude oil<br>refined oil<br>soapstock | 0.55<br>0.39<br>0.71<br>0.22<br>0.18<br>0.24 | 89026     |
| USA (IL), 1989<br>(Agri Pro 2021)         | EC + oil<br>haloxyfop-P-<br>methyl | 0.70     | 5 <sup>th</sup> trifoliate | 190             | 1   | 96   | Composite soy<br>IL and MS tria                                      | va bean sample from<br>ils processed         | 89026     |
| USA (MS), 1989<br>(Braggs)                | EC + oil<br>haloxyfop-P-<br>methyl | 0.70     | 5 <sup>th</sup> trifoliate | 190             | 1   | 88   | soya beans<br>hulls<br>meal<br>crude oil<br>refined oil<br>soapstock | 0.24<br>0.15<br>0.30<br>0.19<br>0.18<br>0.27 | 89026     |

Table 40 Haloxyfop residues in soya beans and processed commodities resulting from supervised trials in the USA

Yon (1984, GHE-P-1125) treated a sugar beet crop with haloxyfop-ethoxyethyl and processed the harvested beets to sugar. The process was pilot scale (25 kg) and consisted of washing, slicing,

water extraction, pressing, filtration, calcium carbonate precipitation-filtration, boiling and centrifuging. The residue data are summarised in Table 41.

Table 41 Haloxyfop residues in sugar beet and processed commodities resulting from supervised trials in the UK

| SUGAR BEET                 | Application                     | Application |                 |                 |     |      | Commodity                                                              | haloxyfop, mg/kg                                               | Ref        |
|----------------------------|---------------------------------|-------------|-----------------|-----------------|-----|------|------------------------------------------------------------------------|----------------------------------------------------------------|------------|
| country,<br>year (variety) | Form                            | kg ai/ha    | growth<br>stage | water<br>(L/ha) | no. | days | a                                                                      | Ь                                                              |            |
| UK, 1983<br>(Amono)        | EC<br>haloxyfop-<br>ethoxyethyl | 0.25        | 6–8 leaf        | 200             | 1   | 66   | cossettes<br>raw juice<br>pressed pulp<br>refined sugar<br>green syrup | 0.04 0.09<br>0.02 0.04<br>0.02 0.04<br>< 0.01 (2)<br>0.15 0.28 | GHE-P-1125 |
| UK, 1983<br>(Amono)        | EC<br>haloxyfop-<br>ethoxyethyl | 0.50        | 6–8 leaf        | 200             | 1   | 66   | cossettes<br>raw juice<br>pressed pulp<br>refined sugar<br>green syrup | 0.15 0.07<br>0.09 0.08<br>0.05 0.03<br>< 0.01 (2)<br>0.33 0.32 | GHE-P-1125 |

<sup>a</sup> Cossettes: sliced raw beets. Green syrup: the liquor from the second last crystallizer, comparable with molasses, the liquor from the final crystallizer.

<sup>b</sup> GHE-P-1125: 2 replicate batches processed.

Table 42 Summary of processing factors for haloxyfop residues. The factors are calculated from the data recorded in tables in this section

| Raw agricultural commodity (RAC) | Processed commodity | Calculated processing factors.                    | Median or best estimate |
|----------------------------------|---------------------|---------------------------------------------------|-------------------------|
| Oilseed rape                     | crude oil           | 1.1, 1.2, <u>1.4</u> , <u>1.7</u> , 1.8, 2.0      | 1.55                    |
| Oilseed rape                     | refined oil         | 0.93, 1.1, <u>1.3</u> , <u>1.7</u> , 1.9, 2.2     | 1.47                    |
| Oilseed rape                     | meal                | 0.73, 0.88, <u>0.89</u> , <u>0.92</u> , 0.93, 1.7 | 0.91                    |
| Soya beans                       | crude oil           | 0.40, 0.79, 1.3                                   | 0.79                    |
| Soya beans                       | refined oil         | 0.33, 0.75, 1.2                                   | 0.75                    |
| Soya beans                       | meal                | 1.19, 1.25, 1.29                                  | 1.25                    |
| Sugar beet                       | refined sugar       | < 0.09, < 0.15                                    | < 0.09                  |
| Sugar beet                       | green syrup         | 2.95, 3.31                                        | 3.1                     |

## **RESIDUES IN ANIMAL COMMODITIES**

## Livestock feeding studies

The meeting received beef cattle feeding studies with haloxyfop and haloxyfop-P, dairy cattle studies with haloxyfop and haloxyfop-P and a laying hen study with haloxyfop. These livestock feeding studies provided information on likely haloxyfop residues resulting in bovine tissues and milk and poultry tissues and eggs from haloxyfop residues in the animal diet.

## Beef cattle

Groups of three beef calves, Hereford, Angus, Angus/Hereford, Limousin, Hereford/Limousin, (animals weighing 219–280 kg at pre-dose) were dosed once daily via gelatin capsule with haloxyfop at nominal 0.25, 0.5, 1, 5 and 10 ppm in the dry-weight diet, for 28 consecutive days (Kutschinski and Bjerke, 1984, GH-C 1680). The animal ration consisted of corn silage (23% dry matter) *ad libitum* and approximately 0.5 kg of protein supplement (91% dry matter). Average feed consumption per day was typically in the 15–20 kg range. Animals were slaughtered 18 to 21 hours after the final dose for

tissue collection. Additional groups of animals at the highest dose were kept for 7 and 14 days after the final dose to observe declines in residue levels. Tissue samples were analysed for haloxyfop and its conjugates by method ACR 84.1. Samples were analysed within 10 weeks of sampling day. The residue data are summarised in Table 43.

Although large variations in residue levels occurred between animals receiving the same dose, residue levels were approximately proportional to doses for kidney, liver and fat. Residue levels for muscle were below LOQ, except at the two highest doses. Residues in kidney and liver depleted substantially within 7 days of the final dose. In fat, residues depleted in 7 days but were apparently persistent in the longer interval.

For animals dosed at 5 and 10 ppm, residues in muscle equalled or exceeded LOQ and ratios between residue levels in fat and muscle were calculated: mean = 7.8, range 3.6-18.5, n = 5. These values suggest fat solubility, at least for the conjugate.

Table 43 Haloxyfop residues in tissues of beef calves dosed once daily via gelatin capsule with haloxyfop at nominal 0.25, 0.5, 1, 5 and 10 ppm in the dry-weight diet, for 28 consecutive days (Kutschinski and Bjerke, 1984, GH-C 1680). Animals dosed at 10 ppm were kept for 7 and 14 days after the final dose to observe declines in residue levels.

|                           | Haloxyfop, mg/kg. Individual animal data. |                 |                |                    |  |  |  |  |
|---------------------------|-------------------------------------------|-----------------|----------------|--------------------|--|--|--|--|
| Dosing group, ppm in feed | Muscle                                    | Liver           | Kidney         | Fat                |  |  |  |  |
| 0.25 ppm                  | < 0.01 (3)                                | 0.03 < 0.01 (2) | 0.10 0.02 0.03 | 0.03 < 0.01 (2)    |  |  |  |  |
| 0.5 ppm                   | < 0.01 (3)                                | 0.01 0.02 0.03  | 0.03 0.06 0.11 | 0.01 0.01 < 0.01   |  |  |  |  |
| 1 ppm                     | < 0.01 (3)                                | 0.03 0.06 0.05  | 0.11 0.15 0.15 | < 0.01 0.01 < 0.01 |  |  |  |  |
| 5 ppm                     | 0.01 0.01                                 | 0.12 0.14       | 0.46 0.32      | 0.068 0.045        |  |  |  |  |
| 10 ppm                    | 0.02 0.05 0.03                            | 0.36 0.65 0.61  | 0.75 1.7 1.3   | 0.41 0.19 0.21     |  |  |  |  |
| 10 ppm + 7 days           | < 0.01 (3)                                | 0.02 0.02 0.21  | 0.05 0.03 0.54 | 0.16 0.06 0.01     |  |  |  |  |
| 10 ppm + 14 days          | < 0.01 (3)                                | 0.02 < 0.01 (2) | 0.05 0.03 0.02 | 0.17 0.05 0.05     |  |  |  |  |

Groups of three Angus cross beef cattle (animals weighing 450–650 kg) were dosed twice a day via gelatin capsules with haloxyfop-P at nominal concentrations 10, 20 and 30 ppm in the dry-weight diet, for 28 consecutive days (Cowles, 2003, GHF-P 1939). The animal ration consisted of hay. Average dry matter consumption was 8.4 kg per animal per day during the acclimatisation period. Animals were slaughtered on day 28 for tissue collection. Additional animals at the highest dose were kept for 7, 14, 21 and 28 days after the final dose to observe declines in residue levels. Tissue samples were analysed for haloxyfop by methods NCRL-PHT-01 (liver, kidney, muscle) and NCRL-PHF-01 (fat). Samples were stored for 9–12 months before analysis. The residue data are summarised in Table 44.

Table 44 Haloxyfop residues in tissues from Angus cross beef cattle dosed via gelatin capsules with haloxyfop-P at nominal concentrations 10, 20 and 30 ppm in the dry-weight diet, for 28 consecutive days (Cowles, 2003, GHF-P 1939)

|                            | Haloxyfop residues, mg/kg. Individual animal data |                     |                     |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------|---------------------|---------------------|--|--|--|--|--|--|
| TISSUE                     | Dosing group 10 ppm                               | Dosing group 20 ppm | Dosing group 30 ppm |  |  |  |  |  |  |
| Abdominal fat <sup>a</sup> | 0.02 0.01 0.01                                    | 0.05 0.03 0.03      | 0.02 0.02 0.04      |  |  |  |  |  |  |
| Kidney                     | 0.51 0.53 0.57                                    | 1.1 1.5 0.53        | 1.2 0.48 1.8        |  |  |  |  |  |  |
| Liver                      | 0.23 0.33 0.20                                    | 0.38 0.45 0.30      | 0.46 0.20 0.18      |  |  |  |  |  |  |
| Muscle                     | 0.02 0.05 0.02                                    | 0.06 0.06 0.03      | 0.05 0.01 0.05      |  |  |  |  |  |  |
| Renal fat <sup>a</sup>     | 0.02 0.01 0.01                                    | 0.04 0.02 0.02      | 0.02 0.02 0.04      |  |  |  |  |  |  |
| SC fat <sup>a</sup>        | 0.02 0.01 0.01                                    | 0.03 < 0.01 0.03    | 0.02 0.01 0.03      |  |  |  |  |  |  |

<sup>a</sup> Analytical method NCRL-PHF-01 has no hydrolysis step, so the residue data for fat are unlikely to recover haloxyfop residues quantitatively from their triacylglyceride conjugates.

|                       | Haloxyfop residues, mean, mg/kg. |        |        |  |
|-----------------------|----------------------------------|--------|--------|--|
| Days after final dose | Muscle                           | Liver  | Kidney |  |
| 0                     | 0.04                             | 0.28   | 1.15   |  |
| 7                     | < 0.01                           | 0.09   | 0.08   |  |
| 14                    | < 0.01                           | 0.02   | 0.02   |  |
| 21                    | < 0.01                           | 0.01   | 0.01   |  |
| 28                    | < 0.01                           | < 0.01 | 0.01   |  |

Table 45 Haloxyfop residues in tissues from Angus cross beef cattle dosed via gelatin capsules with haloxyfop-P at a nominal concentration of 30 ppm in the dry-weight diet, for 28 consecutive days and then observed for a further 28 days on a residue free diet (Cowles, 2003, GHF-P 1939)

## Dairy cattle

Groups of three lactating Holstein dairy cows (animals weighing 540–720 kg at pre-dose) were dosed through the feed with haloxyfop at nominal concentrations 0.25, 0.75 and 2.5 ppm in the dry-weight diet (measured 0.24, 0.72 and 2.7 ppm), for 28 consecutive days (Gardner, 1984, GH-C 1709). The animal ration consisted of corn silage, alfalfa hay, high moisture corn, whole cotton seed, dried brewer's grain and ground dry corn. Average daily feed consumption was 24–25 kg fresh weight or 14–15 kg dry weight. Total dry weight = 57.8% of fresh weight.

Milk was collected twice daily and milk samples for each cow were obtained by combining equal volumes from the two milkings. Milk production was approximately 9–18 kg/day. Milk from the morning milking was put through a separator to produce the cream. Milk and cream samples were analysed for haloxyfop and its conjugates by method ACR 84.6. It is not entirely clear, but samples may have been stored for approximately 12 months before analysis. The residue data are summarised in Table 46.

The butter fat content of the milk on day 10 was measured, with values of 3.9%, 4.1% and 4.1% for the milk from the three cows at the 2.5 ppm dosing level. The butter fat content of cream (not only day 10) was found to be in the range 44% to 62%.

Residue data were available for cream and milk on an individual animal basis for days 3 and 10. Average (and range) of haloxyfop residue levels were: day 3 cream 0.303 mg/kg (0.24-0.34 mg/kg) and milk 0.013 mg/kg (0.01-0.015 mg/kg); and day 10 cream 0.33 mg/kg (0.28-0.42 mg/kg) and milk 0.025 mg/kg (0.005-0.039 mg/kg). The average for 'milk residues  $\div$  cream residues' from day 3 and day 10 were 0.041 and 0.076 respectively.

Residue levels in milk and cream show reasonable proportionality to the dose. The residue is fat soluble. When the dosing is withdrawn, haloxyfop residues in milk and cream deplete within a few days.

Haloxyfop residues, mg/kg. Individual cow data MILK Dosing group 0.25 ppm Dosing group 0.75 ppm Dosing group 2.5 ppm < 0.01 (3) 0.015 0.01 0.01 Day 3 < 0.01 < 0.01 0.01 < 0.01 (3) 5 0.01 < 0.01 0.02 0.041 0.01 0.031 7 < 0.01 (3) 0.01 0.01 0.026 0.042 0.055 0.038 10 < 0.01 (3) 0.01 < 0.01 0.023 0.039 < 0.01 0.031 15 < 0.01 (3) < 0.01 < 0.01 0.037 0.021 0.036 0.02 20 < 0.01 (3)  $0.01 < 0.01 \quad 0.02$ 0.044 0.033 0.032 25 0.01 < 0.01 < 0.01 0.015 < 0.01 0.01 0.040 0.036 0.035 < 0.01(3)0.01 < 0.01 0.015 0.032 0.024 0.035 28 Withdraw 1 day < 0.01 (3) < 0.01 < 0.010.032 0.030 0.027 0.01

Table 46 Haloxyfop residues in milk and cream from Holstein dairy cows dosed through the feed with haloxyfop at nominal concentrations 0.25, 0.75 and 2.5 ppm in the dry-weight diet for 28 consecutive days (Gardner, 1984, GH-C 1709)

|                  | Haloxyfop residues, mg/kg. Individual cow data |                       |                      |  |
|------------------|------------------------------------------------|-----------------------|----------------------|--|
| Withdraw 3 days  | < 0.01 (3)                                     | < 0.01 (3)            | < 0.01 (3)           |  |
| Withdraw 5 days  | < 0.01 (3)                                     | < 0.01 (3)            | < 0.01 (3)           |  |
| Withdraw 7 days  | < 0.01 (3)                                     | < 0.01 (3)            | < 0.01 (3)           |  |
| Withdraw 14 days | < 0.01 (3)                                     | < 0.01 (3)            | < 0.01 (3)           |  |
|                  |                                                |                       |                      |  |
| CREAM            | Dosing group 0.25 ppm                          | Dosing group 0.75 ppm | Dosing group 2.5 ppm |  |
| Day 3            | 0.037 0.084 0.029                              | 0.11 0.10 0.27        | 0.34 0.24 0.33       |  |
| 10               | 0.046 0.046 0.048                              | 0.13 0.12 0.22        | 0.42 0.29 0.28       |  |
| 17               | 0.043 0.045 0.051                              | 0.13 0.11 0.15        | 0.41 0.30 0.34       |  |
| 28               | < 0.02 0.02 < 0.02                             | 0.02 0.035 0.093      | 0.20 0.18 0.090      |  |
| Withdraw 1 day   | 0.041 0.056 0.029                              | 0.17 0.12 0.088       | 0.42 0.39 0.39       |  |
| Withdraw 7 days  | < 0.02 (3)                                     | < 0.02 (3)            | < 0.02 (3)           |  |

Groups of three lactating Friesian dairy cows (animals weighing 452–586 kg) were dosed twice a day via gelatin capsules with haloxyfop-P at nominal concentrations 10, 20 and 30 ppm in the dry-weight diet, for 28 consecutive days (Cowles, 2003, GHF-P 1939). The sole feed was pasture, eaten on a voluntary basis, later supplemented with grass silage. Average dry matter consumption was 14 kg per cow per day during the acclimatisation period.

Milk was collected twice daily and milk samples for each cow were obtained by combining volumes from the two milkings in proportion to production volumes. Information on milk production was not available. Milk was analysed for haloxyfop using method NCRL-PHM-01, which does not include a hydrolysis step and therefore is unlikely to recover haloxyfop residues quantitatively from their triacylglyceride conjugates. Samples were stored for approximately 12–15 months before analysis. The residue data are summarised in Table 47.

Haloxyfop residue levels in milk reached a plateau by day 10 of the dosing. Residue levels were approximately proportional to doses, but the relationship was obscured by the large variations that occurred between animals of the same dosing group. Residue levels had noticeably declined by day 30, i.e. 2 days after dosing had ceased and, by day 38, residue levels from the 10 and 20 ppm groups had fallen to the LOQ (0.01 mg/kg) or lower.

Table 47 Haloxyfop residues in milk from Friesian dairy cows dosed via gelatin capsules with haloxyfop-P at nominal concentrations 10, 20 and 30 ppm in the dry-weight diet, for 28 consecutive days (Cowles, 2003, GHF-P 1939). Samples were analysed by method NCRL-PHM-01, which apparently would not recover haloxyfop residues quantitatively from their triacylglyceride conjugates.

|       | Haloxyfop residues, mg/kg. Individual cow data. |                     |                     |  |
|-------|-------------------------------------------------|---------------------|---------------------|--|
| MILK  | Dosing group 10 ppm                             | Dosing group 20 ppm | Dosing group 30 ppm |  |
| Day 1 | 0.01 0.01 0.01                                  | 0.01 0.02 0.02      | 0.02 0.02 0.03      |  |
| 2     | 0.12 0.20 0.14                                  | 0.19 0.39 0.33      | 0.42 0.24           |  |
| 6     | 0.18 0.23 0.20                                  | 0.24 0.43 0.40      | 0.54 0.57 0.27      |  |
| 10    | 0.33 0.38 0.31                                  | 0.48 0.87 0.59      | 1.29 1.83 0.42      |  |
| 14    | 0.28 0.27 0.20                                  | 0.36 0.54 0.56      | 0.60 0.73 0.28      |  |
| 18    | 0.22 0.29 0.22                                  | 0.28 0.70 0.54      | 0.70 0.74 0.33      |  |
| 22    | 0.23 0.25 0.17                                  | 0.20 0.59 0.56      | 0.63 0.72 0.20      |  |
| 26    | 0.58 0.65 0.37                                  | 0.22 0.97 0.91      | 1.01 2.21 0.37      |  |
| 30    | 0.40 0.32 0.09                                  | 0.09 0.48 0.59      | 0.61 0.95 0.19      |  |
| 34    | 0.13 0.07 0.01                                  | 0.03 0.04 0.06      | 0.35 0.52 0.02      |  |
| 38    | 0.01 0.01 < 0.01                                | < 0.01 0.01 1.00    | 0.07 0.07 < 0.01    |  |
| 42    | < 0.01 < 0.01 < 0.01                            | < 0.01 0.01 0.01    | < 0.01 0.11 < 0.01  |  |

## Laying hens

Groups of 12 White Leghorn laying hens, (birds weighing approximately 1.5 kg) received haloxyfop in the feed at nominal concentrations of 0.25, 0.75, and 2.5 ppm in the diet, for 28 consecutive days (Kutschinski and Bjerke, 1984, GH-C 1701). Birds were fed with a proprietary layer feed, provided 400 grams at a time (88% dry weight). Total feed consumption for each hen was determined each day by direct weighing. Average feed consumption per day was typically in the 90–120 g range. Eggs were collected twice daily. Eggs collected each day from a group were opened and the contents were pooled. Birds were slaughtered approximately 24 hours after the final dose for tissue collection. Additional groups of birds at the highest dose were kept for 7 and 14 days after the final dose to observe declines in residue levels. Tissue samples and eggs were analysed for haloxyfop and its conjugates by method ACR 84.1. Tissue samples were analysed within 3 months of sampling day and eggs within 6 months. The residue data are summarised in Table 48.

Haloxyfop residue levels were approximately proportional to dose for liver and fat. Residue levels for muscle and skin were below LOQ for the lowest dose group, but were above LOQ for all birds at the highest dose, 2.5 ppm. Residues in liver and muscle depleted substantially within 7 days of the final dose. In fat, residues were much more persistent. Residue levels in eggs were generally low and disappeared quickly (below LOQ after approximately 7 days) when dosing (2.5 ppm) was withdrawn.

Residue levels in fat were approximately 4–5 times as high as in the muscle for the 2.5 ppm dosing group on day 28 and an average 14 times on day 35 for cases where residues in muscle exceeded the LOQ (0.01 mg/kg). This suggests a fat soluble residue, at least for the conjugated residue.

Table 48 Haloxyfop residues in tissues of laying hens dosed via the feed with haloxyfop at nominal concentrations of 0.25, 0.75, and 2.5 ppm in the diet, for 28 consecutive days (Kutschinski and Bjerke, 1984, GH-C 1701). Birds dosed at 2.5 ppm were kept for 7 and 14 days after the final dose to observe declines in residue levels.

|                           | Haloxyfop, mg/kg. Mean and range for the group. |                           |                          |                                  |  |
|---------------------------|-------------------------------------------------|---------------------------|--------------------------|----------------------------------|--|
| Dosing group, ppm in feed | Muscle + skin                                   | Liver                     | Fat                      | Eggs, day 4 to day 28 $(n = 11)$ |  |
| 0.25 ppm                  | < 0.01                                          | 0.033 (0.011–0.083)       | 0.013 (< 0.01–<br>0.028) | < 0.01                           |  |
| 0.75 ppm                  | 0.014 (< 0.01-0.02)                             | 0.12 (0.060-0.19)         | 0.045 (0.014-0.11)       | 0.014 (< 0.01-0.020)             |  |
| 2.5 ppm                   | 0.063 (0.023-0.11)                              | 0.36 (0.18-0.64)          | 0.26 (0.11-0.54)         | 0.036 (0.015-0.052)              |  |
| 2.5 ppm + 7 days          | 0.01 (< 0.01-0.023)                             | < 0.01 (< 0.01–<br>0.018) | 0.17 (0.040-0.68)        | -                                |  |
| 2.5 ppm + 14 days         | 0.013 (< 0.01–<br>0.024)                        | < 0.01                    | 0.16 (0.053–0.31)        | < 0.01 (day 36–42)               |  |

## Livestock feeding summary

Table 49 Summary of haloxyfop livestock feeding studies showing the dose, expressed as concentration in the dry matter diet, and the resultant residue levels in animal commodities

| Dose equivalent,<br>ppm in feed | Residues, mg/kg<br>Mean, highest (in parentheses) |             |             |                           |            |
|---------------------------------|---------------------------------------------------|-------------|-------------|---------------------------|------------|
| BEEF CATTLE                     | Muscle                                            | Liver       | Kidney      | Fat                       | Study      |
| 0.25 ppm haloxyfop              | < 0.01                                            | 0.02 (0.03) | 0.05 (0.1)  | 0.02 (0.03)               | GH-C 1680  |
| 0.5 ppm haloxyfop               | < 0.01                                            | 0.02 (0.03) | 0.07 (0.11) | 0.01 (0.01)               | GH-C 1680  |
| 1 ppm haloxyfop                 | < 0.01                                            | 0.05 (0.05) | 0.14 (0.15) | 0.01 (0.01)               | GH-C 1680  |
| 5 ppm haloxyfop                 | 0.01 (0.01)                                       | 0.13 (0.14) | 0.39 (0.46) | 0.057 (0.068)             | GH-C 1680  |
| 10 ppm haloxyfop                | 0.03 (0.05)                                       | 0.54 (0.65) | 1.3 (1.7)   | 0.27 (0.41)               | GH-C 1680  |
| 10 ppm haloxyfop-P              | 0.03 (0.05)                                       | 0.25 (0.33) | 0.58 (0.70) | 0.013 (0.02) <sup>a</sup> | GHF-P 1939 |

| Dose equivalent,<br>ppm in feed | Residues, mg/kg<br>Mean, highest (in parentheses) |               |                                           |                           |            |
|---------------------------------|---------------------------------------------------|---------------|-------------------------------------------|---------------------------|------------|
| 20 ppm haloxyfop-P              | 0.05 (0.06)                                       | 0.38 (0.45)   | 1.0 (1.5)                                 | 0.029 (0.05) <sup>a</sup> | GHF-P 1939 |
| 30 ppm haloxyfop-P              | 0.04 (0.05)                                       | 0.28 (0.46)   | 1.2 (1.8)                                 | 0.024 (0.04) <sup>a</sup> | GHF-P 1939 |
|                                 |                                                   |               |                                           |                           |            |
| DAIRY CATTLE                    | Milk                                              | Cream         |                                           |                           |            |
| 0.25 ppm haloxyfop              | < 0.01                                            | 0.041         |                                           |                           | GH-C 1709  |
| 0.75 ppm haloxyfop              | 0.01                                              | 0.12          |                                           |                           | GH-C 1709  |
| 2.5 ppm haloxyfop               | 0.034                                             | 0.29          |                                           |                           | GH-C 1709  |
| 10 ppm haloxyfop-P              | 0.317 <sup>a</sup>                                |               | Mean from days 10–26, i.e. the plateau    |                           | GHF-P 1939 |
| 20 ppm haloxyfop-P              | 0.558 <sup>a</sup>                                |               | Mean from days 10–26, i.e. the plateau GH |                           | GHF-P 1939 |
| 30 ppm haloxyfop-P              | 0.804 <sup>a</sup>                                |               | Mean from days 10–26, i.e. the plateau    |                           | GHF-P 1939 |
|                                 |                                                   |               |                                           |                           |            |
| LAYING HENS                     | Muscle                                            | Liver         | Fat                                       | Eggs                      |            |
| 0.25 ppm haloxyfop              | < 0.01                                            | 0.033 (0.083) | 0.013 (0.028)                             | < 0.01                    | GH-C 1701  |
| 0.75 ppm haloxyfop              | 0.014 (0.02)                                      | 0.12 (0.19)   | 0.045 (0.11)                              | 0.014 (0.020)             | GH-C 1701  |
| 2.5 ppm haloxyfop               | 0.063 (0.11)                                      | 0.36 (0.64)   | 0.26 (0.54)                               | 0.036 (0.052)             | GH-C 1701  |

<sup>a</sup> The analytical methods for fat (NCRL-PHF-01) and milk (NCRL-PHM-01) did not include a hydrolysis step, so may not have quantitatively recovered haloxyfop from triacylglyceride conjugates.

## **RESIDUES IN FOOD IN COMMERCE OR AT CONSUMPTION**

No information was available.

## NATIONAL RESIDUE DEFINITIONS

## Australia

Haloxyfop: Sum of haloxyfop, its esters and conjugates, expressed as haloxyfop.

### European Union

Haloxyfop including haloxyfop-R (haloxyfop-R methyl ester, haloxyfop-R and conjugates of haloxyfop-R expressed as haloxyfop-R). The residue is considered as fat soluble.

## New Zealand

Sum of haloxyfop esters, haloxyfop and its conjugates, expressed as haloxyfop.

## APPRAISAL

Residue and analytical aspects of haloxyfop were evaluated by the JMPR in 1995, 1996 and 2001. The compound was listed in the Periodic Re-Evaluation Program at the Thirty-ninth Session of the CCPR (2007) for periodic review by the 2009 JMPR. The most recent toxicological review by JMPR was in 2006 when a group ADI of 0–0.0007 mg/kg bw and a group ARfD of 0.08 mg/kg bw were established for racemic haloxyfop, haloxyfop-R and their methyl esters. For the residue evaluation, the primary manufacturer provided a full residue data package. GAP information was also provided by Australia and The Netherlands.



Haloxyfop was originally produced as a racemic mixture for use as a herbicide for controlling grassy weeds. The compound is now available as the R-isomer, which is the herbicidally active one and is produced commercially as the methyl ester. The ISO name for the R isomer is haloxyfop-P. The ISO name for the unresolved isomeric mixture is haloxyfop.

#### Animal metabolism

The 2006 JMPR evaluated laboratory animal (mice, rats, dogs and monkeys) metabolism studies of orally administered haloxyfop esters and salts and reported that the different isomers, esters and salts of haloxyfop end up as the de-esterified R enantiomer. This suggests that studies on haloxyfop or haloxyfop-P are mutually supportive.

When two <u>lactating goats</u> were dosed with phenyl ring labelled haloxyfop via gelatin capsule twice daily for 10 consecutive days at the equivalent of 16 ppm haloxyfop in the feed, most of the administered dose (92% and 84%) was excreted in urine, with 1.9% and 1.5% in faeces. Milk accounted for 1.9% and 3.2% of the dose, and tissues less than 0.5% of the dose. Residues in milk reached a plateau very quickly, within 24 hours of the first dose. Monitoring on one goat for 10 hours did not detect [<sup>14</sup>C] volatiles or <sup>14</sup>CO<sub>2</sub>.

Radiolabel, expressed as haloxyfop, was higher in the kidney (1.45 and 1.07 mg/kg) and liver (0.45 and 0.31 mg/kg) than in fat or muscle. The residues in kidney and liver consisted mostly of parent haloxyfop, but some may have been present as labile conjugates.

Radiolabel levels in milk were 0.25 and 0.20 mg/kg. The <sup>14</sup>C residues in milk fat were nonpolar and were susceptible to alkaline hydrolysis or lipase hydrolysis releasing haloxyfop. The behaviour was consistent with haloxyfop conjugated as triacylglycerides. Residues in body fat were of the same nature as the residues in milk fat.

When four <u>laying hens</u> were dosed with phenyl ring labelled haloxyfop via gelatin capsule for 11 consecutive days at the equivalent of 12 ppm haloxyfop in the feed, most of the administered dose (82–90%) was excreted in the droppings or present as gut contents (5.8–8.6%). Eggs accounted for an average of 1.6% of the label, and tissues approximately 2%.

Radiolabel, as haloxyfop, was higher in the liver (1.2–2.5 mg/kg) than in the muscle (0.02–0.35 mg/kg) or fat (0.46–2.0 mg/kg). Alkaline hydrolysis of solvent extracts from liver, kidney and fat converted the residues almost quantitatively to a single product, haloxyfop. Most likely, parent haloxyfop was largely incorporated into lipids from which it could be readily released by hydrolysis.

Radio-labelled residue levels were much higher in the yolk (2.0-4.0 mg/kg) than in the whites (0.12-0.37 mg/kg) of eggs (day 10) and reached a plateau in yolks on approximately the 7<sup>th</sup> day of dosing. Almost the entire residue in the yolks was present as triacylglycerides. Mild alkaline hydrolysis or lipase hydrolysis produced haloxyfop as the single product.

In summary, the metabolism of haloxyfop in goats and hens is similar and also similar to metabolism in laboratory animals in the respect that the esters are de-esterified with little further breakdown of the parent compound. Haloxyfop is readily conjugated and incorporated into fats or secreted in the lipid of milk or eggs. The intact haloxyfop may be released from its conjugates by mild alkaline or enzymatic hydrolysis.

## Plant metabolism

The Meeting received plant metabolism studies with haloxyfop-butyl in cotton; haloxyfop-methyl, haloxyfop-butyl and haloxyfop-ethoxyethyl in soya beans; and haloxyfop-P-methyl in sugar beet and lettuce.

The distribution of radiolabel in <u>cotton</u> seed, oil, lint and field trash was reported for cotton that had been foliar treated with phenyl ring labelled haloxyfop butyl ester at a rate equivalent to 0.56 kg ai/ha and sampled 78 and 105 days after treatment. Concentrations of radiolabel on day 78, expressed as haloxyfop, were: cotton seed 0.78 mg/kg, oil 1.1 mg/kg and lint 0.19 mg/kg. By day 105, radiolabel concentrations had become: cotton seed 0.20 mg/kg, oil 0.38 mg/kg, lint 0.04 mg/kg and field trash 1.1 mg/kg.

None of the residue in any component was identified as haloxyfop butyl ester. In the cotton seed, almost all of the <sup>14</sup>C was accounted for as haloxyfop free acid (32% at day 105) and haloxyfop conjugates (66% at day 105). In the oil, 100% of the <sup>14</sup>C was present as haloxyfop conjugates. In the field trash, the radiolabel was present as free acid (39%) and conjugates (55%).

The <sup>14</sup>C in the oil was associated with the triglycerides. Lipase hydrolysis and alkali hydrolysis released 91–99.8% of the <sup>14</sup>C as haloxyfop, suggesting that the non-polar residues were triglyceride esters of haloxyfop.

In a <u>soya bean</u> metabolism study, the mature second and developing third trifoliate leaves of 20 day old soya bean plants were treated with [<sup>14</sup>C]labelled haloxyfop in the form of an ester (methyl, butyl and ethoxyethyl) at a dose equivalent to 0.2 mg per plant. Labelling was in the phenyl ring or the pyridyl ring. Treated leaves and the remainder of the plant were sampled 2, 4 and 8 days after treatment.

The distribution of radiolabel was very similar in plants treated with haloxyfop-methyl phenyl label and pyridyl label, suggesting that the haloxyfop molecule had remained intact.

The esters hydrolysed rapidly. Even after 2 days, little of the applied ester remained in the treated leaves. After 8 days, polar metabolites and haloxyfop accounted for 58-65% and 34-40% of the label respectively in the treated leaves. The nature of the applied ester seemed to have little influence on the nature and distribution of the residue.

Applied ester did not appear in untreated portions of the plant. After 8 days, polar metabolites and haloxyfop accounted for 35–39% and 61–65% of the label respectively in the untreated parts of the plant, i.e., unconjugated haloxyfop was the major component of the residue. Mild alkaline hydrolysis of the polar translocated residue released haloxyfop, demonstrating that at least part of the polar fraction consisted of haloxyfop conjugates.

In a second <u>soya bean</u> metabolism study, plants were treated once with  $[^{14}C]$ haloxyfop-butyl at two plant growth stages, 89 and 61 days before harvest and at two application rates, 0.28 and 0.56 kg ai/ha. Two labels were used: a phenyl ring label and a pyridyl label.

The parallel behaviour of the phenyl ring and the pyridyl labelled haloxyfop showed that the haloxyfop molecule remained intact and essentially the entire residue contained both the phenyl and pyridyl rings.

Radiolabelled residue levels, expressed as haloxyfop, in the beans for the two treatment rates were 3.1–5.8 mg/kg 61 days after treatment and 0.8–1.3 mg/kg 89 days after treatment. The composition of the residue was essentially the same after both treatments, i.e., unconjugated haloxyfop 57–59%, polar conjugates 17–20% and non-polar conjugates 17–18%. Alkaline and lipase hydrolysis of the non-polar residue from the beans suggested that haloxyfop was incorporated into the oil triglycerides. Most of the polar conjugates also produced haloxyfop on hydrolysis.

Polar conjugates (65–66%) were the main component of the residues in treated soya bean forage 15 days after treatment, with unconjugated haloxyfop (27–30%) accounting for most of the remainder. In new-growth forage sampled at the same time, unconjugated haloxyfop and polar conjugates accounted for 42% and 57% of the residue respectively. In soya bean straw, unconjugated

haloxyfop accounted for the majority of the residue (60–66%) with polar conjugates (24–32%) making up most of the remainder.

In a <u>sugar-beet</u> metabolism study, young plants in field plots were foliar sprayed at 0.22 kg ai/ha with pyridyl-labelled haloxyfop-P-methyl formulated as an EC. At maturity, 92 days after application, <sup>14</sup>C residues expressed as haloxyfop-P-methyl were much lower in the roots (0.019 mg/kg) than in the shoots (0.079 mg/kg).

The composition of the residue in sugar beet roots at maturity was: 31% haloxyfop-P acid, 19% conjugate 1, 20% haloxyfop-P glycoside conjugate 1 and 20% unextracted. The composition of the residue in sugar beet shoots at maturity was: 33% haloxyfop-P acid, 24% conjugate 1, 14% haloxyfop-P glycoside conjugate 1 and 12% unextracted.

In summary, haloxyfop-P readily translocated to the roots of treated sugar beet. The majority of the residue was present as polar conjugates.

In a <u>lettuce</u> metabolism study, plants in field plots were foliar sprayed at 0.11 kg ai/ha with pyridyl-labelled haloxyfop-P-methyl formulated as an EC. By day 14, haloxyfop-P-methyl had disappeared and haloxyfop-P acid was the major component of the residue. At maturity, 29 days after treatment, <sup>14</sup>C residues expressed as haloxyfop-P-methyl were at higher levels in the outer leaves (0.16 mg/kg) than in the inner leaves (0.048 mg/kg).

The main residue component in lettuce inner leaves at maturity was haloxyfop-P acid at 93% of the <sup>14</sup>C, with 5.4% accounted for by various conjugates. The <sup>14</sup>C residue in lettuce outer leaves consisted of: 38% haloxyfop-P acid, 24% conjugate 1, 23% glycoside conjugate 2, 10% unextracted and 6.9% glycoside conjugate 1.

Summary of haloxyfop in plant metabolism—when applied to a plant, the esters of haloxyfop or haloxyfop-P are broken down quickly to release free acid which is readily translocated throughout the plant. The haloxyfop (or haloxyfop-P) becomes conjugated, typically as glycosides (polar metabolites) or as triglycerides (non-polar metabolites), the conjugates often accounting for the major part of the residue.

## Environmental fate in soil

The Meeting received information on soil aerobic metabolism and soil photolysis properties of  $[^{14}C]$ haloxyfop-P-methyl. Studies were also received on the behaviour of  $[^{14}C]$ labelled haloxyfop-butyl in a rotational crop situation and haloxyfop-methyl in an unconfined rotational crop situation.

Haloxyfop residues are generally not persistent in soils. Haloxyfop residues in soils resulting from recommended uses should not contribute to the residues in root vegetables or to residues in succeeding crops.

In <u>soil incubation studies under aerobic conditions</u> at 20 °C, parent haloxyfop-P-methyl disappeared with a half-life of approximately 0.5 days. Haloxyfop-P-methyl was hydrolysed just as quickly in a sterile soil as in a fresh soil, demonstrating that the methyl ester is chemically labile. Haloxyfop-P acid was persistent in the sterile soil.

Under aerobic soil incubation, the first metabolite was haloxyfop-P acid, which mostly disappeared with half-lives in the range of 9-21 days (n = 8), but in subsoils with low organic carbon its disappearance half-lives were 28 and 129 days. After approximately 9 months, 6-33% of the dose (haloxyfop-P-methyl labelled in the pyridyl ring) had been mineralized and 28–46% was unextracted.



The metabolites 'phenol metab', 'pyridinone metab' and 'pyridinol metab' were consistently produced, with the 'pyridinone metab' apparently the most persistent.

In a <u>soil photolysis study</u> with labelled haloxyfop-P-methyl on the surface of a sandy clay loam, degradation rates in the dark controls and the photolysis samples were similar, suggesting that photolysis had negligible effect compared with hydrolysis and metabolism.

In a <u>confined rotational crop study</u> with wheat, soya beans, leaf lettuce, carrots and turnips, a plot of sandy loam soil was treated with [<sup>14</sup>C]phenyl ring labelled haloxyfop-butyl at the equivalent of 0.56 kg ai/ha and the crops were sown 30 days later. Crops were harvested at various intervals after sowing: lettuce 49 days, soya bean forage 56 days, turnips 64 days, carrots 124 days, wheat 110 days and soya beans 145 days.

The <sup>14</sup>C contents of the plant tissues, expressed as haloxyfop on fresh weight, were: lettuce 0.01 mg/kg, turnip foliage < 0.01 mg/kg, turnip root < 0.01 mg/kg, wheat grain 0.01 mg/kg, wheat straw 0.02 mg/kg, soya bean forage 0.07 mg/kg, soya bean grain < 0.01 mg/kg, soya bean straw 0.01 mg/kg, carrot foliage < 0.01 mg/kg and carrot root < 0.01 mg/kg. The levels were all too low for identification of the residue.

In an <u>unconfined rotational crop study</u> haloxyfop-methyl was applied to soya beans (0.28 kg ai/ha) and to cotton (0.56 kg ai/ha) as the first crops. Approximately 30 and 120 days after treatment, rotational crops of lettuce, sugar beets and wheat were sown into the plots and grown to maturity. Haloxyfop residues generally did not occur in the rotational crops at levels exceeding LOQs (0.01 and 0.02 mg/kg). Residues were detected in wheat green forage, but detection in a sample from the control plot suggested possible contamination.

Summary of haloxyfop in soil metabolism–haloxyfop esters are quickly hydrolysed and the acid becomes the major residue in the short term, but also disappears readily with typical half-lives of 9–21 days. Three soil metabolites were identified. Soil photolysis has little effect on haloxyfop residues compared with soil metabolism. Haloxyfop residues in soil should contribute very little to residue levels in root crops or rotational crops.

## Methods of analysis

The Meeting received descriptions and validation data for analytical methods for residues of haloxyfop in animal and plant matrices.

Analytical methods must take account of the nature of the residue as observed in metabolism studies–much of the residue occurs as polar and non-polar conjugates.

Haloxyfop residue methods rely on an initial extraction and hydrolysis step, usually with methanolic NaOH to release haloxyfop from conjugates. After solvent partition cleanup, the haloxyfop is methylated or butylated ready for GC analysis or further cleanup before the GC analysis. Typically, haloxyfop residues can be measured in most matrices to an LOQ of 0.01–0.05 mg/kg.

For various substrates, the extraction and hydrolysis step ranges from a simple methanolic NaOH extraction to a period of shaking homogenised sample with extractant (2 hours or overnight) to a more vigorous hydrolysis at elevated temperature for 2 hours.

The completeness of extraction of haloxyfop and its conjugates and of their conversion to parent acid was tested on soya bean samples available from the previous metabolism study. Overnight shaking of substrate with 0.1 M NaOH in 98% methanol + 2% water extracted 93% of the <sup>14</sup>C from the soya beans. HPLC produced a single peak matching haloxyfop which accounted for 95% of the <sup>14</sup>C in the extract.

The completeness of extraction of haloxyfop, esters and conjugates from goat milk was tested on a sample from a goat dosed with [<sup>14</sup>C]haloxyfop-butyl. The method relied on an initial diethyl ether extraction from milk, followed by hydrolysis of the extracted residue in benzene-KOH-ethanol at 50 °C to release conjugates. A high percentage of the  ${}^{14}$ C (91%) was extracted and released as haloxyfop acid by this procedure.

Little information is available on the completeness of extraction by briefer contact of the substrate with the alkaline extractant. Most of the validations have not included a check on this step. However, some validations have used a haloxyfop ester such as haloxyfop-ethoxyethyl as the spiked analyte, which does check that the extraction conditions quantitatively hydrolyse the spiked ester. Haloxyfop esters are readily hydrolysed, so the release of conjugates by the alkaline extractant with the conditions of the analytical methods would be generally expected.

None of the methods separates the haloxyfop enantiomers. The methods effectively measure 'total' haloxyfop present as acid, salts, esters and conjugates (esters with natural compounds).

Haloxyfop residues are not suitable for analysis by multi-residue methods because the extraction step is typically also a base-hydrolysis step designed to release haloxyfop from non-polar and polar conjugates found in animal and plant tissues. Such an extraction-hydrolysis step is not suitable for many other pesticides.

#### Stability of residues in stored analytical samples

The Meeting received information on the stability, during frozen storage, of residues in samples of green peas, cabbage, rice, soya beans and cotton seed. The analytical methods for haloxyfop measure haloxyfop present as acid, salts, esters and conjugates, so changes among these different forms during storage would not be detected.

Haloxyfop residues fortified in homogenized green peas and chopped cabbage were stable for 16 months (the test interval) storage at -16  $^{\circ}$ C.

Haloxyfop residues fortified in rice were stable in freezer storage for 7 months, the test interval.

Haloxyfop residues in soya beans matrix were stable for 17 months (the test interval) storage at -20 °C.

In another study, haloxyfop residues in soya beans were reported to be stable under frozen conditions for 43 months, the period of the test.

Haloxyfop residues fortified in cotton seed matrix were stable in freezer storage at -20 °C for 17 months, the test interval.

No data are available on the freezer storage stability of haloxyfop residues in animal commodities, but from haloxyfop stability in animal metabolism and during storage as residues in various plant matrices, no storage stability problems would be expected.

#### Definition of the residue

The current residue definition for haloxyfop is: Haloxyfop esters, haloxyfop and its conjugates expressed as haloxyfop.

The question of fat solubility requires careful consideration because some components of the residue are clearly fat-soluble, but unconjugated haloxyfop and its salts are not:

- Goat metabolism study: the <sup>14</sup>C residue concentrations (mg/kg) in fat were higher than in muscle: fat/muscle = 0.06/0.02 and 0.11/< 0.01.
- Hen metabolism study: the <sup>14</sup>C residue concentration (mg/kg) in fat was higher than in muscle: fat/muscle = 0.99/0.12. Also residue levels in egg yolks were much higher than in egg whites.
- Beef cattle feeding study: total haloxyfop residue concentrations (mg/kg) in fat were higher than in muscle: fat/muscle = 0.057/0.01 and 0.27/0.03.

- Dairy cattle feeding study: the total haloxyfop residue concentrations (mg/kg) in cream were higher than in milk: cream/milk = 0.12/0.01 and 0.29/0.034.
- Laying hen feeding study: the total haloxyfop residue concentrations (mg/kg) in fat were higher than in muscle: fat/muscle = 0.045/0.014 and 0.26/0.063.

The evidence is that the residue in animal commodities is fat-soluble.

The definition should also recognize the inclusion of haloxyfop-P.

The Meeting recommended a revised residue definition for haloxyfop.

Definition of the residue for plants and animals (for compliance with the MRL and for estimation of dietary intake): *sum of haloxyfop (including haloxyfop-P), its esters and its conjugates expressed as haloxyfop.* 

The residue is fat-soluble.

## Results of supervised trials on crops

The Meeting received information on the use patterns and labels for haloxyfop-P-methyl from many countries. On many of the labels, the application rates are given for the weeds to be controlled. It is not always absolutely clear which rates apply to which crops without knowing which are the likely weeds for each crop.

Application rates for a herbicide should be understood in a different way from application rates for an insecticide or fungicide because the target is different. For an insecticide or fungicide the aim is for a high percentage of the applied pesticide to reach the crop. Whereas for a herbicide, the target is the weed(s) to be controlled.

Particularly in the early growth stages of a crop, only a small percentage of applied herbicide is likely to reach the crop. For the same application rate, expressed in kg ai/ha, the amount of herbicides actually applied to the crop will depend on the crop growth stage and the degree of area coverage by the crop.

The Meeting received supervised trials data for the uses of haloxyfop-P-methyl, haloxyfop-methyl and haloxyfop-ethoxyethyl.

Current GAP relies on haloxyfop-P-methyl. Because the esters hydrolyse reasonably quickly when exposed to the environment, the behaviour of the residue should be little influenced by the nature of the ester and the Meeting decided to make use of residue data from other esters where application rates and timing were comparable to the GAP conditions.

Supervised trials were available on the following crops: oranges, grapefruit, lemons, apples, peaches, grapes, bananas, onions, field beans, peas, pigeon peas, beans, chickpeas, peas (pulses), sugar beet, rice, cotton, oilseed rape, peanuts, soya beans, sunflowers, coffee and alfalfa.

No residue data were available for potatoes. The meeting withdrew the previous haloxyfop maximum residue level recommendation of 0.1 mg/kg for potatoes.

For present purposes, haloxyfop or haloxyfop-P are considered as the active ingredient. Application rates and residue concentrations are expressed in terms of haloxyfop acid equivalent.

The NAFTA calculator was used as a tool in the estimation of the maximum residue level from the selected residue data set obtained from trials conducted according to GAP. As a first step, the Meeting reviewed all relevant factors related to each data set in arriving at a best estimate of the maximum residue level using expert judgement. Then, the NAFTA calculator was employed. If the statistical calculation spreadsheet suggested a different value from that recommended by the JMPR, a brief explanation of the deviation was provided. Some common factors that may lead to rejection of the statistical estimate include those situations where the number of data points is less than 15 or where there are too many values below LOQ.

#### Fruit and vine crops

Haloxyfop is used for weed control in orchards, vineyards and plantations. It is applied as a directed spray on the weeds, not on the trees or vines. In this situation, residues are not expected to occur in the fruit and this is confirmed by the residue trials. LOQs for haloxyfop in the trials from the 1980s until more recent times ranged from 0.01 mg/kg to 0.1 mg/kg, with many trials at 0.02 and 0.05 mg/kg.

Although different LOQs were used in the fruit and vine crop trials, the Meeting decided to use a consistent value for recommending MRLs for fruits where no residue is expected, i.e., 0.02 mg/kg.

### Citrus fruits

Supervised trials on citrus were available from Australia, Brazil, Italy and New Zealand.

Haloxyfop-P-methyl is registered in Australia for weed control in orchards, vines and plantations at 0.42 kg ai/ha. In two Australian trials on lemons with directed applications of haloxyfop-ethoxyethyl (0.42 and 0.83 kg ai/ha, PHI 28 days), haloxyfop residues were below LOQ (0.05 mg/kg).

In Uruguay, haloxyfop-P-methyl is registered for control of weeds around fruit trees at an application rate of 0.15 kg ai/ha. In six trials in Brazil (compare with Uruguay GAP), haloxyfop-methyl was used as a directed spray around orange trees at 0.24, 0.48, 0.72, 0.96, 1.4 and 1.9 kg ai/ha and fruit were harvested 67 days after treatment. In another six trials with the same application rates, fruit were harvested 206 days after treatment. Haloxyfop residues were all below LOQ (0.1 mg/kg).

Haloxyfop-P-methyl is registered in New Zealand for weed control around citrus trees at 0.15 kg ai/ha. In two NZ trials on grapefruit with directed applications of haloxyfop-ethoxyethyl (0.21 and 0.42 kg ai/ha, PHI 29 days) and six trials on lemons also with haloxyfop-ethoxyethyl (0.21–0.83 kg ai/ha, PHI 28 days), haloxyfop residues were all below LOQ (0.05 mg/kg).

The Syrian label allows the use of haloxyfop-P-methyl for weed control in fruit trees and vines at 0.13 kg ai/ha. In two Italian trials (compare with Syrian GAP) on oranges with a directed application (0.16 kg ai/ha, PHI 56 days), haloxyfop residues were below LOQ (0.02 mg/kg).

Residues in fruits are not expected with this directed use on the weeds because haloxyfop breaks down reasonably quickly in soils and its residues are not readily taken up from the soil (evidence from the rotational crop studies).

The trials data, many at exaggerated rates, support that expectation that residues would be essentially zero.

The Meeting estimated a maximum residue level of 0.02(\*) mg/kg and STMR and HR values of 0 mg/kg for citrus fruits. The previous recommendation of 0.05(\*) mg/kg is withdrawn.

### Pome fruits

Supervised trials on apples were available from Australia, Italy, New Zealand and the USA.

Haloxyfop-P-methyl is registered in Australia for weed control in orchards, vines and plantations at 0.42 kg ai/ha. In two Australian trials on apples with directed applications of haloxyfop-ethoxyethyl (0.42 and 0.83 kg ai/ha, PHI 24 days), haloxyfop residues were below LOQ (0.05 mg/kg).

The Syrian label allows the use of haloxyfop-P-methyl for weed control in fruit trees and vines at 0.13 kg ai/ha. In six Italian trials (compare with Syrian GAP) on apples with directed applications of haloxyfop-ethoxyethyl (0.16 kg ai/ha, PHI 126–132 days), haloxyfop residues were below LOQ (0.02 mg/kg).

Haloxyfop-P-methyl is registered in New Zealand for weed control around pome fruit trees at 0.15 kg ai/ha. In two NZ trials on apples with directed applications of haloxyfop-ethoxyethyl (0.21 kg ai/ha, PHI 29 days), haloxyfop residues were below LOQ (0.01 mg/kg).

In eight US trials on apples with directed applications of haloxyfop-methyl (0.28 and 0.56 kg ai/ha, PHI 59–60 days), haloxyfop residues were below LOQ (0.05 mg/kg). No GAP is available to evaluate the US trials, but they provide supporting evidence that the directed use around fruit trees is essentially a zero residue situation.

The Meeting estimated a maximum residue level of 0.02(\*) mg/kg and STMR and HR values of 0 mg/kg for pome fruits. The previous recommendation of 0.05(\*) mg/kg is withdrawn.

#### Stone fruits

Supervised trials on peaches were available from Australia.

Haloxyfop-P-methyl is registered in Australia for weed control in orchards, vines and plantations at 0.42 kg ai/ha. In two Australian trials on peaches with directed applications of haloxyfop-ethoxyethyl (0.42 and 0.83 kg ai/ha, PHI 24 days), haloxyfop residues were below LOQ (0.05 mg/kg).

Because of the nature of this use, i.e., the pesticide is not applied to the crop, and the expectation of a zero residue, the Meeting agreed to extrapolate from the results on citrus and pome fruits to stone fruits.

The Meeting estimated a maximum residue level of 0.02(\*) mg/kg and STMR and HR values of 0 mg/kg for stone fruits.

#### Grapes

Supervised trials on grapes were available from Australia, France and Italy.

Haloxyfop-P-methyl is registered in Australia for weed control in orchards, vines and plantations at 0.42 kg ai/ha. In six Australian trials on grapes with directed application of haloxyfop-ethoxyethyl (0.21, 0.42 and 0.83 kg ai/ha, PHI 21 and 29 days), haloxyfop residues were below LOQ (0.05 mg/kg).

The Swiss label allows the use of haloxyfop-P-methyl for weed control in grapevines at 0.16 kg ai/ha. In 11 French trials (compare with Swiss GAP) on grapes with directed applications of haloxyfop-ethoxyethyl (0.10, 0.21, 0.42, 0.83 and 1.7 kg ai/ha, PHI 86-115 days), haloxyfop residues were below LOQ (0.01 mg/kg).

The directed use in vineyards is directly comparable with the use in orchards with also the expectation of a zero residue.

The Meeting estimated a maximum residue level of 0.02(\*) mg/kg and STMR and HR values of 0 mg/kg for grapes. The previous recommendation of 0.05(\*) mg/kg is withdrawn.

## Bananas

Supervised trials on bananas were available from Australia.

Haloxyfop-P-methyl is registered in Australia for weed control in orchards, vines and plantations at 0.42 kg ai/ha. In two Australian trials on bananas with directed applications of haloxyfop-P-methyl and haloxyfop-ethoxyethyl (0.42 and 0.83 kg ai/ha respectively, PHI 14 days), haloxyfop residues were below LOQ (0.05 mg/kg).

Because of the nature of this use, i.e., the pesticide is not applied to the crop, and the expectation of a zero residue, the Meeting agreed to extrapolate from the results on orchards and vineyards to banana plantations.

The Meeting estimated a maximum residue level of 0.02(\*) mg/kg and STMR and HR values of 0 mg/kg for bananas. The previous recommendation of 0.05(\*) mg/kg is withdrawn.

#### Onions

Supervised trials on onions were available from Belgium, France, Germany and New Zealand.

The Moldovan label allows the use of haloxyfop-P-methyl for weed control in onions at 0.10 kg ai/ha. In two Belgian trials matching Moldovan GAP on onions, haloxyfop residues in the onions (whole plant) were 0.06 and 0.12 mg/kg, 28 days after treatment. In four German trials matching Moldovan GAP on onions, haloxyfop residues in the onions were 0.02, 0.03, 0.04, and 0.09 mg/kg, 26–28 days after treatment.

The Tunisian label allows the use of haloxyfop-P-methyl for weed control in onions at 0.10 kg ai/ha. In two French trials matching Tunisian GAP on onions, haloxyfop residues in the onions (whole plant) were < 0.02 and 0.03 mg/kg 28 days after treatment.

Haloxyfop-P-methyl is registered in New Zealand for weed control in onions at 0.15 kg ai/ha, with harvest permitted 35 days later. The six trials on onions did not match GAP and could not be evaluated.

Plant metabolism studies have shown that haloxyfop is systemic and is quickly distributed throughout a treated plant. The European data on samples described as 'onions' and 'onions (whole plant)' may be combined.

Haloxyfop residues from the eight onion trials in rank order, median underlined were: < 0.02, 0.02, 0.03, 0.04, 0.06, 0.09 and 0.12 mg/kg.

The Meeting estimated an STMR value of 0.035 mg/kg and a maximum residue level of 0.2 mg/kg for onions. The HR was 0.12 mg/kg.

The value derived from use of the NAFTA Calculator (after  $MLE^3$ ) was 0.24 mg/kg. The calculated value is in good agreement with the Meeting's estimate. However, the MRL calculation is sensitive to the lowest value.

### Beans

Supervised trials on field beans were available from Belgium, France, Germany, Greece and Spain.

The Tunisian label allows the use of haloxyfop-P-methyl for weed control in field beans at 0.10 kg ai/ha. In eight French trials matching Tunisian GAP on field beans, haloxyfop residues in the beans (whole pods) were: < 0.02, < 0.02, 0.03, 0.06, 0.07, 0.10, 0.19 and 0.26 mg/kg, 25–29 days after treatment.

In a Greek trial and a Spanish trial with conditions also matching Tunisian GAP, haloxyfop residues in the beans (whole pods) were 0.18 and 0.22 mg/kg respectively 28 days after treatment.

No suitable GAP was available to evaluate the trials in Belgium and Germany.

In summary, haloxyfop residues in beans (whole pods) from the 10 trials in rank order (median underlined) were: < 0.02, < 0.02, 0.03, 0.06, 0.07, 0.10, 0.18, 0.19, 0.22 and 0.26 mg/kg.

The Meeting noted that the lowest residues (< 0.02 mg/kg) were associated with applications at growth stage BBCH 14 (fourth true leaf unfolded) and the highest residues (0.19, 0.22 and 0.26 mg/kg) were associated with applications at BBCH 59 (first petals visible) and BBCH 65 (full flowering).

<sup>&</sup>lt;sup>3</sup> <u>Note</u>: MLE (Maximum Likelihood Estimate) is the NAFTA process that adjusts the data below LOQ to a lognormal distribution, by applying the distribution based on values at or above the LOQ.

The growth stage timing for application clearly influences the residue level. Application at full flowering may occur while still observing the 28 days PHI. If all the trials were conducted with applications at BBCH 59–65, it is likely that most of the residues would be closer to the upper end of the distribution (0.19–0.26 mg/kg).

The Meeting estimated an STMR value of 0.085 mg/kg and a maximum residue level of 0.5 mg/kg for beans. The HR was 0.26 mg/kg.

The value derived from use of the NAFTA Calculator (after MLE) was 0.54 mg/kg. The calculated value is in good agreement with the Meeting's estimate. However, the lognormal plot extrapolation apparently diverges from the trend of the four highest residues. The calculated value is sensitive to the lowest value of the dataset.

### Peas

Supervised trials on peas were available from Belgium, France, Italy and Spain.

The Tunisian label allows the use of haloxyfop-P-methyl for weed control in peas at 0.10 kg ai/ha. In eight French trials matching Tunisian GAP on peas, haloxyfop residues in the peas in pods were: 0.07, 0.08, 0.08, 0.14, 0.21, 0.32, 0.32 and 0.43 mg/kg, 22–60 days after treatment.

In three Italian trials matching Tunisian GAP on peas, haloxyfop residues in the peas in pods were: < 0.05, 0.05 and 0.07 mg/kg, 28–36 days after treatment.

In two Spanish trials matching Tunisian GAP on peas, haloxyfop residues in the peas in pods were: 0.12 and 0.53 mg/kg, 28 days after treatment.

The Belarus label allows the use of haloxyfop-P-methyl for weed control in peas at 0.10 kg ai/ha. In two Belgian trials matching Belarus GAP on peas, haloxyfop residues in the peas in pods were: 0.07 and 0.11 mg/kg, 31-34 days after treatment.

In summary, haloxyfop residues in peas in pods from the 15 trials in rank order (median underlined) were: < 0.05, 0.05, 0.07, 0.07, 0.07, 0.08, 0.08, 0.11, 0.12, 0.14, 0.21, 0.32, 0.32, 0.43 and 0.53 mg/kg.

All crops were treated between growth stages BBCH 50–51 (first flower buds visible) and BBCH 65 (full flowering), i.e., a limited growth stage range.

The Meeting estimated an STMR value of 0.11 mg/kg and a maximum residue level of 0.7 mg/kg for peas in pods. The latter replaces the previous recommendation (0.2 mg/kg). The HR was 0.53 mg/kg.

The value derived from use of the NAFTA Calculator was 0.9 mg/kg. The calculated value appears to be higher than necessary and is influenced by the lowest value in the dataset.

The Tunisian label allows the use of haloxyfop-P-methyl for weed control in peas at 0.10 kg ai/ha. In nine French trials matching Tunisian GAP on peas, haloxyfop residues in shelled peas were: < 0.01, < 0.05, 0.07, 0.07, 0.15, 0.26, 0.29, 0.32 and 0.44 mg/kg, 22–60 days after treatment.

In three Italian trials matching Tunisian GAP on peas, haloxyfop residues in shelled peas were: < 0.05, 0.05 and 0.05 mg/kg, 28–36 days after treatment.

In two Spanish trials matching Tunisian GAP on peas, haloxyfop residues in shelled peas were: 0.12 and 0.75 mg/kg, 28 days after treatment.

The Belarus label allows the use of haloxyfop-P-methyl for weed control in peas at 0.10 kg ai/ha. In two Belgian trials matching Belarus GAP on peas, haloxyfop residues in shelled peas were: 0.04 and 0.09 mg/kg, 31–34 days after treatment.

In summary, haloxyfop residues in shelled peas from the 16 trials in rank order (median underlined) were: < 0.01, 0.04, < 0.05, < 0.05, 0.05, 0.05, 0.07, 0.07, 0.09, 0.12, 0.15, 0.26, 0.29, 0.32, 0.44 and 0.75 mg/kg.

The Meeting estimated an STMR value of 0.08 mg/kg and a maximum residue level of 1 mg/kg for shelled peas. The HR was 0.75 mg/kg.

The value derived from use of the NAFTA Calculator (after MLE) was 1.8 mg/kg. This calculation appears to be higher than necessary and is influenced by the lowest value in the dataset. Different LOQs in the one dataset were probably not considered in the design of the NAFTA Calculator.

#### Pigeon peas

Supervised trials on pigeon peas were available from Australia, but no suitable GAP was available for evaluation.

### Dry beans (pulses)

Supervised trials on beans (pulses) were available from Argentina, Brazil, Costa Rica and Germany.

No suitable GAPs were available for evaluating the data from Costa Rica and Germany.

In Argentina, haloxyfop-P-methyl may be used for weed control in beans at 0.15 kg ai/ha, with a PHI of 65 days. In seven trials in Argentina with an application matching GAP with a  $\pm$  25% tolerance (0.11–0.19 kg ai/ha and PHI range 50–80 days), haloxyfop residues in beans were: 0.21, 0.39, 0.86, 1.5, 1.5, 1.8 and 2.0 mg/kg.

In seven trials in Brazil with an application matching Argentinean GAP with a  $\pm 25\%$  tolerance (0.11–0.19 kg ai/ha and PHI range 50–80 days), haloxyfop residues in beans were: 0.01, 0.06, 0.07, 0.08, 0.08, 0.32 and 0.42 mg/kg.

In Brazil, haloxyfop-P-methyl may be used for weed control in beans at 0.048 kg ai/ha, with a PHI of 66 days. In 10 trials in Brazil with an application matching GAP with a  $\pm$  25% tolerance (0.036–0.060 kg ai/ha and PHI range 50–80 days), haloxyfop residues in beans were: < 0.01, 0.03, 0.03, 0.04, 0.04, 0.06, 0.06, 0.08, 0.23 and 0.49 mg/kg.

In seven trials in Argentina with an application matching Brazilian GAP with a  $\pm 25\%$  tolerance (0.036–0.060 kg ai/ha and PHI range 61–70 days), haloxyfop residues in beans were: 0.08, 0.26, 0.27, 0.41, 0.70, 0.80 and 1.2 mg/kg.

The data based on the Argentine GAP produced the higher residues and were selected for maximum residue estimation.

In summary, the residues from the 14 trials in line with Argentine GAP, in rank order, median underlined, were: 0.01, 0.06, 0.07, 0.08, 0.08, 0.21, <u>0.32</u>, <u>0.39</u>, 0.42, 0.86, 1.5, 1.5, 1.8 and 2.0 mg/kg.

The Meeting estimated an STMR value of 0.335 mg/kg and a maximum residue level of 3 mg/kg for beans (dry).

The previous recommendation of a group haloxyfop maximum residue level for pulses (0.2 mg/kg) is withdrawn. Insufficient data are available for a group maximum residue level. The group value is replaced by individual commodity recommendations where data are available.

The value derived from use of the NAFTA Calculator was 2.5 mg/kg. The calculated value is in good agreement with the Meeting's estimate.

#### Chickpeas

Supervised trials on chickpeas were available from Australia.

In Australia, haloxyfop-P-methyl may be used for weed control in chickpeas at 0.052 kg ai/ha from second leaf stage until prior to flowering.

In two trials in Australia with conditions in line with Australian GAP, haloxyfop residues in the chickpea grain were < 0.02 and 0.02 mg/kg. In two trials at double the GAP rate the residues were < 0.02 and 0.04 mg/kg.

The number of chickpea trials is very limited. However, the Australian use pattern for chickpeas is the same as for peas. In six trials matching GAP (see below), and four trials at 0.10 kg ai/ha, haloxyfop residues in peas (pulses) were < 0.01 mg/kg. The meeting used the pea data to support a chickpea maximum residue level.

The Meeting estimated an STMR value of 0.02 mg/kg and a maximum residue level of 0.05 mg/kg for chickpeas.

### Peas (pulses)

Supervised trials on peas grown for dry pea production were available from Australia and France.

In Australia, haloxyfop-P-methyl may be used for weed control in peas at 0.052 kg ai/ha from second leaf stage until prior to flowering. In six trials in Australia matching GAP, haloxyfop residues in pea grain were: < 0.01 mg/kg (6). In four trials with the same timing but an application rate of 0.10 kg ai/ha, haloxyfop residues were also all below LOQ (0.01 mg/kg). In six trials with haloxyfop-ethoxyethyl at application rates of 0.10 and 0.21 kg ai/ha, but with the same timing, haloxyfop residues were also below LOQ (0.01 mg/kg).

The Tunisian label allows the use of haloxyfop-P-methyl for weed control in peas at 0.10 kg ai/ha. In eight French trials matching Tunisian GAP on peas, haloxyfop residues in the dry peas were: 0.02, 0.02, 0.04, < 0.05, 0.05, 0.06, 0.06 and 0.10 mg/kg. In nine French trials matching the Tunisian application rate (0.10 kg ai/ha), but using haloxyfop-ethoxyethyl, haloxyfop residues in dry peas were: < 0.02, < 0.02, < 0.02, 0.03, 0.04, 0.04, < 0.05, 0.05 and 0.07 mg/kg.

Residues from the Tunisian GAP were higher than those from Australian GAP and so were chosen for maximum residue evaluation.

In summary, the haloxyfop residues on dry peas from the Tunisian GAP (17 French trials) in rank order, median underlined, were: < 0.02, < 0.02, < 0.02, 0.02, 0.02, 0.03, 0.04, 0.04, 0.04, < 0.05, < 0.05, 0.05, 0.05, 0.06, 0.06, 0.07 and 0.10 mg/kg.

The Meeting estimated an STMR value of 0.04 mg/kg and a maximum residue level of 0.2 mg/kg for peas (dry).

The value derived from use of the NAFTA Calculator (after MLE) was 0.17 mg/kg. The calculated value is in good agreement with the Meeting's estimate. The NAFTA Calculator is little influenced by the low values. However, the number of < LOQ values (5 in 17 trials, i.e., 29%) reduces the reliability of the calculated result. Different LOQs in the one dataset were probably not considered in the design of the NAFTA Calculator.

### Soya beans

Supervised trials on soya beans were available from Argentina, Brazil, France, Germany, Hungary, Italy, Spain and the USA.

In Argentina, haloxyfop-P-methyl may be used for weed control in soya beans at 0.15 kg ai/ha. In two trials in Argentina with an application rate of 0.18 kg ai/ha (within 25% of 0.15 kg ai/ha), haloxyfop residues in soya beans were 0.03 and 0.11 mg/kg.

In 16 trials in Brazil with an application rate of 0.12 kg ai/ha (within 25% of the Argentinean GAP rate, 0.15 kg ai/ha), haloxyfop residues in soya beans were < 0.01 (4), 0.02, 0.02, 0.03, < 0.05, 0.06, 0.06, 0.08, 0.15, 0.19, 0.45, 0.90 and 1.8 mg/kg.

In Brazil, haloxyfop-P-methyl may be used for weed control in soya beans at 0.060 kg ai/ha with a PHI of 98 days. In five trials in Brazil in line with Brazilian GAP (accept tolerance on PHI of 90–110 days), haloxyfop residues in soya beans were < 0.01 (3), 0.01 and 0.06 mg/kg.

Haloxyfop-P-methyl is registered for use for weed control in soya beans in Moldova and Russian Federation at 0.10 kg ai/ha. No restraints on timing or crop growth stage are available.

In France, four trials with haloxyfop-P-methyl at 0.10 kg ai/ha (compare with Moldovan GAP) produced haloxyfop residues in soya beans of < 0.05 (2), 0.31 and 0.99 mg/kg.

In Germany, two trials with haloxyfop-P-methyl at 0.11 kg ai/ha (compare with Moldovan GAP) produced haloxyfop residues in soya beans of < 0.05 and 0.23 mg/kg.

In Hungary, two trials with haloxyfop-P-methyl at 0.10 kg ai/ha (compare with Moldovan GAP) produced haloxyfop residues in soya beans of < 0.05 and 0.11 mg/kg.

No suitable GAP was available to evaluate the US trials on soya beans.

Trials matching the conditions of Argentinean GAP produced the higher residues, so were used for maximum residue evaluation.

Summarising, 18 trials matching Argentinean GAP produced haloxyfop residues in soya beans (rank order, underlined median): < 0.01 (4), 0.02, 0.02, 0.03, 0.03, < 0.05, 0.06, 0.06, 0.08, 0.11, 0.15, 0.19, 0.45, 0.90 and 1.8 mg/kg.

The Meeting estimated an STMR value of 0.055 mg/kg and a maximum residue level of 2 mg/kg for soya beans.

The value derived from use of the NAFTA Calculator (after MLE) was 2.7 mg/kg. The number of < LOQ values (five in 18 trials, i.e., 28%) reduces the reliability of the calculated result. Different LOQs in the one dataset were probably not considered in the design of the NAFTA Calculator.

## Sugar beet

Supervised trials on sugar beet were available from Belgium, France, Germany, Italy and Spain

Haloxyfop-P-methyl is registered for weed control in sugar beet in Belarus, Moldova, the Russian Federation and the Ukraine at 0.10 kg ai/ha.

In Belgium, a trial at 0.10 kg ai/ha of haloxyfop-P-methyl (compare with Belarus GAP) produced haloxyfop residues in sugar beet roots of 0.03 mg/kg.

In France, three trials with haloxyfop-P-methyl at 0.10 kg ai/ha (compare with Belarus GAP) produced haloxyfop residues in sugar beet roots of < 0.02, < 0.02 and < 0.02 mg/kg.

In France, three trials with haloxyfop-ethoxyethyl at 0.10 kg ai/ha (compare with Belarus GAP) produced haloxyfop residues in sugar beet roots of < 0.02, < 0.02 and < 0.02 mg/kg.

In Germany, five trials with haloxyfop-P-methyl at 0.10 kg ai/ha (compare with Belarus GAP) produced haloxyfop residues in sugar beet roots of 0.02, 0.04, 0.09, 0.11 and 0.30 mg/kg.

In summary, haloxyfop residues in sugar beet roots from 12 trials matching Belarus, Moldovan, Russian Federation and Ukrainian GAP were, in rank order, median underlined: < 0.02 (6), 0.02, 0.03, 0.04, 0.09, 0.11 and 0.30 mg/kg.

The Meeting estimated an STMR value of 0.02 mg/kg, an HR value of 0.30 mg/kg and a maximum residue level of 0.4 mg/kg for sugar beet. The latter replaces the previous recommendation (0.3 mg/kg).

The value derived from use of the NAFTA Calculator (after MLE) was 0.11 mg/kg. The number of < LOQ values (6 in 12 trials, i.e., 50%) reduces the reliability of the calculated result.

## Rice

Supervised trials with haloxyfop-methyl on rice were available from the USA.

No suitable GAP was available, so the trials could not be evaluated for estimation of a maximum residue level.

The Meeting withdrew its recommendations for polished rice of 0.02(\*) mg/kg, husked rice of 0.02(\*) mg/kg) and unprocessed rice bran of 0.02(\*) mg/kg.

#### Cotton seed

Supervised trials on cotton, generating haloxyfop residue data on cotton seed, were available from Brazil, Greece, Spain and the USA.

In Brazil, haloxyfop-P-methyl may be used for weed control in cotton at 0.060 kg ai/ha, with a PHI of 123 days. In three trials in Brazil with an application matching GAP, haloxyfop residues in cotton seed were: < 0.01, < 0.01 and 0.08 mg/kg.

In Argentina, haloxyfop-P-methyl may be used for weed control in cotton at 0.15 kg ai/ha. In five trials in Brazil with an application of haloxyfop-P-methyl matching Argentinean GAP ( $\pm$  25%), haloxyfop residues in cotton seed were: < 0.01, 0.02, 0.03, 0.09 and 0.52 mg/kg. In four trials in Brazil with an application of haloxyfop-methyl at 0.12 kg ai/ha, haloxyfop residues in cotton seed were < 0.1 (3) and 0.15 mg/kg.

No suitable GAP was available for evaluating cotton trials in Greece, Spain and the USA.

The Brazilian trials in line with Argentinean GAP were used for the maximum residue level estimation.

In summary, haloxyfop residues in cotton seed from the nine residue trials matching Argentinean GAP, in rank order, median underlined were: < 0.01, 0.02, 0.03, 0.09, < 0.1 (3), 0.15 and 0.52 mg/kg.

The Meeting estimated an STMR value of 0.1 mg/kg and a maximum residue level of 0.7 mg/kg for cotton seed. The latter replaces the previous recommendation (0.2 mg/kg).

The value derived from use of the NAFTA Calculator (after MLE) was 0.20 mg/kg. The lognormal plot extrapolation apparently diverges from the trend of the five highest residues. The number of < LOQ values (four in nine trials, i.e., 44%) reduces the reliability of the calculated result. Different LOQs in the one dataset were probably not considered in the design of the NAFTA Calculator.

## *Oilseed rape (canola)*

Supervised trials on oilseed rape were available from Australia, France, Germany, Greece, Italy, Poland and Spain.

The Australian label allows application of haloxyfop-P-methyl for weed control in canola at 0.052 kg ai/ha at growth stages from second leaf to prior to bud formation and stem elongation. In two trials in Australia matching GAP, haloxyfop residues in canola grain were: 0.22 and 0.86 mg/kg.

Haloxyfop-P-methyl is registered for weed control in oilseed rape in Belarus, Moldova, Russian Federation and Ukraine at 0.10 kg ai/ha. No restraints on timing or crop growth stage are available, so all the European trials that have an application rate of 0.10 kg ai/ha ( $\pm$  25%) are included.

In France, eight trials with haloxyfop-P-methyl at 0.10 kg ai/ha produced haloxyfop residues in rapeseed of < 0.01 (2), < 0.05 (3), 1.1, 1.5 and 1.9 mg/kg.

In France, three trials with haloxyfop-ethoxyethyl at 0.10 kg ai/ha produced haloxyfop residues in rapeseed of < 0.05 mg/kg (3).

In Germany, eight trials with haloxyfop-P-methyl at 0.10 kg ai/ha produced haloxyfop residues in rapeseed of < 0.01, < 0.05, 0.07, 0.10, 0.11, 0.37, 0.43 and 0.57 mg/kg.

In Poland, three trials with haloxyfop-P-methyl at 0.10 kg ai/ha produced haloxyfop residues in rapeseed of 0.33, 0.42 and 0.62 mg/kg.

Summarising, 22 European trials with haloxyfop-P-methyl at 0.10 kg ai/ha produced haloxyfop residues in rapeseed (rank order, underlined median): < 0.01 (3), < 0.05 (7), <u>0.07</u>, 0.10, 0.11, 0.33, 0.37, 0.42, 0.43, 0.57, 0.62, 1.1, 1.5 and 1.9 mg/kg.

The Meeting estimated an STMR value of 0.07 mg/kg and a maximum residue level of 3 mg/kg for rape seed. The latter replaces the previous recommendation (2 mg/kg).

The value derived from use of the NAFTA Calculator (after MLE) was 5.9 mg/kg. The number of < LOQ values (10 in 22 trials, i.e., 45%) reduces the reliability of the calculated result. Different LOQs in the one dataset were probably not considered in the design of the NAFTA Calculator.

### Peanuts

Supervised trials on peanuts were available from Argentina and Australia.

In Argentina, haloxyfop-P-methyl may be used for weed control in peanuts at 0.15 kg ai/ha. The application rates in the trials were 0.045 and 0.090 kg ai/ha, so Argentine GAP could not be used for evaluation of the trials.

The Australian label allows application of haloxyfop-P-methyl for weed control in peanuts at 0.078 kg ai/ha at crop growth stages from second leaf to pegging. In four trials in Australia matching GAP, haloxyfop residues in peanuts were: < 0.02, < 0.02, 0.02 and 0.02 mg/kg.

The number of trials was too few to support a recommendation.

The Meeting agreed to withdraw its previous recommendations for peanuts (0.05 mg/kg).

### Sunflowers

Supervised trials on sunflowers were available from Argentina, France, Germany, Greece and Spain.

In Argentina, haloxyfop-P-methyl may be used for weed control in sunflowers at 0.15 kg ai/ha. In one trial at 0.18 kg ai/ha, haloxyfop residues in sunflower seed were 0.14 mg/kg.

The Tunisian label allows the use of haloxyfop-P-methyl for weed control in sunflowers at 0.10 kg ai/ha. In five French trials matching Tunisian GAP on sunflowers, haloxyfop residues in the sunflower seed were: < 0.05 (2), 0.06, 0.07 and 0.10 mg/kg.

In three French trials with haloxyfop-ethoxyethyl, but matching the Tunisian GAP application rate on sunflowers, haloxyfop residues in the sunflower seed were: < 0.05 (2) and 0.05 mg/kg.

Summary of European sunflower seed data from eight trials matching Tunisian GAP: < 0.05 (4), 0.05, 0.06, 0.07 and 0.10 mg/kg.

The Serbian label allows the use of haloxyfop-P-methyl for weed control in sunflowers at 0.16 kg ai/ha. In three French trials matching Serbian GAP ( $0.16 \pm 25\%$ , 0.12-0.20 kg ai/ha) (all 3 done at 0.15 kg ai/ha) on sunflowers, haloxyfop residues in the sunflower seed were: < 0.05, 0.05 and 0.14 mg/kg.

In three French trials with haloxyfop-ethoxyethyl, but matching Serbian GAP ( $0.16 \pm 25\%$ , 0.12-0.20 kg ai/ha) (all 3 done at 0.20 kg ai/ha) on sunflowers, haloxyfop residues in the sunflower seed were: 0.07, 0.09 and 0.16 mg/kg.

In two Greek trials matching Serbian GAP on sunflowers, haloxyfop residues in the sunflower seed were: < 0.05 mg/kg(2).

In three Spanish trials matching Serbian GAP on sunflowers, haloxyfop residues in the sunflower seed were: < 0.05 (2) and 0.17 mg/kg.

Summary of European sunflower seed data from 11 trials matching Serbian GAP: < 0.05 (5), 0.05, 0.07, 0.09, 0.14, 0.16 and 0.17 mg/kg.

The Meeting relied on the data from the higher application rate, i.e., the second set, for estimating the maximum residue level.

The Meeting estimated an STMR value of 0.05 mg/kg and a maximum residue level of 0.3 mg/kg for sunflower seed. The latter replaces the previous recommendation (0.2 mg/kg).

The value derived from use of the NAFTA Calculator (after MLE) was 0.31 mg/kg. The calculated MRL is in good agreement with the Meeting's estimate. The MLE process converted the distribution from non-lognormal to one where the lognormal presumption was not rejected. The number of < LOQ values (5 in 11 trials, i.e., 44%) reduces the reliability of the calculated result.

## Coffee

Supervised trials on coffee were available from Brazil and Colombia.

In Colombia, haloxyfop-P-methyl is allowed as a directed application for control of weeds in coffee at a maximum rate of 0.36 kg ai/ha.

In two trials on coffee in Colombia with directed applications of haloxyfop-methyl at 0.18 and 0.36 kg ai/ha, haloxyfop residues in coffee beans did not exceed the LOQ (0.02 mg/kg).

In 13 trials on coffee in Brazil with directed applications of haloxyfop-methyl at 0.12 to 0.96 kg ai/ha, haloxyfop residues in coffee beans did not exceed the LOQ (0.02 mg/kg).

Residues in coffee beans are not expected from such a use where the trees are not sprayed. The trials data, some at exaggerated rates, support that expectation that residues would be essentially zero.

The Meeting estimated an STMR value of 0 mg/kg and a maximum residue level of 0.02(\*) mg/kg for coffee beans. The HR was 0 mg/kg.

## Legume animal feeds—alfalfa

Supervised trials on alfalfa were available from Australia, France, Germany and Poland.

In Australia, haloxyfop-P-methyl is registered for weed control uses on alfalfa at 0.078 kg ai/ha. The label allows use from the second trifoliate leaf onwards and imposes a 28 days interval between application and grazing or cutting for livestock.

In five Australian trials matching GAP ( $0.078 \pm 25\%$ , 0.059-0.10 kg ai/ha, PHI 28-32 days) on alfalfa, haloxyfop residues in the alfalfa forage (fresh weight) were: 0.10, 0.76, 1.0, 1.9 and 3.1 mg/kg.

In two Australian trials with haloxyfop-ethoxyethyl matching the GAP application rate and PHI ( $0.078 \pm 25\%$ , 0.059-0.10 kg ai/ha, PHI 28-32 days) on alfalfa, haloxyfop residues in the alfalfa forage (fresh weight) were: 1.1 and 1.9 mg/kg.

No suitable GAP was available to evaluate the alfalfa trials from France, Germany and Poland.

In summary, haloxyfop residues in alfalfa forage, fresh weight, from the seven Australian trials in rank order, median underlined, were: 0.10, 0.76, 1.0, <u>1.1</u>, 1.9, 1.9 and 3.1 mg/kg.

The Meeting estimated STMR and high residue values for alfalfa forage (fresh weight) of 1.1 and 3.1 mg/kg, respectively.

The previous maximum residue level recommendation (5 mg/kg) for alfalfa forage is withdrawn because the policy is now to use information on forage in dietary burden calculations, but not to propose maximum residue levels for fresh forage commodities, which are understood not to be traded internationally.
## Legume animal feeds—chickpea forage and straw

Supervised trials on chickpeas were available from Australia with data on forage and straw.

In Australia, haloxyfop-P-methyl may be applied for weed control in chickpeas at 0.052 kg ai/ha from second leaf stage until prior to flowering. The label imposes a 28 days interval between application and grazing or cutting for livestock.

In two trials in Australia with conditions in line with Australian GAP, haloxyfop residues in the chickpea forage (dry weight) were 2.9 and 4.3 mg/kg. In two trials at double the GAP rate the residues were 6.7 and 10.2 mg/kg.

Haloxyfop residues in chickpea straw (dry weight) from the four Australian trials were 0.13 and < 0.05 mg/kg for the label rate and 0.28 and < 0.05 mg/kg for the double rate.

The data were insufficient to support a recommendation.

#### Legume animal feeds—peanut forage and fodder

Supervised trials on peanuts were available from Australia with data on forage and fodder.

The Australian label allows application of haloxyfop-P-methyl for weed control in peanuts at 0.078 kg ai/ha at crop growth stages from second leaf to pegging. The label imposes a 28 days interval between application and grazing or cutting for livestock.

In four trials in Australia matching GAP, haloxyfop residues in peanut forage, dry weight, were: < 0.02, 0.13, 0.28 and 1.1 mg/kg. Haloxyfop residues in peanut straw (dry weight) from the same four Australian trials were: 0.42, 1.2, 2.9 and 3.0 mg/kg. Peanut forage data are not currently used in dietary burden calculations.

In four trials in Australia at 0.16 kg ai/ha (double the GAP application rate) but matching GAP for timing of application, haloxyfop residues in peanut straw (dry weight) were: 1.1, 1.9, 3.8 and 5.4 mg/kg, i.e., double the application rate produced approximately double the residue level. The data from the double rate trials provide support for the GAP trials.

The Meeting estimated an STMR of 2.1 mg/kg and a maximum residue level of 5 mg/kg for peanut fodder. The high residue was 3.0 mg/kg.

#### *Legume animal feeds—soya bean forage*

Supervised trials on soya beans were available from France, Germany, Hungary, Italy and Spain with data on forage.

Haloxyfop-P-methyl is registered for use for weed control in soya beans in Moldova and the Russian Federation at 0.10 kg ai/ha. No restraints on timing or crop growth stage are available.

In France, four trials with haloxyfop-P-methyl at 0.10 kg ai/ha (compare with Moldovan GAP) produced haloxyfop residues in soya bean plants, i.e., forage, of < 0.05 (2), 0.12 and 0.13 mg/kg.

In Germany, two trials with haloxyfop-P-methyl at 0.11 kg ai/ha (compare with Moldovan GAP) produced haloxyfop residues in soya bean plants, i.e., forage, of < 0.05 and 0.10 mg/kg.

In Hungary, two trials with haloxyfop-P-methyl at 0.10 kg ai/ha (compare with Moldovan GAP) produced haloxyfop residues in soya bean plants, i.e., forage, of < 0.05 and 0.18 mg/kg.

Summarising soya bean forage data—eight trials from Europe matching Moldova and Russian Federation GAP produced haloxyfop residues in soya bean forage (rank order, underlined median): < 0.05 (4), 0.10, 0.12, 0.13 and 0.18 mg/kg.

The Meeting estimated STMR and high residue values for soya bean forage (fresh weight) of 0.075 and 0.18 mg/kg, respectively.

## Sugar beet leaves or tops

Supervised trials on sugar beets were available from Germany, Italy and Spain with data on leaves and tops.

Haloxyfop-P-methyl is registered for weed control in sugar beet in Belarus, Moldova, the Russian Federation and the Ukraine at 0.10 kg ai/ha.

In Belgium, a trial at 0.10 kg ai/ha of haloxyfop-P-methyl (compare with Belarus GAP) produced haloxyfop residues in sugar beet tops of 0.07 mg/kg.

In Germany, five trials with haloxyfop-P-methyl at 0.10 kg ai/ha (compare with Belarus GAP) produced haloxyfop residues in sugar beet leaves of 0.10, 0.17 and 0.38 mg/kg and residues of 0.08 and 0.12 mg/kg in beet tops.

In summary, haloxyfop residues in sugar beet leaves or tops from six trials matching Belarus, Moldovan, Russian Federation and Ukrainian GAP were, in rank order median underlined: 0.07, 0.08, 0.10, 0.12, 0.17 and 0.38 mg/kg.

The Meeting estimated STMR and HR values of 0.11 and 0.38 mg/kg for sugar beet leaves or tops.

The previous maximum residue level recommendations (0.3 mg/kg) for sugar beet leaves or tops and fodder beet leaves or tops are withdrawn because the policy is now to use information on forage in dietary burden calculations, but not to propose maximum residue levels for fresh forage commodities, which are understood not to be traded internationally.

## Fodder beet

Haloxyfop-P-methyl is registered for weed control in beets in Iraq at 0.12 kg ai/ha. Therefore, the data on sugar beet at 0.10 kg ai/ha can be used to support a fodder beet recommendation.

The Meeting extrapolated the estimate for sugar beet to fodder beet: an STMR value of 0.02 mg/kg, an HR value of 0.30 mg/kg and a maximum residue level of 0.4 mg/kg for fodder beet. The latter replaces the previous recommendation (0.3 mg/kg).

## Rapeseed forage

Supervised trials on oilseed rape were available from Australia, France, Germany, Greece, Italy, Poland and Spain with data on forage.

The Australian label allows application of haloxyfop-P-methyl for weed control in canola (oilseed rape) at 0.052 kg ai/ha at growth stages from second leaf to prior to bud formation and stem elongation. The label imposes a 28 days interval between application and grazing or cutting for livestock.

In three trials in Australia matching GAP, haloxyfop residues in canola forage, expressed on dry weight, were: 0.32, 1.3 and 5.0 mg/kg.

In two trials in Australia matching GAP, haloxy fop residues in canola fodder were: 0.06 and 0.22 mg/kg.

The Meeting estimated STMR and high residue values for oilseed rape forage (dry weight) of 1.3 and 5.0 mg/kg, respectively for Australian uses.

Haloxyfop-P-methyl is registered for weed control in oilseed rape in Belarus, Moldova, the Russian Federation and the Ukraine at 0.10 kg ai/ha. No restraints on timing or crop growth stage are available, so all the European trials that have an application rate of 0.10 kg ai/ha ( $\pm$  25%) could be included.

However, residues in forage decline quickly and some time limits are needed to produce a residue population suitable for STMR estimation. In practice, forage could be grazed or cut

immediately after treatment. The Meeting decided to use forage data from samples taken on the same day as the treatment or 1 day later.

In three trials in France with haloxyfop-P-methyl application at 0.10 kg ai/ha ( $\pm$  25%), haloxyfop residues in oilseed rape plants harvested on the day of application were: 1.5, 3.1 and 5.4 mg/kg.

In six trials in Germany with haloxyfop-P-methyl application at 0.10 kg ai/ha (± 25%), haloxyfop residues in oilseed rape plants harvested on the day of application or one day later were: 1.6, 3.9, 4.3, 5.6, 5.7 and 6.8 mg/kg.

In two trials in Poland with haloxyfop-P-methyl application at 0.10 kg ai/ha ( $\pm$  25%), haloxyfop residues in oilseed rape plants harvested on the day of application were: 2.2 and 3.4 mg/kg.

In summary, 11 trials from Europe with the application rate 0.10 kg ai/ha (GAP of Belarus, Moldova, the Russian Federation and the Ukraine) produced haloxyfop residues in oilseed rape plant 0 or 1 day after treatment (rank order, median underlined): 1.5, 1.6, 2.2, 3.1, 3.4, <u>3.9</u>, 4.3, 5.4, 5.6, 5.7 and 6.8 mg/kg

The Meeting estimated STMR and high residue values for oilseed rape forage (fresh weight) of 3.9 and 6.8 mg/kg, respectively for European uses.

## Fate of residues during processing

The Meeting received information on the fate of haloxyfop residues during the processing of oilseed rape for oil and meal, soya beans for oil and meal and sugar beet for sugar.

No information was available on the fate of haloxyfop residues during the processing of cotton seed. The Meeting withdrew the previous recommendation of 0.5 mg/kg for a haloxyfop maximum residue level in crude cotton seed oil.

A processing study was also received for <u>apples</u>, but haloxyfop uses as a directed spray on weeds around apple trees did not produce detectable residues in the apples or processed commodities. No processing factors could be calculated.

In a series of trials in France, haloxyfop-ethoxyethyl was applied to <u>oilseed rape</u> at 0.10, 0.21 and 0.63 kg ai/ha at one of two growth stages, 5–6 leaves and beginning of flowering. The harvested rapeseed was processed at laboratory scale to crude oil, refined and deodorized oil and meal. Haloxyfop residues in the rapeseed were below LOQ (0.05 mg/kg) for low application rates and early growth-stage treatments and were not included in the processing factor calculations.

The laboratory process was designed to simulate the commercial process. Rapeseed was coarsely ground and extracted with hot hexane. The extracted solid material was the meal. Crude oil was degummed, alkali was added and the soap was allowed to settle. The oil was decanted and filtered and then bleached with a Fuller's earth treatment and deodorized by steam distillation at 240 °C under reduced pressure.

The processing factors for haloxyfop residues for rapeseed  $\rightarrow$  crude oil were: 1.1, 1.2, 1.4, 1.7, 1.8 and 2.0—median 1.6.

The processing factors for haloxyfop residues for rapeseed  $\rightarrow$  refined and deodorized oil were: 0.93, 1.1, 1.3, 1.7, 1.9 and 2.2—median 1.5.

The processing factors for haloxyfop residues for rapeseed  $\rightarrow$  meal were: 0.73, 0.88, 0.89, 0.92, 0.93 and 1.7—median 0.91.

The processing factors for crude rape seed oil (1.6), refined rape seed oil (1.5) and meal (0.91) were applied to the estimated STMR for rape seed (0.07 mg/kg) to produce STMR-P values for crude rape seed oil (0.17 mg/kg), refined rape seed oil (0.16 mg/kg) and rapeseed meal (0.10 mg/kg). These concentrations fall below the estimated maximum residue level for rape seed (3 mg/kg), so maximum residue levels for the oils and meal are not needed.

#### Haloxyfop

The maximum residue level recommendations for crude rape seed oil (5 mg/kg) and refined rape seed oil (5 mg/kg) are withdrawn.

In <u>soya bean</u> trials in the USA, haloxyfop-methyl was applied at 0.28 kg ai/ha to soya beans in bloom or haloxyfop-P-methyl at 0.70 kg ai/ha was applied to soya beans at the 5<sup>th</sup> trifoliate leaf stage. The soya beans were processed in a laboratory-scale system to produce hulls, meal, crude oil, refined oil and soapstock and haloxyfop residue levels were measured on the products.

The processing factors for haloxyfop residues for soya beans  $\rightarrow$  crude oil were: 0.40, 0.79 and 1.3—median 0.79.

The processing factors for haloxyfop residues for soya beans  $\rightarrow$  refined oil were: 0.33, 0.75 and 1.2—median 0.75.

The processing factors for haloxyfop residues for soya beans  $\rightarrow$  meal were: 1.19, 1.25 and 1.29—median 1.25.

The processing factors for crude soya bean oil (0.79), refined soya bean oil (0.75) and soya bean meal (1.25) were applied to the estimated STMR for soya beans (0.055 mg/kg) to produce STMR-P values for crude soya bean oil (0.044 mg/kg), refined soya bean oil (0.041 mg/kg) and soya bean meal (0.069 mg/kg). These concentrations fall below the estimated maximum residue level for soya beans (2 mg/kg), so maximum residue levels for the oils and meal are not needed.

The maximum residue level recommendations for crude soya bean oil (0.2 mg/kg) and refined soya bean oil (0.2 mg/kg) are withdrawn.

In UK trials, <u>sugar beet</u> were treated with haloxyfop-ethoxyethyl at 0.25 or 0.50 kg ai/ha at the 6–8 leaf growth stage. After harvest, beets were processed to juice, pressed pulp, refined sugar and green syrup. The process was pilot scale and consisted of washing, slicing, water extraction, pressing, filtration, calcium carbonate precipitation-filtration, boiling and centrifuging.

Haloxyfop residue levels in the refined sugar did not exceed the analytical method LOQ (0.01 mg/kg). Processing factors were calculated for the refined sugar, the green syrup and the pressed pulp. Green syrup is the liquor from the second last crystallizer, comparable with molasses, the liquor from the final crystallizer.

The processing factors for haloxyfop residues for sugar beet  $\rightarrow$  refined sugar were: < 0.09 and 0.15—best estimate < 0.09.

The processing factors for haloxyfop residues for sugar beet  $\rightarrow$  green syrup were: 2.95 and 3.31—mean 3.1.

The processing factors for haloxyfop residues for sugar beet  $\rightarrow$  pressed pulp were: 0.36 and 0.46—mean 0.41.

The processing factor for refined sugar (< 0.09) was applied to the estimated STMR for sugar beet (0.02 mg/kg) to produce an STMR-P value for refined sugar (0.002 mg/kg). This concentration falls below the estimated maximum residue level for sugar beet (0.4 mg/kg), so a maximum residue level for haloxyfop residues in raw sugar is not needed.

The processing factor for green syrup (3.1) was applied to the estimated STMR for sugar beet (0.02 mg/kg) to produce an STMR-P value for green syrup (0.063 mg/kg).

The processing factor for pressed pulp (0.41) was applied to the estimated STMR for sugar beet (0.02 mg/kg) to produce an STMR-P value for pressed pulp (0.008 mg/kg).

#### Residues in animal commodities

The meeting received beef cattle feeding studies with haloxyfop and haloxyfop-P, dairy cattle studies with haloxyfop and haloxyfop-P and a laying hen study with haloxyfop. These livestock feeding studies provided information on likely haloxyfop residues resulting in bovine tissues and milk and poultry tissues and eggs from haloxyfop residues in the livestock diets.

#### Haloxyfop

<u>Beef calves</u> were dosed with haloxyfop via gelatin capsule at rates equivalent to 0.25, 0.5, 1, 5 and 10 ppm in the dry-weight diet for 28 consecutive days. Animals were slaughtered 18 to 21 hours after the final dose for tissue collection. Additional groups of animals at the highest dose were kept for 7 and 14 days after the final dose to observe declines in residue levels.

Mean haloxyfop residues in the muscle from the fivr dose rates (equivalent to 0.25, 0.5, 1, 5 and 10 ppm of dry weight diet) were: < 0.01, < 0.01, < 0.01, 0.01, and 0.03 mg/kg, respectively. Similarly for liver: 0.02, 0.02, 0.05, 0.13 and 0.54 mg/kg, respectively; kidney: 0.06, 0.07, 0.14, 0.39 and 1.3 mg/kg, respectively; and fat: 0.02, 0.01, 0.01, 0.057, and 0.27 mg/kg, respectively.

After 7 and 14 days on a residue-free diet, residues had declined, but residue levels were widely variable between animals.

For animals dosed at 5 and 10 ppm, residues in muscle equalled or exceeded LOQ and ratios between residue levels in fat and muscle were calculated: mean = 7.8, range 3.6-18.5, n = 5, suggesting a fat-soluble residue.

<u>Beef cattle</u> were dosed with haloxyfop-P via gelatin capsule at rates equivalent 10, 20 and 30 ppm in the dry-weight diet for 28 consecutive days and were slaughtered on day 28 for tissue collection. Additional animals at the highest dose were kept for 7, 14, 21 and 28 days after the final dose to observe declines in residue levels. The analytical method did not include a hydrolysis step, so the residue data for fat were unlikely to include haloxyfop triacylglyceride conjugates and could not be used.

Mean haloxyfop residues in the muscle from the three dose rates (equivalent to 10, 20 and 30 ppm of dry weight diet) were: 0.03, 0.05 and 0.04 mg/kg, respectively. Similarly for liver: 0.25, 0.38 and 0.28 mg/kg, respectively; and kidney: 0.58, 1.0 and 1.2 mg/kg, respectively.

After 7 days on a residue-free diet, haloxyfop residues in muscle had fallen below LOQ (0.01 mg/kg) while residues in liver and kidney had fallen by approximately 70% and 90% respectively. Residues continued to decline during the next 21 days, but at a slower rate.

Holstein <u>dairy cows</u> were dosed through the feed with haloxyfop at nominal concentrations of 0.25, 0.75 and 2.5 ppm in the dry-weight diet for 28 consecutive days. Milk was collected twice daily. Milk from morning milking was put through a separator to produce cream.

Haloxyfop residues in milk from the low-dose (0.25 ppm) cows did not exceed the LOQ (0.01 mg/kg) except for one case (0.01 mg/kg). Residues in the milk from the middle dose group (0.75 ppm) were in the range < 0.01 to 0.026 mg/kg from days 5 to 28. Residues in the milk from the high dose group (2.5 ppm) were in the range < 0.01 to 0.055 mg/kg (mean 0.033 mg/kg) from days 5 to 28, the approximate plateau of residue levels.

The range of haloxyfop residue levels in cream from days 10 and 17 were 0.043–0.051 mg/kg for the low dose (0.25 ppm), 0.11–0.22 mg/kg for the middle dose group (0.75 ppm) and 0.28–0.42 mg/kg the high dose group (2.5 ppm).

Residue data were available for cream and milk on an individual animal basis for days 3 and 10. Average (and range) of haloxyfop residue levels were: cream 0.316 mg/kg (0.24-0.42 mg/kg) and milk 0.019 (0.01-0.11 mg/kg). The average for 'milk residues  $\div$  cream residues' was 0.059.

Friesian <u>dairy cows</u> were dosed with haloxyfop-P via gelatin capsule at rates equivalent to 10, 20 and 30 ppm in the dry-weight diet for 28 consecutive days. Milk was collected twice daily. Milk was analysed for haloxyfop by a method that does not include a hydrolysis step and therefore may not have recovered haloxyfop residues quantitatively from triacylglyceride conjugates. Residues appeared to plateau at or before 10 days. The average concentrations of haloxyfop measured in the milk from days 10 to 26 were 0.317, 0.558 and 0.804 mg/kg for dosing levels equivalent to 10, 20 and 30 ppm, respectively.

White Leghorn <u>laying hens</u> were dosed through the feed with haloxyfop at nominal concentrations of 0.25, 0.75, and 2.5 ppm in the diet, for 28 consecutive days. Eggs were collected twice daily. Birds were slaughtered approximately 24 hours after the final dose for tissue collection.

Additional groups of birds at the highest dose were kept for 7 and 14 days after the final dose to observe declines in residue levels.

Mean haloxyfop residues in the muscle + skin from the three dose rates (equivalent to 0.25, 0.75 and 2.5 ppm of dry weight diet) were: < 0.01, 0.014 and 0.063 mg/kg, respectively. Similarly for liver: 0.033, 0.12 and 0.36 mg/kg, respectively; fat: 0.013, 0.045 and 0.26 mg/kg, respectively; and eggs (day 4 to day 28, 11 sampling days): < 0.01, 0.014 and 0.036 mg/kg, respectively.

Residues depleted quickly in muscle and liver for birds placed on a haloxyfop residue-free diet, but were quite persistent in fat. Mean haloxyfop residues in the fat (dose rate equivalent to 2.5 ppm of the dry weight diet) were 0.26 mg/kg (day 28, final dose), 0.17 mg/kg (day 35, 7 days later) and 0.16 mg/kg (day 42, 14 days after the final dose).

Haloxyfop residue levels in fat were approximately 4–5 times as high as in the muscle for the 2.5 ppm dosing group on day 28 and an average 14 times on day 35 for cases where residues in muscle exceeded the LOQ (0.01 mg/kg).

### Livestock dietary burden

The Meeting estimated the dietary burden of haloxyfop in livestock on the basis of the diets listed in Annex 6 of the 2006 JMPR Report (OECD Feedstuffs Derived from Field Crops). Calculation from highest residue, STMR (some bulk commodities) and STMR-P values provides the levels in feed suitable for estimating MRLs, while calculation from STMR and STMR-P values for feed is suitable for estimating STMR values for animal commodities.

Some processed and forage commodities do not appear in the Recommendations Table (because no maximum residue level is needed) but they are used in estimating livestock dietary burdens. Those commodities are listed here. Also, the terminology for commodities in the OECD feed tables is not always identical to descriptions in the original studies or Codex descriptions and some clarification is needed.

| Commodity                                             | STMR or STMR-<br>P mg/kg | High<br>residue_mg/kg |
|-------------------------------------------------------|--------------------------|-----------------------|
| Alfalfa forage = Alfalfa forage (Australia)           | 1.1                      | 3.1                   |
| Fodder beet = Beet, mangel, fodder                    | see Recommendations 7    | Table                 |
| Oilseed rape forage = Rape forage (Europe)            | 3.9                      | 6.8                   |
| Oilseed rape forage = Rape forage (Australia)         | 1.3 dry wt               | 5.0 dry wt            |
| Peanut fodder = Peanut hay                            | see Recommendations 7    | Table                 |
| Rape seed meal = Canola meal                          | 0.10                     |                       |
| Soya bean forage (green) = Soya bean forage (Europe)  | 0.075                    | 0.18                  |
| Soya bean meal                                        | 0.069                    |                       |
| Sugar beet green syrup = Beet sugar, molasses         | 0.063                    |                       |
| Sugar beet leaves or tops = Beet, sugar tops (Europe) | 0.11                     | 0.38                  |
| Sugar beet pressed pulp = Beet, sugar, dried pulp     | 0.008                    |                       |
|                                                       |                          |                       |

Estimated maximum and mean dietary burdens of livestock

### Tier 1

In a Tier 1 assessment, livestock from US-Canada, EU and Australia are assumed to be exposed to residues on all feed commodities irrespective of where they are produced.

Tier 1 dietary burden calculations for beef cattle, dairy cattle, broilers and laying poultry are provided in Annex 6 of the 2009 JMPR Report. The calculations were made according to the livestock diets from US-Canada, EU and Australia in Appendix IX of the 2009 FAO Manual.

|                 | Livestock d | Livestock dietary burden, haloxyfop, ppm of dry matter diet |                   |                   |                   |                   |  |
|-----------------|-------------|-------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--|
|                 | US-Canada   | US-Canada                                                   |                   | EU                |                   | Australia         |  |
|                 | max         | mean                                                        | max               | mean              | max               | mean              |  |
| Beef cattle     | 9.91        | 4.55                                                        | 8.87              | 3.59              | 22.7 <sup>a</sup> | 13.0 <sup>b</sup> |  |
| Dairy cattle    | 8.16        | 3.94                                                        | 6.53              | 2.70              | 14.4 <sup>c</sup> | 7.09 <sup>d</sup> |  |
| Poultry-broiler | 0.11        | 0.11                                                        | 0.11              | 0.11              | 0.29              | 0.29              |  |
| Poultry-layer   | 0.11        | 0.11                                                        | 2.40 <sup>e</sup> | 1.41 <sup>f</sup> | 0.29              | 0.29              |  |

<sup>a</sup> Highest maximum beef or dairy cattle dietary burden suitable for MRL estimates for mammalian meat.

<sup>b</sup> Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian meat.

<sup>c</sup> Highest maximum dairy cattle dietary burden suitable for MRL estimates for milk.

<sup>d</sup> Highest mean dairy cattle dietary burden suitable for STMR estimates for milk.

<sup>e</sup> Highest maximum poultry dietary burden suitable for MRL estimates for poultry meat and eggs.

<sup>f</sup> Highest mean poultry dietary burden suitable for STMR estimates for poultry meat and eggs.

### Tier 2

A Tier 2 refinement was considered because the estimated IEDI exceeded the ADI for some diets (see below).

In a Tier 2 assessment, livestock from US-Canada, EU and Australia are assumed to be exposed to residues on all feed commodities that are traded internationally. Fresh forages are not traded internationally, so the dietary burden from fresh forage arises only where the relevant GAP produces residues on that fresh forage.

For example, a registered haloxyfop use in Australia produces residues on fresh alfalfa forage. In a Tier 2 assessment, the residues on fresh alfalfa forage would add to the dietary burden of Australian livestock, but not to livestock in US-Canada and EU.

Tier 2 dietary burden calculations for beef cattle, dairy cattle, broilers and laying poultry are provided in Annex 6 of the 2009 JMPR Report. The calculations were made according to the livestock diets from US-Canada, EU and Australia in Appendix IX of the 2009 FAO Manual.

|                 | Livestock die | Livestock dietary burden, haloxyfop, ppm of dry matter diet |                   |                   |                   |                   |  |
|-----------------|---------------|-------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--|
|                 | US-Canada     | US-Canada                                                   |                   | EU                |                   |                   |  |
|                 | max           | mean                                                        | max               | mean              | max               | mean              |  |
| Beef cattle     | 0.98          | 0.71                                                        | 3.12              | 1.51              | 8.86 <sup>a</sup> | 3.14 <sup>b</sup> |  |
| Dairy cattle    | 0.80          | 0.59                                                        | 3.03              | 1.47              | 7.31 <sup>c</sup> | 2.41 <sup>d</sup> |  |
| Poultry-broiler | 0.11          | 0.11                                                        | 0.11              | 0.11              | 0.29              | 0.29              |  |
| Poultry—layer   | 0.11          | 0.11                                                        | 2.40 <sup>e</sup> | 1.41 <sup>f</sup> | 0.29              | 0.29              |  |

a Highest maximum beef or dairy cattle dietary burden suitable for MRL estimates for mammalian meat.

b Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian meat.

c Highest maximum dairy cattle dietary burden suitable for MRL estimates for milk.

d Highest mean dairy cattle dietary burden suitable for STMR estimates for milk.

e Highest maximum poultry dietary burden suitable for MRL estimates for poultry meat and eggs.

f Highest mean poultry dietary burden suitable for STMR estimates for poultry meat and eggs.

#### Animal commodities, maximum residue level estimation

Cattle

## Tier 1

Residue levels in milk appeared to be critical for chronic dietary exposure.

The STMR for milk was calculated from the STMR dairy cow dietary burden (7.09 ppm) by interpolating between the 0 and the 10 ppm feeding levels of the Friesian dairy cow study.

The Meeting estimated an STMR value of 0.22 mg/kg for milks.

With milk STMR of 0.22 mg/kg, the IEDI for haloxyfop in the 13 diets was 60–190% of the ADI. In an IEDI calculation for milk only, the intake was estimated as 15–63  $\mu$ g/person for the 13 diets, which exceeded the ADI (equivalent to 42  $\mu$ g/person) in some diets.

The Meeting examined how the assessment may be refined in a Tier 2 assessment.

## Tier 2

Fresh forages are not traded internationally, so the livestock dietary burdens were recalculated assuming that fresh forages (with locally generated residues) are consumed only by livestock where the relevant GAP produces residues on that fresh forage.

For MRL estimation, the high residues in the tissues were calculated by interpolating the maximum beef cattle dietary burden (8.86 ppm) between the relevant feeding levels (5 and 10 ppm) from the beef calf feeding study and using the highest tissue concentrations from individual animals within those feeding groups.

The STMR values for the tissues were calculated by interpolating the STMR beef cattle dietary burden (3.14 ppm) between the relevant feeding levels (1 and 5 ppm) from the haloxyfop beef calf feeding study and using the mean tissue concentrations from those feeding groups. For muscle, residues were below LOQ at the 1 ppm feeding level, so the STMR for muscle was calculated by taking the dietary burden (3.14 ppm) as a proportion of the 5 ppm feeding level.

For milk, the high residues were calculated from the maximum dairy cow dietary burden (7.31 ppm) as a proportion of the 10 ppm feeding level and using the mean milk residues from the Friesian dairy cow feeding study. The STMR for milk was calculated from the STMR dairy cow dietary burden (2.41 ppm) by interpolating between the 0.75 and 2.5 ppm feeding levels of the Holstein dairy cow study.

The Holstein dairy cow study provided some information on the relative concentrations of haloxyfop residues in milk and cream. The ratio between residue concentrations in milk and in cream was quite variable.

In the table, dietary burdens are shown in round brackets (), feeding levels and residue concentrations from the feeding study are shown in square brackets [] and estimated concentrations related to the dietary burdens are shown without brackets.

| Dietary burden (ppm)                           |                          |                              |                             |                           |                             |
|------------------------------------------------|--------------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|
| Feeding level [ppm]                            | Milk                     | Muscle                       | Liver                       | Kidney                    | Fat                         |
| MRL                                            |                          |                              |                             |                           |                             |
|                                                | mean                     | highest                      | highest                     | highest                   | highest                     |
| MRL beef cattle<br>(8.86 ppm)<br>[5, 10 ppm ]  |                          | 0.041 mg/kg<br>[0.01, 0.05 ] | 0.53 mg/kg<br>[0.14, 0.65 ] | 1.42 mg/kg<br>[0.46, 1.7] | 0.33 mg/kg<br>[0.068, 0.41] |
| MRL dairy cattle<br>(7.31 ppm)<br>[0, 10 ppm ] | 0.23 mg/kg<br>[0, 0.317] |                              |                             |                           |                             |
|                                                |                          |                              |                             |                           |                             |

| Dietary burden (ppm) |               |                   |                 |                 |                  |
|----------------------|---------------|-------------------|-----------------|-----------------|------------------|
| Feeding level [ppm]  | Milk          | Muscle            | Liver           | Kidney          | Fat              |
|                      | mean          | mean              | mean            | mean            | mean             |
| STMR beef cattle     |               |                   |                 |                 |                  |
| (3.14 ppm)           |               | 0.006 mg/kg       | 0.093 mg/kg     | 0.27 mg/kg      | 0.035 mg/kg      |
| [0, 1, 5 ppm]        |               | [0, < 0.01, 0.01] | [0, 0.05, 0.13] | [0, 0.14, 0.39] | [0, 0.01, 0.057] |
| STMR dairy cattle    |               |                   |                 |                 |                  |
| (2.41 ppm)           | 0.033 mg/kg   |                   |                 |                 |                  |
| [0.75, 2.5 ppm]      | [0.01, 0.034] |                   |                 |                 |                  |

The data from the cattle feeding studies were used to support the estimation of maximum residue levels for haloxyfop in mammalian meat, edible offal and milk based on the residues in liver and kidney.

The Meeting estimated an STMR value of 0.27 mg/kg and a maximum residue level of 2 mg/kg for mammalian edible offal, based on liver and kidney data. The HR was 1.42 mg/kg.

The Meeting estimated an STMR value of 0.033 mg/kg and a maximum residue level of 0.3 mg/kg for milks.

The average for 'milk residues  $\div$  cream residues' for the 2.5 ppm dosing group (day 10 data) was 0.076. The STMR and high residue for milk fat may be calculated from the values for milk (HR = 0.23 mg/kg, STMR = 0.033 mg/kg), the 'milk residues  $\div$  cream residues' factor and taking cream as 50% milk fat.

The Meeting estimated an STMR value of 0.87 mg/kg and a high residue level of 6.1 mg/kg for milk fat. The Meeting estimated a maximum residue level of 7 mg/kg for milk fat.

The Meeting estimated STMR values of 0.006 mg/kg for mammalian muscle and 0.035 mg/kg for mammalian fat, and a maximum residue level of 0.5 (fat) for mammalian meat. The HRs were 0.041 and 0.33 mg/kg for muscle and fat respectively.

Previous recommendations for cattle meat (0.05 mg/kg), cattle liver (0.5 mg/kg), cattle kidney (1 mg/kg) and cattle milk (0.3 mg/kg) are withdrawn.

#### Poultry

For MRL estimation, the high residues in the tissues and eggs were calculated by interpolating the maximum dietary burden (2.4 ppm) between the relevant feeding levels (0.75 and 2.5 ppm) from the haloxyfop laying hen feeding study and using the highest tissue concentrations of the group.

The STMR values for the poultry tissues and eggs were calculated by interpolating the STMR dietary burden (1.41 ppm) between the relevant feeding levels (0.75 and 2.5 ppm) from the haloxyfop laying hen feeding study and using the mean tissue and egg concentrations from those feeding groups.

In the table, dietary burdens are shown in round brackets (), feeding levels and residue concentrations from the feeding study are shown in square brackets [] and estimated concentrations related to the dietary burdens are shown without brackets.

| Dietary burden (ppm)    |                      |                     |                     |                     |
|-------------------------|----------------------|---------------------|---------------------|---------------------|
| Feeding level [ppm]     | Eggs                 | Muscle + skin       | Liver               | Fat                 |
| MRL                     | highest              | highest             | highest             | highest             |
| MRL broilers and layers |                      |                     |                     |                     |
| (2.4 ppm)               | 0.050 mg/kg          | 0.105 mg/kg         | 0.61 mg/kg          | 0.52 mg/kg          |
| [0.75, 2.5 ppm ]        | [0.02, 0.052 mg/kg]  | [0.02, 0.11 mg/kg ] | [0.19, 0.64 mg/kg ] | [0.11, 0.54 mg/kg ] |
| STMR                    | mean                 | mean                | mean                | mean                |
| STMR broilers and       |                      |                     |                     |                     |
| layers                  | 0.022 mg/kg          | 0.032 mg/kg         | 0.21 mg/kg          | 0.13 mg/kg          |
| (1.41 ppm)              | [0.014, 0.036 mg/kg] | [0.014, 0.063]      | [0.12, 0.36 mg/kg]  | [0.045, 0.26 mg/kg] |

| Dietary burden (ppm) |      |               |       |     |
|----------------------|------|---------------|-------|-----|
| Feeding level [ppm]  | Eggs | Muscle + skin | Liver | Fat |
| [0.75, 2.5 ppm]      |      |               |       |     |

The data from the laying hen feeding studies were used to support the estimation of maximum residue levels for haloxyfop in poultry tissues and eggs.

The Meeting estimated a maximum residue level for poultry meat (fat) of 0.7 mg/kg. The STMR values were: 0.13 mg/kg (fat) and 0.032 mg/kg (muscle). The recommendation for chicken meat (0.01(\*) mg/kg) is withdrawn. The HR values were: 0.52 mg/kg (fat) and 0.11 mg/kg (muscle).

The Meeting estimated an STMR value of 0.21 mg/kg and a maximum residue level of 0.7 mg/kg for edible offal of poultry. The recommendation for edible offal of chicken (0.05 mg/kg) is withdrawn. The HR for poultry edible offal was 0.61 mg/kg.

The Meeting estimated an STMR value of 0.022 mg/kg and a maximum residue level of 0.1 mg/kg for eggs. The recommendation for chicken eggs (0.01(\*) mg/kg) is withdrawn. The HR for eggs was 0.05 mg/kg.

#### RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI and IESTI assessment.

For plants and animals: Definition of the residue (for compliance with the MRL and for estimation of dietary intake): *sum of haloxyfop (including haloxyfop-P), its esters and its conjugates expressed as haloxyfop.* 

|         | Commodity                                                              | MRL, mg/kg     |                     | STMR or<br>STMR-P | HR or HR-<br>P |
|---------|------------------------------------------------------------------------|----------------|---------------------|-------------------|----------------|
| CCN     | Name                                                                   | New            | previous            | mg/kg             | mg/kg          |
| AL 1021 | Alfalfa forage (green)                                                 | W <sup>a</sup> | 5 4                 |                   |                |
| FI 0327 | Banana                                                                 | 0.02 *         | 0.05 *              | 0                 | 0              |
| VD 0071 | Beans (dry)                                                            | 3              |                     | 0.335             |                |
| VP 0061 | Beans, except broad bean and soya bean (green pods and immature seeds) | 0.5            |                     | 0.085             | 0.26           |
| MO 1280 | Cattle, Kidney                                                         | W <sup>b</sup> | 1                   |                   |                |
| MO 1281 | Cattle, Liver                                                          | W <sup>b</sup> | 0.5                 |                   |                |
| MM 0812 | Cattle meat                                                            | W <sup>b</sup> | 0.05                |                   |                |
| ML 0812 | Cattle milk                                                            | W <sup>b</sup> | 0.3                 |                   |                |
| PE 0840 | Chicken eggs                                                           | W <sup>c</sup> | 0.01 *              |                   |                |
| PM 0840 | Chicken meat                                                           | W <sup>c</sup> | 0.01 * <sup>5</sup> |                   |                |
| PO 0840 | Chicken, Edible offal of                                               | W <sup>c</sup> | 0.05                |                   |                |
| VD 0524 | Chick-pea (dry)                                                        | 0.05           |                     | 0.02              |                |

The residue is fat soluble.

<sup>4</sup> Fresh weight basis

<sup>5</sup> With adhering skin

|         | Commodity                                     | MRL, mg/       | kg               | STMR or<br>STMR-P             | HR or HR-<br>P        |
|---------|-----------------------------------------------|----------------|------------------|-------------------------------|-----------------------|
| CCN     | Name                                          | New            | previous         | mg/kg                         | mg/kg                 |
| FC 0001 | Citrus fruits                                 | 0.02 *         | 0.05 *           | 0                             | 0                     |
| SB 0716 | Coffee beans                                  | 0.02*          |                  | 0                             | 0                     |
| SO 0691 | Cotton seed                                   | 0.7            | 0.2              | 0.1                           |                       |
| OC 0691 | Cotton seed oil, crude                        | W              | 0.5              |                               |                       |
| MO 0105 | Edible offal (Mammalian)                      | 2              |                  | 0.27                          | 1.42                  |
| PE 0112 | Eggs                                          | 0.1            |                  | 0.022                         | 0.05                  |
| AM 1051 | Fodder beet                                   | 0.4            | 0.3              | 0.02                          | 0.30                  |
| AV 1051 | Fodder beet leaves or tops                    | W <sup>a</sup> | 0.3 <sup>b</sup> |                               |                       |
| FB 0269 | Grapes                                        | 0.02 *         | 0.05 *           | 0                             | 0                     |
| MM 0095 | Meat (from mammals other than marine mammals) | 0.5 (fat)      |                  | 0.035 (fat)<br>0.006 (muscle) | 0.33 (f)<br>0.041 (m) |
| FM 0183 | Milk fats                                     | 7              |                  | 0.87                          |                       |
| ML 0106 | Milks                                         | 0.3            |                  | 0.033                         |                       |
| VA 0385 | Onion, Bulb                                   | 0.2            |                  | 0.035                         | 0.12                  |
| SO 0697 | Peanut                                        | W              | 0.05             |                               |                       |
| AL 0697 | Peanut fodder                                 | 5              |                  | 2.1                           | 3.0                   |
| VD 0072 | Peas (dry)                                    | 0.2            |                  | 0.04                          |                       |
| VP 0063 | Peas (pods and succulent = immature seeds)    | 0.7            | 0.2              | 0.11                          | 0.53                  |
| VP 0064 | Peas, shelled (succulent seeds)               | 1              |                  | 0.08                          | 0.75                  |
| FP 0009 | Pome fruits                                   | 0.02 *         | 0.05 *           | 0                             | 0                     |
| VR 0589 | Potato                                        | W              | 0.1              |                               |                       |
| PM 0110 | Poultry meat                                  | 0.7 (fat)      |                  | 0.13 (fat)<br>0.032 (muscle)  | 0.52 (f)<br>0.11 (m)  |
| PO 0111 | Poultry, Edible offal of                      | 0.7            |                  | 0.21                          | 0.61                  |
| VD 0070 | Pulses                                        | W <sup>d</sup> | 0.2              |                               |                       |
| SO 0495 | Rape seed                                     | 3              | 2                | 0.07                          |                       |
| OC 0495 | Rape seed oil, crude                          | W <sup>e</sup> | 5                | 0.17                          |                       |
| OR 0495 | Rape seed oil, edible                         | W <sup>e</sup> | 5                | 0.16                          |                       |
| CM 1206 | Rice bran, unprocessed                        | W              | 0.02 *           |                               |                       |
| CM 0649 | Rice, husked                                  | W              | 0.02 *           |                               |                       |
| CM 1205 | Rice, polished                                | W              | 0.02 *           |                               |                       |
| VD 0541 | Soya bean (dry)                               | 2              |                  | 0.055                         |                       |
| OC 0541 | Soya bean oil, crude                          | W <sup>f</sup> | 0.2              | 0.044                         |                       |
| OR 0541 | Soya bean oil, refined                        | W <sup>f</sup> | 0.2              | 0.041                         |                       |
| FS 0012 | Stone fruits                                  | 0.02 *         |                  | 0                             | 0                     |
| VR 0596 | Sugar beet                                    | 0.4            | 0.3              | 0.02                          | 0.30                  |
| AV 0596 | Sugar beet leaves or tops                     | W <sup>a</sup> | 0.3              |                               |                       |
| SO 0702 | Sunflower seed                                | 0.3            | 0.2              | 0.05                          |                       |

W: the recommendation is withdrawn

\* At or about the limit of quantification.

<sup>a</sup> The current policy is not to recommend maximum residue levels for fresh animal forages, but to use the data in livestock dietary burden calculations.

<sup>b</sup> Recommendations for cattle kidney and cattle liver are withdrawn, to be replaced by a recommendation for mammalian edible offal. Recommendations for cattle meat and cattle milk are withdrawn and replaced by recommendations for mammalian meat and milks.

<sup>c</sup> Recommendations for chicken eggs, meat and edible offal are withdrawn, to be replaced by recommendations for poultry commodities.

<sup>d</sup> The recommendation for pulses is withdrawn to be replaced by recommendations for individual commodities.

<sup>e</sup> The recommendations for maximum residue levels for rape seed oils are withdrawn, because they are covered by the recommendation for rape seed.

<sup>f</sup> The recommendations for maximum residue levels for soya bean oils are withdrawn, because they are covered by the recommendation for soya bean (dry).

## DIETARY RISK ASSESSMENT

## Long-term intake

The International Estimated Daily Intakes of haloxyfop, based on the STMRs estimated for 22 commodities, for the GEMS/Food Consumption Cluster Diets were in the range of 20 to 80% of the maximum ADI (0.0007 mg/kg bw/day)(Annex 3 of the 2009 JMPR Report). The Meeting concluded that the long-term intake of residues of haloxyfop resulting from its uses that have been considered by JMPR is unlikely to present a public health concern.

# Short-term intake

The International Estimated Short Term Intake (IESTI) for haloxyfop was calculated for food commodities and their processed fractions for which maximum residue levels were estimated and for which consumption data were available. The results are shown in Annex 4 of the 2009 JMPR Report.

The IESTI represented 0-10% of the ARfD for the general population and 0-10% of the ARfD for children. The Meeting concluded that the short-term intake of residues of haloxyfop, when used in ways that have been considered by the JMPR, is unlikely to present a public health concern.

# REFERENCES

| Code    | Author                                         | Year | Title, Institute, Report reference                                                                                                                                                                                                                    |
|---------|------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Dobrat W and<br>Martijn A (eds)                | 1995 | Physico-chemical methods for technical and formulated pesticides. CIPAC Handbook. Volume F. Black Bear Press Ltd, UK.                                                                                                                                 |
|         | JMPR                                           | 2003 | 2.11 Revised data requirements for studies of environmental fate. Pesticide residues in food. Report 2003. <i>FAO Plant Production and Protection Paper</i> . 176:12–14.                                                                              |
|         | JMPR                                           | 2006 | 4.17 Haloxyfop (including haloxyfop-R and haloxyfop-R methyl ester).<br>Joint FAO/WHO Meeting on Pesticide Residues. Report 2006. <i>FAO Plant</i><br><i>Production and Protection Paper</i> 187:144–150.                                             |
|         | Meier U (ed)                                   | 2001 | Growth stages of mono-and dicotyledonous plants, BBCH Monograph. 2 <sup>nd</sup> edition. Federal Biological Research Centre for Agriculture and Forestry. Germany.                                                                                   |
|         | Wood A                                         | 2009 | Compendium of Pesticide Common Names.<br>http://www.alanwood.net/pesticides/index_cn_frame.html                                                                                                                                                       |
| 000133  | Smith JK                                       | 2002 | Hydrolysis of <sup>14</sup> C haloxyfop-R methyl ester in natural water and buffered water as a function of pH. Study 000133. Dow AgroSciences, USA. Unpublished.                                                                                     |
| 000421  | Cook WL and<br>Balcer JL                       | 2002 | Aqueous photolysis of DE-535 and DE-535-acid in pH 5 buffer and natural water under xenon light. Study 000421. Revised 20 September 2002. Dow AgroSciences, USA. Unpublished.                                                                         |
| 001042  | Shackelford DD                                 | 2001 | Validation report for Method GRM 01.09—determination of residues of haloxyfop in animal tissues, eggs, fat and milk by liquid chromatography with tandem mass spectrometry. Dow AgroSciences Study 001042. Amended version of GRM 01.09. Unpublished. |
| 010107  | Cook WL                                        | 2002 | Photodegradation of DE-535 on aerobic soil. Study 010107. Dow AgroSciences, USA. Unpublished.                                                                                                                                                         |
| 20625   | Chapleo S, Caley<br>CY, White DE and<br>Vogt S | 2002 | The metabolism of [ <sup>14</sup> C]-haloxyfop (R) methyl ester in sugar beet—report amendment 2. Report 20625. Inveresk Research, Scotland. Unpublished.                                                                                             |
| 20626   | Chapleo S and<br>White DE                      | 2002 | The metabolism of [ <sup>14</sup> C] haloxyfop (R) methyl ester in lettuce. Report 20626. Inveresk Research, Scotland. Unpublished.                                                                                                                   |
| 2084-21 | Gardner RC                                     | 1988 | Gas chromatographic determination of residues of haloxyfop in soya beans<br>and cottonseed—supplement for apples and process fractions. Dow<br>Chemical, USA. Report 2084-21. Unpublished.                                                            |

| Code         | Author                                                                            | Year | Title, Institute, Report reference                                                                                                                                                                                                                                                                                  |
|--------------|-----------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 295/100      | Goodyear A                                                                        | 2001 | ( <sup>14</sup> C)-Haloxyfop-(R)-methyl ester: Aerobic soil degradation. Covance<br>Laboratories, UK. Study 295/100. Unpublished.                                                                                                                                                                                   |
| 46028        | Madsen S and<br>Huntley K                                                         | 2000 | Determination of density for haloxyfop (R) acid technical. Study 46028.<br>ABC Laboratories, Inc., USA. Unpublished.                                                                                                                                                                                                |
| 89026        | Phillips AM                                                                       | 1991 | Determination of residues of XRD-535 in soya bean process fractions.<br>Project 89026. DowElanco, USA. Report GH-C 2591. Unpublished.                                                                                                                                                                               |
| 94/1314      | Taylor N                                                                          | 1994 | RN5405 (Batch no AGR 259822) determination of vapour pressure by balance method. Report 94/1314. University of Leeds, UK. Unpublished.                                                                                                                                                                              |
| ACR 83.1.S1  | Gardner RC                                                                        | 1985 | Gas chromatographic determination of residues of haloxyfop in soya beans<br>and cottonseed—supplement for 0.01 ppm. Dow Chemical, USA. Report<br>ACR 83.1.S1. Unpublished.                                                                                                                                          |
| ACR 84.1     | Kutschinski, AH                                                                   | 1984 | Determination of residues of haloxyfop in bovine tissues by gas<br>chromatography. Dow Chemical Co., USA. Study ACR 84.1. Unpublished.                                                                                                                                                                              |
| ACR 84.6R    | Gardner RC                                                                        | 1988 | Gas chromatographic determination of haloxyfop in milk and cream. Dow Chemical Co., USA. Study ACR 84.6R. Unpublished.                                                                                                                                                                                              |
| ADC #704     | McConnell AB,<br>Herrera RE and<br>Wilkes LC                                      | 1982 | Determination of <sup>14</sup> C-residues following oral administration of <sup>14</sup> C-Dowco<br>453 to lactating goats. Project #704. Analytical Development Corporation,<br>USA. Unpublished.                                                                                                                  |
| B 579/1      | Class T                                                                           | 2002 | Haloxyfop (DE-535): Assessment of multi-residue enforcement method(s) for the determination of haloxyfop in plant material. PTRL Europe, Germany. Report B 579/1. Unpublished.                                                                                                                                      |
| BRC 83.1     | Doege M                                                                           | 1983 | Determination of haloxyfop residues in coffee beans and sunflower seeds.<br>Dow AgroSciences, Brazil. Analytical method BRC 83.1. Unpublished.                                                                                                                                                                      |
| CCRL #990109 | Schuster LL                                                                       | 2002 | Independent laboratory validation of Dow AgroSciences LLC Method GRM 01.09—determination of haloxyfop in animal tissues, eggs, fat and milk by liquid chromatography with tandem mass spectrometry. Central California Research Laboratories, USA, Report CCRL #990109. Dow AgroSciences Study 020014. Unpublished. |
| CEMS-1240    | Rawle NW                                                                          | 2000 | Independent laboratory validation of an analytical method for the determination of haloxyfop residues in potatoes, sugarbeet and peas. CEMAS, CEM Analytical Services, UK. Study CEMS-1240. Unpublished.                                                                                                            |
| CEMS-185     | Bolton A                                                                          | 1993 | Haloxyfop residues in sugarbeet: Study R92-45. CEM Analytical Services<br>Ltd, UK. Study CEMS-185. Unpublished.                                                                                                                                                                                                     |
| DES/182      | Taylor N                                                                          | 1994 | Determination of vapour pressure by balance method. Sample name:<br>RN5405 (Batch No. AGR 259822). Report DES/182. University of Leeds,<br>England. Unpublished.                                                                                                                                                    |
| ERC 83.17    | Yon DA, Almond<br>R, Dawson J,<br>Howes D and<br>Brown D                          | 1983 | Determination of haloxyfop residues in rape seed. Dow Chemical Co., UK.<br>Analytical method ERC 83.17. Supersedes ERC 83.6. Unpublished.                                                                                                                                                                           |
| ERC 83.18    | Yon DA, Almond<br>R, Dawson J,<br>Howes D and<br>Brown D                          | 1983 | Determination of haloxyfop residues in sunflower seed. Dow Chemical, UK.<br>Report ERC 83.18. Supersedes Method 83.6. Unpublished.                                                                                                                                                                                  |
| ERC 83.19    | Yon DA, Almond<br>R, Dawson J,<br>Howes D, Brown<br>D, Gillis NA and<br>Taylor GA | 1984 | Determination of haloxyfop residues in sugar beet roots, tops and immature plants. Dow Chemical, UK. Report ERC 83.19. Unpublished.                                                                                                                                                                                 |
| ERC 83.20    | Yon DA                                                                            | 1983 | Determination of haloxyfop residues in rape oil. Dow Chemical Co., UK.<br>Analytical method ERC 83.20. Unpublished.                                                                                                                                                                                                 |
| ERC 83.24    | Yon DA                                                                            | 1983 | Determination of haloxyfop residues in rape cake. Dow Chemical Co., UK.<br>Analytical method ERC 83.24. Unpublished.                                                                                                                                                                                                |
| ERC 84.03    | Yon DA, Almond<br>R, Dawson J,<br>Howes D, Gillis<br>NA, Taylor GA<br>and Yau J   | 1984 | Determination of haloxyfop residues in rape straw and immature plants.<br>Dow Chemical Co., UK. Analytical method ERC 84.03. Unpublished.                                                                                                                                                                           |
| ERC 84.05    | Anon                                                                              | 1985 | Determination of haloxyfop residues in grapes. Dow Chemical Co., UK.<br>Analytical method ERC 84.05. Unpublished.                                                                                                                                                                                                   |
| ERC 87.7     | Anon                                                                              | 1988 | Determination of haloxyfop residues in onion. DowElanco, UK. Analytical method ERC 87.7. Unpublished.                                                                                                                                                                                                               |

| Code       | Author                                       | Year | Title, Institute, Report reference                                                                                                                                              |
|------------|----------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERC 88.3   | Perkins JM                                   | 1994 | Determination of haloxyfop residues in soya bean seed. DowElanco, UK.<br>Analytical method ERC 88.3. Unpublished.                                                               |
| ERC 88.4   | Perkins JM                                   | 1994 | Determination of haloxyfop residues in apples. DowElanco, UK. Study ERC 88.4. Unpublished.                                                                                      |
| ERC 89.3   | Perkins JM                                   | 1994 | Determination of haloxyfop residues in potatoes, sugarbeet roots and peas.<br>DowElanco, UK. Analytical method ERC 89.3. Unpublished.                                           |
| ERC 91.7   | Butcher SM                                   | 1992 | Determination of haloxyfop residues in field beans and pods. DowElanco, UK. DOWM 101156-DE-92A. Study ERC 91.7. Unpublished.                                                    |
| ERC 92.24  | Long T and<br>Butcher SM                     | 1993 | Determination of haloxyfop residues in fennel and oranges. DowElanco, UK. Analytical method ERC 92.24. Unpublished.                                                             |
| ERC 92.25  | Long T and<br>Butcher SM                     | 1993 | Determination of haloxyfop residues in cotton seed. DowElanco, UK.<br>Analytical method ERC 92.25. Unpublished.                                                                 |
| FAPC003116 | Madsen S                                     | 2000 | Determination of color, odor and physical state of haloxyfop (R) methyl ester. Study FAPC003116. Dow AgroSciences USA. Unpublished.                                             |
| FAPC003117 | Madsen S                                     | 2000 | Determination of color, odor and physical state of haloxyfop (R) acid. Study FAPC003117. Dow AgroSciences USA. Unpublished.                                                     |
| GHB-P 019. | Doege M                                      | 1984 | Dowco* 453 residues in coffee beans—Brazil. Dow Chemical, Brazil.<br>Report GHB-P 019. Unpublished.                                                                             |
| GHB-P 020  | Doege M                                      | 1984 | Haloxyfop residues in coffee beans—Colombia. Dow Chemical, Brazil.<br>Report GHB-P 020. Unpublished                                                                             |
| GHB-P 023  | Doege M.,<br>Rodrigues and<br>Leite JAP      | 1985 | Haloxyfop residues in coffee beans—Brazil. Dow Chemical, Brazil. Report GHB-P 023. Unpublished.                                                                                 |
| GHB-P 040  | Rodrigues MA                                 | 1987 | Residues of haloxyfop in citrus following application of Verdict herbicide.<br>Dow Chemical, Brazil. Report GHB-P 040. Unpublished.                                             |
| GHB-P 117  | Gagnotto SR,<br>Rampazzo PE and<br>Matos JC  | 1991 | Residues of DE-535 in soya beans after application at postemergence—<br>Brazil 1990. Project EC 007/90. DowElanco, Brazil. Project GHB-P 117.<br>Unpublished.                   |
| GHB-P 139  | Gagnotto SR and<br>De Vito R                 | 1992 | Residues of DE-535 in soya beans after application at postemergence—<br>Argentina 1991. Project EC 032/90. DowElanco, Brazil. Project GHB-P<br>139. Unpublished.                |
| GHB-P 144  | Gagnotto SR,<br>Rampazzo PE and<br>De Vito R | 1992 | Residues of DE-535 in soya beans after application at postemergence—<br>Brazil 1991. Project EC 014/91. DowElanco, Brazil. Project GHB-P 144.<br>Unpublished.                   |
| GHB-P 199  | Gagnotto SR and<br>De Vito R                 | 1993 | Residues of DE-535 ME in sunflower following application of Mirage*<br>Argentina, 1992. Project EC 017/91. DowElanco, Brazil. Report GHB-P<br>199. Unpublished.                 |
| GHB-P 277  | Balderrama Pinto<br>O and Gomes<br>Matos JC  | 1995 | Residues of haloxyfop-R in soya beans after application of DE-535 500 WP at postemergence—Brazil, 1994–95. Project EC 012/94. DowElanco, Brazil. Report GHB-P 277. Unpublished. |
| GHB-P 283  | Balderamma Pinto<br>O and Gomes<br>Matos JC  | 1995 | Residues of haloxyfop-R in beans after application of LAC-1531 at postemergence—Argentina 1992–93. DowElanco Latin America, Brazil. Report GHB-P 283. Unpublished.              |
| GHB-P 293  | Balderrama Pinto<br>O and Gomes<br>Matos JC  | 1995 | Residues of haloxyfop-R in peanuts after application of LAC 1531 at postemergence—Argentina 1991–92. Project EC 016/91. DowElanco, Brazil. Report GHB-P 293. Unpublished.       |
| GHB-P 301  | Balderrama Pinto<br>O and Gomes<br>Matos JC  | 1996 | Residues of haloxyfop-R in soya beans after application of DE-535 500 WP at postemergence—Brazil 1995. Project EC 007/95. DowElanco, Brazil. Report GHB-P 301. Unpublished.     |
| GHB-P 372  | Pinheiro ACCT<br>and Kitaka PR               | 1998 | Residues of haloxyfop-R in cottonseed after treatment with Verdict*-R—<br>Brazil. Dow AgroSciences, Brazil. Report GHB-P 372. Unpublished.                                      |
| GHB-P 377  | Pinheiro ACCT                                | 1998 | Residues of haloxyfop-R in dry beans after treatment with Verdict*-R—<br>Brazil, Dow AgroSciences, Brazil, Report GHB-P 377, Unpublished.                                       |
| GHB-P 378  | Pinheiro ACCT                                | 1998 | Residues of haloxyfop-R in dry beans after treatment with Verdict*-R—<br>Brazil, Dow AgroSciences, Brazil, Report GHB-P 378, Unpublished.                                       |
| GHB-P 384  | Pinheiro ACCT                                | 1998 | Residues of haloxyfop-R in dry beans after treatment with Galant*-R—<br>Costa Rica, Dow AgroSciences, Brazil, Report GHB-P 384, Unpublished                                     |
| GHB-P 391  | Pinheiro ACCT                                | 1998 | Residues of haloxyfop-R in dry beans after treatment with Verdict*-R—<br>Brazil, Dow AgroSciences, Brazil, Report GHB-P 391, Unpublished                                        |
| GHB-P 402  | Amaral LC and<br>De Vito R                   | 1999 | Residues of haloxyfop-R in white beans after treatment with Galant*-R—<br>Argentina, Dow AgroSciences, Brazil, Report GHB-P 402, Unpublished                                    |
|            |                                              |      |                                                                                                                                                                                 |

| Code       | Author                                                           | Year | Title, Institute, Report reference                                                                                                                                                                                                                                                                                                          |
|------------|------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHB-P 713  | Pinheiro ACCT                                                    | 2001 | Residues of haloxyfop-R in dry beans after treatment with Verdict 600<br>herbicide—Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P 713.<br>Unpublished.                                                                                                                                                                             |
| GHB-P 714  | Pinheiro ACCT,<br>De Vito R and<br>Rosseto J and<br>Neves R      | 2001 | Residues of haloxyfop-R in soya beans after treatment with Verdict 600<br>herbicide—Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P 714.<br>Unpublished.                                                                                                                                                                            |
| GHB-P 717  | Kalvan HC, De<br>Vito R and Neves<br>R                           | 2001 | Residues of haloxyfop-R in soya beans after treatment with Verdict*-R—<br>Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P 717.<br>Unpublished.                                                                                                                                                                                      |
| GHB-P 721  | Pinheiro ACCT,<br>De Vito R and<br>Mengarda IP                   | 2001 | Residues of haloxyfop-R in soya beans after treatment with Verdict 600<br>herbicide—Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P 721.<br>Unpublished.                                                                                                                                                                            |
| GHB-P 730  | Balderrama Pinto<br>O, De Vito R,<br>Marchi RS and<br>Schmidt FB | 2001 | Residues of haloxyfop-R in cotton seeds after treatment with Verdict 600-<br>herbicide—Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P 730.<br>Unpublished.                                                                                                                                                                         |
| GHB-P 732  | Pinheiro ACCT                                                    | 2001 | Residues of haloxyfop-R in dry beans after treatment with Verdict 600<br>herbicide—Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P-<br>732. Unpublished.                                                                                                                                                                            |
| GHB-P 733  | Balderrama Pinto<br>O, De Vito R and<br>Cason JB                 | 2001 | Residues of haloxyfop-R in cotton seeds after treatment with Verdict 600-<br>herbicide—Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P 733.<br>Unpublished.                                                                                                                                                                         |
| GHB-P 786  | Kalvan HC                                                        | 2002 | Residues of haloxyfop-R in dry beans after treatment with Verdict 600<br>herbicide—Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P 786.<br>Unpublished.                                                                                                                                                                             |
| GHB-P 790  | Kalvan, HC.                                                      | 2002 | Residues of haloxyfop-R in soya beans after treatment with Verdict 600<br>herbicide—Brazil, 2000–01. Dow AgroSciences, Brazil. Report GHB-P 790.<br>Unpublished.                                                                                                                                                                            |
| GHB-P-024  | Braga AM and<br>Bontempi Filho O                                 | 1985 | Residues of haloxyfop in soya beans following postemergence application of<br>Verdict* herbicide. Dow Chemical, Brazil. Report GHB-P-024. Includes<br>RT/12/84, RT/13/84, RT/14/84, RT/15/84, RT/16/84, RT/17/84, RT/25/84,<br>RT/26/84, RT/28/84, RT/29/84, RT/32/84, RT/33/84, RT/34/84, RT/35/84,<br>RT/36/84 and RT/37/84. Unpublished. |
| GHB-P-034  | Rodrigues MA                                                     | 1986 | Residues of haloxyfop in cottonseed following post- emergence of Verdict*<br>herbicide—Brazil. Dow Chemical, Brazil. Report GHB-P-034.<br>Unpublished.                                                                                                                                                                                      |
| GHB-P-9783 | Devine HC                                                        | 2002 | Residues of DE-535 in vegetable bean at harvest following a single application of DE-535 (EF-1400), EU southern zone—2001. Dow AgroSciences, UK. Report GHB-P-9783. Unpublished                                                                                                                                                             |
| GH-C 1507  | Bauriedel WR and<br>Miller JH                                    | 1982 | A greenhouse study of the early metabolic fate of three esters of DOWCO 453 applied to soya beans. Report GH-C 1507. Dow Chemical Company, USA. Unpublished.                                                                                                                                                                                |
| GH-C 1598  | Yackovich PR and<br>Miller JH                                    | 1983 | Uptake of <sup>14</sup> C activity by rotational crops from soil treated with <sup>14</sup> C labeled<br>Dowco 453-butyl ester 30 days prior to planting. Dow Chemical, USA.<br>Report GH-C 1598. Unpublished.                                                                                                                              |
| GH-C 1618  | Yackovich PR and<br>Miller JH                                    | 1983 | The fate of DOWCO 453 herbicide applied as the butyl ester to soya bean plants. Study GH-C 1618. Dow Chemical Company, USA. Unpublished.                                                                                                                                                                                                    |
| GH-C 1623  | Gardner RC                                                       | 1983 | Residues of Dowco 453 in cottonseed. Dow Chemical, USA. Report GH-C 1623. Unpublished.                                                                                                                                                                                                                                                      |
| GH-C 1624  | Yackovich PR and<br>Miller JH                                    | 1983 | The fate of DOWCO 453 fed to lactating goats. Dow Chemical, USA.<br>Report GH-C 1624. Unpublished.                                                                                                                                                                                                                                          |
| GH-C 1625  | Gardner RC                                                       | 1983 | Residues of DOWCO 453 in soya beans (revised). Dow Chemicals, USA.                                                                                                                                                                                                                                                                          |
| GH-C 1634  | Stafford LE and<br>Miller JH                                     | 1983 | A study of the metabolism of DOWCO 453 in cotton. Study GH-C 1634.<br>Dow Chemical Company, USA, Unpublished.                                                                                                                                                                                                                               |
| GH-C 1635  | Yackovich PR and<br>Miller JH                                    | 1983 | The fate of DOWCO 453 fed to laying hens, Study GH-C 1635. Dow<br>Chemical Company, USA. Unpublished.                                                                                                                                                                                                                                       |
| GH-C 1680  | Kutschinski AH<br>and Bierke EL                                  | 1984 | Residues in tissues from beef calves fed haloxyfop. Dow Chemical, USA.<br>Report GH-C 1680. Unpublished                                                                                                                                                                                                                                     |
| GH-C 1701  | Kutschinski AH<br>and Bjerke EL                                  | 1984 | Residues in tissues and eggs from chickens fed haloxyfop. Dow Chemical, USA. Report GH-C 1701. Unpublished.                                                                                                                                                                                                                                 |

| Code        | Author                                                         | Year | Title, Institute, Report reference                                                                                                                                                                                                                                                                       |
|-------------|----------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GH-C 1709   | Gardner RC                                                     | 1984 | Residues of haloxyfop in milk and cream from cows fed haloxyfop. Dow<br>Chemical, USA. Report GH-C 1709. Unpublished.                                                                                                                                                                                    |
| GH-C 1749   | Gardner RC                                                     | 1985 | Residue profile for haloxyfop in cottonseed when Verdict herbicide was applied at various stages of plant growth. Dow Chemical, USA. Report GH-C 1749. Unpublished.                                                                                                                                      |
| GH-C 1758   | Bjerke EL,<br>Kutschinski AH,<br>Gardner RC and<br>Majorski SA | 1985 | A residue study in rotational crops. Dow Chemical, USA. Report GH-C 1758. Unpublished                                                                                                                                                                                                                    |
| GH-C 2016   | Gardner RC and<br>Schotts BA                                   | 1988 | Comparison of haloxyfop residues in apples after treatment of the orchard floor with two formulations of haloxyfop-methyl herbicide. Dow Chemical, USA. Project GH-C 2016. Unpublished.                                                                                                                  |
| GH-C 2037   | Gardner RC                                                     | 1990 | Determination of haloxyfop in apple fractions after treatment of the orchard floor with haloxyfop-methyl herbicide. Dow Chemical, USA. Report GH-C 2037. Unpublished.                                                                                                                                    |
| GH-C 2162   | Cobb JD; Swayze<br>KM and Stuart<br>MP                         | 1989 | Solubility of XRD-535 methyl ester in organic solvents. Report GH-C 2162.<br>Dow Chemical USA. Unpublished.                                                                                                                                                                                              |
| GH-C 2175   | Gardner RC                                                     | 1989 | Determination of haloxyfop in rice after ground or aerial treatment with haloxyfop-methyl herbicide. Dow Chemical, USA. Report GH-C 2175. Unpublished.                                                                                                                                                   |
| GHC-2037    | Gardner RC and<br>Schotts BA                                   | 1988 | Determination of haloxyfop in apple fractions after treatment of the orchard floor with haloxyfop-methyl herbicide. Dow Chemical, USA. Report GHC-2037. Unpublished.                                                                                                                                     |
| GHE P 2140  | Dawson J                                                       | 1990 | The determinations of physico chemical properties of XRD 535 methyl ester according to OECD/EEC guidelines. Report GHE P 2140. Dow Elanco, UK. Unpublished.                                                                                                                                              |
| GHE-P-10092 | Rawle NW                                                       | 2002 | Residues of DE-535 in oilseed rape at harvest following a single application of DE-535 (EF-1400), EU southern zone—2001. Dow AgroSciences, UK. Report GHE-P-10092. Unpublished.                                                                                                                          |
| GHE-P-11071 | Devine HC                                                      | 2007 | Residues of DE-535 in alfalfa at intervals following a single application of DE-535 (EF-1400), EU northern zone—2004. Dow AgroSciences, UK. Report GHE-P-11071. Study CEMS-2337. Unpublished.                                                                                                            |
| GHE-P-11073 | Devine HC                                                      | 2007 | Residues of DE-535 in vegetable peas at harvest following a single application of DE-535 (EF-1400) EU southern zone 2004. Study CEMS-2239. Dow AgroSciences, UK. Report GHE-P-11073. Unpublished.                                                                                                        |
| GHE-P-1125  | Yon DA                                                         | 1984 | Determination of residues in haloxyfop in selected sugar process fractions<br>obtained from sugar beet treated with an EC Formulation Containing 125 g<br>haloxyfop ethoxy ethyl (EE) ester/litre—UK trials 1983. Dow Chemical,<br>UK. Report GHE-P-1125. Unpublished.                                   |
| GHE-P-1148  | Yon DA                                                         | 1984 | Determination of residues of haloxyfop in grapes treated with a 125 g haloxyfop ethoxyethyl (EE) Ester/litre EC formulation in France (1982 and 1983). Dow Chemical, UK. Report GHE-P-1148. Includes RT 277-7/83. Unpublished.                                                                           |
| GHE-P-11656 | Balluff M                                                      | 2007 | Residues of haloxyfop-R in oilseed rape at harvest following a single spring application of EF-1400, southern European zone (France, Spain, Italy, Greece)—2006. GAB Study 20064009/E3-FPRA. Dow AgroSciences, UK. Report GHE-P-11656. Includes F06W028R, S06W027R, I06W023R and GR06W013R. Unpublished, |
| GHE-P-11657 | Balluff M                                                      | 2007 | Residues of haloxyfop-R in oilseed rape at interval or at harvest following a single spring application of EF-1400, northern European zone (Germany, France, Poland)—2006. Dow AgroSciences, UK. Report GHE-P-11657. Includes F06W080R, PL06W009R, G06WO17R and G06WO18R. Unpublished.                   |
| GHE-P-1313R | Yon DA                                                         | 1987 | Residues of haloxyfop in selected process fractions obtained from the refining of winter oilseed rape treated with a 125g Haloxyfop ethoxyethyl ester/litre formulation, France 1982/83. Dow Chemical Co., UK. Report GHE-P-1313R. Unpublished.                                                          |
| GHE-P-1523  | Dawson J                                                       | 1986 | Residues of haloxyfop in grapes following application of Gallant*—France 1985. Dow Chemical, UK. Report GHE-P-1523. Includes RT 304/85, RT 310/85, RT 311/85. Unpublished.                                                                                                                               |

| Code       | Author                                                           | Year | Title, Institute, Report reference                                                                                                                                                                                                   |
|------------|------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHE-P-1956 | Perkins JM and<br>Veal P                                         | 1990 | Residues of haloxyfop in peas ( <i>pois conserve</i> ) following application of Gallant (EF 687) or DowCo 535 (EF 1020) herbicide—France 1988. Study R88-40. DowElanco, UK. Report GHE-P-1956. Unpublished.                          |
| GHE-P-1965 | Perkins JM                                                       | 1988 | Residues of haloxyfop in apples following basal application of Gallant 125<br>Herbicide—Italy 1987. Dow Chemical, UK. Report GHE-P-1965.<br>Unpublished.                                                                             |
| GHE-P-1966 | Perkins JM and<br>Veal P                                         | 1990 | Residues of haloxyfop in spring field peas ( <i>pois proteagineux</i> ) following application of Gallant (EF-687) or DowCo 535 (EF 1020) herbicides—<br>France 1988. Study R88-39. DowElanco, UK. Report GHE-P-1966.<br>Unpublished. |
| GHE-P-1972 | Perkins JM and<br>Veal P                                         | 1990 | Residues of Haloxyfop in sugarbeet roots following application of Gallant (EF 687) or Dowco 534 (EF 1020) herbicide—France 1988. Study R88-36. DowElanco, UK. Report GHE-P-1972. Unpublished.                                        |
| GHE-P-1973 | Perkins JM and<br>Harrison C                                     | 1990 | Residues of haloxyfop in oilseed rape seed following an autumn application<br>of Gallant (EF 687) or DOWCO 534 (EF 1020) herbicides—France 1988.<br>Study R89-5. DowElanco, UK. Report GHE-P-1973. Unpublished.                      |
| GHE-P-2036 | Perkins J,<br>Teasdale R and<br>Veal P                           | 1990 | Residues of haloxyfop in sugarbeet (whole plant, roots and leaves) after the application of Gallant (EF 687) and Dowco 535 (EF 1020)—Germany 1988. Project R 88-22. DowElanco, UK. Report GHE-P-2036. Unpublished.                   |
| GHE-P-2055 | Perkins JM and<br>Harrison C                                     | 1990 | Residues of haloxyfop in spring field peas ( <i>pois proteagineux</i> ) following application of Gallant (EF-687) or DowCo 535 (EF 1020) herbicides—<br>France 1989. Study R89-6. DowElanco, UK. Report GHE-P-2055.<br>Unpublished.  |
| GHE-P-2057 | Perkins JM and<br>Harrison C                                     | 1990 | Residues of haloxyfop in peas ( <i>pois conserve</i> ) following application of Gallant (EF-687) or DOWCO 535 (EF-1020) herbicides—France 1989. Study R89-7. DowElanco, UK. Report GHE-P-2057. Unpublished.                          |
| GHE-P-2058 | Perkins JM and<br>Harrison C                                     | 1990 | Residues of haloxyfop in winter field peas ( <i>pois proteagineux</i> ) following application of Gallant (EF 687) or DowCo 535 (EF 1020) herbicides—<br>France 1989. Study R89-4. DowElanco, UK. Report GHE-P-2058.<br>Unpublished.  |
| GHE-P-2059 | Perkins JM and<br>Harrison C                                     | 1990 | Residues of haloxyfop in sunflower seed following application of Gallant (EF-687) or Dowco 535 (EF 1020) herbicides—France 1988 and 1989.<br>Studies R88-37 and R89-8. DowElanco, UK. Report GHE-P-2059.<br>Unpublished.             |
| GHE-P-2115 | Perkins JM,<br>MacDonald I,<br>Gillis N, Taylor L<br>and Flatt S | 1990 | Residues of haloxyfop in grapes following application of DOWCO 535 (EF-<br>1020) herbicide—Italy 1989. DowElanco, UK. Report GHE-P-2115. Study<br>R89-31. Unpublished.                                                               |
| GHE-P-2144 | Perkins JM,<br>MacDonald I,<br>Gillis N and Flatt<br>S           | 1990 | Residues of haloxyfop in oilseed rape (whole plant, seed and straw) after the autumn application of Gallant (EF 687) and DOWCO 535 (EF 1020)—<br>Germany 1988–89. Project R88-21. DowElanco, UK. Report GHE-P-2144. Unpublished.     |
| GHE-P-2444 | Butcher S                                                        | 1991 | Residues of haloxyfop in field beans following a single application of EF 1020 Herbicide—Germany 1990. DowElanco, UK. Report GHE-P-2444. Unpublished.                                                                                |
| GHE-P-2771 | Butcher S                                                        | 1992 | Residues of haloxyfop in oranges following a single application of DE 353 (EF 1020) herbicide—Italy 1991. DowElanco, UK. Report GHE-P-2771. Includes R91-28. Unpublished.                                                            |
| GHE-P-2802 | Butcher S and<br>Long T                                          | 1992 | Residues of haloxyfop in cotton following a single application of DE-535 (EF-1020) herbicide—Spain 1991. DowElanco, UK. Report GHE-P-2802. Study R91-31. Unpublished.                                                                |
| GHE-P-3078 | Hastings M,<br>Rawle N and<br>Bolton A                           | 1993 | Residues of haloxyfop in sugar beet at harvest following a single application of DE 535 (EF 1020)—Italy 1992. Study R92-45. DowElanco, UK. Report GHE-P-3078. Includes CEMS-185. Unpublished.                                        |
| GHE-P-3157 | Hastings M and<br>Butcher S                                      | 1993 | The stability of haloxyfop in green peas stored under frozen conditions.<br>Study ST91-9. DowElanco, UK. Report GHE-P-3157. Unpublished.                                                                                             |
| GHE-P-3158 | Hastings M and<br>Butcher S                                      | 1993 | The stability of haloxyfop in cabbage stored under frozen conditions. Study ST91-10. DowElanco, UK. Report GHE-P-3158. Unpublished.                                                                                                  |
| GHE-P-3594 | Hale K and Trigg<br>R                                            | 1994 | Investigations into the metabolism of DE-535 methyl ester (haloxyfop-R<br>methyl ester) in soil according to BBA guidelines IV 4.1. DowElanco<br>Europe, UK. Study 12G. Report GHE-P-3594. Unpublished.                              |

| Code       | Author        | Year | Title, Institute, Report reference                                                                                                                                                                                                                   |
|------------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHE-P-4060 | Richardson N  | 1995 | DE 535 (ester) pure: Determination of physico-chemical properties. Report GHE-P-4060. Dow Elanco, UK. Unpublished.                                                                                                                                   |
| GHE-P-8309 | Nicholson, A. | 2000 | Residues of DE-535 acid in onions at harvest following a single application of EF-1400, European Union, northern zone—1999. Study R99-122. Dow AgroSciences, UK. Report GHE-P-8309. Unpublished.                                                     |
| GHE-P-8559 | Nicholson A   | 2000 | Residues of DE-535 acid in vegetable bean at harvest following a single application of EF-1400, European Union, northern zone—1999. Dow AgroSciences, UK. Report GHE-P-8559. Unpublished.                                                            |
| GHE-P-8573 | Nicholson A   | 2000 | Residues of DE-535 acid in vegetable pea at harvest following a single application of EF-1400, EU northern zone—1999. Trials R99-133A, R99-133B, R99-133C and R99-133D. Dow AgroSciences, UK. Report GHE-P-8573. Unpublished.                        |
| GHE-P-8577 | Nicholson A   | 2000 | Residues of DE-535 acid in vegetable bean at harvest following a single application of EF-1400, European Union, southern zone—1999. Dow AgroSciences, UK. Report GHE-P-8577. Unpublished.                                                            |
| GHE-P-8578 | Nicholson A   | 2000 | Residues of DE-535 acid in vegetable pea at harvest following a single application of EF-1400, EU southern zone—1999. Trials R99-168A and R99-168B. Dow AgroSciences, UK. Report GHE-P-8578. Unpublished.                                            |
| GHE-P-8849 | Rawle NW      | 2001 | Residues of DE-535 in vegetable bean at harvest following a single<br>application of DE-535 (EF-1400, EU northern zone—2000. Dow<br>AgroSciences, UK. Report GHE-P-8849. Unpublished.                                                                |
| GHE-P-8851 | Rawle NW      | 2001 | Residues of DE-535 in vegetable peas at harvest following a single<br>application of DE-535 (EF-1400), EU northern zone—2000. Trials CEMS-<br>1248A, CEMS-1248B, CEMS-1248C and CEMS-1248D. Dow<br>AgroSciences, UK. Report GHE-P-8851. Unpublished. |
| GHE-P-8852 | Rawle NW      | 2002 | Residues of DE-535 in vegetable peas at harvest following a single application of DE-535 (EF-1400), EU southern zone—2000. Trials CEMS-1249A and CEMS-1249B. Dow AgroSciences, UK. Report GHE-P-8852. Unpublished.                                   |
| GHE-P-8854 | Rawle NW      | 2001 | Residues of DE-535 in cotton at harvest following a single application of DE-535 (EF-1400), EU southern zone—2000. Dow AgroSciences, UK. Report GHE-P-8854. Includes CEMS-1251. Unpublished.                                                         |
| GHE-P-8857 | Rawle NW      | 2002 | Residues of DE-535 in oilseed rape at harvest following a single application of DE-535 (EF-1400, EU northern zone—2000. Dow AgroSciences, UK. Report GHE-P-8857. Unpublished.                                                                        |
| GHE-P-8858 | Rawle NW      | 2001 | Residues of DE-535 in oilseed rape at harvest following a single application of DE-535 (EF-1400), EU southern zone—2000. Dow AgroSciences, UK. Report GHE-P-8858. Unpublished.                                                                       |
| GHE-P-8859 | Rawle NW      | 2002 | Residues of DE-535 in soya beans at harvest following a single application of DE-535 (EF-1400), EU southern zone—2000. Study CEMS-1257. Dow AgroSciences, UK. Report GHE-P-8859. Unpublished.                                                        |
| GHE-P-8860 | Rawle NW      | 2001 | Residues of DE-535 in sunflower at harvest following a single application of DE-535 (EF-1400), EU northern zone—2000. Study CEMS-1258. Dow AgroSciences, UK. Report GHE-P-8860. Unpublished.                                                         |
| GHE-P-8861 | Rawle NW      | 2001 | Residues of DE-535 in sunflower seeds at harvest following a single application of DE-535 (EF-1400) EU southern zone—2000. Study CEMS-1259. Dow AgroSciences, UK. Report GHE-P-8861. Unpublished.                                                    |
| GHE-P-8867 | Rawle NW      | 2001 | Residues of DE-535 in sugarbeet at harvest following a single application of DE-535 (EF 1400), EU northern zone—2000. Trials CEMAS-1266A, CEMAS-1266B, CEMAS-1266C. Dow AgroSciences, UK. Report GHE-P-8867. Unpublished.                            |
| GHE-P-8868 | Rawle NW      | 2002 | Residues of DE-535 in sugarbeet at harvest following a single application of the DE-535 (EF-1400), EU southern zone—2000. Study CEMS-1267. Dow AgroSciences, UK. Report GHE-P-8868. Unpublished.                                                     |
| GHE-P-8870 | Kang J        | 2001 | Residues of DE-535 in onions at harvest following a single application of DE-535 (EF-1400) EU northern zone—2000. Study CEMS-1269. Dow AgroSciences, UK. Report GHE-P-8870. Unpublished.                                                             |
| GHE-P-8871 | Rawle NW      | 2001 | Residues of DE-535 in onions at harvest following a single application of DE-535 (EF-1400) EU southern zone—2000. Study CEMS-1270. Dow AgroSciences, UK. Report GHE-P-8871. Unpublished.                                                             |

| Code       | Author                                                | Year | Title, Institute, Report reference                                                                                                                                                                                                                       |
|------------|-------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHE-P-8999 | Nicholson A                                           | 2000 | Residues of DE-535 in sunflower seed at harvest following a single application of EF 1400, European Union northern zone—1999. Study R99-136. Dow AgroSciences, UK. Report GHE-P-8999. Unpublished.                                                       |
| GHE-P-9337 | Rawle NW                                              | 2001 | Residues of DE-535 acid in cotton at harvest following a single application of EF-1400, European Union, southern zone—1999. Dow AgroSciences, UK. Report GHE-P-9337. Includes R99-134A, R99-134B, R99-134C, R99-134D. Unpublished.                       |
| GHE-P-9782 | Devine HC                                             | 2002 | Residues of DE-535 in soya beans at harvest following a single application of DE-535 (EF-1400), Hungary and Germany—2001. Study CEMS-1569. Dow AgroSciences, UK. Report GHE-P-9782. Unpublished.                                                         |
| GHE-P-9784 | Devine, HC                                            | 2002 | Residues of DE-535 in sunflower seed at harvest following a single application of DE-535 (EF-1400), EU southern zone—2001. Study CEMS-1571. Dow AgroSciences, UK. Report GHE-P-9784. Unpublished.                                                        |
| GHF-P 1003 | Wilson BI,<br>Tidswell JN,<br>Downard P and<br>Nott P | 1990 | Residues of haloxyfop in field peas after application of EF 1020 or Verdict 104 selective herbicide in South Australia and Victoria 1989. DowElanco, NZ. Report GHF-P 1003. Unpublished. [ <i>Note: data are included in later version- GHF-P 1392</i> ] |
| GHF-P 1110 | Tidswell JN,<br>Cowles J and<br>Plater C              | 1991 | Residues of haloxyfop in lemons after applications of Verdict 104 selective herbicide in New South Wales 1990. DowElanco, NZ. Report GHF-P 1110. Unpublished.                                                                                            |
| GHF-P 1122 | Cowles J and Wall<br>H                                | 1991 | Residues of haloxyfop in stone fruit after the application of Verdict 104 selective herbicide in Victoria, Australia in 1991. DowElanco, NZ. Report GHF-P 1122. Unpublished.                                                                             |
| GHF-P 1147 | Tidswell JN,<br>Cowles J and<br>Lobb P                | 1991 | Residues of haloxyfop in lemons after application of Verdict 104 selective herbicide in New Zealand 1991. DowElanco, NZ. Report GHF-P 1147. Unpublished.                                                                                                 |
| GHF-P 1149 | Wilson BI and<br>Wells GA                             | 1991 | Residues of haloxyfop in bananas after application of Verdict 104 selective herbicide and IWD-4180 in Queensland 1991. DowElanco, NZ. Report GHF-P 1149. Unpublished.                                                                                    |
| GHF-P 1150 | Cowles J and<br>Plater C                              | 1991 | Residues of haloxyfop in grapes after the application of Verdict 104 selective herbicide in New South Wales, Australia in 1990. DowElanco, NZ. Report GHF-P 1150. Unpublished.                                                                           |
| GHF-P 1355 | Wilson BI and<br>Tidswell JN                          | 1994 | Effect of oil on residues of haloxyfop in lucerne, Australia 1989.<br>DowElanco, NZ. Report GHF-P 1355. Unpublished.                                                                                                                                     |
| GHF-P 1392 | Wilson BI,<br>Tidswell JN,<br>Downard P and<br>Nott P | 1994 | Residues of haloxyfop in field peas after application of EF 1020 or Verdict* 104 selective herbicide. DowElanco, NZ. Report GHF-P 1392. Unpublished.                                                                                                     |
| GHF-P 1700 | Cowles RJ, Utting<br>A, Williamson W<br>and Taylor J  | 1998 | Residues of haloxyfop-R in canola forage, fodder and grain after application of Verdict herbicide in Australia 1997. Dow AgroSciences, NZ. Report GHF-P 1700. Unpublished.                                                                               |
| GHF-P 1718 | Cowles J                                              | 1998 | Residues of haloxyfop-R in chickpeas whole plant, straw and grain after application of Verdict herbicide in Australia 1997. Dow AgroSciences, NZ. Report GHF-P 1718. Unpublished.                                                                        |
| GHF-P 1773 | Taylor J                                              | 1999 | Residues of haloxyfop-R in peanuts forage, straw and grain after application of Verdict herbicide in Australia, 1997–1998. Trials 974039GW, 974043GW, 974042GW, 974040GW. Dow AgroSciences New Zealand. Report GHF-P 1773. Unpublished.                  |
| GHF-P 1939 | Cowles J                                              | 2003 | Magnitude of residue of haloxyfop in tissues and milk from a 28-day cow<br>study in New Zealand in 1998. Dow AgroSciences, Australia. Report GHF-P<br>1939. Unpublished                                                                                  |
| GHF-P 1943 | Cowles J                                              | 2001 | Haloxyfop residues in Australian lucerne after one application of Verdict 520 herbicide in the 1998–1999 season. Dow AgroSciences, Australia. Report GHF-P 1943. Unpublished.                                                                            |
| GHF-P 1989 | Wilson BI and<br>Tidswell JN                          | 1989 | Residues of haloxyfop in pigeon peas after application of Verdict 104 selective herbicide or XRM 5045 in Australia. Ivon-Watkins Dow, NZ. Report GHF-P-1989. Unpublished.                                                                                |
| GHF-P 925  | Wilson BI and<br>Tidswell JN                          | 1990 | Residues of haloxyfop in lucerne after applications of Verdict 104 selective<br>herbicides in New South Wales Australia 1989. Ivon-Watkins-Dow Ltd, NZ.<br>Report GHF-P 925. Unpublished.                                                                |

| Code            | Author                                                                                       | Year | Title, Institute, Report reference                                                                                                                                                                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHF-P 997       | Wilson BI and<br>Tidswell JN                                                                 | 1990 | Residues of haloxyfop in lucerne after application of EF 1020 or Verdict 104<br>Selective Herbicide in New South Wales Australia 1989. DowElanco, NZ.<br>Report GHF-P 997. Unpublished.                                                                                                                               |
| GHF-P-1121      | Cowles J and Wall<br>H                                                                       | 1991 | Residues of haloxyfop in apples after the application of Verdict 104 selective herbicide in Victoria, Australia in 1991. DowElanco, NZ. Report GHF-P-1121. Unpublished.                                                                                                                                               |
| GHF-P-515       | Wilson, BI                                                                                   | 1986 | Residues of haloxyfop* in citrus after basal application of haloxyfop EE thirty days before harvest in New Zealand, 1985-86. Ivon Watkins—Dow Ltd, NZ. Report GHF-P-515. Unpublished.                                                                                                                                 |
| GHF-P-584       | Wilson BI                                                                                    | 1987 | Residues of haloxyfop in apples after basal application of haloxyfop EE thirty days before harvest in New Zealand, 1986. Ivon Watkins-Dow, NZ. Report GHF-P-584. Unpublished.                                                                                                                                         |
| GHF-P-633       | Wilson BI                                                                                    | 1987 | Residues of haloxyfop in onion after application haloxyfop EE fifteen or thirty days before harvest in New Zealand 1987. Ivon-Watkins-Dow Ltd, NZ. Report GHF-P-633. Unpublished.                                                                                                                                     |
| GHF-P-857       | Wilson BI                                                                                    | 1989 | Residues of haloxyfop in lucerne after applications of Verdict 104 selective herbicides in Australia 1989. Ivon-Watkins-Dow Ltd, NZ. Report GHF-P-857. Unpublished.                                                                                                                                                   |
| GRM 00.02       | Clements B,<br>Hastings M,<br>Paterson G,<br>Gaudineau C,<br>Nicholson A and<br>Schauerman M | 2001 | Determination of residues in haloxyfop in medic/clover, lucerne, spinach,<br>lettuce, garlic, asparagus, flax and strawberries by high performance liquid<br>chromatography with negative ion electrospray tandem spectroscopy<br>detection, protocol 000298, Report GRM 00.02. Dow AgroSciences, UK.<br>Unpublished. |
| GRM 01.09       | Yeh LT, Cobb JD<br>and Shackelford<br>DD                                                     | 2001 | Determination of residues of haloxyfop in animal tissues, eggs, fat and milk<br>by liquid chromatography with tandem mass spectrometry. Dow<br>AgroSciences LLC, USA. Report GRM 01.09. Unpublished.                                                                                                                  |
| IF-100/18445-00 | Nicholson AE and<br>Schulz H                                                                 | 2000 | Independent laboratory validation of analytical method (ERC 83.17) for the determination of haloxyfop residues in oil seed rape. Institut Fresenius, Germany. Report GHE-P-9028. Study IF-100/18445-00. Unpublished.                                                                                                  |
| NAFST272        | Cowlyn T                                                                                     | 1995 | DE 535 acid: Determination of physico-chemical properties. Study<br>NAFST272. Pharmaco Ltd, UK. Includes report 94/1314. Unpublished.                                                                                                                                                                                 |
| NCRL 9901       | Hoogenboom K                                                                                 | 2001 | Analysis of haloxyfop residues in bovine milk and tissue. Report NCRL<br>9901. AgriQuality, New Zealand. Unpublished.                                                                                                                                                                                                 |
| NCRL 9902       | Hoogenboom K                                                                                 | 2001 | Haloxyfop determination in liver, kidney, muscle, fat and milk: method validation. Report NCRL 9902. AgriQuality, New Zealand. Unpublished.                                                                                                                                                                           |