## **CLOTHIANIDIN (238)**

First draft prepared by T van der Velde-Koerts, PH van Hoeven-Arentzen and CM Mahieu, Centre for Substances and Integrated Risk Assessment, National Institute of Public Health and the Environment (RIVM), the Netherlands

# **EXPLANATION**

Residue and analytical aspects of clothianidin were considered for the first time by the present Meeting. The residue evaluation was scheduled for the 2010 JMPR by the Forty-first Session of the 2009 CCPR (ALINORM 09/32/24).

Clothianidin is a soil, foliar and seed insecticide belonging to the chemical class of nitromethylenes or neonicotinoids and acts as an agonist of the nicotinic acetylcholine receptor, affecting the synapses in the insect central nervous system of sucking and chewing insects. It has registered uses in many countries on fruits, vegetables, soya beans, cereals, sugar cane, oilseeds and tea.

The manufacturer supplied information on identity, metabolism, storage stability, residue analysis, use patterns, residues (resulting from supervised trials on pomefruit, stonefruit, cranberries, grapes, persimmons, bananas, head cabbage, broccoli, fruiting vegetables, lettuce, soya beans, carrots, potatoes, sugarbeets, chicory roots, cereals, sugar cane and oilseeds), and fates of residues during processing, and livestock feeding studies. In addition, Australia, The Netherlands and Japan supplied information on use patterns.

# **IDENTITY**

| ISO common name:          | Clothianidin                                                            |
|---------------------------|-------------------------------------------------------------------------|
| Chemical name             |                                                                         |
| IUPAC:                    | (E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-<br>nitroguanidine   |
| CAS:                      | [C(E)]-N-[(2-chloro-5-thiazolyl)methyl]-N'-methyl-N"-<br>nitroguanidine |
| CAS Registry No:          | 210880-92-5                                                             |
| CIPAC No:                 | 738                                                                     |
| Synonyms and trade names: | TI-435, TM-444, V-10170                                                 |
| Structural formula:       |                                                                         |
|                           | $CH_3 \xrightarrow{H} NO_2 CI$<br>$NH S \xrightarrow{I} N$              |

| Molecular formula |  |
|-------------------|--|
| Molecular weight: |  |

C<sub>6</sub>H<sub>8</sub>ClN<sub>5</sub>O<sub>2</sub>S 249.68

Clothianidin exists predominantly in the E-form. This has been confirmed by NMR analysis (Jeschke *et al.*, 2003). Quantum chemical calculations revealed that in water the E-isomer is more stable than the Z-isomer. At room temperature the theoretical ratio between E/Z isomers is estimated as 65:1 (Schindler, 2010).

# PHYSICAL AND CHEMICAL PROPERTIES

Pure active ingredient, minimum purity 99.7%

| Parameter                                 | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | References                                     | Guidelines/method                                       |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|
| Appearance                                | purity 99.7%, 21.0–21.5 °C<br>odourless, clear and colourless solid (powder)                                                                                                                                                                                                                                                                                                                                                                                                                                | (Kamiya and Itoh,<br>2000a/c/e, THP-0009, THP- | visual inspection;<br>olfactory                         |
|                                           | ououriess, eleur una corouriess sona (powaer)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0011, THP-0016)                                | observation                                             |
| Vapour pressure                           | purity 99.7%<br>$1.3 \times 10^{-7}$ mPa at 25 °C<br>$3.8 \times 10^{-8}$ mPa at 20 °C (extrapolated)                                                                                                                                                                                                                                                                                                                                                                                                       | (Morrisey and Kramer,<br>2000b, THP-0026)      | EEC A4 (effusion<br>method: vapour<br>pressure balance) |
| Melting point                             | purity 99.7%<br>176.8 °C<br>the measured melting point was corrected<br>taking into account the reference melting point<br>of 2 standards                                                                                                                                                                                                                                                                                                                                                                   | (Kamiya and Itoh, 2000g,<br>THP-0018)          | OECD 102 (method<br>not indicated)                      |
| Octanol/water<br>partition<br>coefficient | Study 1, purity 99.7%<br>log $K_{ow} = 0.7$ , unbuffered, pH not stated, at 25.0 °C<br>eluting solvent = water/MeOH 60/40                                                                                                                                                                                                                                                                                                                                                                                   | (Morrisey and Kramer,<br>2000a, THP-0013)      | OECD 117 (HPLC-<br>method)                              |
|                                           | Study 2, purity 99.7%<br>log $K_{ow} = 0.893$ , pH 4, at 25 °C<br>log $K_{ow} = 0.905$ , pH 7, at 25 °C<br>log $K_{ow} = 0.873$ , pH 10, at 25 °C                                                                                                                                                                                                                                                                                                                                                           | (O'Connor and Mullee,<br>2001, THP-0065)       | EEC A8 (shake<br>flask<br>method + HPLC-<br>UV)         |
| Solubility                                | Study 1, purity 99.7%<br>0.327 g/L in water at 20 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Morrisey and Kramer,<br>2000a, THP-0013)      | OECD 105 (flask<br>method + HPLC-<br>UV)                |
|                                           | Study 2, purity 99.7%<br>0.304 g/L in pH 4 buffer (0.01 M potassium<br>hydrogen phtalate) at 20 °C<br>0.340 g/L in pH 10 buffer (0.002 M disodium<br>tetraborate/0.004 M sodium chloride) at 20 °C                                                                                                                                                                                                                                                                                                          | (O'Connor and Mullee,<br>2001, THP-0065)       | OECD 105 (flask<br>method + HPLC-<br>UV)                |
|                                           | Study 3, purity 99.7%<br>< 0.00104 g/L in heptane at 25 °C<br>0.0128 g/L in xylene at 25 °C<br>1.32 g/L in DCM at 25 °C<br>6.26 g/L in MeOH at 25 °C<br>0.938 g/L in octanol at 25 °C<br>15.2 g/L in acetone at 25 °C<br>2.03 g/L in ethylacetate at 25 °C                                                                                                                                                                                                                                                  | (Morrisey and Kramer,<br>2000a, THP-0013)      | OECD 105 (flask<br>method + HPLC-<br>UV)                |
| Relative density                          | purity 99.7%<br>$D_4^{20} = 1.61$<br>(kerosene was used as immersion solvent)                                                                                                                                                                                                                                                                                                                                                                                                                               | (Morrisey and Kramer, 2000a, THP-0013)         | OECD 109<br>(pycnometer<br>method)                      |
| Hydrolysis in<br>water                    | [thiazolyl- <sup>14</sup> C]-labelled ai, chemical purity<br>> 98%, radiochemical purity > 99%, 0.3 mg/L<br>in aqueous buffer with 0.7% v/v ACN under<br>sterile conditions in the dark for 33 days.<br>Preliminary tests at 50 °C:<br>at pH 4 and 7: hydrolytic stability (< 10%<br>hydrolysis in 5 d)<br>at pH 9: $DT_{50} = 14.4 d$<br>Definitive tests at pH 9:<br>at 74 °C: $DT_{50} = 0.68 d$<br>at 62 °C: $DT_{50} = 3.7 d$<br>at 20 °C: $DT_{50} = 1401 d$<br>(calculated using Arrhenius equation) | (Lewis, 2000, THP-0024)                        | EEC C7                                                  |

496

| Parameter            | Result                                                                     | References                  | Guidelines/method            |
|----------------------|----------------------------------------------------------------------------|-----------------------------|------------------------------|
|                      | Hydrolysis products (identified at pH 9 at                                 |                             |                              |
|                      | 74 °C)                                                                     |                             |                              |
|                      | max 59% ACT (2-chlorothiazol-5-                                            |                             |                              |
|                      | ylmethylamine)                                                             |                             |                              |
|                      | max 23% TZMU (N-(2-chlorothiazol-5-                                        |                             |                              |
|                      | ylmethyl)-N'-methylurea)                                                   |                             |                              |
|                      | max 5% CTNU (N-(2-chlorothiazol-5-<br>ylmethyl)-N'-nitrourea)              |                             |                              |
| Photolysis in water  | [nitroimino- <sup>14</sup> C]- and [thiazolyl-2- <sup>14</sup> C]-labelled | (Babczinski and Bornatsch,  | SETAC-procedures             |
| 1 notorysis in water | ai, radiochemical purity $> 99\%$ : as 0.284–                              | 2000, THM-0013)             | (xenon light with            |
|                      | 0.305  mg/L in phosphate buffer pH 7 (sterile                              | (Schad, 2000a, THM-0016)    | UV filter, cut off $\lambda$ |
|                      | conditions, cosolvent ACN $< 1\% \text{ v/v}$ ,                            | (501144, 20004, 11111 0010) | < 290  nm)                   |
|                      | continuous irradiation for 18 d using xenon light                          |                             |                              |
|                      |                                                                            |                             |                              |
|                      | Photolysis rate:                                                           |                             |                              |
|                      | $DT_{50} = 3.3$ hr (mean of 2 labels) at 25 °C                             |                             |                              |
|                      |                                                                            |                             |                              |
|                      | Major photolysis products:                                                 |                             |                              |
|                      | TZMU: N-(2-chlorothiazol-5-ylmethyl)-N'-                                   |                             |                              |
|                      | methylurea (18.7-27.5% after 18 d)                                         |                             |                              |
|                      | MG: methylguanidine (34.7% after 18 d)<br>HMIO: 4-hydroxy-2-methylamino-2- |                             |                              |
|                      | imidazolin-5-one (7.1% after 18 d)                                         |                             |                              |
|                      | FA: formamide (14.1% after 18 d)                                           |                             |                              |
|                      | MU: methylurea (11.0% after 18 d)                                          |                             |                              |
|                      | $CO_2$ (34.1% after 18 d in thiazolyl study)                               |                             |                              |
| Dissociation         | purity 99.7%                                                               | (Morrisey and Kramer,       | OECD 112                     |
| constant:            | at 20 °C: pKa = 11.09                                                      | 2000a, THP-0013)            | (spectrophotometric          |
|                      | dissociated species of clothianidin estimated to                           |                             | method)                      |
|                      | be the deprotonated compounds at the guanidine                             |                             |                              |
|                      | moiety                                                                     |                             |                              |

Technical material, minimum purity 97.6%

| Parameter         | Result                                                        | References                 | Guidelines         |
|-------------------|---------------------------------------------------------------|----------------------------|--------------------|
| Appearance:       | purity 97.6%, 24.5–25.0 °C                                    | (Kamiya and Itoh,          | visual inspection; |
|                   | odourless, dim yellow solid (powder)                          | 2000b/d/f, THP-0010, THP-  | olfactory          |
|                   |                                                               | 0012, THP-0017)            | observation        |
| Relative density: | purity 97.6%                                                  | (Kramer and Telleen, 2000, | CIPAC MT 3         |
|                   | $D_4^{20} = 1.59$                                             | THP-0014)                  | (pycnometer        |
|                   | (kerosene was used as immersion solvent)                      |                            | method)            |
| Melting range:    | no data submitted                                             | —                          | -                  |
| Stability         | study 1, purity 97.6%                                         | (Kramer and Telleen, 2000, | Visual assessment  |
|                   | Test substance is stable for 14 days at $54 \pm$              | THP-0014)                  | + weighing +       |
|                   | $2 \degree C$ and at $25 \pm 2 \degree C$ .                   |                            | determination a.s. |
|                   | Test substance is stable for 14 days at $25 \pm$              |                            | content (HPLC-     |
|                   | 2 °C when placed in contact with zinc, iron and               |                            | UV)                |
|                   | aluminum metals or ions.                                      |                            |                    |
|                   | Test substance is stable for 24 hrs at $25 \pm 2 \ ^{\circ}C$ |                            |                    |
|                   | when exposed to light from a xenon arc lamp                   |                            |                    |

# FORMULATIONS

Clothianidin has been evaluated by JMPS in 2010. FAO specifications are available for clothianidin technical material, aqueous suspension concentrate, water soluble granules and granules.

Clothianidin is available in many different types of formulations: water dispersible granules (WG 500 g/kg, also referred to as WDG), water soluble granules (SG 160 g/L, also referred to as WSG), water soluble powders (SP 160 g/L), suspension concentrates (SC 80, 200, 255 or 600 g/L, also referred to as flowable concentrate FL), granules (GR 5 g/kg), dustable powder (DP 1.5 or

5 g/kg) and flowable concentrate for seed treatment (FS 10, 100, 120, 180, 250, 285.7, 333.3, 400, 600 g/kg or 453 g/kg in combination with beta-cyfluthrin, also referred to as ST).

| Abbreviation | Chemical structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trivial and systematic chemical names<br>Other abbreviations used in study reports                                                                            | Found as or in                                                                                                     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| TI-435       | CI S H H H CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | clothianidin (parent compound)<br>Syngenta code CGA 322704 (thiametoxam<br>evaluation)                                                                        | rat, goat, hen;<br>maize, sugarbeet,<br>apple, tomato;<br>soil, water,<br>rotational crops                         |
| TZNG         | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ | thiazolylnitroguanidine;<br>desmethyl-TI-435;<br>N-(2-Chlorothiazol-5-ylmethyl)-N'-<br>nitroguanidine<br>Syngenta code CGA 265307 (thiametoxam<br>evaluation) | rat, goat, hen;<br>maize, sugarbeet,<br>apple, tomato<br>soil;<br>rotational crops                                 |
| TZMU         | Cl S CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thiazolylmethylurea;<br>N-(2-Chlorothiazol-5-ylmethyl)-N'-<br>methylurea<br>Syngenta code CGA 353968 (thiametoxam<br>evaluation)                              | rat, goat;<br>maize, sugarbeet;<br>apple;<br>soil, water;<br>rotational crops<br>not found in<br>tomato nor in hen |
| TZG          | CI S NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thiazolylguanidine<br>2-Chlorothiazol-5-ylmethyl guanidine<br>Syngenta code NOA 421276 (thiametoxam<br>evaluation)                                            | rat, goat, hen;<br>not found in<br>maize                                                                           |
| TZU          | CI S H NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | thiazolylurea;<br>TI-435 urea<br>2-Chlorothiazol-5-ylmethyl urea<br>Syngenta code Metab 4U, Metab 8 U or<br>Metab 13U (thiametoxam evaluation)                | rat, goat, hen;<br>maize, sugarbeet;<br>apple;<br>rotational crops<br>not found in<br>tomato, soil                 |
| TMG          | CI S H H CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thiazolylmethylguanidine<br>N-(2-Chlorothiazol-5-ylmethyl)-N'-<br>methylguanidine<br>Syngenta code NOA 421275 (thiametoxam<br>evaluation)                     | rat, goat, hen;<br>maize; sugarbeet,<br>apple;<br>rotational crops<br>not found in<br>tomato, soil,<br>water       |
| TMHG         | CI S M CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N-2-Chlorothiazol-5-ylmethyl-N'-hydroxy-<br>N''-methyl-guanidine                                                                                              | goat;<br>not found in<br>maize nor in hen                                                                          |
| TMT          | CI S N N CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-(2-Chlorothiazol-5-yl)methylamino-5-<br>methyl-1H-1,2,4-triazole                                                                                            | hen                                                                                                                |
| THMN         | CI S OH H<br>N CH <sub>3</sub><br>NNO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N-hydroxy parent compound;<br>N-2-Chlorothiazol-5-ylmethyl-N-hydroxy-<br>N'-methyl-N''-nitroguanidine                                                         | rat,<br>apple                                                                                                      |

Table 1 List of reference compounds used in various study reports

| Abbreviation           | Chemical structure                                                                         | Trivial and systematic chemical names<br>Other abbreviations used in study reports                                                                                            | Found as or in                                                                                                |
|------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| THMN-glc               | HO<br>HO<br>OH<br>Cl<br>S<br>N<br>N<br>N<br>CH <sub>3</sub>                                | О-β-D-Glucopyranosyl-THMN                                                                                                                                                     | apple                                                                                                         |
| MG                     | H <sub>2</sub> N H<br>NH<br>NH                                                             | Methylguanidine<br>Syngenta code CGA 382191 (thiametoxam<br>evaluation)                                                                                                       | rat, goat;<br>maize, sugarbeet;<br>apple;<br>water;<br>rotational crops<br>not found in<br>tomato, nor in hen |
| MNG                    | $ \begin{array}{c} H_2N \\ H_2N \\ N \\ NO_2 \\ Or \\ NH \\ NO_2 \\ NH \\ NH \end{array} $ | methylnitroguanidine;<br>N-Methyl-N'-nitroguanidine<br>Syngenta code NOA 405217 (thiametoxam<br>evaluation)                                                                   | rat, goat, hen;<br>maize, sugarbeet;<br>apple, tomato;<br>soil;<br>rotational crops                           |
| NTG<br>or NG           | H <sub>2</sub> N NH <sub>2</sub><br>N NO <sub>2</sub>                                      | Nitroguanidine<br>Syngenta code NOA 424255 (thiametoxam<br>evaluation)                                                                                                        | rat, goat, hen;<br>maize, sugarbeet;<br>apple;<br>soil;<br>rotational crops<br>not found in<br>tomato         |
| СТСА                   | CI SCO <sub>2</sub> H                                                                      | chlorothiazolecarboxylic acid<br>2-Chlorothiazole-5-carboxylic acid<br>Syngenta code CGA 359683 (thiametoxam<br>evaluation)                                                   | rat, maize                                                                                                    |
| ATMG                   | CI S NH NH-CH <sub>3</sub>                                                                 | N'-[Amino(2-chlorothiazol-5-ylmethyl]-<br>N''-methylguanidine                                                                                                                 | not found in hen                                                                                              |
| ATMG-Pyr<br>or<br>PTMG | CI S H CH3<br>NH<br>NH<br>NH<br>O<br>CH3<br>CH3<br>O<br>CH3<br>O<br>CH3                    | Pyruvate conjugate of ATMG;<br>N'-[(2-Chlorothiazol-5-<br>ylmethylamino)(methylamino) methylene]-<br>2-oxopropano hydrazide<br>Syngenta code MU12 (thiametoxam<br>evaluation) | goat,<br>not found in hen                                                                                     |
| ATG                    | CI S NH NH2<br>N-NH2                                                                       | N'-[Amino(2-chlorothiazol-5-<br>ylmethyl)]guanidine                                                                                                                           | not found in hen                                                                                              |
| ATG-Ac                 | CI S H NH2<br>NH2<br>N CH3                                                                 | Acetate conjugate of ATG;<br>N'-[Amino(2-chlorothiazol-5-<br>ylmethylamino)methylene] acetohydrazide<br>Syngenta code MU3 (thiametoxam<br>evaluation)                         | hen;<br>not found in goat                                                                                     |

| Abbreviation | Chemical structure                                   | Trivial and systematic chemical names<br>Other abbreviations used in study reports                                         | Found as or in                         |
|--------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| ATG-Pyr      | CI S H NH2<br>N NH2<br>N NH2<br>CH3                  | Pyruvate conjugate of ATG;<br>N'-[Amino(2-chlorothiazol-5-<br>ylmethylamino)methylene]-2-<br>oxopropanohydrazide           | hen                                    |
| АТМТ         | Cl S CH <sub>3</sub>                                 | 3-Amino-4-(2-chlorothiazol-5-yl)methyl-5-<br>methyl-4H-1,2,4-triazole                                                      | hen;<br>not found in goat              |
| ACT          | CI S NH2                                             | 2-Chlorothiazol-5-ylmethylamine;<br>5-Aminomethyl-2-chlorothiazole<br>Syngenta code CGA 309335 (thiametoxam<br>evaluation) | rat,<br>water<br>not found in<br>maize |
| CTNU         |                                                      | N-(2-chlorothiazol-5-ylmethyl)-N'-<br>nitrourea<br>Syngenta code NOA 404617 (thiametoxam<br>evaluation)                    | water<br>not found in<br>maize         |
| HMIO         |                                                      | 4-hydroxy-2-methylamino-2-imidazolin-5-<br>one                                                                             | water                                  |
| MIO          | CH <sub>3</sub><br>HN H<br>N O                       | 2-methylamino-2-imidazolin-5-one                                                                                           | not found in water                     |
| FA           | O<br>H <sub>2</sub> N                                | formamide                                                                                                                  | water                                  |
| MAI          |                                                      | 3-methylamino-1H-imidazo[1,5-<br>c]imidazole                                                                               | not found in water                     |
| MIT          | CH <sub>3</sub><br>HN S N<br>N O                     | 7-methylamino-4H-imidazo[5,1-<br>b][1,2,5]thiadiazin-4-one                                                                 | water                                  |
| MU           | H <sub>2</sub> N NH-CH <sub>3</sub>                  | methylurea<br>(same name in thiametoxam evaluation)                                                                        | water                                  |
| MTCA         | H <sub>3</sub> C N O<br>N OH                         | 2-methylthiothiazole-5-carboxylic acid<br>Syngenta code NOA 402988<br>(thiamethoxam evaluation)                            | rat,<br>not found in<br>maize          |
| TZA          |                                                      | 2-chlorothiazole-5-carbaldehyde                                                                                            | not found in maize                     |
| ТΖОН         | CI S OH                                              | 2-chlorothiazole-5-ylmethanol                                                                                              | not found in<br>maize                  |
| EA           | HO-CH <sub>2</sub> -CH <sub>2</sub> -NH <sub>2</sub> | ethanolamine                                                                                                               | not found in goat<br>nor hen           |

| Abbreviation | Chemical structure               | Trivial and systematic chemical names<br>Other abbreviations used in study reports | Found as or in |
|--------------|----------------------------------|------------------------------------------------------------------------------------|----------------|
| -            | H <sub>2</sub> N NH <sub>2</sub> | urea                                                                               | goat, hen      |
| —            | CO <sub>2</sub>                  | carbon dioxide                                                                     | soil           |

#### METABOLISM AND ENVIRONMENTAL FATE

Metabolism studies in livestock, agricultural crops, soil and water were carried out with (nitroimino-<sup>14</sup>C)clothianidin or (thiazolyl-2-<sup>14</sup>C)clothianidin (see Figure 1).

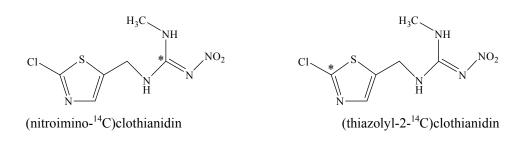



Figure 1 Label positions of <sup>14</sup>C clothianidin, marked as \*, used in metabolism studies

# Animal metabolism

The Meeting received information on the fate of orally dosed clothianidin in the lactating goat and in laying hens. Experiments were carried out with clothianidin <sup>14</sup>C labelled at the nitroimino group (see Figure 1). Metabolism in laboratory animals (rats) was summarised and evaluated by the WHO panel of the JMPR in 2010.

#### Lactating goat

The metabolism of [Nitroimino-<sup>14</sup>C]-clothianidin) was investigated (Spiegel and Weber, 2000, THM-0031) in a single lactating <u>goat</u> (breed "Bunte Deutsche Edelziege", 30 months old, bodyweight 35 kg and milk yield 1.4 kg/day). The goat received an actual dose of 9.8 mg/kg bw/d (equivalent to 201 mg/kg in dry feed, based on experimentally determined feed intake of 5% of bodyweight) for 3 consecutive days, once a day. These doses were administered at 24 hr intervals by oral intubation as pure active ingredient (chemical purity > 99% and radiochemical purity > 98%) in 0.5% aqueous traganth suspension. Urine and faeces were collected daily. Milk samples were collected twice in the morning and afternoon. The animal was sacrificed 5 hrs after the last administration and samples of muscle (round, flank and loin), liver, kidney and fat (perirenal, omental and subcutaneous) were taken. Radioactivity in urine and milk was measured directly by LSC. Radioactivity in tissues was determined by radio combustion analysis and by LSC. Samples of milk, urine and homogenised tissues were stored at -18 °C for up to 6 months. Faeces fractions were freeze-dried and stored at room temperature.

Only 70.4% of the radioactivity administered was recovered from the goat. Most of the radioactivity was excreted via urine (48.8% TAR) and faeces (13.5% TAR). A low amount (1.5% TAR) was eliminated with milk, while 6.6% TAR remained in the tissues. Radioactivity remaining in the gastro-intestinal tract or radioactivity eliminated via air was not measured.

At sacrifice, the highest residue concentration was measured in the liver (16 mg/kg eq, 1.3% TAR), followed by that for the kidney (9.3 mg/kg eq, 0.093% TAR), composite muscle (round, flank and loin: 4.3 mg/kg eq, 4.3% TAR) and composite fat (subcutaneous, omental and renal: 2.1 mg/kg

eq, 0.88% TAR). Maximum residue levels in milk were reached within 24 hrs: 6.0–6.6 mg/kg eq was found at 8 hrs after the  $1^{st}$ ,  $2^{nd}$  and  $3^{rd}$  doses, while this level had decreased to 0.92–0.97 mg/kg eq at 24 hrs after the  $1^{st}$  and  $2^{nd}$  doses. Milk samples from all timepoints were combined and used for metabolite characterisation. Residue levels in composite milk samples were 3.1 mg/kg eq (1.5% TAR).

ACN/water (8:2, v/v), MeOH/water (v/v, 7:3), MeOH and/or microwave were used to extract the radioactivity present in the samples. Extracts were partitioned into an organic phase (n-heptane, n-hexane, DCM) and an aqueous phase. Radioactivity in extracts of milk and tissues was measured by LSC. Total extractability ranged from 89% TRR for liver to 109.4% TRR for kidney. Upon partitioning 0.3%–24.4% TRR was organosoluble, while most of the radioactivity remained in the aqueous phase (55.0%–105.4% TRR).

Extracts were purified and fractionated by HPLC analysis and by SPE. Metabolites were characterised by high performance TLC by co-chromatography with reference compounds for parent, ATMT, ATG-Ac, MG, MNG, NTG, ATMG-Pyr, TMG, TMHG, TZG, TZMU, TZNG, TZU, Urea and EA. Reference compounds ATMT, ATG-AC, ATMG-Pyr and TZG were isolated from metabolism studies and the identity was confirmed by MS. The elucidation of the structure of the metabolites was performed by NMR and MS.

Table 2 gives an overview of the results of the identification part of the study. Globally, the major compound recovered in milk, muscle and fat was the parent compound with respectively 51.2%, 25.0% and 36.5% of TRR. Other metabolites such as TZNG, TZMU, and TZU were recovered in non-negligible amounts with up to 14.5% TRR. In liver and kidney, the parent compound was not found. The major metabolite in liver was TMG which was identified as a single component and as a non polar conjugate (respectively, 8.5% and 14.8% TRR). The relevant metabolites in kidney were found to be TZU (14.7% TRR), TZG (12.1% TRR), TZMU (11.3% TRR) and ATMG-Pyr (10.4% TRR). The part of the radioactivity allocated to identified compounds varied from 51% TRR in liver, 67% TRR in kidney, 81% TRR in muscle, 89% TRR in fat and 94% of the TRR (milk). The non-identified part of the radioactivity consisted mainly of polar and unextractable compounds.

Metabolite characterisation for tissues and milk was performed within a time period of 6 months. Comparative HPLC investigations showed that the aqueous liver extract was stable for another 6 months.

|                             |          | Milk   | Liver | Kidney | Muscle | Fat    |
|-----------------------------|----------|--------|-------|--------|--------|--------|
| TRR <sup>a</sup>            | mg/kg eq | 3.2    | 16    | 9.3    | 4.3    | 2.1    |
| parent                      | %TRR     | 51.23  | -     | -      | 24.95  | 36.56  |
| TZNG                        | %TRR     | 14.50  | 4.68  | 4.93   | 5.87   | 5.85   |
| TZMU                        | %TRR     | 6.47   | 4.09  | 11.27  | 9.60   | 12.59  |
| TZU                         | %TRR     | 10.57  | 7.48  | 14.66  | 12.99  | 12.21  |
| TMG                         | %TRR     | 1.27   | 8.53  | 9.54   | 4.31   | 4.53   |
| TMG conjugates <sup>b</sup> | %TRR     | -      | 14.77 | -      | -      | -      |
| TMHG                        | %TRR     | 1.55   | -     | -      | -      | -      |
| MG                          | %TRR     | -      | 1.68  | -      | 0.75   | -      |
| MNG                         | %TRR     | 7.50   | -     | 1.21   | 3.47   | 3.28   |
| TZG                         | %TRR     | -      | 6.87  | 12.10  | 8.97   | 6.45   |
| NTG                         | %TRR     | 0.65   | 0.77  | 0.51   | 0.61   | 0.38   |
| ATMG-Pyr <sup>c</sup>       | %TRR     | -      | 2.54  | 10.40  | 9.20   | 6.76   |
| Urea                        | %TRR     | 0.52   | 1.33  | 2.06   | 0.95   | 0.71   |
| fractions not analysed      | %TRR     | 0.33   | 5.59  | 4.04   | 0.99   | 4.95   |
| characterised unknowns      | %TRR     | 6.98   | 27.54 | 38.25  | 19.58  | 9.12   |
| remaining solids            | %TRR     | 2.15   | 10.96 | 4.59   | 2.73   | 13.73  |
| Total                       | %TRR     | 103.61 | 96.82 | 113.56 | 104.97 | 117.11 |

Table 2 Nature of residues in edible tissues and milk of a lactating goat dosed with <sup>14</sup>C clothianidin

- = not detected

<sup>a</sup> TRR level may be slightly different from TRR levels mentioned in the text, since this is another sample

<sup>b</sup> no further investigation on the type of conjugate was attempted.

<sup>c</sup> conjugated form of the intermediate ATMG (not recovered) with pyruvic acid

# Laying hens

The metabolism of [Nitroimino-<sup>14</sup>C]-clothianidin) was investigated (Weber and Weber, 2000, THM-0033) in six <u>laying hens</u> (White Leghorns, 27 weeks of age and average bodyweight 1.53 kg) The laying rate was 348 eggs/hen/year, based on this 3 day experiment. Laying hens received an actual dose of 10.4 mg/kg bw/day (equivalent to 134 ppm in dry feed) once a day, for 3 consecutive days. These doses were administered at 24 hr intervals by oral gavage as pure active ingredient (chemical purity > 99% and radiochemical purity > 99%) in 0.5% aqueous traganth suspension. Eggs were collected twice daily. The animals were sacrificed approximately 5 hrs after the last dose and samples of skin without attached fat, leg and breast muscles, subcutaneous fat, liver and kidney were taken. For sampling, egg white and yolk were thoroughly mixed. Radioactivity in tissues and eggs was determined by combustion followed by LSC. Samples of eggs and homogenised tissues were stored at -18 °C for up to 3 months. Excreta were freeze-dried and stored at room temperature.

Clothianidin was rapidly eliminated in hens. Within 5 hrs after the last dose, 98% of the total administered radioactivity was recovered. The majority of the radioactivity (up to 95% TAR) was recovered in the excreta with 0.15% TAR in the eggs and 3.1% TAR in the edible tissues.

At sacrifice, the highest residue concentration was measured in kidney (7.9 mg/kg eq), followed by that for liver (average 5.1 mg/kg eq), breast muscle (1.7 mg/kg eq), leg muscle (1.4 mg/kg eq), skin without attached fat (1.1 mg/kg eq) and subcutaneous fat (0.19 mg/kg eq). Total radioactive residue levels in eggs increased from 0.38-0.75-0.94 mg/kg eq at 24–8–53 hrs after the 1<sup>st</sup> dose, and a plateau was not reached at sacrifice. Residue levels in composite egg samples were 0.58 mg/kg eq.

Eggs, liver, composite muscle and subcutaneous fat were extracted with ACN and subsequently several times with ACN/water (8:2 v/v), followed by liquid/liquid partitioning against n-hexane. For liver and muscle, the remaining solids were further extracted using microwave extraction with MeOH/water (v/v, 7:3). Total radioactivity in liquid and solid extracts of tissues was measured by combustion followed by LSC. Total extractability of residues with combined ACN and MeOH exceeded 95% in all edible tissues and eggs. Upon partitioning 0.8%–7.2% TRR was organosoluble, while most of the radioactivity remained in the aqueous phase (> 93% TRR).

Fractionation of the metabolites' extracts was performed using HPLC methods and by SPE. Identification of the metabolites was carried out by HPLC and reversed phase TLC analysis by cochromatography with reference compounds parent, EA, ATG, ATG-Ac, ATG-Pyr, ATMG, ATMG-Pyr, ATMT, MG, MNG, NTG, TMG, TMHG, TMT, TZG, TZMU, TZNG, TZU and urea. The elucidation of the structure of the metabolites was performed by MS and high resolution MS and also by NMR. The metabolites in fat were also identified by chromatographic comparison of extracts with the isolated metabolites recovered from muscle.

The presence of numerous metabolites revealed an extensive metabolisation of the parent compound. The major part of the extractable residues could be identified (> 65% of TRR). Clothianidin was found in all matrices but at a rather low level (up to 5.3% of TRR in liver, muscle and fat) while in eggs, it accounted for 21.2% TRR. The metabolite TZNG represented the major metabolite in eggs and liver (87.5% TRR and 46.0% TRR, respectively) and one of the major compounds in fat (23.7% TRR). In muscle and fat, the major part of the radioactivity was allocated to the conjugate ATG-acetate with up to 35% TRR.

The metabolic profile of eggs, liver, muscle and fat was measured within 3 months after sacrifice of laying hens. Storage stability data for eggs, liver and muscle extracts over a year showed no qualitative changes except in the case of the fat extract for which the metabolite ATG-Pyr was not recovered in the one year stored extracts.

|                                |          | Eggs  | Liver | Muscle             | Fat                |
|--------------------------------|----------|-------|-------|--------------------|--------------------|
| TRR by combustion <sup>a</sup> | mg/kg eq | 0.58  | 4.8   | 1.6                | 0.15               |
| TRR sum of extracts/solids     | mg/kg eq | 0.67  | 4.4   | 1.5                | 0.14               |
| parent                         | %TRR     | 21.21 | 3.74  | 3.10               | 5.30               |
| TZNG                           | %TRR     | 87.52 | 45.97 | 7.91               | 23.71              |
| TZU                            | %TRR     | 1.13  | 2.00  | 2.58               | -                  |
| TZG                            | %TRR     | -     | 22.26 | 5.78               | -                  |
| TMG                            | %TRR     | -     | 1.42  | 0.81               | -                  |
| ATG-acetate <sup>b</sup>       | %TRR     | -     | -     | 35.12              | 31.32              |
| ATG-pyruvate <sup>b</sup>      | %TRR     | -     | -     | -                  | 7.13               |
| ATMT                           | %TRR     | -     | -     | 2.98               | -                  |
| TMT                            | %TRR     | -     | -     | 2.35               | -                  |
| MNG <sup>c</sup>               | %TRR     | 1.31  | 0.55  | 0.90               | -                  |
| NTG <sup>c</sup>               | %TRR     | 3.78  | 1.61  | 3.09               | -                  |
| urea                           | %TRR     | 0.11  | 0.18  | 0.39               | -                  |
| unidentified metabolites       | %TRR     | 0.66  | 13.98 | 31.49 <sup>d</sup> | 25.56 <sup>e</sup> |
| remaining solids               | %TRR     | 1.00  | 11.40 | 3.10               | 9.70               |
| Total                          | %TRR     | 116.7 | 103.1 | 99.60              | 102.72             |

Table 3 Nature of residues in edible tissues and eggs of laying hens dosed with <sup>14</sup>C clothianidin

- = not detected

<sup>a</sup> TRR values may differ from TRR values in the text, since a different sample was used for metabolite profiling

<sup>b</sup> Acetate and pyruvate conjugates of the metabolite ATG which was considered as a putative intermediate. ATG-Pyr was also identified in muscle extract but not assigned unambiguously to peaks in profile and not quantified. ATG-Ac was isolated from the muscle extract and identified by MS. During the procedure, decomposition of the isolated and dissolved ATG-Ac was observed. The 2 products formed by decomposition were identified as the metabolites ATMT and TMT and resulted from ring closure of ATG-Ac.

<sup>c</sup> Metabolites characterised only in the polar fraction by TLC in eggs and muscle and identified by HPLC/MS/Ms in liver.

<sup>d</sup> Consists of at least 5 fractions of 4.66%, 5.68%, 2.20%, 17.22% and 1.73% TRR

<sup>e</sup> Consists of at least 7 fractions of 6.96%, 4.77%, 5.99%, 3.45%, 1.66%, 1.49% and 1.25% TRR.

#### Proposed metabolic pathway of clothianidin in livestock

The proposed metabolic pathway of clothianidin in goat and laying hens is shown in Figure 2.

The biotransformation of clothianidin in livestock proceeds via:

- denitrification (reduction) of the parent compound resulting in the formation of TMG. TMG was further metabolised by oxidative demethylation of TMG yielding TZG; by C-N bond cleavage between the thiazolyl moiety and guanidine moiety resulting in the polar metabolite MG, which was further metabolised to urea and by formation of TMHG by oxidation of the imino part of TMG.
- hydrolysis of the parent compound resulting in the formation of TZMU. TZMU was further metabolised by oxidative demethylation to form TZU.
- oxidative demethylation of the parent compound resulting in the formation of TZNG. TZNG was further metabolised by hydrolysis of TZNG resulting in the formation of TZU; C-N bond cleavage between the thiazolylmethyl and the guanidine moieties resulting in the polar metabolite NTG; or denitrification (reduction) of TZNG resulting in the formation of TZG.
- C-N bond cleavage between the thiazolylmethyl and the guanidine moieties resulting in the polar metabolite MNG. MNG was further transformed to NTG, MG, and urea.
- denitrification (reduction) of the parent compound followed by acetylation with pyruvic acid resulting in the formation of ATMG-Pyr.

• reductive transformation of the nitroimino moiety to the putative intermediate ATG and further conjugation by acetate or pyruvate to form ATG-Ac or ATG-Pyr. ATMT and TMT are secondary metabolites formed by ring closure of ATG-Ac.

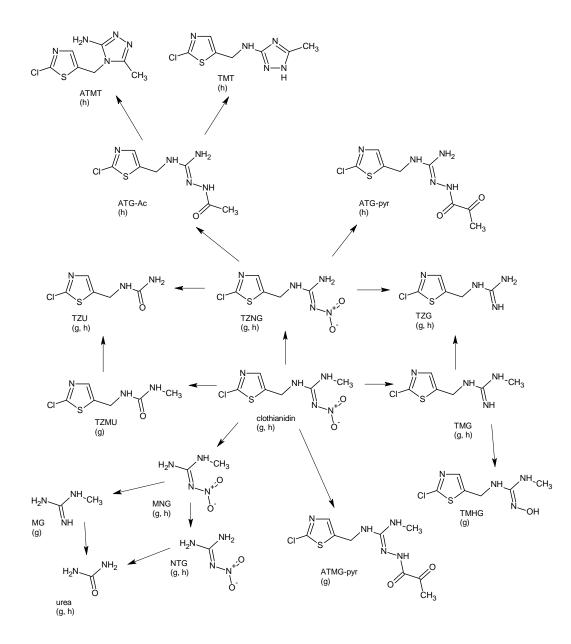



Figure 2 Proposed metabolic pathway of clothianidin in goat and laying hens

Abbreviations for TZU, TZNG, TZG, TZMU, TMG, MG, MNG, TMHG, NTG, ATG-Ac, ATG-pyr, ATMT and TMT are explained in Table 1; h = hen, g = goat.

## Plant metabolism

The Meeting received information on the fate of clothianidin after seed treatment of sugarbeets or maize, after foliar spray treatment of apple trees or tomatoes or after granular soil treatment of tomatoes. Most of the studies were carried out with (nitroimino-<sup>14</sup>C)clothianidin, while one study with maize was performed with (thiazolyl-2-<sup>14</sup>C)clothianidin (see Figure 1).

# Seed treatment of sugarbeets

The metabolism of clothianidin, formulated as WS 700 g ai/kg, was investigated in <u>sugarbeets</u> (Langford-Pollard, 2000, THM-0027) after seed treatment with [nitroimino-<sup>14</sup>C]-clothianidin. The test substance was applied to sugar beet seeds (variety Madison) equivalent to a rate of 190 g ai/ha (mg ai/seed or kg ai/t seeds not stated). The treated seeds were sown in plastic containers filled with soil (12 June 1997, 30 seeds/container) and plants were grown in an outdoor environment (Huntingdon, Cambridgeshire, UK). Soil type was USDA sandy loam (75% sand, 11% silt, 13% clay, CEC 10.2 meq/100 g, pH 7.8, 0.8% organic carbon and 1.4% organic matter). Treated plants were sampled at 7 and 14 days after reaching the 6–8 leaf growth stage (respectively at DAT 48 and 55, 6 plants), and at harvest (DAT = 144, 12 plants). Sample weights were not stated. The plants were separated into roots and leaves. The roots were washed with water to remove soil. Samples were stored at –15 °C until analysis for up to 19 months.

Radioactivity in plant samples was quantified by combustion followed by LSC. Residues were present in all samples of sugar beet leaves and roots at a rather high level (Table 4). At harvest, the total amount of radioactive residues in sugar beet root and leaves accounted for 0.034 mg/kg eq and 0.89 mg/kg eq respectively.

The different plant parts (root and leaves) were extracted with ACN and subsequently with ACN/water (1:1, v/v). Remaining solids were submitted first to acidic and basic ACN extraction followed by a final basic reflux extraction step (0.1 M NaOH, 2 hrs). The level of radioactivity in the different liquid and solid fractions was determined by radio combustion analysis and liquid scintillation counting (LSC).

The extractability of the residues with ACN and ACN/water decreased from 91%–93% TRR at DAT 48, 81%–89% TRR at DAT 55 to 65%–78% TRR at DAT 144 for roots and leaves, respectively. The subsequently performed acid/base extraction and reflux released an additional 7.3%–6.1% at DAT 48, 12.4%–5.3% TRR at DAT 55 and 21.9%–14.8% TRR for roots and leaves, respectively. Combined extractions with polar solvents, acid/base hydrolysis and reflux extraction phases enabled the release of most of the radioactivity: 98%–99% TRR at DAT 48, 94% TRR at DAT 55 and 87%–93% TRR at DAT 144.

Identification of the nature of the radioactive residues was carried out by co-chromatography in normal and reversed phase TLC systems with reference compounds parent, MG, NTG, MNG, TMG, TZNG, TZMU, and TZU. In total, 46% to 75% TRR could be identified respectively in sugar beet roots and leaves at harvest (Table 4). Sugar beet root extracts contained predominantly unchanged parent (25% TRR) whereas clothianidin was extensively metabolised in the leaves with a predominant amount of TMG and MG metabolites (around 28% TRR). Sugar beet root and leaves extracts qualitatively showed similar metabolite patterns. Only the ratio between the parent compound and the metabolites was different with higher levels of metabolites in the case of the leaves.

It was shown that there was no marked change in the nature and level of radioactive residues in roots and leaves during sample frozen storage respectively over a time period of 17 and 19 months after harvest.

|                                             |          | Roots<br>DAT 48 | Leaves<br>DAT 48 | Roots<br>DAT 55 | Leaves<br>DAT 55 | Roots<br>DAT 144 | Leaves<br>DAT 144 |
|---------------------------------------------|----------|-----------------|------------------|-----------------|------------------|------------------|-------------------|
| TRR mg/kg eq                                | mg/kg eq | 0.86            | 1.8              | 0.20            | 0.52             | 0.034            | 0.89              |
| parent                                      | %TRR     | 50.0            | 49.3             | 67.9            | 60.5             | 24.4             | 4.3               |
| TZNG                                        | %TRR     | 4.9             | 5.6              | 9.1             | 10.3             | 9.8              | 3.3               |
| TZMU <sup>a</sup>                           | %TRR     | 1.4             | 3.6              | 1.3             | 2.9              | 1.8              | 4.3               |
| MNG <sup>a</sup>                            | %TRR     | 3.4             | 4.3              | 1.4             | 4.5              | 0.7              | 4.1               |
| NTG                                         | %TRR     | 0.3             | 1.5              | -               | 1.4              | -                | 1.3               |
| TZU                                         | %TRR     | -               | 1.7              | -               | 1.4              | -                | 1.7               |
| TMG                                         | %TRR     | 5.9             | 9.7              | 1.0             | 6.0              | 3.1              | 27.0              |
| MG                                          | %TRR     | 10.3            | 6.5              | 4.7             | 3.2              | 6.2              | 28.6              |
| polar unidentified metabolites <sup>b</sup> | %TRR     | 18.9            | 15.6             | 2.5             | 2.2              | 9.9              | 14.4              |

Table 4 Nature of residues in sugarbeet after seed treatment with <sup>14</sup>C clothianidin

|                                             |          | Roots<br>DAT 48 | Leaves<br>DAT 48 | Roots<br>DAT 55 | Leaves<br>DAT 55 | Roots<br>DAT 144 | Leaves<br>DAT 144 |
|---------------------------------------------|----------|-----------------|------------------|-----------------|------------------|------------------|-------------------|
| TRR mg/kg eq                                | mg/kg eq | 0.86            | 1.8              | 0.20            | 0.52             | 0.034            | 0.89              |
| other unidentified metabolites <sup>c</sup> | %TRR     | 3.5             | 1.7              | 2.5             | 1.8              | 9.0              | 4.2               |
| acid/base extract or base reflux            | % TRR    | -               | -                | 3.3             | -                | 21.9             |                   |
| remaining solids                            | %TRR     | 1.6             | 1.1              | 6.2             | 5.6              | 13.1             | 6.7               |
| Total                                       | %TRR     | 100.2           | 100.6            | 99.9            | 99.8             | 99.9             | 99.9              |

- = Not detected.

<sup>a</sup> MNG and TZMU didn't resolve well, proportions were assigned using the positions of co-chromatographed reference standards.

 $^{\rm b}$  Polar fractions are resolved into 4 fractions (each <10% TRR) in TLC solvent systems but without any further identification.

<sup>c</sup> Minor discrete components

#### Seed treatment of maize

#### Study 1

The metabolism of clothianidin, formulated as WS 700 g ai/kg, was investigated in <u>maize</u> (Ishii, 2000a, THM-0023) after seed treatment with [nitroimino-<sup>14</sup>C]-clothianidin. The study was performed in Monheim, Germany in 1997. A total of 25 maize seeds (var Facet) were placed in a glass centrifuge and 26.38 mg of the test substances were applied on the seeds corresponding to a rate of application of 1.06 mg ai/seed. After the treatment, each seed was sown individually in a pot and grown under outdoor conditions but with rainfall protection (sowing date 16 May, equivalent rate as k g ai/ha not stated). The soil type was USDA loamy sand (77.3% sand, 17.5% silt, 5.2% clay, CEC 5 meq/100 g, pH (CaCl<sub>2</sub>) 5.9 and 1.38% organic carbon). Seven seed treated maize plants were sampled as forage at DAT 60 (sample weight not stated). At maturity (DAT 145), three plants were harvested and separated into stalks, leaves, cobs (without grains) and kernels (sample weight not stated). Stalks, leaves and cobs were combined as stover sample. Samples were stored at -20 °C for 20–225 days until analysis.

The different crop plant parts were extracted with solvents (ACN/water (1:1, v/v) and ACN) followed by DCM partitioning to yield organic, aqueous and non extractable phases. The aqueous fractions of stover and kernels were treated by acid hydrolysis (1 M HCl at 80 °C). Microwave extraction treatment with MeOH was performed on forage, stover, and kernels to release further radioactivity from the remaining solids. Radioactivity in extracts of the different solid and liquid crop fractions was measured by combustion followed by LSC.

The total radioactive residues in the different plant parts were determined by summation of the radioactivity measured in the extracts and solids remaining after extraction (LSC or combustion followed by LSC). The total amount of radioactive residues in forage, stover and kernels amounted to 0.130, 0.170 and 0.006 mg/kg eq respectively (Table 5).

The extractability of the residues with ACN and ACN/water was 89%, 73% and 66% TRR for forage, stover and kernels. After liquid-liquid partition, the ACN extractable radioactivity was distributed for the largest part in the aqueous phases (44%, 50% and 53% TRR for forage, stover and kernels, respectively). The subsequently performed extraction by microwave procedure released an additional 7.5%, 20% and 22% TRR from forage, stover and kernels. Combined extractions with polar solvents, acid hydrolysis with HCl and microwave extraction phases enabled the release of most of the radioactivity: 97%, 92% and 88% TRR for forage, stover and kernels.

Fractionation and characterisation of the metabolites were performed by normal and reversed phase TLC by cochromatography or by chromatographic comparison with reference compounds parent, MG, MNG, NTG, TMG, TZMU, TZNG and TZU. No investigation on the identification of the structure of the metabolites by MS was attempted. A total of 70%, 56% and 53% TRR could be identified for forage, stover and kernels (Table 5). The parent compound was the major compound recovered in forage, stover and kernels and accounted for 42.9%, 20.1% and 14.4% TRR respectively. The unidentified part of the radioactivity consisted mainly of polar and non extractable compounds.

Data on the identification and the quantification of the metabolites in the different fractions of forage, stover and kernels after storage stability showed that there was no marked change in the nature of the radioactive residues during sample storage (at most 225 days).

# Study 2

The metabolism of clothianidin, formulated as WS 700 g ai/kg, was investigated in <u>maize</u> (Ishii, 2000b, THM-0024) after seed treatment with [thiazolyl-2-<sup>14</sup>C]clothianidin. The study was performed in a greenhouse in Monheim, Germany in 1998. A total of eight maize seeds (var Facet) was placed in a glass centrifuge and 89.5 mg of the test substance were applied on the seeds corresponding to a rate of application of 2.52 mg ai/seed. After the treatment, each seed was sown individually in a pot and grown under greenhouse conditions (sowing date 23 September, equivalent rate as k g ai/ha not stated). The soil type was USDA loamy sand (77.3% sand, 17.5% silt, 5.2% clay, CEC 5 meq/100 g, pH (CaCl<sub>2</sub>) 5.9, 1.38% organic carbon). Two seed treated maize plants were sampled as forage at DAT 63 (sample weight not stated). At maturity (DAT 160), six plants were harvested and separated into stalks, leaves, cobs (without grains) and kernels (sample weight not stated). Stalks, leaves and cobs were combined as stover sample. Samples were stored at -20 °C until analysis (less than 6 months).

Forage, stover and kernels samples were extracted with solvents (ACN/water (1:1, v/v) and ACN) followed by DCM partitioning to give organic, aqueous and non extractable phases. Microwave extraction treatment with ACN was performed on forage, stover, and kernels to release further radioactivity from the remaining solids. Radioactivity in extracts of the different solid and liquid crop fractions was measured by combustion followed by LSC.

The total radioactive residues in the different plant parts were determined by summation of the radioactivity measured in the extracts and solids remaining after extraction (LSC or combustion LSC). The total amount of radioactive residues in forage, stover and kernels amounted to 0.89, 3.1 and 0.063 mg/kg eq respectively (Table 5).

The extractability of the residues with ACN and ACN/water was 89%, 75% and 55% TRR for forage, stover and kernels. After liquid-liquid partition, the ACN extractable radioactivity was predominantly found back in the DCM phase (66%, 49% and 41% TRR for forage, stover and kernels, respectively). The subsequently performed extraction by microwave procedure released an additional 4.5%, 17% and 40% TRR from forage, stover and kernels. Combined extractions with polar solvents and microwave extraction phases enabled the release of most of the radioactivity: 94%, 92% and 95% TRR for forage, stover and kernels.

Fractionation and characterisation of the metabolites were performed by 1D-normal and reversed phase TLC either by co-chromatography or by chromatographic comparison with reference compounds parent, CTCA, TMG, TZMU, TZNG, TZU, ACT, CTNU, MTCA, TMHG, TZA, TZG and TZOH. The elucidation of their structure by MS was not attempted. The part of the radioactivity allocated to identified compounds was 80%, 65% and 62% TRR for forage, stover and kernels (Table 5). The parent compound was the major compound recovered in forage, stover and kernels and accounted for 64.5%, 39.5% and 58.5% TRR respectively. The unidentified part of the radioactivity consisted mainly of polar and non extractable compounds.

As all practical work was conducted within 6 months after harvest of the samples, no storage stability study was conducted.

|              |          | [nitroimino-<br><sup>14</sup> C]-<br>clothianidin |                      |                       | [thiazolyl-<br>2- <sup>14</sup> C]-<br>clothianidin |                      |                       |
|--------------|----------|---------------------------------------------------|----------------------|-----------------------|-----------------------------------------------------|----------------------|-----------------------|
|              |          | Forage<br>DAT 60                                  | Stover<br>DAT<br>145 | Kernels<br>DAT<br>145 | Forage<br>DAT 63                                    | Stover<br>DAT<br>160 | Kernels<br>DAT<br>160 |
| TRR mg/kg eq | mg/kg eq | 0.130                                             | 0.170                | 0.006                 | 0.89                                                | 3.1                  | 0.063                 |
| parent       | %TRR     | 42.9                                              | 20.1                 | 14.4                  | 64.5                                                | 39.5                 | 58.5                  |
| TZNG         | %TRR     | 1.6                                               | 1.1                  | _                     | 3.0                                                 | 3.0                  | 0.7                   |

Table 5 Nature of residues in maize after seed treatment with <sup>14</sup>C clothianidin

|                                           |          | [nitroimino-<br><sup>14</sup> C]-<br>clothianidin |                   |                   | [thiazolyl-<br>2- <sup>14</sup> C]-<br>clothianidin |                   |                   |
|-------------------------------------------|----------|---------------------------------------------------|-------------------|-------------------|-----------------------------------------------------|-------------------|-------------------|
|                                           |          | Forage                                            | Stover            | Kernels           | Forage                                              | Stover            | Kernels           |
|                                           |          | DAT 60                                            | DAT               | DAT               | DAT 63                                              | DAT               | DAT               |
|                                           |          |                                                   | 145               | 145               |                                                     | 160               | 160               |
| TRR mg/kg eq                              | mg/kg eq | 0.130                                             | 0.170             | 0.006             | 0.89                                                | 3.1               | 0.063             |
| TZMU                                      | %TRR     | 5.8                                               | 7.6               | 4.1               | 4.4                                                 | 9.2               | 0.7               |
| MNG                                       | %TRR     | 3.1                                               | 4.2               | 5.7               | na                                                  | na                | na                |
| NTG                                       | %TRR     | 1.5                                               | 2.4               | _                 | na                                                  | na                | na                |
| TZU                                       | %TRR     | -                                                 | -                 | -                 | 0.9                                                 | 2.7               | -                 |
| TMG                                       | %TRR     | 7.8                                               | 6.2               | 6.8               | 6.0                                                 | 8.8               | 2.2               |
| MG                                        | %TRR     | 7.4                                               | 14.8              | 21.7              | na                                                  | na                | na                |
| CTCA                                      | %TRR     | na                                                | na                | na                | 0.8                                                 | 1.7               | -                 |
| unknown organo-solubles                   | %TRR     | 0.9                                               | 1.2               | -                 | 0.5                                                 | 1.5               | 0.5               |
| unknown 1 aqueous soluble <sup>a</sup>    | %TRR     | 1.5                                               | 3.0               | -                 | -                                                   | -                 | -                 |
| unknown 2 aqueous soluble <sup>a</sup>    | %TRR     | 3.3                                               | 4.4               | -                 | 4.4                                                 | 3.1               | -                 |
| other unknown aq solubles <sup>a</sup>    | %TRR     | 17.9 °                                            | 18.8 <sup>d</sup> | 26.9 <sup>e</sup> | 7.7 <sup>f</sup>                                    | 12.4 <sup>g</sup> | 7.6 <sup>i</sup>  |
| unknown 3-microwave extr                  | %TRR     | 1.5                                               | 6.2               | 3.1               | -                                                   | -                 | -                 |
| unknown 4-microwave extr <sup>b</sup>     | %TRR     | 1.5                                               | 2.4               | 5.4               | -                                                   | -                 | -                 |
| other unknown microwave extr <sup>a</sup> | %TRR     | -                                                 | -                 | -                 | 1.8                                                 | 9.9 <sup>h</sup>  | 24.6 <sup>j</sup> |
| remaining solids                          | %TRR     | 3.2                                               | 7.7               | 11.9              | 6.2                                                 | 8.5               | 5.1               |
| Total                                     | %TRR     | 99.9                                              | 100.1             | 100.0             | 100.2                                               | 100.3             | 99.9              |

- = not detected

na = not analysed (reference standard not available during identification, label may exclude existence)

<sup>a</sup> diffuse radioactivity present on TLC plates

<sup>b</sup> metabolites observed as low polar metabolite by TLC analysis

<sup>c</sup> diffuse radioactivity present on TLC plates consisting of at least 5 fractions of 1.4%, 1.0%, 1.8%, 5.2% and 8.5% TRR

<sup>d</sup> diffuse radioactivity present on TLC plates consisting of at least 4 fractions of 1.0%, 1.8%, 5.3% and 10.7% TRR (after acid hydrolysis this fraction was distributed between the aqueous phase (6.4% TRR) and organic phase (4.3% TRR)).

<sup>e</sup> diffuse radioactivity present on TLC plates, consisting of at least 2 fractions of 9.9% and 17.0% TRR (after acid hydrolysis this fraction was distributed between the aqueous phase (9.9% TRR) and organic phase (7.0% TRR)).

<sup>f</sup> diffuse radioactivity present on TLC plates, consisting of at least 5 fractions (0.8%, 1.4%, 1.4%, 1.0% and 3.1% TRR)

<sup>g</sup> diffuse radioactivity present on TLC plates, consisting of at least 6 fractions (1.8%, 0.8%, 1.8%, 0.6%, 1.7% and 5.7% TRR)

<sup>h</sup> diffuse radioactivity present on TLC plates, consisting of at least 12 fractions (each < 3% TRR)

<sup>i</sup> diffuse radioactivity present on TLC plates, consisting of at least 2 fractions (4.7% and 2.9% TRR)

<sup>j</sup> radioactivity consisting of at least 3 fractions (2.5% TRR and 3.7% TRR partitioned into ethylacetate phase after microwave extraction of solids; 18.4% TRR partitioned into the aqueous phase after acid microwave extraction of solids)

#### Foliar spray treatment of apple trees

#### Study 1

The metabolism of clothianidin, formulated as SC 200 g ai/L, was investigated in <u>apples</u> (Babczinski, 1999a, THM-0001) after treatment with [nitroimino-<sup>14</sup>C]-clothianidin. The study was conducted in Monheim, Germany in 1997 under outdoor conditions but with rainfall protection. An apple tree (James Grieve, 140 cm, 14 years old) was planted in a soil filled container. The apple tree was sprayed two times with the test substance at a rate of application of 0.150 kg ai/ha each with an interval of 85 days between the applications. The first application was performed at June-fall (when a large number of apples fall from the tree, 27 May), the second application was performed on 20 Aug. Apple fruits (25 units) were harvested at DAT 14 (3 Sept) followed by immediate surface washing. Surface washed samples were homogenised and stored for 9–67 days at -20 °C until extraction.

The apples were surface-washed with a MeOH solution. Surface washed apple samples were extracted successively with ACN/water (v/v, 1:1) and ACN. The extractable radioactivity was characterised by liquid-liquid partition with DCM, by SPE and by TLC and HPLC analysis. The metabolites present in the organic extract were fractionated as far as possible by HPLC and identified

by normal and reversed phase TLC and by HPLC by either co-chromatography or chromatographic comparison with reference compounds parent, TZNG, TZMU, TZU, TMG, MNG, NTG, MG and THMN. The structure of clothianidin was further elucidated by HPLC-MS-MS. The chemical structure of the metabolite THMN was completely assigned by MS.

The total radioactive residues in fruit were determined by summation of the radioactivity measured in the surface wash, extracts and solids remaining after extraction (LSC or combustion followed by LSC). Total radioactive residues in apple fruits were 0.076 mg/kg eq. Of the total radioactive residues, 33.2% TRR was removed from the fruits by surface washing whereas a further 63.3% TRR was extracted from fruit samples. A total of 80.1% TRR could be identified. Clothianidin was the major constituent of the radioactivity both in the surface-washed phase and in the solvent extract accounting for a total of 61.5% of the TRR (Table 6). The main metabolite was TZMU at 10.6% TRR.

All practical work was completed within 6 months after harvesting of the samples and therefore no storage stability investigation was conducted.

### Study 2

The study is identical to study 1, except that <u>apple leaves</u> were sampled (Babczinski, 1999b, THM-0002). At DAT 14, the leaves including stems (1.39 kg) were harvested and after immediate surface washing, the leaves (0.81 kg) were separated from their main stems (0.58 kg). Surface washed samples were homogenised and stored for 9–233 days at –20 °C until extraction.

Leaves were surface-washed with a MeOH solution. Surface washed leaves were extracted successively with ACN/water (v/v, 1:1) and ACN and the resulting aqueous phase was partitioned against DCM. The metabolites were identified by 1D-normal and reversed phase TLC and by HPLC analysis either by cochromatography or by chromatographic comparison with the reference standards parent, TZNG, TZMU, TZU, TMG, MNG, NTG, MG and THMN. The structure of clothianidin was further elucidated by HPLC-MS-MS. The chemical structure of the metabolite THMN was completely assigned by MS.

The total radioactive residues in the leaves were determined by summation of the radioactivity measured in the surface wash, extracts and solids remaining after extraction (LSC or combustion followed by LSC). Total radioactive residues in apple leaves were 6.45 mg/kg eq. Of the total radioactive residues, 70.1% was removed from the leaves by surface washing whereas a further 24.3% TRR was extracted from leaf samples. A total of 84% TRR could be identified. Clothianidin was the major constituent of the radioactivity accounting for a total of 54.5% TRR (Table 6). The two main metabolites TZMU and THMN-Glc represented each 7% TRR.

Storage stability data for the stored leaf extracts and the extracts of the leaf samples over a 7 month period showed neither qualitative nor quantitative changes regarding the rates of extraction and the recovered metabolites (clothianidin, TZMU, TZU, THMN-Glc, MNG, NTG and MG).

#### Foliar spray treatment of tomato plants

The metabolism of clothianidin, formulated as SC 200 g ai/L, was investigated in tomatoes (Ishii, 1998, THM-0026) after foliar spray treatment with [nitroimino-<sup>14</sup>C]-clothianidin. The study was carried out under greenhouse conditions in Monheim, Germany in 1997. Tomato plants were sown on 18 June, transplanted on 4 July and again transplanted on 23 July. Two tomato plants (one plant per pot, variety Bonset F1) were treated two times with a microsprayer at a rate of 0.158 kg ai/ha at 6 and 8 weeks after the last transplanting date (i.e. 14 day interval). Date of last treatment was 19 September 1997 (growth stage not stated, 93 day old plants). Tomato fruits were harvested at DAT = 3 (sample weight and growth stage not stated, 96 day old plants) followed by immediate surface washing. Surface washed samples were stored at -20 °C until analysis (less than 6 months).

The tomatoes were surface-washed with a MeOH solution and the washing solutions were combined and concentrated. Tomato samples were extracted three times successively with ACN/water (v/v, 1:1) and the extracts were combined and concentrated. The level of radioactivity in the extracts

and solids was measured by LSC and by combustion followed by LSC respectively. Identification of the metabolites was carried out by 1D-normal and reversed phase TLC analysis and by HPLC by cochromatography with the reference compound for parent, TZNG, TZMU and TZU.

The total radioactivity in tomatoes was determined by the sum of the radioactivity in surface wash solution, in the tomato extracts and in solids. Total radioactive residues in tomatoes were 0.57 mg/kg eq. The main part of the total radioactivity was removed by the surface wash solution (96.8% TRR). The major part of the extractable radioactivity was allocated to the parent compound with 96.6% TRR (Table 6).

Since all practical work was completed within 6 months after harvest of the samples, no storage stability study was conducted.

## Granular soil treatment of tomato plants

The metabolism of clothianidin, formulated as GR 5 g ai/kg, was investigated in tomatoes (Ishii, 2000c, THM-0025) after soil treatment with [(nitroimino-<sup>14</sup>C]-clothianidin. The study was conducted under greenhouse conditions in Monheim, Germany in 1997. The test substance was applied to two planting holes at a rate of 15 mg ai/hole (equivalent dose rate as k g ai/ha not stated) followed directly by a transplantation of one tomato plant (variety Bonset F1) in each hole. Tomato plants were sown on 11 September, transplanted on 26 September and transplanted again to the treated planting hole on 14 October (33 days old plants). The soil type was not stated. The tomato fruits from the two plants were harvested at DAT = 97 (sample weight and growth stage not stated, 130 day old plants). Samples were stored at -20 °C until analysis (less than 6 months).

Tomato samples were extracted successively with ACN/water (v/v, 1:1) and ACN. The extracts were combined and after concentration, the aqueous extracts were partitioned against nbutanol. The level of radioactivity in the liquid phases and solids was determined by LSC and by combustion followed by LSC. Identification of the metabolites in the organic phase was performed by normal and reversed phase TLC by co-chromatography with the reference compounds parent, TZNG, TZMU, TZU, TMG, MNG, NTG and MG.

The total radioactive residues in the fruits were determined by summation of the radioactivity measured in the extracts and solids remaining after extraction (LSC or combustion followed by LSC). Total radioactive residues in tomatoes were 0.014 mg/kg eq. The extractability of the residues with ACN and ACN/water was 98% TRR. After liquid-liquid partition, the ACN extractable radioactivity was predominantly found in the n-butanol phase (92% TRR). A total of 92.1% TRR was identified (Table 6). Unchanged parent compound was the predominant residue accounting for 66.1% of the TRR. Two other components were identified as TZNG (8.4% TRR) and MNG (17.7% TRR).

Since all practical work was completed within 6 months after harvest of the samples, no storage stability study was conducted.

Apple fruit Apple leaves Tomato fruit Tomato fruit DAT 14 DAT 14 DAT 3 **DAT 97** SC 200 SC 200 SC GR 5 foliar spray foliar spray foliar spray soil treatment 2× 0.15 kg ai/ha 2× 0.15 kg ai/ha 2× 0.158 kg ai/ha 15 mg ai/plant TRR mg/kg eq 0.076 6.45 0.57 0.014 mg/kg eq 54.5 parent %TRR 61.5 96.6 66.1 %TRR 6.2 TMG na %TRR 2.8 <sup>a</sup> 1.6 <sup>a</sup> TZNG 8.4 TZMU %TRR 10.6 7.2 THMN %TRR 1.5 <sup>a</sup> na na THMN-glc 3.7 <sup>a,b</sup> 7.1<sup>a,b</sup> %TRR na na %TRR 3.8 17.7 MNG \_ na %TRR \_ < 0.1 NTG na TZU %TRR \_ 1.0

Table 6 Nature of residues in tomatoes and apples after granular soil or foliar spray treatment with <sup>14</sup>C clothianidin

|                          |          | Apple fruit      | Apple leaves      | Tomato fruit      | Tomato fruit   |
|--------------------------|----------|------------------|-------------------|-------------------|----------------|
|                          |          | DAT 14           | DAT 14            | DAT 3             | DAT 97         |
|                          |          | SC 200           | SC 200            | SC                | GR 5           |
|                          |          | foliar spray     | foliar spray      | foliar spray      | soil treatment |
|                          |          | 2× 0.15 kg ai/ha | 2× 0.15 kg ai/ha  | 2× 0.158 kg ai/ha | 15 mg ai/plant |
| TRR mg/kg eq             | mg/kg eq | 0.076            | 6.45              | 0.57              | 0.014          |
| MG                       | %TRR     | -                | 3.0               | na                | -              |
| unidentified metabolites | %TRR     | 16.4 °           | 10.1 <sup>d</sup> | 3.3               | 6.0            |
| remaining solids         | %TRR     | 3.5              | 5.6               | 0.1               | 1.9            |
| Total                    | %TRR     | 100.0            | 100.1             | 100.0             | 100.1          |

Na = not analysed (reference compound not available)

- = not detected

<sup>a</sup> Tentatively identified by TLC co-chromatography with reference compounds

<sup>b</sup> THMN-glc, the glucosyl conjugate of N-hydroxy clothianidin. In apple fruits, this polar metabolite was shown to be identical to the main metabolite in apple leaves. In apple leaves it was tentatively identified by comparing its aglycone after alpha-glucosidase hydrolysis with the reference THMN.

<sup>c</sup> Contains at least 2 fractions of 2.7% TRR unidentified metabolite and 13.7% TRR at TLC origin

<sup>d</sup> Contains at least 3 fractions of 1.9% and 1.0% TRR unidentified metabolites and 7.2% TRR at TLC origin

# Proposed metabolic pathway of clothianidin in agricultural crops

The proposed metabolic pathway of clothianidin in agricultural crops is shown in Figure 3.

The metabolic pathway of clothianidin after foliar treatment (apple fruits, apple leaves) and seed treatment (maize forage, maize fodder, maize kernels, sugarbeet roots, sugarbeet leaves) is:

- hydrolysis of the parent compound at the methylnitroguanidine part into the methylurea derivative (TZMU)
- hydroxylation (oxidation) of the parent compound at the inner guanidine nitrogen atom followed by glycosylation (THMN and THMN-glc)
- Oxidative demethylation (N-demethylation) of the parent compound yielding the nitroguanidine derivative (TZNG)
- denitrification (reduction) of the parent compound resulting in the formation of the methylguanidine derivative (TMG)
- C-N bond cleavage between the thiazolylmethyl and the guanidine moieties giving the des-thiazolylmethyl derivatives (MNG) and CTCA (after subsequent metabolism of intermediates)
- N-demethylation of TZMU and hydrolysis of TZNG yielding TZU
- denitrification of MNG and C-N bond cleavage of TMG yielding MG
- N-demethylation of MNG and C-N bond cleavage of TZNG yielding NTG.

The metabolic pathway of clothianidin after soil treatment (tomato fruits) is:

• Oxidative demethylation (dealkylation of the guanidine structure) and C-N bond cleavage forming TZNG and MNG.

The metabolic degradation of clothianidin after foliar treatment of tomato plants occurred to a very little extent. The metabolic steps after foliar and seed treatment occurred at relatively low to medium levels, leaving the parent compound as the predominant component. The degradation of the parent compound after soil treatment could have occurred either in the tomato plants or in the soil prior to plant uptake, since MNG and TZNG are known as main components in soil metabolism.

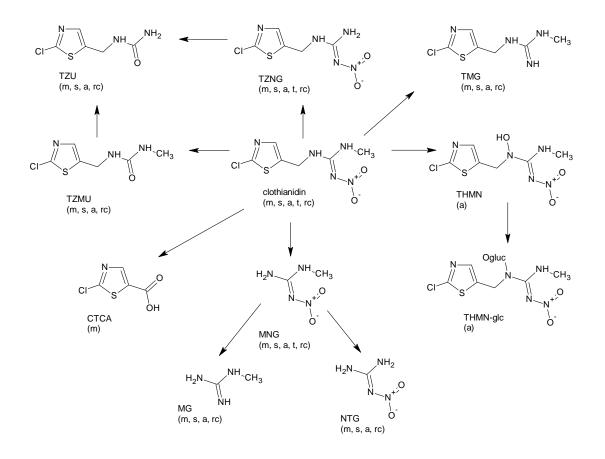



Figure 3 Proposed metabolic pathway of clothianidin in agricultural crops <sup>4</sup>

#### Environmental fate in soil

The Meeting received information on the fate of clothianidin after aerobic degradation in soil and after photolysis on the soil surface. In addition, the Meeting received information on the uptake of clothianidin soil residues by rotational crops. Studies were carried out with (nitroimino-<sup>14</sup>C)clothianidin or (thiazolyl-2-<sup>14</sup>C)clothianidin (see Figure 1).

## Aerobic degradation in soil

#### Study 1

The aerobic degradation of clothianidin (pure active ingredient, > 99%), was investigated in four different soils under laboratory conditions using [nitroimino-<sup>14</sup>C]-clothianidin (radiochemical purity > 99%) and [thiazolyl-2-<sup>14</sup>C]-clothianidin (radiochemical purity > 98%) (Gilges, 2000, THM-0018). Characteristics of the soils are given in Table 7.

The test substance was added to dry soil at 0.133 mg ai/kg and the soil samples were incubated under aerobic conditions. The rate of application was equivalent to a dose rate of 300 g ai/ha. The soil samples (equivalent to 100 g dry soil) were incubated in the dark at  $20 \pm 1$  °C for 120 days at 40% of the maximum water holding capacity (silt loam, silt: freshly sampled from field) or for 365 days at moisture contents of 75% of 333 mbar moisture (loamy sand, sandy loam: stored soils). The incubation vessels were closed with trap attachments containing soda lime for absorption

<sup>&</sup>lt;sup>4</sup> Abbreviations for TZU, TZNG, TMG, TZMU, THMN, CTCA, MNG, THMN-glc, MG and NTG are explained in Table 1; m = maize, s = sugarbeet, a = apple, t = tomato, rc = rotational crops

of CO<sub>2</sub> and a polyurethane foam plug for adsorption of volatile organic compounds. Samples were taken at 0, 1, 7, 14, 33, 61, 90 and 120 days after treatment for silt loam and silt and additionally at days 180, 271 and 365 for loamy sand and sandy loam. After incubation, samples were extracted and analysed on the same day without storage. In case of re-analysis of samples, the extracts were stored at -10 °C for a maximum of 30 days (Gaston, 2010b).

Soils samples were extracted four times with ACN, followed by water extraction. Some samples were additionally subjected to hot extraction with ACN/water (50/50) by refluxing. Remaining solids were determined by LSC after combustion. Several TLC methods were used to separate and quantify the active ingredient and metabolites using co-chromatography with reference compounds for parent, TZNG, TZU, TZMU, MNG, NTG, and TMG. Identity of the metabolites were confirmed by HPLC MS/MS.

Results are shown in Table 8. The degradation kinetics were calculated assuming first order kinetics;  $DT_{50} = 227$ , 143, 490 and 1001 days for silt loam, silt, loamy sand and sandy loam, respectively. The major metabolites are TZNG (9.1% TAR at d120) and MNG (10.7% TAR at d120); TZMU and NTG are minor metabolites. Mineralization (CO<sub>2</sub> formation) accounts for 4.7 to 11.2% TAR after 120 days (in 4 soils). Further mineralization is observed in the 2 soils incubated up to 365 days. Remaining solids account for 5.1 to 9.4% TAR after 120 days (in 4 soils)<sup>5</sup>.

Because of the low microbial mass, the sandy loam study is considered not reliable (microbial mass halved at the end of the study and outside the range of 147–734 mg microbial C/kg soil).

| Soil name                                         | Laacher Hof | Höfchen | BBA 2.2    | Howe       |
|---------------------------------------------------|-------------|---------|------------|------------|
| Soil type (USDA)                                  | silt loam   | silt    | loamy sand | sandy loam |
| particle size (USDA)                              | -           | -       | -          | -          |
| sand 2000-50 um                                   | 36.9%       | 8.5%    | 80.5%      | 65.7%      |
| silt 50–2 um                                      | 51.1%       | 81.3%   | 12.3%      | 26.4%      |
| clay $< 2 \text{ um}$                             | 12.0%       | 10.2%   | 7.2%       | 7.9%       |
| pH water                                          | 8.1         | 7.8     | 6.0        | 6.7        |
| CaCl <sub>2</sub>                                 | 7.3         | 7.2     | 6.3        | 6.7        |
| organic carbon                                    | 0.9%        | 2.7%    | 2.5%       | 1.1%       |
| organic matter                                    | 1.5%        | 4.6%    | 4.3%       | 1.9%       |
| CEC (meq/100 g soil)                              | 8           | 15      | 10         | 10         |
| microbial biomass <sup>a</sup>                    | -           | -       | -          | -          |
| day 0 (mg microbial C/kg soil)                    | 216         | 552     | 285        | 166        |
| day 120 (mg microbial C/kg soil)                  | 222         | 476     | 259        | na         |
| day 180 (mg microbial C/kg soil)                  | na          | na      | 181        | 105        |
| day 365 (mg microbial C/kg soil)                  | na          | na      | 182        | 81         |
| 40% MWHC <sub>max</sub> (g water/100 g dry soil)  | 14.6        | 25.3    | 18.0       | 13.7       |
| 75% of 333 mbar moisture (g water/100 g dry soil) | 20.7        | na      | 16.1       | 14.8       |

Table 7 Soil characteristics

Na = not analysed

<sup>a</sup> On day 0 determined in soil without active ingredient. On day 120, 180 and 365, determined in soil containing the active ingredient.

| T 1 1 0 N 4 C 1 0                  | 1 1 1 1 1 1 1 1             |                                                       |
|------------------------------------|-----------------------------|-------------------------------------------------------|
| Lable & Nature of residues after   | aeronic degradation in soil | treated with 0.133 mg/kg <sup>14</sup> C-clothianidin |
| ruble of future of festidues unter | deroole degradation in son  |                                                       |

| DAT                                                | parent<br>%TAR | TZNG<br>%TAR | TZMU<br>%TAR | MNG<br>%TAR | NTG<br>%TAR | <sup>14</sup> CO <sub>2</sub><br>%TAR | origin<br>%TAR | diffuse<br>radioactivity<br>%TAR | solids<br>%TAR | total<br>%TAR |
|----------------------------------------------------|----------------|--------------|--------------|-------------|-------------|---------------------------------------|----------------|----------------------------------|----------------|---------------|
| silt loam, [nitroimino-14C]-clothianidin, 40% MWHC |                |              |              |             |             |                                       |                |                                  |                |               |
| 0                                                  | 92.6           | -            | -            | -           | -           | na                                    | 0.4            | 5.0                              | 2.1            | 100.1         |
| 1                                                  | 100.7          | -            | -            | -           | -           | < 0.1                                 | 0.3            | 0.9                              | 2.0            | 103.9         |
| 7                                                  | 98.5           | 0.7          | 0.9          | 1.0         | -           | 0.2                                   | 2.7            | 2.3                              | 2.8            | 109.1         |

 $<sup>^{5}</sup>$  DT<sub>90</sub> values calculated from reported DT<sub>50</sub> values are DT<sub>90</sub> = 754, 475, 1628 and 3325 days for silt loam, silt, loamy sand and sandy loam, respectively.

| DAT       | parent<br>%TAR | TZNG<br>%TAR             | TZMU<br>%TAR | MNG<br>%TAR | NTG<br>%TAR | <sup>14</sup> CO <sub>2</sub><br>%TAR | origin<br>%TAR | diffuse<br>radioactivity<br>%TAR | solids<br>%TAR | total<br>%TAR |
|-----------|----------------|--------------------------|--------------|-------------|-------------|---------------------------------------|----------------|----------------------------------|----------------|---------------|
| 14        | 90.2           | 1.0                      | 1.1          | 2.1         | 0.1         | 0.4                                   | 2.3            | 2.9                              | 2.9            | 103.0         |
| 33        | 84.0           | 2.6                      | 2.2          | 5.2         | 0.2         | 1.1                                   | 0.3            | 0.6                              | 5.0            | 101.2         |
| 61        | 71.3           | 3.3                      | 2.3          | 6.3         | 1.2         | 2.2                                   | 0.4            | 0.6                              | 3.8            | 91.4          |
| 90        | 74.6           | 4.5                      | 2.2          | 8.9         | 3.2         | 3.8                                   | 0.4            | 1.6                              | 4.4            | 103.6         |
| 120       | 68.6           | 5.1                      | 2.4          | 10.7        | 3.7         | 5.1                                   | 0.3            | 1.8                              | 8.5            | 106.2         |
| silt, [ni | troimino-14    | C]-clothian              | idin, 40% N  | <b>/WHC</b> |             |                                       |                |                                  |                |               |
| 0         | 92.0           | -                        | -            | -           | -           | na                                    | 0.3            | 5.5                              | 2.4            | 100.2         |
| 1         | 102.7          | -                        | -            | -           | -           | 0.1                                   | 0.4            | 0.8                              | 2.1            | 106.1         |
| 7         | 97.0           | 2.0                      | 0.9          | 1.7         | -           | 0.4                                   | 0.6            | 0.5                              | 3.9            | 107.0         |
| 14        | 88.4           | 3.0                      | 1.2          | 3.1         | 0.2         | 1.0                                   | 2.2            | 0.5                              | 3.3            | 102.9         |
| 33        | 79.4           | 5.8                      | 1.9          | 6.1         | 0.7         | 3.1                                   | 0.4            | 1.1                              | 5.1            | 103.6         |
| 61        | 68.7           | 7.2                      | 1.5          | 6.6         | 2.7         | 6.0                                   | 0.5            | 1.0                              | 6.0            | 100.2         |
| 90        | 64.2           | 8.2                      | 1.0          | 8.2         | 5.3         | 8.8                                   | 0.5            | 0.7                              | 7.5            | 104.4         |
| 120       | 54.3           | 9.1                      | 1.1          | 9.5         | 6.7         | 11.2                                  | 0.3            | 1.7                              | 9.4            | 103.3         |
| loamy     | sand, [nitroi  | imino- <sup>14</sup> C]- | clothianidi  | n, 75% of 3 | 33 mbar mo  | oisture                               |                |                                  |                |               |
| 0         | 93.6           | -                        | -            | -           | -           | na                                    | 0.4            | 4.1                              | 2.0            | 100.1         |
| 1         | 94.2           | -                        | -            | -           | -           | < 0.1                                 | 0.5            | 0.6                              | 2.2            | 97.5          |
| 7         | 92.8           | 0.4                      | 0.3          | 1.3         | -           | 0.2                                   | 0.5            | 0.6                              | 2.9            | 99.0          |
| 14        | 92.3           | 0.5                      | 0.8          | 1.6         | 0.3         | < 0.1                                 | 2.8            | 0.6                              | 2.7            | 101.6         |
| 33        | 84.3           | 2.1                      | 1.1          | 3.3         | 0.1         | 1.2                                   | 0.1            | 0.5                              | 4.4            | 97.1          |
| 61        | 82.3           | 2.4                      | 0.9          | 3.6         | 1.0         | 2.4                                   | 0.6            | 0.7                              | 5.2            | 99.1          |
| 90        | 77.2           | 3.3                      | 1.2          | 5.2         | 2.7         | 3.5                                   | 0.4            | 1.6                              | 5.0            | 100.1         |
| 120       | 73.3           | 4.4                      | 1.2          | 5.9         | 3.4         | 4.7                                   | 0.3            | 1.5                              | 5.9            | 100.6         |
| 180       | 69.1           | 4.8                      | 0.8          | 5.1         | 3.9         | 6.7                                   | 0.5            | 1.5                              | 7.9            | 100.3         |
| 271       | 60.3           | 5.2                      | 0.8          | 5.2         | 5.2         | 9.2                                   | 0.4            | 1.4                              | 11.2           | 98.9          |
| 365       | 57.8           | 6.0                      | 0.7          | 5.4         | 6.5         | 11.3                                  | 0.3            | 0.5                              | 12.8           | 101.3         |
| sandy l   | oam, [thiazo   | olyl-2- <sup>14</sup> C] | clothianidi  | n, 75% of 3 | 33 mbar m   | oisture                               | _              |                                  |                |               |
| 0         | 93.6           | -                        | -            | -           | -           | na                                    | 0.4            | 4.3                              | 1.8            | 100.1         |
| 1         | 93.5           | < 0.1                    | -            | -           | -           | 0.1                                   | 0.4            | 1.3                              | 1.7            | 97.0          |
| 7         | 96.3           | 0.4                      | 0.2          | -           | -           | 0.7                                   | 0.4            | 0.3                              | 2.6            | 100.9         |
| 14        | 95.6           | 0.2                      | 0.2          | -           | -           | 1.3                                   | 1.2            | 0.6                              | 2.5            | 101.6         |
| 33        | 91.9           | 0.9                      | 0.1          | -           | -           | 2.5                                   | 0.4            | 0.6                              | 3.2            | 99.6          |
| 61        | 88.2           | 1.3                      | 0.3          | -           | -           | 3.8                                   | 0.5            | 0.7                              | 2.7            | 97.5          |
| 90        | 86.7           | 1.5                      | 0.3          | -           | -           | 5.5                                   | 0.9            | 1.0                              | 4.1            | 100.0         |
| 120       | 85.8           | 1.7                      | 0.3          | -           | -           | 6.9                                   | 0.2            | 1.3                              | 5.1            | 101.3         |
| 180       | 81.9           | 1.9                      | 0.3          | -           | -           | 9.0                                   | 0.4            | 1.5                              | 5.0            | 100.0         |
| 271       | 75.4           | 2.3                      | 0.2          | -           | -           | 12.1                                  | 0.7            | 0.7                              | 5.5            | 96.9          |
| 365       | 75.8           | 2.5                      | 0.2          | -           | -           | 14.8                                  | 0.5            | 0.2                              | 6.6            | 100.6         |

- = not detected

na = not analysed

#### Study 2

The aerobic degradation of clothianidin (pure active ingredient > 99%), was investigated in six different soils under laboratory conditions using [thiazolyl-2-<sup>14</sup>C]-clothianidin (radiochemical purity > 99%) (Schad, 2000b, THM-0019). Characteristics of the soils are given in Table 9.

The test substance was added to dry soil at 0.133 mg ai/kg and the soil samples were incubated under aerobic conditions. The rate of application was equivalent to a dose rate of 300 g ai/ha. The soil samples (equivalent to 100 g dry soil) were incubated in the dark at  $20 \pm 1$  °C for 181 days (soil Crosby for 379 days) at 75% of 333 mbar moisture. Only 50 g soil samples (as dry matter) were incubated for sampling day 181, except soil Crosby. The incubation vessels were closed with trap attachments containing soda lime for absorption of CO<sub>2</sub> and a polyurethane foam plug for adsorption of volatile organic compounds. Samples were taken at 0, 7, 62, 120 and 181 days after treatment and additional at day 379 for soil Crosby. Soils were freshly sampled from fields. After

incubation, samples were extracted and analysed on the same day without storage. In case of reanalysis of samples, the extracts were stored at -10 °C for a maximum of 30 days (Gaston, 2010b).

Soils samples were extracted four times with ACN, followed by water extraction. Some samples were additionally subjected to hot extraction with ACN/water (50/50) by refluxing. Remaining solids were determined by LSC after combustion. Two independent TLC methods were used to separate and quantify the a.s. and metabolites using co-chromatography with reference compounds for parent, TZNG, TZU and TZMU.

Results are shown in Table 10. The degradation kinetics were calculated assuming first order kinetics:  $DT_{50} = 541$  days for Crosby silt loam, 1328 days for Elder loam, 549 days for Quincy loamy sand, 533 days for Sparta sand and 808 days for Susan silt loam. No  $DT_{50}$  could be calculated for Fuguay loamy sand. The residue consists mainly of parent; metabolites TZNG and TZMU were recovered at low level (< 2% TAR). Mineralization (CO<sub>2</sub> formation) accounts for 1.5 to 8.1% TAR after 120 days (in six soils). Further mineralization is observed in all the soils. Remaining solids account for 1.9 to 9.9% TAR after 120 days (in six soils)<sup>6</sup>.

Because of the low microbial mass, four of the soil studies are considered not reliable (microbial mass outside the range of 147–734 mg microbial C/kg soil at the beginning and/or end of the study).

| Soil name                                         | Crosby    | Elder | Fuguay     | Quincy     | Sparta | Susan     |
|---------------------------------------------------|-----------|-------|------------|------------|--------|-----------|
| Soil type (USDA)                                  | silt loam | loam  | loamy sand | loamy sand | sand   | silt loam |
| particle size (USDA)                              |           |       |            |            |        |           |
| sand 2000–50 um                                   | 17.7%     | 50.2% | 77.2%      | 79.6%      | 92.1%  | 18.7%     |
| silt 50–2 um                                      | 58.8%     | 38.1% | 19.8%      | 13.6%      | 7.0%   | 53.9%     |
| clay <2 um                                        | 23.5%     | 11.7% | 3.0%       | 6.8%       | 0.9%   | 27.4%     |
| pH water                                          | 6.7       | 6.7   | 6.7        | 6.8        | 6.2    | 6.7       |
| CaCl <sub>2</sub>                                 | 6.0       | 5.8   | 5.8        | na         | 5.3    | 5.9       |
| organic carbon                                    | 1.4%      | 1.4%  | 0.4%       | 0.4%       | 0.7%   | 3.3%      |
| organic matter                                    | 2.4%      | 2.4%  | 0.6%       | 0.8%       | 1.3%   | 5.6%      |
| CEC (meq/100 g soil)                              | 15        | 18    | 5          | 6          | 6      | 30        |
| microbial biomass <sup>a</sup>                    |           |       |            |            |        |           |
| day 0 (mg microbial C/kg soil)                    | 476       | 195   | 16         | 176        | 116    | 498       |
| day 120 (mg microbial C/kg soil)                  | 244       | 135   | 25         | 54         | 25     | 409       |
| day 365 (mg microbial C/kg soil)                  | 177       | na    | na         | na         | na     | na        |
| 75% of 333 mbar moisture (g water/100 g dry soil) | 19.9      | 16.9  | 9.6        | 12.7       | 5.4    | 30.6      |

Table 9 Soil characteristics

na = not analysed

<sup>a</sup> On day 0 determined in soil without active ingredient. On day 181 and 379 determined in soil containing the active ingredient.

| Soil      | DAT | parent<br>%TAR | TZNG<br>%TAR | TZMU<br>%TAR | <sup>14</sup> CO <sub>2</sub><br>%TAR | origin<br>%TAR | diffuse<br>radioactivity | solids<br>%TAR | total<br>%TAR |
|-----------|-----|----------------|--------------|--------------|---------------------------------------|----------------|--------------------------|----------------|---------------|
| Crosby    | 0   | 93.7           | _            | _            | na                                    | 0.2            | %TAR<br>0.1              | 2.5            | 96.5          |
| silt loam | 7   | 89.6           | < 0.1        | < 0.1        | 0.1                                   | 0.2            | < 0.1                    | 2.5            | 92.4          |
|           | 62  | 80.2           | 0.2          | 0.8          | 5.3                                   | 1.1            | 0.9                      | 4.7            | 93.2          |
|           | 120 | 76.2           | 0.7          | 1.6          | 8.1                                   | 1.2            | 0.9                      | 3.5            | 92.2          |
|           | 181 | 63.6           | 0.7          | 1.4          | 10.7                                  | 1.6            | 1.5                      | 7.7            | 87.2          |
|           | 379 | 60.3           | 0.5          | 1.4          | 16.9                                  | 1.7            | 1.3                      | 9.5            | 91.6          |
| Elder     | 0   | 97.5           | -            | -            | na                                    | 0.2            | 0.1                      | 2.1            | 99.9          |
| loam      | 7   | 97.1           | -            | -            | 0.2                                   | 0.1            | -                        | 2.8            | 100.2         |
|           | 62  | 98.6           | -            | -            | 1.2                                   | -              | 0.4                      | 1.5            | 101.7         |
|           | 120 | 95.2           | 0.1          | 0.3          | 2.0                                   | 1.1            | 0.6                      | 1.9            | 101.2         |

Table 10 Nature of residues after aerobic degradation in soil treated with 0.133 mg/kg <sup>14</sup>C-clothianidin

 $^{6}$  DT<sub>90</sub> values calculated from reported DT<sub>50</sub> values are DT<sub>90</sub> = 1797 days for Crosby silt loam, 4412 days for Elder loam, 1824 days for Quincy loamy sand, 1771 days for Sparta sand and 2684 days for Susan silt loam, respectively.

| Soil       | DAT | parent | TZNG  | TZMU | $^{14}CO_2$ | origin | diffuse       | solids | total |
|------------|-----|--------|-------|------|-------------|--------|---------------|--------|-------|
|            |     | %TAR   | %TAR  | %TAR | %TAR        | %TAR   | radioactivity | %TAR   | %TAR  |
|            |     |        |       |      |             |        | %TAR          |        |       |
|            | 181 | 87.5   | 0.2   | 0.3  | 2.5         | 1.5    | 1.8           | 5.3    | 99.1  |
| Fuguay     | 0   | 95.3   | -     | -    | na          | 0.1    | < 0.1         | 1.7    | 97.1  |
| loamy sand | 7   | 98.0   | -     | -    | 0.2         | 0.7    | -             | 3.2    | 102.1 |
|            | 62  | 97.9   | -     | 0.2  | 0.8         | 0.3    | 0.4           | 2.0    | 101.6 |
|            | 120 | 89.3   | -     | 0.6  | 1.5         | 2.0    | 0.8           | 2.6    | 96.8  |
|            | 181 | 95.3   | 0.1   | 0.8  | 2.1         | 1.4    | 1.8           | 3.7    | 105.2 |
| Quincy     | 0   | 101.9  | -     | -    | na          | < 0.1  | < 0.1         | 1.7    | 103.6 |
| loamy sand | 7   | 99.3   | < 0.1 | -    | 0.8         | 0.8    | -             | 2.4    | 103.3 |
|            | 62  | 93.1   | 0.2   | 1.1  | 4.0         | 1.2    | 1.1           | 4.3    | 105.0 |
|            | 120 | 85.8   | 0.4   | 1.5  | 5.6         | 1.8    | 0.6           | 6.4    | 102.1 |
|            | 181 | 80.8   | 0.5   | 1.8  | 7.0         | 1.9    | 2.0           | 8.3    | 102.3 |
| Sparta     | 0   | 98.9   | -     | -    | na          | 0.1    | 1.6           | 2.5    | 103.1 |
| sand       | 7   | 98.6   | -     | -    | 0.6         | 0.1    | -             | 2.9    | 102.2 |
|            | 62  | 93.5   | -     | 0.2  | 3.3         | 1.1    | 0.5           | 4.4    | 103.0 |
|            | 120 | 82.5   | 0.3   | 0.6  | 4.8         | 3.5    | 1.4           | 9.9    | 103.0 |
|            | 181 | 79.6   | 0.3   | 0.8  | 5.2         | 3.9    | 1.3           | 7.9    | 99.0  |
| Susan      | 0   | 95.6   | -     | -    | na          | 0.1    | < 0.1         | 2.7    | 98.4  |
| silt loam  | 7   | 93.7   | -     | -    | 0.2         | 0.9    | -             | 2.5    | 97.3  |
|            | 62  | 94.1   | -     | -    | 1.7         | 0.4    | 0.1           | 2.9    | 99.2  |
|            | 120 | 92.1   | 0.1   | 0.4  | 2.7         | 1.2    | 0.6           | 2.8    | 99.9  |
|            | 181 | 78.3   | 0.2   | 0.2  | 3.4         | 1.3    | 1.5           | 11.7   | 96.6  |

- = not detected

na = not analysed

## Photolysis on the soil surface

The photolysis of clothianidin (pure active ingredient 97.6%) was investigated on a soil surface under laboratory conditions using [nitroimino-<sup>14</sup>C]-clothianidin (Hellpointer, 1999a, THM-0014). Characteristics of the sandy loam soil (Howe) are given in Table 7, except that the microbial mass was 127 mg microbial C/kg dry soil.

Amounts of 2.0  $\mu$ g ai per g dry soil were applied uniformly onto the soil (soil layer 2–3 mm) as an aqueous solution (200  $\mu$ L per test vessel). The rate of application was equivalent to a dose rate of 300 g ai/ha. Soil samples were exposed to artificial light in an irradiation cabinet equipped with a xenon lamp for 17 days (continuous irradiation). The wavelength of the light source ranged from 280 to 830 nm and the wavelengths below 290 nm were eliminated by a special UV filter system. The light intensity of the xenon lamp was 968 W/m<sup>2</sup>. The temperature of the test soil was maintained at 20 °C. Additional samples were kept in a temperature controlled dark incubation room (mean temperature: 20.2 °C). All test vessels were connected with traps to absorb volatile compounds. Samples were taken at 0, 0.90, 2.91, 7.85 and 16.86 hrs of exposure; equivalent to 0, 2.2, 7.2, 19.6 and 42.0 days of midday midsummer solar conditions at 40 ° latitude. After incubation, samples were extracted on the same day without storage. Extracts were stored at –20 °C for a maximum of 1 week (Gaston, 2010b).

Soils samples were extracted three times with ACN, followed by water extraction and by Soxhlet extraction using ACN/water (50/50). Remaining solids were determined by LSC after combustion. Three different TLC methods were used to separate and quantify the metabolites using co-chromatography with reference compounds for parent, TZNG, TZU, TZMU, MNG, TMG, NTG and MG.

Results are shown in Table 11. The recovery ranged from 93.5% to 100.6% of TAR. The amount of parent compound decreased to 22.3% after 17 days irradiation,  $DT_{50} = 8.2$  days and  $DT_{90} = 27$  days under irradiated conditions;  $DT_{50} = 183$  days and  $DT_{90} > 1$  year under dark conditions. The remaining solids increased to 36.8% in the same time period. None of the identified metabolites (TZNG, TZMU and MNG) or unidentified metabolites (U1–U6) exceeded 4.4% TAR at any time of

the study. Beside  $CO_2$  amounting to 4.5% TAR at day 17, no other volatile products could be detected (< 0.1% TAR).

| DAT    | parent<br>%TAR | TZNG<br>%TAR | TZMU<br>%TAR | MNG<br>%TAR | TZU<br>%TAR | <sup>14</sup> CO <sub>2</sub><br>%TAR | Unknowns<br>%TAR | origin<br>%TAR    | diffuse<br>%TAR | solids<br>%TAR | total<br>%TAR |
|--------|----------------|--------------|--------------|-------------|-------------|---------------------------------------|------------------|-------------------|-----------------|----------------|---------------|
| Treate | d soil         | •            |              | •           | •           | •                                     | •                | •                 |                 | •              | •             |
| 0      | 96.7           | -            | -            | -           | -           | na                                    | -                | < 0.4             | 0.6             | 1.2            | 98.5          |
| 1      | 89.9           | -            | 1.4          | 1.1         | -           | 0.3                                   | -                | 1.0               | 2.1             | 4.8            | 100.6         |
| 3      | 59.9           | 1.3          | 4.0          | 3.5         | 0.4         | 1.1                                   | 3.2–4.1–<br>1.1  | 3.5               | 1.6             | 10.1           | 93.8          |
| 8      | 44.8           | 0.5          | 3.2          | 3.1         | -           | 5.0                                   | 1.6–2.2–<br>1.1  | 9.4 <sup>a</sup>  | 1.1             | 23.4           | 95.4          |
| 17     | 22.3           | 1.1          | 2.7          | 2.3         | -           | 4.5                                   | 1.1–4.4–<br>2.8  | 13.1 <sup>a</sup> | 2.2             | 36.8           | 93.3          |
| Dark o | control        |              |              |             |             |                                       | •                |                   |                 |                |               |
| 0      | 96.7           | -            | -            | -           | -           | na                                    | -                | < 0.4             | 0.6             | 1.2            | 98.5          |
| 1      | 95.0           | -            | -            | < 0.4       | -           | 0.3                                   | < 0.4            | < 0.4             | < 0.4           | 2.5            | 97.8          |
| 3      | 93.1           | < 0.4        | < 0.4        | 1.2         | -           | 0.6                                   | < 0.5–0.7        | < 0.4             | 0.8             | 2.1            | 98.5          |
| 8      | 91.3           | < 0.4        | < 0.4        | 1.3         | -           | 0.7                                   | -                | < 0.4             | < 0.4           | 2.6            | 95.9          |
| 17     | 90.0           | 1.5          | 1.5          | 2.4         | -           | 1.1                                   | -                | 0.6               | 0.6             | 2.3            | 100.0         |

Table 11 Nature of residues after photolysis on soil treated with <sup>14</sup>C-clothianidin

- = not detected

na = not analysed

<sup>a</sup> Several compounds of which none exceeded 5% TAR

#### Confined rotational crop studies

## Study 1

Uptake of clothianidin soil residues by rotational crops was investigated in a confined rotational crop study using [nitroimino-<sup>14</sup>C]-clothianidin (radiochemical purity > 99%) formulated as SC 200 g ai/L (Ishiii, 2000d, THM-0028). The study was conducted under greenhouse conditions in Monheim, Germany in 1997. The test substance was applied by spraying directly to the soil of a planting container at a rate of 0.328 kg ai/ha on 15 May 1997. Soil type USDA sandy loam (58.2% sand, 31.0% silt, 10.8% clay, pH (CaCl<sub>2</sub>) = 6.3, pH (water) = 6.5, CEC 10 meq/100g and 1.98% organic carbon). Rotational crops (wheat, Swiss chard and turnips) were sown at 29, 153 and 314 days after the application of the test substance on soil (corresponding respectively to first, second and third rotations). Varieties were Kadett (wheat), Lucullus (Swiss chard) and Vollenda (turnip). Immature wheat (forage and hay), mature wheat (straw and grain), mature Swiss chard (leaves) and mature turnips (leaves and roots) were sampled. Soil core samples (2.5 × 15 cm) were taken at DAT 32, 152, 314 and 466. Plant sample sizes were not stated. Plant samples were stored at -20 °C for 0–68 days; storage conditions for soil were not stated.

Plant and soil samples were analysed by radio combustion analysis and LSC. Plant samples were extracted successively with ACN/water (v/v; 1:1) and ACN. Liquid/liquid partitioning was carried out with DCM. Microwave extraction and acid hydrolysis were also performed on remaining solids to further release radioactivity. Characterisation and identification of the metabolites in the different solvent fractions were achieved by comparison with chemical standards using normal and reversed-phase TLC. Reference compounds used were: parent, MG, MNG, NTG, TMG, TZMU, TZNG and TZU.

Total radioactive residues in soil were 0.18-0.28-0.11-0.13 mg/kg eq at DAT = 32, 152, 314 and 466. At DAT 466, most of the radioactivity was found in the upper 0–10 cm (87.9%) and 10–20 cm (10.6% TRR). Results in rotational crops are shown in Table 12. Residue levels indicated that clothianidin and its metabolites showed uptake from the soil into all three representative crops. The metabolic profile was qualitatively similar to the metabolic schema previously identified in plants and

animals. The parent compound was extensively degraded in the three crops but still accounted for a major part of the total residues in the different commodities.

No difference in metabolite profile was found in wheat forage and Swiss chard (1<sup>st</sup> rotation samples) after 4 and 68 days of storage. Since all other samples were analysed within 32 days after harvest, storage stability was not further investigated.

|                |               | wheat      | wheat | wheat | wheat | Swiss | turnip    | turnip    |
|----------------|---------------|------------|-------|-------|-------|-------|-----------|-----------|
|                |               | forage     | hay   | straw | grain | chard | leaves    | roots     |
| First rotation | (sown 29 DA   | ,          |       |       | - 1   |       | 1         |           |
| DAT            |               | 70         | 106   | 152   | 152   | 70    | 106       | 106       |
| DAS            |               | 41         | 77    | 123   | 123   | 41    | 77        | 77        |
| TRR            | mg/kg eq      | 0.30       | 0.53  | 2.6   | 0.11  | 0.15  | 0.36      | 0.016     |
| parent         | %TRR          | 46.3       | 17.0  | 12.4  | 2.6   | 35.1  | 31.5      | 39.9      |
| TZNG           | %TRR          | 6.2        | 11.6  | 10.8  | 23.3  | 15.9  | 6.6       | 1.8       |
| MG             | %TRR          | 2.9        | 6.8   | 9.3   | 3.3   | 1.9   | 4.8       | -         |
| TMG            | %TRR          | 3.2        | 3.0   | 4.1   | 0.8   | 1.4   | 5.3       | -         |
| TZMU           | %TRR          | 3.5        | 2.6   | 3.2   | 1.3   | 4.7   | 5.4       | 1.3       |
| MNG            | %TRR          | 13.7       | 11.3  | 9.1   | 5.8   | 19.3  | 11.7      | 0.6       |
| TZU            | %TRR          | 0.7        | 1.3   | 2.2   | 1.5   | 1.2   | 1.9       | 0.2       |
| NTG            | %TRR          | 2.7        | 5.4   | 5.7   | 8.5   | 6.5   | 4.1       | 0.2       |
| unidentified   | %TRR          | 16.2       | 29.4  | 35.2  | 35.1  | 10.1  | 25.6      | 49.7      |
| solids         | %TRR          | 4.6        | 11.6  | 8.0   | 17.7  | 3.8   | 3.1       | 6.3       |
| total          | %TRR          | 100.0      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0     | 100.0     |
| Second rotati  | on (sown 153  | /          | 0.50  | 24.1  |       |       |           | 0.0-      |
| DAT            |               | 200        | 259   | 314   | 314   | 210   | 237       | 237       |
| DAS            |               | 47         | 106   | 161   | 161   | 57    | 84        | 84        |
| TRR            | mg/kg eq      | 0.39       | 0.36  | 1.2   | 0.052 | 0.25  | 0.22      | 0.011     |
| parent         | %TRR          | 32.2       | 15.8  | 11.1  | 2.0   | 22.0  | 30.6      | 37.6      |
| TZNG           | %TRR          | 6.1        | 7.6   | 8.1   | 10.5  | 14.1  | 6.8       | 1.1       |
| MG             | %TRR          | 4.9        | 7.6   | 11.3  | 2.6   | 2.3   | 5.0       | -         |
| TMG            | %TRR          | 2.4        | 2.8   | 3.7   | 1.3   | 2.5   | 4.2       | -         |
| TZMU           | %TRR          | 3.4        | 3.4   | 3.0   | 1.3   | 3.3   | 4.6       | 1.7       |
| MNG            | %TRR          | 22.4       | 16.5  | 13.3  | 5.5   | 28.5  | 21.8      | 2.2       |
| TZU            | %TRR          | 0.7        | 0.9   | 1.5   | 1.1   | 1.9   | 1.5       | 0.1       |
| NTG            | %TRR          | 4.5        | 5.4   | 6.3   | 6.7   | 8.7   | 6.1       | 0.1       |
| unidentified   | %TRR          | 15.8       | 24.2  | 33.7  | 48.7  | 14.8  | 17.4      | 52.8      |
| solids         | %TRR          | 7.6        | 15.6  | 7.9   | 20.3  | 1.9   | 1.8       | 4.3       |
| total          | %TRR          | 100.0      | 100.0 | 100.0 | 100.0 | 100.0 | 99.9      | 100.0     |
| Third rotation | n (sown 314 I | /          | 40.4  | 4.60  | 160   | 0.75  | 200       | 200       |
| DAT            | -             | 362        | 404   | 462   | 462   | 375   | 389<br>75 | 389<br>75 |
| DAS            | /1            | 50         | 90    | 148   | 148   | 61    |           |           |
| TRR            | mg/kg eq      | 0.34       | 0.37  | 1.2   | 0.044 | 0.12  | 0.11      | 0.007     |
| parent         | %TRR          | 21.3       | 12.5  | 7.2   | 2.5   | 21.7  | 21.2      | 27.3      |
| TZNG           | %TRR          | 5.1        | 7.7   | 7.3   | 17.1  | 7.1   | 3.9       | 1.0       |
| MG             | %TRR          | 6.9        | 11.5  | 17.6  | 2.5   | 2.8   | 7.8       | -         |
| TMG            | %TRR          | 3.0<br>2.9 | 3.4   | 4.9   | 3.4   | 1.4   | 3.5       | -         |
| TZMU           | %TRR          |            | 1.9   | 3.0   | 0.4   | 2.5   | 2.6       | 1.5       |
| MNG            | %TRR          | 26.7       | 18.5  | 9.1   | 7.5   | 37.3  | 28.9      | 2.3       |
| TZU            | %TRR          | 2.1        | 0.9   | 1.1   | 0.9   | 0.6   | 1.0       | 0.5       |
| NTG            | %TRR          | 6.4        | 6.8   | 5.1   | 7.7   | 10.4  | 7.6       | 0.7       |
| unidentified   | %TRR          | 18.4       | 26.6  | 38.1  | 41.3  | 13.3  | 18.4      | 61.5      |
| solids         | %TRR          | 7.2        | 10.3  | 6.5   | 16.7  | 3.0   | 5.0       | 5.1       |
| total          | %TRR          | 100.0      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0     | 100.0     |

Table 12 Nature of residues in rotational crops after soil treatment with <sup>14</sup>C-clothianidin

DAT = days after treatment of soil

DAS = days after sowing

# Field rotational crop studies

# Study 1

Uptake of clothianidin soil residues by rotational crops was investigated in a field rotational crop study using unlabelled clothianidin formulated as FS 600 g ai/L (Duah, 2001, THR-0012/THR-0013, Gaston, 2010c). The studies were conducted in the USA from March 1999 to March 2001. Maize seeds were treated at a rate of 2 mg ai/seed. The treated maize seeds were planted at seeding rates corresponding to application rates ranging between 162 and 192 g ai/ha (80000–96000 seeds/ha). The maize plants were tilled into the soil prior to planting the rotational crops (growth stage of the maize plants not stated). Wheat, mustard greens and turnips (varieties see Table 13) were planted at 1-month, 4-month, 8-month and 12-month intervals following the planting of the treated maize seeds. Soil type information was not available (confirmed by manufacturer). Turnips (roots and tops), wheat (forage, hay, straw and grain) and mustard greens (leaves) were harvested at earliest crop maturity. Minimum sample sizes were 0.5-1.1 kg for wheat commodities and 2.3 kg for mustard greens and turnip commodities. Samples were stored at -23 °C for 286–336 days (parent) or 472–654 days (TZNG).

Samples were analysed for clothianidin using modification A of HPLC-MS-MS method 00552/M001. Samples from the 1 month plant-back interval were analysed again in order to determine the quantity of the metabolite TZNG in the rotational crops using modification A of HPLC-MS-MS method 00552/M002.

Results are shown in Table 13. Results were not corrected for control samples (< 0.01 mg/kg for each analyte and each commodity), nor for concurrent method recoveries (74%–112%, for each analyte and each commodity).

|         |               |      |                    | parent, mg/        | parent, mg/kg |            |            |             |
|---------|---------------|------|--------------------|--------------------|---------------|------------|------------|-------------|
| Crop    | Variety       | Soil | Location           | DAT 1              | DAT 4         | DAT 8      | DAT 12     | DAT 1 month |
|         |               | type | in USA             | month <sup>a</sup> | months        | months     | months     |             |
| mustard | Broadleaf     | ns   | Tifton, GA         | < 0.01 (2)         | < 0.01 (2)    | 0.010;     |            | < 0.01      |
| greens  |               |      |                    |                    |               | 0.013      |            |             |
|         | Southern leaf | ns   | Oxford, IN         | < 0.01;            | < 0.01 (2)    | < 0.01;    | < 0.01 (2) | < 0.01      |
|         | curled        |      |                    | 0.011              |               | 0.012      |            |             |
|         | Mustard       | ns   | Stilwell, KS       | -                  | 0.011;        | 0.015;     | -          | -           |
|         | curly         |      |                    |                    | 0.013         | 0.023      |            |             |
|         | Bloomsdale    | ns   | Stilwell, KS       | -                  | _             | _          | < 0.01 (2) | -           |
| turnip  | Purple top    | ns   | Tifton, GA         | 0.010;             | < 0.01 (2)    | < 0.01 (2) | -          | < 0.01      |
| tops    |               |      |                    | 0.014              |               |            |            |             |
|         | Purple top    | ns   | Oxford, IN         | < 0.01 (2)         | < 0.01 (2)    | < 0.01 (2) | < 0.01 (2) | < 0.01      |
|         | Purple top    | ns   | Stilwell, KS       | < 0.01 (2)         | 0.010;        | < 0.01;    | < 0.01 (2) | < 0.01      |
|         |               |      |                    |                    | 0.012         | 0.021      |            |             |
| turnip  | Purple top    | ns   | Tifton, GA         | < 0.01 (2)         | < 0.01 (2)    | < 0.01 (2) | -          | < 0.01      |
| roots   |               |      |                    |                    |               |            |            |             |
|         | Purple top    | ns   | Oxford, IN         | < 0.01 (2)         | < 0.01 (2)    | < 0.01 (2) | < 0.01 (2) | < 0.01      |
|         | Purple top    | ns   | Stilwell, KS       | < 0.01 (2)         | < 0.01 (2)    | < 0.01 (2) | < 0.01 (2) | < 0.01      |
| wheat   | Amidon        | ns   | Velva, ND          | 0.011;             | -             | -          | -          | < 0.01      |
| forage  |               |      |                    | 0.014              |               |            |            |             |
|         | Oxen          | ns   | Centerville,<br>SD | < 0.01 (2)         | -             | -          | -          | < 0.01      |
|         | Cooker 9663   | ns   | Tifton, GA         | _                  | < 0.01;       | < 0.01 (2) | _          | -           |
|         |               |      |                    |                    | 0.010         |            |            |             |
|         | Steward SW    | ns   | Oxford, IN         | -                  | 0.011;        | -          | -          | -           |
|         | 520           |      |                    |                    | 0.012         |            |            |             |
|         | Karl 92       | ns   | Stillwell,         | -                  | < 0.01;       | -          | -          | -           |
|         |               |      | KS                 |                    | 0.010         |            |            |             |
|         | NDSU 2375     | ns   | Oxford, IN         | -                  | -             | < 0.01;    | -          | -           |
|         |               |      |                    |                    |               | 0.010      |            |             |
|         | Sharp Spring  | ns   | Stillwell,         | -                  | -             | 0.013;     | -          | -           |
|         |               |      | KS                 |                    |               | 0.019      |            |             |
|         | NDSU 2375     | ns   | Velva, ND          | -                  | -             | -          | < 0.01 (2) | -           |

Table 13 Levels of parent and TZNG in rotational crops after soil treatment with clothianidin

|                |                   |      |                    | parent, mg/        | parent, mg/kg |                  |            |             |  |
|----------------|-------------------|------|--------------------|--------------------|---------------|------------------|------------|-------------|--|
| Crop           | Variety           | Soil | Location           | DAT 1              | DAT 4         | DAT 8            | DAT 12     | DAT 1 month |  |
| -              |                   | type | in USA             | month <sup>a</sup> | months        | months           | months     |             |  |
|                | Forge Spring      | ns   | Centerville,       | -                  | -             | -                | < 0.01 (2) | -           |  |
|                |                   |      | SD                 |                    |               |                  |            |             |  |
| wheat<br>hay   | Amidon            | ns   | Velva, ND          | < 0.01 (2)         | -             | -                | -          | < 0.01      |  |
|                | Oxen              | ns   | Centerville,<br>SD | 0.019;<br>0.025    | -             | -                | -          | < 0.01      |  |
|                | Cooker 9663       | ns   | Tifton, GA         | _                  | < 0.01 (2)    | < 0.01 (2)       | _          | _           |  |
|                | Steward SW<br>520 | ns   | Oxford, IN         | -                  | 0.017 (2)     | -                | -          | -           |  |
|                | Karl 92           | ns   | Stillwell,<br>KS   | -                  | < 0.01 (2)    | -                | -          | -           |  |
|                | NDSU 2375         | ns   | Oxford, IN         | -                  | -             | 0.016;<br>0.020  | -          | -           |  |
|                | Sharp Spring      | ns   | Stillwell,<br>KS   | -                  | -             | < 0.01;<br>0.010 | -          | -           |  |
|                | NDSU 2375         | ns   | Velva, ND          | -                  | -             | -                | < 0.01 (2) | -           |  |
|                | Forge Spring      | ns   | Centerville,<br>SD | -                  | -             | -                | < 0.01 (2) | -           |  |
| wheat<br>straw | Amidon            | ns   | Velva, ND          | < 0.01 (2)         | -             | -                | -          | < 0.01      |  |
|                | Oxen              | ns   | Centerville,<br>SD | < 0.01 (2)         | -             | -                | -          | < 0.01      |  |
|                | Cooker 9663       | ns   | Tifton, GA         | _                  | < 0.01 (2)    | < 0.01 (2)       | -          | _           |  |
|                | Steward SW<br>520 | ns   | Oxford, IN         | -                  | < 0.01 (2)    | -                | -          | -           |  |
|                | Karl 92           | ns   | Stillwell,<br>KS   | -                  | < 0.01 (2)    | -                | -          | -           |  |
|                | NDSU 2375         | ns   | Oxford, IN         | _                  | _             | < 0.01 (2)       | -          | -           |  |
|                | Sharp Spring      | ns   | Stillwell,<br>KS   | -                  | -             | < 0.01 (2)       | -          | -           |  |
|                | NDSU 2375         | ns   | Velva, ND          | _                  | _             | -                | < 0.01 (2) | _           |  |
|                | Forge Spring      | ns   | Centerville,<br>SD | -                  | -             | -                | < 0.01 (2) | -           |  |
| wheat<br>grain | Amidon            | ns   | Velva, ND          | < 0.01 (2)         | -             | -                | -          | < 0.01      |  |
| •              | Oxen              | ns   | Centerville,<br>SD | < 0.01 (2)         | -             | -                | -          | < 0.01      |  |
|                | Cooker 9663       | ns   | Tifton, GA         | -                  | < 0.01 (2)    | < 0.01 (2)       | -          | _           |  |
|                | Steward SW<br>520 | ns   | Oxford, IN         | -                  | < 0.01 (2)    | -                | -          | -           |  |
|                | Karl 92           | ns   | Stillwell,<br>KS   | _                  | < 0.01 (2)    | _                | -          | -           |  |
|                | NDSU 2375         | ns   | Oxford, IN         | -                  | _             | < 0.01 (2)       | -          | -           |  |
|                | Sharp Spring      | ns   | Stillwell,<br>KS   | _                  | _             | < 0.01 (2)       | -          | -           |  |
|                | NDSU 2375         | ns   | Velva, ND          | -                  | _             | _                | < 0.01 (2) | _           |  |
|                | Forge Spring      | ns   | Centerville,<br>SD | -                  | _             | -                | < 0.01 (2) | _           |  |

- = not applicable, experiment not conducted

Ns = not stated in the report

<sup>a</sup> 2 values represent 2 replicate field samples

# Proposed degradation pathway of clothianidin in soil

The metabolic degradation pathway in rotational crops is similar to crops treated directly (Figure 3). The proposed degradation pathway of clothianidin in soil is shown in Figure 4. The aerobic degradation in soil proceeds via 2 main routes with clothianidin being transformed to TZNG by demethylation and to MNG by cleavage of the nitroguanidine moiety. Possibly both metabolites were

further degraded to NTG. The third route proceeds by transformation of the nitroguanidine function to to form TZMU. The metabolisation of clothianidin further progressed to  $CO_2$ .

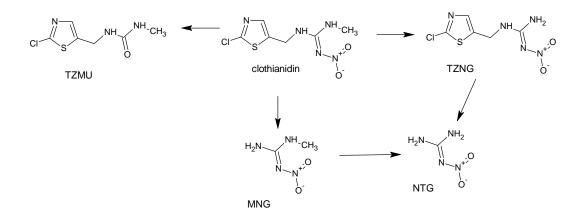



Figure 4 Proposed degradation pathway of clothianidin in soil7

#### Environmental fate in water/sediment systems

The Meeting received information on the fate of clothianidin after hydrolysis or photolysis in water. Studies were carried out with (nitroimino-<sup>14</sup>C)clothianidin and (thiazolyl-2-<sup>14</sup>C)clothianidin (Figure 1).

# Hydrolysis in water

## Study 1

The hydrolysis of [thiazolyl-<sup>14</sup>C]-labelled clothianidin in sterile aqueous buffer solutions was investigated under laboratory conditions (chemical purity > 98%, radiochemical purity > 99%) (Lewis, 2000, THP-0024). The actual test substance concentration at initiation was 0.3 mg/L in aqueous buffer with 0.7% v/v ACN as cosolvent. Sterile solutions at pH 4 were prepared as 0.01 M potassium hydrogen phtalate buffer, at pH 5 as 0.01 M sodium citrate buffer, at pH 7 as 0.01 M TRIS maleic acid buffer and at pH 9 as 0.01 M sodium tetraborate/boric acid buffer. Vials were incubated in the dark at 50 ± 0.5 °C for 5 d for the pre-test at pH 4, 7 and for 25 days at pH 9. The main test was done at 25 ± 0.5 °C for 33 days at pH 4, 7 and 9. Further studies were performed at pH 9 at 62 ± 0.5 °C for 7 days and at 74 ± 0.5 °C for 2 days. After incubation, samples were extracted on the same day without storage. Extracts were stored at –20 °C for a maximum of 1 week (Gaston, 2010b). Samples were analysed by HPLC and TLC against reference standards for parent, CTNU, TZMU, and ACT.

Results are shown in Table 14. Recovery of total radioactivity ranged between 96–100%. The pH ranged between at 4.11–4.17, 4.99–5.04, 6.92–7.05, and 8.90–9.15 during incubation. The preliminary test showed that clothianidin was stable at pH 4 and pH 7 at 50 °C (< 10% hydrolysis in 5 days), but degraded at pH 9. No degradation of the active ingredient was found after 33 days at pH 5, 7 or 9 at 25 °C (< 6% degradation at pH 9). Experimental half-life (DT<sub>50</sub>) of clothianidin at pH 9 was 14.4 days at 50 °C (preliminary test), 3.7 days at 62 °C and 0.68 days at 74 °C.

Hydrolysis products (identified at pH 9) were ACT, TZMU and CTNU. At 20  $^{\circ}$ C, these products were only present at 1%–2% TAR amounts.

<sup>&</sup>lt;sup>7</sup> Abbreviations for TZMU, TZNG, MNG and NTG are explained in Table 1.

|            | Preliminary test at 50 °C |        |         | Main test at 25 | 5°C     |         | 62 °C  | 74 °C  |
|------------|---------------------------|--------|---------|-----------------|---------|---------|--------|--------|
|            | pH 4                      | pH 7   | pH 9    | рН 5            | pH 7    | pH 9    | pH 9   | pH 9   |
|            | 5 days                    | 5 days | 25 days | 33 days         | 33 days | 33 days | 7 days | 2 days |
|            | %TAR                      | %TAR   | %TAR    | %TAR            | %TAR    | %TAR    | %TAR   | %TAR   |
| parent     | 97.5                      | 95.5   | 29.1    | 99.1            | 98.1    | 93.8    | 27.1   | 14.4   |
| ACT        | -                         | -      | 52.8    | -               | -       | -       | 53.5   | 59.2   |
| CTNU       | -                         | -      | 3.9     | -               | -       | 1.8     | 1.7    | 0.7    |
| TZMU       | -                         | -      | 10.8    | -               | -       | 0.6     | 14.7   | 22.6   |
| unresolved | 0.3                       | 0.6    | 0.7     | 0.7             | 0.3     | 0.6     | 0.7    | 0.5    |
| total      | 97.8                      | 96.1   | 97.3    | 99.8            | 98.4    | 96.8    | 7.7    | 97.3   |

Table 14 Hydrolysis profile at pH 4, 7 and 9 at 50 °C (preliminary test) and at 25 °C, 62 °C and 74 °C (main tests)

-= not detected

## Photodegradation in water

## Study 1

The photolysis of [nitroimino-<sup>14</sup>C]clothianidin and [thiazolyl-2-<sup>14</sup>C]clothianidin in sterile buffer solutions was investigated under laboratory conditions (chemical and radiochemical purity > 99%) (Babczinski and Bornatsch, 2000, THM-0013). The actual test substance concentration at initiation was 0.284–0.305 mg/L in sterile aqueous 0.01 M phosphate buffer at pH 7 with < 1% (v/v) ACN as cosolvent. Solutions were maintained at  $25 \pm 1$  °C and exposed to a Xenon light source for 432 hours (18 days). The wavelength of the light source ranged from 280 to 830 nm and the wavelengths below 290 nm were eliminated by a special UV filter system. The light intensity of the xenon lamp was 1027 W/m2. One hour in the Xenon light was equivalent to 1.25 hrs exposure to midday midsummer sunlight at 40 ° latitude. All test vessels were connected with traps to absorb volatile compounds. Samples were analysed at 1.5–4–24–120–264–432 hrs of irradiation. After incubation, samples were extracted on the same day without storage. Extracts were stored at –20 °C for a maximum of 1 week (Gaston, 2010b). Samples were analysed by TLC and HPLC against reference standards for parent, HMIO, MAI, MG, MIO, MU, TMG, TZMU and FA. Compounds including MIT were identified by LC-MS, high resolution MS, GC-MS and NMR.

Total recoveries of applied radioactivity ranged from 91 to 102% (nitroimino study) and from 94 to 106% (thiazolyl study). The pH remained at 7 during irradiation. Degradation in the dark controls was negligible(less than 3% TRR).

The degradation profile at 18 days is shown in Table 15. Major photolysis products (> 10% of applied radioactivity) were TZMU, MG, FA, MU and CO<sub>2</sub>.

Under the experimental conditions half-life ( $DT_{50}$ ) was 3.3 hrs for clothianidin (mean of 2 labels), 25 days for TZMU (mean of 2 labels), 10 days for HMIO (nitroimino label), 10 days for FA (thiazolyl label) and 6 days for MIT (thiazolyl label). Corresponding  $DT_{90}$  values were 0.4 days for parent, 85 days for TZMU, 32 days for HMIO, 32 days for FA, 19 days for MIT (Schad, 2000a, THM-0016).

|        | [nitroimino- <sup>14</sup> C]<br>clothianidin | [thiazolyl-2- <sup>14</sup> C]<br>clothianidin | dark controls |
|--------|-----------------------------------------------|------------------------------------------------|---------------|
|        | %TAR                                          | %TAR                                           | %TAR          |
| parent | < 0.5                                         | _                                              | 93.8, 104.1   |
| TZMU   | 18.7                                          | 27.5                                           | 1.2, -        |
| MAI    | -                                             | -                                              | < 0.5, -      |
| MIT    | 4.4                                           | 1.6                                            | < 0.5, -      |
| TMG    | 1.0                                           | 1.6                                            | < 0.5, -      |
| MU     | 11.0                                          | _                                              | 0.9, -        |
| MG     | 34.7                                          | _                                              | < 0.5, -      |
| MIO    | 2.4                                           | _                                              | _,_           |

Table 15 Photodegradation profile at pH 7 after 432 h (18 days) irradiation by Xenon light source

|                          | [nitroimino- <sup>14</sup> C]<br>clothianidin | [thiazolyl-2- <sup>14</sup> C]<br>clothianidin | dark controls |
|--------------------------|-----------------------------------------------|------------------------------------------------|---------------|
|                          | %TAR                                          | %TAR                                           | %TAR          |
| HMIO                     | 7.1                                           | -                                              | -,-           |
| FA                       | -                                             | 14.1                                           | -,-           |
| unidentified metabolites | 10.5 <sup>a</sup>                             | 15.4 <sup>b</sup>                              | 1.0, 1.9      |
| CO <sub>2</sub>          | 0.8                                           | 34.1                                           | < 0.1, < 0.1  |
| total                    | 91.0                                          | 94.4                                           | 98.4, 106.3   |

- = not detected

<sup>a</sup> consists of at least 5 fractions (each < 5%TRR)

<sup>b</sup> consists of at least 3 fractions (each < 10% TRR)

#### Study 2

The photolysis of unlabelled clothianidin (purity: 99.8%) under non-sterile conditions was investigated under laboratory conditions (Hellpointer, 1999b, THP-0023). The active ingredient was dissolved in non-buffered highly pure water/ACN (100 + 5, v + v) to yield a concentration of 5.1 mg/L (pH not stated). The samples were irradiated by means of an Hg-lamp (polychromatic light) for 2 hrs at 25 °C. The wavelength of the light source ranged from 295–490 nm and the wavelengths below 295 nm were eliminated by a filter. Light intensity in the range 295–490 nm was 1.28 × 10<sup>19</sup> photons/sec. Samples were removed at 5, 10, 15, 30, 45, 60, 80–90 and 120–144 minutes of irradiation. After incubation, samples were extracted on the same day without storage. Extracts were stored at –20 °C for a maximum of 1 week (Gaston, 2010b). The clothianidin concentration in the samples was determined by HPLC-UV. Two experiments were carried out.

The actual pH and temperature was not measured during irradiation. A very fast degradation of clothianidin was measured. For the 2 experiments, half-lives of 37.4 min and 35.4 min were calculated.

### Proposed degradation pathway of clothianidin in water

The proposed degradation pathway of clothianidin in water is shown in Figure 5. Hydrolysis or photodegradation in water proceeds via the following routes:

- hydrolysis of the parent compound at the methylnitroguanidine part into the methylurea compound (TZMU) and further cleavage into MU and ACT
- hydrolysis of the parent compound to form CTNU and further cleavage into ACT
- formation of the imidazole-based hetero-bicyclic compounds (MIT) via complex cyclization reactions including loss of the nitro group, chlorine elimination and desulfuration. Ring cleavage leads to monocyclic imidazolone degradates (MIO, HMIO), where further ring cleavage gives rise to MG and to formamide (FA) as the cleaved-off element from the bicyclic system which is finally mineralized into CO<sub>2</sub>.
- reduction (denitrification) of the parent compound into the methylguanidine derivative (TMG) which is degraded into MG via cleavage at the methylene bridge.

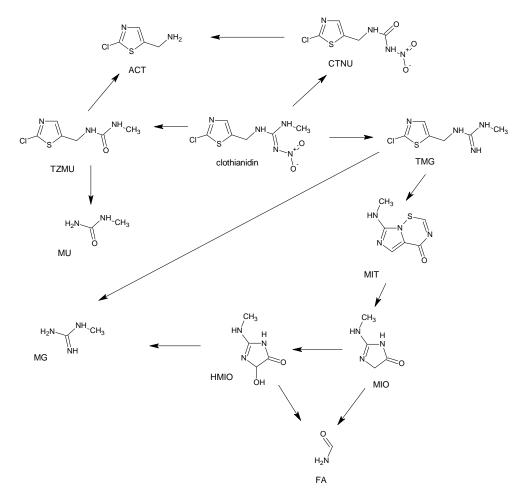



Figure 5 Proposed degradation pathway of clothianidin in water<sup>8</sup>

## METHODS OF RESIDUE ANALYSIS

#### Analytical Methods

The Meeting received information on enforcement/monitoring methods for the determination of clothianidin in foodstuffs of plant and animal origin. In addition, the Meeting received information on analytical methods for the determination of clothianidin and some of its metabolites in foodstuffs of plant and animal origin as used in the various study reports (supervised residue trials, storage stability studies, processing studies and feeding studies). Enforcement/monitoring methods for soil and water were submitted, but were not evaluated by the JMPR.

# Multi-residue methods for enforcement/monitoring

Clothianidin is not susceptible to gas chromatographic separation due to its thermal instability. Multiresidue method testing by DFG-S19 GC methods or the FDA pesticide analytical methods, the most common and widely used methods for enforcement purposes, are not applicable in this case.

The HPLC-MS version of the DFG-S19 method was not verified (confirmed by manufacturer) (Gaston, 2010c).

<sup>&</sup>lt;sup>8</sup> Abbreviations for ACT, CTNU, TZMU, MU, MIT, MG, HMIO, MIO and FA are explained in Table 1.

## Single residue methods for enforcement/monitoring

The methods for plant matrices rely on an initial extraction, usually with ACN/water and after filtration, solvent partition and clean up, the residues are quantified by HPLC-UV or HPLC-MS-MS. Clothianidin (E-isomer) as well as the Z-isomer are metabolites of thiametoxam (E/Z mixture). No information is available, whether HPLC can separate the E and Z isomers (confirmed by manufacturer) (Gaston, 2010c).

# HPLC-MS-MS method 00552 alias CLE586/149, RM-39A, ALM-016, ALM-017, ALM-022, ALM-024, ALM-051, 109240

The <u>original HPLC-MS-MS method 00552</u> (19 August 1999) (Nuesslein, 1999, THA-0014) is intended for use as enforcement/monitoring method in plant materials and was used in several supervised residue trials on nectarines and peaches. Clothianidin residues were extracted from homogenized plant matrices using ACN/water (2:1, v/v). After filtration in the presence of Celite filter aid, the extract was concentrated to the aqueous remainder and partitioned against cyclohexane/EtOAc (1:1, v/v) on a diatomaceous earth column (ChemElut or Chromabond XTR). The eluate was evaporated to dryness and redissolved in ACN/water (2:8, v/v). Clothianidin was determined by HPLC-MS-MS (C18 column, isocratic separation, electrospray, positive ion mode, Q1 m/z = 250, Q3 m/z = 169). Quantification was by use of single point external bracketing standards (0.005 mg/L, equivalent to 0.02 mg/kg in the samples) in ACN/water (2:8, v/v). The reported LOQ was 0.02 mg/kg. Matrix effects for wheat straw, wheat grain and sunflower grain were shown to be less than 20% by comparing the calibration line for 0.0005–0.2 mg/L standards in solvent and in matrix. Validation results are shown in Table 16.

HPLC-UV method 00657 can be used as a confirmatory method. HPLC-MS-MS method 00552 was shown to be specific for clothianidin out of 133 pesticides registered on maize and oilseed rape. Only linuron, CPPU and fludioxinil had the same parent ion, but did not produce the same daughter ions as clothianidin (Gould and Murphy, 2001, M-053921-01-1).

<u>Method CLE586/149</u> (Croucher, 1999, THA-0019) is a modification of method 00552 and was used in <u>apple</u> and <u>pear</u> supervised field trials and storage stability studies on <u>apples</u>. The differences between the CLE586/149-01R (23 June 1999) and CLE586/149-02R (5 July 1999) version are some typographical errors. The extraction method was identical to HPLC-MS-MS method 00552 except that the final residue was taken up in 1 ml instead of 4 ml. Instrument conditions differ from HPLC-MS-MS method 00552. Clothianidin was determined by HPLC-MS-MS (C8 column, isocratic separation, APCI, Q1 m/z = 250 and Q3 m/z = 169). Quantification by external standards (0.005–0.2 mg/L in ACN/water (2:8, v/v)). The reported LOQ was 0.01 mg/kg. Validation results for apples are shown in Table 16.

Method ALM-016 or ALM-017.01 were used in Australian supervised trials on <u>cotton</u> (seed and gintrash). Method ALM-016 or ALM 016.01 (November 2004) are modifications and use APCI (positive polarity, Q1 m/z = 250 and Q3 m/z = 169).

Method ALM-017 and ALM-017.01 were used in Australian supervised trials and storage stability studies on <u>bananas</u> (whole fruit). Method ALM-017 (May 2005) is a modification and uses APCI (positive polarity, Q1 m/z = 250 and Q3 m/z = 169). Method ALM-017.01 (April 2006) is a modification and uses ESI negative ionisation for MS detection (Q1, m/z 248 and Q3 m/z = 55–60). Validation results of both methods are shown in Table 16.

Method ALM-022 and ALM-022.01 were used in Australian supervised trials on <u>sugarcane</u> (billets and trash/tops). Method ALM-022 (October 2004) and ALM-022.01 (November 2004) are modifications and use APCI (positive polarity, Q1 m/z = 250 and Q3 m/z = 169).

Method ALM-024 and ALM-024.02 were used in Australian supervised trials on <u>apples</u>. Method ALM-024 (June 2005) is a modification and uses APCI (positive polarity, Q1 m/z = 250 and Q3 m/z = 169). Method ALM-024.02 (June 2006) is a modification and uses ESI negative ionisation for MS detection (Q1, m/z 248 and Q3 m/z = 57–59). Validation results of both methods are shown in Table 16.

Method ALM-051 and ALM-051.01 were used in supervised field trials on grapes. Method ALM-051 (September 2006) is a modification and uses APCI (positive polarity, Q1 m/z =250 and Q3 m/z = 169). Method ALM-051.01 is a modification and uses electrospray ionisation (negative polarity, Q1, m/z 248 and Q3 m/z = 57–59). The reported LOQ was 0.02 mg/kg. Validation results are shown in Table 16.

Modification A of method 00552 was used in supervised field trials and storage stability studies on <u>peaches</u>. The isocratic HPLC elution was replaced by a gradient elution and detection by positive ion APCI-MS-MS detection (at m/z = 250 for MS1 and 169.0 for MS2). The reported LOQ was 0.02 mg/kg. Validation results are shown in Table 16.

Modification B of method 00552 was used in supervised field trials and storage stability studies on <u>cranberries</u>. The HPLC column was replaced by C8 column and the isocratic HPLC elution was replaced by a gradient elution. The reported LOQ was 0.02 mg/kg. Validation results are shown in Table 16.

Modification C of method 00552 was used in supervised field trials on <u>grapes</u> and <u>apples/pears</u>. The sample portion was increased from 5 g to 25 g or 50 g; a Florisil SPE cartridge was employed to clean-up the final extract and analysis by HPLC-MS instead of HPLC-MS-MS. The reported LOQ was 0.02 mg/kg. Validation results are shown in Table 16.

Modification D of method 00552 was used in supervised field trials on grapes. The sample portion was increased from 5 g to 25 g and the isocratic HPLC elution was replaced by a gradient elution. The reported LOQ was 0.02 mg/kg. Validation results are shown in Table 16.

Modification E of method 00552 was used in supervised field trials and processing studies on grapes. The isocratic HPLC elution was replaced by a gradient elution. The reported LOQ was 0.02 mg/kg. Validation results are shown in Table 16.

<u>Method RM-39-A</u> (1 November 1999) is a modification of method 00552 and was used in field trials on <u>apples</u> and <u>pears</u>—in processing studies on apples, and in storage stability studies on apple commodities. Although the extraction procedure is identical to HPLC-MS-MS method 00552, sample weights and extraction volumes differ. The final residue was taken up in ACN/0.05% aq HAc (2:8, v/v). Instrument conditions differ from HPLC-MS-MS method 00552. Clothianidin was determined by HPLC-MS-MS (Whatman Particil ODS column, gradient elution, electrospray ionisation, positive ion mode, Q1 m/z = 250, Q3 m/z = 169, 168 and 132). Clothianidin was quantified using external bracketing standards (0.10 mg/L). The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 16.

<u>HPLC-MS-MS method 00552/M001</u> (29 March 2000) (Nuesslein, 2000a, THA-0015) was used in supervised trials on head cabbages, carrots, chicory roots, sugarbeets (leaves and roots), sorghum (grain, forage and stover), wheat (grain, forage and straw), rape (seeds and forage), sunflower (seeds and forage) and in storage stability studies on sugarbeet roots, maize (grain, forage and straw) and rapeseed. This method modifies method 00552 by changing the external bracketing standard to a deuterated (methyl-D3) clothianidin internal standard. The deuterated standard was added at a concentration of 0.005 mg/L just before quantification (at the point of redissolution after clean-up on the diatomaceous earth column). The HPLC-MS-MS detection was performed at Q1 m/z = 250 and 253 and Q3 m/z = 169 and 172. The reported LOQ was 0.01–0.02 mg/kg depending on the matrix. Validation results are shown in Table 16.

An independent laboratory validation (ILV) of method 00552/M001 was performed using maize grains as matrix (Perez, 2000, THA-0022). The method was renamed as method 109240. Method 109240 was used in supervised trials on sweet corn, maize (grains, forage and fodder) and rape (seed). The reported LOQ was 0.01 mg/kg. ILV results are shown in Table 16.

Modification A of method 00552/M001 was used in field rotational crop studies, storage stability studies on mustard greens, turnips (tops and roots) and supervised field trials on sorghum. Samples were extracted with a mixture of ACN/water (1:1, v/v). Further clean-up and analysis as for M001. Matrix effects for wheat forage, wheat hay, wheat grain, wheat straw, mustard greens, turnip

tops and turnip roots were shown to be less than 20% by comparing the calibration line for 0.00-0.25 mg/kg fortification levels in solvent and in matrix. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 16.

Modification B of method 00552/M001 (2004) was used in supervised trials on cotton (undelinted seed and gin trash). After addition of the deuterated standard, the solution was cleaned-up on a C-18 SPE column. The eluate was diluted with 0.1% aq HAc and analysed for clothianidin by HPLC-MS-MS. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 16.

HPLC-MS-MS method 00552/M001, supplement E001 (11 March 2002) (Nuesslein, 2002, M-053099-01-1) was used in supervised trials on barley (grain, forage and straw). The method is equal to 00552/M001, but was additionally validated for barley commodities. The reported LOQ was 0.01–0.02 mg/kg depending on the matrix. Validation results are shown in Table 16.

HPLC-MS-MS method 00552/M002 (3 September 2007) (Uceda, 2007, M-292120-01-1) was used in supervised trials on head cabbage and carrots. Residues of clothianidin were extracted with a mixture of ACN/water (70/30, v/v). After centrifugation the extract volume was diluted by adding a deuterated (methyl-D3) clothianidin internal standard, and subjected to HPLC-MS-MS without clean-up (C18 column, isocratic separation, electrospray, positive ion mode, Q1 m/z = 250 and 253, Q3 m/z = 169 for quantification, Q3 m/z = 132 for confirmation and Q3 m/z = 172 for deuterated standard). The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 16.

Modification A of method 00552/M002 was used in field rotational crop studies. Samples were extracted with a mixture of ACN/water (1:1, v/v). In order to analyse TZNG, [<sup>13</sup>C, <sup>15</sup>N]-TZNG was added as internal standard. No clean-up was performed. TZNG was determined by HPLC-MS-MS (C18 column, gradient elution, electrospray, negative ion mode, m/z = 234 and 238). Matrix effects for wheat forage, wheat hay, wheat grain, wheat straw, mustard greens, turnip tops and turnip roots were shown to be less than 20% by comparing the calibration line for 0.00–0.05 mg/kg fortification levels in solvent and in matrix. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 17.

| Commodity                            | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % Recovery mean, range  | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity                                                                      | Reference<br>method             |
|--------------------------------------|--------------------------|-------------------------|--------|-------------------------|------------------|---------------------------------|--------------------------------------------------------------------------------|---------------------------------|
| sugarbeet leaves                     | 0.02                     | 0.02<br>0.2             | 5<br>5 | 90, 87–100<br>88, 86–89 | 6.1%<br>1.3%     | < 0.3LOQ                        | 9 single<br>points<br>0.0005–<br>0.2 mg/L<br>in solvent<br>linear,<br>r> 0.998 | THA-0014,<br>00552,<br>original |
| sugarbeet roots                      | 0.02                     | 0.02<br>0.2             | 5<br>5 | 93, 88–100<br>86, 83–88 | 6.2%<br>2.5%     | < 0.3LOQ                        | idem                                                                           | THA-0014,<br>00552,<br>original |
| rape forage<br>(green material)      | 0.02                     | 0.02<br>0.2             | 3<br>3 | 90, 86–93<br>86, 81–90  | 4.0%<br>5.3%     | < 0.3LOQ                        | idem                                                                           | THA-0014,<br>00552,<br>original |
| rape straw                           | 0.02                     | 0.02<br>0.2             | 3<br>3 | 84, 76–88<br>89, 85–91  | 8.2%<br>3.9%     | < 0.3LOQ                        | idem                                                                           | THA-0014,<br>00552,<br>original |
| rape seed                            | 0.02                     | 0.02<br>0.2             | 5<br>5 | 77, 68–82<br>77, 76–79  | 7.9%<br>1.4%     | < 0.3LOQ                        | idem                                                                           | THA-0014,<br>00552,<br>original |
| sunflower<br>forage<br>(whole plant) | 0.02                     | 0.02<br>0.2             | 3<br>3 | 78, 77–79<br>82, 77–86  | 1.3%<br>5.6%     | < 0.3LOQ                        | idem                                                                           | THA-0014,<br>00552,<br>original |
| sunflower seed                       | 0.02                     | 0.02<br>0.2             | 6<br>6 | 87, 80–94<br>85, 79–91  | 6.9%<br>4.8%     | < 0.3LOQ                        | idem                                                                           | THA-0014,<br>00552,<br>original |

Table 16 Validation results for the determination of clothianidin using HPLC-MS-MS method 00552

| Commodity                        | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n           | % Recovery mean, range                  | RSD <sub>r</sub>     | Control<br>samples<br>mg/kg (n) | Linearity                                                                                               | Reference<br>method             |
|----------------------------------|--------------------------|-------------------------|-------------|-----------------------------------------|----------------------|---------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|
| wheat forage<br>(green material) | 0.02                     | 0.02<br>0.2             | 3<br>3      | 91, 87–97<br>94, 89–99                  | 5.8%<br>5.3%         | < 0.3LOQ                        | idem                                                                                                    | THA-0014,<br>00552,<br>original |
| wheat grain                      | 0.02                     | 0.02<br>0.2             | 5<br>5      | 86, 80–101<br>86, 80–89                 | 11%<br>4.3%          | < 0.3LOQ                        | idem                                                                                                    | THA-0014,<br>00552,<br>original |
| wheat straw                      | 0.02                     | 0.02<br>0.2             | 5<br>5      | 86, 78–95<br>87, 85–92                  | 8.7%<br>3.5%         | < 0.3LOQ                        | idem                                                                                                    | THA-0014,<br>00552,<br>original |
| maize forage<br>(whole plant)    | 0.02                     | 0.02<br>0.2             | 3<br>3      | 84, 83–86<br>87, 84–91                  | 2.1%<br>4.4%         | < 0.3LOQ                        | idem                                                                                                    | THA-0014,<br>00552,<br>original |
| maize cob                        | 0.02                     | 0.02<br>0.2             | 3<br>3      | 91, 89–94<br>82, 80–86                  | 2.9%<br>3.9%         | < 0.3LOQ                        | idem                                                                                                    | THA-0014,<br>00552,<br>original |
| maize grain                      | 0.02                     | 0.02<br>0.2             | 3<br>3      | 84, 80–87<br>87, 83–90                  | 4.2%<br>4.1%         | < 0.3LOQ                        | idem                                                                                                    | THA-0014,<br>00552,<br>original |
| maize straw                      | 0.02                     | 0.02<br>0.2             | 3<br>3      | 72, 70–76<br>74, 68–87                  | 4.8%<br>15%          | < 0.3LOQ                        | idem                                                                                                    | THA-0014,<br>00552,<br>original |
| peach/<br>nectarine              | 0.02                     | 0.02<br>0.2<br>2.0      | 4<br>5<br>4 | 78, 61–100<br>72, 58–87<br>75, 68–82    | 22%<br>17%<br>8%     | < 0.2LOQ                        | 9 single<br>points<br>0.005–<br>10 mg/L<br>in solvent<br>linear,<br>r> 0.9999                           | THR-0564<br>00552,<br>original  |
| peach                            | 0.02                     | 0.02<br>0.4<br>1.0      | 6<br>5<br>3 | 107, 82–121<br>74, 62–81<br>65, 63–67   | 18%<br>10%<br>3%     | < 0.2LOQ                        | 7 single<br>points<br>0.005–<br>0.2 mg/L<br>in solvent<br>linear,<br>r> 0.999                           | THR-0565<br>00552,<br>original  |
| apple                            | 0.01                     | 0.01<br>0.1             | 5<br>5      | 88, 84–94<br>89, 75–106                 | 4.3%<br>13%          | < 0.3LOQ                        | 6 single<br>points<br>0.005–<br>0.2 mg/L<br>in solvent,<br>linear,<br>R2> 0.99                          | THA-0019<br>CLE586/149-<br>02R  |
| pear                             | 0.01                     | 0.01<br>0.1             | 2<br>2      | 89, 81–97<br>100, 91–110                | _                    | < LOQ                           | 6 single<br>points<br>0.005-<br>0.2  mg/L<br>in solvent,<br>$1 \times \text{linear}$ ,<br>$R^2 > 0.999$ | THR-0061<br>CLE586/149-<br>02R  |
| pear                             | 0.01                     | 0.01<br>0.1             | 2<br>2      | 84, 75–93<br>92, 88–96                  |                      | < LOQ                           | 6 single<br>points<br>0.005-<br>0.2  mg/L<br>in solvent,<br>$1 \times \text{linear}$ ,<br>$R^2 > 0.999$ | THR-0063<br>CLE586/149-<br>02R  |
| apple fruit                      | 0.01                     | 0.01<br>0.02<br>0.2     | 2<br>6<br>3 | 108, 108–108<br>94, 91–100<br>86, 85–89 | 0.2%<br>4.0%<br>2.8% | < 0.3LOQ                        | 5 single<br>points<br>0.01–<br>0.5 mg/L<br>in solvent,<br>linear; not<br>shown                          | THR-0066,<br>RM39-A             |

| Commodity                        | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg                      | n                          | % Recovery<br>mean, range                                                 | RSD <sub>r</sub>                  | Control<br>samples<br>mg/kg (n) | Linearity                                                                       | Reference<br>method                    |
|----------------------------------|--------------------------|----------------------------------------------|----------------------------|---------------------------------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| apple fruit                      | 0.01                     | 0.01<br>0.02<br>0.05<br>0.10<br>0.20<br>0.50 | 3<br>4<br>4<br>4<br>5<br>1 | 92, 86–98<br>82, 72–92<br>96, 93–101<br>88, 79–101<br>88, 77–103<br>82, – | 6.2%<br>10%<br>3.7%<br>11%<br>11% | < 0.005                         | -                                                                               | THR-0066,<br>RM39-A                    |
| apple juice                      | 0.01                     | 0.05<br>0.20<br>0.50                         | 1<br>1<br>1                | 96, -<br>88, -<br>81, -                                                   |                                   | < 0.005                         | -                                                                               | THR-0066,<br>RM39-A                    |
| apple wet<br>pomace              | 0.01                     | 0.05<br>0.20<br>0.50                         | 1<br>1<br>1                | 101, -<br>83, -<br>87, -                                                  | _<br>_<br>_                       | < 0.005                         | -                                                                               | THR-0066,<br>RM39-A                    |
| pear                             | 0.01                     | 0.01<br>0.05<br>0.10<br>0.20<br>0.50         | 3<br>2<br>3<br>4<br>1      | 90, 81–97<br>80, 78–83<br>70, 62–79<br>73, 72–75<br>82, –                 | 9.2%<br>4.2%<br>12%<br>1.9%       | < LOQ                           | -                                                                               | THR-0067,<br>RM39-A                    |
| cotton seed                      | 0.02                     | 0.02 4.0                                     | 2<br>3                     | 91, 89–93<br>96, 93–97                                                    | 3.1%<br>2.4%                      | < LOQ                           | 4 single<br>points<br>0.005–1 mg/L<br>in solvent<br>linear,<br>r2> 0.9999       | THA-0557<br>ALM-016.01                 |
| cotton gin trash                 | 0.02                     | 0.02<br>4.0                                  | 3<br>3                     | 101, 91–118<br>107, 97–118                                                | 14%<br>9.8%                       | < LOQ                           | idem                                                                            | THA-0557<br>ALM-016.01                 |
| banana<br>(whole fruit)          | 0.02                     | 0.02 4.0                                     | 4 4                        | 97, 94–102<br>110, 99–119                                                 | 3.7%<br>9.4%                      | < LOQ                           | 4 triple points<br>0.005–<br>1 mg/kg<br>in solvent<br>linear,<br>r2=0.98        | THR-0554<br>ALM-017                    |
| banana<br>(whole fruit)          | 0.02                     | 0.02 1.0                                     | 5<br>5                     | 117, 114–119<br>93, 80–109                                                | 1.8%<br>12%                       | < LOQ                           | 4 duplo points<br>$5-200 \mu g/kg$<br>in solvent<br>linear,<br>$r^{2}>0.99$     | THR-0555<br>ALM-017.01                 |
| sugar cane<br>billets/tops/roots | 0.02                     | 0.02<br>0.24                                 | 33                         | 110, 100–120<br>102, 101–103                                              | 9.1%<br>1.0%                      | < LOQ                           | 4 single<br>points<br>5–60 μg/kg<br>in solvent<br>linear,<br>r2> 0.99           | THR-0552<br>ALM-022.01                 |
| sugarcane<br>billets/tops/roots  | 0.02                     | 0.02<br>0.1                                  | 44                         | 103, 93–112<br>95, 87–105                                                 | 8.6%<br>7.7%                      | < LOQ                           | 4 single<br>points<br>5–400 μg/kg<br>in solvent<br>linear,<br>r2> 0.999         | THR-0553<br>ALM-022                    |
| apple                            | 0.02                     | 0.02<br>4.0                                  | 2<br>2                     | 95, 90–100<br>91, 89–94                                                   |                                   | < 0.5LOQ                        | 4 duplo points<br>5–500 μg/kg<br>in solvent<br>linear,<br>r2> 0.999             | THR-0559<br>ALM-024                    |
| apple                            | 0.02                     | 0.02<br>4.0                                  | 2<br>2                     | 79, 74–84<br>94, 90–97                                                    |                                   | < 0.5LOQ                        | 5 duplo points<br>$10-250 \mu g/kg$<br>in solvent<br>linear,<br>$r^{2} > 0.999$ | THR-0559<br>ALM-024.02                 |
| peach                            | 0.02                     | 0.02<br>0.5<br>5.0                           | 6<br>4<br>4                | 97, 83–116<br>104, 100–106<br>100, 96–108                                 | 13%<br>2.8%<br>5.1%               | < 0.3LOQ                        | 4-8 duplo<br>points<br>0.002-<br>0.5 mg/L<br>in solvent                         | THR-0586<br>00552<br>modification<br>A |

| Commodity                 | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n           | % Recovery mean, range               | RSD <sub>r</sub>     | Control<br>samples<br>mg/kg (n) | Linearity                                                                          | Reference<br>method                     |
|---------------------------|--------------------------|-------------------------|-------------|--------------------------------------|----------------------|---------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|
|                           |                          |                         |             |                                      |                      |                                 | linear,<br>r2> 0.99                                                                |                                         |
| cranberry                 | 0.02                     | 0.01<br>0.1<br>1.0      | 6<br>3<br>3 | 74, 69–79<br>82, 81–82<br>77, 76–79  | 4.9%<br>0.7%<br>2.0% | < LOQ                           | 5 single<br>points<br>0.0004–<br>0.04 mg/L<br>in solvent<br>linear,<br>r2> 0.999   | THR-0570<br>00552<br>modification<br>B  |
| apple                     | 0.02                     | 0.02<br>0.2<br>1.0      | 7<br>5<br>2 | 86, 79–103<br>72, 69–75<br>72, 66–77 | 9 %<br>4%<br>-       | < 0.5LOQ                        | 7 single<br>points<br>0.005–<br>0.2 mg/L<br>in solvent;<br>1× linear,<br>r2> 0.999 | THR-0561<br>00552<br>modification<br>C  |
| pear                      | 0.02                     | 0.2 2.0                 | 33          | 78, 74–83<br>83, 82–84               | 6.1%<br>1.4%         | < 0.5LOQ                        | 8 single<br>points<br>0.005–<br>10 mg/L<br>in solvent<br>1× linear,<br>r2> 0.999   | THR-0562<br>00552<br>modification<br>C  |
| grapes                    | 0.02                     | 0.02<br>0.2<br>2.0      | 3<br>4<br>3 | 86, 78–98<br>84, 78–95<br>88, 83–93  | 12%<br>9.6%<br>5.8%  | < 0.5LOQ                        | 9 single<br>points<br>0.005–<br>10 mg/L<br>in solvent<br>linear,<br>r2> 0.999      | THR-0547,<br>00552<br>modification<br>C |
| grapes                    | 0.02                     | 0.02                    | 3           | 72, 72–73                            | 1.6%                 | < 0.5LOQ                        | 7 single<br>points<br>0.001–<br>0.1 mg/L<br>in solvent<br>1× linear,<br>r> 0.999   | THR-0548,<br>00552<br>modification<br>D |
| grapes                    | 0.02                     | 0.02                    | 2 2         | 79, 74–85<br>88, 88–88               | -                    | < LOQ                           | 5 duplo points<br>0.005–<br>10 mg/L<br>in solvent<br>linear,<br>r2> 0.99           | THR-0549<br>ALM-051                     |
| grapes                    | 0.02                     | 0.02 2.0                | 5<br>2      | 78, 70–89<br>74, 73–74               | 9.2%                 | < 0.2LOQ                        | 7 single<br>points<br>0.0005–<br>0.05 mg/L<br>in solvent<br>1× linear,<br>r> 0.999 | THR-0550<br>00552<br>modification<br>E  |
| dried grapes<br>(raisins) | 0.02                     | 0.02<br>5.0             | 2<br>1      | 69, 68–71<br>84, –                   | -                    | < 0.2LOQ                        | idem                                                                               | idem                                    |
| grape pomace              | 0.02                     | 0.02 5.0                | 2           | 85, 84–85<br>81, –                   | -                    | < 0.2LOQ                        | idem                                                                               | idem                                    |
| grape juice               | 0.02                     | 0.02 5.0                | 2<br>1      | 87, 86–89<br>89, –                   |                      | < 0.2LOQ                        | idem                                                                               | idem                                    |
| sugarbeet roots           | 0.01                     | 0.01                    | 5           | 97, 93–101                           | 3.9%                 | ns                              | 5 single<br>points<br>0.0005–<br>0.1 mg/L<br>in solvent<br>linear,<br>R2> 0.9999   | THA-0015,<br>00552/M001                 |

| Commodity                     | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n           | % Recovery mean, range              | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity                                                                        | Reference method                                                         |
|-------------------------------|--------------------------|-------------------------|-------------|-------------------------------------|------------------|---------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| rape seed                     | 0.01                     | 0.01                    | 5           | 93, 89–97                           | 3.8%             | ns                              | idem                                                                             | THA-0015, 00552/M001                                                     |
| wheat straw                   | 0.02                     | 0.02                    | 5           | 87, 84–90                           | 3.1%             | ns                              | idem                                                                             | THA-0015,<br>00552/M001                                                  |
| maize grain                   | 0.01                     | 0.01<br>0.02<br>0.10    | 2<br>2<br>2 | 74, 74–75<br>85, 84–85<br>80, 74–86 | -                | < 0.3LOQ                        | 5 single<br>points<br>0.0005–<br>0.1 mg/L<br>in solvent<br>linear,<br>R2> 0.9999 | THA-0022,<br>00552/M001<br>(109240)<br>ILV                               |
| maize, forage                 | 0.02                     | 0.2                     | 16          | 82, 68–94                           | 8.5%             | _                               | _                                                                                | THR-0008, 00552/M001                                                     |
| maize, grain                  | 0.01                     | 0.2                     | 15          | 79, 70–101                          | 9.9%             | -                               | =                                                                                | idem                                                                     |
| maize, straw                  | 0.02                     | 0.2                     | 16          | 79, 59–103                          | 16%              | -                               | -                                                                                | idem                                                                     |
| rape, seed                    | 0.01                     | 0.2                     | 16          | 81, 71–99                           | 9.7%             | -                               | -                                                                                | idem                                                                     |
| sugarbeet roots               | 0.01                     | 0.2                     | 16          | 74, 59–87                           | 11%              | -                               | -                                                                                | idem                                                                     |
| maize, forage                 | 0.01                     | 0.01<br>0.1             | 18<br>3     | 91, 65–122<br>76, 73–83             | 16%<br>7.6%      | < 0.3LOQ                        | -                                                                                | M106757-<br>01-1<br>00552/M001<br>(109240)                               |
| maize, grain                  | 0.01                     | 0.01<br>0.1             | 26<br>1     | 86, 74–100<br>74, –                 | 8.9%<br>-        | < 0.3LOQ                        | -                                                                                | idem                                                                     |
| maize, straw                  | 0.01                     | 0.01<br>0.1             | 24<br>3     | 84, 65–105<br>79, 77–82             | 12%<br>3.3%      | < 0.3LOQ                        | -                                                                                | idem                                                                     |
| head cabbage                  | 0.01                     | 0.01<br>0.1             | 4 4         | 94, 91–95<br>93, 92–95              | 2.0%<br>1.5%     | < 0.01                          | -                                                                                | M289508-<br>01-1<br>M289560-<br>01-1<br>00552/M001                       |
| carrot root                   | 0.01                     | 0.01<br>0.1             | 43          | 94, 92–96<br>93, 92–95              | 1.9%<br>1.9%     | < 0.01                          | -                                                                                | M284431-<br>01-1,<br>M284447-<br>01-1,<br>00552/M001                     |
| carrot root                   | 0.01                     | 0.01<br>0.1             | 3<br>3      | 94, 82–109<br>82, 81–84             | 15%<br>1.95      | < 0.01                          | _                                                                                | M328911-<br>01-1,<br>00552/M001                                          |
| chicory root                  | 0.01                     | 0.01<br>0.1             | 3<br>3      | 95, 93–96<br>93, 92–94              | 1.8%<br>1.1%     | < 0.01                          | _                                                                                | M285150-<br>01-1,<br>00552/M001                                          |
| sugarbeet roots               | 0.01                     | 0.01                    | 12          | 85, 62–105                          | 19%              | < 0.01                          | -                                                                                | M020378-<br>01-1,<br>M021156-<br>01-1,<br>M023176-<br>01-1<br>00552/M001 |
| sugarbeet leaves              | 0.02                     | 0.02                    | 10          | 92, 61–127                          | 20%              | < 0.02                          | -                                                                                | M020378-<br>01-1,<br>M021156-<br>01-1,<br>M023176-<br>01-1<br>00552/M001 |
| sugarbeet plant<br>(immature) | 0.02                     | 0.02                    | 6           | 89, 78–98                           | 8.1%             | < 0.02                          | -                                                                                | M020378-<br>01-1,<br>M021156-<br>01-1,<br>M023176-<br>01-1<br>00552/M001 |

| Commodity        | Reported | Spike        | n      | % Recovery             | RSD <sub>r</sub> | Control   | Linearity | Reference              |
|------------------|----------|--------------|--------|------------------------|------------------|-----------|-----------|------------------------|
|                  | LOQ      | level        |        | mean, range            |                  | samples   |           | method                 |
| 1                | mg/kg    | mg/kg        | 2      | 07.00.02               | 7 (0)            | mg/kg (n) |           | 10007(0                |
| sugarbeet roots  | 0.01     | 0.01 0.02    | 3<br>6 | 87, 80–93<br>88, 84–93 | 7.6%<br>4.1%     | < 0.01    | -         | M029762-<br>01-1,      |
|                  |          | 0.02         | 7      | 93, 88–101             | 4.1%<br>6.6%     |           |           | M030310-               |
|                  |          | 0.05         | 5      | 87, 80–94              | 6.3%             |           |           | 01-1,                  |
|                  |          | 0.5          | 1      | 85, -                  | _                |           |           | M030335-               |
|                  |          | 1.0          | 1      | 87, -                  | -                |           |           | 01-1                   |
|                  |          |              |        |                        |                  |           |           | M030342-               |
|                  |          |              |        |                        |                  |           |           | 01-1,                  |
|                  | 0.02     | 0.02         | 0      | 89, 81–96              | 5.00/            | < 0.02    |           | 00552/M001             |
| sugarbeet leaves | 0.02     | 0.02<br>0.05 | 9<br>2 | 89, 81–96<br>90, 88–92 | 5.8%             | < 0.02    | -         | M029762-<br>01-1,      |
|                  |          | 0.05         | 10     | 91, 88–95              | 2.5%             |           |           | M030310-               |
|                  |          | 0.5          | 1      | 80, -                  | -                |           |           | 01-1,                  |
|                  |          | 1.0          | 1      | 85, -                  | _                |           |           | M030335-               |
|                  |          |              |        |                        |                  |           |           | 01-1                   |
|                  |          |              |        |                        |                  |           |           | M030342-               |
|                  |          |              |        |                        |                  |           |           | 01-1,                  |
|                  | 0.01     | 0.01         | 2      | 100 07 102             | 2 10/            | < 0.01    |           | 00552/M001             |
| rape seed        | 0.01     | 0.01         | 3      | 100, 97–103            | 3.1%             | < 0.01    | -         | M023116-<br>01-1,      |
|                  |          |              |        |                        |                  |           |           | M025166-               |
|                  |          |              |        |                        |                  |           |           | 01-1,                  |
|                  |          |              |        |                        |                  |           |           | 00552/M001             |
| rape forage      | 0.02     | 0.02         | 5      | 95, 81–103             | 9.9%             | < 0.02    | -         | M023116-               |
|                  |          |              |        |                        |                  |           |           | 01-1,                  |
|                  |          |              |        |                        |                  |           |           | M025166-               |
|                  |          |              |        |                        |                  |           |           | 01-1                   |
| rono strowy      | 0.02     | 0.02         | 2      | 102, 100–103           | _                | < 0.02    | _         | 00552/M001<br>M025166- |
| rape straw       | 0.02     | 0.02         | 2      | 102, 100–103           | _                | < 0.02    | -         | 01-1                   |
|                  |          |              |        |                        |                  |           |           | 00552/M001             |
| rape seed        | 0.01     | 0.01         | 4      | 83, 68–100             | 17%              | < 0.01    | -         | M041541-               |
| 1                |          |              |        | ·                      |                  |           |           | 01-1,                  |
|                  |          |              |        |                        |                  |           |           | M041576-               |
|                  |          |              |        |                        |                  |           |           | 02-1,                  |
|                  |          |              |        |                        |                  |           |           | M041713-               |
|                  |          |              |        |                        |                  |           |           | 01-1,<br>M041452-      |
|                  |          |              |        |                        |                  |           |           | 01-1                   |
|                  |          |              |        |                        |                  |           |           | 00552/M001             |
| rape forage      | 0.02     | 0.02         | 5      | 84, 76–96              | 9.4%             | < 0.02    | -         | M041541-               |
|                  |          |              |        |                        |                  |           |           | 01-1,                  |
|                  |          |              |        |                        |                  |           |           | M041576-               |
|                  |          |              |        |                        |                  |           |           | 02-1,                  |
|                  |          |              |        |                        |                  |           |           | M041713-<br>01-1,      |
|                  |          |              |        |                        |                  |           |           | M041452-               |
|                  |          |              |        |                        |                  |           |           | 01-1                   |
|                  |          |              |        |                        |                  |           |           | 00552/M001             |
| rape straw       | 0.02     | 0.02         | 4      | 71, 63–85              | 14%              | < 0.02    | -         | M041541-               |
|                  |          |              |        |                        |                  |           |           | 01-1,                  |
|                  |          |              |        |                        |                  |           |           | M041576-               |
|                  |          |              |        |                        |                  |           |           | 02-1,<br>M041713-      |
|                  |          |              |        |                        |                  |           |           | 01-1,                  |
|                  |          |              |        |                        |                  |           |           | M041452-               |
|                  |          |              |        |                        |                  |           |           | 01-1                   |
|                  |          |              |        |                        |                  |           |           | 00552/M001             |
| sunflower seed   | 0.01     | 0.01         | 3      | 82, 74–92              | 11%              | < 0.01    | -         | M026489-               |
|                  |          |              |        |                        |                  |           |           | 0101,                  |
|                  |          |              |        |                        |                  |           |           | 00552/M001             |
| sunflower        | 0.02     | 0.02         | 3      | 99, 96–101             | 2.7%             | < 0.02    | -         | M026489-               |
| forage           |          |              |        |                        |                  |           |           | 0101,                  |

| Commodity                  | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n       | % Recovery mean, range   | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity                                                                     | Reference<br>method                                        |
|----------------------------|--------------------------|-------------------------|---------|--------------------------|------------------|---------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|
| wheat forage               | 0.01                     | 0.01<br>0.2             | 83      | 98, 88–109<br>89, 87–91  | 8.1%<br>2.3%     | < 0.3LOQ                        | 8 replicate<br>points<br>0–0.25 mg/kg<br>in solvent<br>linear, r> 0.99        | 00552/M001<br>THR-0012,<br>00552/M001<br>modification<br>A |
| wheat hay                  | 0.01                     | 0.01<br>0.2             | 6<br>3  | 95, 84–100<br>87, 80–95  | 6.3%<br>8.8%     | < 0.3LOQ                        | idem                                                                          | idem                                                       |
| wheat straw                | 0.01                     | 0.01 0.2                | 9<br>3  | 88, 74–103<br>82, 80–84  | 11%<br>2.5%      | < 0.3LOQ                        | idem                                                                          | idem                                                       |
| wheat grain                | 0.01                     | 0.01<br>0.2             | 8<br>3  | 93, 86–109<br>89, 87–91  | 8.0%<br>2.3%     | < 0.3LOQ                        | idem                                                                          | idem                                                       |
| mustard greens             | 0.01                     | 0.01<br>0.2             | 8<br>3  | 96, 83–112<br>92, 87–95  | 10%<br>4.7%      | < 0.3LOQ                        | idem                                                                          | idem                                                       |
| turnip tops                | 0.01                     | 0.01<br>0.2             | 8<br>3  | 97, 85–111<br>91, 83–96  | 9.1%<br>7.5%     | < 0.3LOQ<br>-0.006              | idem                                                                          | idem                                                       |
| turnip roots               | 0.01                     | 0.01<br>0.2             | 7<br>3  | 100, 86–110<br>88, 87–89 | 9.6%<br>1.1%     | < 0.3LOQ                        | idem                                                                          | idem                                                       |
| sorghum grain              | 0.01                     | 0.01                    | 4       | 91, 80–106               | 8.8%             | < 0.3LOQ                        | 6 single<br>points<br>0.005–<br>0.2 mg/L<br>in solvent<br>linear,<br>R2> 0.99 | M-087784-<br>01-1<br>00552/M001<br>modification<br>A       |
| sorghum forage             | 0.01                     | 0.01                    | 4       | 85, 77–94                | 11%              | < 0.005                         | idem                                                                          | M-087784-<br>01-1<br>00552/M001<br>modification<br>A       |
| sorghum fodder<br>(stover) | 0.01                     | 0.01                    | 4       | 87, 83–90                | 3.3%             | < 0.01                          | idem                                                                          | M-087784-<br>01-1<br>00552/M001<br>modification<br>A       |
| barley grain               | 0.01                     | 0.01<br>0.1             | 3<br>4  | 93, 84–104<br>92, 89–100 | 11%<br>5.8%      | < LOQ                           | _                                                                             | M-053099-<br>01-1<br>00552/M001<br>suppl E001              |
| barley forage              | 0.02                     | 0.02<br>0.2             | 3<br>4  | 96, 88–106<br>92, 86–96  | 9.4%<br>4.9%     | < LOQ                           | -                                                                             | M-053099-<br>01-1<br>00552/M001<br>suppl E001              |
| barley straw               | 0.02                     | 0.02<br>0.2             | 3<br>4  | 88, 87–91<br>88, 81–97   | 2.6%<br>8.9%     | < LOQ                           | _                                                                             | M-053099-<br>01-1<br>00552/M001<br>suppl E001              |
| cotton<br>undelinted seed  | 0.01                     | 0.01<br>0.05            | 11<br>3 | 95, 84–109<br>97, 93–102 | 8.1%<br>4.3%     | < 0.3LOQ                        | 6 triple points<br>0.005–<br>0.25 mg/kg<br>in solvent<br>linear,<br>r2> 0.99  | M-245069-<br>01-1<br>00552/M001<br>modification            |
| cotton<br>gin trash        | 0.01                     | 0.01<br>0.05            | 9<br>3  | 96, 75–110<br>92, 87–97  | 13%<br>5.2%      | < 0.006                         | idem                                                                          | M-245069-<br>01-1<br>00552/M001<br>modification<br>B       |
| onion bulb                 | 0.01                     | 0.01<br>0.1             | 5<br>5  | 95, 90–108<br>93, 81–100 | 7.7%<br>8.7%     | < 0.3LOQ                        | 0.05–10 μg/L<br>in solvent<br>1× linear,<br>r> 0.99                           | M292120-<br>01-1,<br>00552/M002                            |

| Commodity    | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n           | % Recovery mean, range          | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity | Reference<br>method            |
|--------------|--------------------------|-------------------------|-------------|---------------------------------|------------------|---------------------------------|-----------|--------------------------------|
| carrot roots | 0.01                     | 0.01<br>0.1             | 4<br>4      | 85, 83–87<br>97, 94–98          | 2.0%<br>2.0%     | < 0.01                          | -         | M296527-<br>01-1<br>00552/M002 |
| head cabbage | 0.01                     | 0.01<br>0.1<br>1.0      | 4<br>3<br>1 | 88, 79–96<br>88, 85–90<br>96, – | 11%<br>2.9%<br>- | < 0.01                          | _         | M293046-<br>01-1<br>00552/M002 |

ns = not stated

| Table 17 Validation results for the determination of TZNG | using HPLC-MS-MS method 00552 |
|-----------------------------------------------------------|-------------------------------|
|                                                           |                               |

| Commodity      | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n | % Recovery<br>Mean, range | RSD <sub>r</sub> | Control<br>samples<br>mg/kg | Linearity                                                            | Reference,<br>method                      |
|----------------|--------------------------|-------------------------|---|---------------------------|------------------|-----------------------------|----------------------------------------------------------------------|-------------------------------------------|
| wheat forage   | 0.01                     | 0.01                    | 6 | 99, 87–105                | 7%               | < 0.3LOQ                    | 8 replicate points<br>0–0.05 mg/kg<br>in solvent<br>linear, r> 0.999 | THR-0012,<br>00552/M002<br>modification B |
| wheat hay      | 0.01                     | 0.01                    | 6 | 87, 75–99                 | 10%              | < 0.004                     | idem                                                                 | idem                                      |
| wheat straw    | 0.01                     | 0.01                    | 6 | 86, 80–93                 | 5%               | < 0.3LOQ                    | idem                                                                 | idem                                      |
| wheat grain    | 0.01                     | 0.01                    | 6 | 95, 90-101                | 4%               | < 0.3LOQ                    | idem                                                                 | idem                                      |
| mustard greens | 0.01                     | 0.01                    | 6 | 94, 91–98                 | 3%               | < 0.3LOQ                    | idem                                                                 | idem                                      |
| turnip tops    | 0.01                     | 0.01                    | 6 | 92, 80–112                | 12%              | < 0.004                     | idem                                                                 | idem                                      |
| turnip roots   | 0.01                     | 0.01                    | 6 | 96, 85–110                | 9%               | < 0.3LOQ                    | idem                                                                 | idem                                      |

### HPLC-UV method 00657 and modifications

HPLC-UV method 00657 (30 November 2000) (Weber, 2000a, THA-0016) is intended for use as enforcement/monitoring method in plant materials but was not used in any of the supervised residue trials. Clothianidin residues were extracted from homogenized plant matrices using ACN/water (3:1, v/v). After filtration in the presence of Celite filter aid, an aliquot of the extract was concentrated to the aqueous remainder, diluted with water and partitioned against cyclohexane/EtOAc (1:1, v/v) on a ChemElut column. The eluate was evaporated to dryness and redissolved in EtOAc. Further clean-up is performed on a Florisil® column. The eluate is evaporated to dryness and redissolved in ACN/water (20:80, v/v). Clothianidin was determined by HPLC-UV (RP18 column for quantification, RP-CN column for confirmation, gradient elution, UV 270 nm). Quantification was by use of single point external bracketing standards (0.1 or 1.0 mg/L) in ACN/water (2:8, v/v). The reported LOQ was 0.02 mg/kg. Validation results are shown in Table 18.

An independent laboratory validation (ILV) of method 00657 was performed using apple fruits and wheat grain as matrix (Ishii, 2001a, THA-0021). The reported LOQ was 0.02 mg/kg. ILV results are shown in Table 18.

Modification M001 (16 November 2001) is identical to the original method, except that the LOQ was validated at a lower level of 0.01 mg/kg (Weber, 2001a, THA-0017). Quantification was by use of single point external bracketing standards (0.05 or 0.5 mg/L) in ACN/water (2:8, v/v). Validation results are shown in Table 18.

An independent laboratory validation (ILV) of method 00657/M001 was performed using apple fruits and wheat grain as matrix (Brumhard, 2003b, THA-0058). The reported LOQ was 0.01 mg/kg. ILV results are shown in Table 18.

| Commodity      | Reported | Spike | n | % Recovery   | RSD <sub>r</sub> | Control   | Linearity         | Reference,    |
|----------------|----------|-------|---|--------------|------------------|-----------|-------------------|---------------|
|                | LOQ      | level |   | mean, range  |                  | samples   |                   | method        |
|                | mg/kg    | mg/kg |   |              |                  | mg/kg (n) |                   |               |
| apple fruit    | 0.02     | 0.02  | 5 | 83, 78–94    | 7.7%             | < 0.3LOQ  | 6 single points   | THA-0016,     |
|                |          | 0.20  | 5 | 75, 70-80    | 5.8%             |           | 0.01-0.5 mg/L     | original      |
|                |          |       |   |              |                  |           | in solvent,       |               |
|                |          |       |   |              |                  |           | linear, r> 0.9999 |               |
| wheat grain    | 0.02     | 0.02  | 5 | 78, 72–83    | 5.9%             | < 0.3LOQ  | idem              | THA-0016,     |
| -              |          | 0.20  | 5 | 78, 72–82    | 5.2%             |           |                   | original      |
| sugarbeet root | 0.02     | 0.02  | 5 | 76, 71–81    | 5.8%             | < 0.3LOQ  | idem              | THA-0016,     |
| •              |          | 0.20  | 5 | 73, 70–75    | 2.6%             |           |                   | original      |
| rape seed      | 0.02     | 0.02  | 5 | 80, 75-82    | 3.7%             | < 0.3LOQ  | idem              | THA-0016,     |
| 1              |          | 0.20  | 5 | 80, 76-81    | 2.8%             |           |                   | original      |
| apple fruit    | 0.02     | 0.02  | 5 | 81, 78-83    | 2.6%             | < 0.3LOQ  | 6 single points   | THA-0021,     |
|                |          | 0.2   | 5 | 79, 79-80    | 0.7%             |           | 0.02–1.0 mg/L     | original, ILV |
|                |          |       |   |              |                  |           | in solvent        | 0             |
|                |          |       |   |              |                  |           | linear, r> 0.9999 |               |
| wheat grain    | 0.02     | 0.02  | 5 | 80, 79–83    | 2.2%             | < 0.3LOQ  | idem              | THA-0021,     |
| c .            |          | 0.2   | 5 | 80, 79–81    | 1.1%             |           |                   | original, ILV |
| apple fruit    | 0.01     | 0.01  | 5 | 79, 72–86    | 6.7%             | < 0.3LOQ  | 7 single points   | THA-0017,     |
|                |          |       |   |              |                  |           | 0.01-1.0 mg/L     | M001          |
|                |          |       |   |              |                  |           | in solvent,       |               |
|                |          |       |   |              |                  |           | linear, r> 0.9999 |               |
| wheat grain    | 0.01     | 0.01  | 5 | 79, 71–90    | 9.2%             | < 0.3LOQ  | idem              | THA-0017,     |
| -              |          |       |   |              |                  |           |                   | M001          |
| sugarbeet root | 0.01     | 0.01  | 5 | 73, 70–77    | 4.0%             | < 0.3LOQ  | idem              | THA-0017,     |
| •              |          |       |   |              |                  |           |                   | M001          |
| rape seed      | 0.01     | 0.01  | 5 | 82, 79–88    | 4.8%             | < 0.3LOQ  | idem              | THA-0017,     |
|                |          |       |   |              |                  |           |                   | M001          |
| apple fruit    | 0.01     | 0.01  | 5 | 98, 95–101   | 2.1%             | < 0.3LOQ  | 6 single points   | THA-0058,     |
|                |          | 0.1   | 5 | 101, 99-103  | 2.1%             |           | 0.025-1.0 mg/L    | M001, ILV     |
|                |          |       |   |              |                  |           | in solvent        |               |
|                |          |       |   |              |                  |           | linear, r> 0.9999 |               |
| wheat grain    | 0.01     | 0.01  | 5 | 109, 106–112 | 2.4%             | < 0.3LOQ  | idem              | THA-0058,     |
| -              |          | 0.1   | 5 | 84, 64-95    | 15%              |           |                   | M001, ILV     |

Table 18 Validation results for the determination of clothianidin using HPLC-UV method 00657

## HPLC-UV method 00656 and modifications

HPLC-UV method 00656 (30 November 2000) (Weber, 2001b, THA-0029) is intended for use as enforcement/monitoring method in animal materials, but was not used in any of the feeding studies. Clothianidin was extracted from animal matrices using a mixture of diluted  $H_2SO_4$  and ACN/water (4:1, v/v, muscle and eggs) or diluted  $H_2SO_4$  and MeOH (milk). For milk a partitioning of the extracts against n-hexane was performed to remove the fat. For egg extracts a clean-up with a polystyrene column (Chromabond HR-P) was performed. Extracts from muscle, eggs, milk were concentrated to an aqeous remainder by evaporation. The concentrated extracts were partitioned against cyclohexane/EtOAc (1:1, v/v) using a ChemElut column. Further clean-up was performed by column chromatography on Florisil. The eluate was evaporated to near dryness and redissolved in ACN/water (2:8, v/v). Clothianidin was determined by HPLC-UV (RP18 column for quantification, RP-CN column for confirmation, gradient elution and UV 270 nm). Quantification was by use of single point external bracketing standards (0.1 or 1.0 mg/L) in ACN/water (2:8, v/v). The reported LOQ was 0.01– 0.02 mg/kg. Validation results are shown in Table 19.

An independent laboratory validation (ILV) of method 00656 was performed using milk and meat as matrix (Ishii, 2001b, THA-0033). Extractions were conducted with mixtures of 10% HCl and MeOH for both matrices, which is different from the original method. The reported LOQ was 0.01–0.02 mg/kg. ILV results are shown in Table 19.

Modification M001 (16 November 2001) is identical to the original method, except that the LOQ for muscle and eggs was validated at a lower level of 0.01 mg/kg (Weber, 2001c, THA-0030).

Quantification was by use of single point external bracketing standards (0.05 or 0.5 mg/L) in ACN/water (2:8, v/v). Validation results are shown in Table 19.

An independent laboratory validation (ILV) of method 00656/M001 was performed using eggs and meat as matrix (Brumhard, 2003a, THA-0056). The reported LOQ was 0.01 mg/kg. ILV results are shown in Table 19.

| Commodity                            | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % Recovery mean, range    | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity                                                            | Reference,<br>method       |
|--------------------------------------|--------------------------|-------------------------|--------|---------------------------|------------------|---------------------------------|----------------------------------------------------------------------|----------------------------|
| bovine milk <sup>a</sup>             | 0.01                     | 0.01<br>0.10            | 5<br>5 | 80, 74–88<br>78, 71–85    | 6.5%<br>7.8%     | < 0.3LOQ                        | 6 single points<br>0.01–0.5 mg/L<br>in solvent<br>linear, r> 0.9999  | THA-0029,<br>original      |
| chicken egg <sup>a</sup>             | 0.02                     | 0.02<br>0.20            | 5<br>5 | 91, 85–98<br>83, 80–91    | 6.5%<br>5.4%     | < 0.3LOQ                        | idem                                                                 | THA-0029,<br>original      |
| bovine meat <sup>a</sup><br>(muscle) | 0.02                     | 0.02<br>0.20            | 5<br>5 | 84, 80–94<br>85, 82–88    | 6.8%<br>2.7%     | < 0.3LOQ                        | idem                                                                 | THA-0029,<br>original      |
| cow milk                             | 0.01                     | 0.01<br>0.1             | 5<br>5 | 79, 78–80<br>80, 80–80    | 0.9%<br>0.0%     | < 0.3LOQ                        | 6 single points<br>0.02–1.0 mg/L<br>in solvent<br>linear, r> 0.9999  | THA-0033,<br>original, ILV |
| cow meat                             | 0.02                     | 0.02<br>0.2             | 5<br>5 | 80, 80–81<br>80, 80–80    | 0.9%<br>0.0%     | < 0.3LOQ                        | 6 single points<br>0.02–1.0 mg/L<br>in solvent<br>linear, r> 0.9999  | THA-0033,<br>original, ILV |
| chicken egg <sup>a</sup>             | 0.01                     | 0.01                    | 5      | 82, 78–88                 | 5.1%             | < 0.3LOQ                        | 6 single points<br>0.01–1.0 mg/L<br>in solvent<br>linear, r> 0.9999  | THA-0030,<br>M001          |
| bovine meat <sup>a</sup><br>(muscle) | 0.01                     | 0.01                    | 5      | 75, 71–81                 | 5.2%             | < 0.3LOQ                        | idem                                                                 | THA-0030,<br>M001          |
| chicken egg <sup>a</sup>             | 0.01                     | 0.01 0.1                | 5<br>5 | 92, 83–100<br>89, 84–90   | 7.9%<br>3.1%     | < 0.3LOQ                        | 6 single points<br>0.025–1.0 mg/L<br>in solvent<br>linear, r> 0.9999 | THA-0056,<br>M001, ILV     |
| bovine meat (muscle) <sup>a</sup>    | 0.01                     | 0.01<br>0.1             | 4<br>4 | 103, 99–108<br>98, 95–103 | 4.7%<br>3.5%     | < 0.3LOQ                        | idem                                                                 | THA-0056,<br>M001, ILV     |

Table 19, Validation results for the determination of clothianidin using HPLC-UV method 00656

<sup>a</sup>, Origin of the samples was confirmed as chicken eggs, bovine meat and bovine milk (Gaston, 2010c)

# Radiovalidation

#### Study 1

The extraction efficiency of the procedures used in HPLC-MS-MS method 00552 was demonstrated by extracting the aged clothianidin residue from the metabolism studies on apples and maize forage, fodder, and grain (Haas, 2000, THA-0018). Apples were obtained from the [nitroimino-<sup>14</sup>C] clothianidin apple metabolism study (Babczinski, 1999a, THM-0001) and maize forage, fodder and grain were obtained from the [thiazolyl-<sup>14</sup>C] clothianidin maize metabolism study (Ishii, 2000b, THM-0024). The full extraction and clean-up procedures as described in HPLC-MS-MS method 00552 were applied to the samples. Clothianidin was quantified by TLC. The assignment of clothianidin in the extracts was achieved by co-chromatography using a reference standard in two different TLC systems. The extraction efficiency was defined as the amount of clothianidin extracted by the residue analytical method divided by the amount of clothianidin extracted in the metabolism study procedure. Additional samples were extracted using ACN/water (1:1 or 1:2, v/v) followed by filtration in the presence of Celite to determine TRR levels in the present study. Total radioactivity was measured in extracts and solids by (combustion) LSC. Results are shown in Table 20.

Apple samples were harvested on 3 Sept 1997 followed by immediate surface washing. Surface washed samples were homogenised and stored for 9–67 days at -20 °C until extraction (metabolism study). For the present study the homogenised surface washed apple samples were analysed after a total storage period of up to 1043 days (35 months).

Maize samples were harvested 25 November 1998 (forage) or 2 March 1999 (stover, kernels). Homogenised samples were stored for up to 6 months at -20 °C until extraction (metabolism study). For the present study the samples were analysed after a total storage period of up to 498 or 595 days for forage and stover/kernel samples, respectively.

| Matrix                | TRR<br>mg/kg eq    | TRR<br>mg/kg eq              | parent<br>mg/kg                             | parent<br>mg/kg              |                       |
|-----------------------|--------------------|------------------------------|---------------------------------------------|------------------------------|-----------------------|
|                       | Present study      | Original<br>metabolism study | present study<br>HPLC-MS-MS<br>method 00552 | Original<br>metabolism study | Extraction efficiency |
| maize forage          | 0.85 <sup>a</sup>  | 0.89                         | 0.46                                        | 0.57 °                       | 80.7%                 |
| maize stover          | 2.96 <sup>b</sup>  | 3.06                         | 0.89                                        | 1.21 °                       | 73.6%                 |
| maize kernels         | 0.066 <sup>b</sup> | 0.063                        | 0.017                                       | 0.028 <sup>c, d</sup>        | 60.7%                 |
| surface washed apples | 0.053              | 0.051                        | 0.022                                       | 0.026 <sup>e</sup>           | 84.6%                 |

Table 20 Extraction efficiency of procedures used in HPLC-MS-MS method 00552

<sup>a</sup>, Sum of TRR in solids and extracts (ACN/water 2:1, v/v, followed by filtration in the presence of Celite)

<sup>b</sup>, Sum of TRR in solids and extracts (ACN/water 1:1, v/v, followed by filtration in the presence of Celite)

<sup>c</sup>, results taken from original [thiazolyl-2-<sup>14</sup>C]clothianidin metabolism study in maize (Ishii, 2000b, THM-0024)

<sup>d</sup>, does not include 0.010 mg/kg clothianidin obtained after microwave extraction

<sup>e,</sup> results taken from original [nitroimino-<sup>14</sup>C]clothianidin metabolism study in apples (Babczinski, 1999a, THM-0001). The apples were surface washed with a mixture of MeOH/water (1:1, v/v) in the course of the metabolism study and were homogenised afterwards. The clothianidin concentration in the surface washed apples was 0.026 mg/kg.

### Study 2

The extraction efficiency of the procedures used in HPLC-MS-MS method 00624 was demonstrated by extracting the aged clothianidin residue from the metabolism studies on lactating goat (Ishii, 2000e, THA-0031). Ruminant tissues and milk were obtained from the [nitroimino-<sup>14</sup>C] clothianidin goat metabolism study (Spiegel and Weber, 2000, THM-0031). The full extraction and clean-up procedures as described in HPLC-MS-MS method 00624 were applied to the samples. Clothianidin was quantified by HPLC-UV (LiChrospher 60 RP-selectB, 254 nm). The radioactivity present in the different extracts was characterised by co-chromatography with reference compounds (clothianidin, ATMG-Pyr, TZG and TZU) with HPLC. The extraction efficiency was defined as the amount of analyte extracted by the residue analytical method divided by the amount of analyte extracted in the metabolism study procedure. Total radioactive residues (TRR) were measured in extracts and solids by (combustion) LSC. Results are shown in Table 21.

Samples were homogenised and stored for at -18 °C for up to 6 months until extraction (metabolism study). For the present study the homogenised samples were analysed after a total storage period of up to 22 months.

|                       |                           | milk   | muscle | fat   | liver  |
|-----------------------|---------------------------|--------|--------|-------|--------|
| TRR, mg/kg eq         | Present study             | 3.174  | 4.760  | 2.306 | 15.122 |
| TRR, mg/kg eq         | Original metabolism study | 3.123  | 4.336  | 2.120 | 16.474 |
| parent, %TRR          | HPLC-MS-MS method 00624   | 53.6%  | 18.7%  | 26.8% | -      |
| parent, %TRR          | Original metabolism study | 51.2%  | 25.0%  | 36.6% | -      |
| extraction efficiency |                           | 104.5% | 75.0%  | 73.2% | -      |
| ATMG-Pyr, %TRR        | HPLC-MS-MS method 00624   | _      | 6.6%   | 3.1%  | 2.7%   |
| ATMG-Pyr, %TRR        | Original metabolism study | -      | 9.2%   | 6.8%  | 2.5%   |
| extraction efficiency |                           | -      | 72.1%  | 45.6% | 106.4% |
| TZG, %TRR             | HPLC-MS-MS method 00624   | -      | 5.5%   | 4.4%  | 4.6%   |
| TZG, %TRR             | Original metabolism study | -      | 9.0%   | 6.5%  | 6.9%   |

Table 21 Extraction efficiency of procedures used in HPLC-MS-MS method 00624

|                       |                           | milk  | muscle | fat   | liver |
|-----------------------|---------------------------|-------|--------|-------|-------|
| extraction efficiency |                           | -     | 61.9%  | 69.0% | 67.1% |
| TZU, %TRR             | HPLC-MS-MS method 00624   | 9.2%  | 9.5%   | 11.4% | 5.1%  |
| TZU, %TRR             | Original metabolism study | .6%   | 13.0%  | 12.2% | 7.5%  |
| extraction efficiency |                           | 86.6% | 73.2%  | 93.6% | 68.5% |

-, = not detected

#### Additional methods used in field trials and feeding studies

#### HPLC-MS-MS method TI-002-P05-001

HPLC-MS-MS method TI-002-P05-001 (14 February, 2005) (Qadri, 2007, M-289314-01-1) is intended for the determination of clothianidin and its metabolite TMG in root crops and leafy vegetables. The method was used in supervised residue trials on sugarbeets (leaves and roots) and storage stability studies on potato commodities and sugarbeet leaves. Samples were extracted twice with ACN and twice with ACN/ water (1:1, v:v). After centrifugation, a mixture of internal standards (0.05 mg/L each of deuterated (methyl-D3) clothianidin and deuterated TMG) was added to the combined extracts. The sample was diluted with 0.045% HAc. After clean up by C18 SPE, the solvent was evaporated and the residue reconstituted in 0.1%HOAc/ACN (90:10, v/v). Clothianidin and TMG were determined by reverse phase HPLC-MS-MS (C18 column, gradient elution, electrospray, positive ion mode, Q1 m/z =250, 253 and 207, 210, Q3 m/z =169, 172 and 134, 134 for clothianidin and TMG, respectively). Quantification was by internal standardisation. Standards were dissolved in 0.1% formic acid/0.1% formic acid in MeOH (90:10, v/v). TMG was expressed as clothianidin equivalents. The reported LOQ was 0.01 mg/kg for each analyte. Validation results are shown in Tables 22 and 23.

An independent laboratory validation (ILV) of method TI-002-P05-001 was performed using potato tubers as matrix (Brookey, 2006, M-283049-01-1). Only TMG was validated. Calibration standards ranged from  $0.5-25 \ \mu g/L$ , equivalent to  $5-250 \ \mu g/kg$  in the samples. The reported LOQ was 0.01 mg/kg. ILV results are shown in Tables 22 and 23.

Modification A was used in supervised residue trials on sugarbeets (leaves and roots) and processing studies on sugarbeets. Sugarbeet molasses extract was diluted with ACN/0.03% aq HAc (4:6, v/v) instead of 0.045% HAc. The final residue of all sugarbeet commodities was reconstituted in 0.1% formic acid in water / 0.1% formic acid in MeOH (9:1, v/v). TMG was expressed as clothianidin equivalents. The reported LOQ was 0.01–0.02 mg/kg for each analyte, depending on matrix. Validation results for sugarbeet commodities are shown in Tables 22 and 23.

| Commodity        | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n       | % Recovery mean, range    | RSD <sub>r</sub> | Control<br>samples<br>mg/kg | Linearity                                                                | Reference,<br>method              |
|------------------|--------------------------|-------------------------|---------|---------------------------|------------------|-----------------------------|--------------------------------------------------------------------------|-----------------------------------|
| potato tuber     | 0.01                     | 0.01 0.1                | 7<br>7  | 77, 67–88<br>79, 72–84    | 8.5%<br>5.4%     | < 0.3LOQ                    | 6 single points,<br>5–250 μg/kg,<br>in solvent<br>1× linear,<br>r2> 0.99 | M-289314-01-1,<br>original method |
| turnip tops      | 0.01                     | 0.01<br>0.1             | 7<br>7  | 79, 70–87<br>94, 89–100   | 11%<br>17%       | < 0.3LOQ                    | idem                                                                     | M-289314-01-1,<br>original method |
| sugarbeet roots  | 0.01                     | 0.01<br>0.02            | 10<br>3 | 94, 88–109<br>102, 96–109 | 9.5%<br>6.4%     | < 0.3LOQ                    | 6 single points<br>5–250 μg/kg,<br>in solvent<br>1× linear, r> 0.99      | M-281124-01-1,<br>original method |
| sugarbeet leaves | 0.01                     | 0.01<br>0.03            | 10<br>3 | 97, 83–111<br>103, 94–113 | 10%<br>9.3%      | < 0.3LOQ                    | 6 single points<br>5–250 μg/kg,<br>in solvent<br>1× linear, r> 0.99      | M-281124-01-1,<br>original method |

Table 22 Validation results for the determination of clothianidin using HPLC-MS-MS method TI-002-P05-001

| Commodity                   | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n  | % Recovery mean, range | RSD <sub>r</sub> | Control<br>samples<br>mg/kg | Linearity                                                            | Reference,<br>method            |
|-----------------------------|--------------------------|-------------------------|----|------------------------|------------------|-----------------------------|----------------------------------------------------------------------|---------------------------------|
| sugarbeet,<br>refined sugar | 0.01                     | 0.01                    | 11 | 103, 87–118            | 12%              | < 0.0032                    | 6 single points,<br>5–250 μg/kg<br>in solvent<br>1× linear, r> 0.999 | M-282415-01-1<br>modification A |
| sugarbeet,                  | 0.01                     | 0.01                    | 9  | 98, 86–112             | 10%              | < 0.3LOQ                    | idem                                                                 | M-282415-01-1                   |
| dried pulp                  |                          | 0.02                    | 3  | 110, 104–115           | 5.1%             |                             |                                                                      | modification A                  |
| sugarbeet,                  | 0.02                     | 0.02                    | 8  | 91, 77–110             | 11%              | < 0.012                     | idem                                                                 | M-282415-01-1                   |
| molasses                    |                          | 0.05                    | 3  | 103, 98-107            | 4.6%             |                             |                                                                      | modification A                  |

| Table 23, Validation results for the determination of TMG using HPLC-MS-MS method TI-002-P05- |
|-----------------------------------------------------------------------------------------------|
| 001                                                                                           |

| Commodity                   | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n           | % recovery mean, range              | RSD <sub>r</sub>     | Control<br>samples<br>mg/kg | Linearity                                                            | Reference,<br>method                      |
|-----------------------------|--------------------------|-------------------------|-------------|-------------------------------------|----------------------|-----------------------------|----------------------------------------------------------------------|-------------------------------------------|
| potato tuber                | 0.01                     | 0.01 0.1                | 7<br>7      | 75, 67–87<br>75, 53–91              | 8.3%<br>4.1%         | < 0.3LOQ                    | 6 single points<br>5–250 μg/kg,<br>in solvent<br>1× linear, r2> 0.99 | M-289314-01-1,<br>original method         |
| turnip tops                 | 0.01                     | 0.01<br>0.1             | 7<br>7      | 75, 69–81<br>79, 60–83              | 6.2%<br>11%          | < 0.3LOQ                    | idem                                                                 | M-289314-01-1,<br>original method         |
| potato tuber                | 0.01                     | 0.01<br>0.02<br>0.1     | 5<br>5<br>5 | 93, 90–96<br>89, 85–91<br>96, 93–99 | 2.3%<br>3.0%<br>2.5% | < 0.3LOQ                    | 6 single points<br>5–250 μg/kg,<br>in solvent<br>1× linear, r> 0.999 | M-283049-01-1,<br>original method,<br>ILV |
| sugarbeet roots             | 0.01                     | 0.01<br>0.02            | 10<br>3     | 93, 88–101<br>104, 80–119           | 4.1%<br>20%          | < 0.3LOQ                    | 6 single points<br>5–250 μg/kg,<br>in solvent<br>1× linear, r> 0.99  | M-281124-01-1,<br>original method         |
| sugarbeet leaves            | 0.01                     | 0.01<br>0.03            | 10<br>3     | 94, 78–115<br>71, 70–72             | 11%<br>1.7%          | < 0.3LOQ                    | 6 single points<br>5–250 μg/kg,<br>in solvent<br>1× linear, r> 0.99  | M-281124-01-1,<br>original method         |
| sugarbeet,<br>refined sugar | 0.01                     | 0.01                    | 11          | 108, 100–118                        | 6.4%                 | < 0.3LOQ                    | 6 single points,<br>5–250 μg/kg<br>in solvent<br>1× linear, r> 0.999 | M-282415-01-1<br>modification A           |
| sugarbeet,<br>dried pulp    | 0.01                     | 0.01<br>0.02            | 9<br>3      | 91, 82–100<br>92, 92–93             | 6.8%<br>0.7%         | < 0.3LOQ                    | idem                                                                 | M-282415-01-1<br>modification A           |
| sugarbeet,<br>molasses      | 0.01                     | 0.01                    | 8           | 89, 74–114                          | 18%                  | < 0.3LOQ                    | idem                                                                 | M-282415-01-1<br>modification A           |

# HPLC-MS-MS method TI-004-P07-01

HPLC-MS-MS method TI-004-P07-01 (4 April, 2007) (Brungardt, 2007, M-297573-01-1) is intended for the determination of clothianidin in plant matrices. The method was used in supervised residue trials on wheat (grain, forage, hay and straw). Samples were extracted twice with ACN/ water (2:1, v:v). After filtration, an isotopic internal standard (D<sub>3</sub>-clothianidin) was added and the extract was diluted with 0.1% aqueous HAc. After clean up by C18 SPE the eluate was diluted with 0.1% aqueous HAc. Clothianidin was determined by HPLC-MS-MS (XTerra column, gradient elution, electrospray, positive ion mode, Q1 m/z = 250, 253 and Q3 m/z = 169, 172). Quantification was by internal standardisation. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 24.

| Commodity    | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n            | % Recovery mean, range                | RSD <sub>r</sub> | Control<br>samples<br>mg/kg | Linearity                                                           | Reference,<br>method |
|--------------|--------------------------|-------------------------|--------------|---------------------------------------|------------------|-----------------------------|---------------------------------------------------------------------|----------------------|
| wheat forage | 0.01                     | 0.01<br>0.05<br>0.3     | 11<br>3<br>3 | 96, 72–115<br>96, 90–103<br>87, 84–89 | 12%<br>6%<br>2%  | < 0.3LOQ                    | 6 duplo points<br>0.005–0.5 mg/L<br>in solvent;<br>linear, r2> 0.99 | M303764-01-1         |
| wheat grain  | 0.01                     | 0.01<br>0.05            | 11<br>3      | 91, 79–106<br>104, 96–114             | 9%<br>10%        | < 0.3LOQ                    | idem                                                                | M303764-01-1         |
| wheat hay    | 0.01                     | 0.01<br>0.05<br>0.3     | 10<br>3<br>3 | 92, 81–113<br>92, 90–93<br>95, 95–95  | 14%<br>2%<br>0%  | < 0.5LOQ                    | idem                                                                | M303764-01-1         |
| wheat straw  | 0.01                     | 0.01<br>0.05            | 11<br>3      | 88,66–107<br>101,90–110               | 12%<br>11%       | < 0.5LOQ-0.005              | idem                                                                | M303764-01-1         |

Table 24, Validation results for the determination of clothianidin using HPLC-MS-MS method TI-004-P07-01

# HPLC-MS-MS method 157 and 164

HPLC-MS-MS method 157 (18 December 2002) for the determination of clothianidin and its metabolite TMG was used in supervised field trials and storage stability studies on potatoes. Homogenised samples were extracted with ACN/water/ guanidine-HCl (20/80/1, v/v/w), filtered in the presence of Celite, concentrated and diluted with water. The extract was divided in two portions. The portion designated for clothianidin determination was cleaned-up by ChemElut liquid/liquid extraction column. The other portion, designated for TMG determination, was cleaned up by ENVIcarb SPE. The eluate from each portion was evaporated to dryness and reconstituted in 1% HAc. Clothianidin and TMG were seperately analysed by HPLC-MS-MS (Aqua C18 column, gradient elution, turbo ion spray, positive ion mode, Q1 m/z = 250, Q3 m/z = 169 for clothianidin; Q1 m/z = 205, Q3 m/z = 132 for TMG). Clothianidin and TMG were quantified using external standards (0.003–0.06 mg/L for clothianidin, 0.0003–0.006 mg/L for TMG in 1% HAc). The reported LOQ was 0.02 mg/kg for each analyte.

HPLC-MS-MS method 164 (24 October 2003) is a modification of method 157 and was used in supervised field trials on potatoes and grapes-processing studies on grapes and potatoes and storage stability studies on grapes. Grapes and potatoes were extracted as for potatoes in method 157 original. For grape juice, Celite was added prior to addition of the extraction solvents, not prior to filtration (modification 31 July 2003). Raisins required hydration with water for 1 hr prior to extraction and reduced amounts of raisin samples were processed through the analytical procedure (modification 4 August 2003). For potato processed commodities (potato peels, potato granules/flakes and potato chips) the sample amounts and extraction volumes were changed and potato chips extracts required an hexane wash prior to clean-up (modification 27 June 2003). Homogenised potato chips were extracted with ACN/water/HAc/guanidine-HCl (20/80/0.1/1, v/v/v/w), an extra amount of Celite was added and the hexane wash was omitted (modification 6 August 2003). Extraction volumes for potato chips were again changed (modification 12 September 2003). Because of limited supply of TMG, different TMG stock solutions were prepared (modification 13 October 2003). The reported LOQ was 0.02-0.04 mg/kg for each analyte, depending on the matrix. The reported LOQ was 0.02-0.04 mg/kg for each analyte, depending on the matrix. Validation results for grape and potato commodities are shown in Tables 25 and 26.

Modification A of method 164 was used in processing studies on grapes and storage stability studies on grapes. For grapes and grape juice, the original method 164 was used. For grape raisins, Celite was added prior to addition of the extraction solvents, not prior to filtration (modification 12 and 20 November 2003).

Modification B of method 164 (modifications 2006/2007) were used in supervised field trials on head cabbage, cucumbers, summer squash, tomatoes, head lettuce, leaf lettuce, dry soya beans and cotton (seeds and gin by-products), processing studies on tomatoes, soya beans and cottonseeds, and

storage stability studies on lettuce, cauliflower, cucumber, tomato commodities, soya beans and cottonseed commodities. Head cabbages, cauliflower, lettuce, cucumbers, courgettes, tomato commodities (fruit, puree and paste) and soya bean seeds were extracted with 0.1% formic acid in water and filtered, no clean-up was performed. Cottonseed commodities (seed, hulls, gin byproducts, meal, hulls and refined oil) and soya bean commodities (hulls, meal and oil) were extracted with ACN/water/formic acid (20:80:0.1, v/v/v) and filtered. For cottonseed, cottonseed refined oil, soya bean hulls, soya bean meal and soya bean oil no clean-up was performed, for cotton meal, cotton hulls and cotton gin byproducts clean-up was as described in the original method 164. For all extracts, the HPLC column was changed to a Phenomenex Fusion-RP column. The reported LOQ was 0.01– 0.04 mg/kg, depending on matrix. Validation results are shown in Tables 25 and 26.

Table 25, Validation results for the determination of clothianidin using HPLC-MS-MS method 157 and method 164

| Commodity                 | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg    | n                | % recovery mean, range                           | RSD <sub>r</sub>     | Control<br>samples<br>mg/kg | Linearity                                                              | Reference,<br>method                       |
|---------------------------|--------------------------|----------------------------|------------------|--------------------------------------------------|----------------------|-----------------------------|------------------------------------------------------------------------|--------------------------------------------|
| potato tubers             | 0.02                     | 0.02<br>0.5                | 3<br>3           | 92, 83–96<br>81, 79–82                           | 8.2%<br>1.9%         | < 0.3LOQ                    | 4-5 single points<br>0.003-0.06 mg/L<br>in solvent<br>linear, r> 0.999 | THR-0070<br>method 157<br>(original)       |
| grape whole fruit         | 0.02                     | 0.02<br>0.5                | 33               | 88, 87–90<br>95, 92–97                           | 1.7%<br>3.0%         | < 0.3LOQ                    | 5 single points<br>0.003–0.06 mg/L<br>in solvent<br>linear, r> 0.9999  | THR-0068,<br>method 164<br>(original)      |
| grape juice               | 0.02                     | 0.02<br>0.5                | 3<br>3           | 77, 73–81<br>91, 88–93                           | 5.2%<br>2.9%         | < 0.3LOQ                    | idem                                                                   | THR-0068,<br>method 164<br>(original)      |
| grape raisins             | 0.04                     | 0.04<br>1.0                | 3<br>3           | 87, 76–97<br>77, 70–87                           | 12%<br>11%           | < 0.3LOQ                    | idem                                                                   | THR-0068,<br>method 164<br>(original)      |
| potato tubers             | 0.02                     | 0.02<br>0.05<br>0.1<br>0.5 | 8<br>8<br>4<br>1 | 83, 73–91<br>85, 79–95<br>85, 81–92<br>85, 85–85 | 7.3%<br>6.4%<br>6.2% | < 0.3LOQ<br>-0.006          | _                                                                      | THR-0069<br>method 164<br>(original)       |
| potato wet peel           | 0.02                     | 0.02<br>0.5                | 33               | 97, 85–119<br>90, 87–92                          | 20%<br>2.8%          | < 0.3LOQ                    | 5 single points<br>0.003–0.06 mg/L<br>in solvent<br>linear, r> 0.999   | THR-0069,<br>method 164<br>(original)      |
| potato<br>granules/flakes | 0.02                     | 0.02<br>0.5                | 3<br>3           | 74, 61–81<br>77, 76–78                           | 15%<br>1.5%          | < 0.3LOQ                    | idem                                                                   | THR-0069,<br>method 164<br>(original)      |
| potato chips              | 0.04                     | 0.04<br>1.0                | 3<br>3           | 72, 70–76<br>83, 81–87                           | 4.4%<br>3.9%         | < 0.3LOQ                    | idem                                                                   | THR-0069,<br>method 164<br>(original)      |
| head cabbage              | 0.01                     | 0.01<br>5.0                | 33               | 82, 76–86<br>96, 92–99                           | 6.2%<br>3.9%         | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent<br>linear, r> 0.9999     | THR-0572<br>method 164<br>(modification B) |
| cauliflower               | 0.01                     | 0.01<br>5.0                | 33               | 84, 81–91<br>84, 81–88                           | 6.4%<br>4.6%         | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent<br>linear, r> 0.9999     | THR-0573<br>method 164<br>(modification B) |
| lettuce                   | 0.01                     | 0.01<br>5.0                | 33               | 110, 108–112<br>95, 90–103                       | 1.8%<br>7.6%         | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent<br>linear, r> 0.999      | THR-580<br>method 164<br>(modificationB)   |
| lettuce                   | 0.01                     | 0.01<br>5.0                | 3<br>3           | 93, 86–99<br>96, 95–98                           | 7.1%<br>1.4%         | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent<br>linear, r> 0.9999     | THR-581<br>method 164<br>(modification)    |
| cucumber                  | 0.01                     | 0.01<br>5.0                | 3<br>3           | 100, 94–104<br>95, 91–99                         | 5.4%<br>4.3%         | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent                          | THR-0575<br>method 164<br>(modification B) |

| Commodity                | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % recovery<br>mean, range | RSD <sub>r</sub> | Control<br>samples<br>mg/kg | Linearity                                                         | Reference,<br>method                       |
|--------------------------|--------------------------|-------------------------|--------|---------------------------|------------------|-----------------------------|-------------------------------------------------------------------|--------------------------------------------|
|                          |                          |                         |        |                           |                  |                             | linear, r> 0.999                                                  |                                            |
| summer squash            | 0.01                     | 0.01<br>5.0             | 3<br>3 | 91, 89–95<br>96, 95–97    | 3.2%<br>3.3%     | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent<br>linear, r> 0.999 | THR-0577<br>method 164<br>(modification B) |
| tomato whole fruit       | 0.01                     | 0.01<br>5.0             | 33     | 101, 94–107<br>93, 92–94  | 6.6%<br>1.30%    | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent<br>linear, r> 0.999 | THR-0578<br>method 164<br>(modification B) |
| tomato paste             | 0.01                     | 0.01<br>5.0             | 3<br>3 | 84, 80–86<br>87, 85–90    | 4.2%<br>3.3%     | < LOQ                       | idem                                                              | THR-0578<br>method 164<br>(modification B) |
| tomato puree             | 0.01                     | 0.01<br>5.0             | 3<br>3 | 103, 101–106<br>92, 89–93 | 2.8%<br>2.8%     | < LOQ                       | idem                                                              | THR-0578<br>method 164<br>(modification B) |
| cottonseed               | 0.01                     | 0.01<br>5.0             | 3<br>3 | 104, 102–105<br>96, 93–98 | 1.5%<br>2.5%     | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent<br>linear, r> 0.999 | THR-0584<br>method 164<br>(modification B) |
| cotton<br>gin byproducts | 0.01                     | 0.01<br>5.0             | 3<br>3 | 107, 100–112<br>87, 86–88 | 5.7%<br>1.5%     | < LOQ                       | idem                                                              | THR-0584<br>method 164<br>(modification)   |
| cotton meal              | 0.01                     | 0.01<br>5.0             | 3<br>3 | 85, 83–87<br>88, 86–90    | 2.6%<br>2.7%     | < LOQ                       | idem                                                              | THR-0584<br>method 164<br>(modification B) |
| cotton hulls             | 0.01                     | 0.01<br>5.0             | 3<br>3 | 86, 80–91<br>99, 93–104   | 6.7%<br>5.9%     | < LOQ                       | idem                                                              | THR-0584<br>method 164<br>(modification B) |
| cotton refined oil       | 0.01                     | 0.01<br>5.0             | 3<br>3 | 104, 99–112<br>96, 93–98  | 6.5%<br>2.9%     | < LOQ                       | idem                                                              | THR-0584<br>method 164<br>(modification)   |
| soya bean seed           | 0.01                     | 0.01<br>5.0             | 3<br>3 | 75, 73–77<br>74, 71–79    | 2.9%<br>5.3%     | < LOQ                       | 6 single points<br>0.5–20 ng/mL<br>in solvent<br>linear, r> 0.999 | THR-0585<br>method 164<br>(modification B) |
| soya bean hulls          | 0.01                     | 0.01<br>5.0             | 3<br>3 | 111, 109–113<br>95, 93–96 | 1.8%<br>1.9%     | < LOQ                       | idem                                                              | THR-0585<br>method 164<br>(modification B) |
| soya bean meal           | 0.01                     | 0.01<br>5.0             | 3<br>3 | 110, 106–112<br>89, 85–92 | 2.9%<br>3.7%     | < LOQ                       | idem                                                              | THR-0585<br>method 164<br>(modification B) |
| soya bean oil            | 0.01                     | 0.01<br>5.0             | 3<br>3 | 97, 95–98<br>99, 97–101   | 1.7%<br>2.1%     | < LOQ                       | idem                                                              | THR-0585<br>method 164<br>(modification B) |

| Table 26 Validation results for the determination of TMG using HPLC-MS-MS method 164 |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|

| Commodity         | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % Recovery mean, range          | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity                                                                   | Reference,<br>method                  |
|-------------------|--------------------------|-------------------------|--------|---------------------------------|------------------|---------------------------------|-----------------------------------------------------------------------------|---------------------------------------|
| potato tubers     | 0.02                     | 0.02<br>0.5             | 3<br>3 | 100, 87–113<br>92, 83–100       | 13%<br>9.3%      | < 0.3LOQ                        | 4–5 single points<br>0.003–0.06 mg/L<br>in solvent<br>linear, r> 0.999      | THR-0070<br>method 157<br>(original)  |
| grape whole fruit | 0.02                     | 0.02<br>0.5             | 33     | 100, 92–106<br>104, 100–<br>106 | 7.2%<br>3.3%     | < 0.3LOQ                        | 5 single points<br>0.0003–<br>0.006 mg/L<br>in solvent<br>linear, r> 0.9999 | THR-0068,<br>method 164<br>(original) |
| grape juice       | 0.02                     | 0.02<br>0.5             | 3<br>3 | 92, 88–98<br>100, 97–104        | 6.0%<br>3.5%     | < 0.3LOQ-<br>0.0074             | idem                                                                        | THR-0068,<br>method 164<br>(original) |

| Commodity                 | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg    | n                | % Recovery mean, range                                   | RSD <sub>r</sub>         | Control<br>samples<br>mg/kg (n) | Linearity                                                            | Reference,<br>method                          |
|---------------------------|--------------------------|----------------------------|------------------|----------------------------------------------------------|--------------------------|---------------------------------|----------------------------------------------------------------------|-----------------------------------------------|
| grape raisins             | 0.04                     | 0.04<br>1.0                | 3<br>3           | 92, 84–102<br>87, 80–95                                  | 10%<br>8.6%              | < 0.3LOQ                        | idem                                                                 | THR-0068,<br>method 164<br>(original)         |
| potato tubers             | 0.02                     | 0.02<br>0.05<br>0.1<br>0.5 | 8<br>8<br>4<br>1 | 85, 73–101<br>90, 82–97<br>91, 82–98<br>105, 105–<br>105 | 12%<br>6.1%<br>9.0%<br>- | < 0.3LOQ                        | -                                                                    | THR-0069<br>method 164<br>(original)          |
| potato wet peel           | 0.02                     | 0.02<br>0.5                | 3<br>3           | 94, 87–106<br>93, 82–103                                 | 11%<br>11%               | < 0.3LOQ                        | 5 single points<br>0.003–0.06 mg/L<br>in solvent<br>linear, r> 0.999 | THR-0069,<br>method 164<br>(original)         |
| potato<br>granules/flakes | 0.02                     | 0.02<br>0.5                | 3<br>3           | 73, 72–76<br>81, 79–83                                   | 3.1%<br>2.6%             | < 0.3LOQ                        | idem                                                                 | THR-0069,<br>method 164<br>(original)         |
| potato chips              | 0.04                     | 0.04<br>1.0                | 3<br>3           | 95, 90–103<br>91, 86–96                                  | 7.1%<br>5.6%             | < 0.3LOQ                        | idem                                                                 | THR-0069,<br>method 164<br>(original)         |
| head cabbage              | 0.01                     | 0.01<br>5.0                | 3<br>3           | 96, 94–97<br>92, 91–93                                   | 1.6%<br>1.3%             | < LOQ                           | 6 single points<br>0.05–2 ng/mL<br>in solvent<br>linear, r> 0.9999   | THR-0572<br>method 164<br>(modification<br>B) |
| cauliflower               | 0.01                     | 0.01<br>5.0                | 3<br>3           | 73, 72–74<br>82, 80–83                                   | 1.3%<br>1.6%             | < LOQ                           | 6 single points<br>0.05–2 ng/mL<br>in solvent<br>linear, r> 0.9999   | THR-0573<br>method 164<br>(modification<br>B) |
| lettuce                   | 0.01                     | 0.01<br>5.0                | 3<br>3           | 88, 77–98<br>87, 80–94                                   | 12%<br>7.9%              | < LOQ                           | 6 single points<br>0.05–2 ng/mL<br>in solvent<br>linear, r> 0.9999   | THR-0580<br>method 164<br>(modification<br>B) |
| lettuce                   | 0.01                     | 0.01<br>5.0                | 3<br>3           | 86, 80–94<br>87, 86–88                                   | 8.3%<br>1.5%             | < LOQ                           | 6 single points<br>0.05–2 ng/mL<br>in solvent<br>linear, r> 0.9999   | THR-0581<br>method 164<br>(modification<br>B) |
| cotton<br>gin byproducts  | 0.01                     | 0.01<br>5.0                | 3<br>3           | 74, 71–79<br>84, 79–90                                   | 6.2%<br>6.7%             | < LOQ                           | 6 single points<br>0.05–2 ng/mL<br>in solvent<br>linear, r> 0.999    | THR-0584<br>method 164<br>(modification<br>B) |

# HPLC-DAD method R1136SOM13

HPLC-DAD method R1136SOM13, version 14 October 2005, (Orosz, 2005c/d, THA-0003/THA-0004) was used in supervised residue trials on apples and peaches. Homogenised samples were extracted with with a mixture of acetone/water (3/1, v/v), filtered with the aid of Celite, and concentrated by evaporation. The extract was particle against cyclohexane/ethylacetate using an Extrelut column. Further clean-up was performed by column chromatography on Florisil. The final residue was dissolved in ACN/water (2/8, v/v). Clothianidin was determined by HPLC-DAD (SB-C18 column, isocratic elution, 270 nm). Quantification was by external standards in solvent. The reported LOQ was 0.02 mg/kg. Validation results are shown in Table 27.

Table 27, Validation results for the determination of clothianidin using HPLC-DAD method R1136SOM13

| Commodity | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % Recovery<br>mean, range | RSD <sub>r</sub> | Control<br>samples<br>mg/kg | Linearity                                                        | Reference,<br>method |
|-----------|--------------------------|-------------------------|--------|---------------------------|------------------|-----------------------------|------------------------------------------------------------------|----------------------|
| apples    | 0.02                     | 0.02<br>0.2             | 5<br>5 | 76, 65–80<br>75, 61–90    | 8.6%<br>15%      | < 0.3LOQ                    | 5 duplo points<br>0.05–2.0 mg/L<br>in solvent<br>linear by graph | THA-0003<br>THR-0004 |

| Commodity | Reported | Spike | n | % Recovery  | RSD <sub>r</sub> | Control  | Linearity          | Reference, |
|-----------|----------|-------|---|-------------|------------------|----------|--------------------|------------|
|           | LOQ      | level |   | mean, range |                  | samples  |                    | method     |
|           | mg/kg    | mg/kg |   |             |                  | mg/kg    |                    |            |
| peach     | 0.02     | 0.02  | 5 | 84, 65–105  | 18%              | < 0.3LOQ | 5 duplicate points | THA-0004   |
|           |          | 0.2   | 5 | 95, 81–111  | 14%              |          | 0.05-2.0 mg/L      | THR-0005   |
|           |          |       |   |             |                  |          | in solvent         |            |
|           |          |       |   |             |                  |          | linear by graph    |            |

### Brazilian HPLC-UV method

An unnamed HPLC-UV method (2001) was used in Brazilian supervised field trials on cucumbers. Homogenised samples were extracted with acetone, filtered, and concentrated by evaporation. The extract was partioned into DCM. The organic fraction was dried with anhydrous sodium sulfate, evaporated dryness and redissolved in MeOH. Clothianidin was determined by HPLC-UV (ODS2 column, isocratic elution, 265 nm). Quantification was by external standards in solvent. The reported LOQ was 0.11 mg/kg. Validation results are shown in Table 28.

Table 28, Validation results for the determination of clothianidin using the Brazilian HPLC-UV method

| Commodity | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n  | %<br>Recovery<br>mean,<br>range | RSDr         | Control<br>samples<br>mg/kg | Linearity                                                                     | Reference,<br>method |
|-----------|--------------------------|-------------------------|----|---------------------------------|--------------|-----------------------------|-------------------------------------------------------------------------------|----------------------|
| cucumber  | 0.11                     | 0.11<br>0.50            | 33 | 95, 88–98<br>97, 93–100         | 6.8%<br>4.0% | < 0.11                      | 6 single<br>points<br>0.06–<br>2.5 mg/L<br>in solvent<br>linear,<br>r2> 0.999 | THR-0626<br>THR-0627 |

# Japanese HPLC-UV method for fruits

An unnamed HPLC-UV method was used in Japanese supervised field trials and storage stability studies on apples, pears, apricots, cherries, nectarines, peaches, plums, grapes, cucumbers, eggplants and tomatoes. Stones and peduncles were removed. Homogenised flesh was extracted with acetone, filtered, concentrated by evaporation and cleaned-up by porous kieselgur column, neutral alumina open column (optional), silica cartridge and/or neutral alumina cartridge column. The eluate was evaporated to near dryness and the final residue was dissolved in water or water-MeOH (75:25, v/v). Clothianidin was determined by HPLV-UV (L or ODS-MG-5 or Silica-ODS or ODS-SR5 column, isocratic elution, 265 nm). Quantification was by external standards in solvent. The reported LOQ was 0.01–0.05 mg/kg depending on laboratory and matrix. Validation results are shown in Table 29.

Modification A of the method was used in supervised field trials and storage stability studies on grapes, where clean-up was performed by Porous kieselgur column, followed by Oasis Max clean-up and GC-NH<sub>2</sub> double layer cartridge column. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 29.

Modification B of the method was used in supervised field trials and storage stability studies on persimmon, where extracts were cleaned-up by macroporous diatomaceous earth column or ChemElut column followed by neutral alumina column chromatography. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 29<sup>9</sup>.

 $<sup>^{9}</sup>$  Since no validation results are shown at 0.002–0.005 mg/kg, the validated LOQ is taken as 0.01 mg/kg in the supervised Japanese field trials on apple, peach, grapes, cucumber, eggplant and tomato.

| Commodity             | Reported | Spike        | n      | % Recovery                              | RSD <sub>r</sub> | Control | Linearity                           | Reference,                         |
|-----------------------|----------|--------------|--------|-----------------------------------------|------------------|---------|-------------------------------------|------------------------------------|
|                       | LOQ      | level        |        | mean, range                             |                  | samples |                                     | method                             |
|                       | mg/kg    | mg/kg        |        |                                         |                  | mg/kg   |                                     |                                    |
| apple                 | 0.01     | 0.08         | 2      | 96, 95–96                               | -                | < 0.002 | 5 single points                     | THR-0092                           |
|                       |          | 0.08         | 2      | 98, 98–98                               | -                |         | 0.02–0.8 mg/L<br>in solvent         | silica ODS column                  |
|                       |          |              |        |                                         |                  |         | linear by graph                     | incl Si + Al clean-up              |
| apple                 | 0.01     | 0.1          | 4      | 96, 92–99                               | 3.3%             | < 0.002 | 4 single points                     | THR-0097                           |
| appie                 | 0.01     | 0.1          | 4      | 97, 93–98                               | 2.6%             | × 0.002 | 0.02–2.0 mg/L                       | ODS-MG-5 column                    |
|                       |          |              |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                  |         | in solvent                          | incl Al + Si clean-up              |
|                       |          |              |        |                                         |                  |         | linear by graph                     | 1                                  |
| apple                 | 0.01     | 0.01         | 3      | 105, 100–109                            | 1.2%             | < 0.01  | 5 single points                     | THR-0391                           |
|                       |          | 0.01         | 3      | 103, 100–107                            | 1.2%             |         | 0.025–2.0 mg/L                      | L column                           |
|                       |          | 0.5          | 3      | 96, 95–97                               | 4.4%             |         | in solvent                          | incl Si + Al clean-up              |
| apple                 | 0.01     | 0.5          | 3      | 99, 98–100<br>97, 95–99                 | 3.4%<br>2.2%     | < 0.01  | linear, r> 0.999<br>5 single points | THR-0392                           |
| apple                 | 0.01     | 0.01         | 3      | 95, 92–96                               | 2.2%             | < 0.01  | 0.025–2.0 mg/L                      | ODS A212 column                    |
|                       |          | 1.0          | 3      | 94, 93–95                               | 1.2%             |         | in solvent                          | incl Al clean-up                   |
|                       |          | 1.0          | 3      | 94, 93–95                               | 1.2%             |         | linear by graph                     | vP                                 |
| Japanese pear         | 0.01     | 0.01         | 3      | 104, 103–104                            | 0.6%             | < 0.01  | 5 single points                     | THR-0463                           |
|                       |          | 0.01         | 3      | 107, 107–107                            | 0.0%             |         | 0.025-1.0 mg/L                      | L-column                           |
|                       |          | 0.4          | 3      | 97, 96–98                               | 1.2%             |         | in solvent                          | incl Si + Al clean-up              |
| Ŧ                     | 0.01     | 0.4          | 3      | 95,94–96                                | 1.2%             | .0.01   | linear by graph                     | THE 0464                           |
| Japanese pear         | 0.01     | 0.01<br>0.01 | 4<br>4 | 101, 98–102                             | 1.9%<br>1.7%     | < 0.01  | 4 single points                     | THR-0464<br>SR-5 column            |
|                       |          | 0.01         | 4      | 100, 98–102<br>103, 102–104             | 1.7%<br>0.9%     |         | 0.25–2.0 mg/L<br>in solvent         | incl Al + Si clean-up              |
|                       |          | 0.1          | 4      | 100, 97–101                             | 1.9%             |         | linear by graph                     | iner Ar + Sr cican-up              |
| apricot               | 0.01     | 0.01         | 3      | 82, 76–89                               | 8.2%             | < 0.01  | 5 single points                     | THR-0481                           |
| F                     |          | 0.01         | 3      | 91, 91–91                               | 0.0%             |         | 0.025-2.0 mg/L                      | L column                           |
|                       |          | 0.1          | 3      | 85, 83-86                               | 1.8%             |         | in solvent                          | incl Si+Al clean-up                |
|                       |          | 0.1          | 3      | 92, 91–94                               | 1.7%             |         | linear, r> 0.9999                   |                                    |
| apricot               | 0.01     | 0.01         | 3      | 107, 103–113                            | 5.1%             | < 0.01  | 5 single points                     | THR-0457                           |
|                       |          | 0.01         | 3      | 91, 82–99                               | 9.3%             |         | 0.025–1.0 mg/L                      | L column                           |
|                       |          | 1.0<br>1.0   | 3<br>3 | 86, 86–87<br>91, 90–91                  | 1.2%<br>0.6%     |         | in solvent<br>linear by graph       | incl Al +Si+Al clean-up            |
| apricot               | 0.01     | 0.01         | 3      | 83, 81–88                               | 4.8%             | < 0.01  | 8 single points                     | THR-0458                           |
| upileot               | 0.01     | 0.01         | 3      | 90, 85–97                               | 6.9%             | 0.01    | 0.1–20 mg/L                         | ODS-MG-5 column                    |
|                       |          | 0.1          | 3      | 99, 94–102                              | 4.4%             |         | in solvent                          | incl Al+Si clean-up                |
|                       |          | 0.1          | 3      | 96, 94–97                               | 1.6%             |         | linear by graph                     |                                    |
| cherries              | 0.05     | 0.05         | 3      | 100, 98–103                             | 2.6%             | < 0.05  | 5 single points                     | THR-0492                           |
|                       |          | 0.05         | 3      | 95, 92–99                               | 3.7%             |         | 0.025-1.0 mg/L                      | Silica-ODS column                  |
|                       |          | 1.0          | 3      | 92, 90–93                               | 1.7%             |         | in solvent                          | incl Al clean-up                   |
| cherries              | 0.01     | 2.0<br>0.01  | 3      | 80, 78–82<br>88, 81–93                  | 2.5%<br>7.1%     | < 0.01  | linear by graph<br>5 single points  | TUD 0402                           |
| cherries              | 0.01     | 0.01         | 3      | 88, 81–93<br>92, 87–96                  | 7.1%<br>5.1%     | < 0.01  | 0.020–2.0 mg/L                      | THR-0493<br>ODS-SR-5 column        |
|                       |          | 0.01         | 3      | 87, 81–91                               | 5.9%             |         | in solvent                          | incl Si clean-up                   |
|                       |          | 0.1          | 3      | 89, 84–92                               | 4.7%             |         | linear by graph                     | iner of erean up                   |
| nectarines            | 0.01     | 0.01         | 3      | 109, 107–110                            | 1.4%             | < 0.01  | 5 single points                     | THR-0360                           |
|                       |          | 0.01         | 3      | 95, 92–97                               | 2.8%             |         | 0.025-2.0 mg/L                      | L column                           |
|                       |          | 0.4          | 3      | 94, 94–95                               | 0.6%             |         | in solvent                          | incl Al+Si clean-up                |
|                       | 0.01     | 0.4          | 3      | 93,90-95                                | 3.1%             | . 0.01  | linear, r> 0.9999                   | THE 02/0                           |
| nectarines            | 0.01     | 0.01         | 3      | 101, 97–108                             | 6.3%             | < 0.01  | 6 single points                     | THR-0360                           |
|                       |          | 0.01<br>0.1  | 3<br>3 | 106, 104–109<br>88, 87–90               | 2.4%<br>2.0%     |         | 0.020–2.0 mg/L<br>in solvent        | ODS-SR5 column<br>incl Si clean-up |
|                       |          | 0.1          | 3      | 87, 85–91                               | 4.0%             |         | linear by graph                     | nier of clean-up                   |
| peach                 | 0.01     | 0.08         | 2      | 97,95–99                                | -                | < 0.002 | 5 single points                     | THR-0102                           |
| Pettern               | 0.01     | 0.08         | 2      | 90, 87–93                               | _                | 0.002   | 0.020–0.8 mg/L                      | Silica ODS column                  |
|                       |          |              | -      | -,                                      |                  |         | in solvent                          | incl Si+Al clean-up                |
|                       |          |              |        |                                         |                  |         | linear by graph                     | _                                  |
| peach                 | 0.01     | 0.4          | 2      | 104, 103–105                            | -                | < 0.01  | 5 single points                     | THR-0112                           |
| pericarb <sup>a</sup> |          | 0.4          | 2      | 100, 98–102                             | -                |         | 0.020–0.8 mg/L                      | Silica ODS column                  |
|                       |          |              |        |                                         |                  |         | in solvent                          | incl Si+Al clean-up                |

Table 29 Validation results for the determination of clothianidin using the Japanese HPLC-UV method

| Commodity             | Reported | Spike        | n             | % Recovery              | RSD <sub>r</sub> | Control | Linearity                          | Reference,                             |
|-----------------------|----------|--------------|---------------|-------------------------|------------------|---------|------------------------------------|----------------------------------------|
|                       | LOQ      | level        |               | mean, range             | 1                | samples |                                    | method                                 |
|                       | mg/kg    | mg/kg        |               |                         |                  | mg/kg   |                                    |                                        |
| -                     |          |              |               |                         |                  |         | linear by graph                    |                                        |
| peach                 | 0.01     | 0.1          | 4             | 91, 87–97               | 5.1%             | < 0.002 | 4 single points                    | THR-0107<br>ODS-MG-5 column            |
|                       |          | 0.1          | 4             | 93, 84–97               | 6.6%             |         | 0.020–1.0 mg/L<br>in solvent       | incl Al+Si clean-up                    |
|                       |          |              |               |                         |                  |         | linear by graph                    | iner Ar i Si clean-up                  |
| peach                 | 0.01     | 0.1          | 4             | 93, 88–94               | 3.2%             | < 0.01  | 5 single points                    | THR-0117                               |
| pericarb <sup>a</sup> |          |              | 4             | 88, 85–93               | 4.1%             |         | 0.020-2.0 mg/L                     | ODS-MG-5 column                        |
|                       |          |              |               |                         |                  |         | in solvent                         | incl Al+Si clean-up                    |
| 1                     | 0.01     | 0.01         | 2             | 00.00.107               | 0.00/            | < 0.01  | linear by graph                    | THD 0516                               |
| plum                  | 0.01     | 0.01<br>0.01 | 3<br>3        | 99, 89–106<br>95, 93–98 | 8.9%<br>2.6%     | < 0.01  | 5 single points<br>0.025–2.0 mg/L  | THR-0516<br>L-column                   |
|                       |          | 0.01         | 3             | 92, 90–94               | 2.3%             |         | in solvent                         | incl Si+Al clean-up                    |
|                       |          | 0.4          | 3             | 95, 94–98               | 2.4%             |         | linear, r> 0.9999                  | op                                     |
| grapes                | 0.01     | 0.2          | 2             | 96, 95–96               | -                | < 0.005 | 5 single points                    | THR-0122                               |
|                       |          | 0.2          | 2             | 96, 95–97               | -                |         | 0.02–0.8 mg/L                      | Silica ODS column                      |
|                       |          |              |               |                         |                  |         | in solvent                         | incl Si+Al clean-up                    |
| aranaa                | 0.01     | 0.1          | 4             | 99, 97–99               | 1.0%             | < 0.002 | linear by graph<br>7 single points | THR-0127                               |
| grapes                | 0.01     | 0.1          | 4             | 99, 97–99<br>96, 89–101 | 5.2%             | < 0.002 | 0.02–20 mg/L                       | ODS-MG-5 column                        |
|                       |          | 0.1          |               | 50, 05 101              | 5.270            |         | in solvent                         | incl Al+Si clean-up                    |
|                       |          |              |               |                         |                  |         | linear by graph                    | Ĩ                                      |
| grapes                | 0.01     | 0.01         | 3             | 98, 96–100              | 2.1%             | < 0.01  | 5 single points                    | THR-0368                               |
|                       |          | 0.01         | 3             | 113, 112–113            | 0.5%             |         | 0.025–2.0 mg/L                     | L-column                               |
|                       |          | 2.0<br>2.0   | 3<br>3        | 97, 96–97<br>97, 97–98  | 0.6%<br>0.6%     |         | in solvent<br>linear, r> 0.9999    | incl Si+Al clean-up                    |
| grapes                | 0.01     | 0.01         | 3             | 97,96–99                | 1.6%             | < 0.01  | 5 single points                    | THR-0369                               |
| Brupes                | 0.01     | 0.01         | 3             | 98, 97–99               | 1.2%             | 0.01    | 0.025–1.0 mg/L                     | L-column                               |
|                       |          | 1.0          | 3             | 89, 87–91               | 2.2%             |         | in solvent                         | modified clean-up                      |
|                       |          | 1.0          | 3             | 80, 77–83               | 3.8%             |         | linear, r2> 0.999                  | (modification A)                       |
| persimmon             | 0.01     | 0.01<br>0.01 | 3<br>3        | 105, 103–108            | 2.7%<br>3.5%     | < 0.01  | 5 single points<br>0.025–1.0 mg/L  | THR-0495                               |
|                       |          | 0.01         | 3             | 93, 91–97<br>89, 84–97  | 5.5%<br>8.1%     |         | in solvent                         | Silica ODS column<br>modified clean-up |
|                       |          | 0.4          | 3             | 91, 90–93               | 1.7%             |         | linear by graph                    | (modification B)                       |
| persimmon             | 0.01     | 0.01         | 3             | 80, 79–81               | 1.4%             | < 0.01  | 6 single points                    | THR-0496                               |
|                       |          | 0.01         | 3             | 82, 79–83               | 2.8%             |         | 0.1-2.0 mg/L                       | ODS-UG-5 column                        |
|                       |          | 0.1          | 3             | 77, 75–81               | 4.2%             |         | in solvent                         | modified clean-up                      |
| cucumber              | 0.01     | 0.1          | 3             | 92, 89–95<br>86, 86–87  | 3.3%             | < 0.005 | linear by graph<br>5 single points | (modification B)<br>THR-0264           |
| cucumber              | 0.01     | 0.2          | $\frac{2}{2}$ | 86, 83–90               | _                | < 0.005 | 0.02–0.8 mg/L                      | silica ODS column                      |
|                       |          | 0.2          | -             | 00,00 >0                |                  |         | in solvent                         | incl Al+Si clean-up                    |
|                       |          |              |               |                         |                  |         | linear by graph                    | _                                      |
| cucumber              | 0.01     | 0.1          |               | 84, 83–86               | 1.7%             | < 0.002 | 4 single points                    | THR-0269                               |
|                       |          | 0.1          | 4             | 84, 82–86               | 2.0%             |         | 0.5–2.0 mg/L<br>in solvent         | L-column                               |
|                       |          |              |               |                         |                  |         | linear by graph                    | incl Al clean-up                       |
| eggplant              | 0.01     | 0.2          | 2             | 93, 92–94               | -                | < 0.005 | 5 single points                    | THR-0294                               |
| 001                   |          | 0.2          | 2             | 94, 92–95               | -                |         | 0.02-0.8 mg/L                      | silica ODS column                      |
|                       |          |              |               |                         |                  |         | in solvent                         | incl Al clean-up                       |
| 1                     | 0.01     | 0.1          |               | 04.00.00                | 4.007            | × 0.000 | linear by graph                    | THD 0000                               |
| eggplant              | 0.01     | 0.1<br>0.1   | 4<br>4        | 84, 80–88<br>78, 77–80  | 4.2%<br>1.6%     | < 0.002 | 4 single points<br>0.5–2.0 mg/L    | THR-0299<br>ODS-2 column               |
|                       |          | 0.1          | 4             | /0, //=00               | 1.070            |         | in solvent                         | incl Al clean-up                       |
|                       |          |              |               |                         |                  |         | linear by graph                    |                                        |
| tomato                | 0.01     | 0.08         | 2             | 98, 98–99               | -                | < 0.002 | 5 single points                    | THR-0304                               |
|                       |          | 0.08         | 2             | 99, 98–100              | -                |         | 0.02–0.8 mg/L                      | Silica ODS column                      |
|                       |          |              |               |                         |                  |         | in solvent                         | incl Si+Al clean-up                    |
| tomato                | 0.01     | 0.1          | 4             | 94, 93–97               | 2.0%             | < 0.002 | linear by graph<br>4 single points | THR-0309                               |
| tomato                | 0.01     | 0.1          | 4             | 94, 93–97<br>94, 93–95  | 2.0%<br>0.9%     | < 0.002 | 4  single points<br>0.02–2.0 mg/L  | ODS-2 column                           |
|                       |          |              |               |                         | 0.970            |         | in solvent                         | incl Al+Si clean-up                    |
|                       |          |              |               | L                       |                  |         | linear by graph                    | _                                      |
| tomato                | 0.05     | 0.05         | 3             | 102, 100–105            | 2.8%             | < 0.05  | 5 single points                    | THR-0541                               |

| Commodity | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg    | n                | % Recovery mean, range                              | RSD <sub>r</sub>             | Control<br>samples<br>mg/kg | Linearity                                                         | Reference,<br>method                           |
|-----------|--------------------------|----------------------------|------------------|-----------------------------------------------------|------------------------------|-----------------------------|-------------------------------------------------------------------|------------------------------------------------|
|           |                          | 0.05<br>2.0<br>2.0         | 3<br>3<br>3      | 99, 95–103<br>96, 95–97<br>97, 97–98                | 4.0%<br>1.0%<br>0.6%         |                             | 0.025–1.0 mg/L<br>in solvent<br>linear, r> 0.9999                 | Silica ODS column<br>incl Al clean-up          |
| tomato    | 0.01                     | 0.01<br>0.01<br>0.1<br>0.1 | 3<br>3<br>3<br>3 | 108, 106–110<br>92, 91–93<br>93, 93–94<br>86, 84–89 | 1.9%<br>1.3%<br>0.6%<br>2.9% | < 0.01                      | 6 single points<br>0.02–2.0 mg/L<br>in solvent<br>linear by graph | THR-0542<br>ODS-SR5 column<br>incl Si clean-up |

<sup>a</sup> peach pericarb is the flesh around the stone

### Japanese HPLC-UV method for cabbages

An unnamed HPLC-UV method was used in Japanese supervised field trials and storage stability studies on broccoli and head cabbage. Homogenised samples were extracted with acetone, filtered, concentrated by evaporation and cleaned-up by porous kieselgur column, neutral alumina cartridge column and/or silica cartridge or Bondelut PSA cartridge. The eluate was evaporated to near dryness and the final residue was dissolved in water-MeOH (75:25, v/v). Clothianidin was determined by HPLV-UV (RP-18 PA column, isocratic elution, 265 nm). Quantification was by external standards in solvent. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 30.

Modification A of the method was used in Japanese supervised field trials and storage stability studies on broccoli. The clean-up steps were changed. The acetone extract was washed with hexane in the presence of sodium chloride and the aquous phase was partitioned into EtOAc. The EtOAc layer was cleaned-up with a Florisil column. The eluate was evaporated to dryness and redissolved in water/ACN (50:50, v/v). Clothianidin was determined by HPLC-UV (ODS-3 column, isocratic elution, 260 nm). The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 30.

| Commodity    | Reported | Spike | n | % Recovery  | RSD <sub>r</sub> | Control | Linearity        | Reference,             |
|--------------|----------|-------|---|-------------|------------------|---------|------------------|------------------------|
|              | LOQ      | level |   | mean, range |                  | samples |                  | method                 |
|              | mg/kg    | mg/kg |   |             |                  | mg/kg   |                  |                        |
| broccoli     | 0.01     | 0.01  | 3 | 99, 94–108  | 7.9%             | < 0.01  | 4 single points; | THR-0370,              |
|              |          | 0.01  | 3 | 92, 89–93   | 2.5%             |         | 0.01-0.4 mg/L;   | RP-18 PA column;       |
|              |          | 0.4   | 3 | 97, 95–98   | 1.6%             |         | in solvent       | incl Si + Al clean-up  |
|              |          | 0.4   | 3 | 96, 94–100  | 3.3%             |         | linear by graph  |                        |
| broccoli     | 0.01     | 0.01  | 3 | 86, 83–87   | 2.7%             | < 0.01  | 5 single points; | THR-0371,              |
|              |          | 0.01  | 3 | 82, 81-83   | 1.2%             |         | 0.05-1.0 mg/L;   | ODS-3 column;          |
|              |          | 0.4   | 3 | 86, 80-90   | 6.2%             |         | in solvent       | modified clean-up      |
|              |          | 0.4   | 3 | 92, 91–94   | 1.7%             |         | linear by graph  | (modification A)       |
| head cabbage | 0.01     | 0.01  | 3 | 78, 75–84   | 6.3%             | < 0.01  | 5 single points; | THR-0505,              |
| _            |          | 0.01  | 3 | 92, 88–97   | 4.9%             |         | 0.025-1.0 mg/L;  | Silica C30 column;     |
|              |          | 0.4   | 3 | 93, 93–94   | 0.6%             |         | in solvent       | incl Al clean-up       |
|              |          | 0.4   | 3 | 93, 89–95   | 3.5%             |         | linear by graph  | _                      |
| head cabbage | 0.01     | 0.01  | 3 | 76, 72–82   | 7.0%             | < 0.01  | 4 single points; | THR-0506               |
| U U          |          | 0.01  | 3 | 76, 73–79   | 4.0%             |         | 0.1–2.0 mg/L;    | ODS column             |
|              |          | 0.1   | 3 | 77, 72–80   | 6.0%             |         | in solvent       | incl Al + PSA clean-up |
|              |          | 0.1   | 3 | 85, 79-80   | 6.7%             |         | linear by graph  |                        |

Table 30, Validation results for the determination of clothianidin using the Japanese HPLC-UV method

## *Japanese HPLC-UV method for soya beans*

An unnamed HPLC-UV method was used in Japanese supervised field trials and storage stability studies on dry soya beans. Homogenised dry soya beans required hydration with water for 30 min to 2 hrs before extraction. Homogenised samples were extracted with acetone, filtered, concentrated by evaporation and cleaned-up by porous kieselgur column, neutral alumina cartridge column and optional silica cartridge or SCX minicolumn. The eluate was evaporated to near dryness and the final

residue was dissolved in water-MeOH (75:25, v/v or 50:50, v/v). Clothianidin was determined by HPLV-UV (C18 or ODS-SR-5 or ODS column, isocratic elution, 265 nm). Quantification was by external standards in solvent. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 31.

| Commodity        | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg    | n                | % Recovery mean, range                               | RSD <sub>r</sub>             | Control<br>samples<br>mg/kg | Linearity                                                                              | Reference,<br>method                                        |
|------------------|--------------------------|----------------------------|------------------|------------------------------------------------------|------------------------------|-----------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| dry soya<br>bean | 0.01                     | 0.01<br>0.01               | 33               | 76, 74–80<br>83, 82–84                               | 4.2%<br>1.4%                 | < 0.01                      | 5 single points<br>0.005–0.2 mg/L<br>in solvent                                        | THR-0520<br>THR-0523<br>excl Si clean-up<br>C18 column      |
| dry soya<br>bean | 0.01                     | 0.01<br>0.01<br>0.1<br>0.1 | 3<br>3<br>3<br>3 | 89, 88–90<br>91, 89–93<br>91, 89–93<br>92, 91–93     | 1.1%<br>2.3%<br>2.2%<br>1.3% | < 0.01                      | linear, r> 0.9999<br>5 single points<br>0.02–1.0 mg/L<br>in solvent<br>linear by graph | THR-0521<br>THR-0524<br>incl Si clean-up<br>ODS-SR-5 column |
| dry soya<br>bean | 0.01                     | 0.01 0.01                  | 33               | 90, 83–104<br>81, 78–83                              | 13%<br>3.3%                  | < 0.01                      | 5 single points<br>0.025–2.0 mg/L<br>in solvent<br>linear, r> 0.9999                   | THR-0525<br>incl Si clean-up<br>ODS column                  |
| dry soya<br>bean | 0.01                     | 0.01<br>0.01<br>0.1<br>0.1 | 3<br>3<br>3<br>3 | 105, 97–110<br>102, 98–105<br>92, 88–94<br>95, 90–98 | 6.7%<br>3.7%<br>3.8%<br>4.6% | < 0.01                      | 6 single points<br>0.02–2.0 mg/L<br>in solvent<br>linear by graph                      | THR-0526<br>incl Si clean-up<br>ODS-SR-5 column             |
| dry soya<br>bean | 0.01                     | 0.01 0.01                  | 33               | 75, 74–76<br>73, 70–75                               | 1.5%<br>3.6%                 | < 0.01                      | 5 single points<br>0.005–0.2 mg/L<br>in solvent<br>linear, r> 0.9999                   | THR-0527<br>incl SCX clean-up<br>C18 column                 |
| dry soya<br>bean | 0.01                     | 0.01<br>0.01<br>0.1<br>0.1 | 3<br>3<br>3<br>3 | 90, 80–96<br>82, 77–87<br>86, 83–88<br>86, 82–89     | 9.7%<br>6.2%<br>2.9%<br>4.2% | < 0.01                      | 6 single points<br>0.02–2.0 mg/L<br>in solvent<br>linear, r> 0.9999                    | THR-0528<br>incl Si clean-up<br>ODS-SR-5 column             |

Table 31, Validation results for the determination of clothianidin using the Japanese HPLC-UV method

# Japanese HPLC-UV method for rice

An unnamed HPLC-UV method was used in Japanese field trials and storage stability studies on dry rice grains. Homogenised dry brown rice grains required hydration with water for 30 min–2 hrs before extraction. Homogenised samples were extracted with acetone, filtered, concentrated by evaporation and cleaned-up by porous kieselgur column, silica cartridge (optional) or C18 column (optional), and neutral alumina cartridge column. The eluate was evaporated to near dryness and the final residue was dissolved in water-MeOH (75:25, v/v) or methanal. Clothianidin was determined by HPLV-UV (silica ODS or ODS-MG-5, isocratic elution or ODS-3 column with gradient elution, 265 nm). Quantification was by external standards in solvent. The reported LOQ was 0.01 mg/kg. Validation results are shown in Table 32<sup>10</sup>.

Table 32Validation results for the determination of clothianidin using the Japanese HPLC-UV method for rice

| Commodity                | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg      | n                | % Recovery<br>mean, range                         | RSD <sub>r</sub>            | Control<br>samples<br>mg/kg | Linearity                                                            | Reference,<br>method                         |
|--------------------------|--------------------------|------------------------------|------------------|---------------------------------------------------|-----------------------------|-----------------------------|----------------------------------------------------------------------|----------------------------------------------|
| dry brown<br>rice grains | 0.01                     | 0.01<br>0.01<br>0.01<br>0.01 | 3<br>3<br>3<br>3 | 97, 96–97<br>92, 78–103<br>97, 96–98<br>93, 91–95 | 0.6%<br>14%<br>1.2%<br>2.2% | < 0.01                      | 5 single points<br>0.025–1.0 mg/L<br>in solvent<br>linear, r> 0.9999 | THR-0411<br>THR-0415<br>THR-0419<br>THR-0423 |

 $<sup>^{10}</sup>$  Since no validation results are shown at 0.004 mg/kg, the validated LOQ is taken as 0.01 mg/kg in the supervised Japanese field trials on rice.

| Commodity   | Reported<br>LOQ | Spike<br>level | n | % Recovery<br>mean, range | RSD <sub>r</sub> | Control samples | Linearity          | Reference,<br>method |
|-------------|-----------------|----------------|---|---------------------------|------------------|-----------------|--------------------|----------------------|
|             | mg/kg           | mg/kg          |   |                           |                  | mg/kg           |                    |                      |
|             |                 | 0.01           | 3 | 88, 93–101                | 4.2%             |                 |                    | THR-0427             |
|             |                 | 0.01           | 3 | 91, 88–95                 | 4.0%             |                 |                    | THR-0435             |
|             |                 | 0.4            | 3 | 93, 89–97                 | 4.3%             |                 |                    | silica ODS column    |
|             |                 | 0.4            | 3 | 89, 80–96                 | 9.4%             |                 |                    |                      |
|             |                 | 0.4            | 3 | 95, 92–97                 | 2.6%             |                 |                    |                      |
|             |                 | 0.4            | 3 | 94, 92–96                 | 2.2%             |                 |                    |                      |
|             |                 | 1.0            | 3 | 90, 88–92                 | 2.3%             |                 |                    |                      |
|             |                 | 1.0            | 3 | 90, 86–94                 | 4.5%             |                 |                    |                      |
| dry brown   | 0.01            | 0.16           | 2 | 96, 93–98                 | -                | < 0.004         | 5 single points    | THR-0200             |
| rice grains |                 | 0.16           | 2 | 92, 92–93                 | -                |                 | 0.020-0.8 mg/L     | THR-0223             |
|             |                 |                |   |                           |                  |                 | in solvent         | THR-0244             |
|             |                 |                |   |                           |                  |                 | linear by graph    | silica ODS column    |
| dry brown   | 0.01            | 0.01           | 3 | 96, 93–99                 | 3.2%             | < 0.01          | 4 single points    | THR-0412             |
| rice grains |                 | 0.01           | 3 | 94, 91–97                 | 3.2%             |                 | 0.25-1.0 mg/L      | THR-0416             |
|             |                 | 0.01           | 3 | 97, 90–102                | 6.3%             |                 | in solvent         | THR-0420             |
|             |                 | 0.01           | 3 | 96, 92–104                | 7.2%             |                 | linear by graph    | THR-0424             |
|             |                 | 0.1            | 3 | 81, 78-84                 | 3.8%             |                 |                    | THR-0428             |
|             |                 | 0.1            | 3 | 90, 88–92                 | 2.3%             |                 |                    | ODS-MG-5 column      |
|             |                 | 0.1            | 3 | 86, 80–90                 | 6.2%             |                 |                    |                      |
|             |                 | 0.1            | 3 | 87, 84–91                 | 4.0%             |                 |                    |                      |
| dry brown   | 0.01            | 0.01           | 3 | 85, 82–90                 | 4.9%             | < 0.01          | 5 single points    | THR-0436             |
| rice grains |                 | 0.01           | 3 | 97, 94–99                 | 3.0%             |                 | 0.020-1.0 mg/L     | ODS-MG-5 column      |
|             |                 | 0.1            | 3 | 85, 81–92                 | 6.9%             |                 | in solvent         |                      |
|             |                 | 0.1            | 3 | 88, 87–90                 | 1.7%             |                 | linear by graph    |                      |
| dry brown   | 0.01            | 0.01           | 3 | 95, 85–100                | 8.9%             | < 0.01          | 5 single points    | THR-0434             |
| rice grains |                 | 0.01           | 3 | 93, 89–95                 | 3.7%             |                 | 0.025-2.0 mg/L     | incl Si clean-up     |
|             |                 | 0.5            | 3 | 95, 94–96                 | 1.2%             |                 | in solvent         | silica ODS column    |
|             |                 | 0.5            | 3 | 91, 90–94                 | 2.5%             |                 | linear, r> 0.999   |                      |
| dry brown   | 0.01            | 0.01           | 3 | 95, 91–99                 | 4.2%             | < 0.01          | 5 single points    | THR-0403             |
| rice grains |                 | 0.01           | 3 | 92, 86–99                 | 7.2%             |                 | 0.025-1.0 mg/L     | THR-0404             |
|             |                 |                |   |                           |                  |                 | in solvent         | incl Si clean-up     |
|             |                 |                |   |                           |                  |                 | linear by graph    | silica ODS column    |
| dry brown   | 0.01            | 0.01           | 3 | 93, 92–95                 | 1.6%             | < 0.01          | 5 single points    | THR-0405             |
| rice grains |                 | 0.01           | 3 | 97, 94–98                 | 2.4%             |                 | 0.020-0.5 mg/L     | THR-0406             |
|             |                 | 0.1            | 3 | 99, 98–100                | 1.2%             |                 | in solvent         | incl Si clean-up     |
|             |                 | 0.1            | 3 | 94, 87–97                 | 6.2%             |                 | linear by graph    | ODS-MG-5 column      |
| dry brown   | 0.01            | 0.2            | 4 | 86, 80–93                 | 7.0%             | < 0.004         | 4 single points    | THR-0205             |
| rice grains |                 | 0.2            | 4 | 91, 85–97                 | 5.4%             |                 | 0.020-1.0 mg/L     | THR-0228             |
|             |                 |                |   |                           |                  |                 | in solvent         | THR-0249             |
|             |                 |                | 1 |                           |                  |                 | linear by graph    | incl Si clean-up     |
|             |                 |                |   |                           |                  |                 |                    | ODS-MG-5 column      |
| dry brown   | 0.01            | 0.01           | 3 | 84, 82–86                 | 2.5%             | < 0.01          | 5 single points    | THR-0441             |
| rice grains |                 | 0.01           | 3 | 87, 85–89                 | 2.4%             |                 | 0.025-2.0 mg/L     | incl C18 clean-up    |
|             |                 | 1.0            | 3 | 97, 96–98                 | 1.0%             |                 | in solvent         | ODS-3 column         |
|             |                 | 1.0            | 3 | 92, 91–94                 | 1.7%             |                 | linear, r2> 0.9999 |                      |

# Japanese HPLC-UV method for dry tea leaves

Several unnamed HPLC-UV methods were used in Japanese field trials and storage stability studies on dry tea leaves. Homogenised dry tea leaves required hydration with water for 2 hours before extraction.

### Version 1

Homogenised samples were extracted with acetone and filtered. After addition of an aq solution of NaCl, the extract was cleaned-up by washing with hexane and partitioning into EtOAc. The EtOAc layer was dried with sodium sulfate and concentrated by evaporation. Further clean-up steps depend on the laboratory. For clean-up 1, the extract was cleaned-up by GC-NH<sub>2</sub> cartridge, OASIS-MAX column and neutral alumina cartridge column. For clean-up 2, the extract was cleaned-up by graphite carbon C18 minicolumn, polystyrene resin mini-column, neutral alumina cartridge column and SCX

minicolumn. The eluate was evaporated to near dryness and the final residue was dissolved in water or water/MeOH (7:3, v/v). Clothianidin was determined by HPLV-UV (L column with gradient elution or ODS-H80 column with isocratic elution, 265 nm). Quantification was by external standards in solvent. The reported LOQ was 0.05 mg/kg. Validation results are shown in Table 33.

#### Version 2

Homogenised samples were extracted with ACN/0.1 M HCl (1:1, v/v) and filtered in the presence of Celite and concentrated by evaporation. Further clean-up steps depend on the laboratory. For cleanup 1, the extract was cleaned up by polystyrene resin column, diatomaceous earth column, neutral alumina column (open column and mini column), and SCX minicolumn. For cleanup 2, the extract was cleaned up by Diaion HP-20 resin column, porous kieselgur column, silica gel column, Si cartridge and neutral alumina cartridge column. The eluate was evaporated to near dryness and the final residue was dissolved in water or 0.05 M NH<sub>4</sub>Cl-MeCN-THR (90:5:5, v/v/v). Clothianidin was determined by HPLV-UV (L column ODS or Lichrospher RP18, isocratic elution, 265 nm). Quantification was by external standards in solvent. The reported LOQ was 0.05 mg/kg. Validation results are shown in Table  $33^{11}$ .

Table 33 Validation results for the determination of clothianidin using the Japanese HPLC-UV method

| Commodity      | Reported | Spike | n | % Recovery  | RSD <sub>r</sub> | Control | Linearity         | Reference,       |
|----------------|----------|-------|---|-------------|------------------|---------|-------------------|------------------|
|                | LOQ      | level |   | mean, range |                  | samples |                   | method           |
|                | mg/kg    | mg/kg |   |             |                  | mg/kg   |                   |                  |
| dry tea leaves | 0.05     | 0.05  | 3 | 92, 89–96   | 4.1%             | < 0.05  | 5 single points   | THR-0088,        |
|                |          | 0.05  | 3 | 93, 91–97   | 3.4%             |         | 0.0025-1 mg/L     | version 1        |
|                |          | 20    | 3 | 89, 86–90   | 2.6%             |         | in solvent        | clean-up 1       |
|                |          | 20    | 3 | 90, 87–90   | 4.2%             |         | linear, r2> 0.99  | L column         |
| dry tea leaves | 0.05     | 0.05  | 3 | 79, 75–85   | 6.7%             | < 0.05  | 5 single points   | THR-0641,        |
|                |          | 0.05  | 3 | 98, 93-101  | 4.2%             |         | 0.00625-0.25 mg/L | version 1        |
|                |          | 10    | 3 | 80, 78-82   | 2.5%             |         | in solvent        | clean-up 2       |
|                |          | 25    | 3 | 84, 80-87   | 4.3%             |         | linear, r> 0.9999 | ODS-H80 column   |
| dry tea leaves | 0.05     | 0.05  | 2 | 95, 95–95   | -                | < 0.04  | 5 single points   | THR-0177,        |
|                |          | 1.6   | 2 | 90, 87–93   | -                |         | 0.02-0.4 mg/L     | version 2        |
|                |          | 40    | 2 | 93, 93–93   | -                |         | in solvent        | clean-up 1       |
|                |          |       |   |             |                  |         | linear by graph   | L column ODS     |
| dry tea leaves | 0.05     | 0.4   | 3 | 94, 89–99   | 5.3%             | < 0.008 | 5 single points   | THR-0182         |
|                |          | 0.4   | 3 | 101, 96-108 | 6.0%             | -0.008  | 0.1-2.0 mg/L      | version 2        |
|                |          |       |   |             |                  |         | in solvent        | clean-up 2       |
|                |          |       |   |             |                  |         | linear by graph   | Lichrospher RP18 |

## Korean HPLC-UV method

An unnamed HPLC-UV method was used in Korean field trials on persimmons for quantification of clothianidin, TZMU, TZNG, MNG and TMG. For clothianidin, TZMU, TZNG and MNG analysis, homogenised samples were extracted with acetone and filtered in the presence of Celite. For TMG analysis, homogenised samples were extracted with ACN/HAc (100+1, v/v) and filtered in the presence of Celite. After addition of an aq solution of NaCl, the extracts were cleaned-up by washing with hexane and partitioning into EtOAc. The EtOAc layer was concentrated by evaporation. Further clean-up steps depend on the analyte. For clothianidin, TZMU and TZNG, the extracts were cleaned-up by neutral alumina SPE cartridge and Silica cartridge. For MNG, the extracts were cleaned-up by neutral alumina SPE cartridge only. For TMG, the extracts were cleaned-up by Silica SPE cartridge and C18 cartridge. The eluate was evaporated to near dryness and the final residue was dissolved in water/MeOH (75:25, v/v). Each analyte was quantified individually by HPLV-UV (C18 column with

<sup>&</sup>lt;sup>11</sup> Since no validation results are shown at 0.008–0.04 mg/kg, the validated LOQ is taken as 0.05 mg/kg in the supervised Japanese field trials on dry tea leaves.

isocratic elution, 265 nm). Quantification was by external standards in solvent. The reported LOQ was 0.01 mg/kg (expressed as analyte). Validation results are shown in Table 34<sup>12</sup>.

| Commodity | Analyte | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % Recovery<br>mean, range | RSD <sub>r</sub> | Control<br>samples<br>mg/kg | Linearity                                                           | Reference,<br>method |
|-----------|---------|--------------------------|-------------------------|--------|---------------------------|------------------|-----------------------------|---------------------------------------------------------------------|----------------------|
| persimmon | parent  | 0.01                     | 0.05<br>0.1             | 3<br>3 | 86, 80–98<br>90, 88–91    | 12%<br>2.0%      | < 0.004                     | 5 single points<br>0.2–2.0 mg/L<br>in solvent<br>linear, r2> 0.9999 | THR-0644             |
| persimmon | TZMU    | 0.01                     | 0.05<br>0.1             | 3<br>3 | 94, 88–101<br>101, 99–103 | 6.8%<br>2.1%     | < 0.01                      | 5 single points<br>0.2–2.0 mg/L<br>in solvent<br>linear, r2> 0.999  | THR-0644             |
| persimmon | TZNG    | 0.01                     | 0.05<br>0.1             | 3<br>3 | 88, 82–100<br>91, 88–93   | 11%<br>3.0%      | < 0.004                     | 5 single points<br>0.2–2.0 mg/L<br>in solvent<br>linear, r2> 0.999  | THR-0644             |
| persimmon | MNG     | 0.01                     | 0.05<br>0.1             | 3<br>3 | 92, 87–100<br>92, 81–110  | 7.4%<br>17%      | < 0.01                      | 5 single points<br>0.3–4.0 mg/L<br>in solvent<br>linear, r2> 0.999  | THR-0644             |
| persimmon | TMG     | 0.01                     | 0.05<br>0.1             | 3<br>3 | 98, 94–106<br>92, 82–94   | 6.4%<br>8.1%     | < 0.01                      | 5 single points<br>0.2–3.0 mg/L<br>in solvent<br>linear, r2> 0.999  | THR-0644             |

Table 34 Validation results for the determination of clothianidin and metabolites using the Korean HPLC-UV method

### HPLC-MS-MS method 00624

HPLC-MS-MS method 00624 (9 June 2000) (Nuesslein, 2000b, THA-0028) is intended for the determination of clothianidin and its metabolites TZG, TZU and ATMG-Pyr in animal matrices, but was not used in feeding studies. Samples of animal tissues (meat, liver or kidney) were extracted twice with a mixture of ACN/water (2:1, v/v) and centrifuged. Samples of animal fat were macerated twice with acetone/water/n-hexane mixture (2:1:3, v/v) and the supernatant was partitioned against nhexane. Milk was diluted with water (1:1, v/v). A mixture of labelled internal standards (D<sub>3</sub>clothianidin, D2-15N-TZG, D2-15N-TZU and D3-ATMG-Pyr) was added to the extracts of meat, liver, kidney, the ACN/water phase of fat, as well as to diluted milk samples. Extracts from tissues were evaporated almost to dryness, taken up in water and cleaned up using a Bond Elut ENV cartridge. Milk samples were applied directly onto the Bond Elut ENV cartridge for clean up. The eluate was concentrated and redissolved in ACN/water (2:8, v/v). Clothianidin, TZG, TZU and ATMG-Pyr were analysed by HPLC-MS-MS (C18, gradient elution, electrospray, positive ion mode). Mass spectrometer parameters were Q1 m/z = 250, 253, Q3 m/z = 169, 172 for clothianidin, Q1 m/z = 191, 194. O3 m/z = 132, 134 for TZG, Q1 m/z = 192, 195, Q3 m/z = 132, 134 for TZU, Q1 m/z = 290, 293, Q3 m/z = 132, 132 for ATMG-Pyr. Quantification was by use of single point internal labelled standards in ACN/water (2:8, v/v) at a final concentration of 0.02 mg/L each. Samples with residue contents above 0.2 mg/L need to be diluted. The reported LOQ was 0.01-0.02 mg/kg, depending on the matrix. Validation results are shown in Tables 35, 36, 37 and 38.

Modification A of the method was used in a feeding study on cows. The method is identical to the original method, except that validation was performed at 0.002 mg/kg for parent compound to lower the LOQ for milk. Results are shown in Tables 35, 36, 37 and 38.

<sup>&</sup>lt;sup>12</sup> Since no validation results are shown at 0.004 mg/kg, the validated LOQ is taken as 0.01 mg/kg in the supervised Korean field trials on persimmon

| Commodity                  | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % Recovery mean, range      | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity                                                                | Reference,<br>method        |
|----------------------------|--------------------------|-------------------------|--------|-----------------------------|------------------|---------------------------------|--------------------------------------------------------------------------|-----------------------------|
| bovine milk <sup>a</sup>   | 0.01                     | 0.01 0.1                | 5<br>5 | 102, 99–105<br>97, 94–101   | 2.1%<br>2.7%     | < 0.3LOQ                        | 9 single points<br>0.002–1.0 mg/L,<br>in solvent,<br>1× linear, r> 0.99  | THA-0028,<br>original       |
| bovine meat <sup>a</sup>   | 0.02                     | 0.02<br>0.2             | 5<br>5 | 100, 96–107<br>94, 92–99    | 4.4%<br>3.1%     | < 0.3LOQ                        | idem                                                                     | THA-0028,<br>original       |
| bovine liver <sup>a</sup>  | 0.02                     | 0.02<br>0.2             | 5<br>5 | 107, 101–111<br>97, 94–102  | 3.8%<br>3.4%     | < 0.3LOQ                        | idem                                                                     | THA-0028,<br>original       |
| bovine kidney <sup>a</sup> | 0.02                     | 0.02<br>0.2             | 5<br>5 | 104, 99–108<br>102, 100–103 | 4.5%<br>1.1%     | < 0.3LOQ                        | idem                                                                     | THA-0028,<br>original       |
| bovine fat <sup>a</sup>    | 0.02                     | 0.02<br>0.2             | 5<br>5 | 92, 88–99<br>86, 83–90      | 5.1%<br>3.4%     | < 0.3LOQ                        | idem                                                                     | THA-0028,<br>original       |
| cow milk                   | 0.002                    | 0.002                   | 3      | 108, 100–116                | 7.4%             | < 0.3LOQ                        | 5 triple points<br>0.002–0.2 mg/L,<br>in solvent,<br>1× linear, r> 0.999 | THR-0071,<br>modification A |

| Table 35 Validat | ion results for the | determination of | clothianidin using | HPLC-MS-MS method 00624 |
|------------------|---------------------|------------------|--------------------|-------------------------|
|                  |                     |                  |                    |                         |

<sup>a</sup> origin of the samples was confirmed as bovine (Gaston, 2010c)

| Table 36 Validation results | for the determination | n of TZG using HPLC-MS-MS method 00624 |
|-----------------------------|-----------------------|----------------------------------------|
|                             |                       |                                        |

| Commodity                  | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % Recovery mean, range  | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity                                                               | Reference,<br>method  |
|----------------------------|--------------------------|-------------------------|--------|-------------------------|------------------|---------------------------------|-------------------------------------------------------------------------|-----------------------|
| bovine milk <sup>a</sup>   | 0.01                     | 0.01<br>0.1             | 5<br>5 | 99, 97–101<br>89, 86–92 | 1.8%<br>2.5%     | < 0.3LOQ                        | 9 single points<br>0.002–1.0 mg/L,<br>in solvent,<br>1× linear, r> 0.99 | THA-0028,<br>original |
| bovine meat <sup>a</sup>   | 0.02                     | 0.02<br>0.2             | 5<br>5 | 95, 78–109<br>83, 82–85 | 12%<br>1.6%      | < 0.3LOQ                        | idem                                                                    | THA-0028,<br>original |
| bovine liver <sup>a</sup>  | 0.02                     | 0.02<br>0.2             | 5<br>5 | 90, 84–92<br>79, 76–81  | 3.6%<br>2.4%     | < 0.3LOQ                        | idem                                                                    | THA-0028,<br>original |
| bovine kidney <sup>a</sup> | 0.02                     | 0.02<br>0.2             | 5<br>5 | 86, 82–88<br>82, 81–83  | 2.7%<br>1.2%     | < 0.3LOQ                        | idem                                                                    | THA-0028,<br>original |
| bovine fat <sup>a</sup>    | 0.02                     | 0.02<br>0.2             | 5<br>5 | 88, 82–91<br>77, 72–81  | 4.0%<br>5.3%     | < 0.3LOQ                        | idem                                                                    | THA-0028,<br>original |

<sup>a</sup> origin of the samples was confirmed as bovine (Gaston, 2010c)

| Table 37 V | alidation results | for the determ | ination of TZU | using HPLC-MS | -MS method 00624 |
|------------|-------------------|----------------|----------------|---------------|------------------|
|            |                   |                |                |               |                  |

| Commodity                  | Reported | Spike | n | % Recovery   | RSD <sub>r</sub> | Control   | Linearity          | Reference, |
|----------------------------|----------|-------|---|--------------|------------------|-----------|--------------------|------------|
|                            | LOQ      | level |   | mean, range  |                  | samples   |                    | method     |
|                            | mg/kg    | mg/kg |   | _            |                  | mg/kg (n) |                    |            |
| bovine milk <sup>a</sup>   | 0.01     | 0.01  | 5 | 106, 103–110 | 2.8%             | < 0.3LOQ  | 9 single points    | THA-0028,  |
|                            |          | 0.1   | 5 | 98, 94–100   | 2.4%             |           | 0.002-1.0 mg/L,    | original   |
|                            |          |       |   |              |                  |           | in solvent,        |            |
|                            |          |       |   |              |                  |           | 1× linear, r> 0.99 |            |
| bovine meat <sup>a</sup>   | 0.02     | 0.02  | 5 | 96, 90–100   | 4.2%             | < 0.3LOQ  | idem               | THA-0028,  |
|                            |          | 0.2   | 5 | 93, 92–93    | 0.6%             |           |                    | original   |
| bovine liver <sup>a</sup>  | 0.02     | 0.02  | 5 | 115, 108-121 | 5.1%             | < 0.3LOQ  | idem               | THA-0028,  |
|                            |          | 0.2   | 5 | 95, 90–99    | 3.6%             |           |                    | original   |
| bovine kidney <sup>a</sup> | 0.02     | 0.02  | 5 | 99, 93–105   | 5.2%             | < 0.3LOQ  | idem               | THA-0028,  |
|                            |          | 0.2   | 5 | 90, 88–91    | 1.4%             |           |                    | original   |
| bovine fat <sup>a</sup>    | 0.02     | 0.02  | 5 | 98, 91–105   | 5.8%             | < 0.3LOQ  | idem               | THA-0028,  |
|                            |          | 0.2   | 5 | 88, 77–100   | 9.6%             |           |                    | original   |

<sup>a</sup> origin of the samples was confirmed as bovine (Gaston, 2010c)

| Commodity                  | Reported<br>LOQ<br>mg/kg | Spike<br>level<br>mg/kg | n      | % Recovery mean, range    | RSD <sub>r</sub> | Control<br>samples<br>mg/kg (n) | Linearity                                                               | Reference,<br>method  |
|----------------------------|--------------------------|-------------------------|--------|---------------------------|------------------|---------------------------------|-------------------------------------------------------------------------|-----------------------|
| bovine milk <sup>a</sup>   | 0.01                     | 0.01<br>0.1             | 5<br>5 | 100, 96–104<br>90, 88–93  | 3.4%<br>2.9%     | < 0.3LOQ                        | 9 single points<br>0.002–1.0 mg/L,<br>in solvent,<br>1× linear, r> 0.99 | THA-0028,<br>original |
| bovine meat <sup>a</sup>   | 0.02                     | 0.02<br>0.2             | 5<br>5 | 95, 92–97<br>88, 85–89    | 2.0%<br>1.9%     | < 0.3LOQ                        | idem                                                                    | THA-0028,<br>original |
| bovine liver <sup>a</sup>  | 0.02                     | 0.02<br>0.2             | 5<br>5 | 109, 103–115<br>92, 90–93 | 4.0%<br>1.2%     | < 0.3LOQ                        | idem                                                                    | THA-0028,<br>original |
| bovine kidney <sup>a</sup> | 0.02                     | 0.02<br>0.2             | 5<br>5 | 104, 102–105<br>92, 90–92 | 1.3%<br>1.1%     | < 0.3LOQ                        | idem                                                                    | THA-0028,<br>original |
| bovine fat <sup>a</sup>    | 0.02                     | 0.02<br>0.2             | 5<br>5 | 92, 90–97<br>91, 86–96    | 2.9%<br>4.1%     | < 0.3LOQ                        | idem                                                                    | THA-0028,<br>original |

Table 38 Validation results for the determination of ATMG-Pyr using HPLC-MS-MS method 00624

<sup>a</sup> origin of the samples was confirmed as bovine (Gaston, 2010c)

# Stability of pesticide residues in stored analytical samples

The Meeting received data on the storage stability of clothianidin residues in several plant commodities. The studies were conducted to determine the stability of clothianidin following frozen storage. No data were received on the storage stability of clothianidin residues in animal commodities (milk and beef tissues).

## Storage stability of clothianidin and TMG in plant commodities

#### Study 1

Homogenised mustard greens, turnip tops and turnip roots were fortified with 0.2 mg/kg clothianidin (purity 99.8%) and stored frozen at -23 °C. Samples were analysed at intervals of 0 and 10.3 months. Levels of clothianidin were determined according to modification A of HPLC-MS-MS method 00552/M001. Stability data are given in Table 39. Samples were not corrected for average concurrent method recoveries (88%–92%), or for matrix interferences (< 0.01 mg/kg).

The samples used for this study were frozen samples from another field trial. Samples were not freshly fortified samples, but samples already stored for 328–491 days before day 0 fortification (Gaston, 2010c). The present study cannot be used to support storage stability, since breakdown is generally highest in the first month after freezing.

Table 39 Stability of clothianidin (0.2 mg/kg) in mustard greens, turnip tops and turnip roots after storage at -23 °C

| Commodity      | Storage time | % Remaining, $n = 3$          | Concurrent recovery   | Reference         |
|----------------|--------------|-------------------------------|-----------------------|-------------------|
|                | (days)       | mean, range, RSD <sub>r</sub> | mean (range), $n = 3$ |                   |
| mustard greens | 0            | 76, 73-80, 5.1%               | 92 (87–95)            | THR-0012/THR-0013 |
|                | 309          | 68, 62–73, 7.9%               | _                     | THR-0012/THR-0013 |
| turnip tops    | 0            | 82, 79-84, 2.9%               | 91 (83–96)            | THR-0012/THR-0013 |
|                | 309          | 74, 70–79, 6.1%               | -                     | THR-0012/THR-0013 |
| turnip roots   | 0            | 81, 76-85, 5.3%               | 88 (87-89)            | THR-0012/THR-0013 |
|                | 309          | 74, 70–76, 4.5%               | -                     | THR-0012/THR-0013 |

## Study 2

Stones were removed from peaches. Homogenised peaches and cranberries were fortified with 0.1-1.0 mg/kg clothianidin (purity 99.7–99.9%) and stored frozen at -20 °C. Samples were stored for 154–602 days, depending on matrix. Clothianidin was determined according to modification A (peach) or modification B (cranberry) of HPLC-MS-MS method 00552. Stability data are given in

Table 40. Samples were not corrected for average concurrent method recoveries (86%-107% or for matrix interferences (< 0.02 mg/kg).

| Commodity | Fortification<br>level (mg/kg) | Storage time<br>(days) | % Remaining, n = 1–3<br>mean, range, RSD <sub>r</sub> | Concurrent<br>recovery<br>mean, range, n=1–<br>2 | Reference |
|-----------|--------------------------------|------------------------|-------------------------------------------------------|--------------------------------------------------|-----------|
| peach     | 1.0                            | 485                    | 100, 98–103, 2.8%                                     | 107, 107–107                                     | THR-0586  |
|           | 1.0                            | 602                    | 80, -, -                                              | 100, -                                           | THR-0586  |
| cranberry | 0.1                            | 154                    | 72, 71–75, 2.9%                                       | 86, -                                            | THR-0570  |

Table 40 Stability of clothianidin in peaches and cranberries after storage at -20 °C

# Study 3

Whole fruit bananas were homogenised and fortified with 0.1 mg/kg clothianidin (purity not stated) and stored frozen at -15 °C. Samples were stored for 152 days. Clothianidin was determined according to the HPLC-MS-MS method ALM-017.01 (i.e. modification of method 00552). Stability data are given in Table 41. Samples were not corrected for individual concurrent method recoveries (80–109%) or for matrix interferences (< 0.02 mg/kg).

Table 41 Stability of clothianidin in bananas after storage at -15 °C

| Commodity | Fortification<br>level (mg/kg) | Storage time<br>(days) | % Remaining, n = 2<br>mean, range, RSD <sub>r</sub> | Concurrent recovery mean, range, $n = 5$ | Reference |
|-----------|--------------------------------|------------------------|-----------------------------------------------------|------------------------------------------|-----------|
| banana    | 0.1                            | 152                    | 99, 99–99, –                                        | 93, 80–109                               | THR-0555  |

### Study 4

Homogenised sugar beet (roots), maize (grain, forage and straw) and rape (seed) were fortified with 0.2 mg/kg clothianidin (purity 99.8%) and stored frozen at -18 °C (Nuesslein, 2001, THR-0008). Samples were analysed at intervals of 1, 3, 6, 12, 18 and 24 months. Levels of clothianidin were determined according to HPLC-MS-MS method 00552/M001. Stability data are given in Table 42. Samples were not corrected for average concurrent method recoveries (59%–103%, all commodities), or for matrix interferences (< 0.01 mg/kg for sugarbeet roots, maize grain and rape seed, and < 0.02 mg/kg for maize forage and straw).

Table 42 Stability of clothianidin (0.2 mg/kg) in plant commodities after storage at -18 °C

| Commodity    | Storage time | % Remaining, n = 3            | Concurrent recovery   |
|--------------|--------------|-------------------------------|-----------------------|
|              | (days)       | mean, range, RSD <sub>r</sub> | mean (range), $n = 2$ |
| maize grain  | 0            | 81,79-83,2.6%                 | 79 (79–79)            |
|              | 28           | 76, 74–77, 2.0%               | 74 (71–77)            |
|              | 91           | 73, 72–74, 1.4%               | 75 (75–75)            |
|              | 189          | 81, 79–82, 2.1%               | 83 (80-85)            |
|              | 289          | 85, 83-88, 2.9%               | 78 (-)                |
|              | 350          | 78, 74–82, 5.1%               | 79 (77–80)            |
|              | 518          | 68, 64–70, 4.8%               | 72 (70–73)            |
|              | 714          | 83, 76–93, 11%                | 96 (90–101)           |
| maize forage | 0            | 78, 71–89, 12%                | 85 (84–86)            |
|              | 29           | 78, 73–83, 6.5%               | 77 (72–82)            |
|              | 92           | 81, 76-85, 5.7%               | 79 (76–81)            |
|              | 190          | 87, 86–88, 1.1%               | 82 (81-82)            |
|              | 290          | 88, 84–91, 4.0%               | 80 (79–81)            |
|              | 351          | 88, 86–90, 2.4%               | 94 (94–94)            |
|              | 519          | 78, 73–85, 8.0%               | 88 (88–88)            |
|              | 715          | 79, 77–84, 5.1%               | 74 (68–79)            |
| maize straw  | 0            | 80, 74–85, 6.9%               | 61 (59–63)            |
|              | 28           | 72, 63–78, 11%                | 72 (63–81)            |
|              | 91           | 76, 74–78, 2.6%               | 74 (65–82)            |

| Commodity       | Storage time | % Remaining, n = 3            | Concurrent recovery   |
|-----------------|--------------|-------------------------------|-----------------------|
|                 | (days)       | mean, range, RSD <sub>r</sub> | mean (range), $n = 2$ |
|                 | 189          | 76, 74–80, 4.2%               | 75 (74–75)            |
|                 | 289          | 83, 77–88, 6.7%               | 86 (80–91)            |
|                 | 350          | 86, 75–99, 14%                | 96 (89–103)           |
|                 | 518          | 91, 89–94, 2.9%               | 91 (88–94)            |
|                 | 714          | 81, 78-86, 5.1%               | 75 (71–79)            |
| sugar beet root | 0            | 94, 79–114, 19%               | 80 (71–89)            |
|                 | 29           | 75, 74–76, 1.3%               | 77 (76–77)            |
|                 | 93           | 77, 74–80, 4.0%               | 78 (77–78)            |
|                 | 191          | 80, 74–88, 8.8%               | 81 (84–77)            |
|                 | 291          | 91, 82–99, 9.4%               | 76 (72–79)            |
|                 | 352          | 81, 71–93, 14%                | 96 (92–99)            |
|                 | 520          | 81, 75-85, 6.5%               | 81 (73–88)            |
|                 | 716          | 79, 77–81, 2.5%               | 81 (77–84)            |
| rape seed       | 0            | 79, 70–84, 9.6%               | 71 (62–79)            |
|                 | 29           | 71, 70–72, 1.6%               | 75 (74–75)            |
|                 | 93           | 60, 57–61, 3.9%               | 62 (59–64)            |
|                 | 191          | 75, 73–77, 2.7%               | 75 (74–75)            |
|                 | 291          | 76, 72–83, 8.0%               | 80 (76–83)            |
|                 | 352          | 81, 79–85, 4.0%               | 87 (86–87)            |
|                 | 520          | 73, 71–74, 2.4%               | 73 (70–75)            |
|                 | 716          | 72, 67–77, 6.9%               | 73 (69–77)            |

### Study 5

Homogenised apple fruits were fortified with 0.1 mg/kg clothianidin (purity 99.7%) and stored frozen at -20 °C (Croucher, 2000, THR-0010). Samples were analysed at intervals of 0, 1, 3, 6, and 12 months. Levels of clothianidin were determined according to HPLC-MS-MS method CLE 586/149-01R and 02R (i.e. modification of method 00552). Stability data are given in Table 43. Samples were not corrected for average concurrent method recoveries (74–103%), or for matrix interferences (< 0.01 mg/kg).

Table 43 Stability of clothianidin (0.1 mg/kg) in apple after storage at -20 °C

| Commodity   | Storage time | % Remaining, n = 3            | Concurrent recovery   |
|-------------|--------------|-------------------------------|-----------------------|
|             | (months)     | mean, range, RSD <sub>r</sub> | mean (range), $n = 2$ |
| apple fruit | 0            | 97, 92–102                    | _                     |
|             | 1            | 97, 91–102                    | 98 (93–102)           |
|             | 3            | 94, 91–97                     | 95 (87–103)           |
|             | 6            | 99, 96–103                    | 89 (86–92)            |
|             | 9            | 94, 90–99                     | 82 (81-83)            |
|             | 12           | 92, 90–96                     | 77 (74–80)            |

# Study 6

The stability of clothianidin residues in apple and apple juice was investigated in samples containing incurred residues. Initial analytical results were obtained after 39 days and 32–81 days of storage at – 20 °C for juice and apple fruit, respectively. Samples were returned for an additional 16 months in the freezer and re-analysed. Levels of clothianidin were determined according to HPLC-MS-MS method RM-39-A (i.e. modification of method 00552). Stability data are given in Table 44. Samples were not corrected for individual concurrent method recoveries (81%–121\%) or for matrix interferences (< 0.01 mg/kg, each matrix).

The present study could not be used to support storage stability, as the initial samples were analysed 32–81 days after harvest/processing and residue levels at day 0 (just before storage) are not available.

| Commodity   | First storage<br>interval<br>(days) | Clothianidin<br>mg/kg | Second storage<br>interval<br>(days) | Clothianidin<br>mg/kg | % Remaining,<br>$1^{st}-2^{nd}$ storage<br>interval<br>(n = 1) | Reference |
|-------------|-------------------------------------|-----------------------|--------------------------------------|-----------------------|----------------------------------------------------------------|-----------|
| apple fruit | 81                                  | 0.103                 | 478                                  | 0.083                 | 81                                                             | THR-0066  |
|             | 81                                  | 0.096                 | 478                                  | 0.083                 | 86                                                             |           |
|             | 43                                  | 0.140                 | 460                                  | 0.136                 | 97                                                             |           |
|             | 43                                  | 0.153                 | 460                                  | 0.165                 | 108                                                            |           |
|             | 42                                  | 0.148                 | 474                                  | 0.128                 | 86                                                             |           |
|             | 42                                  | 0.199                 | 474                                  | 0.187                 | 94                                                             |           |
|             | 32                                  | 0.343                 | 484                                  | 0.267                 | 78                                                             |           |
|             | 32                                  | 0.342                 | 484                                  | 0.280                 | 82                                                             |           |
| apple juice | 39                                  | 0.052                 | 482                                  | 0.041                 | 79                                                             | THR-0066  |
|             | 39                                  | 0.053                 | 482                                  | 0.046                 | 87                                                             |           |

Table 44 Stability of clothianidin in treated apple commodities after storage at -20 °C

#### Study 7

Homogenised potatoes were fortified with 0.50 mg/kg clothianidin (purity 99.7%) or 0.53 mg/kg TMG (purity 3.2% w/w). The standards used to spike the samples were made individually, but each sample was spiked with both compounds (Gaston, 2010g). Samples were stored frozen at  $-20 \pm 5$  °C. Samples were stored for up to 182 days. Levels of clothianidin and TMG were determined according to HPLC-MS-MS method 157. Stability data are given in Table 45. Samples were not corrected for individual concurrent method recoveries (87%–110%), or for matrix interferences (< 0.02 mg/kg).

The TMG standard is a 3.2% w/v solution of TMG in methanol (comments by manufacturer). The analytical and fortification standards for TMG were corrected for the low concentration of TMG (Gaston, 2010g). Since the composition of the TMG standard is known, the study can be used to assess storage stability for both clothianidin and TMG.

| Table 45 Stability of clothianidin and | TMG (0.5 mg/kg) | in potatoes after | storage at $-20$ °C |
|----------------------------------------|-----------------|-------------------|---------------------|
|                                        |                 |                   |                     |

| Commodity | Analyte      | Storage time<br>(days) | % Remaining, n = 23<br>mean, range, RSD <sub>r</sub> | Concurrent recovery<br>mean, range, $n = 2$ | Reference |
|-----------|--------------|------------------------|------------------------------------------------------|---------------------------------------------|-----------|
| potato    | clothianidin | 91                     | 96, 88–104, –                                        | 92, 90–94                                   | THR-0070  |
|           |              | 182                    | 98, 93–103, –                                        | 94, 94–95                                   | THR-0070  |
|           | TMG          | 91                     | 92, 90–94, –                                         | 90, 87–92                                   | THR-0070  |
|           |              | 182                    | 96, 92–99, –                                         | 100, 91–110                                 | THR-0070  |

# Study 8

Homogenised grapes were fortified with 0.5 mg/kg clothianidin (purity 99.7%) and 0.5 mg/kg TMG (purity 3.2% w/w). The standards used to spike the samples were made individually, but each sample was spiked with both compounds (Gaston, 2010g). Samples were stored frozen at -20 °C. Samples were analysed at intervals of 0, 30 and 162 days. Levels of clothianidin and TMG were determined according to HPLC-MS-MS method 164. Stability data are given in Table 46 and 47. Samples were not corrected for average concurrent method recoveries (92%–104%, each analyte), or for matrix interferences (< 0.02 mg/kg, each analyte).

The TMG standard is a 3.2% w/v solution of TMG in methanol (comments by manufacturer). The analytical and fortification standards for TMG were corrected for the low concentration of TMG (Gaston, 2010g). Since the composition of the TMG standard is known, the study can be used to assess storage stability for both clothianidin and TMG.

| Commodity          | Storage time<br>(days) | % Remaining, n = 2<br>mean, range, RSD <sub>r</sub> | Concurrent recovery<br>mean (range), $n = 2-3$ | Reference |
|--------------------|------------------------|-----------------------------------------------------|------------------------------------------------|-----------|
| grape, whole fruit | 0                      | -                                                   | 95, (92–97)                                    | THR-0068  |
|                    | 30                     | 97, 96–98, –                                        | 102, (96–108)                                  | THR-0068  |
|                    | 162                    | 96, 91–100, –                                       | 96, (96–97)                                    | THR-0068  |

Table 46 Stability of clothianidin (0.5 mg/kg) in grapes after storage at -20 °C

Table 47 Stability of TMG (0.5 mg/kg) in grapes after storage at -20 °C

| Commodity          | Storage time | % Remaining, n = 3            | Concurrent recovery     | Reference |
|--------------------|--------------|-------------------------------|-------------------------|-----------|
|                    | (days)       | mean, range, RSD <sub>r</sub> | mean (range), $n = 2-3$ |           |
| grape, whole fruit | 0            | _                             | 104, (100–106)          | THR-0068  |
|                    | 30           | 95, 94–96, –                  | 96, (93–100)            | THR-0068  |
|                    | 162          | 96, 95–98, –                  | 98, (97–98)             | THR-0068  |

# Study 9

Homogenised cucumbers, tomatoes, tomato paste, soya bean seeds, cottonseed, cotton meal and cotton refined oil were fortified with 4–5 mg/kg clothianidin (purity 99.6%) and stored frozen at – 20 °C. Samples were stored for 89–228 days, depending on matrix. Levels of clothianidin were determined according to modification B of HPLC-MS-MS method 164. Stability data are given in Table 48. Samples were not corrected for individual concurrent method recoveries (75%–97%), or for matrix interferences (< 0.01 mg/kg, each matrix).

| Commodity             | Storage time | % Remaining, n = 1            | Concurrent | % Remaining, | Reference |
|-----------------------|--------------|-------------------------------|------------|--------------|-----------|
|                       | (days)       | mean, range, RSD <sub>r</sub> | recovery   | corrected    |           |
|                       |              |                               | n = 1      | for recovery |           |
| cucumber              | 89           | 90, -, -                      | 90         |              | THM-0575  |
|                       | 125          | 84, -, -<br>87, -, -          | 97         |              |           |
|                       | 228          | 87, -, -                      | 87         |              |           |
| tomato fruit          | 0            | 93, 92–94, 1.3%               | -          |              | THM-0578  |
|                       | 109          | 82, -, -                      | 94         |              |           |
|                       | 214          | 93, -, -                      | 94         |              |           |
| tomato paste          | 0            | 87, 85–90, 3.3%               | _          |              | THM-0578  |
|                       | 35           | 91, -, -                      | 94         |              |           |
|                       | 64           | 91, -, -                      | 93         |              |           |
| soya bean seed        | 0            | 74, 71–79, 5.3%               | -          | 100%         | THM-0585  |
|                       | 64           | 67, –, –                      | 75         | 89%          |           |
|                       | 120          | 64, -, -                      | 80         | 80%          |           |
| undelinted cottonseed | 0            | 96, 93–98, 2.5%               | _          |              | THM-0578  |
|                       | 75           | 89, -, -                      | 93         |              |           |
|                       | 150          | 88, -, -                      | 94         |              |           |
| cotton meal           | 0            | 88, 86–90, 2.7%               | -          |              | THM-0578  |
|                       | 60           | 77, –, –                      | 78         |              |           |
|                       | 120          | 88, -, -                      | 87         |              |           |
| cotton refined oil    | 0            | 97, 96–98, 1.0%               | -          |              | THM-0578  |
|                       | 60           | 89, -, -                      | 82         |              |           |
|                       | 120          | 84, -, -                      | 81         |              |           |

Table 48 Stability of clothianidin (4-5 mg/kg) in plant commodities after storage at -20 °C

# Study 10

Homogenised lettuce and cauliflower were fortified with 4–5 mg/kg clothianidin (purity 99.6%) or TMG (purity 96.8%). The standards used to spike the samples were made individually, but each sample was spiked with both compounds (Gaston, 2010g). Samples were stored frozen at -20 °C. Fruit samples were stored for 89–228 days. Levels of clothianidin were determined according to modification B of HPLC-MS-MS method 164. Stability data are given in Tables 49 and 50. Samples

were not corrected for individual concurrent method recoveries (85%-102%) or for matrix interferences (< 0.01 mg/kg, each analyte).

| Commodity   | Fortification<br>level (mg/kg) | Storage time (days) | % Remaining, n = 1<br>mean, range, RSD <sub>r</sub> | Concurrent recovery $n = 1$ | Reference                   |
|-------------|--------------------------------|---------------------|-----------------------------------------------------|-----------------------------|-----------------------------|
| lettuce     | 5.0                            | 123                 | 86, -, -                                            | 88                          | THR-0580                    |
|             | 5.0                            | 242                 | 100, -, -                                           | 102                         | THR-0580                    |
| cauliflower | 4.0                            | 135                 | 80, -, -                                            | 92                          | Stewart, 2007d,<br>THR-0573 |
|             | 4.8                            | 202                 | 95, -, -                                            | 105                         | idem                        |

Table 49 Stability of clothianidin in lettuce and cauliflower after storage at -20 °C

Table 50 Stability of TMG in lettuce and cauliflower after storage at -20 °C

| Commodity   | Fortification | Storage time | % Remaining, n = 1 | Concurrent recovery | Reference                   |
|-------------|---------------|--------------|--------------------|---------------------|-----------------------------|
|             | level (mg/kg) | (days)       | mean, range, RSDr  | n = 1               |                             |
| lettuce     | 5.0           | 123          | 87, -, -           | 85                  | THR-0580                    |
|             | 5.0           | 242          | 95, -, -           | 93                  | THR-0580                    |
| cauliflower | 3.5           | 135          | 72, -, -           | 81                  | Stewart, 2007d,<br>THR-0573 |
|             | 4.4           | 202          | 87, -, -           | 96                  | idem                        |

# Study 11

Homogenised samples of potato tubers, potato flakes, potato chips and sugarbeet leaves were fortified with 0.2 mg/kg TMG (purity 3.2% w/w). Samples were stored frozen at -10 °C or lower (Coopersmith, 2008, M-303705-01-1). The concentration was corrected for purity. Samples were analysed at intervals of 0, 1, 3, 6, 12, 21 and 25 months. Levels of TMG were determined according to HPLC-MS-MS method TI-002-P05-001. The reported LOQ was 0.01 mg/kg. Results are expressed as TMG. Stability data are given in Table 51. Samples were not corrected for average concurrent method recoveries (84%–133%) but they were for matrix interferences (< 0.3LOQ–0.0078 mg/kg).

The TMG standard is a 3.2% w/v solution of TMG in methanol (comments by manufacturer). The analytical and fortification standards for TMG were corrected for the low concentration of TMG (Gaston, 2010g). Since the composition of the TMG standard is known, the study can be used to assess storage stability for TMG.

| Commodity     | Storage time | % Remaining, $n = 2-3$        | Concurrent recovery   |
|---------------|--------------|-------------------------------|-----------------------|
|               | (days)       | mean, range, RSD <sub>r</sub> | mean (range), $n = 2$ |
| potato tuber  | 0            | 96, 95–97, 1.0%               | _                     |
|               | 31           | 99, 97–101, –                 | 97, (96–98)           |
|               | 91           | 92, 89–94, –                  | 93, (92–94)           |
|               | 183          | 125, 124–126, –               | 134, (131–136)        |
|               | 373          | 87, 82–92, –                  | 93, (85–100)          |
|               | 633          | 86, 86–87, –                  | 92, (91–92)           |
|               | 750          | 83, 75–91, –                  | 87, (84–89)           |
| potato flakes | 0            | 95, 95–96, 0.61%              | _                     |
|               | 31           | 91, 89–93, –                  | 95, (94–95)           |
|               | 91           | 88, 88–89, –                  | 95, (94–95)           |
|               | 184          | 112, 110–113, –               | 113 , (112–113)       |
|               | 373          | 82, 81–82, –                  | 98, (98–98)           |
|               | 638          | 96, 95–96, –                  | 101, (101–101)        |
|               | 751          | 94, 90–97, –                  | 102, (102–102)        |
| potato chips  | 0            | 101, 99–103, 2.1%             | _                     |
|               | 32           | 92, 90–94, –                  | 85, (81–88)           |
|               | 92           | 100, 95–104, –                | 94, (87–101)          |
|               | 184          | 111, 111–111, –               | 116, (111–121)        |
|               | 374          | 95, 94–96, –                  | 100, (96–104)         |

| Commodity        | Storage time<br>(days) | % Remaining, $n = 2-3$<br>mean, range, RSD <sub>r</sub> | Concurrent recovery<br>mean (range), $n = 2$ |
|------------------|------------------------|---------------------------------------------------------|----------------------------------------------|
|                  | 640                    | 95, 93–97, –                                            | 97, (95–99)                                  |
|                  | 749                    | 82, 81–84, –                                            | 88, (86–89)                                  |
| sugarbeet leaves | 0                      | 96, 95–99, 2.3%                                         | -                                            |
|                  | 32                     | 98, 96–99, –                                            | 90, (88–92)                                  |
|                  | 92                     | 98, 96–99, –                                            | 92, (91–93)                                  |
|                  | 184                    | 116, 114–118, –                                         | 122, (121–123)                               |
|                  | 374                    | 90, 86–94, –                                            | 94, (88–99)                                  |
|                  | 641                    | 88, 86–89, –                                            | 95, (91–99)                                  |
|                  | 750                    | 82, 80–83, –                                            | 92, (88–95)                                  |

# Study 12

Scars, peduncles and cores were removed from pomefruit, peduncles and stones were removed from stone fruits, and scars or peduncles were removed from grapes. Peaches were separated into flesh and peel. Fruits were homogenised and fortified with 0.1-2.0 mg/kg clothianidin (purity 99.7–99.9%) and stored frozen at -20 °C. Samples were stored for 6-554 days, depending on matrix. Clothianidin was determined according to the Japanese HPLC-UV method for fruits. Stability data are given in Table 52. Samples were not corrected for average concurrent method recoveries (80%-104%) or for matrix interferences (< 0.01 mg/kg).

| Table 52 Stability | of clothianidin in fr | uit commodities after | storage at -20 °C |
|--------------------|-----------------------|-----------------------|-------------------|
|                    |                       |                       |                   |

| Commodity                               | Fortification | Storage time | % Remaining, n = 2            | Concurrent recovery    | Reference       |
|-----------------------------------------|---------------|--------------|-------------------------------|------------------------|-----------------|
| 1                                       | level (mg/kg) | (days)       | mean, range, RSD <sub>r</sub> | mean, range, $n = 2-4$ | <b>THD</b> 0007 |
| apple                                   | 0.1           | 54           | 88, 85–91, –                  | 96, 92–99              | THR-0097        |
|                                         | 0.1           | 114          | 83, 81–85, –                  | 97, 93–98              | THR-0097        |
|                                         | 1.0           | 136          | 90, 90–91, –                  | 94, 93–95              | THR-0392        |
|                                         | 1.0           | 145          | 91, 90–92, –                  | 94, 93–95              | THR-0392        |
|                                         | 1.0           | 398          | 91, 91–91, –                  | 96, 95–96              | THR-0092        |
|                                         | 1.0           | 456          | 90, 90–91, –                  | 98, 98–98              | THR-0092        |
| Japanese pear                           | 0.1           | 44           | 90, 90–91, –                  | 103, 102–104           | THR-0464        |
|                                         | 0.1           | 44           | 92, 91–92, –                  | 100, 97–101            | THR-0464        |
|                                         | 1.0           | 174          | 90, 89–92, –                  | 97, 96–98              | THR-0463        |
|                                         | 1.0           | 176          | 91, 90–92, –                  | 95, 94–96              | THR-0463        |
| apricot                                 | 0.1           | 123          | 80, 79–81, –                  | 99, 94–102             | THR-0458        |
|                                         | 0.1           | 123          | 83, 82–84, –                  | 96, 94–97              | THR-0458        |
|                                         | 1.0           | 212          | 88, 88–88, –                  | 91, 90–91              | THR-0457        |
|                                         | 1.0           | 213          | 88, 87–89, –                  | 86, 86-87              | THR-0457        |
| cherry                                  | 1.0           | 6            | 91, 90–92, –                  | 92,90–93               | THR-0492        |
| -                                       | 1.0           | 7            | 94, 94–95, –                  | 80, 78-82              | THR-0492        |
| nectarine                               | 0.1           | 40           | 93, 89–97, –                  | 88, 87–90              | THR-0361        |
|                                         | 0.1           | 51           | 91, 90-92, -                  | 87, 85–91              | THR-0361        |
| peach                                   | 0.1           | 124          | 90, 90–91, –                  | 93, 87–97              | THR-0107        |
| •                                       | 1.0           | 138          | 98, 97–99, –                  | 97, 95–99              | THR-0102        |
|                                         | 0.1           | 199          | 90, 89–90, –                  | 91, 87–97              | THR-0107        |
|                                         | 1.0           | 530          | 95, 95–95, –                  | 90, 87–83              | THR-0102        |
| peach<br>pericarb <sup>a</sup>          | 0.5           | 125          | 87, 86–88, –                  | 88, 85–93              | THR-0117        |
| •                                       | 2.0           | 144          | 96, 95–97, –                  | 104, 103–105           | THR-0112        |
|                                         | 0.5           | 212          | 90, 86–94, –                  | 93, 88–94              | THR-0117        |
|                                         | 2.0           | 536          | 90, 89–92, –                  | 100, 98-102            | THR-0112        |
| grapes                                  | 1.0           | 66           | 90, 87–93, –                  | 89, 87–91              | THR-0369        |
| C 1                                     | 1.0           | 68           | 94, 92–95, –                  | 80, 77–83              | THR-0369        |
|                                         | 0.1           | 229          | 86, 83–90, –                  | 99,97–99               | THR-0127        |
|                                         | 1.0           | 470          | 81, 78–84, –                  | 96,95–96               | THR-0122        |
|                                         | 1.0           | 554          | 86, 85–86, –                  | 96,95–97               | THR-0122        |
| persimmon                               | 0.05          | 90           | 81, 77–85, –                  | 92, 89–95              | THR-0496        |
| r · · · · · · · · · · · · · · · · · · · | 0.1           | 115          | 78, 78–78, –                  | 77, 75–81              | THR-0496        |
|                                         | 1.0           | 142          | 78, 78–79, –                  | 91, 90–93              | THR-0495        |

| Commodity | Fortification<br>level (mg/kg) | Storage time<br>(days) | % Remaining, n = 2<br>mean, range, RSD <sub>r</sub> | Concurrent recovery mean, range, $n = 2-4$ | Reference |
|-----------|--------------------------------|------------------------|-----------------------------------------------------|--------------------------------------------|-----------|
|           | 1.0                            | 163                    | 83, 83-83, -                                        | 89, 84–97                                  | THR-0495  |
| cucumber  | 1.0                            | 16                     | 90, 89–90, –                                        | 86, 86–87                                  | THR-0264  |
|           | 0.1                            | 22                     | 76, 72–80, –                                        | 84, 93–86                                  | THR-0269  |
|           | 1.0                            | 57                     | 94, 93–94, –                                        | 86, 83–90                                  | THR-0264  |
| eggplant  | 1.0                            | 43                     | 93, 88–98, –                                        | 94, 92–95                                  | THR-0294  |
|           | 0.1                            | 84                     | 84, 82–85, –                                        | 84, 80–88                                  | THR-0299  |
|           | 1.0                            | 101                    | 98, 97–98, –                                        | 93, 92–94                                  | THR-0294  |
| tomato    | 2.0                            | 14                     | 97, 97–97, –                                        | 97, 97–98                                  | THR-0541  |
|           | 2.0                            | 19                     | 96, 95–96, –                                        | 96, 95–97                                  | THR-0541  |
|           | 0.1                            | 20                     | 94, 93–94, –                                        | 86, 84–89                                  | THR-0542  |
|           | 0.1                            | 56                     | 94, 91–97, –                                        | 93, 93–94                                  | THR-0542  |
|           | 1.0                            | 483                    | 90, 88–92, –                                        | 98, 98–99                                  | THR-0304  |
|           | 1.0                            | 492                    | 88, 85–91, –                                        | 99, 98–100                                 | THR-0304  |

<sup>a</sup>, peach pericarb is the flesh around the stone

#### Study 13

Broccoli and head cabbages were homogenised and fortified with 0.10-1.0 mg/kg clothianidin (purity 99.7–99.8%) and stored frozen at -20 °C. Samples were stored for 6–283 days, depending on matrix. Clothianidin was determined according to the Japanese HPLC-UV method for cabbages. Stability data are given in Table 53. Samples were not corrected for average concurrent method recoveries (77%–97%) or for matrix interferences (< 0.01 mg/kg).

| Commodity    | Fortification<br>level (mg/kg) | Storage time<br>(days) | % remaining, n = 2<br>mean, range, RSD <sub>r</sub> | Concurrent recovery mean, range, $n = 3$ | Reference |
|--------------|--------------------------------|------------------------|-----------------------------------------------------|------------------------------------------|-----------|
| broccoli     | 1.0                            | 6                      | 94, 93–94, –                                        | 86, 80-90                                | THR-0371  |
|              | 1.0                            | 18                     | 88, 86-89, -                                        | 97, 95–98                                | THR-0370  |
|              | 1.0                            | 71                     | 89, 88–90, –                                        | 92, 91–94                                | THR-0371  |
|              | 1.0                            | 161                    | 88, 88–88, –                                        | 96, 94–100                               | THR-0370  |
| head cabbage | 0.1                            | 53                     | 83, 82–84, –                                        | 85, 79–90                                | THR-0506  |
|              | 0.1                            | 81                     | 79, 78–80, –                                        | 77, 72–80                                | THR-0506  |
|              | 1.0                            | 255                    | 94, 94–94, –                                        | 93, 89–95                                | THR-0505  |
|              | 1.0                            | 283                    | 89, 86–92, –                                        | 93, 93–94                                | THR-0505  |

Table 53 Stability of clothianidin in cabbages after storage at -20 °C

# Study 14

Homogenised soya bean seeds were fortified with 0.1-1.0 mg/kg clothianidin (purity 99.7–99.8%) and stored frozen at -20 °C. Samples were stored for 52–72 days. Clothianidin was determined according to the Japanese HPLC-UV method for soya beans. Stability data are given in Table 54. Samples were not corrected for concurrent method recoveries (70%–94%) or for matrix interferences (< 0.01 mg/kg).

Table 54 Stability of clothianidin in soya bean seeds after storage at -20 °C

| Commodity      | Fortification<br>level (mg/kg) | Storage time<br>(days) | % Remaining, n = 2<br>mean, range, RSD <sub>r</sub> | Concurrent recovery mean, range, $n = 3$ | Reference            |
|----------------|--------------------------------|------------------------|-----------------------------------------------------|------------------------------------------|----------------------|
| soya bean seed | 0.1                            | 6                      | 84, 81-86, -                                        | 86, 82–89                                | THR-0528             |
| -              | 0.1                            | 10                     | 106, 106–106, –                                     | 92, 88–94                                | THR-0526             |
|                | 0.1                            | 23                     | 81, 77-85, -                                        | 86, 83–88                                | THR-0528             |
|                | 0.1                            | 30                     | 88, 87–88, –                                        | 91, 89–93                                | THR-0521<br>THR-0524 |
|                | 1.0                            | 52                     | 80, 76–85, –                                        | 76, 74–80                                | THR-0520<br>THR-0523 |
|                | 0.1                            | 52                     | 90, 90–90, –                                        | 92, 91–93                                | THR-0521<br>THR-0524 |
|                | 1.0                            | 72                     | 82, 81-84, -                                        | 83, 82–84                                | THR-0520             |

| Commodity | Fortification<br>level (mg/kg) | Storage time<br>(days) | % Remaining, n = 2<br>mean, range, RSD <sub>r</sub> | Concurrent recovery mean, range, $n = 3$ | Reference            |
|-----------|--------------------------------|------------------------|-----------------------------------------------------|------------------------------------------|----------------------|
|           | 1.0                            | 74                     | 81, 81–81, –                                        | 73, 70–75                                | THR-0523<br>THR-0527 |
|           | 1.0                            | 90                     | 82, 78–87, –                                        | 75, 74–76                                | THR-0527             |

# Study 15

Homogenised dry brown rice grains were fortified with 0.1-1.0 mg/kg clothianidin (purity 99.7–99.8%) and stored frozen at -20 °C. Samples were stored for 12-490 days. Clothianidin was determined according to the Japanese HPLC-UV method for rice. Stability data are given in Table 55. Samples were not corrected for average concurrent method recoveries (81%-97%) or for matrix interferences (< 0.01 mg/kg).

Table 55 Stability of clothianidin in dry brown rice grains after storage at -20 °C

| Commodity                | Fortification level (mg/kg) | Storage time<br>(days) | % Remaining, $n = 2$<br>mean, range, $RSD_r$ | Concurrent recovery mean, range, $n = 3$ | Reference |
|--------------------------|-----------------------------|------------------------|----------------------------------------------|------------------------------------------|-----------|
| 1 1                      |                             |                        |                                              |                                          | THD 0426  |
| dry brown<br>rice grains | 0.1                         | 12                     | 78, 74–81, –                                 | 88, 87–90, 1.7%                          | THR-0436  |
|                          | 0.1                         | 13                     | 82, 78–86, –                                 | 85, 81–92, 6.9%                          | THR-0436  |
|                          | 1.0                         | 24                     | 89, 89–89, –                                 | 90, 86–94, 4.5%                          | THR-0435  |
|                          | 0.5                         | 39                     | 96, 96–97, –                                 | 95, 94–96, 1.2%                          | THR-0434  |
|                          | 0.5                         | 42                     | 98, 97–98, –                                 | 91, 90–94, 2.5%                          | THR-0434  |
|                          | 1.0                         | 44                     | 92, 91–92, –                                 | 90, 88–92, 2.3%                          | THR-0435  |
|                          | 0.1                         | 46                     | 80, 79-81, -                                 | 81, 78-84, 3.8%                          | THR-0412  |
|                          |                             |                        |                                              |                                          | THR-0420  |
|                          |                             |                        |                                              |                                          | THR-0424  |
|                          |                             |                        |                                              |                                          | THR-0428  |
|                          | 0.1                         | 46                     | 86, 85-88, -                                 | 90, 88–92, 2.3%                          | THR-0412  |
|                          |                             |                        |                                              |                                          | THR-0420  |
|                          |                             |                        |                                              |                                          | THR-0424  |
|                          |                             |                        |                                              |                                          | THR-0428  |
|                          | 0.1                         | 63                     | 104, 98–110, –                               | 86, 80–90, 6.2%                          | THR-0416  |
|                          | 0.1                         | 63                     | 90, 88–92, –                                 | 87, 84–91, 4.0%                          | THR-0416  |
|                          | 1.0                         | 76                     | 96, 94–97, –                                 | 89, 80–96, 9.4%                          | THR-0411  |
|                          |                             |                        |                                              |                                          | THR-0419  |
|                          |                             |                        |                                              |                                          | THR-0423  |
|                          |                             |                        |                                              |                                          | THR-0427  |
|                          | 1.0                         | 78                     | 98, 96–99, –                                 | 93, 89–97, 4.3%                          | THR-0411  |
|                          |                             |                        |                                              |                                          | THR-0419  |
|                          |                             |                        |                                              |                                          | THR-0423  |
|                          |                             |                        |                                              |                                          | THR-0427  |
|                          | 1.0                         | 78                     | 92, 92–93, –                                 | 95, 92–97, 2.6%                          | THR-0415  |
|                          | 1.0                         | 78                     | 90, 90–91, –                                 | 94, 92–96, 2.2%                          | THR-0415  |
|                          | 0.2                         | 105                    | 82, 82–83, –                                 | 93, 92–95, 1.6%                          | THR-0406  |
|                          | 0.2                         | 118                    | 82, 81–84, –                                 | 94, 87–97, 6.2%                          | THR-0405  |
|                          | 1.0                         | 133                    | 95, 95–95, –                                 | 95, 91–99, 4.2%                          | THR-0404  |
|                          | 1.0                         | 143                    | 95, 95–95, –                                 | 92, 86–99, 7.2%                          | THR-0403  |
|                          | 1.0                         | 161                    | 90, 89–91, –                                 | 97, 96–98, 1.0%                          | THR-0441  |
|                          | 1.0                         | 162                    | 91, 90–92, –                                 | 92, 91–94, 1.7%                          | THR-0441  |
|                          | 0.2                         | 458                    | 91, 91–91, –                                 | 86, 80–93, 7.0%                          | THR-0205  |
|                          |                             |                        |                                              |                                          | THR-0228  |
|                          |                             |                        |                                              |                                          | THR-0249  |
|                          | 0.2                         | 469                    | 84, 81–87, –                                 | 91, 85–97, 5.4%                          | THR-0205  |
|                          |                             |                        |                                              |                                          | THR-0228  |
|                          |                             |                        |                                              |                                          | THR-0249  |
|                          | 1.0                         | 478                    | 82, 82–82, –                                 | 96, 93–98, –                             | THR-0200  |
|                          |                             |                        |                                              |                                          | THR-0223  |
|                          |                             |                        |                                              |                                          | THR-0244  |
|                          | 1.0                         | 490                    | 76, 73–79, –                                 | 92, 92–93, –                             | THR-0200  |
|                          |                             |                        |                                              |                                          | THR-0223  |
|                          |                             |                        |                                              |                                          | THR-0244  |

## Study 16

Homogenised dry tea leaves were fortified with 1.0–5.0 mg/kg clothianidin (purity 99.8–100%) and stored frozen at -20 °C. Samples were stored for 74–306 days. Clothianidin was determined according to the Japanese HPLC-UV methods for dry tea leaves. Stability data are given in Table 56. Samples were not corrected for concurrent method recoveries (78%–108%), or for matrix interferences (< 0.008–< 0.05 mg/kg, depending on method version).

| Commodity      | Fortification<br>level (mg/kg) | Storage time<br>(days) | % Remaining, n = 2<br>mean, range, RSD <sub>r</sub> | concurrent recovery<br>mean, range, $n = 3$ | Reference |
|----------------|--------------------------------|------------------------|-----------------------------------------------------|---------------------------------------------|-----------|
| dry tea leaves | 1.0                            | 74                     | 92, 92–93, –                                        | 93, 91–97                                   | THR-0088  |
|                | 1.0                            | 87                     | 93, 92–94, –                                        | 92, 89–96                                   | THR-0088  |
|                | 5.0                            | 265                    | 76, 75–77, –                                        | 80, 78–82                                   | THR-0641  |
|                | 5.0                            | 277                    | 78, 74–81, –                                        | 84, 80–87                                   | THR-0641  |
|                | 0.2                            | 305                    | 104, 102–107, –                                     | 94, 89–99                                   | THR-0182  |
|                | 0.2                            | 305                    | 90, 84–95, –                                        | 101, 96–108                                 | THR-0182  |
|                | 2.0                            | 306                    | 92, 91–93, –                                        | 90, 97–93                                   | THR-0177  |
|                | 2.0                            | 306                    | 90, 89–91, –                                        | 95, 95–95                                   | THR-0177  |

Table 56 Stability of clothianidin in dry tea leaves after storage at -20 °C

### **USE PATTERN**

Clothianidin is registered for use in several countries for control of insects on pome fruit (apples, pears and oriental pears), stone fruit (Japanese apricots, cherries, nectarines, peaches and Japanese plums), berries and other small fruits (cranberries and grapes), persimmons, bananas, head cabbages, broccoli, fruiting vegetables (cucumbers, summer squash, egg plants, sweet corn and tomatoes), lettuce, immature and dry soya beans, root and tuber vegetables (potatoes and sugarbeets), cereal grains (barley, maize, popcorn, rice, sorghum and wheat), sugarcane, oilseeds (cottonseed, rapeseed and sunflower seeds) and tea.

Tables 57 and 58 list only the uses for which an original label was available and for which the dose rates could be verified by the Meeting. Authorised seed treatments on bean seeds, soya bean seeds, beetroot seeds, turnip seeds, swede seeds, pumpkin seeds, poppy seeds, lupine seeds and grass seeds (Austria, Brazil, Chile, New Zealand and Paraguay) and authorised soil/foliar treatments on citrus, strawberries, figs, mangoes, papayas, pomegranates, Japanese radishes, pumpkins, green onions, Lotus, sweet potatoes, sweet peppers, okra, melons, bitter melons, winter melons, edible luffa, watermelons, beans, peas, ginger, chin geng cai, potherb mustard, Chinese chives, asparagus and tree nuts (Brazil, Japan and the USA) were not listed, since these uses were not supported by supervised residue trials.

In addition, Australia, Japan and The Netherlands supplied information on use patterns.

| Сгор         | Country   | Formulation<br>(g ai/L or<br>g ai/kg) | Method         | Rate,<br>g ai/ha                   | Spray conc.<br>g ai/hL | No.<br>(interval) | PHI<br>days |
|--------------|-----------|---------------------------------------|----------------|------------------------------------|------------------------|-------------------|-------------|
| Pome fruits  |           |                                       |                |                                    |                        |                   |             |
| Apples       | Australia | 500 WG <sup>n o</sup>                 | Soil drench    | 1.25–<br>2.50 g ai/tree            | 125–<br>250 g ai/hL    | 1                 | 21          |
| Apple & pear | Australia | 500 WG <sup>a n</sup>                 | Foliar spray   | _                                  | 20 g ai/hL             | 2<br>(14 d)       | 21          |
| Apple & pear | Italy     | 500 WG <sup>n</sup>                   | Foliar spray   | 75–113 g ai/ha                     | 7.5 g ai/hL            | 1                 | 14          |
| Apple        | Japan     | 160 SP <sup>n o</sup>                 | High<br>volume | 80–560 g ai/ha<br>(not part of the | 4.0–<br>8.0 g ai/hL    | 1–3               | 1           |

Table 57 Pre-harvest soil or foliar treatments or combined seed/foliar treatments

| Crop                                      | Country        | Formulation<br>(g ai/L or<br>g ai/kg)      | Method                  | Rate,<br>g ai/ha                                     | Spray conc.<br>g ai/hL | No.<br>(interval) | PHI<br>days                                                       |
|-------------------------------------------|----------------|--------------------------------------------|-------------------------|------------------------------------------------------|------------------------|-------------------|-------------------------------------------------------------------|
|                                           |                | 8                                          | spray                   | GAP)                                                 |                        |                   |                                                                   |
| Apple                                     | Japan          | 480 SG <sup>n</sup>                        | high volume<br>spray    | 120–420 g ai/ha                                      | 6.0 g ai/hL            | 1–3               | 1                                                                 |
| apple                                     | Romania        | 500 WG <sup>n</sup>                        | Foliar spray            | -                                                    | 7.5–10 g ai/hL         | -                 | -                                                                 |
| apple &<br>pears                          | USA            | 500 WG <sup>n</sup>                        | Foliar<br>spray         | 70–210 g ai/ha<br>(max<br>224 g ai/ha per<br>season) | 1.9–<br>22.5 g ai/hL   | -<br>(10 d)       | 7<br>post-bloom<br>application                                    |
| pomefruit                                 | Hungary        | 500 WG <sup>n</sup>                        | Foliar spray            | 50–75 g ai/ha                                        | 5.0–<br>7.5 g ai/hL    | 1                 | 28                                                                |
| pomefruit <sup>k</sup>                    | USA            | 255 SC <sup>n</sup><br>500 WG <sup>n</sup> | Foliar<br>spray         | 75–224 g ai/ha<br>(max<br>224 g ai/ha per<br>season) | -                      | -<br>(10 d)       | 7<br>post-bloom<br>application                                    |
| Pear                                      | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 80–560 g ai/ha<br>(not part of the<br>GAP)           | 4.0-<br>8.0 g ai/hL    | 1–3               | 1                                                                 |
| Stone fruits                              |                |                                            | opray                   | 0.11)                                                |                        |                   |                                                                   |
| Apricot                                   | Italy          | 500 WG <sup>n</sup>                        | Foliar spray            | 40–90 g ai/ha                                        | 4.0–<br>6.0 g ai/hL    | 1                 | 14                                                                |
| Apricot                                   | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 80–280 g ai/ha<br>(not part of the<br>GAP)           | 4.0 g ai/hL            | 1–3               | 3                                                                 |
| Cherry,<br>sweet                          | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 160–560 g ai/ha<br>(not part of the<br>GAP)          | 8.0 g ai/hL            | 1–2               | 1                                                                 |
| Nectarine                                 | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 80–560 g ai/ha<br>(not part of the<br>GAP)           | 4.0-<br>8.0 g ai/hL    | 1–3               | 3                                                                 |
| Peach                                     | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 80–560 g ai/ha<br>(not part of the<br>GAP)           | 4.0-<br>8.0 g ai/hL    | 1–3               | 7                                                                 |
| Peach                                     | Hungary        | 500 WG <sup>n</sup>                        | Foliar spray            | 50–70 g ai/ha                                        | 5.0-8.8                | 1                 | 14                                                                |
| Peach                                     | USA            | 500 WG <sup>n</sup>                        | Foliar spray            | 56–112 g ai/ha<br>(max<br>224 g ai/ha per<br>season) | -                      | -<br>(10 d)       | 7<br>post-bloom<br>application                                    |
| Peach                                     | USA            | 255 SC <sup>n</sup>                        | Foliar spray            | 56–112 g ai/ha<br>(max<br>224 g ai/ha per<br>season) | _                      | -<br>(10 d)       | 21<br>post-bloom<br>application<br>lack of<br>bridging<br>studies |
| Peaches & nectarines                      | Australia      | 500 WG <sup>b n</sup>                      | Foliar<br>spray         | -                                                    | 5.0–20 g ai/hL         | 2<br>(14 d)       | 21                                                                |
| Peaches & nectarines                      | Italy          | 500 WG <sup>n</sup>                        | Foliar spray            | 40–90 g ai/ha                                        | 4.0–<br>6.0 g ai/hL    | 1                 | 14                                                                |
| Plum,<br>Japanese                         | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 80–560 g ai/ha<br>(not part of the<br>GAP)           | 4.0–<br>8.0 g ai/hL    | 3                 | 3                                                                 |
| Ume<br>(Japanese<br>apricot) <sup>m</sup> | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 80–560 g ai/ha<br>(not part of the<br>GAP)           | 4.0–<br>8.0 g ai/hL    | 1–3               | 3                                                                 |
| Berries and o                             | ther small fru | its                                        |                         | . ,                                                  | •                      |                   | ÷                                                                 |
| Cranberry <sup>h</sup>                    | USA            | 255 SC <sup>n</sup><br>500 WG <sup>n</sup> | Soil<br>treatment       | 224 g ai/ha<br>(max<br>224 g ai/ha per<br>season)    | -                      | 1                 | 21<br>post-bloom<br>application                                   |
| Cranberry <sup>h</sup>                    | USA            | 255 SC <sup>n</sup><br>500 WG <sup>n</sup> | Foliar spray            | 74–75 g ai/ha<br>(max<br>224 g ai/ha per             | _                      | -<br>(7 d)        | 21<br>post-bloom<br>application                                   |

| Crop                                                | Country        | Formulation<br>(g ai/L or<br>g ai/kg)      | Method                  | Rate,<br>g ai/ha                                      | Spray conc.<br>g ai/hL | No.<br>(interval) | PHI<br>days                                |
|-----------------------------------------------------|----------------|--------------------------------------------|-------------------------|-------------------------------------------------------|------------------------|-------------------|--------------------------------------------|
|                                                     |                | 0 0                                        |                         | season)                                               |                        |                   |                                            |
| Grapes<br>(table &<br>wine)                         | Australia      | 500 WG <sup>n o</sup>                      | Soil<br>treatment       | 300 g ai/ha                                           | -                      | -                 | –<br>budburst–<br>80% capfall              |
| Grapes<br>(table)                                   | Australia      | 500 WG <sup>a n</sup>                      | Foliar spray            | -                                                     | 20 g ai/hL             | 2<br>(21 d)       | 42                                         |
| Grapes                                              | USA            | 500 WG <sup>n</sup>                        | Soil<br>treatment       | 210 g ai/ha<br>(max<br>224 g ai/ha per<br>season)     |                        | 1                 | 30                                         |
| Grapes                                              | USA            | 500 WG <sup>n</sup>                        | Foliar spray            | 37–105 g ai/ha<br>(max<br>224 g ai/ha per<br>season)  |                        | 2<br>(14 d)       | 0                                          |
| Grapes                                              | USA            | 255 SC <sup>n</sup><br>500 WG <sup>n</sup> | Soil<br>treatment       | 112–224 g ai/ha<br>(max<br>224 g ai/ha per<br>season) |                        | -<br>(14 d)       | 30                                         |
| Grapes                                              | USA            | 255 SC <sup>n</sup><br>500 WG <sup>n</sup> | Foliar spray            | 37–112 g ai/ha<br>(max<br>224 g ai/ha per<br>season)  |                        | -<br>(14 d)       | 0                                          |
| Grapes                                              | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 80–560 g ai/ha<br>(not part of the<br>GAP)            | 4.0–<br>8.0 g ai/hL    | 1–3               | 1                                          |
|                                                     |                | opical fruits, edi                         |                         |                                                       |                        |                   |                                            |
| Japanese<br>persimmon                               | Japan          | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray | 80–560 g ai/ha<br>(not part of the<br>GAP)            | 4.0–<br>8.0 g ai/hL    | 1–3               | 7                                          |
| persimmon                                           | Korea          | 80 SC <sup>n</sup>                         | Foliar                  | -                                                     | 4.0–<br>8.0 g ai/hL    | 3<br>(7–10 d)     | 10                                         |
| Assorted trop                                       | ical and subtr | opical fruits, ine                         | dible peel              |                                                       |                        |                   |                                            |
| Banana                                              | Australia      | 200 SC <sup>n o</sup>                      | Stem injection          | 0.6 g ai/stem                                         | _                      | 1                 | -                                          |
| Banana                                              | Australia      | 200 SC <sup>n o</sup>                      | Stem spray              | 0.9 g ai/stem                                         | _                      | 1                 | -                                          |
| Brassica vege                                       | etables        |                                            |                         |                                                       |                        |                   |                                            |
| Brassica<br>(cole) leafy<br>vegetables <sup>f</sup> | USA            | 500 WG <sup>n</sup><br>255 SC <sup>n</sup> | Soil<br>treatment       | 168–224 g ai/ha<br>(max<br>224 g ai/ha per<br>season) |                        | 1                 | –<br>at planting                           |
| Brassica<br>(cole) leafy<br>vegetables <sup>f</sup> | USA            | 500 WG <sup>n</sup>                        | Foliar spray            | 56–74 g ai/ha<br>(max<br>224 g ai/ha per<br>season)   |                        | -<br>(10 d)       | 7                                          |
| Brassica<br>(cole) leafy<br>vegetables <sup>f</sup> | USA            | 255 SC <sup>n</sup>                        | Foliar spray            | 56–75 g ai/ha<br>(max<br>224 g ai/ha per<br>season)   |                        | -<br>(7 d)        | 21<br>lack of<br>bridging<br>studies       |
| Broccoli                                            | Japan          | 5 GR <sup>n o</sup>                        | Soil inc.               | 1.25–<br>10 mg ai/plant                               | _                      | 1 <sup>b</sup>    | -<br>at seeding up<br>to trans<br>planting |
| Broccoli                                            | Japan          | 160 SG <sup>n o</sup>                      | Foliar spray            | 40–240 g ai/ha<br>(not part of the<br>GAP)            | 4.0–<br>8.0 g ai/hL    | 1-3 <sup>b</sup>  | 3                                          |
| Cabbages,<br>head                                   | Japan          | 5 GR <sup>n o</sup>                        | Soil inc.               | 1.25–<br>10 mg ai/plant                               | -                      | 1 <sup>b</sup>    | -<br>at seeding up<br>to trans<br>planting |
| Cabbages,<br>head                                   | Japan          | 160 SG <sup>n o</sup>                      | Foliar spray            | 40–240 g ai/ha<br>(not part of the<br>GAP)            | 4.0–<br>8.0 g ai/hL    | 1-2 <sup>b</sup>  | 3                                          |

| Crop                                | Country         | Formulation<br>(g ai/L or<br>g ai/kg)      | Method                         | Rate,<br>g ai/ha                                      | Spray conc.<br>g ai/hL | No.<br>(interval) | PHI<br>days                          |
|-------------------------------------|-----------------|--------------------------------------------|--------------------------------|-------------------------------------------------------|------------------------|-------------------|--------------------------------------|
| Fruiting vege                       | tables, Cucur   |                                            |                                | 1                                                     |                        |                   |                                      |
| Cucumber                            | Brazil          | 500 WP <sup>n</sup>                        | Foliar                         | 3080 g ai/ha                                          | 7.5-10 g ai/hL         | 4                 | 1                                    |
| Cucumber                            | Japan           | 5 GR <sup>n o</sup>                        | Soil inc.,<br>planting<br>hole | 5–<br>10 mg ai/plant                                  | -                      | 1 <sup>b</sup>    | _<br>at<br>transplanting             |
| Cucumber                            | Japan           | 5 GR <sup>n o</sup>                        | Plant foot<br>spread           | 5 mg ai/plant                                         | -                      | 1-3 <sup>b</sup>  | 1                                    |
| Cucumber                            | Japan           | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray        | 40–240 g ai/ha<br>(not part of<br>GAP)                | 4.0–<br>8.0 g ai/hL    | 1-3 <sup>b</sup>  | 1                                    |
| Cucurbit<br>vegetables <sup>g</sup> | USA             | 500 WG <sup>n</sup><br>255 SC <sup>n</sup> | Soil<br>treatment              | 168–224 g ai/ha<br>(max<br>224 g ai/ha per<br>season) | _                      | 1                 | –<br>at planting                     |
| Cucurbit<br>vegetables <sup>g</sup> | USA             | 500 WG <sup>n</sup>                        | Foliar spray                   | 56–74 g ai/ha<br>(max<br>224 g ai/ha per<br>season)   | _                      | _<br>(10 d)       | 7                                    |
| Cucurbit<br>vegetables <sup>g</sup> | USA             | 255 SC                                     | Foliar spray                   | 56–75 g ai/ha<br>(max<br>224 g ai/ha per<br>season)   | _                      | _<br>(7 d)        | 21<br>lack of<br>bridging<br>studies |
|                                     | tables, other 1 | than Cucurbits                             |                                |                                                       |                        |                   |                                      |
| Eggplant                            | Japan           | 5 GR <sup>n o</sup>                        | Soil inc.,<br>planting<br>hole | 5 mg ai/plant                                         | -                      | 1 <sup>b</sup>    | –<br>at<br>transplanting             |
| Eggplant                            | Japan           | 5 GR <sup>n o</sup>                        | Plant foot spread              | 5 mg ai/plant                                         | -                      | 1-3 <sup>b</sup>  | 1                                    |
| Eggplant                            | Japan           | 160 SP <sup>n o</sup>                      | High<br>volume<br>spray        | 40–240 g ai/ha<br>(not part of the<br>GAP)            | 4.0–<br>8.0 g ai/hL    | 1-3 <sup>b</sup>  | 1                                    |
| Fruiting<br>vegetables <sup>i</sup> | USA             | 500 WG <sup>n</sup><br>255 SC <sup>n</sup> | Soil<br>treatment              | 168–224 g ai/ha<br>(max<br>224 g ai/ha per<br>season) | _                      | 1                 | –<br>at planting                     |
| Fruiting<br>vegetables <sup>i</sup> | USA             | 500 WG <sup>n</sup>                        | Foliar spray                   | 56–74 g ai/ha<br>(max<br>224 g ai/ha per<br>season)   | -                      | -<br>(7 d)        | 7                                    |
| Fruiting<br>vegetables <sup>i</sup> | USA             | 255 SC <sup>n</sup>                        | Foliar spray                   | 56–75 g ai/ha<br>(max<br>224 g ai/ha per<br>season)   | -                      | -<br>(7 d)        | 21<br>lack of<br>bridging<br>studies |
| Tomato                              | Brazil          | 500 WP <sup>n</sup>                        | Foliar                         | 60–80 g ai/ha                                         | 7.5–10 g ai/hL         | 4                 | 1                                    |
| Tomato                              | Japan           | 5 GR <sup>n o</sup>                        | Soil inc.,<br>planting<br>hole | 5–<br>10 mg ai/plant                                  | _                      | 1 <sup>b</sup>    | –<br>at<br>transplanting             |
| Tomato                              | Japan           | 5 GR <sup>n o</sup>                        | Plant foot<br>spread           | 5 mg ai/plant                                         | -                      | 1–3 <sup>b</sup>  | 1                                    |
| Tomato                              | Japan           | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray        | 40–240 g ai/ha<br>(not part of the<br>GAP)            | 4.0–<br>8.0 g ai/hL    | 1-3 <sup>b</sup>  | 1                                    |
| Leafy vegetal                       | *               |                                            |                                | ·                                                     |                        |                   |                                      |
| Lettuce                             | Brazil          | 500 WG <sup>n</sup>                        | Foliar spray                   | 30-60                                                 | 7.5–10 g ai/hL         | 4                 | 7                                    |
| Lettuce<br>(head &<br>leafy)        | Japan           | 5 GR <sup>n o</sup>                        | Plant foot<br>spread           | 2.5 mg ai/plant                                       | -                      | 1 <sup>b</sup>    | –<br>nursery stage                   |
| Lettuce<br>(head &<br>leafy)        | Japan           | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray        | 40–240 g ai/ha<br>(not part of the<br>GAP)            | 4.0–<br>8.0 g ai/hL    | 1-2 в             | 3                                    |
| Leafy                               | USA             | 500 WG <sup>n</sup>                        | Soil                           | 168–224 g ai/ha                                       | -                      | 1                 | -                                    |

| Crop                                            | Country | Formulation<br>(g ai/L or<br>g ai/kg)          | Method                  | Rate,<br>g ai/ha                                     | Spray conc.<br>g ai/hL        | No.<br>(interval)        | PHI<br>days                          |
|-------------------------------------------------|---------|------------------------------------------------|-------------------------|------------------------------------------------------|-------------------------------|--------------------------|--------------------------------------|
| vegetables <sup>j</sup>                         |         | 255 SC ( <sup>n</sup> )                        | treatment               | (max<br>224 g ai/ha per<br>season)                   |                               |                          | at planting                          |
| Leafy<br>vegetable <sup>j</sup>                 | USA     | 500 WG <sup>n</sup>                            | Foliar spray            | 56–74 g ai/ha<br>(max<br>224 g ai/ha per<br>season)  | _                             | -<br>(10 d)              | 7                                    |
| Leafy<br>vegetable <sup>j</sup>                 | USA     | 255 SC <sup>n</sup>                            | Foliar spray            | 56–75 g ai/ha<br>(max<br>224 g ai/ha per<br>season)  | _                             | -<br>(7 d)               | 21<br>lack of<br>bridging<br>studies |
| Legume vege                                     |         |                                                |                         |                                                      |                               |                          |                                      |
| Soya beans<br>(immature)                        | Japan   | 160 SG <sup>n o</sup>                          | High<br>volume<br>spray | 40–240 g ai/ha<br>(not part of the<br>GAP)           | 4.0–<br>8.0 g ai/hL           | 1–3                      | 3                                    |
| Pulses                                          |         |                                                |                         |                                                      |                               |                          |                                      |
| Soya beans                                      | USA     | 255 SC <sup>n</sup><br>500 WG <sup>n</sup>     | Foliar spray            | 56–75 g ai/ha<br>(max<br>224 g ai/ha per<br>season)  | _                             | _<br>(7 d)               | 21                                   |
| Soya beans                                      | Japan   | 200 SC <sup>n o</sup><br>160 SG <sup>n o</sup> | High<br>volume<br>spray | 40–240 g ai/ha<br>(not part of the<br>GAP)           | 4.0–<br>8.0 g ai/hL           | 3                        | 7                                    |
| Soya beans                                      | Japan   | 200 SC <sup>n o</sup>                          | aerial spray            | 67 g ai/ha                                           | 833 g ai/hL                   | 1–3                      | 7                                    |
| Soya beans                                      | Japan   | 1.5 DP <sup>n o</sup>                          | Dusting                 | 60 g ai/ha                                           | _                             | 3                        | 7                                    |
| Soya beans                                      | Japan   | 5 DP <sup>n o</sup>                            | Dusting                 | 150–200 g ai/ha                                      | -                             | 1–3                      | 7                                    |
| Root and tube                                   |         | -                                              |                         |                                                      |                               | •                        |                                      |
| Potato                                          | Canada  | 600 SC <sup>n</sup>                            | Seed<br>treatment       | _                                                    | 0.13 kg<br>ai/t seed          | 1                        | -                                    |
| Potato                                          | Germany | 500 WG <sup>n</sup>                            | spray during<br>sowing  | 150 g ai/ha                                          | 188–<br>255 g ai/hL           | 1                        | -<br>at sowing                       |
| Potato                                          | Germany | 500 WG <sup>n</sup>                            | Foliar spray            | 18–75 g ai/ha                                        | 4.4–19 g ai/hL                | 2<br>(10–14 d)           | -                                    |
| Potato                                          | Hungary | 500 WG <sup>n</sup>                            | Foliar                  | 20–25 g ai/ha                                        | 4.0–<br>8.3 g ai/hL           | 1                        | 7                                    |
| Potato                                          | Italy   | 500 WG <sup>n</sup>                            | Foliar spray            | 20–30 g ai/ha                                        | 2.0–<br>6.0 g ai/hL           | 2<br>(15 d)              | 7                                    |
| Potato                                          | Japan   | 5 GR <sup>n o</sup>                            | in furrow soil inc      | 300 g ai/ha                                          | -                             | (15 d)<br>1 <sup>b</sup> | –<br>at planting                     |
| Potato                                          | Japan   | 200 SC <sup>n o</sup>                          | High<br>volume<br>spray | 40–120 g ai/ha<br>(not part of the<br>GAP)           | 4.0 g ai/hL                   | 1-3 <sup>b</sup>         | 7                                    |
| Potato                                          | Japan   | 160 SG <sup>n o</sup>                          | High<br>volume<br>spray | 40–240 g ai/ha<br>(not part of the<br>GAP)           | 4.0-<br>8.0 g ai/hL           | 1-3 <sup>b</sup>         | 7                                    |
| Potato                                          | Japan   | 160 SG <sup>n o</sup>                          | Low volume<br>spray     | 40 g ai/ha                                           | 16 g ai/hL                    | 1-3 <sup>b</sup>         | 7                                    |
| Potato                                          | Poland  | 500 WG <sup>n</sup>                            | Foliar spray            | 20–23                                                | 5–15 g ai/hL                  | -                        | 7                                    |
| Potato                                          | Romania | 500 WG <sup>n</sup>                            | Foliar                  | 17.5 g ai/ha                                         | -                             | -                        |                                      |
| Potato                                          | USA     | 160 SG <sup>n</sup>                            | Soil<br>treatment       | 134–202 g ai/ha<br>(max<br>224 g ai/ha per<br>season | _                             | 1                        | –<br>at planting                     |
| Potato                                          | USA     | 500 WG <sup>n</sup>                            | Foliar spray            | 35–52 g ai/ha<br>(max<br>224 g ai/ha per<br>season)  | -                             | 3<br>(7 d)               | 14                                   |
| Tuberous<br>and corm<br>vegetables <sup>1</sup> | USA     | 255 SC <sup>n</sup>                            | Seed piece<br>treatment | _                                                    | 0.07–<br>0.10 kg ai/t<br>seed | 1                        | -                                    |
| Tuberous                                        | USA     | 255 SC <sup>n</sup>                            | Soil                    | 112–224 g ai/ha                                      | -                             | 1                        | -                                    |

| Crop                                            | Country       | Formulation<br>(g ai/L or<br>g ai/kg)      | Method                    | Rate,<br>g ai/ha                                    | Spray conc.<br>g ai/hL | No.<br>(interval) | PHI<br>days                                              |
|-------------------------------------------------|---------------|--------------------------------------------|---------------------------|-----------------------------------------------------|------------------------|-------------------|----------------------------------------------------------|
| and corm vegetables <sup>1</sup>                |               | 500 WG <sup>n</sup>                        | treatment                 | (max<br>224 g ai/ha per<br>season)                  |                        |                   | at planting                                              |
| Tuberous<br>and corm<br>vegetables <sup>1</sup> | USA           | 255 SC <sup>n</sup><br>500 WG <sup>n</sup> | Foliar spray              | 37–56 g ai/ha<br>(max<br>224 g ai/ha per<br>season) | _                      | -<br>(7 d)        | 14                                                       |
| Sugarbeets                                      | Japan         | 160 SG <sup>n o</sup>                      | Soil drench seed bed      | 24–48 k g ai/ha                                     | 80–<br>160 g ai/hL     | 1 <sup>b</sup>    | –<br>before<br>transplanting                             |
| Sugarbeets                                      | Japan         | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray   | 40–240 g ai/ha<br>(not part of the<br>GAP)          | 4.0–<br>8.0 g ai/hL    | 1-3 <sup>b</sup>  | 14                                                       |
| Cereal grains                                   |               | 1                                          | -r                        | - )                                                 | 1                      | 1                 |                                                          |
| Rice                                            | Japan         | 160 SG <sup>n o</sup>                      | Nursery box<br>(spread)   | 0.20–0.40 g<br>ai/box<br>(30x60x3cm;<br>5 L soil)   | 40-80 g ai/hL          | 1 <sup>b</sup>    | -<br>0-3 days<br>before<br>transplanting                 |
| Rice                                            | Japan         | 5 GR <sup>n o</sup>                        | nursery box<br>(spread)   | 0.25 g ai/box<br>(30x60x3cm;<br>5 L soil)           | -                      | 1 <sup>b</sup>    | -<br>3 days before<br>transplanting<br>up to<br>planting |
| Rice                                            | Japan         | 15 GR <sup>n o</sup>                       | nursery box<br>(spread)   | 0.75 g ai/box<br>(30x60x3cm,<br>5 L soil)           | -                      | 1 <sup>b</sup>    | –<br>0–3 days<br>before<br>transplanting                 |
| Rice                                            | Japan         | 1.5 DP <sup>n o</sup>                      | field dust                | 45–60 g ai/ha                                       | -                      | 3 <sup>b</sup>    | 7                                                        |
| Rice                                            | Japan         | 5 DP <sup>n o</sup>                        | dusting                   | 150–200 g ai/ha                                     | _                      | 1-3 <sup>b</sup>  | 7                                                        |
| Rice                                            | Japan         | 5 GR <sup>n o</sup>                        | spreading                 | 150–200 g ai/ha                                     | -                      | 1-3 <sup>b</sup>  | 7                                                        |
| Rice                                            | Japan         | 160 SG <sup>n o</sup>                      | high volume<br>spray      | 24–60 g ai/ha<br>(not part of<br>GAP)               | 4 g ai/hL              | 1-3 <sup>b</sup>  | 7                                                        |
| Rice                                            | Japan         | 200 SC <sup>n o</sup>                      | high volume<br>spray      | 24–60 g ai/ha<br>(not part of<br>GAP)               | 4 g ai/hL              | 1–3 <sup>b</sup>  | 14<br>request PHI<br>7 considered<br>by MAFF             |
| Rice                                            | Japan         | 160 SG <sup>n o</sup>                      | low volume<br>spray       | 40 g ai/ha                                          | 16 g ai/hL             | 1-3 <sup>b</sup>  | 7                                                        |
| Rice                                            | Japan         | 200 SC <sup>n o</sup>                      | low volume<br>spray       | 40 g ai/ha                                          | 16 g ai/hL             | 1-3 <sup>b</sup>  | 14<br>request PHI<br>7 considered<br>by MAFF             |
| Rice                                            | Japan         | 200 SC <sup>n o</sup>                      | aerial spray              | 67 g ai/ha                                          | 833 g ai/hL            | 1-3 <sup>b</sup>  | 14<br>request PHI<br>7 considered<br>by MAFF             |
| Grasses for s                                   | ugar or syrup | production                                 |                           |                                                     |                        |                   |                                                          |
| Sugarcane                                       | Australia     | 200 SC                                     | Soil directed<br>spray    | 250–500 g ai/ha                                     | _                      | 1                 | 147<br>at late plant<br>to small<br>stools, Oct-<br>Dec  |
| Sugarcane                                       | Japan         | 5 GR <sup>n o</sup>                        | in furrow                 | 200–300 g ai/ha                                     | -                      | 1                 | –<br>at planting                                         |
| Oilseed                                         |               |                                            |                           |                                                     |                        |                   | ~                                                        |
| Cotton                                          | Australia     | 200 SC <sup>c n o</sup>                    | Foliar aerial spray       | 25–50 g ai/ha                                       | 83–<br>167 g ai/hL     | 2 <sup>d</sup>    | 5                                                        |
| Cotton                                          | Australia     | 200 SC <sup>c n o</sup>                    | Foliar<br>ground<br>spray | 25–50 g ai/ha                                       | 25–50 g ai/hL          | 2 <sup>d</sup>    | 5                                                        |

| Сгор                 | Country                      | Formulation<br>(g ai/L or<br>g ai/kg)      | Method                    | Rate,<br>g ai/ha                                    | Spray conc.<br>g ai/hL | No.<br>(interval) | PHI<br>days      |
|----------------------|------------------------------|--------------------------------------------|---------------------------|-----------------------------------------------------|------------------------|-------------------|------------------|
| Cotton               | Brazil                       | 500 WP <sup>n</sup>                        | Foliar aerial spray       | 75–100 g ai/ha                                      | 250–<br>500 g ai/hL    | 2                 | 21               |
| Cotton               | Brazil                       | 500 WP <sup>n</sup>                        | Foliar<br>ground<br>spray | 75–100 g ai/ha                                      | 38–50 g ai/hL          | 2                 | 21               |
| Cotton               | USA                          | 255 SC <sup>n</sup><br>500 WG <sup>n</sup> | Foliar spray              | 56–75 g ai/ha<br>(max<br>224 g ai/ha per<br>season) | _                      | (7 d)             | 21               |
| Teas                 |                              |                                            |                           |                                                     |                        |                   |                  |
| Tea,<br>green, black | Japan                        | 160 SG <sup>n o</sup>                      | High<br>volume<br>spray   | 80–320 g ai/ha                                      | 4.0–<br>8.0 g ai/hL    | 1                 | 7                |
| Tea,<br>green, black | Japan                        | 480 SG <sup>n o</sup>                      | High<br>volume<br>spray   | 240–480 g ai/ha<br>not part of GAP                  | 12 g ai/hL             | 1                 | 7                |
| Теа                  | Taipei,<br>China<br>(Taiwan) | 160 SG <sup>n</sup>                        | Foliar<br>spray           | 40 g ai/ha                                          | 4.0 g ai/hL            | 1                 | 21<br>at budding |

<sup>a</sup>, the addition of MAXX organosilicone surfactant at 50 mL/100L water may improve efficacy

<sup>b</sup>, One treatment in a nursery box (rice), one soil drench (sugarbeet) or one soil incorporation at planting (potato, broccoli, cabbage, cucumber, melon, eggplant, tomato, lettuce) may be combined with three foliar spray treatments (rice, potato, broccoli, sugarbeet) or three plant foot spray treatments or three plant foliar spray treatment (cucumber, melon, eggplant, tomato) or two foliar spray treatments (lettuce, cabbage) with another clothianidin containing product. Maximum number of treatments is 3 (lettuce, cabbage) or 4 (other crops).

<sup>c</sup>, plus MAXX organosilicone surfactant at 2 mL/L water

<sup>d</sup>, interval not available: should be alternated with a pesticide from a different group

<sup>e</sup>, Maize for silage may only be fed to livestock after 105 days after sowing.

<sup>f</sup>, As indicated on the label, US brassica (cole) leafy vegetables include broccoli, broccoli Raab (rapini), Brussels sprouts, cabbage, cauliflower, cavalo broccolo, Chinese Broccoli (Gai Lon), Chinese cabbage (Bok Choy and Napa), Chinese mustard cabbage, collards, kale, kohlrabi, mizuna, mustard greens, mustard spinach, rape greens and turnip greens.

<sup>g</sup>, As indicated on the label, US cucurbit vegetables include acorn squash, balsam apple, balsam pear, bitter melon, butternut squash, calabaza, cantaloupe, casaba, chayote, Chinese cucumber, Chinese okra, Chinese waxgourd (Chinese preserving melon), citron melon, crenshaw melon, crookneck squash, cucumber, cucuzza, edible gourd, gherkin, golden pershaw melon, hechima, honey balls, honeydew melon, hubbard squash, hyotan, mango melon, Mormordica spp., muskmelon, Persian melon, pineapple melon, pumpkin, Santa Claus melon, scallop squash, snake melon, spaghetti squash, straightneck squash, summer squash, true cantaloupe, vegetable marrow, watermelon, winter squash, zucchini.

<sup>h</sup>, As indicated on the label US cranberry (low-growing berry except strawberry) includes bearberry, bilberry, Cloudberry, cranberry, lingonberry, lowbush blueberry muntries, partridgeberry and varieties and/or cultivars of these.

<sup>i</sup>, As indicated on the label, US fruiting vegetables (except cucurbits) includes eggplant, ground cherry (Physalis spp), pepino, peppers (including bell pepper, chili pepper, cooking pepper, pimento, sweet pepper), tomatillo and tomato.

<sup>j</sup>, As indicated on the label US leafy vegetables (except brassica vegetables) includes amaranth (Chinese spinach), arugula (roquette), cardoon, celery, celtuce, chervil, Chinese celery, Chrysanthemum (edible-leaved and garland), corn salad, cress (garden and upland), dandelion, dock (sorrel), endive (scarole), Florence fennel, lettuce (head and leaf), orach, parsley, purslane (garden and winter), radicchio (red chicory), rhubarb, spinach, spinach (New Zealand and vine), Swiss chard.

<sup>k</sup>, As indicated on the label US pomefruit includes apple, crabapple, loquat, mayhaw, pear, oriental pear and quince.

<sup>1</sup>, As indicated on the label US tuberous and corm vegetables include arrachda, arrowroot, artichoke (including Chinese and Jerusalem), edible canna, cassava (including bitter and sweet), root chayote, chufa, dasheen, ginger, leren, potato, sweet potato, tanier, turmeric and yam.

<sup>m</sup>, Ume (Prunus mume) is commonly cultivated in China and Japan, but is not included in the Codex Classification of Foods and Animal Feeds. It is a kind of stone fruit with its fruit very similar to apricot in size and shape. Trials are treated as apricots.

<sup>n</sup>, original label submitted, registration number available on the label.

°, label information confirmed by national authorisation body

For seed treatment, seeds are mixed with the active ingredient (either undiluted or diluted with water as slurry or liquid) generally by using specialized seed treatment equipment (mixing or

stirring). Seed is dried after application. Generally seeds are sown in the field using precision equipment (fixed number of seeds per hectare), where the seeds are drilled into the ground.

Table 58 Seed treatments

| Crop                             | Country     | Formulation (g<br>ai/L or<br>g ai/kg)                             | Method            | Rate,<br>g ai/ha                   | kg ai/tonne seeds          | No. | PHI<br>days |
|----------------------------------|-------------|-------------------------------------------------------------------|-------------------|------------------------------------|----------------------------|-----|-------------|
| Brassica vegetab                 | oles        |                                                                   | •                 | •                                  |                            |     |             |
| Forage<br>brassicas <sup>a</sup> | New Zealand | 600 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 7.20 kg ai/t seeds         | 1   | -           |
| Root and tuber vegetables        |             |                                                                   |                   |                                    |                            |     |             |
| Chicory root                     | Belgium     | 400 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.3 mg ai/seed             | 1   |             |
| Sugar beet &<br>Fodder beet      | Belgium     | 100 FS <sup>d</sup><br>400 FS <sup>d</sup>                        | Seed<br>treatment | -                                  | 0.1-0.6 mg ai/seed         | 1   | -           |
| Sugarbeet                        | Chile       | 400 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.6 mg ai/seed             | 1   | -           |
| Sugar beet &<br>Fodder beet      | Denmark     | 100 FS <sup>d</sup><br>400 FS <sup>d</sup>                        | seed<br>treatment | -                                  | 0.1–<br>0.6 mg ai/seed     | 1   | -           |
| Sugar beet &<br>Fodder beet      | Finland     | 400 FS <sup>d</sup>                                               | seed<br>treatment | -                                  | 0.6 mg ai/seed             | 1   | -           |
| Sugar beet &<br>Fodder beet      | Germany     | 100 FS <sup>d</sup>                                               | Seed<br>treatment | 13 g ai/ha<br>(130000<br>seeds/ha) | 0.1 mg ai/seed             | 1   | -           |
| Sugar beet &<br>Fodder beet      | Germany     | 400 FS <sup>d</sup>                                               | Seed<br>treatment | 78 g ai/ha<br>(130000<br>seeds/ha) | 0.6 mg ai/seed             | 1   | -           |
| Sugarbeet                        | Italy       | 400 FS <sup>d</sup><br>600 FS <sup>d</sup>                        | seed<br>treatment | -                                  | 0.3–0.6 mg ai/seed         | 1   | -           |
| Sugar beet &<br>Fodder beet      | Netherlands | 400 FS <sup>d</sup> <sup>e</sup>                                  | Seed<br>treatment | -                                  | 0.6 mg ai/seed             | 1   | -           |
| Sugar beet &<br>Fodder beet      | Poland      | 100 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.1 mg ai/seed             | 1   | -           |
| Sugar beet &<br>Fodder beet      | Slovakia    | 400 FS <sup>d</sup><br>600 FS <sup>d</sup><br>100 FS <sup>d</sup> | Seed<br>treatment | -                                  | 0.1–0.6 mg ai/seed         | 1   | -           |
| Sugar beet                       | Slovenia    | 600 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.16–<br>0.60 mg ai/seed   | 1   | -           |
| Sugarbeet                        | Spain       | 600 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.45–<br>0.60 mg ai/seed   | 1   | -           |
| Sugar beet &<br>Fodder beet      | UK          | 400 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.6 mg ai/seed             | 1   | -           |
| Sugar beet                       | USA         | 400 FS <sup>d</sup><br>600 FS <sup>d</sup>                        | Seed<br>treatment | -                                  | 0.6 mg ai/seed             | 1   | -           |
| Cereal grains                    |             |                                                                   |                   |                                    |                            |     |             |
| Barley                           | Chile       | 400 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.24–0.36 kg ai/t<br>seeds | 1   | 1           |
| Barley (winter barley)           | Ireland     | 250 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.50 kg ai/t seeds         | 1   | -           |
| Barley (winter barley)           | UK          | 250 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.50 kg ai/t seeds         | 1   | -           |
| Barley (winter barley)           | UK          | 333.3 FS <sup>d</sup>                                             | Seed<br>treatment | 62 g ai/ha                         | 0.50 kg ai/t seeds         | 1   | -           |
| Barley                           | USA         | 10 FS <sup>d</sup>                                                | Seed<br>treatment |                                    | 0.05–0.07 kg ai/t<br>seeds |     | f           |
| Maize                            | Austria     | 600 FS <sup>d</sup>                                               | Seed<br>treatment | _                                  | 0.50–1.25 kg ai/t          | 1   | -           |
| Maize                            | Belarus     | 600 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 1.5–4.2 kg ai/t<br>seeds   | 1   | -           |
| Maize                            | Brazil      | 600 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 2.1–2.4 kg ai/t<br>seeds   | 1   | -           |
| Maize (incl<br>field corn,       | Canada      | 600 FS <sup>d</sup>                                               | Seed<br>treatment | -                                  | 0.25–1.25<br>mg ai/seed    | 1   | -           |

| Crop                                                   | Country           | Formulation (g<br>ai/L or<br>g ai/kg) | Method            | Rate,<br>g ai/ha                           | kg ai/tonne seeds                                    | No. | PHI<br>days |
|--------------------------------------------------------|-------------------|---------------------------------------|-------------------|--------------------------------------------|------------------------------------------------------|-----|-------------|
| sweet corn,                                            |                   |                                       |                   |                                            |                                                      |     |             |
| popcorn)<br>Maize                                      | Colombia          | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.78 mg ai/seed                                      | 1   |             |
| Maize                                                  | Chile             | 600 FS <sup>d</sup>                   | Seed<br>treatment | _                                          | 0.48–<br>1.2 mg ai/seed                              | 1   | -           |
| Maize                                                  | Csech<br>Republic | 600 FS <sup>d</sup>                   | Seed<br>treatment | 50 g ai/ha<br>(100000<br>seeds/ha)         | 0.5 mg ai/seed                                       | 1   | -           |
| Maize (incl<br>sweet corn)                             | Germany           | 600 FS <sup>d</sup>                   | Seed<br>treatment | 50–<br>125 g ai/ha<br>(100000<br>seeds/ha) | 0.5–<br>1.25 mg ai/seed                              | 1   | -           |
| Maize                                                  | Guatemala         | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.5–<br>0.75 mg ai/seed                              | 1   | -           |
| Maize                                                  | Hungary           | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.5–<br>1.25 mg ai/seed                              | 1   | -           |
| Maize                                                  | Italy             | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.5–<br>1.25 mg ai/seed                              |     |             |
| Maize                                                  | Mexico            | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.4–<br>1.25 mg ai/seed                              | 1   | -           |
| Maize (for<br>grain and<br>silage)                     | Netherlands       | 600 FS °                              | Seed<br>treatment | -                                          | 0.5 mg ai/seed                                       | 1   | -           |
| Maize                                                  | New Zealand       | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.75 mg ai/seed                                      | 1   | -           |
| Maize                                                  | Paraguay          | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 2.1–2.4 kg ai/t<br>seeds                             |     |             |
| Maize                                                  | Portugal          | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 2.0 kg ai/t<br>(0.5 mg ai/seed)                      | 1   | -           |
| Maize                                                  | Romania           | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 2.4-6.0 kg ai/t<br>seeds<br>(0.5-<br>1.25 mg ai/seed | 1   | -           |
| Maize                                                  | Serbia            | 600 FS <sup>d</sup>                   | Seed<br>treatment | _                                          | 1.8–4.2 kg ai/t<br>seed                              | 1   | -           |
| Maize                                                  | Slovakia          | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.5–<br>1.25 mg ai/seed                              | 1   | -           |
| Maize                                                  | Slovenia          | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.49 mg ai/seed                                      | 1   | -           |
| Maize                                                  | Spain             | 600 FS <sup>d</sup>                   | Seed<br>treatment | _                                          | 0.5 mg ai/seed                                       | 1   | -           |
| Maize (forage<br>maize, grain<br>maize, sweet<br>corn) | UK                | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.5 mg ai/seed                                       | 1   | -           |
| Maize                                                  | Ukraine           | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 1.8–2.0 kg ai/t<br>seeds                             | 1   | -           |
| Maize (field<br>corn, popcorn,<br>sweet corn)          | USA               | 600 FS <sup>d</sup>                   | Seed<br>treatment | _                                          | 0.125–<br>1.25 mg ai/seed                            | 1   | -           |
| Oats                                                   | Chile             | 400 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.24–0.36 kg ai/t<br>seeds                           | 1   | 1           |
| Oats (winter oats)                                     | Ireland           | 250 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.50 kg ai/t seeds                                   | 1   | -           |
| Oats (winter oats)                                     | UK                | 250 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.50 kg ai/t seeds                                   | 1   | -           |
| Rice                                                   | Colombia          | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.36–0.48 kg ai/t                                    | 1   | -           |
| Rye                                                    | Chile             | 400 FS <sup>d</sup>                   | Seed<br>treatment | -                                          | 0.24 kg ai/t seeds                                   | 1   | 1           |
| Rye                                                    | Ireland           | 250 FS <sup>d</sup>                   | Seed              | -                                          | 0.50 kg ai/t seeds                                   | 1   | -           |

| Crop                                                | Country           | Formulation (g<br>ai/L or<br>g ai/kg)                               | Method            | Rate,<br>g ai/ha                   | kg ai/tonne seeds                                      | No. | PHI<br>days |
|-----------------------------------------------------|-------------------|---------------------------------------------------------------------|-------------------|------------------------------------|--------------------------------------------------------|-----|-------------|
|                                                     |                   | 0 0/                                                                | treatment         |                                    |                                                        |     |             |
| Rye                                                 | UK                | 250 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 0.50 kg ai/t seeds                                     | 1   | -           |
| Sorghum                                             | Mexico            | 600 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 0.9–2.4 kg ai/t seeds                                  | 1   | -           |
| Sorghum                                             | USA               | 600 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 2.0–2.5 kg ai/t<br>seeds                               | 1   | -           |
| Triticale                                           | Chile             | 400 FS <sup>d</sup>                                                 | Seed<br>treatment | _                                  | 0.24–0.36 kg ai/t<br>seeds                             | 1   | 1           |
| Triticale                                           | Ireland           | 250 FS <sup>d</sup>                                                 | Seed<br>treatment | _                                  | 0.50 kg ai/t seeds                                     | 1   | -           |
| Triticale                                           | UK                | 250 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 0.50 kg ai/t seeds                                     | 1   | -           |
| Triticale                                           | USA               | 10 FS <sup>d</sup>                                                  | Seed<br>treatment | -                                  | 0.05–0.07 kg ai/t<br>seeds                             | 1   | f           |
| Wheat                                               | Chile             | 400 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 0.24–0.36 kg ai/t<br>seeds                             | 1   | 1           |
| Wheat (winter<br>wheat, durum<br>wheat)             | Ireland           | 250 FS <sup>d</sup>                                                 | Seed<br>treatment | 63 g ai/ha<br>(125 kg<br>seeds/ha) | 0.50 kg ai/t seeds                                     | 1   | -           |
| Wheat                                               | New Zealand       | 600 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 0.36 kg ai/t seeds                                     | 1   | -           |
| Wheat (winter<br>wheat, durum<br>wheat)             | UK                | 250 FS <sup>d</sup>                                                 | Seed<br>treatment | 63 g ai/ha<br>(125 kg<br>seeds/ha) | 0.50 kg ai/t seeds                                     | 1   | -           |
| Wheat                                               | USA               | 10 FS <sup>d</sup>                                                  | Seed<br>treatment | -                                  | 0.05–0.07 kg ai/t<br>seeds                             |     | —<br>b      |
| Oilseed                                             |                   |                                                                     |                   |                                    |                                                        |     |             |
| Cotton                                              | Brazil            | 600 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 2.1–2.7 kg ai/t<br>seeds                               | 1   | -           |
| Cotton                                              | Paraguay          | 600 FS <sup>d</sup>                                                 | Seed<br>treatment | 1                                  | 2.1–2.7 kg ai/t<br>seeds                               | 1   | -           |
| Cotton                                              | USA               | 180 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 1.5-2.1 kg ai/t<br>seeds<br>(0.11-<br>0.16 mg ai/seed) | 1   | -           |
| Rape seed (incl canola)                             | Canada            | 600 FS <sup>d</sup><br>120 FS <sup>d</sup><br>285.7 FS <sup>d</sup> | Seed<br>treatment | -                                  | 1.5–4.0 kg ai/t<br>seed©                               | -   |             |
| Rape seed                                           | Chile             | 600 FS <sup>d</sup><br>400 FS <sup>d</sup>                          | seed<br>treatment | -                                  | 3.6–6.0 kg ai/t seeds                                  | 1   | -           |
| Rape seed                                           | Csech<br>Republic | 400 FS <sup>d c</sup>                                               | Seed<br>treatment | 50 g ai/ha<br>(5 kg<br>seeds/ha)   | 10 kg ai/t seeds                                       | 1   | _           |
| Rape seed<br>(spring and<br>winter oilseed<br>rape) | Estonia           | 400 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 5–10 kg ai/t seeds                                     | 1   | -           |
| Rape seed                                           | Finland           | 400 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 7.4–10 kg ai/t<br>seeds                                | 1   | -           |
| Rape seed                                           | Germany           | 400 FS <sup>d</sup>                                                 | Seed<br>treatment | 50 g ai/ha<br>(5 kg<br>seeds/ha)   | 10 kg ai/t seeds                                       | 1   | -           |
| Rape seed<br>(spring and<br>winter oilseed<br>rape) | Lithuania         | 400 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 5 kg ai/t seeds                                        | 1   | -           |
| Rape seed                                           | Romania           | 400 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 5.0 kg ai/t seeds                                      | 1   | -           |
| Rape seed                                           | Serbia            | 400 FS <sup>d</sup>                                                 | Seed<br>treatment | -                                  | 5 kg ai/t seeds                                        | 1   | -           |

| Crop                                  | Country  | Formulation (g<br>ai/L or<br>g ai/kg) | Method            | Rate,<br>g ai/ha | kg ai/tonne seeds                     | No. | PHI<br>days |
|---------------------------------------|----------|---------------------------------------|-------------------|------------------|---------------------------------------|-----|-------------|
| Rape seed<br>(winter oilseed<br>rape) | UK       | 400 FS <sup>d</sup>                   | Seed<br>treatment | _                | 5 kg ai/t seeds                       | 1   | _           |
| Rapeseed (incl canola)                | USA      | 600 FS <sup>d</sup>                   | Seed<br>treatment | _                | 1.5–4.0 kg ai/t<br>seeds              | 1   | -           |
| Sunflower                             | Romania  | 600 FS <sup>d</sup>                   | Seed<br>treatment | _                | 5.4 kg ai/t seeds<br>(0.5 mg ai/seed) | 1   | -           |
| Sunflower                             | Slovakia | 600 FS <sup>d</sup>                   | Seed<br>treatment | _                | 0.24 mg ai/seed                       | 1   | -           |
| Sunflower                             | Ukraine  | 600 FS <sup>d</sup>                   | Seed<br>treatment | -                | 2.7 kg ai/t seeds                     | 1   | -           |

<sup>a</sup>, Forage brassicas in New Zealand are intended for livestock feed only and include leaf turnips (leaves of Brassica rapa), bulb turnips (bulb and leaves of Brassica rapa), swedes (bulb and leaves of Brassica napus napobrassica), rapes (leaves of Brassica napus spp. biennis) and kale (leaves of Brassica oleracea spp. acephala).

<sup>b</sup>, Barley, wheat and triticale green forage may be grazed or harvested for hay 31 days after seeding.

 $^{\circ}$ , 25 kg Talkum Blue or 20–40 kg Talkum Green absorbent is added per tonne of seeds to achieve the technical characteristics of seeds.

<sup>e</sup> original label submitted, registration number available on the label.

<sup>f</sup>, label information confirmed by national authorisation body

## **RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS**

## **RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS**

The Meeting received information on supervised residue trials of foliar treatments, soil treatment, combined soil and foliar treatments and seed treatments of clothianidin for the following crops:

| Group                              | Commodity                          | Table |
|------------------------------------|------------------------------------|-------|
| Pome fruits                        | Apple, foliar spray                | 59    |
|                                    | Apple, soil drench                 | 60    |
|                                    | Pear, foliar spray                 | 61    |
| Stone fruits                       | Apricot, foliar spray, field       | 62    |
|                                    | Cherry, foliar spray, indoor       | 63    |
|                                    | Nectarine, foliar spray, field     | 64    |
|                                    | Peach, foliar spray, field         | 65    |
|                                    | Peach, foliar spray, indoor        | 66    |
|                                    | Plum, foliar spray, field          | 67    |
| Berries and other small fruits     | Cranberries, foliar spray, field   | 68    |
|                                    | Cranberries, soil treatment, field | 69    |
|                                    | Grapes, foliar spray, field        | 70    |
|                                    | Grapes, soil drench, field         | 71    |
|                                    | Grapes, foliar spray, indoor       | 72    |
| Assorted tropical and sub-tropical | Persimmon, foliar spray            | 73    |

| Group                                                   | Commodity                                                | Table |
|---------------------------------------------------------|----------------------------------------------------------|-------|
| fruits—edible peel                                      |                                                          |       |
| Assorted tropical and sub-tropical fruits—inedible peel | Banana, stem spray                                       | 74    |
|                                                         | Banana, stem injection                                   | 75    |
| Brassica vegetables                                     | Head cabbages, seed treatment                            | 76    |
|                                                         | Head cabbages, foliar spray                              | 77    |
|                                                         | Head cabbages, soil drench plus foliar spray             | 78    |
|                                                         | Head cabbages, soil drench                               | 79    |
|                                                         | Broccoli, soil treatment plus foliar spray               | 80    |
|                                                         | Broccoli, soil treatment                                 | 81    |
| Fruiting vegetables, cucurbits                          | Cucumber, foliar spray, field                            | 82    |
|                                                         | Cucumber, soil treatment, field                          | 83    |
|                                                         | Cucumber, soil treatment plus foliar spray, indoor       | 84    |
|                                                         | Summer squash, foliar spray, field                       | 85    |
|                                                         | Summer squash, soil treatment, field                     | 86    |
| Fruiting vegetables other than cucurbits                | Egg plants, soil treatment plus foliar spray, indoor     | 87    |
|                                                         | Sweet corn, seed treatment                               | 88    |
|                                                         | Tomato, foliar spray, field                              | 89    |
|                                                         | Tomato, soil treatment, field                            | 90    |
|                                                         | Tomato, soil treatment plus foliar spray, indoor         | 91    |
|                                                         | Tomato, soil treatment, indoor                           | 92    |
| Leafy vegetables                                        | Head lettuce, foliar spray, field                        | 93    |
|                                                         | Head lettuce, soil treatment, field                      | 94    |
|                                                         | Leaf lettuce, foliar spray, field                        | 95    |
|                                                         | Leaf lettuce, soil treatment, field                      | 96    |
| Pulses                                                  | Soya bean (dry), foliar spray, field                     | 97    |
|                                                         | Soya bean (dry), soil treatment plus foliar spray, field | 98    |
| Root and tuber vegetables                               | Carrots, seed treatment                                  | 99    |
|                                                         | Chicory roots, seed treatment                            | 100   |
|                                                         | Potatoes, foliar spray                                   | 101   |
|                                                         | Potatoes, soil treatment                                 | 102   |
|                                                         | Sugar beet roots, seed treatment                         | 103   |
| Cereal grains                                           | Barley, seed treatment                                   | 104   |

| Group                                                 | Commodity                                                    | Table |
|-------------------------------------------------------|--------------------------------------------------------------|-------|
|                                                       | Maize (corn), seed treatment                                 | 105   |
|                                                       | Popcorn, seed treatment                                      | 105   |
|                                                       | Rice, seed treatment plus foliar spray                       | 106   |
|                                                       | Sorghum, seed treatment                                      | 107   |
|                                                       | Wheat, seed treatment                                        | 108   |
| Grasses for sugar and syrup production                | Sugarcane, soil treatment                                    | 109   |
| Oilseed                                               | Cotton undelinted seed, seed treatment                       | 110   |
|                                                       | Cotton undelinted seed, foliar spray                         | 111   |
|                                                       | Rape seed, seed treatment                                    | 112   |
|                                                       | Sunflower seed, seed treatment                               | 113   |
| Legume animal feeds                                   | Soya bean forage                                             | _     |
|                                                       | Soya bean hay                                                | _     |
| Straw, forage and fodder of cereal grains and grasses | Green barley forage, seed treatment                          | 114   |
|                                                       | Barley hay                                                   | -     |
|                                                       | Barley straw, seed treatment                                 | 115   |
|                                                       | Field corn forage, seed treatment                            | 116   |
|                                                       | Sweet corn forage, seed treatment                            | 116   |
|                                                       | Field corn stover, seed treatment                            | 117   |
|                                                       | Popcorn stover, seed treatment                               | 117   |
|                                                       | Sweet corn stover, seed treatment                            | 117   |
|                                                       | Rice whole crop silage                                       | _     |
|                                                       | Rice straw                                                   | _     |
|                                                       | Sorghum grain forage, seed treatment                         | 118   |
|                                                       | Sorghum grain stover, seed treatment                         | 119   |
|                                                       | Green wheat forage, seed treatment                           | 120   |
|                                                       | Wheat hay, seed treatment                                    | 121   |
|                                                       | Wheat straw, seed treatment                                  | 122   |
| Miscellaneous fodder and forage crops                 | Cotton gin by-products, seed treatment                       | 123   |
|                                                       | Cotton gin by-products, foliar spray                         | 124   |
|                                                       | Green rape forage, seed treatment                            | 125   |
|                                                       | Sugar beet tops, seed treatment                              | 126   |
|                                                       | Sugarcane tops, soil treatment                               | 127   |
|                                                       | Sugarcane fodder                                             | _     |
| Teas                                                  | Tea, green, black (black, fermented and dried), foliar spray | 128   |

Application rates were reported as clothianidin (parent). Unquantifiable residues are shown as below the reported LOQ (e.g. < 0.01 mg/kg). Residues, application rates and spray concentrations have been rounded to two figures. Residue data are recorded unadjusted for percentage recoveries or for residue values in control samples unless otherwise stated. Where multiple samples were taken from a single plot individual values are reported. Where multiple analyses were conducted on a single sample, the average value is reported. Where results from separate plots with distinguishing characteristics such as different formulations, varieties or treatment schedules were reported, results are listed for each plot.

Residues from the trials conducted according to critical GAP have been used for the estimation of maximum residue levels, STMR and HR values. Those results are underlined.

### Pome fruits

The Meeting received supervised residue trials on apples, pears and Japanese pears. Trials were available for foliar spray treatment in the field as well as for soil drench treatment in the field.

#### Apples

Supervised residue trials on apples were conducted in Australia (2004, 2005 and 2006), Germany (1998), Hungary (2005), the UK (1998 and 1999), France (1998 and 1999), Italy (1998), Spain (1998), Japan (1998 and 2005) and the USA (1999). Results are shown in Table 59 (foliar spray treatment in the field) and Table 60 (soil drench treatment in the field). Residue levels in the Japanese trials are not for the whole fruit minus stem (= RAC), but for apples minus stylar scar, core and peduncle base.

| Trial, location<br>Country, year<br>(Variety)                                         | Form<br>ulation<br>(g ai/L) | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                            | soil<br>type | DA<br>T                       | parent,<br>mg/kg                             | referenc<br>e |
|---------------------------------------------------------------------------------------|-----------------------------|----|---------------------|------------|------------|----------------------------------------------|--------------|-------------------------------|----------------------------------------------|---------------|
| Site 3696<br>Wantirna South,<br>Victoria,<br>Australia, 2004<br>(Granny Smith)        | 500 WG                      | 4  | 16;<br>14;<br>14    | ns         | 30         | Foliar<br>spray;<br>7 Apr;<br>mature         | clay         | 0<br>3<br>7<br>14<br>21<br>28 | 1.2<br>0.89<br>0.61<br>0.64<br>0.25<br>0.09  | THR-<br>0561  |
| Site 3696<br>Wantirna South,<br>Victoria,<br>Australia, 2004<br>(Granny Smith)        | 500 WG                      | 4  | 16;<br>14;<br>14    | ns         | 60         | Foliar<br>spray;<br>7 Apr;<br>mature         | clay         | 0<br>3<br>7<br>14<br>21<br>28 | 2.5<br>1.6<br>2.1<br>0.63<br>0.37<br>0.23    | THR-<br>0561  |
| Site 3697<br>Orange,<br>New South<br>Wales,<br>Australia, 2004<br>(Red Delicious)     | 500 WG                      | 4  | 14;<br>14;<br>14    | ns         | 30         | Foliar<br>spray;<br>4 Mar;<br>fruit<br>50 mm | clay         | 0<br>3<br>7<br>14<br>21<br>28 | 0.84<br>0.30<br>0.15<br>0.30<br>0.25<br>0.21 | THR-<br>0561  |
| Site 1<br>Trial 5003<br>Wantirna South;<br>Victoria<br>Australia, 2005<br>(Pink Lady) | 500 WG<br>+<br>MAXX         | 4  | 14<br>13<br>15      | ns         | 20         | Foliar<br>spray;<br>15 Apr;<br>BBCH ns       | clay         | 0<br>7<br>14<br>21<br>28      | 0.50<br>0.45<br>0.35<br>0.28<br>0.32         | THR-<br>0562  |
| Site 1<br>Trial 5003<br>Wantirna South;<br>Victoria<br>Australia, 2005<br>(Pink Lady) | 500 WG<br>+<br>MAXX         | 4  | 14<br>13<br>15      | ns         | 40         | Foliar<br>spray;<br>15 Apr;<br>BBCH ns       | clay         | 0<br>7<br>14<br>21<br>28      | 0.97<br>1.2<br>0.96<br>0.65<br>0.80          | THR-<br>0562  |

| Table 59 Residues of clothianidin in | apple (whole fruit) | after foliar spray treatment | in the field |
|--------------------------------------|---------------------|------------------------------|--------------|
|                                      |                     |                              |              |

| Trial, location                                                                                   | Form                | No | Inter            | g     | g     | method,                                                                | soil                  | DA                       | parent,                              | referenc      |
|---------------------------------------------------------------------------------------------------|---------------------|----|------------------|-------|-------|------------------------------------------------------------------------|-----------------------|--------------------------|--------------------------------------|---------------|
| Country, year<br>(Variety)                                                                        | ulation<br>(g ai/L) |    | val<br>(d)       | ai/ha | ai/hL | timing                                                                 | type                  | Т                        | mg/kg                                | e             |
| Site 1<br>Trial 5003<br>Wantirna South;<br>Victoria<br>Australia, 2005<br>(Pink Lady)             | 500 WG<br>+<br>MAXX | 2  | 15               | ns    | 20    | Foliar<br>spray;<br>15 Apr;<br>BBCH ns                                 | clay                  | 0<br>7<br>14<br>21<br>28 | 0.31<br>0.32<br>0.23<br>0.24<br>0.19 | THR-<br>0562  |
| Site 1<br>Trial 5003<br>Wantirna South;<br>Victoria<br>Australia, 2005<br>(Pink Lady)             | 500 WG<br>+ MAXX    | 2  | 6–21             | ns    | 20    | Foliar<br>spray;<br>24 Mar;<br>18 Mar;<br>18 Mar;<br>4 Mar;<br>BBCH ns | clay                  | 36<br>42<br>42<br>56     | 0.15<br>0.10<br>0.13<br>0.09         | THR-<br>0562° |
| Site 2<br>Trial 5004<br>Shepparton East<br>Victoria,<br>Australia, 2005<br>(Sundowner)            | 500 WG<br>+ MAXX    | 4  | 15;<br>14;<br>14 | ns    | 20    | Foliar<br>spray;<br>20 Apr;<br>BBCH ns                                 | sandy<br>clay<br>loam | 7                        | 0.27                                 | THR-<br>0562  |
| Site 2<br>Trial 5004<br>Shepparton East<br>Victoria,<br>Australia, 2005<br>(Sundowner)            | 500 WG<br>+ MAXX    | 4  | 15;<br>14;<br>14 | ns    | 40    | Foliar<br>spray;<br>20 Apr;<br>BBCH ns                                 | sandy<br>clay<br>loam | 7                        | 0.60                                 | THR-<br>0562  |
| Site 2<br>Trial 5004<br>Shepparton East<br>Victoria,<br>Australia, 2005<br>(Sundowner)            | 500 WG              | 4  | 15;<br>14;<br>14 | ns    | 20    | Foliar<br>spray;<br>20 Apr;<br>BBCH ns                                 | sandy<br>clay<br>loam | 7                        | 0.26                                 | THR-<br>0562  |
| Site 2<br>Trial 5004<br>Shepparton East<br>Victoria,<br>Australia, 2005<br>(Sundowner)            | 200 SC<br>+ MAXX    | 4  | 15;<br>14;<br>14 | ns    | 20    | Foliar<br>spray;<br>20 Apr;<br>BBCH ns                                 | sandy<br>clay<br>loam | 7                        | 0.28                                 | THR-<br>0562  |
| Site 2<br>Trial 5004<br>Shepparton East<br>Victoria,<br>Australia, 2005<br>(Sundowner)            | 200 SC<br>+ MAXX    | 4  | 15;<br>14;<br>14 | ns    | 40    | Foliar<br>spray;<br>20 Apr;<br>BBCH ns                                 | sandy<br>clay<br>loam | 7                        | 1.8                                  | THR-<br>0562  |
| Site 2<br>Trial 5004<br>Shepparton East<br>Victoria,<br>Australia, 2005<br>(Sundowner)            | 200 SC              | 4  | 15;<br>14;<br>14 | ns    | 20    | Foliar<br>spray;<br>20 Apr;<br>BBCH ns                                 | sandy<br>clay<br>loam | 7                        | 0.60                                 | THR-<br>0562  |
| Site 3<br>Trial 5005<br>Orange,<br>New South<br>Wales<br>Australia, 2005<br>(Pink Lady)           | 500 WG<br>+ MAXX    | 4  | 14;<br>14;<br>14 | ns    | 40    | Foliar<br>spray;<br>4 Apr;<br>BBCH ns                                  | clay                  | 7                        | 0.25                                 | THR-<br>0562  |
| (i ink bady)<br>Site 4<br>Trial 5006<br>Devonport,<br>Tasmania,<br>Australia, 2005<br>(Sundowner) | 500 WG<br>+ MAXX    | 4  | 13;<br>16;<br>13 | ns    | 20    | Foliar<br>spray;<br>22 Apr;<br>BBCH ns                                 | clay                  | 7                        | 0.22                                 | THR-<br>0562  |

| Trial, location | Form               | No  | Inter   | a          | a          | method,            | soil      | DA  | parent, | referenc     |
|-----------------|--------------------|-----|---------|------------|------------|--------------------|-----------|-----|---------|--------------|
| Country, year   | ulation            | INO | val     | g<br>ai/ha | g<br>ai/hL | timing             | type      | T   | mg/kg   | e            |
| (Variety)       | (g ai/L)           |     | (d)     | ai/iia     | al/IIL     | tinning            | type      | 1   | iiig/kg | C            |
| Site 4          | (g al/L)<br>500 WG | 4   | 13;     | ns         | 40         | Foliar             | clay      | 7   | 0.52    | THR-         |
| Trial 5006      | + MAXX             | 4   | 15, 16; | 115        | 40         |                    | ciay      | /   | 0.52    | 0562         |
| Devonport,      | + IVIAAA           |     | 13      |            |            | spray;<br>22 Apr;  |           |     |         | 0302         |
| Tasmania,       |                    |     | 15      |            |            | BBCH ns            |           |     |         |              |
| Australia, 2005 |                    |     |         |            |            | BBC11 lis          |           |     |         |              |
| (Sundowner)     |                    |     |         |            |            |                    |           |     |         |              |
| Site 4          | 500 WC             | 4   | 12.     |            | 80         | Cana               | aları     | 7   | 0.54    | TUD          |
| Trial 5006      | 500 WG<br>+ MAXX   | 4   | 13;     | ns         | 80         | Conc.<br>foliar    | clay      | 7   | 0.54    | THR-<br>0562 |
|                 | + MAAA             |     | 16;     |            |            |                    |           |     |         | 0362         |
| Devonport,      |                    |     | 13      |            |            | spray;             |           |     |         |              |
| Tasmania,       |                    |     |         |            |            | 22 Apr;<br>BBCH ns |           |     |         |              |
| Australia, 2005 |                    |     |         |            |            | BBCH IIS           |           |     |         |              |
| (Sundowner)     | 500 W/C            | 1   |         | 70         | 10         | E I                | 1         | 20  | < 0.02  | TID          |
| Trial 352-05    | 500 WG             | 1   | -       | 72         | 10         | Foliar             | sandy     | 28  | < 0.02  | THR-         |
| Bärdibükk,      |                    |     |         |            |            | spray;             | loam      |     | < 0.02  | 0004<br>a    |
| Hungary, 2005   |                    |     |         |            |            | 10 Aug;            |           |     | < 0.02  | u            |
| (Jonathan)      | 500 YY G           |     | _       |            |            | BBCH 81            |           |     | 0.010   |              |
| AF/4341/CL/1;   | 500 WG             | 2   | 7       | 74         | 7.5        | foliar             | sandy     | 14  | 0.012   | THR-         |
| Southwell;      |                    |     |         | 74         | 7.5        | spray;             | silt      |     |         | 0060         |
| Nottingham      |                    |     |         |            |            | 13 Aug;            | loam      |     |         |              |
| shire, UK, 1998 |                    |     |         |            |            | BBCH               |           |     |         |              |
| (Bramley)       |                    |     |         | a-         |            | 75–77              |           |     | 0.01-   |              |
| 586/182/1       | 500 WG             | 2   | 8       | 25         | 5.0        | Foliar             | clay      | 14  | 0.015   | THR-         |
| Walpole St      |                    |     |         | 26         | 5.0        | spray;             | loam      |     |         | 0061         |
| Andrew          |                    |     |         |            |            | 19 Aug;            |           |     |         |              |
| UK, 1999        |                    |     |         |            |            | BBCH 85            |           |     |         |              |
| (Cox)           |                    |     |         |            |            |                    |           |     |         |              |
| 586/182/1       | 500 WG             | 1   | nr      | 46         | 10         | Foliar             | clay      | 22  | 0.011   | THR-         |
| Walpole St      |                    |     |         |            |            | spray;             | loam      |     |         | 0061         |
| Andrew          |                    |     |         |            |            | 11 Aug;            |           |     |         |              |
| UK, 1999        |                    |     |         |            |            | BBCH               |           |     |         |              |
| (Cox)           |                    |     |         |            |            | 81-85              |           |     |         |              |
| 586/182/1       | 500 WG             | 1   | nr      | 47         | 10         | Foliar             | clay      | 22  | 0.013   | THR-         |
| Walpole St      | + AGRAL            |     |         |            |            | spray              | loam      |     |         | 0061         |
| Andrew          |                    |     |         |            |            | 11 Aug;            |           |     |         |              |
| United          |                    |     |         |            |            | BBCH               |           |     |         |              |
| Kingdom,        |                    |     |         |            |            | 81-85              |           |     |         |              |
| 1999            |                    |     |         |            |            |                    |           |     |         |              |
| (Cox)           |                    |     |         |            |            |                    |           |     |         |              |
| 586/182/5       | 500 WG             | 2   | 7       | 59         | 5.0        | Foliar             | loamy     | -0  | < 0.01  | THR-         |
| Newent United   |                    |     |         | 52         | 5.0        | spray              | san       | 0   | 0.025   | 0061         |
| Kingdom,        |                    |     |         |            |            | 21 Sep;            |           | 3   | < 0.01  |              |
| 1999            |                    |     |         |            |            | BBCH               |           | 7   | 0.013   |              |
| (Jonagold)      |                    |     |         |            |            | 85-87              |           | 10  | < 0.01  |              |
|                 |                    |     |         |            |            | 1                  |           | 14  | 0.014   |              |
| 586/182/5       | 500 WG             | 1   | nr      | 118        | 10         | Foliar             | loamy     | 0   | 0.090   | THR-         |
| Newent United   |                    |     |         |            |            | spray;             | sand      | 3   | 0.031   | 0061         |
| Kingdom,        |                    |     |         |            |            | 14 Sep;            |           | 7   | < 0.01  |              |
| 1999            |                    |     |         |            |            | BBCH 85            |           | 10  | < 0.01  |              |
| (Jonagold)      |                    |     |         |            |            |                    |           | 14  | 0.012   |              |
|                 |                    |     |         |            |            | 1                  |           | 21  | 0.013   |              |
| 586/182/5       | 500 WG             | 1   | nr      | 112.2      | 10         | Foliar             | loamy     | 0   | 0.075   | THR-         |
| Newent United   | + AGRAL            |     |         |            |            | spray;             | sand      | 3   | 0.087   | 0061         |
| Kingdom,        |                    |     |         |            |            | 14 Sep;            |           | 7   | 0.012   |              |
| 1999            |                    |     |         |            |            | BBCH 85            |           | 10  | 0.014   |              |
| (Jonagold)      |                    |     |         |            |            |                    |           | 14  | 0.015   |              |
| (               |                    |     |         |            |            |                    |           | 21  | < 0.01  |              |
| AF/4341/CL/4;   | 500 WG             | 2   | 11      | 75         | 7.5        | Foliar             | loam      | -1  | < 0.01  | THR-         |
| Neuhaus/Inn     | 200 110            | -   |         | 75         | 7.5        | spray;             | 1.0 willi | 0   | 0.058   | 0060         |
| Germany, 1998   |                    |     |         | , 5        | ,          | 21 Sept;           |           | 3   | 0.055   | 0000         |
| (Golden         |                    |     |         |            |            | BBCH 85            |           | 7   | 0.022   |              |
| Delicious)      |                    |     |         |            |            |                    |           | 10  | 0.022   |              |
| Denelousj       |                    |     |         |            |            | 1                  |           | 14  | 0.020   |              |
| 1               |                    | 1   | L       | I          |            |                    |           | 1-7 | 0.020   |              |

| Trial, location                                                                               | Form<br>ulation   | No | Inter<br>val | g<br>ai/ha | g<br>ai/hL | method,<br>timing                            | soil                  | DA<br>T                                                        | parent,                                                                                  | referenc     |
|-----------------------------------------------------------------------------------------------|-------------------|----|--------------|------------|------------|----------------------------------------------|-----------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|
| Country, year<br>(Variety)                                                                    | (g ai/L)          |    | (d)          |            |            |                                              | type                  |                                                                | mg/kg                                                                                    | e            |
| AF/4341/CL/6;<br>Ihrlerstein/<br>Kelheim<br>Germany, 1998<br>(Jonagold)                       | 500 WG            | 2  | 7            | 75<br>75   | 7.5<br>7.5 | Foliar<br>spray;<br>26 Sept;<br>BBCH 85      | loamy<br>clay         | 14                                                             | 0.013                                                                                    | THR-<br>0060 |
| AF/4341/CL/2;<br>Cheille; Indre et<br>Loire;<br>N. France, 1998<br>(Granny Smith)             | 500 WG            | 2  | 7            | 80<br>74   | 22<br>19   | Foliar<br>spray;<br>1 Sept;<br>BBCH 81       | clay                  | $ \begin{array}{c} -1 \\ 0 \\ 3 \\ 7 \\ 10 \\ 14 \end{array} $ | $\begin{array}{c} 0.017\\ 0.070\\ 0.023\\ 0.016\\ < 0.01\\ < 0.01 \end{array}$           | THR-<br>0060 |
| AF/4341/CL/3;<br>Saint-Hilaire-<br>Saint-Mesmin,<br>Loiret<br>N. France, 1998<br>(Golden)     | 500 WG            | 2  | 7            | 76<br>76   | 7.5<br>7.6 | Foliar<br>spray;<br>4 Sept;<br>BBCH 81       | sand                  | 14                                                             | 0.014                                                                                    | THR-<br>0060 |
| AF/4342/CL/1 ;<br>La Chapelle<br>Moulieres,<br>Vienne<br>S. France<br>1998<br>(Delbar Jubilé) | 500 WG            | 2  | 7            | 80<br>78   | 13<br>12   | Foliar<br>spray;<br>11 Sept;<br>BBCH 85      | clay                  | -1<br>0<br>3<br>7<br>10<br>14                                  | < 0.01<br>0.058<br>0.020<br>0.015<br>0.014<br>0.013                                      | THR-<br>0062 |
| AF/4342/CL/2;<br>Villemande,<br>Tarn et Garonne<br>S. France<br>1998<br>(Granny Smith)        | 500 WG            | 2  | 7            | 78<br>77   | 7.5<br>7.5 | Foliar<br>spray;<br>7 Sept;<br>BBCH<br>81–85 | sandy<br>loam         | -1<br>0<br>3<br>7<br>10<br>14                                  | < 0.01<br>0.067<br>0.055<br>0.021<br>0.010<br>< 0.01                                     | THR-<br>0062 |
| AF/4342/CL/3;<br>Frégimont, Lot<br>et Garonne<br>S. France<br>1998<br>(Granny Smith)          | 500 WG            | 2  | 7            | 73<br>77   | 7.5<br>7.5 | Foliar<br>spray;<br>2 Sept;<br>BBCH<br>81–83 | sandy<br>loam         | 14                                                             | < 0.01                                                                                   | THR-<br>0062 |
| AF/4803/CL/1;<br>Brax;<br>S. France<br>1999<br>(Braeburn)                                     | 500 WG            | 2  | 7            | 73<br>74   | 5.0<br>5.0 | Foliar<br>spray;<br>7 Sept;<br>BBCH 81       | sandy<br>silt<br>loam | 14                                                             | 0.013                                                                                    | THR-<br>0063 |
| AF/4803/CL/1;<br>Brax;<br>S. France<br>1999<br>(Braeburn)                                     | 500 WG            | 1  | nr           | 148        | 10         | Foliar<br>spray;<br>31 Aug;<br>BBCH 79       | sandy<br>silt<br>loam | 21                                                             | 0.013                                                                                    | THR-<br>0063 |
| AF/4803/CL/1;<br>Brax;<br>S. France<br>1999<br>(Braeburn)                                     | 500 WG<br>+ AGRAL | 1  | nr           | 148        | 10         | Foliar<br>spray;<br>31 Aug;<br>BBCH 79       | sandy<br>silt<br>loam | 21                                                             | 0.012                                                                                    | THR-<br>0063 |
| AF/4803/CL/2;<br>Villemade;<br>S. France<br>1999<br>(Braeburn)                                | 500 WG            | 2  | 7            | 67<br>64   | 5.0<br>5.0 | Foliar<br>spray;<br>3 Sept;<br>BBCH<br>81–83 | sandy<br>loam         | $ \begin{array}{c} -0 \\ 0 \\ 3 \\ 7 \\ 10 \\ 14 \end{array} $ | $\begin{array}{c} 0.011\\ 0.065\\ 0.054\\ < 0.01\\ < 0.01\\ < 0.01\\ < 0.01 \end{array}$ | THR-<br>0063 |
| AF/4803/CL/2;<br>Villemade;<br>S. France<br>1999<br>(Braeburn)                                | 500 WG            | 1  | nr           | 134        | 10         | Foliar<br>spray;<br>27 Aug;<br>BBCH 81       | sandy<br>loam         | 0<br>3<br>7<br>10<br>14<br>21                                  | $\begin{array}{c} 0.12 \\ 0.024 \\ 0.057 \\ 0.032 \\ < 0.01 \\ < 0.01 \end{array}$       | THR-<br>0063 |

| Trial, location                                                                            | Form                | No  | Inter      | g         | g          | method,                                               | soil                  | DA                            | parent                                                                | -                               | referenc                               |
|--------------------------------------------------------------------------------------------|---------------------|-----|------------|-----------|------------|-------------------------------------------------------|-----------------------|-------------------------------|-----------------------------------------------------------------------|---------------------------------|----------------------------------------|
| Country, year<br>(Variety)                                                                 | ulation<br>(g ai/L) | 110 | val<br>(d) | ai/ha     | ai/hL      | timing                                                | type                  | Т                             | mg/kg                                                                 |                                 | e                                      |
| AF/4803/CL/2;<br>Villemade;<br>S. France<br>1999<br>(Braeburn)                             | 500 WG<br>+AGRAL    | 1   | nr         | 132       | 10         | Foliar<br>spray;<br>27 Aug;<br>BBCH 81                | sandy<br>loam         | 0<br>3<br>7<br>10<br>14<br>21 | 0.085<br>0.014<br>0.012<br>< 0.01<br>< 0.01<br>< 0.01                 |                                 | THR-<br>0063                           |
| AF/4342/CL/5;<br>Minerbio,<br>Bologna<br>Italy<br>1998<br>(Double Red)                     | 500 WG              | 2   | 7          | 76<br>76  | 7.5<br>7.5 | Foliar<br>spray;<br>14 Sept;<br>BBCH 85               | silty<br>clay<br>loam | 14                            | < 0.01                                                                |                                 | THR-<br>0062                           |
| AF/4342/CL/4;<br>San Pere<br>Pescador,<br>Girona<br>Spain<br>1998<br>(Golden<br>Delicious) | 500 WG              | 2   | 7          | 76<br>76  | 10<br>9.6  | Foliar<br>spray;<br>25 Aug;<br>BBCH<br>83–85          | sandy<br>silt<br>loam | 14                            | 0.049                                                                 |                                 | THR-<br>0062                           |
| Morioka-shi,<br>Iwate;<br>Japan, 1998<br>(Orin)                                            | 160 SP              | 3   | 7;<br>7    | 3×<br>400 | 3×<br>8.0  | Foliar<br>spray;<br>8 Oct;<br>BBCH ns                 | volcani<br>c ash      | 7<br>14<br>21                 | 0.12<br>0.04<br>6<br>0.03<br>8                                        | 0.16<br>0.070<br>0.079          | THR-<br>0092/<br>THR-<br>0097<br>c d f |
| Fukushima<br>Japan, 1998<br>(Tsugaru)                                                      | 160 SP              | 3   | 7;<br>7    | 3×<br>400 | 3×<br>8.0  | Foliar<br>spray;<br>4 Aug;<br>BBCH ns                 | ns                    | 7<br>14<br>21                 | 0.04<br>2<br>0.02<br>2<br>0.02<br>4                                   | 0.034<br>0.033<br>< 0.01        | THR-<br>0092/<br>THR-<br>0097<br>c d f |
| Hanamaki-shi;<br>Iwate,<br>Japan, 2005<br>(Tsugaru)                                        | 160 SP              | 3   | 7;<br>7    | 3×<br>280 | 3×<br>8.0  | Foliar<br>spray;<br>31 Aug;<br>BBCH ns                | clay                  | 1<br>3<br>7                   | 0.15<br>0.03<br>0.04                                                  | 0.14<br>0.06<br>0.04            | THR-<br>0391/<br>THR-<br>0392<br>c d f |
| Shimoina-gun;<br>Nagano<br>Japan, 2005<br>(Tsugaru)                                        | 160 SP              | 3   | 7;<br>7    | 3×<br>320 | 3×<br>8.0  | Foliar<br>spray;<br>22 Aug;<br>mature                 | clay<br>loam          | 1<br>3<br>7                   | 0.06<br>0.04<br>0.05                                                  | 0.03<br>0.06<br>0.05            | THR-<br>0391/<br>THR-<br>0392<br>c d f |
| V-12016-E<br>Dundee;<br>New York,<br>USA, 1999<br>(Empire)                                 | 500 WG              | 1   | nr         | 224       | 24         | Foliar<br>spray;<br>25 Sept;<br>mature<br>fruit       | ns                    | 6                             | 0.05<br>2                                                             | 0.044                           | THR-<br>0066<br>ª                      |
| V-12016-F<br>Orefield;<br>Pennsylvania,<br>USA, 1999<br>(Red Delicious)                    | 500 WG              | 1   | nr         | 222       | 16         | Foliar<br>spray;<br>14 Sept;<br>2.5–3.5<br>inch fruit | ns                    | 6                             | 0.01<br>0                                                             | 0.010                           | THR-<br>0066<br><sup>a</sup>           |
| V-12016-G<br>Hereferd;<br>Pennsylvania,<br>USA, 1999<br>(Starkrimson<br>Red Delicious)     | 500 WG              | 1   | nr         | 220       | 14         | Foliar<br>spray;<br>7 Sept;<br>2.0–2.5<br>inch fruit  | ns                    | 3<br>6<br>14<br>21            | $\begin{array}{c} 0.12 \\ 0.10 \\ 0.01 \\ 6 \\ 0.02 \\ 1 \end{array}$ | 0.13<br>0.083<br>0.026<br>0.016 | THR-<br>0066<br>a                      |
| V-12016-H<br>Lawsonville;<br>North Carolina,<br>USA, 1999<br>(Red Delicious)               | 500 WG              | 1   | nr         | 220       | 16         | Foliar<br>spray;<br>24 Aug;<br>mature<br>fruit        | ns                    | 7                             | 0.01 3                                                                | 0.019                           | THR-<br>0066<br><sup>a</sup>           |

| Trial, location<br>Country, year                                                                  | Form<br>ulation    | No | Inter<br>val | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                           | soil<br>type | DA<br>T | parent<br>mg/kg |        | referenc<br>e                  |
|---------------------------------------------------------------------------------------------------|--------------------|----|--------------|------------|------------|-------------------------------------------------------------|--------------|---------|-----------------|--------|--------------------------------|
| (Variety)<br>V-12016-I<br>Conklin;<br>Michigan<br>USA, 1999<br>(Smoothie<br>Golden                | (g ai/L)<br>500 WG | 1  | (d)<br>nr    | 225        | 17         | Foliar<br>spray;<br>14 Sept;<br>3 inch<br>fruit             | ns           | 7       | 0.08            | 0.060  | THR-<br>0066<br>a              |
| Delicious)<br>V-12016-I<br>Conklin;<br>Michigan<br>USA, 1999<br>(Smoothie<br>Golden<br>Delicious) | 500 WG             | 1  | nr           | 446        | 34         | Foliar<br>spray;<br>14 Sept;<br>3 inch<br>fruit             | ns           | 7       | 0.18            | 0.17   | THR-<br>0066<br>a              |
| V-12016-J;<br>Elmwood;<br>Wisconsin,<br>USA, 1999<br>(Cornell Red)                                | 500 WG             | 1  | nr           | 225        | 24         | Foliar<br>spray;<br>17 Sept;<br>fully<br>mature             | ns           | 7       | < 0.<br>01      | < 0.01 | THR-<br>0066<br>a              |
| V-12016-K;<br>Eckert;<br>Colorado;<br>USA, 1999<br>(Golden<br>Delicious)                          | 500 WG             | 1  | nr           | 222        | 16         | Foliar<br>spray;<br>22 Sept;<br>beginning<br>of<br>ripening | ns           | 7       | 0.08 2          | 0.12   | THR-<br>0066<br>a              |
| V-12016-L;<br>Juba City;<br>California,<br>USA, 1999<br>(Fuji)                                    | 500 WG             | 1  | nr           | 222        | 24         | Foliar<br>spray;<br>5 Aug;<br>fruit<br>coloring             | ns           | 7       | 0.10            | 0.096  | THR-<br>0066<br><sup>a</sup>   |
| V-12016-M;<br>Soap Lake<br>Washington,<br>USA, 1999<br>(Red Spur)                                 | 500 WG             | 2  | 7            | 74<br>148  | 5.5<br>11  | Foliar<br>spray;<br>13 Oct;<br>mature<br>fruit              | ns           | 7       | 0.01<br>7       | 0.017  | THR-<br>0066<br>a              |
| V-12016-M;<br>Soap Lake<br>Washington,<br>USA, 1999<br>(Red Spur)                                 | 500 WG             | 1  | nr           | 223        | 17         | Foliar<br>spray;<br>13 Oct;<br>mature<br>fruit              | ns           | 7       | 0.02 5          | 0.025  | THR-<br>0066<br><sup>a</sup>   |
| V-12016-N;<br>Payette;<br>Idaho,<br>USA, 1999<br>(Law Rome)                                       | 500 WG             | 1  | nr           | 225        | 24         | Foliar<br>spray;<br>30 Sept;<br>3 inch<br>fruit             | ns           | 7       | 0.14            | 0.15   | THR-<br>0066<br>a              |
| V-12016-O;<br>Zillah;<br>Washington,<br>USA, 1999<br>(Red Delicious)                              | 500 WG             | 1  | nr           | 219        | 24         | Foliar<br>spray;<br>15 Sept;<br>immature<br>fruit           | ns           | 7       | 0.08            | 0.094  | THR-<br>0066<br>a              |
| V-12016-P;<br>Quincy;<br>Washington,<br>USA, 1999<br>(Oregon Spur)                                | 500 WG             | 1  | nr           | 223        | 16         | Foliar<br>spray;<br>17 Sept;<br>3.0–3.5<br>inch fruit       | ns           | 7       | 0.15            | 0.20   | THR-<br>0066<br>a              |
| V-12016-Q;<br>Quincy;<br>Washington,<br>USA, 1999<br>(Oregon Spur)                                | 500 WG             | 1  | nr           | 665        | 47         | Foliar<br>spray;<br>17 Sept;<br>3.0–3.5<br>inch fruit       | ns           | 7       | 0.34            | 0.34   | THR-<br>0066<br><sup>a b</sup> |

| Trial, location<br>Country, year<br>(Variety)                   | Form<br>ulation<br>(g ai/L) | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                              | soil<br>type | DA<br>T | parent<br>mg/kg | ·    | referenc<br>e     |
|-----------------------------------------------------------------|-----------------------------|----|---------------------|------------|------------|------------------------------------------------|--------------|---------|-----------------|------|-------------------|
| V-12016-R;<br>Monitor;<br>Washington,<br>USA, 1999<br>(Top Red) | 500 WG                      | 1  | nr                  | 222        | 15         | Foliar<br>spray;<br>19 Oct;<br>mature<br>fruit | ns           | 7       | 0.16            | 0.14 | THR-<br>0066<br>a |

nr = not relevant;

ns = not stated

Agral = non-ionic surfactant; adjuvant

<sup>a</sup> Results came from replicate field samples

<sup>b</sup> Samples from this trial were used for processing.

<sup>c</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>d</sup> Stylar scar, core and peduncle base were removed.

<sup>e</sup> Reversed decline trial: treatments on different days with different intervals, harvest on the same day.

<sup>f</sup>Number of trees was below the minimum number of four trees required for sampling.

[Mitchell, 2005a, THR-0561]. No unusual weather conditions. Plot size 5–6 trees/plot, 7–15 yr old trees. Motorised pump, hose and hand gun, spray to run-off, L/ha not stated. Fruits (12 units, > 2 kg) were sampled at harvest (BBCH not stated). Samples were stored at -20 °C [Gaston, 2010g] for a maximum of 87–149 d. Samples were analysed using modification C of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (72%–86%).

[Mitchell, 2005b, THR-0562]. No unusual weather conditions. Plot size 4–10 trees/plot. Motorised pump, hose and handgun, spray volume 2000 L/ha. Fruits (12 units, > 2 kg) were sampled at harvest (BBCH not stated). Samples were stored at -20 °C [Gaston, 2010g] for a maximum of 79–107 d. Samples were analysed using modification C of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (77%–84%).

[Orosz, 2005a, THR-0004]. No unusual weather conditions. Plot size 150 m2, 10 trees/plot, 32 yr old trees. Airblast sprayer, spray volume 724 L/ha. Fruits (15–20 units, 3.6–4.3 kg) were sampled at normal harvest (BBCH 89). Samples were stored at -20 °C for 1 d. Samples were analysed using HPLC-DAD method R1136SOM3. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (95–100%).

[Womack and Mills, 2000a, THR-0060]. No unusual weather conditions. Plot size 18-87 m2; 6 trees/plot, 6–13 yr old trees. Hydraulic knapsack sprayer or motor backpack sprayer, spray volume 980-1000 L/ha (380 L/ha in trial 2). Fruits (12 units, 2 kg) were sampled at harvest (BBCH 81-87). Samples were stored at  $\leq -18$  °C for 268–342 days. Samples were analysed using HPLC-MS-MS method CLE586/149-02R (i.e. modification of method 00552). Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (90%–103%).

[Womack and Mills, 2001, THR-0061]. No unusual weather conditions. Plot size 35-122 m2; 6 trees/plot, 10-24 yr old trees; knapsack mistblower, spray volume 455-512 L/ha trial 1 and 1032-1184 L/ha in trial 5. Fruits (12 units, 2 kg) were sampled at BBCH 85-89. Samples were stored at  $\leq -18 \text{ °C}$  for 7–41 d. Samples were analysed using HPLC-MS-MS method CLE586/149-02R (i.e. modification of method 00552).Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (80%–110%).

[Womack and Mills, 2000b, THR-0062]. No unusual weather conditions. Plot size 40–54 m2;  $\geq$  6 trees/plot, 7–13 yr old trees; hydraulic knapsack sprayer, spray volume 609–1042 L/ha. Fruits (12 units, 2 kg) were sampled at BBCH 85-89. Samples were stored at  $\leq$  –18 °C for 287–315 d. Samples were analysed using HPLC-MS-MS method CLE586/149-02R (i.e. modification of method 00552). Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (84–95%).

[Womack and Mills, 2000c, THR-0063]. No unusual weather conditions. Plot size 34-40 m2, 6 trees/plot, 4-15 yr old trees. Knapsack mist blower, spray volume 1152-1481 L/ha. Fruits (12 units, > 2kg) were sampled at harvest (BBCH 81-87). Samples were stored at -18 °C for 33-52 d. Samples were analysed using HPLC-MS-MS method CLE586/149-02R (i.e. modification of method 00552).Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (70%–96%).

[Komatsu and Yabuzaki, 2000a, THR-0092; Ohta, 2000a, THR-0097]. No unusual weather conditions. Plot size 1-2 trees/plot, 9-16 yr old trees, about 3 m in height. Knapsack power sprayer, spray volume 5000 L/ha. Fruits (> 2 kg; units not stated) were randomly sampled by hand at harvest (BBCH not stated). Samples were stored at -20 °C for 26–105 d and 376–456 d, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.002 mg/kg) or for individual concurrent method recoveries (95%–98% or 92%–99%).

[Odanaka and Wakasone, 2006a, THR-0391; Nagasawa and Wada, 2006a, THR-0392]. No unusual weather conditions.

Plot size 24 m2, 3 trees/plot, about 3 m in height. Knapsack power sprayer, spray volume 3500–4000 L/ha. Fruits (> 2 kg; units not stated) were randomly sampled by hand at harvest (BBCH not stated). Samples were either analysed within 24 hrs after samplings or stored at -20 °C for 74–83d. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (95%–109% or 92%–99%).

[Stearns, 2001a, THR-0066] No unusual weather conditions. Plot size 200–2280 m2; 18–24 trees/plot. Airblast orchard sprayer, spray volume 920–1600 L/ha. Fruits (24 units, > 2 kg) were sampled at maturity (BBCH not stated). Samples were stored at -20 °C for 32–91 d. Samples were analysed using HPLC-MS-MS method RM-39-A (i.e. modification of method 00552). Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (72%–103%).

| Trial,<br>location<br>Country,<br>year<br>(Variety)                       | Form      | No | Inter val | g ai/tree | g<br>ai/hL | method,<br>timing                     | soil type | DAT       | parent,<br>mg/kg | reference         |
|---------------------------------------------------------------------------|-----------|----|-----------|-----------|------------|---------------------------------------|-----------|-----------|------------------|-------------------|
| Site 1<br>Warragul<br>Victoria,<br>Australia<br>2005–2006<br>(Pink Lady)  | 200 SC    | 1  | -         | 1.25      | nr         | Soil<br>irrigation;<br>16 Mar<br>2005 | ns        | 56<br>371 | < 0.02<br>< 0.02 | THR-<br>0559      |
| Site 1<br>Warragul<br>Victoria,<br>Australia<br>2005–2006;<br>(Pink Lady) | 200 SC    | 1  | -         | 2.5       | nr         | Soil<br>irrigation;<br>16 Mar<br>2005 | ns        | 56<br>371 | < 0.02<br>< 0.02 | THR-<br>0559      |
| Site 1<br>Warragul<br>Victoria,<br>Australia<br>2005–2006;<br>(Pink Lady) | 200 SC    | 1  | _         | 5.7       | nr         | Soil<br>irrigation;<br>16 Mar<br>2005 | ns        | 56<br>371 | < 0.02<br>< 0.02 | THR-<br>0559      |
| Site 1<br>Batlow<br>NSW<br>Australia<br>2005–2006;<br>(Braeburn)          | 500WG     | 1  | _         | 1.25      | nr         | Soil<br>irrigation;<br>4 Nov 2005     | ns        | 136       | < 0.02           | THR-<br>0560<br>a |
| Site 2<br>Sprayton<br>Tasmania,<br>Australia<br>2005–2006;<br>(Pink lady) | 500WG     | 1  | -         | 1.25      | nr         | Soil<br>irrigation;<br>4 Nov 2005     | ns        | 168       | < 0.02           | THR-<br>0560<br>a |
| Site 1<br>Batlow<br>NSW<br>Australia<br>2005–2006;<br>(Braeburn)          | 500<br>WG | 1  | -         | 2.5       | nr         | Soil<br>irrigation;<br>4 Nov 2005     | ns        | 136       | < 0.02           | THR-<br>0560<br>a |
| Site 2<br>Sprayton<br>Tasmania,<br>Australia<br>2005–2006;<br>(Pink lady) | 500<br>WG | 1  | _         | 2.5       | nr         | Soil<br>irrigation.<br>4 Nov 2005     | ns        | 168       | < 0.02           | THR-<br>0560<br>a |

| Table 60 Pasiduas of alathianidin  | in apple (whole fruit)   | ) after soil drench treatment in the field |
|------------------------------------|--------------------------|--------------------------------------------|
| Table of Residues of ciolinalituil | III apple (whole in uit) |                                            |
|                                    |                          |                                            |

| Trial,<br>location<br>Country,<br>year<br>(Variety)                       | Form      | No | Inter val | g ai/tree | g<br>ai/hL | method,<br>timing                 | soil type | DAT | parent,<br>mg/kg | reference         |
|---------------------------------------------------------------------------|-----------|----|-----------|-----------|------------|-----------------------------------|-----------|-----|------------------|-------------------|
| Site 1<br>Batlow<br>NSW<br>Australia<br>2005–2006;<br>(Braeburn)          | 500<br>WG | 1  | _         | 5.0       | nr         | Soil<br>irrigation;<br>4 Nov 2005 | ns        | 136 | < 0.02           | THR-<br>0560<br>a |
| Site 2<br>Sprayton<br>Tasmania,<br>Australia<br>2005–2006;<br>(Pink lady) | 500<br>WG | 1  | _         | 5.0       | nr         | Soil<br>irrigation;<br>4 Nov 2005 | ns        | 168 | < 0.02           | THR-<br>0560<br>a |

Ns = not stated.

<sup>a</sup> Number of trees was below the minimum number of four trees required for sampling.

[Burn, 2006e, THR-0559]. No unusual weather conditions. Plot size 4 trees/plot, 15 yr old trees. Irrigation applied by micro sprinklers. Fruits (12 units, [Gaston, 2010g]) were sampled at near maturity to harvest (BBCH code not given). Samples were stored at -15 °C for 37–73 d. Samples were analysed using HPLC-MS/MS method ALM-024 and ALM-024.02 (i.e modification of method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (74%–100%).

[Burn, 2006f, THR-0560]. No unusual weather conditions. Plot size 1 tree/treatment, 10 yr old trees (NSW)/ age tree not given (Tasmania). Irrigation applied by drippers. Fruits (12 units, [Gaston, 2010g]) were sampled at maturity (BBCH not stated). Samples were stored at -14 °C or lower for 43–75 days. Samples were analysed using HPLC-MS-MS method ALM-024.02 (i.e. modification of method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (81%–99%).

#### Pears

Supervised residue trials were available for pears and Japanese pears. Since pears (FP0230) includes Japanese pears (= oriental pear, FP4049), supervised residue trials on Japanese pears were treated as pear trials. Supervised residue trials on pears or Japanese pears were conducted in Australia (2004 and 2005), Germany (1999), France (1999), Italy (1999), Spain (1999), Japan (2001) and the USA (1999). Results for whole fruit are shown in Table 61 (foliar spray treatment in the field). Residue levels in the Japanese trials are not for the whole fruit minus stem (= RAC), but for pears minus stylar scar, core and peduncle base.

Table 61 Residues of clothianidin in pear (whole fruit) after foliar spray treatment in the field

| Trial<br>Country, year<br>(Variety)                                                                      | Formulat<br>ion<br>(g ai/L) | No | Interval (d)     | g ai/ha | g<br>ai/h<br>L | method,<br>timing                        | soil<br>type          | DAT                           | parent,<br>mg/kg                             | reference    |
|----------------------------------------------------------------------------------------------------------|-----------------------------|----|------------------|---------|----------------|------------------------------------------|-----------------------|-------------------------------|----------------------------------------------|--------------|
| Site 3698<br>Lemnos;<br>Victoria,<br>Australia<br>2004<br>(Josephine de<br>Malines)                      | 500 WG                      | 4  | 14;<br>14<br>14  | ns      | 30             | Foliar<br>spray;<br>19 Mar;<br>mature    | clay<br>loam          | 0<br>3<br>7<br>14<br>21<br>28 | 0.68<br>0.94<br>0.04<br>0.64<br>0.46<br>0.36 | THR-<br>0561 |
| Site 5<br>Trial 5007<br>Shepparton<br>East;<br>Victoria,<br>Australia, 2005<br>(Josephine de<br>Malines) | 500 WG<br>+<br>MAXX         | 4  | 14;<br>13;<br>15 | ns      | 20             | Foliar<br>spray;<br>8 Apr;<br>BBCH<br>ns | sandy<br>clay<br>loam | 0<br>7<br>14<br>21<br>28      | 0.67<br>0.20<br>0.19<br>0.20<br>0.17         | THR-<br>0562 |
| Site 5<br>Trial 5007                                                                                     | 500 WG<br>+                 | 4  | 14;<br>13;       | ns      | 40             | Foliar<br>spray;                         | sandy<br>clay         | 0<br>7                        | 0.91<br>0.44                                 | THR-<br>0562 |

| Trial<br>Country, year                                                                                   | Formulat<br>ion     | No | Interval (d)     | g ai/ha | g<br>ai/h | method,<br>timing                                                         | soil<br>type          | DAT                      | parent,<br>mg/kg                     | reference         |
|----------------------------------------------------------------------------------------------------------|---------------------|----|------------------|---------|-----------|---------------------------------------------------------------------------|-----------------------|--------------------------|--------------------------------------|-------------------|
| (Variety)<br>Shepparton<br>East;<br>Victoria,<br>Australia, 2005<br>(Josephine de<br>Malines)            | (g ai/L)<br>MAXX    |    | 15               |         | L         | 8 Apr;<br>BBCH<br>ns                                                      | loam                  | 14<br>21<br>28           | 0.38<br>0.42<br>0.39                 |                   |
| Site 5<br>Trial 5007<br>Shepparton<br>East;<br>Victoria,<br>Australia, 2005<br>(Josephine de<br>Malines) | 500 WG<br>+<br>MAXX | 2  | 15               | ns      | 20        | Foliar<br>spray;<br>8 Apr;<br>BBCH<br>ns                                  | sandy<br>clay<br>loam | 0<br>7<br>14<br>21<br>28 | 0.33<br>0.17<br>0.17<br>0.13<br>0.11 | THR-<br>0562      |
| Site 5<br>Trial 5007<br>Shepparton<br>East;<br>Victoria,<br>Australia, 2005<br>(Josephine de<br>Malines) | 500 WG<br>+<br>MAXX | 2  | 14–20            | ns      | 20        | Foliar<br>spray;<br>24 Mar;<br>11 Mar;<br>4 Mar;<br>25 Febr<br>BBCH<br>ns | sandy<br>clay<br>loam | 28<br>41<br>48<br>55     | 0.21<br>0.18<br>0.16<br>0.11         | THR-<br>0562<br>e |
| Site 6<br>Trial 5008<br>Stoneville,<br>Western<br>Australia, 2005<br>(Josephine de<br>Malines)           | 500 WG<br>+<br>MAXX | 4  | 14;<br>13;<br>15 | ns      | 20        | Foliar<br>spray;<br>6 Apr;<br>BBCH<br>ns                                  | sand                  | 8                        | 0.25                                 | THR-<br>0562<br>f |
| Site 6<br>Trial 5008<br>Stoneville,<br>Western<br>Australia, 2005<br>(Josephine de<br>Malines)           | 500 WG<br>+<br>MAXX | 4  | 14;<br>13;<br>15 | ns      | 40        | Foliar<br>spray;<br>6 Apr;<br>BBCH<br>ns                                  | sand                  | 8                        | 0.49                                 | THR-<br>0562<br>f |
| Site 6<br>Trial 5008<br>Stoneville,<br>Western<br>Australia, 2005<br>(Josephine de<br>Malines)           | 500 WG<br>+<br>MAXX | 4  | 14;<br>13;<br>15 | ns      | 80        | Conc.<br>foliar<br>spray;<br>6 Apr;<br>BBCH<br>ns                         | sand                  | 8                        | 0.70                                 | THR-<br>0562<br>f |
| Site 7<br>Trial 5009<br>Paracombe,<br>Southern<br>Australia<br>2005 (Lemon<br>Bergamonts)                | 500 WG<br>+<br>MAXX | 4  | 14;<br>14;<br>14 | ns      | 20        | Foliar<br>spray;<br>31 Mar;<br>BBCH<br>ns                                 | clay                  | 7                        | 0.56                                 | THR-<br>0562      |
| Site 7<br>Trial 5009<br>Paracombe,<br>Southern<br>Australia<br>2005 (Lemon<br>Bergamonts)                | 500 WG<br>+<br>MAXX | 4  | 14;<br>14;<br>14 | ns      | 40        | Foliar<br>spray;<br>31 Mar;<br>BBCH<br>ns                                 | clay                  | 7                        | 0.42                                 | THR-<br>0562      |
| Site 7<br>Trial 5009<br>Paracombe,<br>Southern<br>Australia<br>2005 (Lemon                               | 500 WG              | 4  | 14;<br>14;<br>14 | ns      | 20        | Foliar<br>spray;<br>31 Mar;<br>BBCH<br>ns                                 | clay                  | 7                        | 0.66                                 | THR-<br>0562      |

| Trial<br>Country, year<br>(Variety)                                                       | Formulat<br>ion<br>(g ai/L) | No | Interval (d)     | g ai/ha             | g<br>ai/h<br>L | method,<br>timing                            | soil<br>type  | DAT                                                            | parent,<br>mg/kg                                                                        | reference    |
|-------------------------------------------------------------------------------------------|-----------------------------|----|------------------|---------------------|----------------|----------------------------------------------|---------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|
| Bergamonts)                                                                               | (8 (12)                     |    |                  |                     | 2              |                                              |               |                                                                |                                                                                         |              |
| Site 7<br>Trial 5009<br>Paracombe,<br>Southern<br>Australia<br>2005 (Lemon<br>Bergamonts) | 200 SC<br>+<br>MAXX         | 4  | 14;<br>14;<br>14 | ns                  | 20             | Foliar<br>spray;<br>31 Mar;<br>BBCH<br>ns    | clay          | 7                                                              | 0.36                                                                                    | THR-<br>0562 |
| Site 7<br>Trial 5009<br>Paracombe,<br>Southern<br>Australia<br>2005 (Lemon<br>Bergamonts) | 200 SC<br>+<br>MAXX         | 4  | 14;<br>14;<br>14 | ns                  | 40             | Foliar<br>spray;<br>31 Mar;<br>BBCH<br>ns    | clay          | 7                                                              | 0.79                                                                                    | THR-<br>0562 |
| Site 7<br>Trial 5009<br>Paracombe,<br>Southern<br>Australia<br>2005 (Lemon<br>Bergamonts) | 200 SC                      | 4  | 14;<br>14;<br>14 | ns                  | 20             | Foliar<br>spray;<br>31 Mar;<br>BBCH<br>ns    | clay          | 7                                                              | 0.88                                                                                    | THR-<br>0562 |
| 586/182/3<br>Kettig<br>Germany, 1999<br>(Conference)                                      | 500 WG                      | 2  | 7                | 50<br>52            | 5.0<br>5.0     | Foliar<br>spray;<br>1 Sept;<br>BBCH<br>81-85 | sandy<br>loam | 14                                                             | < 0.01                                                                                  | THR-<br>0061 |
| 586/182/3<br>Kettig<br>Germany, 1999<br>(Conference)                                      | 500 WG                      | 1  | nr               | 104.7               | 10             | Foliar<br>spray;<br>25 Aug;<br>BBCH<br>79-81 | sandy<br>loam | 21                                                             | 0.010                                                                                   | THR-<br>0061 |
| 586/182/3<br>Kettig<br>Germany, 1999<br>(Conference)                                      | 500 WG                      | 1  | nr               | 106.6<br>+<br>Agral | 10             | Foliar<br>spray;<br>25 Aug;<br>BBCH<br>79-81 | sandy<br>loam | 21                                                             | < 0.01                                                                                  | THR-<br>0061 |
| 586/182/4<br>Bergheim,<br>Germany, 1999<br>(Alexander<br>Lucas)                           | 500 WG                      | 2  | 7                | 75<br>72            | 5.0<br>5.0     | Foliar<br>spray;<br>31 Aug;<br>BBCH<br>81-85 | clay<br>loam  | $ \begin{array}{c} -0 \\ 0 \\ 3 \\ 7 \\ 10 \\ 14 \end{array} $ | < 0.01<br>0.082<br>0.048<br>0.020<br>0.037<br>0.023                                     | THR-<br>0061 |
| 586/182/4<br>Bergheim<br>Germany, 1999<br>(Alexander<br>Lucas)                            | 500 WG                      | 1  | nr               | 158                 | 10             | Foliar<br>spray;<br>24 Aug;<br>BBCH<br>79-81 | clay<br>loam  | 0<br>3<br>7<br>10<br>14<br>21                                  | $\begin{array}{c} 0.16\\ 0.017\\ 0.016\\ 0.016\\ 0.012\\ < 0.01 \end{array}$            | THR-<br>0061 |
| 586/182/4<br>Bergheim<br>Germany, 1999<br>(Alexander<br>Lucas)                            | 500 WG                      | 1  | nr               | 155 +<br>Agral      | 10             | Foliar<br>spray;<br>24 Aug;<br>BBCH<br>79-81 | clay<br>loam  | 0<br>3<br>7<br>10<br>14<br>21                                  | $\begin{array}{c} 0.077\\ 0.055\\ 0.013\\ < 0.01\\ < 0.01\\ < 0.01\\ < 0.01\end{array}$ | THR-<br>0061 |
| AF/4802/CL/1<br>Mezieres lez<br>Clery<br>N. France, 1999<br>(Conference)                  | 500 WG                      | 2  | 7                | 77<br>76            | 5.0<br>5.0     | Foliar<br>spray;<br>17 Aug;<br>BBCH<br>81    | sand          | 14                                                             | 0.018                                                                                   | THR-<br>0061 |
| AF/4802/CL/1<br>Mezieres lez                                                              | 500 WG                      | 1  | nr               | 157                 | 10             | Foliar<br>spray;                             | sand          | 21                                                             | 0.027                                                                                   | THR-<br>0061 |

| Trial<br>Country, year<br>(Variety)                                      | Formulat<br>ion<br>(g ai/L) | No | Interval (d) | g ai/ha           | g<br>ai/h<br>L | method,<br>timing                            | soil<br>type          | DAT                                                            | parent,<br>mg/kg                                                              | reference                     |
|--------------------------------------------------------------------------|-----------------------------|----|--------------|-------------------|----------------|----------------------------------------------|-----------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|
| Clery<br>N. France, 1999<br>(Conference)                                 |                             |    |              |                   |                | 10 Aug;<br>BBCH<br>81                        |                       |                                                                |                                                                               |                               |
| AF/4802/CL/1<br>Mezieres lez<br>Clery<br>N. France, 1999<br>(Conference) | 500 WG                      | 1  | nr           | 152 +<br>Agral    | 10             | Foliar<br>spray;<br>10 Aug;<br>BBCH<br>81    | sand                  | 21                                                             | 0.016                                                                         | THR-<br>0061                  |
| AF/4803/CL/3;<br>Budrio<br>Italy<br>1999<br>(Decana)                     | 500 WG                      | 2  | 7            | 58<br>69          | 5.0<br>5.0     | Foliar<br>spray;<br>11 Aug;<br>BBCH<br>83    | sandy<br>silt<br>loam | 14                                                             | 0.020                                                                         | THR-<br>0063                  |
| AF/4803/CL/3;<br>Budrio;<br>Italy<br>1999<br>(Decana)                    | 500 WG                      | 1  | nr           | 126               | 10             | Foliar<br>spray;<br>4 Aug;<br>BBCH<br>77-81  | sandy<br>silt<br>loam | 21                                                             | 0.019                                                                         | THR-<br>0063                  |
| AF/4803/CL/3;<br>Budrio;<br>Italy<br>1999<br>(Decana)                    | 500 WG                      | 1  | nr           | 125<br>+<br>Agral | 10             | Foliar<br>spray;<br>4 Aug;<br>BBCH<br>77-81  | sandy<br>silt<br>loam | 21                                                             | 0.033                                                                         | THR-<br>0063                  |
| AF/4803/CL/4;<br>Castello<br>d'Argile<br>Italy<br>1999<br>(Kaiser)       | 500 WG                      | 2  | 7            | 79<br>72          | 5.0<br>5.0     | Foliar<br>spray;<br>17 Aug;<br>BBCH<br>77-81 | silty<br>clay<br>loam | $ \begin{array}{c} -0 \\ 0 \\ 3 \\ 7 \\ 10 \\ 14 \end{array} $ | $\begin{array}{c} 0.017\\ 0.091\\ 0.081\\ 0.058\\ 0.037\\ < 0.01 \end{array}$ | THR-<br>0063                  |
| AF/4803/CL/4;<br>Castello<br>d'Argile;<br>Italy<br>1999<br>(Kaiser)      | 500 WG                      | 1  | nr           | 154               | 10             | Foliar<br>spray;<br>10 Aug<br>BBCH<br>77-81  | silty<br>clay<br>loam | 0<br>3<br>7<br>10<br>14<br>21                                  | 0.14<br>0.055<br>0.041<br>0.044<br>0.035<br>0.017                             | THR-<br>0063                  |
| AF/4803/CL/4;<br>Castello<br>d'Argile;<br>Italy<br>1999<br>(Kaiser)      | 500 WG                      | 1  | nr           | 153<br>+<br>Agral | 10             | Foliar<br>spray;<br>10 Aug;<br>BBCH<br>77-81 | silty<br>clay<br>loam | 0<br>3<br>7<br>10<br>14<br>21                                  | 0.14<br>0.059<br>0.051<br>0.043<br>0.019<br>< 0.01                            | THR-<br>0063                  |
| AF/4803/CL/5,<br>St Pere<br>Pescador,<br>Spain<br>1999<br>(Conference)   | 500 WG                      | 2  | 7            | 43<br>40          | 5.0<br>5.0     | Foliar<br>spray;<br>12 Aug;<br>BBCH<br>81-83 | sandy<br>silt<br>loam | 14                                                             | 0.046                                                                         | THR-<br>0063                  |
| AF/4803/CL/5,<br>St Pere<br>Pescador,<br>Spain<br>1999<br>(Conference)   | 500 WG                      | 1  | nr           | 81                | 10             | Foliar<br>spray;<br>5 Aug;<br>BBCH<br>81     | sandy<br>silt<br>loam | 21                                                             | 0.020                                                                         | THR-<br>0063                  |
| AF/4803/CL/5,<br>St Pere<br>Pescador,<br>Spain<br>1999<br>(Conference)   | 500 WG                      | 1  | nr           | 85<br>+<br>Agral  | 10             | Foliar<br>spray;<br>5 Aug;<br>BBCH<br>81     | sandy<br>silt<br>loam | 21                                                             | 0.040                                                                         | THR-<br>0063                  |
| Ryo-machi;<br>Fukui<br>Japan, 2001<br>(Japanese pear:                    | 160 SP                      | 3  | 7;<br>7      | 3×<br>240         | 3×<br>8.0      | Foliar<br>spray;<br>14 Aug;<br>14 Aug;       | clay<br>loam          | 1<br>6<br>13                                                   | 0. 0.27<br>39 0.25<br>0. 0.12<br>22                                           | THR-<br>0463/<br>THR-<br>0464 |

| Trial<br>Country, year<br>(Variety)                                  | Formulat<br>ion<br>(g ai/L) | No | Interval (d) | g ai/ha   | g<br>ai/h<br>L | method,<br>timing                                               | soil<br>type | DAT                | pare<br>mg/                                            |                                        | reference                             |
|----------------------------------------------------------------------|-----------------------------|----|--------------|-----------|----------------|-----------------------------------------------------------------|--------------|--------------------|--------------------------------------------------------|----------------------------------------|---------------------------------------|
| Kosui)                                                               |                             |    |              |           |                | 7 Aug;<br>BBCH<br>ns                                            |              |                    | 0.<br>10                                               |                                        | b c d f                               |
| Naruto-shi;<br>Tokushima<br>Japan, 2001<br>(Japanese pear:<br>Kosui) | 160 SP                      | 3  | 7;<br>7      | 3×<br>400 | 3×<br>8.0      | Foliar<br>spray;<br>10 Aug;<br>10 Aug;<br>3 Aug;<br>BBCH<br>ns  | sand         | 1<br>7<br>14       | 0.<br>18<br>0.<br>06<br>0.<br>11                       | 0.12<br>0.11<br>0.12                   | THR-<br>0463/<br>THR-<br>0464<br>bcdf |
| V-12097-C<br>Orefield;<br>Pennsylvania,<br>USA, 1999<br>(Bartlett)   | 500 WG                      | 1  | nr           | 224       | 14             | Foliar<br>spray;<br>5 Aug;<br>1.25–<br>1.75<br>inch<br>diameter | ns           | 7                  | 0.<br>04<br>2                                          | 0.04                                   | THR-<br>0067<br>a                     |
| V-12097-D<br>Live Oak;<br>California,<br>USA, 1999<br>(Bartlett)     | 500 WG                      | 1  | nr           | 222       | 24             | Foliar<br>spray;<br>15 July;<br>maturity                        | ns           | 7                  | 0.<br>11                                               | 0.15                                   | THR-<br>0067<br>a                     |
| V-12097-E<br>Yuba City;<br>California,<br>USA, 1999<br>(Bosc)        | 500 WG                      | 1  | nr           | 221       | 13             | Foliar<br>spray;<br>13 Aug;<br>3–4 inch<br>diameter             | ns           | 3<br>7<br>14<br>21 | 0.<br>20<br>0.<br>15<br>0.<br>09<br>2<br>0.<br>06<br>2 | 0.22<br>0.14<br>0.08<br>8<br>0.08<br>0 | THR-<br>0067<br>a                     |
| V-12097-F<br>Hood River;<br>Oregon<br>USA, 1999<br>(Starkrimson)     | 500 WG                      | 1  | nr           | 221       | 22             | Foliar<br>spray;<br>17 Aug;<br>2.5 inch<br>diameter             | ns           | 6                  | 0.<br>10                                               | 0.07<br>7                              | THR-<br>0067<br>a                     |
| V-12097-G<br>Perhastin;<br>Washington<br>USA, 1999<br>(Danjo)        | 500 WG                      | 1  | nr           | 223       | 20             | Foliar<br>spray;<br>17 Sept;<br>2–3 inch<br>diameter            | ns           | 7                  | 0.<br>15                                               | 0.18                                   | THR-<br>0067<br>a                     |
| V-12097-G<br>Perhastin;<br>Washington<br>USA, 1999<br>(Danjo)        | 500 WG                      | 1  | nr           | 445       | 40             | Foliar<br>spray;<br>17 Sept;<br>2–3 inch<br>diameter            | ns           | 7                  | 0.<br>51                                               | 0.35                                   | THR-<br>0067<br>a                     |
| V-12097-H<br>Cashmere;<br>Washington<br>USA, 1999<br>(Danjo)         | 500 WG                      | 1  | nr           | 223       | 13             | Foliar<br>spray;<br>17 Sept;<br>mature                          | ns           | 7                  | 0.<br>07<br>1                                          | 0.04<br>8                              | THR-<br>0067<br>a                     |
| V-12097-I<br>Fruitland;<br>Idaho<br>USA, 1999<br>(Bartlett)          | 500 WG                      | 2  | 7            | 74<br>150 | 7.9<br>16      | Foliar<br>spray;<br>23 Aug;<br>2.5–3.75<br>inch<br>diameter     | ns           | 7                  | 0.<br>07<br>7                                          | 0.08 6                                 | THR-<br>0067<br>a                     |
| V-12097-I<br>Fruitland;<br>Idaho<br>USA, 1999<br>(Bartlett)          | 500 WG                      | 1  | nr           | 222       | 24             | Foliar<br>spray;<br>23 Aug;<br>2.5–3.75<br>inch                 | ns           | 7                  | 0.<br>14                                               | 0.14                                   | THR-<br>0067<br><sup>a</sup>          |

| Trial<br>Country, year<br>(Variety) | Formulat<br>ion<br>(g ai/L) | No | Interval<br>(d) | g ai/ha | g<br>ai/h<br>L | method,<br>timing | soil<br>type | DAT | pare<br>mg/ | , | reference |
|-------------------------------------|-----------------------------|----|-----------------|---------|----------------|-------------------|--------------|-----|-------------|---|-----------|
|                                     |                             |    |                 |         |                | diameter          |              |     |             |   |           |

<sup>a</sup> Results came from two replicate field samples

<sup>b</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>c</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>d</sup> Stylar scar, peduncle and core removed.

<sup>e</sup> Reversed decline trial: treatments on different days with different intervals, harvest on the same day.

<sup>f</sup> Number of trees was below the minimum number of four trees required for sampling

[Mitchell, 2005a, THR-0561]. No unusual weather conditions. Plot size 6 trees/plot, 6 yr old trees. Motorised pump, hose and hand gun, spray to run-off, L/ha not stated. Fruits (12 units, > 2 kg) were sampled at harvest (BBCH not stated). Samples were stored at -20 °C [Gaston, 2010g] for a maximum of 106–134 d. Samples were analysed using modification C of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (72%–86%).

[Mitchell, 2005b, THR-0562]. No unusual weather conditions. Plot size 4 trees/plot for site 5 and 7; 2 trees/plot for site 6. Motorised pump, hose and handgun, spray volume 2000 L/ha. Fruits (12 units, > 2 kg) were sampled at harvest (BBCH not stated). Samples were stored at  $-20 \text{ }^{\circ}\text{C}$  [Gaston, 2010g] for a maximum of 86–115 d. Samples were analysed using modification C of method HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (77%–84%).

[Womack and Mills, 2001, THR-0061]. No unusual weather conditions. Plot size 34–42 m2; 6–8 trees/plot, 6–22 yr old trees; knapsack mistblower, spray volume 1002–1582 L/ha). Fruits (12–14 units, 2 kg) were sampled at BBCH 79-89. Samples were stored at  $\leq$  –18 °C for 22–43 d. Samples were analysed using HPLC-MS-MS method CLE586/149-02R (i.e modification of method 00552). Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (81–110%).

[Womack and Mills, 2000c, THR-0063]. No unusual weather conditions. Plot size 6 trees/plot, 34–60 m2, 4–15 yr old trees. Knapsack mistblower, spray volume 810–1580 L/ha. Fruits (12 units, > 2 kg) were sampled at maturity (BBCH 77-87). Samples were stored at -18 °C for 55–73 d. Samples were analysed using HPLC-MS-MS method CLE586/149-02R (i.e. modification of method 00552). Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (75%–96%).

[Komatsu and Yabuzaki, 2002d, THR-0463; Ohta, 2001b, THR-0464]. No unusual weather conditions. Plot size 12–16 m2, 1 tree/plot, about 2 m in height. Knapsack power sprayer or hanging type sprayer, spray volume 3000–5000 L/ha. Fruits (2 kg, units not stated) were randomly sampled by hand at harvest (BBCH not stated). Samples were stored at – 20 °C for 26–36 d or 154–169 d, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (94%–107% or 97%–104%).

[Stearns, 2001b, THR-0067]. No unusual weather conditions. Plot size 210–850 m2, 18–24 trees/plot. Airblast orchard sprayer, spray volume 930–1700 L/ha. Fruits (24 units, > 2 kg) were sampled at maturity (BBCH not stated). Samples were stored at –20 °C for 392–482 d. Samples were analysed using HPLC-MS-MS method RM-39-A (i.e. modification of method 00552). Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (individual 68%–97%, average 70%–90%).

### Stone fruits

The Meeting received supervised residue trials on apricots, Japanese apricots, cherries, nectarines, peaches and plums for foliar spray treatment in the field or indoor.

### **Apricots**

Supervised residue trials were available for Japanese apricots (Ume, *Prunus mume*); supervised residue trials on Japanese apricots were treated as apricot trials. Supervised residue trials on apricots and Japanese apricots were conducted in Japan (2001 and 2004). Results are shown in Table 62 (foliar spray treatment in the field). Residue levels in the Japanese trials are for pitted fruit; residue levels have not been corrected for the flesh:stone weight ratio.

| Trial,<br>Location<br>Country,<br>year<br>(Variety)            | Form      | No | Inter<br>Val<br>(d) | g ai/ha                             | g ai/hL | method,<br>timing                                            | soil<br>type | DAT                 | parent<br>mg/kg              | ·                            | referenc<br>e                        |
|----------------------------------------------------------------|-----------|----|---------------------|-------------------------------------|---------|--------------------------------------------------------------|--------------|---------------------|------------------------------|------------------------------|--------------------------------------|
| Sannohe-<br>gun,<br>Aomori,<br>Japan, 2004<br>(Hachisuke)      | 160<br>SP | 3  | 7<br>7              | 3×<br>445                           | 3× 8.0  | Foliar<br>spray,<br>1 July<br>1 July;<br>24 June;            | Clay<br>loam | <u>3</u><br>7<br>14 | 0.50<br>0.42<br>0.09         |                              | THR-<br>0481<br>a e g                |
| Suzaka-shi,<br>Nagano,<br>Japan, 2004<br>(Shinyo)              | 160<br>SP | 3  | 6–7<br>6–7          | 3×<br>400                           | 3× 8.0  | Foliar<br>spray,<br>14 June;<br>14 June<br>7 June;           | Loam         | <u>3</u><br>7<br>14 | $\frac{1.1}{0.65}$<br>0.46   |                              | THR-<br>0481<br>a e g                |
| lizaka-<br>machi,<br>Fukushima,<br>Japan, 2001<br>(Shiro-kaga) | 160<br>SP | 3  | 7–8<br>7–8          | 3×<br>560                           | 3× 8.0  | Foliar<br>spray,<br>5 June;<br>29 May;<br>22 May,<br>22 May  | Clay<br>loam | 7<br>14<br>21<br>28 | 0.95<br>0.26<br>0.32<br>0.05 | 0.97<br>0.26<br>0.30<br>0.09 | THR-<br>0457/<br>THR-<br>0458<br>afg |
| Arita-gun,<br>Wakayama,<br>Japan, 2001<br>(Nanko)              | 160<br>SP | 3  | 4–10<br>4–10        | 400–<br>640;<br>400–<br>640;<br>640 | 3× 8.0  | Foliar<br>spray,<br>7 June;<br>29 May;<br>25 May;<br>15 May, | Clay<br>loam | 7<br>14<br>21<br>28 | 1.0<br>1.1<br>0.56<br>0.60   | 1.1<br>0.87<br>0.56<br>0.50  | THR-<br>0457/<br>THR-<br>0458<br>afg |

Table 62 Residues of clothianidin in Japanese apricot (pitted fruit) after foliar spray treatment in the field

<sup>a</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>b</sup> Growing stage, BBCH not stated

<sup>c</sup> Last application at initial stage of coloring, initial stage of harvest, and time of harvest.

<sup>d</sup> Fruit growing stage.

<sup>e</sup> Each result is the average of two analyses (replicate analytical samples). Samples were not sent to different laboratories as in the other Japanese trials, since analysis by one laboratory is sufficient for Japanese registration for minor crops [Gaston, 2010d].

<sup>f</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>g</sup> Number of trees was below the minimum number of 4 trees required for sampling

[Odanaka and Wakasone, 2005a, THR-0481]. No unusual weather conditions. Plot size 1-2 trees/plot, 32-34 year old trees, about 5 m in height. Power sprayer, spray volume 5000–5560 L/ha. Fruits (> 2 kg) were randomly sampled by hand at normal harvest (BBCH not stated). Samples were analysed within 24 hrs after sampling (no frozen storage). Seeds and penucles were removed. Samples were analysed using the Japanese HPLC-UV method for fruits.Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (76–94%).

[Komatsu and Yabuzaki, 2002c, THR-0457; Ohta, 2001a, THR-0458]. No unusual weather conditions. Plot size 1–2 trees/plot (9–18 m2), 7–17 year old trees, about 2.5 m in height. Power sprayer, spray volume 5000–8000 L/ha. Fruits (> 2 kg) were randomly sampled by hand at fruit growing stage to harvest (BBCH not stated). Samples were stored at 5 °C for 1 day during transport and immediately after removing seeds and penuncles, samples were stored at -20 °C for 203–210 days and 104–114 days, respectively. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (82–113% and 81–102%, respectively).

### Cherries

Supervised residue trials on cherries were conducted in Japan (2003). Results are shown in Table 63 (indoor foliar spray treatment). Residue levels in the Japanese trials are for pitted fruit; residue levels have not been corrected for the flesh: stone weight ratio.

| Trial,<br>Location,<br>Country, year<br>(Variety)       | Form      | No | Inter<br>Val (d) | g ai/ha   | g<br>ai/hL | method,<br>timing                                                   | soil<br>type | DAT               | parent<br>mg/kg             | ·                           | reference                              |
|---------------------------------------------------------|-----------|----|------------------|-----------|------------|---------------------------------------------------------------------|--------------|-------------------|-----------------------------|-----------------------------|----------------------------------------|
| Sagae-shi,<br>Yamagata,<br>Japan, 2003<br>(Satonishiki) | 160<br>SP | 2  | 7                | 2×<br>500 | 2× 8.0     | Foliar<br>spray,<br>16 June;<br>16 June;<br>16 June;<br>9 June,     | Clay<br>loam | 1<br>3<br>7<br>14 | 0.80<br>1.0<br>0.73<br>0.58 | 1.1<br>0.82<br>0.82<br>0.52 | THR-<br>0492/<br>THR-<br>0493<br>a d e |
| Suzaka-shi,<br>Nagano,<br>Japan, 2003<br>(Beni-shinju)  | 160<br>SP | 2  | 7                | 2×<br>400 | 2× 8.0     | Foliar<br>spray,<br>12 June;<br>12 June;<br>12 June;<br>5 June<br>c | Clay<br>loam | 1<br>3<br>7<br>14 | 2.0<br>1.5<br>1.2<br>1.0    | 1.2<br>1.2<br>1.2<br>0.76   | THR-<br>0492/<br>THR-<br>0493<br>a d e |

Table 63 Residues of clothianidin in cherries (pitted fruit) after indoor foliar spray treatment

<sup>a</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>b</sup> Coloring stage (BBCH growth stage not stated)

<sup>c</sup> Fruit growing stage (BBCH stage not stated)

<sup>d</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>e</sup> Number of trees was below the minimum number of 4 trees required for sampling

[Komatsu and Yabuzaki, 2003h, THR-0492; Ohtha, 2003e, THR-0493]. Rain-cover culture, rain cover (polyethylene) installed just before or just after 1<sup>st</sup> treatment. Weather conditions not applicable. Plot size 1 tree/plot  $(4-24 \text{ m}^2)$ , about 4 m in height. Knapsack sprayer, spray volume 5000–5250 L/ha. Fruits (> 2 kg) were randomly sampled by hand at fruit growing stage to normal harvest (BBCH not stated). Samples were either analysed within 24 hrs after sampling (no frozen storage) or stored crashed at -20 °C for 3-9 days, respectively. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.05 and < 0.01 mg/kg, respectively, depending on laboratory) or for individual concurrent method recoveries (78–103% and 81–96%, respectively).

### Nectarines

Supervised residue trials on nectarines were conducted in Australia (2005) and Japan (2004). Results are shown in Table 64 (foliar spray treatment in the field). Residue levels in the Australian trials are for the whole fruit minus stem (= RAC). Residue levels in the Japanese trials are for pitted fruit; residue levels have not been corrected for the flesh:stone weight ratio.

| Trial,<br>Location,<br>Country,<br>year<br>(Variety)                             | Formulation<br>(g ai/L) | No | Interval (d)           | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                                                            | soil<br>type          | DAT                           | parent,<br>mg/kg                             | reference                             |
|----------------------------------------------------------------------------------|-------------------------|----|------------------------|------------|------------|----------------------------------------------------------------------------------------------|-----------------------|-------------------------------|----------------------------------------------|---------------------------------------|
| Trial 5069,<br>Shadforth,<br>NSW,<br>Australia,<br>2005<br>(August Red)          | 500 WG<br>+<br>MAXX     | 4  | 14;<br>13–14;<br>13–14 | ns         | 20         | High<br>volume<br>foliar spray,<br>7 April;<br>24 March,<br>BBCH ns                          | Clay                  | 0<br>14                       | 0.59<br>0.28                                 | THR-<br>0564<br>whole<br>fruit<br>a b |
| Trial 5069,<br>Shadforth,<br>NSW,<br>Australia,<br>2005<br>(August Red)          | 500 WG<br>+<br>MAXX     | 4  | 14;<br>13–14<br>13–14  | ns         | 40         | High<br>volume<br>foliar spray,<br>7 April;<br>24 March,<br>BBCH ns                          | Clay                  | 0<br>14                       | 0.75<br>0.52                                 | THR-<br>0564<br>whole<br>fruit<br>a b |
| Trial 5069,<br>Shadforth,<br>NSW,<br>Australia,<br>2005<br>(August Red)          | 500 WG<br>+<br>MAXX     | 2  | 13–14                  | ns         | 20         | High<br>volume<br>foliar spray,<br>7 April,<br>24 March;<br>11 March;<br>25 Feb.,<br>BBCH ns | Clay                  | 0<br>14<br>27<br>41           | 0.41<br>0.19<br>0.16<br>0.17                 | THR-<br>0564<br>whole<br>fruit<br>a b |
| Trial 5070<br>Invergordon,<br>Victoria,<br>Australia<br>2005<br>(Arctic<br>Snow) | 500 WG<br>+<br>MAXX     | 4  | 14;<br>14;<br>14       | ns         | 20         | High<br>volume<br>foliar spray,<br>24 March,<br>BBCH ns                                      | Sandy<br>clay<br>loam | 7                             | 0.56                                         | THR-<br>0564<br>whole<br>fruit<br>a b |
| Trial 5070<br>Invergordon,<br>Victoria,<br>Australia<br>2005<br>(Arctic<br>Snow) | 500 WG<br>+<br>MAXX     | 4  | 14;<br>14;<br>14       | ns         | 40         | High<br>volume<br>foliar spray,<br>24 March,<br>BBCH ns                                      | Sandy<br>clay<br>loam | 7                             | 1.01                                         | THR-<br>0564<br>whole<br>fruit<br>a b |
| Trial 5070<br>Invergordon,<br>Victoria,<br>Australia<br>2005<br>(Arctic<br>Snow) | 500 WG<br>+<br>MAXX     | 4  | 14;<br>14;<br>14       | ns         | 80         | Concentrate<br>foliar spray,<br>24 March,<br>BBCH ns                                         | Sandy<br>clay<br>loam | 7                             | 0.62                                         | THR-<br>0564<br>whole<br>fruit<br>a b |
| Trial 3702<br>Invergordon,<br>Victoria,<br>Australia<br>2004<br>(Arctic<br>Snow) | 500 WG                  | 4  | 14;<br>14;<br>15       | ns         | 30         | Concentrate<br>foliar spray,<br>2 March,<br>BBCH ns                                          | Sandy<br>clay<br>loam | 0<br>3<br>7<br>14<br>21<br>28 | 0.73<br>0.46<br>0.57<br>0.45<br>0.53<br>0.55 | THR-<br>0565<br>f<br>whole<br>fruit   |
| Kuroishi-shi,<br>Aomori<br>Japan, 2004<br>(Sunrise)                              | 160 SP                  | 3  | 7;<br>7                | 3×<br>320  | 3×<br>8.0  | Foliar<br>spray,<br>19 Aug;<br>19 Aug;<br>12 Aug;<br>BBCH ns                                 | Sandy<br>loam         | 3<br>7<br>14                  | 0.62 0.64<br>0.58 0.44<br>0.43 0.33          | 0360/                                 |
| Odanaka,<br>Nagano<br>Japan, 2004                                                | 160 SP                  | 3  | 7;<br>7                | 3×<br>400  | 3×<br>8.0  | Foliar<br>spray,<br>25 Aug;                                                                  | Clay<br>loam          | 3<br>7<br>14                  | 0.580.580.260.220.230.17                     | 0360/                                 |

Table 64 Residues of clothianidin in nectarines (whole fruit or pitted fruit) after foliar spray treatment in the field

| Trial,<br>Location,<br>Country,<br>year<br>(Variety) | Formulation<br>(g ai/L) | No | Interval<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing            | soil<br>type | DAT | parent<br>mg/kg | · · | reference                        |
|------------------------------------------------------|-------------------------|----|-----------------|------------|------------|------------------------------|--------------|-----|-----------------|-----|----------------------------------|
| (Fantasia)                                           |                         |    |                 |            |            | 25 Aug;<br>18 Aug<br>BBCH ns |              |     |                 |     | 0361<br>pitted<br>fruit<br>c d e |

ns = not stated

<sup>a</sup> Reverse decline trials: last treatment on different days, harvest on the same day for all samples

<sup>b</sup> MAXX was added at a concentration of 50 ml/100 L

<sup>c</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>d</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>e</sup> Number of trees was below the minimum number of tree trees required for sampling

<sup>f</sup> Residue may be underestimated because of low average recovery (65%) at 1.0 mg/kg levels.

[Mitchell, 2005c, THR-0564]. No unusual weather conditions. Plot size 4 trees/plot, 5–12 yrs old. Motorized pump, hose and hand gun sprayer, spray volume about 2000 L/ha for high volume spray and about 500 L/ha for concentrated spray; spray to run-off. Fruits (> 2 kg and at least 12 fruit) were sampled at maturity (BBCH not stated). Stones were removed. Samples were stored at -15 °C for a maximum of 116–153 days (exact storage period not stated). Samples were analysed using HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.02 mg/kg) or for average concurrent method recoveries (72–78%). Residues are determined on the skin + pulp but the results are corrected for the weight of the stones.

[Mitchell, 2005d, THR-0565]. No unusual weather conditions. Plot size was 6 trees/plot, 6 yrs old. Motorized pump, hose and hand gun sprayer, spray to run-off, volume not stated. Fruits (> 2 kg and at least 12 fruit) were sampled at two weeks before commercial harvest up to two weeks after commercial harvest (BBCH not stated). Stones were removed. Samples were stored at -15 °C for a maximum of 91–151 days (exact storage period not stated). Samples were analysed using HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.02 mg/kg) or for average concurrent method recoveries ((65% at 1.0 mg/kg; 74%–107% at 0.02–0.4 mg/kg). Residues are determined on the skin + pulp but the results are corrected for the weight of the stones [Gaston, 2010d].

[Odanaka and Wakasone, 2004a, THR-0360; Yokota, 2004, THR-0361]. No unusual weather conditions. Plot size 1-2 trees/plot (3.1–20.2 m2), 7–17 year old trees, about 2 m in height. Mobile sprayer or knapsack sprayer, spray volume 4000–5000 L/ha. Fruits (> 2 kg) were randomly sampled by hand at fruit growing stage to normal harvest (BBCH not stated). Seeds and peduncles were removed. Samples were either analysed within 24–48 hrs after sampling (no frozen storage) or stored at -20 °C for 34–43 days, respectively. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (90–110% and 85–109%, respectively). Results were not corrected for stone:flesh ratio.

#### Peaches

Supervised residue trials on peaches were conducted in Australia (2004 and 2005), Hungary (2005), Japan (1998 and 1999), USA (2004) and Canada (2004). Results are shown in Table 65 (foliar spray treatment in the field) and Table 66 (indoor foliar spray treatment). Residue levels in the Australian, Hungarian, USA and Canadian trials are for the whole fruit minus stem (= RAC). Residue levels in the Japanese trials are for pitted fruit; residue levels have not been corrected for the flesh: stone weight ratio.

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                              | Form<br>(g ai/L)    | No | Interva<br>l<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                                     | soil<br>type | DAT | parent,<br>mg/kg | reference                                 |
|----------------------------------------------------------------------------------|---------------------|----|---------------------|------------|------------|-----------------------------------------------------------------------|--------------|-----|------------------|-------------------------------------------|
| Trial 5066<br>Bunbartha,<br>Victoria,<br>Australia,<br>2005<br>(Taylor<br>Queen) | 500 WG<br>+<br>MAXX | 4  | 11;<br>14;<br>14    | ns         | 20         | High<br>volume<br>foliar<br>spray,<br>22 March,<br>BBCH not<br>stated | Clay<br>loam | 7   | 1.5              | THR-0564<br>whole fruit<br><sup>a b</sup> |
| Trial 5066<br>Bunbartha,<br>Victoria,<br>Australia,<br>2005<br>(Taylor<br>Queen) | 500 WG<br>+<br>MAXX | 4  | 11;<br>14;<br>14    | ns         | 40         | High<br>volume<br>foliar<br>spray,<br>22 March,<br>BBCH not<br>stated | Clay<br>loam | 7   | 3.0              | THR-0564<br>whole fruit<br><sup>a b</sup> |
| Trial 5066<br>Bunbartha,<br>Victoria,<br>Australia,<br>2005<br>(Taylor<br>Queen) | 500 WG              | 4  | 11;<br>14;<br>14    | ns         | 20         | High<br>volume<br>foliar<br>spray,<br>22 March,<br>BBCH not<br>stated | Clay<br>loam | 7   | 1.4              | THR-0564<br>whole fruit<br><sup>a</sup>   |
| Trial 5066<br>Victoria,<br>Australia<br>2005<br>(Taylor<br>Queen)                | 200 SC<br>+<br>MAXX | 4  | 11;<br>14;<br>14    | ns         | 20         | High<br>volume<br>foliar<br>spray,<br>22 March,<br>BBCH not<br>stated | Clay<br>loam | 7   | 1.6              | THR-0564<br>whole fruit<br><sup>a b</sup> |
| Trial 5066<br>Victoria,<br>Australia<br>2005<br>(Taylor<br>Queen)                | 200 SC<br>+<br>MAXX | 4  | 11;<br>14;<br>14    | ns         | 40         | High<br>volume<br>foliar<br>spray,<br>22 March,<br>BBCH not<br>stated | Clay<br>loam | 7   | 4.2              | THR-0564<br>whole fruit<br><sup>a b</sup> |
| Trial 5066<br>Victoria,<br>Australia<br>2005<br>(Taylor<br>Queen)                | 200 SC              | 4  | 11-14               | ns         | 20         | High<br>volume<br>foliar<br>spray,<br>22 March,<br>BBCH not<br>stated | Clay<br>loam | 7   | 1.5              | THR-0564<br>whole fruit<br><sup>a</sup>   |
| Trial 5067<br>Orange,<br>NSW,<br>Australia<br>2005<br>(O'Henry)                  | 500 WG<br>+<br>MAXX | 4  | 14;<br>14;<br>14    | ns         | 20         | High<br>volume<br>foliar<br>spray,<br>25 March,<br>BBCH not<br>stated | Clay         | 7   | 0.60             | THR-0564<br>whole fruit<br><sup>a b</sup> |
| Trial 5068<br>Montacute,<br>South<br>Australia<br>2005<br>(September<br>Sun)     | 500 WG<br>+<br>MAXX | 3  | 14;<br>14           | ns         | 20         | High<br>volume<br>foliar<br>spray,<br>16 March,<br>BBCH not<br>stated | Clay         | 7   | 1.0              | THR-0564<br>whole fruit<br><sup>a b</sup> |
| Trial 5068<br>Montacute,                                                         | 500 WG<br>+         | 3  | 14;<br>14           | ns         | 40         | High<br>volume                                                        | Clay         | 7   | 1.8              | THR-0564<br>whole fruit                   |

Table 65 Residues of clothianidin in peaches (whole fruit or pitted fruit) after foliar spray treatment in the field

| Trial,                   | Form     | No | Interva | g          | g     | method,               | soil   | DAT      | parent           | t,    | reference             |
|--------------------------|----------|----|---------|------------|-------|-----------------------|--------|----------|------------------|-------|-----------------------|
| Location                 | (g ai/L) |    | 1       | ai/ha      | ai/hL | timing                | type   |          | mg/kg            | Ş     |                       |
| Country,                 |          |    | (d)     |            |       |                       |        |          |                  |       |                       |
| year<br>(Variata)        |          |    |         |            |       |                       |        |          |                  |       |                       |
| (Variety)<br>South       | MAXX     |    |         |            |       | foliar                |        |          |                  |       |                       |
| Australia                | МАЛЛ     |    |         |            |       | spray,                |        |          |                  |       | a b                   |
| 2005                     |          |    |         |            |       | 16 March,             |        |          |                  |       |                       |
| (September               |          |    |         |            |       | BBCH not              |        |          |                  |       |                       |
| Sun)                     |          |    |         |            |       | stated                |        |          |                  |       |                       |
| Trial 5068               | 500 WG   | 3  | 14;     | ns         | 80    | Concentra             | Clay   | 7        | 0.91             |       | THR-0564              |
| Montacute,               | +MAX     |    | 14      |            |       | te foliar             |        |          |                  |       | whole fruit           |
| South                    | Х        |    |         |            |       | spray,                |        |          |                  |       | a b                   |
| Australia<br>2005        |          |    |         |            |       | 16 March,<br>BBCH not |        |          |                  |       |                       |
| (September               |          |    |         |            |       | stated                |        |          |                  |       |                       |
| Sun)                     |          |    |         |            |       | stated                |        |          |                  |       |                       |
| Trial 3700               | 500 WG   | 4  | 14;     | ns         | 30    | Concentra             | Sandy  | 0        | 2.5              |       | THR-0565              |
| Invergordon              |          |    | 14;     |            |       | te foliar             | clay   | 3        | 2.2              |       | h                     |
| , Victoria,              |          |    | 15      |            |       | spray,                | loam   | 7        | 1.5              |       |                       |
| Australia                |          |    |         |            |       | 2 March,              |        | 14       | 1.3              |       | whole fruit           |
| 2004<br>(Taular          |          |    |         |            |       | fruit still           |        | 21<br>28 | 0.70<br>0.86     |       |                       |
| (Taylor<br>Oueen)        |          |    |         |            |       | green                 |        | 20       | 0.80             |       |                       |
| Trial 3701               | 500 WG   | 4  | 14;     | ns         | 30    | Concentra             | sandy  | 0        | 0.80             |       | THR-0565              |
| Orange,                  |          | -  | 14;     |            |       | te foliar             | clay   | 3        | 0.51             |       | h                     |
| NSW,                     |          |    | 14      |            |       | spray,                | loam   | 7        | 0.28             |       |                       |
| Australia                |          |    |         |            |       | 4 March,              |        | 14       | 0.23             |       | whole fruit           |
| 2004                     |          |    |         |            |       | fruit 65–             |        | 21       | 0.19             |       |                       |
| (O'Henry)<br>Trial 3701  | 500      | 4  | 14;     | <b>n</b> 0 | 60    | 80 mm<br>Concentra    | sandy  | 28<br>0  | 0.31             |       | THR-0565              |
| Orange,                  | WG       | 4  | 14;     | ns         | 60    | te foliar             | clay   | 3        | 0.57             |       | h<br>h                |
| NSW,                     |          |    | 14,     |            |       | spray,                | loam   | 7        | 0.42             |       | whole fruit           |
| Australia                |          |    |         |            |       | 4 March,              |        | 14       | 0.31             |       |                       |
| 2004                     |          |    |         |            |       | fruit 65-             |        | 21       | 0.35             |       |                       |
| (O'Henry)                |          |    |         |            |       | 80 mm                 |        | 28       | 0.42             |       |                       |
| Trial 05-                | 500 WG   | 1  | nr      | 74.4       | 10    | Foliar                | Loam   | 14       | < 0.02           |       | THR-0005              |
| ARYS-AA-<br>14-02,       |          |    |         |            |       | spray,<br>27 July,    | y clay |          | < 0.02<br>< 0.02 |       | whole fruit           |
| Siófok,                  |          |    |         |            |       | BBCH 81               |        |          | < 0.02           |       | whole if uit          |
| Hungary,                 |          |    |         |            |       | bbell of              |        |          |                  |       | с                     |
| 2005                     |          |    |         |            |       |                       |        |          |                  |       |                       |
| (Suncrest)               |          |    |         |            |       |                       |        |          |                  |       |                       |
| Sawa-gun,                | 160 SP   | 3  | 7–8;    | 3×         | 3×    | Foliar                | Clay   | 7        | 0.25             | 0.23  | THR-0102;             |
| Gunma,                   |          |    | 7       | 320        | 8.0   | spray,                | loam   | 14       | 0.18             |       | - ,                   |
| Japan, 1999<br>(Oodama   |          |    |         |            |       | 6 July;<br>29 June;   |        | 21       | 0.18             | 0.12  | THR-0107;<br>THR-117; |
| Akatsuki)                |          |    |         |            |       | 29 June;              |        |          |                  |       | 111 <b>K-</b> 117,    |
| i indistili)             |          |    |         |            |       | d d                   |        |          |                  |       | pitted fruit          |
|                          |          |    |         |            |       |                       |        |          |                  |       | a e f g               |
| 04-NJ23,                 | 500 WG   | 1  | nr      | 235        | 25    | Foliar                | Sandy  | 6        | 0.13             | 0.10  | THR-0586              |
| Bridgeton,               |          |    |         |            |       | spray,                | loam   |          |                  |       |                       |
| New Jersey,              |          |    |         |            |       | 6 July,<br>Emiting    |        |          |                  |       | whole fruit           |
| USA, 2004<br>(Dixie Red) |          |    |         |            |       | Fruiting              |        |          |                  |       |                       |
| 04-NJ24,                 | 500 WG   | 1  | nr      | 224        | 26    | Foliar                | Sandy  | 7        | 0.08             | 0.10  | THR-0586              |
| Bridgeton,               | 200 110  | 1  |         | '          |       | spray,                | loam   |          | 9                | 0.10  |                       |
| New Jersey,              |          |    |         |            |       | 7 July,               |        |          |                  |       | whole fruit           |
| USA, 2004                |          |    |         |            |       | Fruiting              |        |          |                  |       |                       |
| (Dixie Red)              |          |    |         |            |       | 5.1                   | a::    |          | 0.0              | 0.0.1 |                       |
| 04-NY17,                 | 500 WG   | 1  | nr      | 224        | 44    | Foliar                | Silty  | 7        | 0.04             | 0.04  | THR-0586              |
| Lansing,<br>New York,    |          |    |         |            |       | spray,<br>2 Sept.,    | loam   |          | 7                | 7     | whole fruit           |
| USA, 2004                |          |    |         |            |       | 2 Sept.,<br>Fruiting  |        |          |                  |       | whole fruit           |
| (Harrow                  |          |    |         |            |       |                       |        |          |                  |       |                       |
| Diamond                  |          |    |         |            |       |                       |        |          |                  |       |                       |
| 1                        | •        | •  | •       | •          | •     |                       |        | •        |                  |       |                       |

| Trial,<br>Location<br>Country,                                                       | Form<br>(g ai/L) | No | Interva<br>l<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                                              | soil<br>type   | DAT | parent<br>mg/kg |        | reference               |
|--------------------------------------------------------------------------------------|------------------|----|---------------------|------------|------------|--------------------------------------------------------------------------------|----------------|-----|-----------------|--------|-------------------------|
| year<br>(Variety)                                                                    |                  |    |                     |            |            |                                                                                |                |     |                 |        |                         |
| and Lovell)<br>04-TN10,                                                              | 500 WG           | 1  | nr                  | 213        | 41         | Foliar                                                                         | Sandy          | 6   | 0.06            | 0.05   | THR-0586                |
| Crossville,<br>Tennessee,<br>USA, 2004<br>(Belle of<br>Georgia)                      |                  |    |                     |            |            | spray,<br>10 Aug.,<br>Fruiting                                                 | loam           |     | 8               | 6      | whole fruit             |
| 04-NC18,<br>Jackson<br>Springs,<br>North<br>Carolina,<br>USA, 2004<br>(Emery)        | 500 WG           | 1  | nr                  | 224        | 22         | Foliar<br>spray,<br>29 July,<br>Fruiting                                       | Loam<br>y sand | 7   | 0.03<br>9       | 0.02 5 | THR-0586<br>whole fruit |
| 04-TX35,<br>Fredericks-<br>burg, Texas,<br>USA, 2004<br>(Gold<br>Prince)             | 500 WG           | 1  | nr                  | 224        | 46         | Foliar<br>spray,<br>27 May,<br>mature in<br>size                               | Sandy<br>loam  | 7   | 1.0             | 0.64   | THR-0586<br>whole fruit |
| 04-CA116,<br>Davis,<br>California,<br>USA, 2004<br>(Dr. Davis<br>Cling)              | 500 WG           | 1  | nr                  | 224        | 27         | Foliar<br>spray,<br>2 Aug.,<br>Fruiting                                        | Loam           | 7   | 0.13            | 0.10   | THR-0586<br>whole fruit |
| 04-CA114,<br>Parlier,<br>California,<br>USA, 2004<br>(Flavorcrest<br>)               | 500 WG           | 1  | nr                  | 224        | 22         | Foliar<br>spray,<br>16 June,<br>immature<br>fruit (5.1–<br>7.6 cm<br>diameter) | Sandy<br>loam  | 7   | 0.12            | 0.13   | THR-0586 whole fruit    |
| 04-CA115,<br>Parlier,<br>California,<br>USA, 2004<br>(O'Henry)                       | 500 WG           | 1  | nr                  | 224        | 6.9        | Foliar<br>spray, 21<br>July,<br>immature<br>fruit (5.1–<br>7.6 cm<br>diameter) | Sandy<br>loam  | 7   | 0.07<br>8       | 0.10   | THR-0586<br>whole fruit |
| 04-CA117,<br>Madera,<br>California,<br>USA, 2004<br>(Last<br>Chance)                 | 500 WG           | 1  | nr                  | 235        | 20         | Foliar<br>spray,<br>24 Aug.,<br>mature<br>fruit                                | Loam<br>y sand | 7   | 0.05<br>9       | 0.06   | THR-0586<br>whole fruit |
| 04-ON01,<br>Jordan<br>Station,<br>Ontario,<br>Canada,<br>2004<br>(Harrow<br>Diamond) | 500 WG           | 1  | nr                  | 224        | 19         | Foliar<br>spray,<br>19 July,<br>mature<br>fruit                                | Sandy<br>loam  | 7   | 0.04            | 0.04   | THR-0586<br>whole fruit |
| 04-ON02,<br>Jordan<br>Station,<br>Ontario,<br>Canada,<br>2004<br>(Red                | 500 WG           | 1  | nr                  | 224        | 19         | Foliar<br>spray,<br>5 Aug.,<br>mature in<br>size                               | Sandy<br>loam  | 7   | 0.03 0          | 0.03 0 | THR-0586<br>whole fruit |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                                 | Form<br>(g ai/L) | No | Interva<br>l<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                 | soil<br>type  | DAT | parent<br>mg/kg |           | reference               |
|-------------------------------------------------------------------------------------|------------------|----|---------------------|------------|------------|---------------------------------------------------|---------------|-----|-----------------|-----------|-------------------------|
| Haven)                                                                              |                  |    |                     |            |            |                                                   |               |     |                 |           |                         |
| 04-ON03,<br>Jordan<br>Station,<br>Ontario,<br>Canada,<br>2004<br>(Harrow<br>Beauty) | 500 WG           | 1  | nr                  | 224        | 19         | Foliar<br>spray,<br>16 Aug.,<br>mature in<br>size | sandy<br>loam | 7   | 0.03 6          | 0.02      | THR-0586<br>whole fruit |
| 04-ON04,<br>Jordan<br>Station,<br>Ontario,<br>Canada,<br>2004<br>(Loring)           | 500 WG           | 1  | nr                  | 224        | 18         | Foliar<br>spray,<br>16 Aug.,<br>Fruiting          | Sandy<br>loam | 7   | 0.03 8          | 0.04 4    | THR-0586<br>whole fruit |
| 04-BC01,<br>Summerlan<br>d,<br>British<br>Columbia<br>Canada,<br>2004<br>(Glohaven) | 500 WG           | 1  | nr                  | 224        | 13         | Foliar<br>spray,<br>10 Aug.,<br>BBCH 87           | Sandy<br>loam | 6   | 0.10            | 0.09<br>8 | THR-0586<br>whole fruit |

ns = not stated

nr = not relevant

<sup>a</sup> Reverse decline trials: last treatment on different days, harvest on the same day for all samples

<sup>b</sup> MAXX was added at a concentration of 50 ml/100 L

<sup>c</sup> Results came from three replicate field samples

<sup>d</sup> Applications are performed in fruit growing stage, presumably from BBCH 71-79

<sup>e</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result. Fruit was separated in fruit (i.e fruit with peel but without stone and pericarb) and pericarb (flesh around the stone) and these were analysed separately. The residue value in the pitted fruit was calculated based on the weight ratio between pericarb (13%-14%) and fruit (87%-86%).

<sup>f</sup> Gunma control samples contained 0.019 mg/kg in the fruit and 0.06 mg/kg in the pericarb (laboratory 1, average of 2 analyses)

Gunma control samples contained 0.016 mg/kg in the fruit and 0.04 mg/kg in the pericarb (laboratory 2, average of 2 analyses)

The first laboratory is worst case. This corresponds to  $0.86 \times 0.019 + 0.14 \times 0.06 = 0.025$  mg/kg in the pitted fruit. Therefore the valid LOQ for this trial must be increased to 0.025/0.3 = 0.09 mg/kg in the pitted fruit, 0.019/0.3 = 0.07 mg/kg in the fruit and 0.06/0.3 = 0.2 mg/kg in the pericarb. Since all the residue values in the treated samples are higher, the residue values are considered acceptable.

<sup>g</sup> Number of trees was below the minimum number of four trees required for sampling

<sup>h</sup> Residue may be underestimated because of low average recovery (65%) at 1.0 mg/kg levels.

[Orosz, 2005b, THR-0005]. No unusual weather conditions. Plot size 150 m2, 10 trees/plot. Air blast sprayer, actual spray volume 744 L/ha. Three replicate field samples (3.65-4.93 kg; 15-20 units) were taken at harvest (BBCH 89). Each field samples was reduced to 12 units/laboratory sample. Stones were removed and the pulp/stone ratio was recorded. Samples were stored at  $-20 \,^{\circ}$ C for 1 day. Samples were analysed using HPLC-DAD method R1136SOM13 and reported residue values are for whole fruit including stone [Gaston, 2010d]. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (75%–90%).

[Komatsu and Yabuzaki, 2000b/c/d/e, THR-0102/THR-107/THR-0112/THR-0117] No unusual weather conditions. Plot size 3 trees/plot (32 m2), about 2 m height. Power sprayer, handsprayer, spray volume 4000 L/ha. Fruits (> 2 kg) were randomly sampled by hand at fruit growing stage and harvest. Fruit was separated in fruit and pericarb and these were analysed separately. Samples were stored at -20 °C for 136–198 days (fruit) or 141–211 days (pericarb). Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (0.016–0.019 mg/kg fruit, 0.04–0.06 mg/kg pericarb, 0.019–0.025 mg/kg pitted fruit) or for individual concurrent method

recoveries (87-99%; 98-105%; 87-97%; 85-94%, respectively).

[Mitchell, 2005c, THR-0564]. No unusual weather conditions. Plot size 4 trees/plot, 4–16 yrs old. Motorized pump, hose and hand gun sprayer, spray volume about 2000 L/ha for high volume spray and about 500 L/ha for concentrated spray; spray to run-off. Fruits (> 2 kg and at least 12 fruit) were sampled at maturity (BBCH not stated). Stones were removed. Samples were stored at -15 °C for a maximum of 122-161 days (exact storage period not stated). Samples were analysed using HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.02 mg/kg) or for average concurrent method recoveries (72–78%). Residues are determined on the skin+pulp but the results are corrected for the weight of the stones.

[Mitchell, 2005d, THR-0565]. No unusual weather conditions. Plot size was 6–12 trees/plot, 6–10 yrs old. Motorized pump, hose and hand gun sprayer, spray to run-off, volume not stated. Fruits (> 2 kg and at least 12 fruit) were sampled when fruits were green up to commercial harvest (BBCH not stated). Stones were removed. Samples were stored at – 15 °C for a maximum of 91–151 days (exact storage period not stated). Samples were analysed using HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.02 mg/kg) or for average concurrent method recoveries (65% at 1.0 mg/kg; 74%–107% at 0.02–0.4 mg/kg). Residues are determined on the skin + pulp but the results are corrected for the weight of the stones [Gaston, 2010d].

[Dorschner, 2007, THR-0586]. No unusual weather conditions. Plot size was 83–620 m2, 6–10 trees/plot. Foliar directed tractor-mounted airblast sprayer or backpack sprayer, spray volume 486–3268 L/ha. Product TM 44404 is a WG formulation [Gaston, 2010d]. Fruits (2 kg, 24 pieces) were sampled at harvest. Samples were stored at  $\leq$ -20 °C for 371–497 days. Samples were analysed using modification A of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (73–100%). Reported values are for the whole fruit [Gaston, 2010d].

| Table 66 Residues of clothianidin in peaches (pitted fruit) after indoor foliar spray treatment |
|-------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------|

| Trial,<br>Location<br>Country,<br>year<br>(Variety)     | Form<br>(g ai/L) | No | Interval<br>(d) | g ai/ha   | g<br>ai/hL | method,<br>timing                                    | soil<br>type | DA<br>T       | parent<br>mg/kg      | ,<br>,               | reference                                                               |
|---------------------------------------------------------|------------------|----|-----------------|-----------|------------|------------------------------------------------------|--------------|---------------|----------------------|----------------------|-------------------------------------------------------------------------|
| Ito-gun,<br>Wakayama,<br>Japan, 1998<br>(Takei<br>wase) | 160 SP           | 3  | 6–7;<br>6–8     | 3×<br>320 | 3× 8.0     | Foliar<br>spray,<br>9 June;<br>1 June;<br>BBCH<br>ns | Clay<br>loam | 7<br>14<br>21 | 0.21<br>0.18<br>0.12 | 0.33<br>0.16<br>0.09 | THR-0102;<br>THR-0112;<br>THR-0107;<br>THR-117<br>pitted fruit<br>a b c |

<sup>a</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>b</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result. Fruit was separated in fruit (i.e fruit with peel but without stone and pericarb) and pericarb (flesh around the stone) and these were analysed separately. The residue value in the pitted fruit was calculated based on the weight ratio between pericarb (13%–14%) and fruit (87%–86%).

<sup>c</sup> Number of trees was below the minimum number of four trees required for sampling

[Komatsu and Yabuzaki, 2000b/c/d/e, THR-0102/THR-107/THR-0112/THR-0117] No unusual weather conditions. Plot size 1 tree/plot (50 m2), about 2 m in height. Power sprayer, handsprayer, spray volume 4000 L/ha. Fruits (> 2 kg) were randomly sampled by hand at fruit growing stage and harvest. Fruit was separated in fruit and pericarb and these were analysed separately. Samples were stored at -20 °C for 6–528 days (fruit) or 87–535 days (pericarb). Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.002 mg/kg fruit, < 0.01 mg/kg pericarb) or for concurrent method recoveries (87–99%; 98–105%; 87–97%; 85–94%, respectively).

#### Plums

Supervised residue trials on Japanese plums were conducted in Japan (2004). Results are shown in Table 67 (foliar spray treatment in the field). Residue levels in the Japanese trials are for pitted fruit; residue levels have not been corrected for the flesh: stone weight ratio.

Table 67 Residues of clothianidin in plums (pitted fruit) after foliar spray treatment in the field

| Trial, Location<br>Country, year<br>(Variety)          | Form      | No | Interval (d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                               | soil<br>type | DAT          | parent,<br>mg/kg     | reference             |
|--------------------------------------------------------|-----------|----|--------------|------------|------------|-------------------------------------------------|--------------|--------------|----------------------|-----------------------|
| Iizaka-machi,<br>Fukushima,<br>Japan, 2004<br>(Beauty) | 160<br>SP | 3  | 7;<br>7      | 3×<br>400  | 3×<br>8.0  | Foliar spray,<br>30 June;<br>30 June<br>23 June | Clay<br>loam | 3<br>7<br>14 | 0.06<br>0.08<br>0.03 | THR-<br>0516<br>a d e |
| Naga-gun,<br>Wakayama,<br>Japan, 2004<br>(Oishiwase)   | 160<br>SP | 3  | 7;<br>7      | 3×<br>320  | 3×<br>8.0  | Foliar spray;<br>7 June;<br>7 June<br>31 May    | Loam         | 3<br>7<br>14 | 0.03<br>0.01<br>0.02 | THR-<br>0516<br>a d e |

<sup>a</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different (normal decline), some plots are treated on different and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>b</sup> Fruit coloring stage and harvest (BBCH growth stage not stated)

<sup>c</sup> Fruit growing and fruit coloring stage (BBCH stage not stated)

<sup>d</sup> Each result is the average of two analyses (replicate analytical samples). Samples were not sent to different laboratories as in the other Japanese trials, since analysis by one laboratory is sufficient for Japanese registration for minor crops [Gaston, 2010d].

<sup>e</sup> Number of trees was below the minimum number of 4 trees required for sampling

[Odanaka and Wakasone, 2004b, THR-0516]. No unusual weather conditions. Plot size 1 tree/plot (11–50 m2), 4–25 yr old trees, about 3 m in heigth. Power sprayer, spray volume 4000–5000 L/ha. Fruits (> 1 kg) were randomly sampled by hand at normal harvest (BBCH not stated). Samples were analysed within 24 hrs after sampling (no frozen storage). Peduncle and seeds were removed. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (89–106%).

### Berries and small fruits

The Meeting received supervised residue trials on cranberries and grapes. Trials were available for foliar spray treatment in the field, soil drench treatment in the field and indoor foliar spray treatment.

### Cranberries

Supervised residue trials on cranberries were conducted in the USA (2005). Results are shown in Table 68 (foliar spray treatment in the field) and Table 69 (soil treatment in the field).

Table 68 Residues of clothianidin in cranberries (whole fruit, berries) after foliar spray treatment in the field

| Trial, Location,<br>Country, year<br>(Variety)                    | Form<br>(g<br>ai/L) | No | Inter<br>val<br>(d) | g<br>ai/ha       | g<br>ai/hL       | method,<br>timing                                 | soil<br>type | DAT | parent,<br>mg/kg |        | refe<br>rence     |
|-------------------------------------------------------------------|---------------------|----|---------------------|------------------|------------------|---------------------------------------------------|--------------|-----|------------------|--------|-------------------|
| MA01,<br>East Wareham,<br>Massachusetts,<br>USA, 2005<br>(Howes)  | 500<br>WG           | 3  | 7;<br>8             | 74,<br>73,<br>74 | 17,<br>17,<br>18 | Foliar<br>spray,<br>1 Sept.,<br>Fruit<br>ripening | Sand         | 21  | < 0.01           | < 0.01 | THR-<br>0570<br>c |
| NJ36,<br>Tabernacle,<br>New Jersey,<br>USA, 2005<br>(Early Black) | 500<br>WG           | 3  | 8;<br>7             | 79,<br>80,<br>80 | 23,<br>23,<br>23 | Foliar<br>spray, 6<br>Sept,<br>Fruiting           | Sand         | 22  | < 0.01           | < 0.01 | THR-<br>0570<br>c |
| OR19, Langlois,<br>Oregon,<br>USA, 2005<br>(Stevens)              | 500<br>WG           | 3  | 8;<br>7             | 75,<br>78,<br>77 | 13,<br>13,<br>13 | Foliar<br>spray, 8<br>Sept.,<br>Red<br>berries    | a            | 21  | < 0.01           | < 0.01 | THR-<br>0570<br>c |
| WI26,<br>Tomah,<br>Wisconsin,                                     | 500<br>WG           | 3  | 8;<br>6             | 74,<br>74,<br>74 | 29,<br>26,<br>28 | Foliar<br>spray,<br>7 Sept.,                      | Sand         | 21  | < 0.01           | < 0.01 | THR-<br>0570      |

| Trial, Location,<br>Country, year<br>(Variety)           | Form<br>(g<br>ai/L) | No | Inter<br>val<br>(d) | g<br>ai/ha       | g<br>ai/hL       | method,<br>timing                        | soil<br>type         | DAT | parent,<br>mg/kg |        | refe<br>rence     |
|----------------------------------------------------------|---------------------|----|---------------------|------------------|------------------|------------------------------------------|----------------------|-----|------------------|--------|-------------------|
| USA, 2005<br>(Ben Lear)                                  |                     |    |                     |                  |                  | Fruiting                                 |                      |     |                  |        | с                 |
| W127,<br>Tomah,<br>Wisconsin,<br>USA, 2005<br>(McFarlin) | 500<br>WG           | 3  | 8;<br>6             | 78,<br>75,<br>77 | 29,<br>27,<br>27 | Foliar<br>spray,<br>7 Sept.,<br>Fruiting | Sand<br><sup>b</sup> | 21  | < 0.01           | < 0.01 | THR-<br>0570<br>c |

nr = not relevant

<sup>a</sup> Layers of dust + sea sand + peat over native soil

<sup>b</sup> Artificial sand bed.

<sup>c</sup> Results came from two replicate field samples

[Corley, 2008, THR-0570]. No unusual weather conditions. Plot size 3.3–59 m2. Backpack sprayer, spray volume 280–589 L/ha (soil application) and 259–590 L/ha (foliar broadcast application). Two replicate field samples of cranberry fruits (sample weight > 0.9 kg, [Gaston, 2010d]) were taken when commercially mature (BBCH not stated). The cranberries were raked off the plants at 12 different areas without the bogs being flooded. Samples were stored at -10 to -29 °C for 146–154 days. Samples were analysed using modification B of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (75%–86%).

| Table 69 Residues of clothianidin in cranberries (whole fruit, berries) after soil treatme | nent in the field |
|--------------------------------------------------------------------------------------------|-------------------|

| Trial, Location,<br>Country, year<br>(Variety)                    | Form<br>(g<br>ai/L) | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                            | soil<br>type         | DAT | parent,<br>mg/kg |        | refe<br>rence     |
|-------------------------------------------------------------------|---------------------|----|---------------------|------------|------------|----------------------------------------------|----------------------|-----|------------------|--------|-------------------|
| MA01,<br>East Wareham,<br>Massachusetts,<br>USA, 2005<br>(Howes)  | 160<br>SG           | 1  | nr                  | 223        | 53         | Soil appl.,<br>1 Sept.,<br>Fruit<br>ripening | Sand                 | 21  | < 0.01           | < 0.01 | THR-<br>0570<br>° |
| NJ36,<br>Tabernacle,<br>New Jersey,<br>USA, 2005<br>(Early Black) | 160<br>SG           | 1  | nr                  | 243        | 70         | Soil appl.,<br>6 Sept.,<br>Fruiting          | Sand                 | 22  | < 0.01           | < 0.01 | THR-<br>0570<br>° |
| OR19, Langlois,<br>Oregon,<br>USA, 2005<br>(Stevens)              | 160<br>SG           | 1  | nr                  | 233        | 40         | Soil appl.,<br>7 Sept.,<br>Red<br>berries    | a                    | 22  | < 0.01           | < 0.01 | THR-<br>0570<br>° |
| WI26,<br>Tomah,<br>Wisconsin,<br>USA, 2005<br>(Ben Lear)          | 160<br>SG           | 1  | nr                  | 233        | 83         | Soil appl.,<br>7 Sept.,<br>Fruiting          | Sand<br><sup>b</sup> | 21  | < 0.01           | < 0.01 | THR-<br>0570<br>° |
| WI27,<br>Tomah,<br>Wisconsin,<br>USA, 2005<br>(McFarlin)          | 160<br>SG           | 1  | nr                  | 234        | 80         | Soil appl.,<br>7 Sept.,<br>Fruiting          | Sand<br><sup>b</sup> | 21  | < 0.01           | < 0.01 | THR-<br>0570<br>° |

nr = not relevant

<sup>a</sup> Layers of dust + sea sand + peat over native soil

<sup>b</sup> Artificial sand bed.

<sup>c</sup> Results came from two replicate field samples

[Corley, 2008, THR-0570]. No unusual weather conditions. Plot size  $3.3-59 \text{ m}^2$ . Backpack sprayer, spray volume 280–589 L/ha (soil application) and 259–590 L/ha (foliar broadcast application). Two replicate field samples of cranberry fruits (sample weight > 0.9 kg, [Gaston, 2010d]) were taken when commercially mature (BBCH not stated). The cranberries were raked off the plants at 12 different areas without the bogs being flooded. Samples were stored at -10 to -29 °C for 146-154 days. Samples were analysed using modification B of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (75%–86%).

## Grapes

Supervised residue trials on table and wine grapes were conducted in Australia (2004, 2005, 2006 and 2007), Japan (1998 and 2006) and USA (2003). Results are shown in Table 70 (foliar spray treatment in the field), Table 71 (soil drench treatment in the field) and Table 72 (indoor foliar spray treatment). Residue levels are for the whole fruit minus stems (= RAC) in the Australian and Japanese trials, but for the whole fruit including stems for the USA trials.

| Table 70 Residues of clothianidin | in grapes | (whole t | fruit | with or | without | stems) | after fo | oliar | spray |
|-----------------------------------|-----------|----------|-------|---------|---------|--------|----------|-------|-------|
| treatment in the field            |           |          |       |         |         |        |          |       |       |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                                                        | Form      | N<br>o | Inter<br>val<br>(d) | g ai/ha | g<br>ai/hL | method,<br>timing                                                                                                    | soil type             | DAT                         | parent,<br>mg/kg                           | referenc<br>e                                               |
|------------------------------------------------------------------------------------------------------------|-----------|--------|---------------------|---------|------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|--------------------------------------------|-------------------------------------------------------------|
| Trial 4699<br>Yarra Valley<br>Victoria,<br>Australia,<br>2004–2005<br>(Wine grape:<br>Chardonnay)          | 200<br>SC | 2      | 13-22               | ns      | 2×<br>25   | Foliar<br>spray;<br>8 Mar<br>2005;<br>17 Feb<br>2005;<br>31 Jan<br>2005;<br>9 Jan<br>2005<br>c                       | clay<br>loam          | 14<br>27<br>44<br>50<br>96  | 1.5<br>0.80<br>0.14<br>0.28<br>not sampled | THR-<br>0547<br>a f j<br>whole<br>fruit<br>without<br>stems |
| Trial 4699<br>Yarra Valley<br>Victoria,<br>Australia,<br>2004–2005<br>(Wine grape:<br>Chardonnay)          | 200<br>SC | 2      | 13-23               | ns      | 2×<br>50   | Foliar<br>spray,<br>8 Mar<br>2005;<br>17 Feb<br>2005;<br>31 Jan<br>2005<br>31 Jan<br>2005<br>9 Jan<br>2005<br>c      | clay<br>Ioam          | 14<br>27<br>44<br>50<br>96  | 2.1<br>1.7<br>0.49<br>0.67<br>0.44         | THR-<br>0547<br>afj<br>whole<br>fruit<br>without<br>stems   |
| Trial 4700<br>Toolamba,<br>Victoria,<br>Australia<br>2004–2005<br>(Table<br>grape:<br>Crimson<br>Seedless) | 200<br>SC | 2      | 16-21               | ns      | 2×<br>25   | Foliar<br>spray;<br>29 Mar<br>2005;<br>13 Mar<br>2005;<br>28 Feb<br>2005;<br>14 Feb<br>2005;<br>24 Dec<br>2004;<br>d | sandy<br>clay<br>loam | 13<br>29<br>42<br>56<br>109 | 1.5<br>1.5<br>1.6<br>0.81<br>0.15          | THR-<br>0547<br>a fj<br>whole<br>fruit<br>without<br>stems  |
| Trial 4700<br>Toolamba,<br>Victoria,<br>Australia<br>2004–2005<br>(Table<br>grape:<br>Crimson<br>Seedless) | 200<br>SC | 2      | 16-21               | ns      | 2×<br>50   | Foliar<br>spray;<br>29 Mar<br>2005;<br>13 Mar<br>2005;<br>28 Feb<br>2005;<br>14 Feb<br>2005;<br>24 Dec               | sandy<br>clay<br>loam | 13<br>29<br>42<br>56<br>109 | 2.9<br>3.3<br>3.4<br>0.80<br>0.12          | THR-<br>0547<br>afj<br>whole<br>fruit<br>without<br>stems   |

| Trial,                                                                                                        | Form                     | Ν | Inter      | g ai/ha   | g        | method,                                                   | soil type     | DAT | parent, | referenc                                                           |
|---------------------------------------------------------------------------------------------------------------|--------------------------|---|------------|-----------|----------|-----------------------------------------------------------|---------------|-----|---------|--------------------------------------------------------------------|
| Location<br>Country,                                                                                          |                          | 0 | val<br>(d) |           | ai/hL    | timing                                                    |               |     | mg/kg   | e                                                                  |
| year                                                                                                          |                          |   | (u)        |           |          |                                                           |               |     |         |                                                                    |
| (Variety)                                                                                                     |                          |   |            |           |          |                                                           |               |     |         |                                                                    |
|                                                                                                               |                          |   |            |           |          | 2004;<br>d                                                |               |     |         |                                                                    |
| Trial 5733,<br>Lake Boga,<br>Victoria,<br>Australia,<br>2005–2006<br>(Table<br>grape: Red                     | 500<br>WG                | 1 | na         | ns        | 15       | Foliar<br>spray;<br>9 Nov<br>2005;<br>pre-<br>flowering   | sandy<br>loam | 132 | < 0.02  | THR-<br>0548<br>whole<br>fruit<br>without<br>stems                 |
| globe)<br>Trial 5733,<br>Lake Boga,<br>Victoria,<br>Australia,<br>2005–2006<br>(Table<br>grape: Red<br>globe) | 500<br>WG+<br>AGR<br>AL  | 1 | na         | ns        | 15       | Foliar<br>spray;<br>9 Nov<br>2005;<br>pre-<br>flowering   | sandy<br>loam | 132 | < 0.02  | THR-<br>0548<br>g<br>whole<br>fruit<br>without<br>stems            |
| Trial 5733,<br>Lake Boga,<br>Victoria,<br>Australia,<br>2005–2006<br>(Table<br>grape: Red<br>globe)           | 500<br>WG                | 2 | 21         | ns        | 2×<br>15 | Foliar<br>spray,<br>30 Nov<br>2005,<br>post-<br>flowering | sandy<br>loam | 111 | < 0.02  | THR-<br>0548<br>whole<br>fruit<br>without<br>stems                 |
| Trial 5733,<br>Lake Boga,<br>Victoria,<br>Australia,<br>2005–2006<br>(Table<br>grape: Red<br>globe)           | 500<br>WG +<br>AGR<br>AL | 2 | 21         | ns        | 2×<br>15 | Foliar<br>spray,<br>30 Nov<br>2005,<br>post-<br>flowering | sandy<br>loam | 111 | < 0.02  | THR-<br>0548<br>g<br>whole<br>fruit<br>without<br>stems            |
| Trial 6862<br>Tooleybuc,<br>New South<br>Wales,<br>Australia,<br>2007<br>(Table<br>grape:<br>Calmeria)        | 500<br>WG +<br>MAX<br>X  | 2 | 13         | 2×<br>200 | 2×<br>20 | Foliar<br>spray<br>7 Feb;<br>berries<br>10–<br>15 mm      | sandy<br>loam | 57  | 0.12    | THR-<br>0550<br>h<br>whole<br>fruit<br>without<br>stems            |
| Trial 6863,<br>Nashdale,<br>NSW,<br>Australia<br>2007<br>(Table<br>grape:<br>Muscat)                          | 500<br>WG +<br>MAX<br>X  | 2 | 14         | 2×<br>200 | 2×<br>20 | Foliar<br>spray;<br>1 Feb;<br>bunch<br>closure            | clay<br>loam  | 42  | 0.17    | THR-<br>0550<br><sup>h</sup><br>whole<br>fruit<br>without<br>stems |
| Trial 6864<br>Paringi,<br>NSW,<br>Australia<br>2007,<br>(Table<br>grape:<br>Crimson<br>Seedless)              | 500<br>WG +<br>MAX<br>X  | 2 | 14         | 2×<br>200 | 2×<br>20 | Foliar<br>spray;<br>25 Jan;<br>90% full<br>of colour      | sandy<br>loam | 41  | 0.06    | THR-<br>0550<br><sup>h</sup><br>whole<br>fruit<br>without<br>stems |

| Trial,                    | Form       | Ν            | Inter | g ai/ha    | g        | method,                 | soil type | DAT  | parent, |       | referenc         |
|---------------------------|------------|--------------|-------|------------|----------|-------------------------|-----------|------|---------|-------|------------------|
| Location                  | 1 01111    | 0            | val   | 5 ui/iiu   | ai/hL    | timing                  | son type  | Dill | mg/kg   |       | e                |
| Country,                  |            | -            | (d)   |            |          |                         |           |      | 00      |       | -                |
| year                      |            |              | . ,   |            |          |                         |           |      |         |       |                  |
| (Variety)                 |            |              |       |            |          |                         |           |      |         |       |                  |
| Trial 6865,               | 500        | 2            | 14    | $2\times$  | 2×       | Foliar                  | clay      | 56   | 0.03    |       | THR-             |
| Mildura,                  | WG +       |              |       | 200        | 20       | spray;                  | loam      |      |         |       | 0550;            |
| NSW,                      | MAX        |              |       |            |          | 8 Feb;                  |           |      |         |       |                  |
| Australia<br>2007         | Х          |              |       |            |          | pre-                    |           |      |         |       | whole            |
| (Table                    |            |              |       |            |          | veraison<br>stage       |           |      |         |       | fruit<br>without |
| grape:                    |            |              |       |            |          | stage                   |           |      |         |       | stems            |
| Calmeria)                 |            |              |       |            |          |                         |           |      |         |       | Steriis          |
| Trial 6866                | 500        | 2            | 14    | 2×         | 2×       | Foliar                  | sand      | 42   | 0.82    |       | THR-             |
| Beri, SA,                 | WG         |              |       | 200        | 20       | spray;                  |           |      |         |       | 0550             |
| Australia,                |            |              |       |            |          | 23 Jan;                 |           |      |         |       | whole            |
| 2007                      |            |              |       |            |          | bunch                   |           |      |         |       | fruit            |
| (Table                    |            |              |       |            |          | closure                 |           |      |         |       | without          |
| grape:                    |            |              |       |            |          | stage                   |           |      |         |       | stems            |
| Thompson<br>Seedless)     |            |              |       |            |          |                         |           |      |         |       |                  |
| Trial 6866                | 500        | 2            | 14    | 2×         | 2×       | Foliar                  | sand      | 42   | 2.3     |       | THR-             |
| Beri, SA,                 | WG         | <sup>-</sup> |       | 400        | 40       | spray;                  | 54114     |      |         |       | 0550             |
| Australia,                |            |              |       |            |          | 23 Jan;                 |           |      |         |       | whole            |
| 2007                      |            |              |       |            |          | bunch                   |           |      |         |       | fruit            |
| (Table                    |            |              |       |            |          | closure                 |           |      |         |       | without          |
| grape:                    |            |              |       |            |          | stage                   |           |      |         |       | stems            |
| Thompson                  |            |              |       |            |          |                         |           |      |         |       |                  |
| Seedless)<br>Trial 6866   | 500        | 2            | 14    | 2×         | 2×       | Foliar                  | sand      | 42   | 1.9     |       | THR-             |
| Beri, SA,                 | WG+        | 2            | 14    | 200        | 20       | spray;                  | Sanu      | 42   | 1.9     |       | 0550             |
| Australia,                | MAX        |              |       |            | 20       | 23 Jan;                 |           |      |         |       | h                |
| 2007                      | Х          |              |       |            |          | bunch                   |           |      |         |       | whole            |
| (Table                    |            |              |       |            |          | closure                 |           |      |         |       | fruit            |
| grape:                    |            |              |       |            |          | stage                   |           |      |         |       | without          |
| Thompson                  |            |              |       |            |          |                         |           |      |         |       | stems            |
| Seedless)<br>Trial 6866   | 500        | 2            | 14    | 2×         | 2×       | Foliar                  | <b>1</b>  | 42   | 2.4     |       | THR-             |
| Beri, SA,                 | 300<br>WG+ | 2            | 14    | 400        | 40       | spray;                  | sand      | 42   | 2.4     |       | 0550             |
| Australia,                | MAX        |              |       | 400        | 40       | 23 Jan;                 |           |      |         |       | h                |
| 2007                      | X          |              |       |            |          | bunch                   |           |      |         |       | whole            |
| (Table                    |            |              |       |            |          | closure                 |           |      |         |       | fruit            |
| grape:                    |            |              |       |            |          | stage                   |           |      |         |       | without          |
| Thompson                  |            |              |       |            |          |                         |           |      |         |       | stems            |
| Seedless)                 | 500        | _            | 1.4   | 110        | 24       | <b>P</b> 1              | 0 1       | 0    | 0.0(0   | 0.000 | TID              |
| TCI-03-076-<br>01, Wayne, | 500<br>WG  | 2            | 14    | 112<br>113 | 24<br>24 | Foliar                  | Sand      | 0    | 0.069   | 0.098 | THR-<br>0068     |
| New York,                 | 0.0        |              |       | 115        | 24       | spray,<br>18 Sept.,     |           |      |         |       | whole            |
| USA, 2003                 |            |              |       |            |          | ripe fruit              |           |      |         |       | fruit            |
| (Table                    |            |              |       |            |          | -r - mare               |           |      |         |       | with             |
| grape:                    |            |              |       |            |          |                         |           |      |         |       | stems            |
| Elvira)                   |            |              |       |            |          |                         |           |      |         |       |                  |
| TCI-03-076-               | 500        | 2            | 13    | 111        | 12       | Foliar                  | Silt      | 0    | 0.13    | 0.10  | THR-             |
| 02, Yates,<br>New Verk    | WG         |              |       | 110        | 12       | spray,                  | loam      |      |         |       | 0068             |
| New York,<br>USA, 2003    |            |              |       |            |          | 18 Sept.,<br>ripe fruit |           |      |         |       | whole<br>fruit   |
| (Table                    |            |              |       |            |          | Tipe fruit              |           |      |         |       | with             |
| grape:                    |            |              |       |            |          |                         |           |      |         |       | stems            |
| Concord)                  |            | L            |       |            |          |                         |           |      |         |       |                  |
| TCI-03-076-               | 500        | 2            | 14    | 112        | 7.9      | Foliar                  | Loamy     | 0    | 0.072   | 0.074 | THR-             |
| 03, Madera,               | WG         |              |       | 112        | 7.9      | spray,                  | sand      |      |         |       | 0068             |
| California,               |            |              |       |            |          | 8 Aug.,                 |           |      |         |       | whole            |
| USA, 2003                 |            |              |       |            |          | mature                  |           |      |         |       | fruit            |
| (Table grape:             |            |              |       |            |          | grapes                  |           |      |         |       | with<br>stems    |
| Thompson                  |            |              |       |            |          |                         |           |      |         |       | b                |
|                           | 1          |              | 1     | 1          | 1        | 1                       |           | 1    | 1       | 1     | []               |

| Trial,                   | Form  | Ν | Inter | g ai/ha  | a          | method,               | soil type | DAT    | noront           |       | referenc       |
|--------------------------|-------|---|-------|----------|------------|-----------------------|-----------|--------|------------------|-------|----------------|
| Location                 | FOIII | 0 | val   | g al/lla | g<br>ai/hL | timing                | son type  | DAT    | parent,<br>mg/kg |       | e              |
| Country,                 |       | 0 | (d)   |          | al/IIL     | unning                |           |        | mg/kg            |       | e              |
|                          |       |   | (u)   |          |            |                       |           |        |                  |       |                |
| year<br>(Variety)        |       |   |       |          |            |                       |           |        |                  |       |                |
|                          |       |   |       |          |            |                       |           |        |                  |       |                |
| seedless)                |       |   |       |          |            |                       |           |        |                  |       |                |
|                          |       |   |       |          |            |                       |           |        |                  |       |                |
| TCI-03-076-              | 500   | 2 | 14    | 114      | 21         | Foliar                | Sandy     | 0      | 0.28             | 0.28  | THR-           |
| 04,                      | WG    |   |       | 110      | 21         | spray,                | loam      |        |                  |       | 0068           |
| Stanislaus,              |       |   |       |          |            | 25 Sept.,             |           |        |                  |       | whole          |
| California,              |       |   |       |          |            | mature                |           |        |                  |       | fruit          |
| USA, 2003                |       |   |       |          |            | grapes                |           |        |                  |       | with           |
| (Table                   |       |   |       |          |            |                       |           |        |                  |       | stems          |
| grape:                   |       |   |       |          |            |                       |           |        |                  |       |                |
| Thompson                 |       |   |       |          |            |                       |           |        |                  |       |                |
| seedless)                | 500   | - | 14    | 110      | 17         | <b>F</b> 1            | Ŧ         | 0      | 0.040            | 0.040 | TUD            |
| TCI-03-076-              | 500   | 2 | 14    | 110      | 17         | Foliar                | Loam      | 0      | 0.040            | 0.042 | THR-           |
| 05, Tulare,              | WG    |   |       | 113      | 17         | spray,                |           |        |                  |       | 0068           |
| California,<br>USA, 2003 |       |   |       |          |            | 8 Oct.,<br>mature     |           |        |                  |       | whole<br>fruit |
| (Table                   |       |   |       |          |            |                       |           |        |                  |       | with           |
| grape:                   |       |   |       |          |            | grapes                |           |        |                  |       | stems          |
| Emperor)                 |       |   |       |          |            |                       |           |        |                  |       | b              |
| TCI-03-076-              | 500   | 2 | 14    | 110      | 17         | Foliar                | Loam      | 0      | 0.053            | 0.050 | THR-           |
| 06, Tulare,              | WG    | 1 |       | 111      | 17         | spray,                | Louin     | Ŭ      | 0.000            | 0.000 | 0068           |
| California,              |       |   |       |          | 17         | 10 Sept.,             |           |        |                  |       | whole          |
| USA, 2003                |       |   |       |          |            | mature                |           |        |                  |       | fruit          |
| (Table                   |       |   |       |          |            | grapes                |           |        |                  |       | with           |
| grape:                   |       |   |       |          |            | 0 1                   |           |        |                  |       | stems          |
| Autumn                   |       |   |       |          |            |                       |           |        |                  |       |                |
| Royal)                   |       |   |       |          |            |                       |           |        |                  |       |                |
| TCI-03-076-              | 500   | 2 | 14    | 111      | 6.2        | Foliar                | Loam      | 0      | 0.080            | 0.11  | THR-           |
| 07, Tulare,              | WG    |   |       | 111      | 6.2        | spray,                |           |        |                  |       | 0068           |
| California,              |       |   |       |          |            | 18 Sept.,             |           |        |                  |       | whole          |
| USA, 2003                |       |   |       |          |            | ripening/             |           |        |                  |       | fruit          |
| (Table                   |       |   |       |          |            | maturity              |           |        |                  |       | with           |
| grape: Ruby              |       |   |       |          |            |                       |           |        |                  |       | stems<br>b     |
| Red)<br>TCI-03-076-      | 500   | 2 | 14    | 111      | 6.1        | Foliar                | Loam      | 0      | 0.14             | 0.14  | THR-           |
| 08, Tulare,              | WG    | 2 | 14    | 111      | 6.1<br>6.1 |                       | Loam      | 0<br>7 | 0.14             | 0.14  | 0068           |
| California,              | wu    |   |       | 112      | 0.1        | spray,<br>3 Oct.,     |           | 14     | 0.092            | 0.13  | whole          |
| USA, 2003                |       |   |       |          |            | maturity              |           | 21     | 0.066            | 0.056 | fruit          |
| (Table                   |       |   |       |          |            | maturity              |           | 21     | 0.000            | 0.050 | with           |
| grape:                   |       |   |       |          |            |                       |           |        |                  |       | stems          |
| Crimson)                 |       |   |       |          |            |                       |           |        |                  |       | b              |
| TCI-03-076-              | 500   | 2 | 14    | 110      | 17         | Foliar                | Clay      | 0      | 0.073            | 0.090 | THR-           |
| 09, Kern,                | WG    |   |       | 110      | 17         | spray,                | Í         |        |                  |       | 0068           |
| California,              |       |   |       |          |            | 29 Aug.,              |           |        |                  |       | whole          |
| USA, 2003                |       |   |       |          |            | mature                |           |        |                  |       | fruit          |
| (Table                   |       |   |       |          |            | grape                 |           |        |                  |       | with           |
| grape: Ruby              |       |   |       |          |            |                       |           |        |                  |       | stems          |
| seedless)                |       |   |       |          | 10         |                       | a .       |        | 0.15             | 0.15  |                |
| TCI-03-076-              | 500   | 2 | 14    | 111      | 10         | Foliar                | Sandy     | 0      | 0.12             | 0.13  | THR-           |
| 10, Kern,                | WG    |   |       | 116      | 7.5        | spray,                | loam      |        |                  |       | 0068           |
| California,              |       |   |       |          |            | 20 Aug.,              |           |        |                  |       | whole<br>fruit |
| USA, 2003<br>(Table      |       |   |       |          |            | ripening/<br>maturity |           |        |                  |       | with           |
| grape:                   |       |   |       |          |            | maturity              |           |        |                  |       | stems          |
| Thompson)                |       |   |       |          |            |                       |           |        |                  |       | 3001115        |
| TCI-03-076-              | 500   | 2 | 14    | 545      | 51         | Foliar                | Sandy     | 0      | 0.74             | 0.50  | THR-           |
| 10, Kern,                | WG    | 1 |       | 567      | 37         | spray,                | loam      | Ŭ      | 0.74             | 0.50  | 0068           |
| California,              |       |   |       | 237      | 21         | 20 Aug.,              |           |        |                  |       | whole          |
| USA, 2003                |       |   |       |          |            | ripening/             |           |        |                  |       | fruit          |
| (Table                   |       |   |       |          |            | maturity              |           |        |                  |       | with           |
| grape:                   |       |   |       |          |            |                       |           |        |                  |       | stems          |
|                          |       |   |       |          |            |                       |           |        |                  |       |                |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)<br>Thompson)                                | Form      | N<br>o | Inter<br>val<br>(d) | g ai/ha    | g<br>ai/hL | method,<br>timing                                     | soil type     | DAT | parent,<br>mg/kg |      | e<br>e                                          |
|-------------------------------------------------------------------------------------------------|-----------|--------|---------------------|------------|------------|-------------------------------------------------------|---------------|-----|------------------|------|-------------------------------------------------|
| TCI-03-076-<br>11, Grant,<br>Washington,<br>USA, 2003<br>(Wine grape:<br>Cabernet<br>Sauvignon) | 500<br>WG | 2      | 14                  | 111<br>111 | 20<br>20   | Foliar<br>spray,<br>8 Oct.,<br>commerci<br>al harvest | Sandy<br>loam | 0   | 0.22             | 0.41 | THR-<br>0068<br>whole<br>fruit<br>with<br>stems |
| TCI-03-076-<br>12, Grant,<br>Washington,<br>USA, 2003<br>(Wine grape:<br>White<br>Riesling)     | 500<br>WG | 2      | 14                  | 111<br>112 | 7.9<br>7.9 | Foliar<br>spray,<br>16 Oct.,<br>mature                | Sandy<br>loam | 0   | 0.21             | 0.33 | THR-<br>0068<br>whole<br>fruit<br>with<br>stems |

ns = not stated

<sup>a</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>b</sup> Some samples were stored above –10 °C. Maximum storage temperatures reached –9.4 °C (39 days for TCI-03-076-03), –0.6 °C (7 days for TCI-03-076-05, 27 days for TCI-03-076-07, and 48 days for TCI-03-076-08).

<sup>c</sup> Growth stages at last applications were Bunch closure (5 Jan), Berries hard green (31 Jan.), Veraison (17 Feb.), and 7-14 days before harvest (8 March).

<sup>d</sup> Growth stages at last application were Berries 8–10 mm (24 Dec.), Veraison (14 Feb.), Berries coloring (28 Feb.), Berries fully colored (14 march), 14 days before harvest (29 March).

<sup>e</sup> Trials conducted at 5× exaggerated rate for processing purposes.

<sup>f</sup> Harvested fruit in poor condition (Botrytis rot in test area).

<sup>g</sup> AGRAL at 0.05% v/v was added

<sup>h</sup> MAXX at 50 ml/100 L was added, wetting agent, organosilicone surfactant

<sup>1</sup> Samples from this trial were used for processing purposes.

<sup>j</sup> Number of bunches was below the minimum number of 12 required for sampling

[Carringer, 2004a, THR-0068]. No unusual weather conditions. Plot size 54–201 m2 and a minimum of 12 vines. Foliar application were made using airblast sprayers, spray volume 469–1842 L/ha. Fruits (12 bunches) were sampled at normal harvest (BBCH not stated in the report), except in decline trials where samples were harvested 7 days before until 21 days after normal harvet. Samples were stored at -10 °C for 16–81 days, unless specified otherwise in the table. Samples (whole fruit with stems [Gaston, 2010d]) were analysed for parent and TMG using HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (78–93%). TMG was not found in any of the samples (< 0.02 mg/kg).

[Mitchell, 2006a, THR-0547]. No unusual weather conditions. Plot size 6–9 vines/plot. Foliar sprayer with motorized pump, hose and hand gun, spraying to the point of run-off (500–1000 L/ha). Fruits (> 2 kg, 6 bunches) were sampled at normal harvest (BBCH not stated). Samples were stored frozen at -15 °C [Gaston, 2010d] for 108–168 days. Samples were analysed using modification C of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (78–98%).

[Mitchell, 2006b, THR-0548]. No unusual weather conditions. Plot size 2 vine panels/plot. Foliar sprayer with motorized pump, hose and hand gun, spraying to the point of run-off (500–1000 L/ha). Fruits (> 2 kg, 12 part bunches) were sampled at normal harvest (BBCH not stated). Samples were stored frozen at -15 °C [Gaston, 2010d] for 194–224 days. Samples were analysed using modification D of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (71%–73%).

[Frost, 2008, THR-0550]. No unusual weather conditions. Plot size 3–4 vines/panel (35–102 m2). Handgun connected to a hose and motor driven high-pressure pump to the point of run-off (1000 L/ha). Fruits (12 bunches, > 2kg) were sampled at normal harvest (ripe fruit; BBCH not stated). Samples were stored at -10 °C for a maximum of 41–176 days. Samples were analysed using modification E of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (70%–89%).

| Trial,<br>Location,<br>Country, year<br>(Variety)                                                          | Form      | No | Inter<br>val<br>(d) | g ai/ha          | g<br>ai/hL | method,<br>timing                                       | soil type             | DAT | parent,<br>mg/kg |        | reference                                                     |
|------------------------------------------------------------------------------------------------------------|-----------|----|---------------------|------------------|------------|---------------------------------------------------------|-----------------------|-----|------------------|--------|---------------------------------------------------------------|
| Trial 4699<br>Yarra Valley,<br>Victoria,<br>Australia,<br>2005<br>(Wine grape:<br>Chardonnay)              | 200<br>SC | 1  | nr                  | 300              | nr         | Soil<br>drench,<br>9 Jan.,<br>bunch<br>closure          | Clay<br>loam          | 96  | < 0.02           |        | THR-0547<br><sup>c d</sup><br>whole fruit<br>without<br>stems |
| Trial 4699,<br>Yarra Valley,<br>Victoria,<br>Australia,<br>2005<br>(Wine grape:<br>Chardonnay)             | 200<br>SC | 1  | nr                  | 600              | nr         | Soil<br>drench,<br>9 Jan.,<br>bunch<br>closure          | Clay<br>loam          | 96  | < 0.02           |        | THR-0547<br>e d<br>whole fruit<br>without<br>stems            |
| Trial 4700,<br>Toolamba,<br>Victoria,<br>Australia,<br>2004–2005,<br>(Table grape:<br>Crimson<br>seedless) | 200<br>SC | 1  | nr                  | 300              | nr         | Soil<br>drench,<br>10 Dec<br>2004,<br>post<br>flowering | Sandy<br>clay<br>loam | 123 | < 0.02           |        | THR-0547<br>whole fruit<br>without<br>stems                   |
| Trial 4700,<br>Toolamba,<br>Victoria,<br>Australia,<br>2004–2005<br>(Table grape:<br>Crimson<br>seedless)  | 200<br>SC | 1  | nr                  | 600              | nr         | Soil<br>drench,<br>10 Dec<br>2004,<br>Post<br>flowering | Sandy<br>clay<br>loam | 123 | < 0.02           |        | THR-0547<br>whole fruit<br>without<br>stems                   |
| Trial 5733,<br>Lake Boga,<br>Victoria,<br>Australia,<br>2005–2006<br>(Table grape:<br>Red Globe)           | 500<br>WG | 1  | nr                  | 300              | nr         | Soil<br>drench,<br>9 Nov<br>2005,<br>Pre-<br>flowering  | Sandy<br>loam         | 132 | < 0.02           |        | THR-0548<br>whole fruit<br>without<br>stems                   |
| Balhannah,<br>South<br>Australia<br>2005–2006<br>(Wine grape:<br>Riesling)                                 | 500<br>WG | 1  | nr                  | 0.3 g<br>ai/vine | nr         | Soil<br>drench,<br>21 Nov<br>2005.,<br>BBCH ns          | sandy<br>loam         | 122 | < 0.02           |        | THR-0549<br>whole fruit<br>without<br>stems                   |
| TCI-03-076-<br>03, Madera,<br>California,<br>USA, 2003<br>(Table grapes:<br>Thompson<br>seedless)          | 160<br>SG | 1  | nr                  | 222              | nr         | Dripping,<br>9 July,<br>5–7 mm<br>berries               | Loamy<br>sand         | 30  | < 0.02           | < 0.02 | THR-0068<br>whole fruit<br>with stems<br>a                    |
| TCI-03-076-<br>04, Stanislaus,<br>California,<br>USA, 2003<br>(Table grapes;<br>Thompson<br>seedless)      | 160<br>SG | 1  | nr                  | 223              | nr         | Dripping,<br>26 Aug.,<br>mature<br>grapes               | Sandy<br>loam         | 30  | < 0.02           | < 0.02 | THR-0068<br>whole fruit<br>with stems                         |
| TCI-03-076-<br>05, Tulare,                                                                                 | 160<br>SG | 1  | nr                  | 223              | nr         | Dripping,<br>8 Sept.,                                   | Loam                  | 30  | < 0.02           | < 0.02 | THR-0068<br>whole fruit                                       |

Table 71 Residues of clothianidin in grapes (whole fruit with or without stems) after soil treatment in the field

| Trial,<br>Location,<br>Country, year                                                             | Form      | No | Inter<br>val<br>(d) | g ai/ha    | g<br>ai/hL | method,<br>timing                                | soil type     | DAT                  | parent,<br>mg/kg                               |                                                | reference                                  |
|--------------------------------------------------------------------------------------------------|-----------|----|---------------------|------------|------------|--------------------------------------------------|---------------|----------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|
| (Variety)<br>California,<br>USA, 2003<br>(Table grapes;<br>Emperor)                              |           |    |                     |            |            | early<br>coloring                                |               |                      |                                                |                                                | with stems<br><sup>a</sup>                 |
| TCI-03-076-<br>06, Tulare,<br>California,<br>USA, 2003<br>(Table grapes:<br>Autumn<br>Royal)     | 160<br>SG | 1  | nr                  | 221        | nr         | Dripping,<br>11 Aug.,<br>early<br>coloring       | Loam          | 30                   | < 0.02                                         | < 0.02                                         | THR-0068<br>whole fruit<br>with stems      |
| TCI-03-076-<br>07, Tulare,<br>California,<br>USA, 2003<br>(Table grapes:<br>Ruby Red)            | 160<br>SG | 1  | nr                  | 222        | nr         | Dripping,<br>19 Aug.,<br>ripening                | Loam          | 30                   | < 0.02                                         | < 0.02                                         | THR-0068<br>whole fruit<br>with stems<br>a |
| TCI-03-076-<br>08, Tulare,<br>California,<br>USA, 2003<br>(Table grapes:<br>Crimson)             | 160<br>SG | 1  | nr                  | 222        | nr         | Dripping,<br>3 Sept.,<br>ripening                | Loam          | 23<br>30<br>37<br>44 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | THR-0068<br>whole fruit<br>with stems<br>a |
| TCI-03-076-<br>09, Kern,<br>California,<br>USA, 2003<br>(Table grapes:<br>Ruby seedless)         | 160<br>SG | 1  | nr                  | 222        | nr         | Dripping,<br>30 July,<br>early fruit<br>coloring | Clay          | 30                   | < 0.02                                         | < 0.02                                         | THR-0068<br>whole fruit<br>with stems      |
| TCI-03-076-<br>09, Kern,<br>California,<br>USA, 2003<br>(Table grapes:<br>Ruby seedless)         | 500<br>WG | 2  | 90                  | 111<br>111 | nr         | Dripping,<br>30 July,<br>early<br>coloring       | Clay          | 30                   | < 0.02                                         | < 0.02                                         | THR-0068<br>whole fruit<br>with stems      |
| TCI-03-076-<br>10, Kern,<br>California,<br>USA, 2003<br>(Table grapes:<br>Thompson)              | 160<br>SG | 1  | nr                  | 222        | nr         | Dripping,<br>21 July,<br>berry<br>sizing         | Sandy<br>loam | 30                   | < 0.02                                         | < 0.02                                         | THR-0068<br>whole fruit<br>with stems      |
| TCI-03-076-<br>10, Kern,<br>California,<br>USA, 2003<br>(Table grapes:<br>Thompson)              | 160<br>SG | 1  | nr                  | 1111       | nr         | Dripping,<br>21 July,<br>berry<br>sizing         | Sandy<br>loam | 30                   | < 0.02                                         | < 0.02                                         | THR-0068<br>whole fruit<br>with stems      |
| TCI-03-076-<br>11, Grant,<br>Washington,<br>USA, 2003<br>(Wine grapes:<br>Cabernet<br>Sauvignon) | 160<br>SG | 1  | nr                  | 222        | nr         | Dripping,<br>8 Sept,<br>30 days<br>PHI           | Sandy<br>loam | 30                   | < 0.02                                         | < 0.02                                         | THR-0068<br>whole fruit<br>with stems      |
| TCI-03-076-<br>12, Grant,<br>Washington,<br>USA, 2003<br>(Wine grapes:<br>White<br>Riesling)     | 160<br>SG | 1  | nr                  | 222        | nr         | Dripping,<br>16 Sept.,<br>75%<br>mature          | Sandy<br>loam | 30                   | < 0.02                                         | < 0.02                                         | THR-0068<br>whole fruit<br>with stems      |

| Trial,<br>Location,<br>Country, year<br>(Variety)                                            | Form      | No | Inter<br>val<br>(d) | g ai/ha    | g<br>ai/hL | method,<br>timing                       | soil type     | DAT | parent,<br>mg/kg |        | reference                             |
|----------------------------------------------------------------------------------------------|-----------|----|---------------------|------------|------------|-----------------------------------------|---------------|-----|------------------|--------|---------------------------------------|
| TCI-03-076-<br>12, Grant,<br>Washington,<br>USA, 2003<br>(Wine grapes:<br>White<br>Riesling) | 500<br>WG | 2  | 102                 | 111<br>111 | nr         | Dripping,<br>16 Sept.,<br>75%<br>mature | Sandy<br>loam | 30  | < 0.02           | < 0.02 | THR-0068<br>whole fruit<br>with stems |

nr = not relevant

ns = not stated

<sup>a</sup> Some samples were stored above -10 °C. Maximum storage temperatures reached -9.4 °C (39 days for TCI-03-076-03), -0.6 °C (7 days for TCI-03-076-05, 27 days for TCI-03-076-07, and 48 days for TCI-03-076-08).

<sup>b</sup> Trials conducted at 5× exaggerated rate for processing purposes.

<sup>c</sup> Harvested fruit in poor condition (Botrytis rot in test area).

<sup>d</sup> Number of bunches was below the minimum number of 12 required for sampling

[Carringer, 2004a, THR-0068]. No unusual weather conditions. Plot size 54-201 m2 and a minimum of 12 vines. Drip applications by commercial irrigation systems. Fruits (12 bunches) were sampled at normal harvest (BBCH not stated in the report), except in decline trials where samples were harvested 7 days before until 21 days after normal harvest. Samples were stored at -10 °C for 16-81 days, unless specified otherwise in the table. Samples (whole fruit with stems [Gaston, 2010d]) were analysed for parent and TMG using HPLC-MS-MS Method 164. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (78–93%). TMG was not found in any of the samples (< 0.02 mg/kg).

[Mitchell, 2006a, THR-0547]. No unusual weather conditions. Plot size 6–9 vines/plot. Soil application by hand lance and gas operated boom sprayer. Fruits (> 2 kg, 6 bunches) were sampled at normal harvest (BBCH not stated). Samples were stored frozen at -15 °C [Gaston, 2010d] for 108–168 days. Samples were analysed using modification C of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (78%–98%).

[Mitchell, 2006b, THR-0548]. No unusual weather conditions. Plot size 2 vine panels/plot. Soil application by hand lance and gas operated boom sprayer Fruits (> 2 kg, 12 part bunches) were sampled at normal harvest (BBCH not stated). Samples were stored at -15 °C [Gaston, 2010d] for 194–224 days. Samples were analysed using a modification D of HPLC-MS-MS method 00552. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (71%–73%).

[Burn, 2006a, THR-0549]. No unusual weather conditions. Plot size was 1 panel (4 vines). Soil spray. Fruits (12 bunches or at least 2 kg [Gaston, 2010d]) were sampled at harvest (ripe fruit; BBCH not stated). Samples were stored at -15 °C for a maximum of 202 days. Samples were analysed using HPLC-MS-MS method ALM-051 (= modification of method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (73–88%)

| Trial,<br>Location<br>Country,<br>year<br>(Variety)      | Form      | No | Inter<br>val<br>(d) | g ai/ha   | g<br>ai/hL | method,<br>timing                                                     | soil<br>type | DAT                 | parent,<br>mg/kg             |                              | reference                              |
|----------------------------------------------------------|-----------|----|---------------------|-----------|------------|-----------------------------------------------------------------------|--------------|---------------------|------------------------------|------------------------------|----------------------------------------|
| Yamanashi<br>Japan, 2006<br>(Table<br>grapes:<br>Kyohou) | 160<br>SP | 3  | 7;<br>7–8           | 3×<br>240 | 3× 8.0     | Foliar<br>spray,<br>6 Sept.;<br>30 Aug.;<br>16 Aug.;<br>18 July,<br>b | Clay<br>loam | 1<br>14<br>28<br>56 | 0.26<br>0.44<br>0.36<br>0.15 | 0.30<br>0.66<br>0.27<br>0.20 | THR-<br>0368/<br>THR-<br>0369<br>a c d |
| Kyoto<br>Japan, 2006<br>(Table<br>grapes:<br>Delaware)   | 160<br>SP | 3  | 7;<br>7             | 3×<br>320 | 3× 8.0     | Foliar<br>spray,<br>7 Aug.;<br>26 July;<br>12 July;<br>14 June,<br>b  | Loam         | 1<br>14<br>28<br>56 | 1.0<br>0.83<br>0.80<br>0.20  | 0.92<br>0.94<br>0.90<br>0.18 | THR-<br>0368/<br>THR-<br>0369<br>a c d |

| Table 72 Residues | of clothianidin in gra | apes (whole fruit | excluding stems) | after indoor | foliar treatment |
|-------------------|------------------------|-------------------|------------------|--------------|------------------|
|                   |                        |                   |                  |              |                  |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                          | Form      | No | Inter<br>val<br>(d) | g ai/ha   | g<br>ai/hL | method,<br>timing                                                          | soil<br>type | DAT                  | parent,<br>mg/kg              |                               | reference                              |
|------------------------------------------------------------------------------|-----------|----|---------------------|-----------|------------|----------------------------------------------------------------------------|--------------|----------------------|-------------------------------|-------------------------------|----------------------------------------|
| Kanazawa-<br>shi,<br>Ishikawa<br>Japan, 1998<br>(Table<br>grapes:<br>Kyohou) | 160<br>SP | 3  | 7;<br>7             | 3×<br>240 | 3× 8.0     | Foliar<br>spray,<br>23 July;<br>9 July;<br>25 June;<br>11 June,<br>BBCH ns | Sand         | 14<br>28<br>42<br>56 | 0.51<br>0.37<br>0.38<br>0.085 | 0.40<br>0.47<br>0.27<br>0.042 | THR-<br>0122/<br>THR-<br>0127<br>a c d |
| Hibikino-<br>shi, Osaka<br>Japan, 1998<br>(Table<br>grapes:<br>Delaware)     | 160<br>SP | 3  | 7;<br>7             | 3×<br>240 | 3× 8.0     | Foliar<br>spray,<br>4 May;<br>20 Apr;<br>6 Apr;<br>23 Mar;<br>BBCH ns      | Clay<br>loam | 14<br>28<br>42<br>56 | 1.2<br>0.91<br>1.2<br>0.27    | 1.2<br>1.4<br>1.4<br>0.38     | THR-<br>0122/<br>THR-<br>0127<br>a c   |

ns = not stated

<sup>a</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>b</sup>.Last application at harvest, coloring and initial stage of coloring, respectively.

<sup>c</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>d</sup> Number of bunches was below the minimum number of 12 required for sampling

[Odanaka, 2007, THR-0368; Nagasawa and Wada, 2007, THR-0369]. No unusual weather conditions. Plot size 2–16 m2 (1 vine). Knapsack (power) sprayer, spray volume 3000–4000 L/ha. Replicate field samples (> 1 kg, 5 bunches) were sampled at normal harvest (BBCH not stated). Stems (i.e. peduncles in report [Gaston, 2010d]) were removed from the grape bunches. Samples were either analysed within 24 hrs or stored at -20 °C for 20–56 days, respectively. Samples were analysed using the Japanese HPLC-UV method for fruits (THR-0368) and modification A of this method (THR-0369). Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (96%–113% and 77%–99%, respectively).

[Komatsu and Yabuzaki, 2000f, THR-0122; Ohta, 2000b, THR-0127]. No unusual weather conditions. Plot size 13-24 m2 (1–2 vines). Knapsack (power) sprayer, spray volume 3000 L/ha. Replicate field samples (2 kg, 7–9 bunches Ishikawa, 16–22 bunches Osaka) were collected at normal harvest (BBCH not stated). Stems (i.e. scars in report [Gaston, 2010d]) were removed from grape bunches. Samples were stored at -20 °C for 468–549 days and 1–222 days, respectively. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.005 mg/kg) or for individual concurrent method recoveries (95%–97% and 96%–101%, respectively).

# Assorted tropical and sub-tropical fruits - edible peel

The Meeting received supervised residue trials on persimmon. Trials were available for foliar spray treatment in the field.

# Persimmons

Supervised residue trials on persimmon were conducted in Japan (2002) and Korea (2001). Results are shown in Table 73 (foliar spray treatment in the field).

Table 73 Residues of clothianidin in persimmon (whole fruit including peel) after foliar spray treatment in the field

| Trial,<br>Location,<br>Country, year<br>(Variety)      | Form      | N. | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                 | soil type    | DAT           | parent<br>mg/kg      | /                    | reference                     |
|--------------------------------------------------------|-----------|----|---------------------|------------|------------|---------------------------------------------------|--------------|---------------|----------------------|----------------------|-------------------------------|
| Sado-gun,<br>Niigata,<br>Japan, 2002<br>(Hiratanenashi | 160<br>SP | 3  | 5–7;<br>7–9;        | 3×<br>320  | 3× 8.0     | Foliar spray,<br>10 Oct;<br>10 Oct.;<br>26 Sept., | Clay<br>loam | 7<br>13<br>21 | 0.11<br>0.06<br>0.06 | 0.04<br>0.04<br>0.04 | THR-<br>0495/<br>THR-<br>0496 |

| Trial,<br>Location,<br>Country, year<br>(Variety)                     | Form      | N. | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                           | soil type | DAT            | parent<br>mg/kg         | ·                    | reference                                  |
|-----------------------------------------------------------------------|-----------|----|---------------------|------------|------------|-------------------------------------------------------------|-----------|----------------|-------------------------|----------------------|--------------------------------------------|
| )                                                                     |           |    |                     |            |            | maturity                                                    |           |                |                         |                      | abcfg                                      |
| Itano-gun,<br>Tokushima,<br>Japan, 2002<br>(Fuyu)                     | 160<br>SP | 3  | 7<br>7              | 3×<br>400  | 3× 8.0     | Foliar spray,<br>7 Nov.;<br>31 Oct.;<br>24 Oct.,<br>BBCH ns | Loam      | 7<br>14<br>21  | 0.14<br>0.09<br>0.09    | 0.14<br>0.10<br>0.10 | THR-<br>0495/<br>THR-<br>0496<br>a b c f g |
| Gyeongsang<br>namdo,<br>Korea, 2001<br>(Sweet<br>persimmon:<br>Booyu) | 80 SC     | 3  | 10<br>10            | 3×<br>320  | 3× 8.0     | Foliar spray,<br>22 Aug.;<br>12 Aug.;<br>2 Aug.,<br>BBCH ns | ns        | 10<br>20<br>30 | 0.047<br>0.035<br>0.010 |                      | THR –<br>0644<br>d e f                     |

<sup>a</sup> A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>b</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>c</sup> Samples were stored for 1–4 days at + 5 °C (i.e. above –10 °C).

<sup>d</sup> Reversed decline trial, different treatment days, the same harvest day

<sup>e</sup> Sample weight not stated.

<sup>f</sup> Number of trees was below the minimum number of 4 trees required for sampling

<sup>g</sup> Number of fruits per sample were below the mininum number of 12 required for sampling

[Yabuzaki and Mizukoshi, 2003b, THR-0495; Ohta, 2003f, THR-0496]. No unusual weather conditions. Plot size 1–2 trees/plot (15–100 m2), tree height about 3 m. Foliar spraying by shoulder sprayer, spray volume 4000–5000 L/ha. Replicate field samples (> 2 kg fruits, 7–8 fruits) were randomly sampled by hand at harvest (BBCH not stated). The remaining calyx (i.e. hull in report [Gaston, 2010d]) and seeds were removed before frozen storage. Samples were stored for 1–4 days at +5 °C and thereafter at -20 °C for 130–162 days and 77–108 days, respectively. Samples were analysed using modification B of the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (84%–108% and 75%–95%, respectively).

[Shim *et a*]., 2001, THR-0644]. No unusual weather conditions. Plot size 1 tree/plot [Gaston, 2010d]. Motor-driven sprayer, spray volume 4000 L/ha. Fruits (sample weight not stated, confirmed [Gaston, 2010d]) were sampled at harvest (BBCH not stated). Samples were stored for 75 days at unknown temperature (storage stability was shown under the same conditions). Samples were analysed for parent and metabolites TZNG, TZMU, MNG and TMG using a Korean HPLC-UV method. Results were not corrected for control levels (<0.004 mg/kg for parent and TZNG, <0.01 mg/kg for TZMU, MNG, TMG) or for concurrent method recoveries (80%–98% for Clothianidin and 81%–110% for the various metabolites). Residue levels of metabolites MNG and TMG were all below LOQ (<0.01 mg/kg). The residue levels of TZMU were 0.03 mg/kg both at 20 and 10 DAT, while residue levels for TZNG were 0.027 and 0.024 mg/kg at 20 and 10 DAT, respectively.

## Assorted tropical and sub-tropical fruits - inedible peel

The Meeting received supervised residue trials on bananas. Trials were available for stem spray treatments in the field as well as for stem injection in the field.

### Bananas

Supervised residue trials on bananas were conducted in Australia (2004, 2005 and 2006). Results are shown in Table 74 (stem spray treatment in the field) and Table 75 (stem injection in the field).

Table 74 Residues of clothianidin in banana (whole fruit including peel) after stem spray treatment in the field

| Trial, Location<br>Country, year<br>(Variety) | Form<br>(g ai/L) | No | Inter<br>val<br>(d) | g<br>ai/stem | g<br>ai/hL | method,<br>timing           | soil<br>type | DAT | parent,<br>mg/kg | reference    |
|-----------------------------------------------|------------------|----|---------------------|--------------|------------|-----------------------------|--------------|-----|------------------|--------------|
| Walkamin, Qld,<br>Australia,                  | 200 SC           | 1  | nr                  | 0.3          | nr         | Stem spray,<br>24 Mar 2004, | nr           | 307 | < 0.02           | THR-<br>0554 |

| Trial, Location                       | Form     | No       | Inter | a            | a          | method,          | soil | DAT | poront           | reference |
|---------------------------------------|----------|----------|-------|--------------|------------|------------------|------|-----|------------------|-----------|
| Country, year                         | (g ai/L) | INO      | val   | g<br>ai/stem | g<br>ai/hL | timing           | type | DAT | parent,<br>mg/kg | Telefence |
| (Variety)                             | (g al/L) |          | (d)   | al/stelli    | al/IIL     | unning           | type |     | iiig/ kg         |           |
| 2004–2005                             |          |          | (u)   |              |            | a                |      |     |                  |           |
| (Cavendish                            |          |          |       |              |            |                  |      |     |                  |           |
| ×                                     |          |          |       |              |            |                  |      |     |                  |           |
| Walkamin, Qld,                        | 200 SC   | 1        | nr    | 0.6          | nr         | Stem spray,      | nr   | 307 | < 0.02           | THR-      |
| Australia,                            |          |          |       |              |            | 24 Mar 2004,     |      |     |                  | 0554      |
| 2004-2005                             |          |          |       |              |            | а                |      |     |                  |           |
| (Cavendish                            |          |          |       |              |            |                  |      |     |                  |           |
| Walkamin, Qld,                        | 200 SC   | 1        | nr    | 1.2          | nr         | Stem spray,      | nr   | 307 | < 0.02           | THR-      |
| Australia,                            |          |          |       |              |            | 24 Mar 2004,     |      |     |                  | 0554      |
| 2004-2005                             |          |          |       |              |            | а                |      |     |                  |           |
| (Cavendish                            |          |          |       |              |            |                  |      |     |                  |           |
| Walkamin, Qld,                        | 500 WG   | 1        | nr    | 0.3          | nr         | Stem spray,      | nr   | 307 | < 0.02           | THR-      |
| Australia,                            |          |          |       |              |            | 24 Mar 2004,     |      |     |                  | 0554      |
| 2004-2005                             |          |          |       |              |            | а                |      |     |                  |           |
| (Cavendish)                           |          |          |       |              |            |                  |      |     |                  |           |
| Walkamin, Qld,                        | 500 WG   | 1        | nr    | 0.6          | nr         | Stem spray,      | nr   | 307 | < 0.02           | THR-      |
| Australia,                            |          |          |       |              |            | 24 Mar 2004,     |      |     |                  | 0554      |
| 2004-2005                             |          |          |       |              |            | а                |      |     |                  |           |
| (Cavendish                            |          |          |       |              |            |                  |      |     |                  |           |
| Tullera, NSW,                         | 200 SC   | 1        | nr    | 0.3          | nr         | Stem spray,      | nr   | 356 | < 0.02           | THR-      |
| Australia,                            |          |          |       |              |            | 17 Mar 2004,     |      | -   |                  | 0554      |
| 2004–2005                             |          |          |       |              |            | a                |      |     |                  |           |
| (Cavendish)                           |          |          |       |              |            |                  |      |     |                  |           |
| Tullera, NSW,                         | 200 SC   | 1        | nr    | 0.6          | nr         | Stem spray,      | nr   | 356 | < 0.02           | THR-      |
| Australia,                            | 200.00   | •        |       | 0.0          |            | 17 Mar 2004,     | m    | 404 | < 0.02           | 0554      |
| 2004-2005                             |          |          |       |              |            | a a              |      |     | 0.02             | 0001      |
| (Cavendish)                           |          |          |       |              |            |                  |      |     |                  |           |
| Tullera, NSW,                         | 200 SC   | 1        | nr    | 1.2          | nr         | Stem spray,      | nr   | 356 | < 0.02           | THR-      |
| Australia,                            | 200 50   | 1        | 111   | 1.2          |            | 17 Mar 2004,     | m    | 404 | < 0.02           | 0554      |
| 2004-2005                             |          |          |       |              |            | a                |      | 101 | 0.02             | 0551      |
| (Cavendish)                           |          |          |       |              |            |                  |      |     |                  |           |
| Tullera, NSW,                         | 500 WG   | 1        | nr    | 0.3          | nr         | Stem spray,      | nr   | 356 | < 0.02           | THR-      |
| Australia,                            | 500 WG   | 1        | ш     | 0.5          | 111        | 17 Mar 2004,     | m    | 550 | < 0.02           | 0554      |
| 2004–2005                             |          |          |       |              |            | a 17 1viai 2004, |      |     |                  | 0554      |
| (Cavendish)                           |          |          |       |              |            |                  |      |     |                  |           |
| Tullera, NSW,                         | 500 WG   | 1        |       | 0.6          | nr         | Stem spray,      |      | 356 | < 0.02           | THR-      |
| Australia,                            | 300 WG   | 1        | nr    | 0.0          | 111        | 17 Mar 2004,     | nr   | 404 | < 0.02           | 0554      |
| 2004–2005                             |          |          |       |              |            | a 17 Iviai 2004, |      | 404 | < 0.02           | 0334      |
| (Cavendish)                           |          |          |       |              |            |                  |      |     |                  |           |
| · · · · · · · · · · · · · · · · · · · | 200.50   | 1        |       | 0.0          |            | Q4               |      | 400 | < 0.02           | TUD       |
| Tallebudgera, Qld,                    | 200 SC   | 1        | nr    | 0.9          | nr         | Stem spray,      | nr   | 408 | < 0.02           | THR-      |
| Australia,                            |          |          |       |              |            | 11 May 2005,     |      |     |                  | 0555      |
| 2005–2006                             |          |          |       |              |            |                  |      |     |                  |           |
| (Cavendish)                           | 200.00   | 1        |       | 1.0          |            | Store a          | +    | 400 | < 0.02           | TID       |
| Tallebudgera, Qld,                    | 200 SC   | 1        | nr    | 1.8          | nr         | Stem spray,      | nr   | 408 | < 0.02           | THR-      |
| Australia,                            |          |          |       |              |            | 11 May 2005,     |      |     |                  | 0555      |
| 2005–2006                             |          |          |       |              |            |                  |      |     |                  |           |
| (Cavendish)                           | 200.00   | 1        |       | 0.0          |            |                  |      |     | .0.02            | TUD       |
| Murwillumbah,                         | 200 SC   | 1        | nr    | 0.9          | nr         | Stem spray,      | nr   | 553 | < 0.02           | THR-      |
| NSW, Australia,                       |          |          |       |              |            | 10 May 2005,     |      |     |                  | 0555      |
| 2005–2006                             |          |          |       |              |            |                  |      |     |                  |           |
| (Lady finger)                         |          | <u> </u> |       |              |            | ~                |      |     |                  |           |
| Murwillumbah,                         | 200 SC   | 1        | nr    | 1.8          | nr         | Stem spray,      | nr   | 553 | < 0.02           | THR-      |
| NSW, Australia,                       |          |          |       |              |            | 10 May 2005,     |      |     |                  | 0555      |
| 2005-2006                             |          |          |       |              |            | a                |      |     |                  |           |
| (Lady finger)                         |          |          |       |              |            |                  |      |     |                  |           |
| Tully, N. Qld,                        | 200 SC   | 1        | nr    | 0.9          | nr         | Stem spray,      | nr   | 258 | < 0.02           | THR-      |
| Australia,                            |          |          |       |              |            | 29 Mar 2005,     |      |     |                  | 0555      |
| 2005-2006                             |          |          |       |              |            | a                |      |     |                  |           |
| (Cavendish)                           |          |          |       |              |            |                  |      |     |                  |           |
| Innisfail, Qld,                       | 200 SC   | 1        | nr    | 0.9          | nr         | Stem spray,      | nr   | 256 | < 0.02           | THR-      |
| Australia, 2005                       |          |          |       |              |            | 31 Mar 2005,     |      |     |                  | 0556      |
| (Cavendish)                           |          |          |       |              |            | a                |      |     |                  |           |
|                                       |          |          |       |              |            |                  |      |     |                  |           |

| Trial, Location<br>Country, year<br>(Variety)           | Form<br>(g ai/L) | No | Inter<br>val<br>(d) | g<br>ai/stem | g<br>ai/hL | method,<br>timing                           | soil<br>type | DAT | parent,<br>mg/kg | reference    |
|---------------------------------------------------------|------------------|----|---------------------|--------------|------------|---------------------------------------------|--------------|-----|------------------|--------------|
| Innisfail, Qld,<br>Australia, 2005<br>(Cavendish)       | 200 SC           | 1  | nr                  | 1.8          | nr         | Stem spray,<br>31 Mar 2005,<br>a            | nr           | 256 | < 0.02           |              |
| Walkamin, Qld,<br>Australia, 2005<br>(Cavendish)        | 200 SC           | 1  | nr                  | 0.9          | nr         | Stem spray,<br>30 Mar 2005,<br><sup>a</sup> | nr           | 257 | < 0.02           | THR-<br>0556 |
| Wamuran, Qld,<br>Australia,<br>2005–2006<br>(Cavendish) | 200 SC           | 1  | nr                  | 0.9          | nr         | Stem spray,<br>13 May 2005,<br>a            | nr           | 308 | < 0.02           | THR-<br>0556 |

<sup>a</sup> Application was done within 30 days of removal of the bunch from the mother plant.

[Burn, 2005b, THR-0554]. No unusual weather conditions. Plot size 5-12 pseudostems per plot. Fruits were sampled at harvest (hard green stage; BBCH not stated). A total of 24 bananas (2 fingers from the top, middle and bottom of each selected bunch) were collected. Samples were stored at -15 °C for 15–141 days. Whole fruit samples were analysed for clothianidin using HPLC-MS-MS method ALM-017 (= method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (94%–119%).

[Burn, 2006b, THR-0555]. No unusual weather conditions. Plot size 6 pseudostems per plot. Fruits were sampled at harvest (hard green stage; BBCH not stated). A total of 24 bananas (2 fingers from the top, middle and lowest hands on 4 harvestable bunches) were collected. Samples were stored at -15 °C for 3-196 days. Whole fruit samples were analysed for clothianidin using HPLC-MS-MS method ALM-017.01 (modification of method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (81–119%).

[Burn, 2006d, THR-0556]. No unusual weather conditions. Plot size 6 stems per plot. Fruits were sampled at harvest (hard green stage; BBCH not stated). A total of 24 bananas (2 fingers from the top, middle and lowest hands on 4 harvestable bunches) were collected. Samples were stored at -15 °C for 17–113 days. Whole fruit samples were analysed for clothianidin using HPLC-MS-MS method ALM-017.01 (modification of method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (77%–102%).

| Trial<br>Country, year<br>(Variety)                          | Form<br>(g ai/L) | No | Inter<br>val (d) | g<br>ai/stem | g<br>ai/hL | method,<br>timing                                  | soil<br>type | DAT        | parent,<br>mg/kg | reference    |
|--------------------------------------------------------------|------------------|----|------------------|--------------|------------|----------------------------------------------------|--------------|------------|------------------|--------------|
| Walkamin, Qld,<br>Australia,<br>2004–2005<br>(Cavendish)     | 200 SC           | 1  | nr               | 0.3          | nr         | Stem<br>injection,<br>24 Mar<br>2004<br>a          | nr           | 307        | < 0.02           | THR-<br>0554 |
| Walkamin, Qld,<br>Australia,<br>2004–2005<br>(Cavendish)     | 200 SC           | 1  | nr               | 0.6          | nr         | Stem<br>injection,<br>24 Mar<br>2004<br>a          | nr           | 307        | 0.02             | THR-<br>0554 |
| Tullera, NSW,<br>Australia,<br>2004–2005<br>(Cavendish)      | 200 SC           | 1  | nr               | 0.3          | nr         | Stem<br>injection,<br>17 Mar<br>2004<br>a          | nr           | 356<br>404 | < 0.02<br>< 0.02 | THR-<br>0554 |
| Tullera, NSW,<br>Australia,<br>2004–2005<br>(Cavendish)      | 200 SC           | 1  | nr               | 0.6          | nr         | Stem<br>injection,<br>17 Mar<br>2004<br>a          | nr           | 356<br>404 | < 0.02<br>< 0.02 | THR-<br>0554 |
| Tallebudgera,<br>Qld, Australia,<br>2005–2006<br>(Cavendish) | 200 SC           | 1  | nr               | 0.3          | nr         | Stem<br>injection,<br>11 May<br>2005, <sup>a</sup> | nr           | 408        | < 0.02           | THR-<br>0555 |
| Tallebudgera,<br>Qld, Australia,<br>2005–2006                | 200 SC           | 1  | nr               | 0.6          | nr         | Stem<br>injection,<br>11 May                       | nr           | 408        | < 0.02           | THR-<br>0555 |

Table 75 Residues of clothianidin in banana (whole fruit including peel) after stem injection treatment in the field

| Trial<br>Country, year<br>(Variety)                                | Form<br>(g ai/L) | No | Inter<br>val (d) | g<br>ai/stem | g<br>ai/hL | method,<br>timing                                  | soil<br>type | DAT | parent,<br>mg/kg | reference    |
|--------------------------------------------------------------------|------------------|----|------------------|--------------|------------|----------------------------------------------------|--------------|-----|------------------|--------------|
| (Cavendish)                                                        |                  |    |                  |              |            | 2005, <sup>a</sup>                                 |              |     |                  |              |
| Tallebudgera,<br>Qld, Australia,<br>2005–2006<br>(Cavendish)       | 200 SC           | 1  | nr               | 1.2          | nr         | Stem<br>injection,<br>11 May<br>2005, <sup>a</sup> | nr           | 408 | < 0.02           | THR-<br>0555 |
| Murwillumbah<br>, NSW,<br>Australia,<br>2005–2006<br>(Lady finger) | 200 SC           | 1  | nr               | 0.3          | nr         | Stem<br>injection,<br>10 May<br>2005,<br>BBCH ns   | nr           | 553 | < 0.02           | THR-<br>0555 |
| Murwillumbah,<br>NSW, Australia,<br>2005–2006<br>(Lady finger)     | 200 SC           | 1  | nr               | 0.6          | nr         | Stem<br>injection,<br>10 May<br>2005, <sup>a</sup> | nr           | 553 | < 0.02           | THR-<br>0555 |
| Murwillumbah,<br>NSW, Australia,<br>2005–2006<br>(Lady finger)     | 200 SC           | 1  | nr               | 1.2          | nr         | Stem<br>injection,<br>10 May<br>2005, <sup>a</sup> | nr           | 553 | < 0.02           | THR-<br>0555 |
| Tully, Qld,<br>Australia,<br>2005–2006<br>(Cavendish)              | 200 SC           | 1  | nr               | 0.6          | nr         | Stem<br>injection,<br>29 Mar<br>2005, <sup>a</sup> | nr           | 258 | < 0.02           | THR-<br>0555 |
| Innisfail, Qld,<br>Australia, 2005<br>(Cavendish)                  | 200 SC           | 1  | nr               | 0.3          | nr         | Stem<br>injection,<br>31 Mar<br>2005, <sup>a</sup> | nr           | 256 | < 0.02           | THR-<br>0556 |
| Innisfail, Qld,<br>Australia, 2005<br>(Cavendish)                  | 200 SC           | 1  | nr               | 0.6          | nr         | Stem<br>injection,<br>31 Mar<br>2005, <sup>a</sup> | nr           | 256 | < 0.02           | THR-<br>0556 |
| Innisfail, Qld,<br>Australia, 2005<br>(Cavendish)                  | 200 SC           | 1  | nr               | 1.2          | nr         | Stem<br>injection,<br>31 Mar<br>2005, <sup>a</sup> | nr           | 256 | < 0.02           | THR-<br>0556 |
| Walkamin, Qld,<br>Australia, 2005<br>(Cavendish)                   | 200 SC           | 1  | nr               | 0.6          | nr         | Stem<br>injection,<br>30 Mar<br>2005,<br>a         | nr           | 257 | < 0.02           | THR-<br>0556 |
| Wamura, Qld,<br>Australia, 2005<br>(Cavendish)                     | 200 SC           | 1  | nr               | 0.6          | nr         | Stem<br>injection,<br>13 May<br>2005,<br>a         | nr           | 308 | < 0.02           | THR-<br>0556 |

<sup>a</sup> Application was done within 30 days of removal of the bunch from the mother plant.

[Burn, 2005b, THR-0554]. No unusual weather conditions. Plot size 5–12 pseudostems per plot. Fruits were sampled at harvest (hard green stage; BBCH not stated). A total of 24 bananas (2 fingers from the top, middle and bottom of each selected bunch) were collected. Samples were stored at –15 °C for 15–141 days. Whole fruit samples were analysed for clothianidin using HPLC-MS-MS method ALM-017 (= method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (94%–119%).

[Burn, 2006b, THR-0555]. No unusual weather conditions. Plot size 6 pseudostems per plot. Fruits were sampled at harvest (hard green stage; BBCH not stated). A total of 24 banana fingers (2 fingers from the top, middle and lowest hands on 4 harvestable bunches) were collected. Samples were stored at -15 °C for 3–196 days. Whole fruit samples were analysed for clothianidin using HPLC-MS-MS method ALM-017.01 (modification of method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (81–119%).

[Burn, 2006d, THR-0556]. No unusual weather conditions. Plot size 6 stems per plot. Fruits were sampled at harvest (hard green stage; BBCH not stated). A total of 24 banana fingers (2 fingers from the top, middle and lowest hands on 4 harvestable bunches) were collected. Samples were stored at -15 °C for 17–113 days. Whole fruit samples were analysed for clothianidin using HPLC-MS-MS method ALM-017.01 (modification of method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (77%–102%).

# Brassica vegetables

The Meeting received supervised residue trials on head cabbages and broccoli. Trials were available for seed treatment with subsequent indoor culture followed by transplanting in the field, for foliar spray treatment in the field, for combined soil drench and foliar spray treatment in the field and for soil drench treatment in the field.

# Cabbages, Head

Supervised residue trials on head cabbages were conducted in Belgium (2006), Germany (2006 and 2006), UK (2006), France (2006), Italy (2006), Spain (2006), Japan (2002) and USA (2006). Results are shown in Table 76 (seed treatment), Table 77 (foliar spray treatment in the field), Table 78 (combined soil drench and foliar spray treatment in the field) and Table 79 (soil drench in the field). In the USA trials, residue levels are given for head with wrapper leaves (= RAC), while for some USA trials additional residue data are available for heads only. Residue levels in the Japanese and European trials are not given for the RAC, but for heads without core (Japan) or heads without wrapper leaves (Europe). Cabbage heads for European trials represented European marketable conditions (i.e. wrapper leaves remained on the field [Gaston, 2010d]).

Table 76 Residues of clothianidin in head cabbage (heads without wrapper leaves) after seed treatment, indoor nursery and transplanting in the field

| Trial,<br>Location,<br>Country, year<br>(Variety)                                                       | Form<br>(g<br>ai/L)    | N<br>o | Inter<br>val<br>(d) | g ai/ha                      | mg<br>ai/seed | method,<br>timing (date<br>of sowing)     | soil type                                                 | DAT | parent,<br>mg/kg | reference                          |
|---------------------------------------------------------------------------------------------------------|------------------------|--------|---------------------|------------------------------|---------------|-------------------------------------------|-----------------------------------------------------------|-----|------------------|------------------------------------|
| R 2006<br>0666/4,<br>Villers-<br>Perwin,<br>Belgium,<br>2006<br>(White<br>cabbage:<br>Premiere)         | 400<br>FS <sup>a</sup> | 1      | nr                  | 74<br>111 g<br>ai/kg<br>seed | 1.3           | Seed<br>treatment,<br>8 May,<br>BBCH 00   | 29 days in<br>nursery<br>pots;<br>field: silty<br>loam    | 81  | < 0.01           | M-<br>289560-<br>01-1<br>head only |
| R 2006<br>0638/9<br>Bornheim-<br>Sechtem,<br>Germany,<br>2006<br>(White<br>cabbage:<br>Premiere)        | 400<br>FS <sup>a</sup> | 1      | nr                  | 53<br>111 g<br>ai/kg<br>seed | 1.3           | Seed<br>treatment,<br>22 April,<br>BBCH00 | 48 days in<br>nursery<br>pots;<br>field:<br>sandy<br>loam | 111 | < 0.01           | M-<br>289560-<br>01-1<br>head only |
| R 2006<br>0683/4,<br>Langenfeld,<br>Germany,<br>2000<br>(Red cabbage:<br>Marner<br>Frühkohl)            | 500<br>WS <sup>b</sup> | 1      | nr                  | 48<br>124 g<br>ai/kg<br>seed | 1.2           | Seed<br>treatment,<br>25 April,<br>BBCH00 | 21 days in<br>nursery<br>pots;<br>field:<br>loamy<br>sand | 99  | < 0.01           | M-<br>293039-<br>01-1<br>head only |
| R 2006<br>0693/1,<br>Bornheim-<br>Sechterm,<br>Germany,<br>2006<br>(Red cabbage:<br>Marner<br>Frühkohl) | 500<br>WS <sup>b</sup> | 1      | nr                  | 50<br>124 g<br>ai/kg<br>seed | 1.2           | Seed<br>treatment,<br>22 April,<br>BBCH00 | 48 days in<br>nursery<br>pots;<br>field:<br>loamy<br>sand | 153 | < 0.01           | M-<br>293039-<br>01-1<br>head only |

| Trial,<br>Location,<br>Country, year<br>(Variety)                                     | Form<br>(g<br>ai/L)    | N<br>o | Inter<br>val<br>(d) | g ai/ha                       | mg<br>ai/seed | method,<br>timing (date<br>of sowing)      | soil type                                                 | DAT | parent,<br>mg/kg | reference                          |
|---------------------------------------------------------------------------------------|------------------------|--------|---------------------|-------------------------------|---------------|--------------------------------------------|-----------------------------------------------------------|-----|------------------|------------------------------------|
| R 2006<br>0696/6, Little<br>Shelford,<br>UK, 2006<br>(White<br>cabbage:<br>Premiere)  | 500<br>WS <sup>b</sup> | 1      | nr                  | 68<br>124 g<br>ai/kg<br>seed  | 1.2           | Seed<br>treatment,<br>2 June,<br>BBCH00    | 27 days in<br>nursery<br>pots;<br>field:<br>sandy<br>loam | 103 | 0.01             | M-<br>293039-<br>01-1<br>head only |
| R 2006<br>0695/18,<br>Bouaffle, N.<br>France, 2006<br>(White<br>cabbage:<br>Premiere) | 500<br>WS <sup>b</sup> | 1      | nr                  | 38<br>124 g<br>ai/kg<br>seed  | 1.2           | Seed<br>treatment,<br>24 April,<br>BBCH 00 | 25 days in<br>nursery<br>pots;<br>field: sand             | 88  | 0.02             | M-<br>293039-<br>01-1<br>head only |
| R 2006<br>0684/2,<br>Manfredonia,<br>Italy, 2006<br>(Red cabbage:<br>Roxy F1)         | 500<br>WS <sup>b</sup> | 1      | nr                  | 146<br>158 g<br>ai/kg<br>seed | 1.8           | Seed<br>treatment,<br>26 July,<br>BBCH00   | 47 days in<br>nursery<br>pots;<br>field: sand             | 134 | < 0.01           | M-<br>293047-<br>01-1<br>head only |
| R 2006<br>0667/2,<br>Manfredonia,<br>Italy, 2006<br>(White<br>cabbage:<br>Metino F1)  | 400<br>FS <sup>a</sup> | 1      | nr                  | 15<br>77 g ai<br>/kg<br>seed  | 1.2           | Seed<br>treatment,<br>26 July,<br>BBCH 00  | 47 days in<br>nursery<br>pots;<br>field: sand             | 121 | < 0.01           | M-<br>289508-<br>01-1<br>head only |
| R 2006<br>0668/0, Gava<br>Spain, 2006<br>(White<br>cabbage:<br>Metino)                | 400<br>FS <sup>a</sup> | 1      | nr                  | 0                             | 0             | Seed<br>treatment,<br>2 Aug.,<br>BBCH 00   | 50 days in<br>nursery<br>pots;<br>field:<br>loamy<br>sand | 141 | nr               | M-<br>289508-<br>01-1<br>head only |
| R 2006<br>0697/4, Gava,<br>Spain, 2006<br>(White<br>cabbage:<br>Metino)               | 500<br>WS <sup>b</sup> | 1      | nr                  | 68<br>89 g ai<br>/kg<br>seed  | 1.2           | Seed<br>treatment,<br>2 Aug.,<br>BBCH00    | 50 days in<br>nursery<br>pots;<br>field:<br>loamy<br>sand | 143 | < 0.01           | M-<br>293047-<br>01-1<br>head only |

<sup>a</sup> Formulation contains 400 g/L clothianidin + 53.3 g/L beta-cyfluthrin

<sup>b</sup> Formulation contains 500 g/L clothianidin + 250 g/L spinosad

<sup>c</sup> Control seeds were seeded instead of treated seed; therefore no results available for this trial.

[Schoening, 2007d, M-289508-01-1]. No unusual weather conditions. Plot size 19.2-30 m2. Sowing by hand. Actual seeding rate was 0.20-0.90 kg seeds/ha. Cabbage heads (5.57-11.4 kg; 12 units) were sampled at harvest (BBCH47-48). Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  or below for 62-89 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (91%-95%).

[Schoening, 2007e, M-289560-01-1]. No unusual weather conditions. Plot size 16.9-66.5 m2. Sowing by hand. Actual seeding rate was 0.48-0.67 kg seeds/ha. Cabbage heads (12-14 kg; 12 units) were sampled at harvest (BBCH 49). Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  or below for 97-104 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (91–95%).

[Melrose, 2007b, M-293047-01-1]. No unusual weather conditions. Plot size 30 m2. Seeding by hand. Actual seeding rate 0.764–0.925 kg seeds/ha. Cabbage heads (2.74–7.95 kg; 12 units) were sampled at harvest (BBCH 43-49). Samples were stored at -18 °C or below for 207–224days. Samples were analysed using HPLC-MS-MS method 00552/M002. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (79%–96% red cabbage head and 75%–93% in round cabbage head).

[Melrose, 2007a, M-293039-01-1]. No unusual weather conditions. Plot size 25–75.25 m2. Seeding by hand. Actual seeding rate 0.293–0.534 kg seeds/ha. Cabbage heads (2.57–11.7 kg; 12 plants) were sampled at harvest (BBCH 42-49).

Samples were stored at -18 °C or below for 301–364 days. Samples were analysed using HPLC-MS-MS method 00552/M002. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (80–103% red cabbage head and 84–106% in round cabbage head).

| Trial,<br>Location,<br>Country,<br>year                                                   | Form      | No | Interval (d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                       | soil<br>type          | DAT | parent,<br>mg/kg         |                          | reference                                         |
|-------------------------------------------------------------------------------------------|-----------|----|--------------|------------|------------|---------------------------------------------------------|-----------------------|-----|--------------------------|--------------------------|---------------------------------------------------|
| (Variety)<br>SARS-06-<br>83-NY,<br>Wayne,<br>New York,<br>USA<br>2006<br>(Matsumo)        | 500<br>WG | 2  | 7            | 113<br>112 | 48<br>48   | Foliar<br>spray,<br>28 July,<br>80%<br>soil<br>cover    | Silt<br>loam          | 7   | 0.030<br>TMG:<br>< 0.01  | 0.030<br>TMG:<br>< 0.01  | THR-0572<br>head with<br>wrapper<br>leaves<br>a b |
| SARS-06-<br>83-GA,<br>Clarke,<br>Georgia,<br>USA<br>2006                                  | 500<br>WG | 2  | 7            | 113<br>111 | 48<br>46   | Foliar<br>spray,<br>6 July,<br>50%<br>soil<br>cover     | Sandy<br>clay<br>loam | 7   | 0.020<br>TMG:<br>< 0.01  | 0.015<br>TMG:<br>< 0.01  | THR-0572<br>head with<br>wrapper<br>leaves<br>a b |
| (Bonnie's<br>best<br>hybrid)                                                              |           |    |              |            |            |                                                         |                       |     | < 0.01<br>TMG:<br>< 0.01 | < 0.01<br>TMG:<br>< 0.01 | head only<br>a b                                  |
| SARS-06-<br>83-FL,<br>Martin,<br>Florida,<br>USA,<br>2006<br>(Bravo)                      | 500<br>WG | 2  | 7            | 113<br>112 | 28<br>28   | Foliar<br>spray,<br>28<br>Nov.,<br>100%<br>mulch        | Sand                  | 7   | 0.013<br>TMG:<br>< 0.01  | 0.013<br>TMG:<br>< 0.01  | THR-0572<br>head with<br>wrapper<br>leaves<br>b   |
| SARS-06-<br>83-WI,<br>Walworth,<br>Wisconsin,<br>USA, 2006<br>(Vantage<br>Point)          | 500<br>WG | 2  | 7            | 113<br>112 | 64<br>61   | Foliar<br>spray,<br>5 Oct.,<br>75%<br>soil<br>cover     | Silt<br>loam          | 7   | 0.015<br>TMG:<br>< 0.01  | 0.019<br>TMG:<br>< 0.01  | THR-0572<br>head with<br>wrapper<br>leaves<br>b   |
| SARS-06-<br>83-TX,<br>Wharton,<br>Texas,<br>USA<br>2006<br>(Early<br>Jersey<br>Wakefield) | 500<br>WG | 2  | 7            | 110<br>112 | 64<br>66   | Foliar<br>spray,<br>13<br>Dec.,<br>60%<br>soil<br>cover | Clay                  | 6   | 0.33<br>TMG:< 0.01       | 0.28<br>TMG:<br>< 0.01   | THR-0572<br>head with<br>wrapper<br>leaves<br>a b |
| SARS-06-<br>83-CA,<br>Madera<br>California,<br>USA<br>2006<br>(Vantage)                   | 500<br>WG | 2  | 7            | 114<br>114 | 40<br>40   | Foliar<br>spray,<br>28<br>Nov.,<br>50%<br>soil<br>cover | Loamy<br>sand         | 7   | 0.32<br>TMG:<br>< 0.01   | 0.41<br>TMG:<br>0.013    | THR-0572<br>head with<br>wrapper<br>leaves<br>b   |
|                                                                                           |           |    |              |            |            |                                                         |                       |     | 0.016<br>TMG:<br>< 0.01  | 0.035<br>TMG:<br>< 0.01  | head only                                         |

| Table 77 Residues of clothianidin in h | ead cabbage | (head w | vith or | without | wrapper | leaves) | after f | foliar |
|----------------------------------------|-------------|---------|---------|---------|---------|---------|---------|--------|
| treatment in the field                 |             |         |         |         |         |         |         |        |

<sup>a</sup> Samples were stored above -10 °C: 14 days at -3.8 °C for SARS-06-83-NY, 27 days for -3.9 °C for SARS-06-83-GA and 34 days at -8.9 °C for SARS-06-83-TX.

<sup>b</sup> Results came from two replicate field samples

[Stewart, 2007a, THR-0572]. No unusual weather conditions. Plot size 70–112 m2. Backpack or tractor mounted sprayer, spray volume 169–406 L/ha. Cabbage heads (> 2.2 kg without wrapper leaves and > 2.7 kg with wrapper leaves, 12 plants) were sampled at normal harvest. Heads were sectioned from top to bottom in 4 parts and <sup>1</sup>/<sub>4</sub> of each head was sampled. Samples were stored at –15 °C or lower, unless indicated otherwise (a) for 29–174 days. Samples were analysed for clothianidin and TMG using modification B of HPLC-MS-MS Method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (individual 66%–98% for parent and 84%–100% for metabolite TMG; average 72%–93% for parent and 90%–91% for TMG).

| Table 78 Residues of clothianidin in head cabbage | (head without wrapper leaves) after combined soil |
|---------------------------------------------------|---------------------------------------------------|
| and foliar treatment in the field                 |                                                   |

| Trial,<br>Location,<br>Country,<br>year<br>(Variety)  | Form                   | No      | Inter<br>val<br>(d) | g ai/ha                                  | g<br>ai/hL  | method, timing                                                                                              | soil<br>type | DAT          | parent<br>mg/kg      | ,                    | reference                                                                 |
|-------------------------------------------------------|------------------------|---------|---------------------|------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------------|----------------------|---------------------------------------------------------------------------|
| Ibaraki,<br>JPPA<br>Japan,<br>2002<br>(Kinkei<br>201) | 5 GR<br>+<br>160<br>SP | 1+2     | 47–<br>53;<br>6–7   | 0.01 g ai/hill<br>+<br>2×<br>160 g ai/ha | 2× 8.0      | Soil applic in<br>planting hole +<br>2× Foliar spray,<br>10 June,<br>3 June,<br>BBCH ns                     | Clay         | 3<br>7<br>14 | 0.06<br>0.05<br>0.04 | 0.18<br>0.08<br>0.07 | THR-<br>0505/<br>THR-<br>0506<br>head<br>only<br>without<br>core<br>a b c |
| Niigata<br>Japan,<br>2002<br>(YR<br>Naeba)            | 5 GR<br>+<br>160<br>SP | 1+<br>2 | 45-<br>53;6-<br>8   | 0.01 g ai/hill<br>+<br>2×<br>240 g ai/ha | -<br>2× 8.0 | Soil applic in<br>planting hole +<br>2× Foliar spray,<br>8 July<br>8 July;<br>2 July, head<br>forming stage | Clay         | 3<br>7<br>13 | 0.16<br>0.09<br>0.02 | 0.06<br>0.11<br>0.04 | THR-<br>0505/<br>THR-<br>0506<br>head<br>only<br>without<br>core<br>a b c |

<sup>a</sup>.A variant of a reversed and normal decline trial. Some plots are treated on the same day and harvested on different days (normal decline), some plots are treated on different days and harvested on the same days (reversed decline), while other plots have no match with other plots concerning treatment days and harvest days.

<sup>b</sup>.Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>c</sup>.Number of plants was below the minimum number of 12 required for sampling

[Komatsu and Yabuzaki, 2003i, THR-0505; Ohta, 2003g, THR-0506]. No unusual weather conditions. Plot size 18–36 m2. Granules were added to the hole by hand. Full automatic sprayer for foliar treatment, spray volume 2000–3000 L/ha. Cabbage heads without 1–2 outer leaves (5 pieces/plot, 2 replicate samples) were sampled at normal harvest. Samples were stored at -20 °C for 251–279 and 55–81 days, respectively. Samples were analysed using the Japanese HPLC-UV method for cabbages. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (75–97% and 72–90%, respectively).

Table 79 Residues of clothianidin and TMG in head cabbage (head with wrapper leaves) after soil treatment in the field

| Trial,<br>Location,<br>Country, year<br>(Variety)                               | For<br>m  | N<br>o | Inter<br>val<br>(d) | g ai/ha | g<br>ai/hL | method,<br>timing                        | soil<br>type | DAT | parent,<br>mg/kg        |                         | reference                                             |
|---------------------------------------------------------------------------------|-----------|--------|---------------------|---------|------------|------------------------------------------|--------------|-----|-------------------------|-------------------------|-------------------------------------------------------|
| SARS-06-83-<br>TX, Wharton<br>Texas, USA<br>2006<br>(Early Jersey<br>Wakefield) | 500<br>WG | 1      | nr                  | 224     | 1.3        | Soil drench,<br>3 Oct.,<br>at transplant | Clay         | 77  | 0.015<br>TMG:<br>< 0.01 | 0.015<br>TMG:<br>< 0.01 | THR-<br>0572<br>head with<br>wrapper<br>leaves<br>a b |

 $^a$  Samples were stored above –10 °C (34 days at –8.9 °C for SARS-06-83-TX).

<sup>b</sup> Results came from two replicate field samples

[Stewart, 2007a, THR-0572]. No unusual weather conditions. Plot size 112 m2. Transplant drench applied with a cup, spray volume 16963 L/ha. Cabbage heads (> 2.7 kg with wrapper leaves, 12 plants) were sampled at normal harvest. Heads were sectioned from top to bottom in 4 parts and ¼ of each head was sampled. Samples were stored at -15 °C or lower, unless indicated otherwise (a) for 64 days. Samples were analysed for clothianidin and TMG using modification B of HPLC-MS-MS Method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (individual 66%–98% for parent and 84%–100% for metabolite TMG; average 72%–93% for parent and 90%–91% for TMG).

## Broccoli

Supervised residue trials on broccoli were conducted in Japan (2004 and 2005). Results are shown in Table 80 (combined soil treatment and foliar spray treatment in the field) and Table 81 (soil treatment in the field). Residue levels are given for the buds without leaves (= RAC).

Table 80 Residues of clothianidin in broccoli (buds without leaves) after a combined soil + foliar spray treatment in the field

| Trial,<br>Location,<br>Country, year<br>(Variety)            | Form<br>(g<br>ai/L)              | N<br>o       | Inter<br>Val<br>(d)          | g ai/ha                                      | g<br>ai/hL  | method,<br>timing                                                                                                  | soil<br>type | DAT               | parent<br>mg/kg      | ·                    | reference                       |
|--------------------------------------------------------------|----------------------------------|--------------|------------------------------|----------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------------------|----------------------|---------------------------------|
| Osato-gun,<br>Saitama<br>Japan, 2004-<br>2005<br>(Shigemori) | 5GR<br>+<br>160<br>SP            | 1<br>+<br>3  | 127<br>-<br>134;<br>7;<br>7; | 0.01 g<br>ai/hill +<br>3×<br>160 g ai/<br>ha | -<br>3× 8.0 | Soil applic<br>in planting<br>hole + 3×<br>Foliar spray,<br>10 April;<br>10 April;<br>3 April,<br>Growing<br>stage | Loam         | $\frac{3}{7}^{b}$ | 0.33<br>0.30<br>0.04 | 0.32<br>0.29<br>0.05 | THR-<br>0370/<br>THR-0371<br>a  |
| Kami-gun,<br>Kochi<br>Japan, 2004-<br>2005<br>(Heights)      | (1)5G<br>R<br>(2–4)<br>160<br>SP | 1<br>2-<br>4 | 48–<br>55<br>6–7<br>6–7      | 0.01 g ai<br>/hill +<br>3×<br>160 g<br>ai/ha | 3× 8.0      | Soil applic<br>in planting<br>hole + 3×<br>Foliar spray,<br>17 Nov.;<br>Flower bud<br>growing                      | Clay<br>loam | 3<br>7<br>14      | 0.07<br>0.05<br>0.02 | 0.07<br>0.05<br>0.02 | THR-<br>0370/ TR-<br>371<br>a b |

<sup>a</sup>. Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>b</sup>.Number of plants was below the minimum number of 12 required for sampling

[Yabuzaki et al, 2005, THR-0370; Ishii and Asari, 2005, THR-0371]. No unusual weather conditions. Plot size 12–24 m2. Planting hole treatment by hand. Knapsack power sprayer, spray volume 2000 L/ha. Broccoli buds without leaves (> 1 kg, 7 plants Kochi, 4 plants at Saitama (DAT 3), 14–18 plants at Saitama DAT 7 and 14) were sampled at harvest (BBCH not stated). Samples were stored at -20 °C for 8–141 days and 2–72 days, respectively. Samples were analysed using the Japanese HPLC-UV method for cabbages (THR-0370) and modification A of this method (THR-0371). Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (89%–108% and 80%–94%, respectively).

| Table 81 Residues of clo | thianidin in broccoli | (heads p | olus stems) | after soil | treatment in the field |
|--------------------------|-----------------------|----------|-------------|------------|------------------------|
|                          |                       |          |             |            |                        |

| Trial,<br>Location,<br>Country,<br>year<br>(Variety)        | Form<br>(g<br>ai/L) | No | Interval<br>(d) | g ai/ha        | g<br>ai/hL | method,<br>timing                              | soil<br>type | DAT | parent,<br>mg/kg |        | reference                            |
|-------------------------------------------------------------|---------------------|----|-----------------|----------------|------------|------------------------------------------------|--------------|-----|------------------|--------|--------------------------------------|
| Osato-gun,<br>Saitama<br>Japan,<br>2004–2005<br>(Shigemori) | 5 GR                | 1  | na              | 0.01 g ai/hill | _          | In<br>planting<br>hole,<br>13 Nov.,<br>BBCH 00 | Loam         | 151 | 0.03             | 0.04   | THR-<br>0370/<br>THR-<br>0371<br>a b |
| Kami-gun,<br>Kochi                                          | 5 GR                | 1  | na              | 0.01 g ai/hill | -          | In<br>planting                                 | Clay<br>loam | 71  | < 0.01           | < 0.01 | THR-<br>0370/                        |

| Trial,<br>Location,<br>Country,<br>year<br>(Variety) | Form<br>(g<br>ai/L) | No | Interval<br>(d) | g ai/ha | g<br>ai/hL | method,<br>timing             | soil<br>type | DAT | parent,<br>mg/kg | reference     |
|------------------------------------------------------|---------------------|----|-----------------|---------|------------|-------------------------------|--------------|-----|------------------|---------------|
| Japan,<br>2004–2005<br>(Heights)                     |                     |    |                 |         |            | hole,<br>10 Sept.,<br>BBCH 00 |              |     |                  | TR-371<br>a b |

<sup>a</sup>.Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>b</sup> Number of plants was below the minimum number of 12 required for sampling

[Yabuzaki et al, 2005, THR-0370; Ishii and Asari, 2005, THR-0371]. No unusual weather conditions. Plot size 12–24 m2. Planting hole treatment by hand. Broccoli buds without leaves (> 1 kg, 7–8 plants) were sampled at harvest (BBCH not stated). Samples were stored at -20 °C for 8–141 days and 2–72 days, respectively. Samples were analysed using the Japanese HPLC-UV method for cabbages (THR-0370) and modification A of this method (THR-0371). Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (89%–108% and 80%–94%, respectively).

# Fruiting vegetables, Cucurbits

The Meeting received supervised residue trials on cucumbers and summer squash. Trials were available for foliar spray treatment in the field, soil treatment in the field and indoor combined soil and foliar treatments.

## Cucumbers

Supervised residue trials on cucumbers were conducted in Japan (1997 and 1998), Brazil (2000 and 2001) and USA (2006 and 2007). Results are shown in Table 82 (foliar spray treatment in the field), Table 83 (soil treatment in the field) and Table 84 (indoor combined soil and foliar treatment).

| Trial<br>Country, year<br>(Variety)                             | For<br>m<br>(g<br>ai/L) | No | Inter<br>val<br>(d) | g ai/ha    | g ai/hL  | method,<br>timing                                                    | soil<br>type  | DAT                | parent,<br>mg/kg                     | referenc<br>e                |
|-----------------------------------------------------------------|-------------------------|----|---------------------|------------|----------|----------------------------------------------------------------------|---------------|--------------------|--------------------------------------|------------------------------|
| Sao Paulo,<br>Brazil, 2000<br>(Creeping<br>cucumber:<br>Safira) | 500<br>WP               | 1  | nr                  | 100        | 10       | Foliar spray;<br>10 Nov;<br>3 Nov;<br>27 Oct;<br>20 Oct;<br>fruitage | loam          | 0<br>7<br>14<br>21 | <0.11<br><0.11<br><0.11<br><0.11     | THR-<br>0627<br>d            |
| Sao Paulo,<br>Brazil, 2000<br>(Creeping<br>cucumber:<br>Safira) | 500<br>WP               | 1  | nr                  | 200        | 20       | Foliar spray;<br>10 Nov;<br>3 Nov;<br>27 Oct;<br>20 Oct;<br>fruitage | loam          | 0<br>7<br>14<br>21 | <0.11<br><0.11<br><0.11<br><0.11     | THR-<br>0627<br>d            |
| Sao Paulo,<br>Brazil<br>2001<br>(Aodai better)                  | 500<br>WG               | 1  | nr                  | 100        | 10       | Foliar spray;<br>9 Apr;<br>2 Apr;<br>26 Mar;<br>19 Mar               | clay          | 0<br>7<br>14<br>21 | <0.11<br><0.11<br><0.11<br><0.11     | THR-<br>0626<br>d            |
| Sao Paulo,<br>Brazil<br>2001<br>(Aodai better)                  | 500<br>WG               | 1  | nr                  | 200        | 20       | Foliar spray;<br>9 Apr;<br>2 Apr;<br>26 Mar;<br>19 Mar               | clay          | 0<br>7<br>14<br>21 | < 0.11<br>< 0.11<br>< 0.11<br>< 0.11 | THR-<br>0626<br>d            |
| SARS-06-77-<br>NC<br>North                                      | 500<br>WG               | 2  | 7                   | 114<br>108 | 49<br>42 | Foliar spray;<br>26 Jun;<br>95% cover                                | loamy<br>sand | 7                  | 0.01 0.013                           | THR-<br>0575<br><sup>a</sup> |

Table 82 Residues of clothianidin in cucumber (whole fruit) after foliar treatment in the field

| Trial<br>Country, year<br>(Variety)                                                              | For<br>m<br>(g<br>ai/L) | No | Inter<br>val<br>(d) | g ai/ha    | g ai/hL    | method,<br>timing                      | soil<br>type          | DAT                     | parent<br>mg/kg                                                                           |                                              | referenc<br>e                  |
|--------------------------------------------------------------------------------------------------|-------------------------|----|---------------------|------------|------------|----------------------------------------|-----------------------|-------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------|
| Carolina,<br>USA, 2006<br>(Slicing<br>cucumber:<br>Ashley)                                       |                         |    |                     |            |            |                                        |                       |                         |                                                                                           |                                              |                                |
| SARS-06-77-<br>MO<br>Missouri,<br>USA<br>2006<br>(Pickling<br>cucumber:<br>National<br>pickling) | 500<br>WG               | 2  | 7                   | 112<br>112 | 60<br>59   | Foliar spray;<br>19 Jul;<br>70% cover  | silt<br>loam          | 1<br>4<br>7<br>10<br>13 | $\begin{array}{c} 0.02 \\ 3 \\ 0.01 \\ 0 \\ 0.01 \\ 1 \\ < 0. \\ 010. \\ 010 \end{array}$ | 0.023<br>0.015<br>< 0.01<br>< 0.01<br>< 0.01 | THR-<br>0575<br><sup>a b</sup> |
| SARS-06-77-<br>TX<br>Texas, USA,<br>2006<br>(Slicing<br>cucumber:<br>Olympian)                   | 500<br>WG               | 2  | 7                   | 113<br>112 | 60<br>60   | Foliar spray;<br>31 May;<br>90% cover  | sandy<br>clay<br>loam | 7                       | < 0.<br>01                                                                                | 0.012                                        | THR-<br>0575<br>a              |
| SARS-06-77-<br>GA<br>Georgia, USA<br>2007<br>(Slicing<br>cucumber:<br>Daytona)                   | 500<br>WG               | 2  | 7                   | 113<br>114 | 122<br>126 | Foliar spray;<br>5 June;<br>75% cover  | loamy<br>sand         | 7                       | < 0.<br>01                                                                                | < 0.01                                       | THR-<br>0575<br>a              |
| SARS-06-77-<br>FL<br>Florida, USA<br>2007<br>(Slicing<br>cucumber:<br>Bush<br>Whopper II)        | 500<br>WG               | 2  | 6                   | 114<br>112 | 40<br>40   | Foliar spray;<br>22 May;<br>90% cover  | sand                  | 7                       | 0.01 4                                                                                    | 0.017                                        | THR-<br>0575<br>a              |
| SARS-06-77-<br>WI<br>Wisconsin,<br>USA<br>2007<br>(Slicing<br>cucumber<br>Marketmore<br>86)      | 500<br>WG               | 2  | 8                   | 110<br>114 | 64<br>57   | Foliar spray;<br>21 Aug;<br>100% cover | silt<br>loam          | 6                       | 0.01                                                                                      | 0.013                                        | THR-<br>0575<br>a b            |

ns = not stated

<sup>a</sup> Results are from replicate field samples

<sup>b</sup> Samples were stored above –10 °C: SARS-06-77-MO for 56 days at –8.9 °C; SARS-06-77-WI for 21 days at –8.7 °C.

<sup>c</sup> Growth stage flowering to harvest (40–61 days after seeding)

<sup>d</sup> Reverse decline trial: treatment on different days, harvest on the same day for all plots.

[Tornisielo, 2001a, THR-0626]. No unusual weather conditions. Plot size 2 rows with 10 plants each (14 m2). Pressurized manual sprayer, spray volume 1000 L/ha. Fruits (4 kg) were sampled at harvest (12 fruits from 12 plants). Samples were stored at -15 °C for 215 days [Gaston, 2010d]. Samples were analysed using a Brazilian HPLC-UV method. Results were not corrected for control levels (< 0.11mg/kg) or for individual concurrent method recoveries (88%–100%).

[Tornisielo, 2001b, THR-0627]. No unusual weather conditions. Plot size 72 m2. Constant pressure sprayer, spray volume 1000 L/ha. Fruits (3 kg, 12 fruits from 12 plants) were sampled at harvest. Samples were stored at -15 °C for 158 days [Gaston, 2010d]. Samples were analysed using a Brazilian HPLC-UV method. Results were not corrected for control levels (< 0.11mg/kg) or for individual concurrent method recoveries (88%–100%).

[Stewart, 2007c, THR-0575]. No unusual weather conditions. Plot size 46–209 m2. Backpack or tractor mounted sprayer, spray volume 90-290 L/ha. Replicate field sample fruits (2 kg, at least 12 fruits) were sampled at harvest. Samples were

stored at -11 °C or lower for 24–113 days, unless stated otherwise. Samples were analysed using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (93%–104%).

| Trial,<br>Location<br>Country, year<br>(Variety)       | For<br>m  | N<br>o | Inter<br>val<br>(d) | g ai/ha  | g<br>ai/hL | method,<br>timing                     | soil<br>type          | DAT | parent, r | ng/kg     | referenc<br>e     |
|--------------------------------------------------------|-----------|--------|---------------------|----------|------------|---------------------------------------|-----------------------|-----|-----------|-----------|-------------------|
| SARS-06-77-<br>TX<br>Texas, USA,<br>2006<br>(Olympian) | 500<br>WG | 1      | nr                  | 232<br>b | 60<br>b    | side dress;<br>17 May;<br>bare ground | sandy<br>clay<br>loam | 21  | 0.014     | 0.01<br>4 | THR-<br>0575<br>a |

Table 83 Residues of clothianidin in cucumber (whole fruit) after soil treatment in the field

ns = not stated

nr = not relevant

<sup>a</sup> Results are from replicate field samples

<sup>b</sup> The rate was calculated as a broadcast rate concentrated in the side-dress. The effective spray width for the calculations is 3.17 ft.

[Stewart, 2007c, THR-0575]. No unusual weather conditions. Plot size 118 m2. Backpack sprayer, spray volume 388 L/ha. Replicate field sample fruits (2 kg, at least 12 fruits) were sampled at harvest. Samples were stored at -11 °C or lower for 113 days. Samples were analysed using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (93%–104%).

| Table 84 Residues of clothianidin in cucumber (whole fruit) after a combination of indoor soil and |  |
|----------------------------------------------------------------------------------------------------|--|
| foliar treatment                                                                                   |  |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)          | Form                  | No       | Interval (d) | g ai/ha                                  | g<br>ai/hL       | method,<br>timing                                                                | soil<br>type                    | DAT         | parent,<br>mg/kg      |                       | reference                      |
|--------------------------------------------------------------|-----------------------|----------|--------------|------------------------------------------|------------------|----------------------------------------------------------------------------------|---------------------------------|-------------|-----------------------|-----------------------|--------------------------------|
| Anjo-shi,<br>Aichi<br>Japan,<br>1997–1998<br>(Sharp<br>301)  | 5GR<br>+<br>160<br>SP | 1 +<br>3 | 84<br>7<br>7 | 0.01 g ai/hill<br>+<br>3× 240 g<br>ai/ha | nr;<br>3×<br>8.0 | In planting<br>hole, 13<br>Oct.+ 3×<br>Foliar<br>spray, 19<br>Jan,<br>BBCH ns    | Fine<br>grain<br>yellow<br>soil | 1<br>3<br>7 | 0.70<br>0.38<br>0.35  | 0.50<br>0.40<br>0.24  | THR-<br>0264/THR-<br>0269<br>a |
| Konan-<br>gun,<br>Kochi,<br>Japan,<br>1997–1998<br>(Sharp 1) | 5GR<br>+<br>160<br>SP | 1 +<br>3 | 32<br>7<br>7 | 0.01 g ai/hill<br>+<br>3× 160 g<br>ai/ha | nr;<br>3×<br>8.0 | In planting<br>hole, 23<br>Oct., + 3×<br>Foliar<br>spray, 15<br>Dec.,<br>BBCH ns | Clay<br>loam                    | 1<br>3<br>7 | 0.22<br>0.15<br>0.027 | 0.22<br>0.16<br>0.023 | THR-<br>0264/THR-<br>0269<br>a |

<sup>a</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

[Komatsu and Yabuzaki, 1998a, THR-0264; Ohta, 1998a, THR-0269]. No unusual weather conditions. Plot size 50–62 m2. Planting hole treatment at the time of transplanting + 3 foliar power sprays (2000–3000 L/ha). Replicate field samples of fruits (2–4 kg; 25–47 fruit portions) were sampled at harvest. Stems (i.e. scar in report [Gaston, 2010d]) were removed. Samples were stored within 24 hrs at -20 °C for 0–7 days or 10–65 days, depending on laboratory. Samples were analysed for clothianidin using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.002 mg/kg or < 0.005 mg/kg) or for average concurrent method recoveries (83%–90% or 82%–86%, respectively).

# Squash, Summer

Supervised residue trials on summer squash were conducted in the USA (2006 and 2007). Results are shown in Table 85 (foliar spray treatment in the field) and Table 86 (soil treatment in the field).

Table 85 Residues of clothianidin in summer squash (whole fruit) after foliar treatment in the field

| Trial<br>Country,<br>year<br>(Variety)                                            | Form      | No | Inter<br>val<br>(d) | g ai/ha    | g<br>ai/h<br>L | method,<br>timing                           | soil type     | D<br>A<br>T | parent,<br>mg/kg |        | reference         |
|-----------------------------------------------------------------------------------|-----------|----|---------------------|------------|----------------|---------------------------------------------|---------------|-------------|------------------|--------|-------------------|
| SARS-06-79-<br>NY<br>New York,<br>USA<br>2006<br>(zucchini:<br>Cash flow)         | 500<br>WG | 2  | 7                   | 111<br>113 | 48<br>48       | Foliar<br>spray;22<br>Aug;<br>50% cover     | silt loam     | 7           | < 0.01           | < 0.01 | THR-<br>0577<br>a |
| SARS-06-79-<br>FL<br>Florida, USA<br>2006<br>(Crookneck:<br>Medallion)            | 500<br>WG | 2  | 7                   | 113<br>112 | 40<br>40       | Foliar<br>spray;<br>8 May;<br>100%<br>cover | sand          | 7           | < 0.01           | < 0.01 | THR-<br>0577<br>a |
| SARS-06-79-<br>GA<br>Georgia, USA<br>2007<br>(Straightneck:<br>Lemondrop)         | 500<br>WG | 2  | 7                   | 111<br>111 | 108<br>96      | Foliar<br>spray;<br>24 May<br>98% cover     | loamy<br>sand | 7           | < 0.01           | < 0.01 | THR-<br>0577<br>a |
| SARS-06-79-<br>MO<br>Missouri,<br>USA<br>2007<br>(zucchini:<br>Black<br>zucchini) | 500<br>WG | 2  | 7                   | 108<br>111 | 65<br>62       | Foliar<br>spray;<br>19 July;<br>45% cover   | silt loam     | 7           | < 0.01           | < 0.01 | THR-<br>0577<br>a |
| SARS-06-79-<br>CA<br>California,<br>USA<br>2007<br>(zucchini:<br>Onyx)            | 500<br>WG | 2  | 7                   | 118<br>117 | 50<br>50       | Foliar<br>spray;<br>23 May;<br>30% cover    | loamy<br>sand | 7           | 0.043            | 0.038  | THR-<br>0577<br>a |

<sup>a</sup> Results came from two replicate field samples

[Stewart, 2007b, THR-0577]. No unusual weather conditions. Plot size 70–112 m2. Backpack sprayer, spray volume 102–284 L/ha. Fruits (1.6 kg or 12 units) were sampled at normal harvest (BBCH not stated). Samples were stored at – 10 °C for 25–225 days. Samples were analysed using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (individual 85%–123%, average 92%–108%).

| Table 86 Residues of clothianidin in summer squash (whole fruit) after soil treatment in the field |
|----------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------|

| Trial<br>Country,<br>year<br>(Variety)                                    | Formulation<br>(g ai/L) | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                              | soil<br>type | DAT | parent,mg/kg |        | reference     |
|---------------------------------------------------------------------------|-------------------------|----|---------------------|------------|------------|----------------------------------------------------------------|--------------|-----|--------------|--------|---------------|
| SARS-06-<br>79-NY<br>New York,<br>USA<br>2006<br>(Zucchini:<br>Cash flow) | 500 WG                  | 1  | nr                  | 231<br>b   | 160<br>b   | In-<br>furrow<br>soil<br>applic;<br>17 June;<br>at<br>planting | silt<br>loam | 73  | < 0.01       | < 0.01 | THR-0577<br>a |

<sup>a</sup> Results came from two replicate field samples

<sup>b</sup> Rate was calculated as a broadcast rate concentrated in the furrow. The effective spray width for the calculations is 5 ft.

[Stewart, 2007b, THR-0577]. No unusual weather conditions. Plot size 70 m2. Backpack sprayer, spray volume 144 L/ha. Fruits (1.6 kg or 12 units) were sampled at normal harvest (BBCH not stated). Samples were stored at -10 °C for 119 days. Samples were analysed using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (individual 85%–123%, average 92%–108%).

# Fruiting vegetables, other than Cucurbits

The Meeting received supervised residue trials on egg plants, sweet corn and tomatoes. Trials were available for foliar spray treatments in the field, soil treatments in the field, combined indoor soil and foliar treatments and indoor soil treatments.

#### Eggplants

Supervised residue trials on eggplants were conducted in Japan (1997). Results are shown in Table 87 (combined indoor soil and foliar treatment).

Table 87 Residues of clothianidin in egg plants (whole fruit) after combined indoor soil/foliar treatments

| Trial<br>Country,<br>year<br>(Variety)        | Form                   | No          | Inter<br>val<br>(d) | g ai/ha                               | g<br>ai/hL     | method,<br>timing                                                     | soil<br>type | DAT         | paren<br>mg/kg       | ,                     | reference                  |
|-----------------------------------------------|------------------------|-------------|---------------------|---------------------------------------|----------------|-----------------------------------------------------------------------|--------------|-------------|----------------------|-----------------------|----------------------------|
| Ibaraki,<br>JPPA<br>Japan, 1997<br>(Kokuyo)   | 5 GR<br>+<br>160<br>SP | 1<br>+<br>3 | 46;<br>7;<br>7      | 0.01 g ai/hill<br>+ 3×<br>240 g ai/ha | -<br>3×<br>8.0 | Planting hole<br>applic + 3<br>foliar sprays;<br>5 Oct;<br>BBCH ns    | clay         | 1<br>3<br>7 | 0.26<br>0.29<br>0.10 | 0.28<br>0.21<br>0.096 | THR-0294/<br>THR-0299<br>a |
| Konan-gun<br>Koichi<br>Japan, 1997<br>(Ryoma) | 5 GR<br>+<br>160<br>SP | 1<br>+<br>3 | 47;<br>7;<br>7      | 0.01 g ai/hill<br>+ 3×<br>160 g ai/ha | -<br>3×<br>8.0 | Planting hole<br>applic<br>+ 3 foliar<br>sprays;<br>8 Dec;<br>BBCH ns | clay<br>loam | 1<br>3<br>7 | 0.38<br>0.23<br>0.16 | 0.31<br>0.21<br>0.20  | THR-0294/<br>THR-0299<br>a |

<sup>a</sup>. Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

[Komatsu and Yabuzaki, 1998b, THR-0294; Ohta, 1998b, THR-0299]. No unusual weather conditions. Plot size 43–48 m2. Knapsack power sprayer, spray volume 2000–3000 L/ha. Fruits (2 kg, > 18 units) were sampled at normal harvest. Stems (i.e. scar in report [Gaston, 2010d]. Samples were stored at -20 °C for 1–9 days or 34–104 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.002 or < 0.005 mg/kg) or for individual concurrent method recoveries (92%–95% or 77%–88%).

# Sweet corn

Supervised residue trials on sweet corn were conducted in the USA (1999) and Canada (1999). Maize was harvested at early milk stage and ears were collected. Results for sweet corn (kernels plus cobs with husks removed, K + CWHR) are shown in Table 88 (seed treatment).

Table 88 Residues of clothianidin in sweet corn (K + CWHR) after seed treatment and subsequent culture in the field

| Trial, Location<br>Country, year<br>(Variety) | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/<br>seed | g<br>ai/ha | method,<br>last<br>application | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg |        | reference     |
|-----------------------------------------------|----------------------------------|----|---------------------|-------------------|------------|--------------------------------|--------------|-----|---------|------------------|--------|---------------|
| BAY-T5001-<br>99H,                            | 600<br>FS                        | 1  | na                  | 2.0               | 163        | Seed<br>treatment,             | loam         | 98  | 24      | < 0.01           | < 0.01 | M-<br>106757- |

| Trial, Location                                                                                             | Form             | No | Inter      | mg          | g     | method,                                    | soil                                        | DAT                   | %                    | parent,                              |                                      | reference                  |
|-------------------------------------------------------------------------------------------------------------|------------------|----|------------|-------------|-------|--------------------------------------------|---------------------------------------------|-----------------------|----------------------|--------------------------------------|--------------------------------------|----------------------------|
| Country, year<br>(Variety)                                                                                  | g<br>ai/kg,<br>g |    | val<br>(d) | ai/<br>seed | ai/ha | last<br>application                        | type                                        | 2                     | dm                   | mg/kg                                |                                      |                            |
| Germansville,<br>Pennsylvania,<br>USA, 1999                                                                 | ai/L             |    |            |             |       | 4 May,<br>BBCH nr                          |                                             |                       |                      |                                      |                                      | 01-1<br>a                  |
| (Pioneer 3346)<br>BAY-T5002-<br>99H,<br>Germansville,<br>Pennsylvania,<br>USA, 1999<br>(Pioneer<br>35N05Bt) | 600<br>FS        | 1  | na         | 2.0         | 175   | Seed<br>treatment,<br>21 May,<br>BBCH nr   | loam                                        | 88                    | 22                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| TGA-T5003-<br>99D, Tifton,<br>Georgia,<br>USA, 1999<br>(Pioneer 3167)                                       | 600<br>FS        | 1  | na         | 2.0         | 167   | Seed<br>treatment,<br>20 April,<br>BBCH nr | loamy<br>sand                               | 86<br>91<br>97<br>103 | 22<br>26<br>31<br>39 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T-5004-<br>99H, Bascom,<br>Florida,<br>USA, 1999<br>(Pioneer 3167)                                      | 600<br>FS        | 1  | na         | 2.0         | 172   | Seed<br>treatment,<br>19 March,<br>BBCH nr | ns                                          | 89                    | 21                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| WIN-T5005-<br>99D, Oxford,<br>Indiana,<br>USA, 1999<br>(Pioneer 3394)                                       | 600<br>FS        | 1  | na         | 2.0         | 166   | Seed<br>treatment,<br>26 April,<br>BBCH nr | ns                                          | 85<br>91<br>95<br>100 | 19<br>21<br>25<br>29 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5008-<br>99H, Carlyle,<br>Illinois,<br>USA, 1999<br>(Pioneer<br>32K61)                                 | 600<br>FS        | 1  | na         | 2.0         | 168   | Seed<br>treatment,<br>26 May,<br>BBCH nr   | silt<br>loam                                | 75                    | 22                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| BAY-T5009-<br>99H, Hedrick,<br>Iowa,<br>USA, 1999<br>(Pioneer<br>35N05Bt)                                   | 600<br>FS        | 1  | na         | 2.0         | 168   | Seed<br>treatment,<br>26 May,<br>BBCH nr   | ns                                          | 80                    | 22                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| BAY-T5010-<br>99H, Richland,<br>Iowa, USA,<br>1999 (Pioneer<br>3394)                                        | 600<br>FS        | 1  | na         | 2.0         | 168   | Seed<br>treatment,<br>26 May,<br>BBCH nr   | silt<br>loam<br>or<br>silty<br>clay<br>loam | 81                    | 23                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| BAY-T5015-<br>99H,<br>Noblesville,<br>Indiana,<br>USA, 1999<br>(Pioneer Hybrid<br>32K61)                    | 600<br>FS        | 1  | na         | 2.0         | 165   | Seed<br>treatment,<br>3 May,<br>BBCH nr    | ns                                          | 88                    | 26                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| FCA-T5019-<br>99H, Fresno,<br>California,<br>USA, 1999<br>(D: N17-C5)                                       | 600<br>FS        | 1  | na         | 2.0         | 187   | Seed<br>treatment,<br>12 May,<br>BBCH nr   | sandy<br>loam                               | 75                    | 24                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| BAY-T5020-<br>99H,<br>Hermiston,<br>Oregon,<br>USA, 1999                                                    | 600<br>FS        | 1  | na         | 2.0         | 179   | Seed<br>treatment,<br>4 May,<br>BBCH nr    | ns                                          | 108                   | 22                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |

| Trial, Location<br>Country, year<br>(Variety)                                              | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/<br>seed | g<br>ai/ha | method,<br>last<br>application           | soil<br>type | DAT                  | %<br>dm              | parent,<br>mg/kg                     |                                      | reference                  |
|--------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|-------------------|------------|------------------------------------------|--------------|----------------------|----------------------|--------------------------------------|--------------------------------------|----------------------------|
| (D: N17-C5)                                                                                |                                  |    |                     |                   |            |                                          |              |                      |                      |                                      |                                      |                            |
| BAY-T5021-<br>99H,<br>Hillsborrow,<br>Oregon,<br>USA, 1999<br>(D: N17-C5)                  | 600<br>FS                        | 1  | na                  | 2.0               | 173        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 111                  | 29                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| BAY-5022-<br>99D,<br>Branchton,<br>Ontario,<br>Canada, 1999<br>(D: N17-C5)                 | 600<br>FS                        | 1  | na                  | 2.0               | 161        | Seed<br>treatment,<br>31 May,<br>BBCH nr | ns           | 72<br>77<br>84<br>91 | 18<br>21<br>22<br>27 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5023-<br>99H,<br>St-Paul-<br>d'Abbotsford,<br>Quebec,<br>Canada, 1999<br>(C: N2555Bt) | 600<br>FS                        | 1  | na                  | 2.0               | 167        | Seed<br>treatment,<br>18 May,<br>BBCH nr | ns           | 83                   | 19                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| BAY-T5024-<br>99H,<br>St-Pie, Quebec,<br>Canada, 1999<br>(C: N2555Bt)                      | 600<br>FS                        | 1  | na                  | 2.0               | 167        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 80                   | 20                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| BAY-T5025-<br>99H, St-Pie-de-<br>Bagot, Quebec,<br>Canada, 1999<br>(D: N17-C5)             | 600<br>FS                        | 1  | na                  | 2.0               | 167        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 80                   | 23                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |
| BAY-T5027-<br>99H, Taber,<br>Alberta,<br>Canada, 1999<br>(Novartis 4066)                   | 600<br>FS                        | 1  | na                  | 2.0               | 122        | Seed<br>treatment,<br>5 May,<br>BBCH nr  | ns           | 113                  | 23                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a |

ns = not stated

nr = not relevant

<sup>a</sup> Results came from two replicate field samples

[Duah, 2000e, M-106757-01-1]. No unusual weather conditions. Plot size 84-520 m2. Seeds were planted manually, by tractor (mounted or by), row planter. The actual seeding rate was 60920-93663 seeds/ha. Replicate field samples of green forage with ears ( $\geq 2.27 \text{ kg}$ , > 12 units) were sampled at early milk stage. Samples were stored at  $-23.3 \pm 3$  °C for 157-248 days. Samples were analysed using HPLC-MS-MS method 109240 (= 00552/M001). Results were not corrected for control levels (< 0.002 mg/kg) or for concurrent method recoveries (early milkstage corn ears, individual 65%-99%, average 84%). Information on soil type was not available in the report. However, some of the same trial locations have been used in more recent field trials and soil type information came from these data [Gaston, 2010f].

### Tomatoes

Supervised residue trials on tomatoes were conducted in Japan (1998, 2003 and 2004), the USA (2006 and 2007). Results are shown in Table 89 (foliar spray treatment in the field), Table 90 (soil treatment in the field), Table 91 (combined indoor soil and foliar treatments) and Table 92 (indoor soil treatment).

| Trial<br>Country, year                                                                   | Form      | No | Inter<br>val | g<br>ai/ha | g ai/hL    | method,<br>timing                                               | soil<br>type  | DAT                     | parent,<br>mg/kg                             |                                             | reference           |
|------------------------------------------------------------------------------------------|-----------|----|--------------|------------|------------|-----------------------------------------------------------------|---------------|-------------------------|----------------------------------------------|---------------------------------------------|---------------------|
| (Variety)<br>SARS-07-80-NY,<br>Wayne,<br>New York,<br>USA, 2007<br>(processing:          | 500<br>WG | 2  | (d)<br>7     | 112<br>113 | 40<br>40   | Foliar<br>spray;<br>23 Aug<br>soil 90%<br>cover                 | loamy<br>sand | 7                       | 0.01                                         | < 0.01                                      | THR-<br>0578<br>a   |
| Roma)<br>SARS-07-80-NY,<br>Wayne,<br>New York,<br>USA, 2007<br>(processing:<br>Roma)     | 500<br>WG | 2  | 7            | 562<br>566 | 200<br>200 | Foliar<br>spray;<br>23 Aug<br>soil 90%<br>cover                 | loamy<br>sand | 7                       | < 0.01                                       | 0.026                                       | THR-<br>0578<br>a b |
| SARS-07-80-GA<br>Clarke, Georgia,<br>USA, 2007<br>(Large fresh:<br>Better Boy)           | 500<br>WG | 2  | 7            | 113<br>112 | 72<br>76   | Foliar<br>spray;<br>24 July;<br>soil 80%<br>cover               | laom          | 7                       | 0.018                                        | 0.016                                       | THR-<br>0578<br>a c |
| SARS-07-80-FL1<br>Martin, Florida,<br>USA, 2007<br>(Large fresh;<br>Florida 47)          | 500<br>WG | 2  | 7            | 111<br>111 | 24<br>23   | Foliar<br>spray;<br>23 Jan;<br>soil 100%<br>cover by<br>mulch   | sand          | 7                       | 0.042                                        | 0.030                                       | THR-<br>0578<br>a   |
| SARS-07-80-FL2<br>Seminole,<br>Florida,<br>USA, 2007<br>(Large fresh:<br>Better Boy)     | 500<br>WG | 2  | 7            | 111<br>113 | 40<br>40   | Foliar<br>spray;<br>22 May;<br>soil 100%<br>cover               | sand          | 1<br>4<br>7<br>10<br>13 | 0.018<br>< 0.01<br>0.012<br>< 0.01<br>< 0.01 | 0.012<br>0.012<br>0.012<br>< 0.01<br>< 0.01 | THR-<br>0578<br>a c |
| SARS-07-80-MO<br>Shelby, Missouri,<br>USA, 2007<br>(Large fresh:<br>Celebrity)           | 500<br>WG | 2  | 7            | 111<br>111 | 49<br>49   | Foliar<br>spray;<br>24 Jul;<br>soil 30%<br>cover                | silt<br>loam  | 7                       | < 0.01                                       | < 0.01                                      | THR-<br>0578<br>a   |
| SARS-07-80-<br>CA1<br>Lake, California,<br>USA, 2007<br>(Large fresh: Red<br>Sun)        | 500<br>WG | 2  | 7            | 114<br>117 | 6.0<br>6.0 | Foliar<br>spray;<br>17 Jul;<br>soil 100%<br>cover by<br>plastic | loam          | 7                       | 0.011                                        | < 0.01                                      | THR-<br>0578<br>a c |
| SARS-07-80-<br>CA2,<br>Madera, CA,<br>USA, 2007<br>(Large fresh:<br>Wolverine)           | 500<br>WG | 2  | 7            | 113<br>112 | 40<br>40   | Foliar<br>spray;<br>27 Jul;<br>soil 20%<br>cover                | loamy<br>sand | 7                       | 0.028                                        | 0.020                                       | THR-<br>0578<br>a   |
| SARS-07-80-<br>CA3<br>Madera, CA,<br>USA, 2007<br>(Cherry tomato:<br>Sun Gold<br>Hybrid) | 500<br>WG | 2  | 7            | 110<br>110 | 39<br>39   | Foliar<br>spray;<br>9 Jul;<br>soil 30%<br>cover                 | loamy<br>sand | 7                       | 0.036                                        | 0.024                                       | THR-<br>0578<br>a   |
| SARS-07-80-<br>CA4<br>Monterey, CA,<br>USA, 2007<br>(Processing:<br>Mariana)             | 500<br>WG | 2  | 7            | 116<br>115 | 30<br>30   | Foliar<br>spray;<br>5 Sept;<br>soil 100%<br>cover               | sandy<br>loam | 7                       | 0.022                                        | 0.026                                       | THR-<br>0578<br>a   |

| Trial<br>Country, year<br>(Variety)                                                    | Form      | No | Inter<br>val<br>(d) | g<br>ai/ha | g ai/hL  | method,<br>timing                                 | soil<br>type  | DAT | parent,<br>mg/kg |        | reference         |
|----------------------------------------------------------------------------------------|-----------|----|---------------------|------------|----------|---------------------------------------------------|---------------|-----|------------------|--------|-------------------|
| SARS-07-80-<br>CA5<br>Monterey, CA<br>USA, 2007<br>(cherry tomato:<br>Super Sweet 100) | 500<br>WG | 2  | 7                   | 111<br>108 | 30<br>30 | Foliar<br>spray;<br>5 Sept;<br>soil 100%<br>cover | sandy<br>loam | 7   | 0.029            | 0.018  | THR-<br>0578<br>a |
| SARS-07-80-<br>CA6<br>Glen CA,<br>USA, 2007<br>(processing:<br>APT 410)                | 500<br>WG | 2  | 7                   | 111<br>112 | 59<br>60 | Foliar<br>spray;<br>6 Aug;<br>soil 90%<br>cover   | sandy<br>loam | 7   | < 0.01           | < 0.01 | THR-<br>0578<br>a |
| SARS-07-80-<br>CA7<br>Fresno, CA,<br>USA, 2007<br>(cherry tomato:<br>Naomi)            | 500<br>WG | 2  | 7                   | 109<br>113 | 60<br>60 | Foliar<br>spray;<br>22 June;<br>soil 60%<br>cover | sandy<br>loam | 7   | 0.027            | 0.025  | THR-<br>0578<br>a |

<sup>a</sup> Results come from two replicate field samples

<sup>b</sup> Trials conducted at 5× exaggerated rate for processing purposes

 $^\circ$  Samples were stored above –10  $^\circ$  C (–1  $^\circ$  C for 13 days, SARS-07-80-GA, –6.7  $^\circ$  C for 10–22 days SARS-07-80-FL2, – 7.8  $^\circ$  C for 15 days SARS-07-80-CA1).

[Stewart, 2008a, THR-0578]. No unusual weather conditions. Plot size 12-134 m2. Backpack sprayer, spray volume 160-2000 L/ha. Fruits (12 large or 24 small units, at least 2 kg) were sampled at normal harvest. Samples were stored at -10 °C or lower for 10-160 days unless stated otherwise. Samples were analysed using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (individual 80%-116%; average 93%-93%).

| Trial<br>Country, year<br>(Variety)                                                         | Form      | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                        | soil<br>type  | DAT | parent,<br>mg/kg |        | reference    |
|---------------------------------------------------------------------------------------------|-----------|----|---------------------|------------|------------|----------------------------------------------------------|---------------|-----|------------------|--------|--------------|
| SARS-07-80-<br>FL1, Martin<br>Florida,<br>USA,<br>2006-2007<br>(Large Fresh:<br>Florida 47) | 500<br>WG | 1  | nr                  | 222        | 22         | Soil<br>drench,<br>1 Nov 2006<br>at planting             | sand          | 82  | 0.025            | 0.028  | THR-<br>0578 |
| SARS-07-80-<br>CA2,<br>Madera, CA,<br>USA, 2007<br>(Large fresh:<br>Wolverine)              | 500<br>WG | 1  | nr                  | 226        | 81         | Soil chemi<br>gation,<br>13 Jul;<br>in growing<br>season | loamy<br>sand | 21  | < 0.01           | < 0.01 | THR-<br>0578 |

nr = not relevant

<sup>a</sup> Results come from two replicate field samples

[Stewart, 2008a, THR-0578]. No unusual weather conditions. Plot size 46–84 m2. Soil drench at transplanting using a syringe. Soil chemigation during the growing season using an injection pump. Fruits (12 large units, at least 2 kg) were sampled at normal harvest. Samples were stored at -10 °C or lower for 17–160 days. Samples were analysed using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (individual 80%–116%; average 93%–93%).

| Trial<br>Country, year<br>(Variety)                                         | Form                   | No          | Inter<br>val<br>(d) | g ai/ha                                            | g<br>ai/hL      | method,<br>timing                                                          | soil<br>type | DAT          | parent,<br>mg/kg        |                             | reference                        |
|-----------------------------------------------------------------------------|------------------------|-------------|---------------------|----------------------------------------------------|-----------------|----------------------------------------------------------------------------|--------------|--------------|-------------------------|-----------------------------|----------------------------------|
| Kitagami-shi;<br>Iwate<br>Japan, 2004<br>(grape<br>tomato:<br>Chaplin)      | 5 GR<br>+<br>160<br>SP | 1<br>+<br>3 | 83;<br>7;<br>7      | 0.01 g ai/hill<br>+<br>240;<br>280;<br>320 g ai/ha | -;<br>3×<br>8.0 | Soil applic<br>+<br>3 foliar<br>sprays;<br>18 Aug;<br>230 cm               | clay<br>loam | 1<br>7<br>14 | 0.60<br>0.56<br>0.60    | 0.46<br>0.66<br>0.64        | THR-<br>0541/<br>THR-0542<br>a   |
| Matsusir-<br>machi;<br>Nagano<br>Japan, 2003<br>(grape<br>tomato:<br>Chiba) | 5 GR<br>+<br>160<br>SP | 1<br>+<br>3 | 62;<br>7;<br>7      | 0.01 g ai/hill<br>+<br>3×<br>240 g ai/ha           | -;<br>3×<br>8.0 | Soil applic<br>+<br>3 foliar<br>sprays;<br>23 Jul;<br>BBCH ns              | clay<br>loam | 1<br>7<br>14 | 0.90<br>0.71<br>0.47    | 0.64<br>0.53<br>0.48        | THR-<br>0541/<br>THR-0542<br>a   |
| Ibaraki;<br>JPPA<br>Japan, 1998<br>(House<br>Odoriko)                       | 5 GR<br>160<br>SP      | 1<br>+<br>3 | 48;<br>7;<br>7      | 0.01 g ai/hill<br>+<br>3×<br>200 g ai/ha           | -;<br>3×<br>8.0 | Soil applic<br>+<br>3 foliar<br>sprays;<br>15 June;<br>harvesting<br>stage | clay         | 1<br>3<br>7  | 0.22<br>0.21<br>0.23    | 0.21<br>0.22<br>0.19<br>b   | THR-<br>0304/<br>THR-0309<br>a c |
| Matsutou-shi;<br>Ishikawa<br>Japan, 1998<br>(Momotaro)                      | 5 GR<br>160<br>SP      | 1<br>+<br>3 | 59;<br>7<br>7       | 0.01 g ai/hill<br>3×<br>200 g ai/ha                | -;<br>3×<br>8.0 | Soil applic<br>+<br>3 foliar<br>sprays;<br>8 June;<br>harvesting<br>stage  | clay<br>loam | 1<br>3<br>7  | 0.067<br>0.058<br>0.054 | 0.12<br>0.053<br>0.062<br>b | THR-<br>0304/<br>THR-0309<br>a c |

Table 91 Residues of clothianidin in tomatoes (whole fruit) after combined indoor soil and foliar treatments

<sup>a</sup>. Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>b</sup> These samples were stored for 1–7 days at + 5 °C. This is only the case for one laboratory (right column); the samples from the other laboratory (left column) were stored at -20 °C.

<sup>c</sup> Number of fruits was below the minimum number of 12 required for sampling

[Yabuzaki and Mizukoshi, 2004c, THR-0541; Yokota, 2005b, THR-0542]. Greenhouse. Plot size 8–50 m2. A soil application at planting was followed by three foliar sprays using a power sprayer (3000-4000 L/ha). Fruits (2 kg, > 24 units) were sampled at normal harvest. The calyx was removed (i.e. hull in report [Gaston, 2010d]). Samples were stored at -20 °C for 0–14 days or 0–47 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.01 or < 0.05 mg/kg) or for average concurrent method recoveries (95%–105% or 84%–110%).

[Komatsu and Yabuzaki, 1998c, THR-0304; Ohta, 2000f, THR-0309]. Greenhouse. Plot size 19–27 m2. A soil application at planting was followed by three foliar sprays using a knapsack power sprayer, spray volume 2500 L/ha. Fruits (2 kg, 9–11 units) were sampled at normal harvest. Stems were removed (i.e. scar in report [Gaston, 2010d]). Samples were stored at -20 °C for 476–490 days or for 0–7 days at +5 °C (second laboratory). Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.002 mg/kg) or for average concurrent method recoveries (98%–100% or 93%–97%).

| Trial<br>Country, year<br>(Variety)                                  | Form | No | Inter<br>val<br>(d) | g ai/ha           | g<br>ai/hL | method,<br>timing                         | soil<br>type | DAT | parent,<br>mg/kg |        | reference                    |
|----------------------------------------------------------------------|------|----|---------------------|-------------------|------------|-------------------------------------------|--------------|-----|------------------|--------|------------------------------|
| Kitagami-shi,<br>Iwate,<br>Japan, 2004<br>(grape tomato:<br>Chaplin) | 5 GR | 1  | nr                  | 0.01 g<br>ai/hill | nr         | Soil<br>applic;<br>13 May;<br>at planting | clay<br>loam | 98  | < 0.05           | < 0.01 | THR-0541/<br>THR-0542<br>a b |
| Nagano<br>Japan, 2003                                                | 5 GR | 1  | nr                  | 0.01 g<br>ai/hill | nr         | Soil<br>applic.;                          | clay<br>loam | 77  | < 0.05           | < 0.01 | THR-0541/<br>THR-0542        |

| Trial<br>Country, year<br>(Variety) | Form | No | Inter<br>val<br>(d) | g ai/ha | g<br>ai/hL | method,<br>timing     | soil<br>type | DAT | parent,<br>mg/kg | reference |
|-------------------------------------|------|----|---------------------|---------|------------|-----------------------|--------------|-----|------------------|-----------|
| (grape tomato:<br>Chiba)            |      |    |                     |         |            | 8 May;<br>at planting |              |     |                  | a b       |

nr = not relevant

<sup>a</sup>.Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>b</sup> The LOQ of laboratory A was 0.05 mg/kg and for laboratory B was 0.01 mg/kg. Only the lower results of < 0.01 mg/kg are taken into account.

[Yabuzaki and Mizukoshi, 2004c, THR-0541; Yokota, 2005b, THR-0542]. Greenhouse. Plot size 8–50 m2. Fruits (2 kg, > 24 units) were sampled at normal harvest. The calyx was removed (i.e. hull in report [Gaston, 2010d]). Samples were stored at –20 °C for 0–14 days or 0–47 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for fruits. Results were not corrected for control levels (< 0.01 or < 0.05 mg/kg) or for average concurrent method recoveries (95%–105% or 84%–110%).

## Leafy vegetables

The Meeting received supervised residue trials on head and leaf lettuce. Trials were available for foliar spray treatment in the field as well as for soil treatment in the field.

## Lettuce, head

Supervised residue trials on head lettuce were conducted in the USA (2006 and 2007). Results are shown in Table 93 (foliar spray treatment in the field) and Table 94 (soil treatment in the field). Both clothianidin and TMG were measured in the USA trials.

| Trial<br>Country, year<br>(Variety)                                               | Form      | No | Inter<br>Val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                    | soil<br>type  | DAT | parent,<br>mg/kg         |                          | reference                                         |
|-----------------------------------------------------------------------------------|-----------|----|---------------------|------------|------------|------------------------------------------------------|---------------|-----|--------------------------|--------------------------|---------------------------------------------------|
| SARS-07-74-<br>NY, Wayne,<br>New York,<br>USA 2007<br>(Skyline MI)                | 500<br>WG | 2  | 7                   | 115<br>114 | 52<br>52   | Foliar<br>spray;<br>17 July;<br>50% soil<br>cover    | loamy<br>sand | 7   | < 0.01<br>TMG:<br>< 0.01 | 0.014<br>TMG:<br>< 0.01  | THR-0580<br>head with<br>wrapper<br>leaves<br>a   |
|                                                                                   |           |    |                     |            |            |                                                      |               |     | < 0.01<br>TMG:<br>< 0.01 | < 0.01<br>TMG:<br>< 0.01 | head only<br><sup>a</sup>                         |
| SARS-07-74-<br>FL<br>Martin,<br>Florida,<br>USA, 2006-<br>2007<br>(Skyline)       | 500<br>WG | 2  | 7                   | 111<br>111 | 34<br>33   | Foliar<br>spray;<br>26 Dec<br>2006;<br>100%<br>mulch | sand          | 7   | 0.11<br>TMG:<br>< 0.01   | 0.20<br>TMG:<br>0.011    | THR-0580<br>head with<br>wrapper<br>leaves<br>a b |
| SARS-07-74-<br>CA1<br>Aromas,<br>California,<br>USA 2007<br>(Jupiter)             | 500<br>WG | 2  | 7                   | 112<br>108 | 30<br>30   | Foliar<br>spray;<br>18 Aug;<br>95% soil<br>cover     | sandy<br>loam | 7   | 0.056<br>TMG:<br>< 0.01  | 0.13<br>TMG:<br>< 0.01   | THR-0580<br>head with<br>wrapper<br>leaves<br>a   |
| SARS-07-74-<br>CA2<br>Fresno,<br>California,<br>USA, 2007<br>(Great Lakes<br>659) | 500<br>WG | 2  | 7                   | 114<br>113 | 40<br>40   | Foliar<br>spray;<br>8 Mar;<br>25% soil<br>cover      | loamy<br>sand | 7   | 0.46<br>TMG:<br>0.030    | 0.59<br>TMG:<br>0.041    | THR-0580<br>head with<br>wrapper<br>leaves<br>a   |
| ,                                                                                 |           |    |                     |            |            |                                                      |               |     | 0.012<br>TMG:            | 0.024<br>TMG:            | head only                                         |

| Trial<br>Country, year<br>(Variety)                                       | Form      | No | Inter<br>Val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                | soil<br>type  | DAT                                                     | parent,<br>mg/kg                                                                          |                                                                                           | reference                                       |
|---------------------------------------------------------------------------|-----------|----|---------------------|------------|------------|--------------------------------------------------|---------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                           |           |    |                     |            |            |                                                  |               |                                                         | < 0.01                                                                                    | < 0.01                                                                                    |                                                 |
| SARS-07-74-<br>CA3,<br>Madera,<br>California,<br>USA, 2007<br>(Greenberg) | 500<br>WG | 2  | 7                   | 112<br>113 | 40<br>40   | Foliar<br>spray;<br>11 May;<br>30% soil<br>cover | loamy<br>sand | 7                                                       | 0.56<br>TMG:<br>0.044                                                                     | 0.42<br>TMG:<br>0.036                                                                     | THR-0580<br>head with<br>wrapper<br>leaves<br>a |
| SARS-07-74-<br>CA4<br>Madera,<br>California,<br>USA, 2007<br>(Sure shot)  | 500<br>WG | 2  | 7                   | 114<br>114 | 40<br>40   | Foliar<br>spray;<br>10 May;<br>30% soil<br>cover | loamy<br>sand | 1<br>4<br>7<br>10<br>13<br>-<br>1<br>4<br>7<br>10<br>13 | 0.75<br>0.42<br>0.43<br>0.25<br>0.31<br>TMG:<br>0.044<br>0.045<br>0.042<br>0.033<br>0.039 | 0.56<br>0.41<br>0.30<br>0.37<br>0.21<br>TMG:<br>0.044<br>0.040<br>0.035<br>0.034<br>0.031 | THR-0580<br>head with<br>wrapper<br>leaves<br>a |

<sup>a</sup> Results came from two replicate field samples

<sup>b</sup> Heads not formed correctly because of wind storm and sandblasting.

[Stewart, 2008b, THR-0580]. No unusual weather conditions. Plot size 37-111 m2. Backpack sprayer, spray volume 220–375 L/ha. Head lettuce (1.4 kg or 12 heads) were sampled at normal harvest. Larges heads were sectioned from top to bottom in 2–4 parts. Samples were stored at -12 °C for 26–125 days. Samples were analysed for clothianidin and TMG using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (85%–103% parent, 77–90% TMG).

| Table 94 Residues of clothianidin and | TMG in head lettuce after  | soil treatment  | in the field |
|---------------------------------------|----------------------------|-----------------|--------------|
| ruore ) i reorades or crotinamani ana | This in neur lettuce arter | Som diedennenie | III the here |

| Trial<br>Country,<br>year<br>(Variety)                                         | Formulation<br>(g ai/L) | No | Inter<br>Val<br>(d0 | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                                              | soil<br>type | DAT | parent,<br>mg/kg               |                         | reference                                             |
|--------------------------------------------------------------------------------|-------------------------|----|---------------------|------------|------------|--------------------------------------------------------------------------------|--------------|-----|--------------------------------|-------------------------|-------------------------------------------------------|
| SARS-<br>07-74-FL,<br>Martin,<br>Florida,<br>USA<br>2006-<br>2007<br>(Skyline) | 500 WG                  | 1  | nr                  | 224        | 7.8        | Drip<br>irrigation;<br>1 Dec<br>2006<br>in growing<br>season;<br>100%<br>mulch | sand         | 32  | <u>0.044</u><br>TMG:<br>< 0.01 | 0.042<br>TMG:<br>< 0.01 | THR-<br>0580<br>head with<br>wrapper<br>leaves<br>a b |

<sup>a</sup> Results came from two replicate plots

<sup>b</sup> Heads not formed correctly because of wind storm and sandblasting.

[Stewart, 2008b, THR-0580]. No unusual weather conditions. Plot size 56 m2. Backpack sprayer, spray volume 2900 L/ha. Head lettuce (1.4 kg or 12 heads) were sampled at normal harvest. Larges heads were sectioned from top to bottom in 2–4 parts. Samples were stored at –12 °C for 26–125 days. Samples were analysed for clothianidin and TMG using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (85%–103% parent, 77–90% TMG).

## Lettuce, leaf

Supervised residue trials on leaf lettuce were conducted in the USA (2006 and 2007). Results are shown in Table 95 (foliar spray treatment in the field) and Table 96 (soil treatment in the field). Both clothianidin and TMG were measured in the USA trials.

| Trial<br>Country, year<br>(Variety)                                  | Form      | No | Inter<br>val<br>d | g<br>ai/ha | g<br>ai/hL | method,<br>timing                                   | soil<br>type  | DAT | parent,<br>mg/kg      |                       | reference         |
|----------------------------------------------------------------------|-----------|----|-------------------|------------|------------|-----------------------------------------------------|---------------|-----|-----------------------|-----------------------|-------------------|
| SARS-07-73-<br>GA<br>Georgia, USA<br>2006–2007<br>(Slobolt)          | 500<br>WG | 2  | 7                 | 113<br>114 | 46<br>45   | Foliar<br>spray<br>5 Dec 06<br>50% soil<br>cover    | loamy<br>sand | 7   | 0.23<br>TMG:<br>0.039 | 0.20<br>TMG:<br>0.033 | THR-<br>0581<br>a |
| SARS-07-73-FL<br>Florida, USA<br>2006–2007<br>(Manatee)              | 500<br>WG | 2  | 7                 | 113<br>111 | 34<br>33   | Foliar<br>spray<br>26 Dec 06<br>100%<br>mulch       | sand          | 7   | 0.99<br>TMG:<br>0.075 | 1.2<br>TMG:<br>0.078  | THR-<br>0581<br>a |
| SARS-07-73-<br>CA1<br>California,<br>USA, 2007<br>(2 Star)           | 500<br>WG | 2  | 7                 | 110<br>112 | 30<br>30   | Foliar<br>spray;<br>2 May;<br>bare<br>ground        | clay<br>loam  | 7   | 0.27<br>TMG:<br>0.015 | 0.28<br>TMG:<br>0.018 | THR-<br>0581<br>a |
| SARS-07-73-<br>CA2<br>California,<br>USA, 2007<br>(Tango)            | 500<br>WG | 2  | 7                 | 109<br>114 | 17<br>17   | Foliar<br>spray;<br>29 May;<br>ns                   | clay<br>loam  | 7   | 0.34<br>TMG:<br>0.046 | 0.29<br>TMG:<br>0.040 | THR-<br>0581<br>a |
| SARS-07-73-<br>CA3<br>California, USA<br>2006–2007<br>(Waldmanns)    | 500<br>WG | 2  | 7                 | 111<br>112 | 60<br>60   | Foliar<br>spray;<br>21 Nov 06;<br>20% soil<br>cover | sandy<br>loam | 7   | 0.73<br>TMG:<br>0.046 | 0.72<br>TMG:<br>0.051 | THR-<br>0581<br>a |
| SARS-07-73-<br>CA4<br>California,<br>USA, 2007<br>(Bengham<br>green) | 500<br>WG | 2  | 7                 | 113<br>111 | 40<br>40   | Foliar<br>spray;<br>3 May;<br>30% soil<br>cover     | loamy<br>sand | 7   | 0.64<br>TMG:<br>0.058 | 0.62<br>TMG:<br>0.058 | THR-<br>0581<br>a |

| Table 95 Residues of clothianid | in and TMG in leaf lettuce a | after foliar treatment in the field |
|---------------------------------|------------------------------|-------------------------------------|
|                                 |                              |                                     |

<sup>a</sup> Results came from two replicate field samples

[Stewart, 2008c, THR-0581]. No unusual weather conditions. Plot size 12-93 m2. Backpack or tractor mounted sprayer, spray volume 190–640 L/ha. Leaf lettuce (1 kg or 12 units) were sampled at normal harvest. Samples were stored at -15 °C for 4-222 days. Samples were analysed for clothianidin and TMG using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (83%–97% parent, 75%–101% TMG).

Table 96 Residues of clothianidin and TMG in leaf lettuce after soil treatment in the field

| Trial<br>Country, year<br>(Variety)                                 | Form      | No | Inter<br>val<br>d | g<br>ai/ha | g<br>ai/hL | method,<br>timing                           | soil type     | DAT       | parent,<br>mg/kg        |                                | reference         |
|---------------------------------------------------------------------|-----------|----|-------------------|------------|------------|---------------------------------------------|---------------|-----------|-------------------------|--------------------------------|-------------------|
| SARS-07-73-<br>CA4<br>California, USA<br>2007<br>(Bengham<br>green) | 500<br>WG | 1  | nr                | 227        | 80         | Side dress;<br>19 Apr;<br>50% soil<br>cover | loamy<br>sand | <u>22</u> | 0.043<br>TMG:<br>< 0.01 | <u>0.046</u><br>TMG:<br>< 0.01 | THR-<br>0581<br>a |

<sup>a</sup> Results came from two replicate field samples

[Stewart, 2008c, THR-0581]. No unusual weather conditions. Plot size 70 m2. Backpack sprayer, spray volume 280 L/ha. Leaf lettuce (1 kg or 12 units) were sampled at normal harvest. Samples were stored at -15 °C for 4–222 days. Samples were analysed for clothianidin and TMG using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (83%–97% parent, 75%–101% TMG).

# Pulses

The Meeting received supervised residue trials on dry harvested soya beans. Trials were available for foliar spray treatment in the field and for combined soil and foliar treatments in the field.

Soya bean (dry)

Supervised residue trials on dry harvested soya beans were conducted in Japan (2003, 2004 and 2005) and the USA (2007). Results are shown in Table 97 (foliar spray treatment in the field) and Table 98 (combined soil and foliar treatments in the field). Residue levels in the Japanese trials are not obtained immediately after harvest (= RAC) but after a considerate drying period (10–24 days).

Table 97 Residues of clothianidin in soya bean (mature dry seeds) after foliar treatment in the field

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                                    | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method, last application                           | soil type             | DAT | parent,<br>mg/kg |        | reference       |
|----------------------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|----------------------------------------------------|-----------------------|-----|------------------|--------|-----------------|
| SARS-07-<br>86-GA1<br>Tift,<br>Georgia,<br>USA, 2007<br>(NK-580-<br>P2)                | 500<br>WG                     | 2  | 7                   | 113<br>112 | 56<br>53   | Foliar<br>spray,<br>9 Oct.,<br>BBCH not<br>stated  | Loamy<br>sand         | 21  | < 0.01           | < 0.01 | THR-0585<br>c   |
| SARS-07-<br>86-GA2,<br>Clarke,<br>Georgia,<br>USA, 2007<br>(576-L9)                    | 500<br>WG                     | 2  | 7                   | 111<br>112 | 48<br>48   | Foliar<br>spray,<br>17 Oct.,<br>BBCH not<br>stated | Loam                  | 21  | < 0.01           | 0.016  | THR-0585<br>c   |
| SARS-07-<br>86-AR1,<br>Crittenden,<br>Arkansas,<br>USA<br>2007<br>(AG4903)             | 500<br>WG                     | 2  | 7                   | 112<br>112 | 85<br>85   | Foliar<br>spray,<br>20 Aug.,<br>BBCH not<br>stated | Silt<br>loam          | 21  | < 0.01           | < 0.01 | THR-0585<br>a c |
| SARS-07-<br>86-AR2<br>Jackson,<br>Arkansas,<br>USA<br>2007<br>(LS55-<br>56NRR)         | 500<br>WG                     | 2  | 7                   | 112<br>113 | 60<br>60   | Foliar<br>spray,<br>9 Oct.,<br>BBCH not<br>stated  | Sandy<br>loam         | 21  | < 0.01           | < 0.01 | THR-0585<br>c   |
| SARS-07-<br>86-AR2<br>Jackson,<br>Arkansas,<br>USA<br>2007<br>(LS55-<br>56NRR)         | 500<br>WG                     | 2  | 7                   | 562<br>561 | 300<br>300 | Foliar<br>spray,<br>9 Oct.,<br>BBCH not<br>stated  | Sandy<br>loam         | 21  | < 0.01           | < 0.01 | ТНR-0585<br>b с |
| SARS-07-<br>86-AR3<br>Arkansas,<br>Arkansas,<br>USA<br>2007<br>(Schillinger<br>457 RC) | 500<br>WG                     | 2  | 7                   | 117<br>107 | 112<br>111 | Foliar<br>spray,<br>27 Aug.,<br>BBCH not<br>stated | Silt<br>loam          | 21  | < 0.01           | < 0.01 | THR-0585<br>c   |
| SARS-07-<br>86-IA<br>Jefferson,                                                        | 500<br>WG                     | 2  | 7                   | 112<br>113 | 92<br>68   | Foliar<br>spray,<br>26 Sept.,                      | Silty<br>clay<br>loam | 20  | < 0.01           | < 0.01 | THR-0585<br>c   |

| Trial,                  | Form        | No | Inter      | g          | g        | method, last          | soil type     | DAT      | parent, |         | reference     |
|-------------------------|-------------|----|------------|------------|----------|-----------------------|---------------|----------|---------|---------|---------------|
| Location<br>Country,    | g<br>ai/kg, |    | val<br>(d) | ai/ha      | ai/hL    | application           |               |          | mg/kg   |         |               |
| year                    | g ai/L      |    | (u)        |            |          |                       |               |          |         |         |               |
| (Variety)               | _           |    |            |            |          |                       |               |          |         | 1       |               |
| Iowa, USA<br>2007       |             |    |            |            |          | BBCH not stated       |               |          |         |         |               |
| (Pioneer                |             |    |            |            |          | stated                |               |          |         |         |               |
| 93M11)                  |             |    |            |            |          |                       |               |          |         |         |               |
| SARS-07-                | 500         | 2  | 7          | 115        | 78       | Foliar                | Silt          | 21       | < 0.01  | < 0.01  | THR-0585      |
| 86-IL<br>Clinton,       | WG          |    |            | 113        | 77       | spray,<br>20 Sept.,   | loam          |          |         |         | c             |
| Illinois,               |             |    |            |            |          | BBCH not              |               |          |         |         |               |
| USA                     |             |    |            |            |          | stated                |               |          |         |         |               |
| 2007<br>(S37-N4)        |             |    |            |            |          |                       |               |          |         |         |               |
| SARS-07-                | 500         | 2  | 7          | 112        | 60       | Foliar                | Loamy         | 21       | < 0.01  | < 0.01  | THR-0585      |
| 86-KS                   | WG          |    | ,          | 115        | 60       | spray,                | sand          |          |         |         | ac            |
| Stafford,               |             |    |            |            |          | 7 Sept,               |               |          |         |         |               |
| Kansas,<br>USA          |             |    |            |            |          | BBCH not stated       |               |          |         |         |               |
| 2007                    |             |    |            |            |          | stated                |               |          |         |         |               |
| (Pioneer                |             |    |            |            |          |                       |               |          |         |         |               |
| 93M96)<br>SARS-07-      | 500         | 2  | 7          | 112        | 64       | Foliar                | Sandy         | 21       | < 0.01  | < 0.01  | THR-0585      |
| 86-MN1,                 | WG          | 1  | ,          | 112        | 64       | spray,                | loam          | 21       | - 0.01  | - 0.01  | c             |
| Stearns,                |             |    |            |            |          | 28 Sept.,             |               |          |         |         |               |
| Minnesota,<br>USA, 2007 |             |    |            |            |          | BBCH not              |               |          |         |         |               |
| (Pioneer                |             |    |            |            |          | stated                |               |          |         |         |               |
| 90M60)                  |             |    |            |            |          |                       |               |          |         |         |               |
| SARS-07-                | 500         | 2  | 7          | 112        | 60<br>60 | Foliar                | Clay          | 20       | < 0.01  | < 0.01  | THR-0585      |
| 86-MN2,<br>Wilkin,      | WG          |    |            | 113        | 60       | spray,                | loam          |          |         |         | с             |
| Minnesota,              |             |    |            |            |          | 11 Sept.,<br>BBCH not |               |          |         |         |               |
| USA, 2007               |             |    |            |            |          | stated                |               |          |         |         |               |
| (DynaGro<br>33T06)      |             |    |            |            |          |                       |               |          |         |         |               |
| SARS-07-                | 500         | 2  | 7          | 111        | 69       | Foliar                | Clay          | 21       | < 0.01  | < 0.01  | THR-0585      |
| 86-MN3,                 | WG          |    |            | 114        | 68       | spray,                | loam          |          |         |         | c             |
| Freeborn,<br>Minnesota, |             |    |            |            |          | 8 Sept.,<br>BBCH not  |               |          |         |         |               |
| USA, 2007               |             |    |            |            |          | stated                |               |          |         |         |               |
| (Pioneer                |             |    |            |            |          |                       |               |          |         |         |               |
| 91M70)<br>SARS-07-      | 500         | 2  | 7          | 113        | 67       | Foliar                | Silt          | 11       | 0.027   | 0.030   | THR-0585      |
| SARS-07-<br>86-MO       | S00<br>WG   | 2  | /          | 113        | 67<br>67 | spray,                | loam          | 11       | < 0.027 | < 0.030 | C 1 HR-0585   |
| Shelby,                 |             |    |            |            |          | 13 Sept.,             |               | 21       | < 0.01  | < 0.01  |               |
| Missouri,<br>USA        |             |    |            |            |          | BBCH not              |               | 26<br>31 | < 0.01  | < 0.01  |               |
| 2007                    |             |    |            |            |          | stated                |               | 51       | < 0.01  | < 0.01  |               |
| (Pioneer                |             |    |            |            |          |                       |               |          |         |         |               |
| 93M95)                  | 500         |    | 7          | 117        | 20       | E-ti                  | 0:14          | 21       | < 0.01  | < 0.01  | THE OFF       |
| SARS-07-<br>86-ND1,     | 500<br>WG   | 2  | 7          | 116<br>117 | 80<br>80 | Foliar<br>spray,      | Silty<br>clay | 21       | < 0.01  | < 0.01  | THR-0585<br>c |
| Cass                    |             |    |            |            |          | 6 Sept.,              | loam          |          |         |         | Ť             |
| North                   |             |    |            |            |          | BBCH not              |               |          |         |         |               |
| Dakota,<br>USA, 2007    |             |    |            |            |          | stated                |               |          |         |         |               |
| (S030153)               |             |    |            |            |          |                       |               |          |         |         |               |
| SARS-07-                | 500         | 2  | 7          | 116        | 120      | Foliar                | Silt          | 21       | < 0.01  | < 0.01  | THR-0585      |
| 86-ND2,<br>Grand        | WG          |    |            | 112        | 120      | spray,                | loam          |          |         |         | c             |
| Forks,                  |             |    |            |            |          | 21 Sept.,             |               |          |         |         |               |
| North                   |             |    |            |            |          | BBCH not stated       |               |          |         |         |               |
| Dakota,                 |             |    |            |            |          | Stated                |               |          |         |         |               |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                                                    | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method, last application                            | soil type             | DAT                        | parent,<br>mg/kg                               |                                           | reference       |
|--------------------------------------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|-----------------------------------------------------|-----------------------|----------------------------|------------------------------------------------|-------------------------------------------|-----------------|
| USA, 2007<br>(RT0583)<br>SARS-07-<br>86-NE<br>York,<br>Nebraska,<br>USA<br>2007<br>(Midland<br>316 RS) | 500<br>WG                     | 2  | 7                   | 112<br>112 | 60<br>60   | Foliar<br>spray,<br>30 Aug.,<br>BBCH not<br>stated  | Silt<br>loam          | 12<br>16<br>21<br>25<br>30 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | <0.01<br><0.01<br><0.01<br><0.01<br>0.011 | THR-0585<br>c   |
| SARS-07-<br>86-OH<br>Fayette,<br>Ohio, USA<br>2007<br>(Crows<br>3817R)                                 | 500<br>WG                     | 2  | 7                   | 113<br>113 | 76<br>77   | Foliar<br>spray,<br>12 Sept.,<br>BBCH not<br>stated | Silty<br>clay<br>loam | 21                         | < 0.01                                         | < 0.01                                    | THR-0585<br>c   |
| SARS-07-<br>86-SD1<br>Yankton,<br>South<br>Dakota,<br>USA, 2007<br>(Croplan<br>RT2222)                 | 500<br>WG                     | 2  | 7                   | 112<br>112 | 76<br>77   | Foliar<br>spray,<br>26 Sept.,<br>BBCH not<br>stated | Loam                  | 27                         | < 0.01                                         | < 0.01                                    | THR-0585<br>a c |
| SARS-07-<br>86-SD2<br>Marshall,<br>South<br>Dakota,<br>USA, 2007<br>(Croplan<br>RT0887)                | 500<br>WG                     | 2  | 7                   | 112<br>112 | 120<br>120 | Foliar<br>spray,<br>5 Sept.,<br>BBCH not<br>stated  | Silt<br>loam          | 21                         | < 0.01                                         | < 0.01                                    | THR-0585<br>c   |
| SARS-07-<br>86-WI1<br>Walworth,<br>Wisconsin,<br>USA<br>2007<br>(Asgrow<br>AG2204)                     | 500<br>WG                     | 2  | 7                   | 113<br>114 | 64<br>68   | Foliar<br>spray,<br>19 Sept.,<br>BBCH not<br>stated | Silt<br>loam          | 21                         | < 0.01                                         | < 0.01                                    | THR-0585<br>a c |
| SARS-07-<br>86-W12<br>Pepin,<br>Wisconsin,<br>USA<br>2007<br>(BR-2101<br>RR)                           | 500<br>WG                     | 2  | 7                   | 116<br>114 | 60<br>60   | Foliar<br>spray,<br>19 Sept.,<br>BBCH not<br>stated | Sandy<br>Ioam         | 21                         | < 0.01                                         | < 0.01                                    | THR-0585<br>c   |

WG = water dispersable granule

<sup>a</sup> Samples were stored at temperatures above -10 °C: SARS-07-86-AR1 = -3 °C; SARS-07-86-KS = -8 °C; SARS-07-86-SD1 = +19 °C; SARS-07-86-WI1= -9 °C.

<sup>b</sup> Exaggerated dose rate, used for processing study.

<sup>c</sup> Results are from two replicate field samples

[Stewart, 2008e, THR-0585]. No unusual weather conditions. Plot size 56–372 m2. Backpack or tractor mounted sprayer, spray volume 93–235 L/ha. Soya bean seeds (1.0-3.6 kg) were sampled at harvest. Samples were stored at  $-10 \text{ }^{\circ}\text{C}$  or lower for 17–92 days, except trials indicated. Samples were analysed for clothianidin using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (73%–89%).

| Trial, Location<br>Country, year<br>(Variety)            | Form<br>g<br>ai/kg,<br>g ai/L | No       | Interval d                           | g<br>ai/ha               | g<br>ai/hL               | method,<br>last<br>application                                                                | soil<br>type | DAT           | parent,<br>mg/kg           |                            | reference                               |
|----------------------------------------------------------|-------------------------------|----------|--------------------------------------|--------------------------|--------------------------|-----------------------------------------------------------------------------------------------|--------------|---------------|----------------------------|----------------------------|-----------------------------------------|
| Yubari-gum,<br>Hokkaido,<br>Japan, 2003<br>(Toyokomachi) | 5 GR<br>160<br>SP             | 1+<br>3  | 106–<br>121;<br>7–8;<br>6–8          | 1×<br>300<br>3×<br>120   | nr<br>3x8                | 1 Soil + 3<br>Foliar,<br>4 Oct.;<br>28 Sept.;<br>20 Sept.<br>(defoliation<br>stage)           | ns           | 7<br>13<br>21 | 0.01<br>< 0.01<br>< 0.01   | < 0.01<br>< 0.01<br>< 0.01 | THR-<br>0520<br>THR-<br>0521<br>a b d   |
| Isawa-gun,<br>Iwate,<br>Japan, 2003<br>(Nanbusirome)     | 5 GR<br>160<br>SP             | 1+<br>3  | 101–<br>115;<br>7–8; 7–<br>8         | 1×<br>300<br>3×<br>160   | nr<br>$3 \times 8$       | 1 Soil + 3<br>Foliar,<br>3 Oct.;<br>26 Sept.;<br>18 Sept.<br>(defoliation<br>stage)           | Clay         | 7<br>14<br>21 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | THR-<br>0520<br>THR-<br>0521<br>a b d   |
| Yubari-gum,<br>Hokkaido,<br>Japan, 2003<br>(Toyokomachi) | 5 GR<br>5 DP                  | 1 +<br>4 | 106–<br>122; 1–<br>8;<br>1–8;<br>1–7 | 1×<br>300<br>4×<br>200   | nr<br>nr                 | 1 Soil + 3<br>Foliar<br>dusting<br>4 Oct.;<br>28 Sept.;<br>21 Sept.<br>(defoliation<br>stage) | ns           | 7<br>13<br>20 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | THR-<br>0523<br>THR-<br>0524<br>a b c d |
| Isawa-gun,<br>Iwate,<br>Japan, 2003<br>(Nanbusirome)     | 5 GR<br>5 DP                  | 1+<br>3  | 101–<br>115;<br>7–8;<br>7–8          | 1×<br>300<br>3×<br>200   | nr<br>nr                 | 1 Soil + 3<br>Foliar<br>dusting<br>3 Oct.;<br>26 Sept.;<br>18 Sept.<br>(defoliation<br>stage) | Clay         | 7<br>14<br>21 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | THR-<br>0523<br>THR-<br>0524<br>a b d   |
| Isawa-gun,<br>Iwate,<br>Japan, 2004<br>(Nanbusirome)     | 5 GR<br>200<br>SC             | 1+3      | 81–96;<br>7;<br>7–8                  | 1×<br>300<br>3×<br>160   | nr<br>$3 \times 8$       | 1 Soil + 3<br>Foliar,<br>6 Oct.;<br>28 Sept.;<br>21 Sept.<br>(ripening<br>period)             | Loam         | 6<br>14<br>21 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | THR-<br>0525<br>THR-<br>0526<br>a b d   |
| Osa-gun, Oita<br>Japan, 2004<br>(Marayutaka)             | 5 GR<br>200<br>SC             | 1+3      | 9105;<br>7;<br>7                     | 1×<br>300<br>3×<br>200   | nr<br>$3 \times 8$       | 1 Soil + 3<br>Foliar<br>28 Oct.;<br>21 Oct.;<br>14 Oct.<br>(ripening<br>period)               | Loam         | 7<br>14<br>21 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | THR-<br>0525<br>THR-<br>0526<br>a b d   |
| Niigata<br>Japan 2005<br>(Enrei)                         | 5 GR<br>200<br>SC             | 1+3      | 112–<br>125;<br>6–7;<br>6–7          | 1×<br>300<br>3×<br>67–80 | nr<br>3×<br>833–<br>1000 | 1 Soil + 3<br>Aerial,<br>12 Oct.;<br>6 Oct.;<br>29 Sept.,<br>(harvesting<br>stage)            | Clay<br>loam | 7<br>13<br>20 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | THR-<br>0527<br>THR-<br>0528<br>a b d   |
| Ishikawa<br>Japan 2005<br>(Enrei)                        | 5 GR<br>200<br>SC             | 1 +<br>3 | 90–<br>111;<br>6–8;<br>6–7           | 1×<br>300<br>3× 67       | nr<br>3×<br>833          | 1 Soil + 3<br>Aerial,<br>5 Oct.;<br>21 Sept.;<br>14 Sept.,<br>(ripening                       | Loam         | 7<br>21<br>28 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | THR-<br>0527<br>THR-<br>0528<br>a b d   |

| Table 98  | Residues      | of | clothianidin | in | soya | bean | (mature | dry | seeds) | after | combined | soil/foliar |
|-----------|---------------|----|--------------|----|------|------|---------|-----|--------|-------|----------|-------------|
| treatment | s in the fiel | d  |              |    |      |      |         |     |        |       |          |             |

| Trial, Location<br>Country, year<br>(Variety) | Form<br>g<br>ai/kg,<br>g ai/L | No | Interval<br>d | g<br>ai/ha | g<br>ai/hL | method,<br>last<br>application | soil<br>type | DAT | parent,<br>mg/kg | reference |
|-----------------------------------------------|-------------------------------|----|---------------|------------|------------|--------------------------------|--------------|-----|------------------|-----------|
|                                               |                               |    |               |            |            | stage)                         |              |     |                  |           |

GR = granule, DP = dustable powder; SG = water soluble granule, SC = suspension concentrate (flowable concentrate) nr = not relevant, ns = not stated

<sup>a</sup> Reverse residue decline study. Plots are treated on different days; the day of harvest is equal for all plots.

<sup>b</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

<sup>c</sup> The number of intended foliar dust applications was three per plot. Because of heavy rainfall just after the application on 20 September, the application was repeated on the next day (i.e. 21 September), resulting in four foliar dust applications per plot [Gaston, 2010e].

<sup>d</sup> Residue levels are not obtained immediately after harvest (= RAC) but after a considerate drying period (10–24 days).

[Yabuzaki and Mizukoshi, 2004a, THR-0520; Ohta, 2004a, THR-0521]. No unusual weather conditions. Plot size  $30-50 \text{ m}^2$ . First in-furrow and soil corporation treatment with granules at seedling stage, followed by three electrically operated foliar spray applications, spray volume 1500-2000 L/ha. Reaped soy bean (> 1 kg) were sampled at harvest and dried in the field for 19-21 days. Thereafter, samples were stored at -20 °C for 45-55 days. Samples were analysed using the Japanese HPLC-UV method for soya beans. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (74–93%).

[Yabuzaki and Mizukoshi, 2004b, THR-0523; Ohta, 2004b, THR-0524]. No unusual weather conditions. Plot size  $30-50 \text{ m}^2$ . First in-furrow and soil incorporation treatment with granules at seedling stage, followed by three foliar dustings. Reaped soy bean (> 1 kg) were sampled at harvest and dried in the field for 10–21 days. Thereafter, samples were stored at -20 °C for 45–65 days. Samples were analysed using the Japanese HPLC-UV method for soya beans. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (74–93%).

[Odanaka and Wakasone, 2005b, THR-0525; Yokota, 2005a, THR-0526]. No unusual weather conditions. Plot size 10– $60 \text{ m}^2$ . First in-furrow and soil incorporation treatment with granules at seedling stage, followed by three liquid foliar spray applications, spray volume 2000–2500 L/ha. Reaped soy bean (> 1 kg) were sampled at harvest and dried in the field or plastic hothouse for 17–24 days. Thereafter, samples were stored at -20 °C for 10–18 days. Samples were analysed using the Japanese HPLC-UV method for soya beans. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (78–110%).

[Yabuzaki et al, 2006, THR-0527; Kadooka and Yanai, 2006, THR-0528]. No unusual weather conditions. Plot size 22–420 m<sup>2</sup>. First in-furrow and soil incorporation treatment with granules at seedling stage, followed by three liquid foliar spray applications by unmanned helicopter, spray volume 8 L/ha. Reaped soy bean (> 1 kg or) were sampled at harvest and dried for 26–49 days. Thereafter, samples were stored at -20 °C for 5–86 days. Samples were analysed using the Japanese HPLC-UV method for soya beans. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (70–96%).

# Root and tuber vegetables

The Meeting received supervised residue trials on carrots, chicory roots, potatoes and sugar beet roots. Trials were available for seed treatment with subsequent culture in the field, for foliar spray treatment in the field and for soil treatment in the field.

### Carrots

Supervised residue trials on carrots were conducted in Belgium (2006 and 2007), Germany (2006 and 2007), Netherlands (2007), the UK (2007), France (2006), Italy (2006), Portugal (2006) and Spain (2006). Results are shown in Table 99 (seed treatment).

| Trial, Location<br>Country, year<br>(Variety)                              | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | mg<br>ai/seed | method, last<br>application               | soil type | DAT | parent,<br>mg/kg | reference             |
|----------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|---------------|-------------------------------------------|-----------|-----|------------------|-----------------------|
| R 2006 0698/2<br>Villes-Perwin<br>Belgium, 2006<br>(Nantaise 2/<br>Hilmar) | 500<br>WS <sup>b</sup>        | 1  | na                  | 167        | 0.098         | Seed<br>treatment,<br>24 April,<br>BBCH00 | Clay silt | 115 | < 0.01           | M-<br>295533-<br>01-1 |

| Trial, Location<br>Country, year                                                   | Form<br>g              | No | Inter<br>val | g<br>ai/ha | mg<br>ai/seed | method, last application                   | soil type     | DAT | parent,<br>mg/kg | reference             |
|------------------------------------------------------------------------------------|------------------------|----|--------------|------------|---------------|--------------------------------------------|---------------|-----|------------------|-----------------------|
| (Variety)                                                                          | ai/kg,<br>g ai/L       |    | (d)          |            |               |                                            |               |     |                  |                       |
| R 2007 0876/9<br>Villes-Perwin,<br>Belgium, 2007<br>(Starca)                       | 562.5<br>WS °          | 1  | na           | 120        | 0.070         | Seed<br>treatment,<br>26 April,<br>BBCH00  | Silty<br>loam | 119 | < 0.01           | M-<br>328911-<br>01-1 |
| R 2006 0662/1<br>Monheim-Süd,<br>Germany, 2006<br>(Hilmar)                         | 400<br>FS <sup>a</sup> | 1  | na           | 94         | 0.075         | Seed<br>treatment,<br>24 April,<br>BBCH00  | Loamy<br>sand | 87  | < 0.01           | M-<br>284431-<br>01-1 |
| R 2000 0699/0<br>Monheim,<br>Germany, 2006<br>(Nantaise 2/<br>Hilmar)              | 500<br>WS <sup>b</sup> | 1  | na           | 146        | 0.098         | Seed<br>treatment,<br>24 April,<br>BBCH00  | Loamy<br>sand | 87  | < 0.01           | M-<br>295533-<br>01-1 |
| R 2006 0700/8<br>Dannstadt,<br>Germany, 2006<br>(Nantaise 2/<br>Hilmar)            | 500<br>WS <sup>b</sup> | 1  | na           | 152        | 0.098         | Seed<br>treatment,<br>6 June,<br>BBCH00    | Sandy<br>loam | 92  | < 0.01           | M-<br>295533-<br>01-1 |
| R 2007 0875/0<br>Burscheid,<br>Germany, 2007<br>(Starca)                           | 562.5<br>WS °          | 1  | na           | 120        | 0.070         | Seed<br>treatment,<br>23 April.,<br>BBCH00 | Sandy<br>loam | 112 | < 0.01           | M-<br>328911-<br>01-1 |
| R 2007 0874/2<br>Zwaagdijk-Oost,<br>Netherlands,<br>2007<br>(Starca)               | 562.5<br>WS °          | 1  | na           | 120        | 0.070         | Seed<br>treatment,<br>16 May,<br>BBCH00    | Clay          | 120 | < 0.01           | M-<br>328911-<br>01-1 |
| R 2007 0864/5<br>Little Shelford,<br>UK, 2007<br>(Starca)                          | 562.5<br>WS °          | 1  | na           | 120        | 0.070         | Seed<br>treatment, 7<br>June,<br>BBCH00    | Sandy<br>loam | 134 | < 0.01           | M-<br>328911-<br>01-1 |
| R 2006 0637/0<br>Cergy, N.<br>France, 2006<br>(Hilmar)                             | 400<br>FS <sup>a</sup> | 1  | na           | 127        | 0.075         | Seed<br>treatment,<br>18 May,<br>BBCH00    | Sand          | 104 | < 0.01           | M-<br>284431-<br>01-1 |
| R 2006 0685/0<br>Fondettes, N.<br>France, 2006<br>(Nantaise 2/<br>Hilmar)          | 500<br>WS <sup>b</sup> | 1  | na           | 167        | 0.098         | Seed<br>treatment, 4<br>May,<br>BBCH00     | Sand          | 112 | < 0.01           | M-<br>295533-<br>01-1 |
| R 2006 0703/2<br>St. Jory, S.<br>France, 2006<br>(Nantaise 2/<br>Hilmar)           | 500<br>WS <sup>b</sup> | 1  | na           | 167        | 0.098         | Seed<br>treatment,<br>19 July,<br>BBCH00   | Sandy<br>silt | 118 | < 0.01           | M-<br>296527-<br>01-1 |
| R 2006 0664/8<br>Maccarese-<br>Fiumicino, Italy,<br>2006<br>(Hilmar)               | 400<br>FS <sup>a</sup> | 1  | na           | 103        | 0.075         | Seed<br>treatment,<br>18 July,<br>BBCH 00  | Sand          | 111 | < 0.01           | M-<br>284447-<br>01-1 |
| R 2006 0686/9<br>Maccarese-<br>Fuimicino, Italy,<br>2006<br>(Nantaise2/<br>Hilmar) | 500<br>WS <sup>b</sup> | 1  | na           | 167        | 0.098         | Seed<br>treatment,<br>18 July,<br>BBCH00   | Sand          | 111 | < 0.01           | M-<br>296527-<br>01-1 |
| R 2006 0702/4<br>Serra el Rei,<br>Portugal, 2006<br>(Nantaise 2/<br>Hilmar)        | 500<br>WS <sup>b</sup> | 1  | na           | 90         | 0.098         | Seed<br>treatment, 3<br>May,<br>BBCH00     | Sand          | 84  | < 0.01           | M-<br>296527-<br>01-1 |

| Trial, Location<br>Country, year<br>(Variety)                              | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | mg<br>ai/seed | method, last<br>application                | soil type     | DAT | parent,<br>mg/kg | reference             |
|----------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|---------------|--------------------------------------------|---------------|-----|------------------|-----------------------|
| R 2006 0665/6<br>Alginet, Spain,<br>2006 (Hilmar)                          | 400<br>FS <sup>a</sup>        | 1  | na                  | 127        | 0.075         | Seed<br>treatment,<br>28 March,<br>BBCH 00 | Silty<br>clay | 97  | < 0.01           | M-<br>284447-<br>01-1 |
| R 2006 0701/6<br>Brenes, Sevilla,<br>Spain, 2006<br>(Nantaise2/<br>Hilmar) | 500<br>WS <sup>b</sup>        | 1  | na                  | 167        | 0.098         | Seed<br>treatment,<br>11 Oct.,<br>BBCH00   | Loam          | 180 | < 0.01           | M-<br>296527-<br>01-1 |

FS = flowable concentrate for seed treatment, WS is water dispersable powder for slurry seed treatment

<sup>a</sup> 400 FS contains 400 g/L clothianidin + 53.3 g/L beta-cyfluthrin.

<sup>b</sup> 500 WS contains 500 g/kg clothianidin + 250 g/kg spinosad

<sup>c</sup> 562.5 WS contains 562.5 g/kg clothianidin + 187.5 g/kg imidacloprid

[Schoening, 2007a, M-284431-01-1]. No unusual weather conditions. Plot size 34-62.4 m2. Sowing machine. The actual seed rate was 2.72-3.689 kg seed/ha (1700000 seeds/ha). Carrot roots (2.05-2.68 kg or 26 units) were sampled at harvest. Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  for 62-103 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for averaged concurrent method recoveries (93-94%).

[Schoening, 2007b, M-284447-01-1]. No unusual weather conditions. Plot size  $33.75-52.8 \text{ m}^2$ . Sowing machines. The actual seed rates were 2.987–3.689 kg seed/ha (1700000 seeds/ha). Carrot roots (1.79–2.08 kg or 24–36 units) were sampled at harvest. Italian samples were stored at –18 °C for 65–120 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for averaged concurrent method recoveries (93–94%).

[Melrose, 2007c, M-295533-01-1]. No unusual weather conditions. Plot size 15.9–62.4 m<sup>2</sup>. In N. France sowing was done by hand. For the other plots sowing machines were used. The actual seed rates were 2.871–3.162 kg seed/ha (= 1490000– 1670000 plants/ha). Carrot roots (1.73–3.46 kg or 23–24 units) were sampled at harvest. Samples were stored at -18 °C for 321–369 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M002. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (87–101%).

[Melrose, 2008, M-296527-01-1]. No unusual weather conditions. Plot size 10–60 m<sup>2</sup>. Sowing machines were used. The actual seed rates were 1.7-3.162 kg seed/ha (= 914000–1700000 seeds/ha). Carrot roots (1.91–3.59 kg or 24 units) were sampled at harvest. Samples were stored at –18 °C for 115–372 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M002. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (83–98%).

[Schoening and Billian, 2009, M-328911-01-1]. No unusual weather conditions. Plot size  $24-162 \text{ m}^2$ . Sowing machines were used. Seeding rates were approximately 1700000 seeds/ha. Carrot roots (1.51-5.03 kg or 24 units) were sampled at harvest. Samples were stored at -18 °C for 396–463 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (81-109%).

### Chicory roots

Supervised residue trials on chicory roots were conducted in Belgium (2006). Results are shown in Table 100 (seed treatment).

| Table 100 Residues of clothianidin in chicory (roots) after seed treatment and subsequent root cultur | e |
|-------------------------------------------------------------------------------------------------------|---|
| in the field                                                                                          |   |

| Trial, Location<br>Country, year<br>(Variety)                                    | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | mg<br>ai/see<br>d | method,<br>last application         | soil<br>type | DAT        | parent,<br>mg/kg | reference         |
|----------------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|-------------------|-------------------------------------|--------------|------------|------------------|-------------------|
| R 2006 0639/7<br>R 2006 0639/9<br>Villes-Perwin,<br>Belgium, 2006<br>(Crescendo) | 400<br>FS <sup>a</sup>        | 1  | nr                  | 75         | 0.265             | Seed treatment, 19<br>April, BBCH00 | Clay<br>silt | 161<br>162 | < 0.01<br>< 0.01 | M-285150-<br>01-1 |

nr = not relevant

#### Chlothianidin

 $^{\rm a}$  400 FS contains 400 g/L clothianidin + 53.3 g/L beta-cyfluthrin

[Schoening, 2007c, M-285150-01-1]. No unusual weather conditions. Plot size  $21.6 \text{ m}^2$ . Sowing machines. The actual seed rate was 3.675 kg seed/ha (= 284900 seeds/ha). Chicory roots (2.75-3.10 kg or 12 units) were sampled at harvest. Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  for 64 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (92–96%).

#### Potatoes

Supervised residue trials on potatoes were conducted in the USA (2002, 2003) and Canada (2002). Results are shown in Table 101 (foliar spray treatment in the field) and Table 102 (soil treatment in the field). Potatoes were analysed for clothianidin and the metabolite TMG. TMG was not found in any of the samples (< 0.02 mg/kg).

| Trial,<br>Location<br>Country, year<br>(Variety)                                                | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha     | g<br>ai/hL     | method,<br>last<br>application                          | soil type     | DAT | parent,<br>mg/kg |        | reference         |
|-------------------------------------------------------------------------------------------------|-------------------------------|----|---------------------|----------------|----------------|---------------------------------------------------------|---------------|-----|------------------|--------|-------------------|
| TCI-03-075-<br>01<br>Sodus,<br>Wayne, New<br>York, USA<br>2003<br>(Monona)                      | 500<br>WG                     | 3  | 7–7                 | 73<br>74<br>76 | 26<br>26<br>26 | Foliar spray,<br>20 Sept.,<br>14 days before<br>harvest | Loamy<br>sand | 14  | < 0.02           | < 0.02 | THR-<br>0069<br>° |
| TCI-03-075-<br>02<br>North Rose,<br>Wayne,<br>New York,<br>USA<br>2003<br>(Green<br>Mountain)   | 500<br>WG                     | 3  | 7–7                 | 71<br>75<br>74 | 31<br>32<br>32 | Foliar spray,<br>26 Aug., post<br>bloom                 | Sand          | 14  | < 0.02           | < 0.02 | THR-<br>0069<br>° |
| TCI-03-075-<br>03<br>Rose Hill,<br>Sampson,<br>North<br>Carolina,<br>USA, 2003<br>(Red Pontiac) | 500<br>WG                     | 3  | 7–8                 | 74<br>75<br>74 | 47<br>40<br>43 | Foliar spray,<br>5 June,<br>bloom fall<br>(post bloom)  | Loamy<br>sand | 13  | < 0.02           | < 0.02 | THR-<br>0069<br>° |
| TCI-03-075-<br>04<br>Winter<br>Garden,<br>Orange,<br>Florida,<br>USA, 2003<br>(Red Pontiac)     | 500<br>WG                     | 3  | 7–7                 | 74<br>75<br>74 | 40<br>40<br>40 | Foliar spray,<br>6 May,<br>2.5–7.5 cm<br>tubers         | Sand          | 14  | < 0.02           | < 0.02 | THR-<br>0069<br>c |
| TCI-03-075-<br>05<br>Geneva,<br>Freeborn,<br>Minnesota,<br>USA<br>2003<br>(Cascade)             | 500<br>WG                     | 3  | 7–7                 | 74<br>74<br>74 | 51<br>51<br>51 | Foliar spray,<br>22 Aug.,<br>tuber<br>development       | Loam          | 14  | < 0.02           | < 0.02 | THR-<br>0069<br>c |
| TCI-03-075-<br>06<br>Delavan,<br>Walworth,                                                      | 500<br>WG                     | 3  | 8–5                 | 73<br>74<br>75 | 40<br>40<br>41 | Foliar spray,<br>19 Aug.,<br>full grown,<br>5.1–7.5 cm  | Silt loam     | 14  | < 0.02           | < 0.02 | THR-<br>0069<br>° |

| Trial,<br>Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha        | g<br>ai/hL        | method,<br>last<br>application                                   | soil type     | DAT                 | parent,<br>mg/kg                               |                                                | reference           |
|---------------------------------------------------------------------------------------------|-------------------------------|----|---------------------|-------------------|-------------------|------------------------------------------------------------------|---------------|---------------------|------------------------------------------------|------------------------------------------------|---------------------|
| Wisconsin,<br>USA<br>2003<br>(Superior)                                                     |                               |    |                     |                   |                   | tubers, Stage 7                                                  |               |                     |                                                |                                                |                     |
| TCI-03-075-<br>07 Conklin,<br>Ottawa,<br>Michigan,<br>USA<br>2003<br>(Norland<br>Dark Red)  | 500<br>WG                     | 3  | 7–7                 | 75<br>74<br>74    | 38<br>39<br>39    | Foliar spray,<br>6 Aug.,<br>tuber bulking                        | Loam          | 14                  | < 0.02                                         | < 0.02                                         | THR-<br>0069<br>°   |
| TCI-03-075-<br>08<br>New<br>Rockford,<br>Eddy, North<br>Dakota,<br>USA, 2003<br>(Viking)    | 500<br>WG                     | 3  | 7–7                 | 73<br>75<br>76    | 53<br>53<br>53    | Foliar spray,<br>15 Aug.,<br>bulking, 5.1–<br>15 cm tubers       | Loam          | 0<br>14<br>21<br>28 | <0.02<br><0.02<br><0.02<br><0.02<br><0.02      | <0.02<br><0.02<br><0.02<br><0.02<br><0.02      | THR-<br>0069<br>°   |
| TCI-03-075-<br>09<br>Dillon,<br>Beaverhead,<br>Montana,<br>USA, 2003<br>(A-7961-2)          | 500<br>WG                     | 3  | 7–6                 | 74<br>73<br>78    | 41<br>39<br>38    | Foliar spray,<br>17 Aug.,<br>bulking, 113–<br>142 g tubers       | Loam          | 14                  | < 0.02                                         | < 0.02                                         | THR-<br>0069<br>°   |
| TCI-03-075-<br>10<br>Porterville,<br>Tulare,<br>California,<br>USA<br>2003<br>(Russet)      | 500<br>WG                     | 3  | 7–7                 | 75<br>75<br>75    | 40<br>40<br>40    | Foliar spray,<br>12 June,<br>bloom/normal<br>maturity            | Sandy<br>loam | 14                  | < 0.02                                         | < 0.02                                         | THR-<br>0069<br>°   |
| TCI-03-075-<br>11<br>Payette,<br>Payette,<br>Idaho, USA<br>2003<br>(Shepody)                | 500<br>WG                     | 3  | 7–7                 | 77<br>73<br>74    | 26<br>26<br>26    | Foliar spray,<br>11 Aug.,<br>near maturity                       | Loam          | 14                  | < 0.02                                         | < 0.02                                         | THR-<br>0069<br>°   |
| TCI-03-075-<br>11<br>Payette,<br>Payette,<br>Idaho, USA<br>2003<br>(Shepody)                | 500<br>WG                     | 3  | 7–7                 | 373<br>378<br>376 | 132<br>132<br>132 | Foliar spray,<br>11 Aug.,<br>near maturity                       | Loam          | 14                  | < 0.02                                         | < 0.02                                         | THR-<br>0069<br>b c |
| TCI-03-075-<br>12<br>Ephrata,<br>Grant,<br>Washington,<br>USA<br>2003<br>(Russet<br>Ranger) | 500<br>WG                     | 3  | 7–7                 | 74<br>74<br>74    | 40<br>39<br>39    | Foliar spray,<br>19 Aug.,<br>tuber<br>enlargement—<br>85% mature | Sand          | 14                  | < 0.02                                         | < 0.02                                         | THR-<br>0069<br>°   |
| TCI-03-075-<br>13<br>American<br>Falls, Power,                                              | 500<br>WG                     | 3  | 7–7                 | 75<br>75<br>77    | 40<br>39<br>40    | Foliar spray,<br>29 Aug.,<br>tuber bulking<br>up to 283 g        | Loam          | 0<br>14<br>21<br>28 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | THR-<br>0069<br>a c |

| Trial,<br>Location<br>Country, year<br>(Variety)                                         | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha     | g<br>ai/hL     | method,<br>last<br>application                                                  | soil type     | DAT                      | parent,<br>mg/kg                                         |                                                          | reference         |
|------------------------------------------------------------------------------------------|-------------------------------|----|---------------------|----------------|----------------|---------------------------------------------------------------------------------|---------------|--------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------|
| Idaho, USA<br>2003<br>(Russet<br>Burbank)                                                | 500                           |    |                     |                | 41             | tubers                                                                          | 011-1         | 14                       |                                                          |                                                          |                   |
| TCI-03-075-<br>14<br>Ashton,<br>Fremont,<br>Idaho, USA<br>2003<br>(Russet<br>Burbank)    | 500<br>WG                     | 3  | 7–6                 | 75<br>77<br>77 | 41<br>39<br>38 | Foliar spray,<br>17 Aug.,<br>bulking, 113–<br>142 g tubers                      | Silt loam     | 14                       | < 0.02                                                   | < 0.02                                                   | THR-<br>0069<br>° |
| TCI-03-075-<br>15<br>Madras,<br>Jefferson,<br>Oregon, USA<br>2003<br>(Russet<br>Burbank) | 500<br>WG                     | 3  | 7–7                 | 73<br>73<br>73 | 32<br>31<br>31 | Foliar spray,<br>10 Sept.,<br>14 days pre-<br>harvest                           | Loam          | 14                       | < 0.02                                                   | < 0.02                                                   | THR-<br>0069<br>° |
| TCI-02-063-<br>01<br>Payette,<br>Payette,<br>Idaho, USA<br>2002<br>(Russet<br>Burbank)   | 500<br>WG                     | 3  | 7–7                 | 75<br>76<br>73 | 40<br>40<br>40 | Foliar spray,<br>11 Sept.,<br>tuber vines<br>dying/tuber<br>bulking<br>complete | Loam          | 0<br>7<br>14<br>21<br>28 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | THR-<br>0070<br>c |
| TCI-02-063-<br>02<br>Berwick,<br>kings, Nova<br>Scotia,<br>Canada, 2002<br>(Superior)    | 500<br>WG                     | 3  | 8–6                 | 76<br>75<br>75 | 38<br>37<br>37 | Foliar spray,<br>1 Aug.,<br>BBCH 6N9                                            | Sandy<br>loam | 0<br>7<br>14<br>21<br>28 | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02       | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | THR-<br>0070<br>° |

<sup>a</sup> Samples were stored above -10 °C (up to -1 °C).

<sup>b</sup> Exaggerated dose rate, samples used for processing

<sup>c</sup> Results are from two replicate field samples

[Carringer, 2004b, THR-0069]. No unusual weather conditions. Plot size  $152-434 \text{ m}^2$ . Backpack or tractor mounted sprayer, spray volume 138-292 L/ha. Potato tubers (24 tubers per sample; kg not stated) were sampled at harvest. Samples were stored at -12 °C or lower for 44-102 days, unless indicated otherwise. Samples were analysed for parent and TMG using HPLC-MS-MS method 157 and method 164. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (73–95%). TMG residues were not found (< 0.02 mg/kg in each sample).

[Carringer, 2003, THR-0070]. No unusual weather conditions. Plot size  $183-549 \text{ m}^2$ . Backpack or tractor mounted sprayer, spray volume 190-203 L/ha. Potato tubers (24 tubers per sample; kg not stated) were sampled at harvest. Samples were stored at -11 °C or lower for 83-151 days. Samples were analysed for parent and TMG using HPLC-MS-MS method 157. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (79–93%). TMG residues were not found (< 0.02 mg/kg in each sample).

| Trial,<br>Location<br>Country, year<br>(Variety) | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>last<br>application        | soil<br>type                  | DAT | parent,<br>mg/kg |       | reference         |
|--------------------------------------------------|-------------------------------|----|---------------------|------------|------------|---------------------------------------|-------------------------------|-----|------------------|-------|-------------------|
| TCI-03-075-<br>01<br>Sodus,<br>Wayne, New        | 160<br>SG                     | 1  | nr                  | 224        | 96         | In-furrow,<br>18 June,<br>at planting | Loamy<br>very<br>fine<br>sand | 108 | 0.020            | 0.020 | THR-<br>0069<br>e |

# Chlothianidin

| Trial,<br>Location<br>Country, year<br>(Variety)                                                | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>last<br>application         | soil<br>type   | DAT                      | parent,<br>mg/kg                                   | _                                              | reference           |
|-------------------------------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|----------------------------------------|----------------|--------------------------|----------------------------------------------------|------------------------------------------------|---------------------|
| York, USA<br>2003<br>(Monona)                                                                   |                               |    |                     |            |            |                                        |                |                          |                                                    |                                                |                     |
| TCI-03-075-<br>02<br>North Rose,<br>Wayne,<br>New York,<br>USA<br>2003<br>(Green<br>Mountain)   | 160<br>SG                     | 1  | nr                  | 223        | 119        | In-furrow,<br>20 May,<br>at planting   | Sand           | 112                      | < 0.02                                             | < 0.02                                         | THR-<br>0069<br>e   |
| TCI-03-075-<br>03<br>Rose Hill,<br>Sampson,<br>North<br>Carolina,<br>USA, 2003<br>(Red Pontiac) | 160<br>SG                     | 1  | nr                  | 223        | 119        | In-furrow,<br>25 March,<br>at planting | Loamy<br>sand  | 85                       | < 0.02                                             | < 0.02                                         | THR-<br>0069<br>e   |
| TCI-03-075-<br>04<br>Winter<br>Garden,<br>Orange,<br>Florida, USA,<br>2003<br>(Red Pontiac)     | 160<br>SG                     | 1  | nr                  | 224        | 119        | In-furrow,<br>21 Feb.,<br>at planting  | Fine<br>sand   | 88                       | < 0.02                                             | < 0.02                                         | THR-<br>0069<br>e   |
| TCI-03-075-<br>05<br>Geneva,<br>Freeborn,<br>Minnesota,<br>USA<br>2003<br>(Cascade)             | 160<br>SG                     | 1  | nr                  | 222        | 158        | In-furrow,<br>23 May,<br>at planting   | Loam-<br>Med.  | 105                      | < 0.02                                             | < 0.02                                         | THR-<br>0069<br>e   |
| TCI-03-075-<br>06<br>Delavan,<br>Walworth,<br>Wisconsin,<br>USA<br>2003<br>(Superior)           | 160<br>SG                     | 1  | nr                  | 231        | 117        | In-furrow,<br>27 May,<br>at planting   | Silt<br>Ioam   | 99                       | < 0.02                                             | < 0.02                                         | THR-<br>0069<br>a e |
| TCI-03-075-<br>07 Conklin,<br>Ottawa,<br>Michigan,<br>USA<br>2003<br>(Norland<br>Dark Red)      | 160<br>SG                     | 1  | nr                  | 222        | 119        | In-furrow,<br>23 May,<br>at planting   | Loam           | 89                       | 0.020                                              | 0.020                                          | THR-<br>0069<br>a e |
| TCI-03-075-<br>08<br>New<br>Rockford,<br>Eddy, North<br>Dakota, USA,<br>2003<br>(Viking)        | 160<br>SG                     | 1  | nr                  | 220        | 158        | In-furrow,<br>23 April,<br>at planting | Loam           | 114<br>128<br>135<br>142 | $\frac{< 0.02}{< 0.02}$ < 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | THR-<br>0069<br>e   |
| TCI-03-075-<br>09                                                                               | 160<br>SG                     | 1  | nr                  | 223        | 179        | In-furrow,<br>5 June,                  | Coarse<br>loam | 87                       | < 0.02                                             | < 0.02                                         | THR-<br>0069        |

| Trial,<br>Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>last<br>application         | soil<br>type  | DAT                      | parent,<br>mg/kg                                      |                                      | reference           |
|---------------------------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|----------------------------------------|---------------|--------------------------|-------------------------------------------------------|--------------------------------------|---------------------|
| Dillon,<br>Beaverhead,<br>Montana,<br>USA, 2003<br>(A-7961-2)                               |                               |    |                     |            |            | at planting                            |               |                          |                                                       |                                      | a e                 |
| TCI-03-075-<br>10<br>Porterville,<br>Tulare,<br>California,<br>USA<br>2003<br>(Russet)      | 160<br>SG                     | 1  | nr                  | 222        | 119        | In-furrow,<br>27 Feb.,<br>at planting  | Sandy<br>loam | 119                      | 0.033                                                 | 0.029                                | THR-<br>0069<br>e   |
| TCI-03-075-<br>11<br>Payette,<br>Payette,<br>Idaho, USA<br>2003<br>(Shepody)                | 160<br>SG                     | 1  | nr                  | 232        | 159        | In-furrow,<br>23 April,<br>at planting | Loam          | 124                      | < 0.02                                                | < 0.02                               | THR-<br>0069<br>°   |
| TCI-03-075-<br>11<br>Payette,<br>Payette,<br>Idaho, USA<br>2003<br>(Shepody)                | 160<br>SG                     | 1  | nr                  | 1105       | 788        | In-furrow,<br>23 April,<br>at planting | Loam          | 124                      | 0.030                                                 | 0.021                                | THR-<br>0069<br>d e |
| TCI-03-075-<br>12<br>Ephrata,<br>Grant,<br>Washington,<br>USA<br>2003<br>(Russet<br>Ranger) | 160<br>SG                     | 1  | nr                  | 221        | 119        | In-furrow,<br>5 May,<br>at planting    | Sand          | 120                      | < 0.02                                                | < 0.02                               | THR-<br>0069<br>b e |
| TCI-03-075-<br>13<br>American<br>Falls, Power,<br>Idaho, USA<br>2003<br>(Russet<br>Burbank) | 160<br>SG                     | 1  | nr                  | 217        | 115        | In-furrow,<br>14 May,<br>at planting   | Loam          | 107<br>121<br>128<br>135 | $\frac{< 0.02}{< 0.02} \\ < 0.02 \\ < 0.02 \\ < 0.02$ | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | THR-<br>0069<br>bce |
| TCI-03-075-<br>14<br>Ashton,<br>Fremont,<br>Idaho, USA<br>2003<br>(Russet<br>Burbank)       | 160<br>SG                     | 1  | nr                  | 223        | 99         | In-furrow,<br>5 June,<br>at planting   | Silt<br>loam  | 87                       | 0.029                                                 | 0.027                                | THR-<br>0069<br>a e |
| TCI-03-075-<br>15<br>Madras,<br>Jefferson,<br>Oregon, USA<br>2003<br>(Russet<br>Burbank)    | 160<br>SG                     | 1  | nr                  | 224        | 119        | In-furrow,<br>13 May,<br>at planting   | Loam          | 134                      | < 0.02                                                | < 0.02                               | THR-<br>0069<br>e   |
| TCI-02-063-<br>01                                                                           | 500<br>WG                     | 1  | nr                  | 226        | 158        | In-furrow,<br>3 May,                   | Loam          | 145                      | < 0.02                                                | < 0.02                               | THR-<br>0070        |

| Trial,<br>Location<br>Country, year<br>(Variety)                                       | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>last<br>application                                                | soil<br>type  | DAT | parent,<br>mg/kg |        | reference         |
|----------------------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|-------------------------------------------------------------------------------|---------------|-----|------------------|--------|-------------------|
| Payette,<br>Payette,<br>Idaho, USA<br>2002<br>(Russet<br>Burbank)                      | 5 w 2                         |    |                     |            |            | at planting                                                                   |               |     |                  |        | e                 |
| TCI-02-063-<br>01<br>Payette,<br>Payette,<br>Idaho, USA<br>2002<br>(Russet<br>Burbank) | 160<br>SG                     | 1  | nr                  | 220        | 159        | In-furrow,<br>3 May,<br>at planting                                           | Loam          | 145 | < 0.02           | < 0.02 | THR-<br>0070<br>e |
| TCI-02-063-<br>01<br>Payette,<br>Idaho, USA<br>2002<br>(Russet<br>Burbank)             | 160<br>SG                     | 1  | nr                  | 221        | 80         | Side<br>dressing, 7<br>July,<br>after<br>emergence                            | Loam          | 110 | < 0.02           | < 0.02 | THR-<br>0070<br>e |
| TCI-02-063-<br>02<br>Berwick,<br>Kings, Nova<br>Scotia,<br>Canada, 2002<br>(Superior)  | 500<br>WG                     | 1  | nr                  | 224        | 119        | In-furrow,<br>23 May,<br>at planting                                          | Sandy<br>loam | 84  | < 0.02           | < 0.02 | THR-<br>0070<br>e |
| TCI-02-063-<br>02<br>Berwick,<br>Kings, Nova<br>Scotia,<br>Canada, 2002<br>(Superior)  | 160<br>SG                     | 1  | nr                  | 222        | 119        | In-furrow,<br>23 May,<br>at planting                                          | Sandy<br>loam | 84  | < 0.02           | 0.02   | THR-<br>0070<br>e |
| TCI-02-063-<br>02<br>Berwick,<br>Kings, Nova<br>Scotia,<br>Canada, 2002<br>(Superior)  | 160<br>SG                     | 1  | nr                  | 217        | 199        | Side<br>dressing,<br>28 June,<br>BBCH 103-<br>109 (3-9<br>leaves<br>unfolded) | Sandy<br>loam | 48  | < 0.02           | < 0.02 | THR-<br>0070<br>d |

nr = not relevant

WG = water dispersible granule, SG = water soluble granule

<sup>a</sup>.Backpack sprayer attached to potato planter.

<sup>b</sup>.4-row potato planter with liquid applicator

<sup>c</sup>.Samples were stored above –10 °C (up to –1 °C).

<sup>d</sup>.Exaggerated dose rate, samples used for processing

<sup>e</sup>Results are from two replicate samples

[Carringer, 2004b, THR-0069]. No unusual weather conditions. Plot size  $152-434 \text{ m}^2$ . Backpack or tractor mounted sprayer, spray volume 124-235 L/ha. Potato tubers (24 tubers per sample; kg not stated) were sampled at harvest. Samples were stored at -12 °C or lower for 44-102 d, unless indicated otherwise. Samples were analysed for clothianidin and TMG using HPLC-MS-MS method 157 and method 164. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (73–95%). TMG residues were not found (< 0.02 mg/kg in each sample).

[Carringer, 2003, THR-0070]. No unusual weather conditions. Plot size  $183-549 \text{ m}^2$ . Backpack or tractor mounted sprayer, spray volume 138-278 L/ha. Potato tubers (24 tubers per sample; kg not stated) were sampled at harvest. Samples were stored at 11 °C or lower for 83-151 d. Samples were analysed for clothianidin and TMG using HPLC-MS-MS method 157. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (79-93%). TMG residues were not found (< 0.02 mg/kg in each sample).

# Sugar beet roots

Supervised residue trials on sugar beets were conducted in Belgium (1998), Germany (1998 and 1999), the UK (1998 and 1999), France (1998, 1999), Italy (1998 and 1999), Spain (1998) and the USA (2004) Results for sugar beet roots are shown in Table 103 (seed treatment). Sugar beet roots were analysed for clothianidin. In addition, samples from the USA trials were also analysed for metabolite TMG. TMG was not found in any of the samples (< 0.01 mg/kg).

| Table 103 Residues of a | clothianidin in si | ugar beet (roots) | after seed treatment | nt and culture in the field |
|-------------------------|--------------------|-------------------|----------------------|-----------------------------|
| 14010 100 100014400 01  |                    |                   |                      |                             |

| Trial, Location  | Form   | No  | Interval | g       | mg      | method, last | soil  | DAT  | %        | parent, mg/kg | reference      |
|------------------|--------|-----|----------|---------|---------|--------------|-------|------|----------|---------------|----------------|
| Country, year    | g      | 110 | (d)      | ai/ha   | ai/seed | application  | type  | Dill | dm       | parent, mg/ng | reference      |
| (Variety)        | ai/kg, |     | (u)      | ui/ iiu | ul secu | uppneution   | .JPC  |      |          |               |                |
| (                | g ai/L |     |          |         |         |              |       |      |          |               |                |
| 813753           | 600    | 1   | nr       | 37      | 0.28    | Seed         | Clay  | 60   | _        | 0.024         | M-             |
| Clavier, Belgium | FS     |     |          | 57      | 0.20    | treatment. 9 | loam  | 160  |          | < 0.01        | 029762-        |
| 1998             | 15     |     |          |         |         | May, BBCH    | iouin | 100  |          | 0.01          | 01-1-01        |
| (Dacota)         |        |     |          |         |         | 00           |       |      |          |               | 01 1 01        |
| 813796           | 600    | 1   | nr       | 109     | 0.84    | Seed         | Loam  | 75   | _        | 0.051         | M-             |
| Gembloux.        | FS     | 1   |          | 107     | 0.04    | treatment, 9 | Louin | 181  |          | < 0.01        | 030310-        |
| Belgium 1998     | 15     |     |          |         |         | May, BBCH    |       | 101  |          | × 0.01        | 01-1-          |
| (Dacota)         |        |     |          |         |         | 00           |       |      |          |               | 01 1           |
| 811192           | 600    | 1   | nr       | 32      | 0.27    | Seed         | Sandy | 148  | _        | < 0.01        | M-             |
| Monheim,         | FS     | 1   |          | 52      | 0.27    | treatment,23 | loam  | 140  |          | × 0.01        | 029762-        |
| Germany, 1998    | 15     |     |          |         |         | April,       | Iouin |      |          |               | 01-1-01        |
| (Aries)          |        |     |          |         |         | BBCH 00      |       |      |          |               | 01 1 01        |
| 813206           | 600    | 1   | nr       | 86      | 0.72    | Seed         | Sandy | 148  | -        | < 0.01        | M-             |
| Monheim,         | FS     | 1   |          | 30      | 0.72    | treatment,23 | loam  | 140  | 1        | .0.01         | 030310-        |
| Germany, 1998    | 15     | 1   |          |         |         | April,       | iouin |      | 1        | 1             | 01-1           |
| (Aries)          |        |     |          |         |         | BBCH 00      |       |      | 1        |               | <b>VI I</b>    |
| R 1999 0048/1    | 600    | 1   | nr       | 108     | 0.90    | Seed         | Sandy | 66   | _        | 0.046         | M-             |
| Monheim,         | FS     | 1   | 111      | 100     | 0.70    | treatment,26 | loam  | 149  |          | < 0.01        | 020378-        |
| Germany, 1999    | 15     |     |          |         |         | April,       | ioani | 17)  |          | < 0.01        | 01-1           |
| (Aries)          |        |     |          |         |         | BBCH 00      |       |      |          |               | (900481)       |
| R 1999 0046/5    | 600    | 1   | nr       | 31      | 0.26    | Seed         | Sandy | 66   | _        | 0.012         | ()00401)<br>M- |
| Monheim,         | FS     | 1   | 111      | 51      | 0.20    | treatment,26 | loam  | 149  |          | < 0.012       | 021156-        |
| Germany, 1999    | 15     |     |          |         |         | April,       | Iouin | 147  |          | × 0.01        | 01-1-01        |
| (Aries)          |        |     |          |         |         | BBCH 00      |       |      |          |               | 01 1 01        |
| 813788           | 600    | 1   | nr       | 37      | 0.28    | Seed         | Sandy | 87   | <u> </u> | < 0.01        | M-             |
| Thurston, Bury   | FS     |     |          | 57      | 0.20    | treatment, 7 | clay  | 181  |          | < 0.01        | 029762-        |
| St. Edmunds,     | 15     |     |          |         |         | April, BCH   | loam  | 101  |          | 0.01          | 01-1-01        |
| UK, 1998         |        |     |          |         |         | 00           | iouin |      |          |               | 01 1 01        |
| (Dacota)         |        |     |          |         |         | 00           |       |      |          |               |                |
| 813826           | 600    | 1   | nr       | 109     | 0.84    | Seed         | Sandy | 72   | _        | 0.021         | M-             |
| Thurston, Bury   | FS     |     |          | 107     | 0.01    | treatment,   | clay  | 166  |          | < 0.01        | 030310-        |
| St. Edmunds,     | 15     |     |          |         |         | 22           | loam  | 100  |          | 0.01          | 01-1           |
| UK, 1998         |        |     |          |         |         | April,BBCH   |       |      |          |               |                |
| (Dacota)         |        |     |          |         |         | 00           |       |      |          |               |                |
| R 1999 0232/8    | 600    | 1   | nr       | 94      | 0.72    | Seed         | Sandy | 92   | _        | 0.012         | M-             |
| Thurston, Bury   | FS     | -   |          |         | ••••    | treatment, 8 | clay  | 180  |          | < 0.01        | 020378-        |
| St. Edmunds,     |        | 1   |          |         |         | April,       | loam  |      | 1        | 1             | 01-1           |
| UK, 1999         |        |     |          |         |         | BBCH 00      |       |      |          |               | (902328)       |
| (Aries)          |        |     |          |         |         |              |       |      |          |               | , ,            |
| R 1999 0227/1    | 600    | 1   | nr       | 34      | 0.26    | Seed         | Sandy | 92   | _        | < 0.01        | M-             |
| Thurston, Bury   | FS     | 1   |          |         |         | treatment, 8 | clay  | 180  | 1        | < 0.01        | 021156-        |
| St. Edmunds,     |        | 1   |          |         |         | April,       | loam  |      | 1        | 1             | 01-1-01        |
| UK, 1999         |        |     |          |         |         | BBCH 00      |       |      | 1        |               |                |
| (Aries)          |        |     |          |         |         |              |       |      | 1        |               |                |
| 813761           | 600    | 1   | nr       | 37      | 0.28    | Seed         | Silt  | 86   | 1_       | < 0.01        | M-             |
| Marbeuf, N.      | FS     | 1   |          |         | -       | treatment,24 |       | 219  | 1        | < 0.01        | 029762-        |
| France, 1998     |        | 1   |          |         |         | March,       |       | -    | 1        |               | 01-1-01        |
| (Dacota)         |        |     |          |         |         | BBCH 00      |       |      | 1        |               |                |
| 813818           | 600    | 1   | nr       | 101     | 0.78    | Seed         | Silt  | 86   | _        | 0.036         | М-             |
| 813818           | 600    | 1   | nr       | 101     | 0.78    | Seed         | Silt  | 86   | -        | 0.036         | M-             |

| Trial, Location                 | Form      | No       | Interval | g     | mg      | method, last           | soil     | DAT | %        | parent, mg/kg | reference        |
|---------------------------------|-----------|----------|----------|-------|---------|------------------------|----------|-----|----------|---------------|------------------|
| Country, year                   | g         |          | (d)      | ai/ha | ai/seed | application            | type     |     | dm       | r             |                  |
| (Variety)                       | ai/kg,    |          |          |       |         |                        |          |     |          |               |                  |
|                                 | g ai/L    |          |          |       |         |                        |          |     |          |               |                  |
| Marbeuf, N.                     | FS        |          |          |       |         | treatment,24           |          | 219 |          | < 0.01        | 030310-          |
| France, 1998                    |           |          |          |       |         | March,                 |          |     |          |               | 01-1             |
| (Dacota)                        |           |          |          |       |         | BBCH 00                | ~ ! !    |     |          |               |                  |
| R 1999 0230/1                   | 600<br>EG | 1        | nr       | 101   | 0.78    | Seed                   | Silt     | 112 | -        | 0.010         | M-               |
| Guiseniers, N.                  | FS        |          |          |       |         | treatment,17           |          | 195 |          | < 0.01        | 020378-          |
| France, 1999<br>(Dacota)        |           |          |          |       |         | March,<br>BBCH 00      |          |     |          |               | 01-1<br>(902301) |
| R 1999 0233/6                   | 600       | 1        | nr       | 94    | 0.72    | Seed                   | Silt     | 103 |          | < 0.01        | (902301)<br>M-   |
| Marbeuf, N.                     | FS        | 1        | 111      | 94    | 0.72    | treatment,31           | SIII     | 105 | _        | < 0.01        | 020378-          |
| France, 1999                    | 15        |          |          |       |         | March,                 |          | 170 |          | < 0.01        | 01-1             |
| (Dacota)                        |           |          |          |       |         | BBCH 00                |          |     |          |               | (902336)         |
| R 1999 0226/3                   | 600       | 1        | nr       | 34    | 0.26    | Seed                   | Silt     | 112 | _        | < 0.01        | M-               |
| Guiseniers, N.                  | FS        |          |          |       |         | treatment,17           |          | 195 |          | < 0.01        | 021156-          |
| France, 1999                    |           |          |          |       |         | March,                 |          |     |          |               | 01-1-01          |
| (Dacota)                        |           |          |          |       |         | BBCH 00                |          |     |          |               |                  |
| R 1999 0229/8                   | 600       | 1        | nr       | 37    | 0.28    | Seed                   | Silt     | 103 | -        | < 0.01        | M-               |
| Marbeuf, N.                     | FS        |          |          |       |         | treatment,31           |          | 176 |          | < 0.01        | 021156-          |
| France, 1999                    |           |          |          |       |         | March,                 |          |     |          |               | 01-1-01          |
| (Dacota)                        | 600       | 1        |          | 100   | 0.04    | BBCH 00                | 0 1      | 0.5 |          | 0.017         |                  |
| 814024                          | 600<br>FS | 1        | nr       | 109   | 0.84    | Seed                   | Sandy    | 85  | —        | 0.016         | M-               |
| St. Etienne du gres, S. France, | FS        |          |          |       |         | treatment,25<br>March, | loam     | 168 |          | < 0.01        | 030335-<br>01-1  |
| 1998                            |           |          |          |       |         | BBCH 00                |          |     |          |               | 01-1             |
| (Dacota)                        |           |          |          |       |         | BBCII 00               |          |     |          |               |                  |
| 813842                          | 600       | 1        | nr       | 39    | 0.30    | Seed                   | Loamy    | 85  | _        | < 0.01        | M-               |
| Les Valayans, S.                | FS        |          |          | 5,    | 0.50    | treatment,25           | sand     | 168 |          | < 0.01        | 030342-          |
| France, 1998                    |           |          |          |       |         | March,                 |          |     |          |               | 01-1             |
| (Dacota)                        |           |          |          |       |         | BBCH 00                |          |     |          |               |                  |
| R 1999 0218/2                   | 600       | 1        | nr       | 105   | 0.81    | Seed                   | Clay     | 88  | —        | < 0.01        | M-               |
| Beauvais/Tescou,                | FS        |          |          |       |         | treatment, 4           | silt     | 143 |          | < 0.01        | 023176-          |
| S. France, 1999                 |           |          |          |       |         | June, BBCH             |          |     |          |               | 01-1-01          |
| (Dacota)                        | 600       |          |          | 101   |         | 00                     | <u> </u> |     |          | 0.070         |                  |
| R 1999 0219/0                   | 600<br>ES | 1        | nr       | 101   | 0.77    | Seed                   | Sandy    | 59  | —        | 0.060         | M-               |
| St. Jory, S.<br>France, 1999    | FS        |          |          |       |         | treatment,<br>11 May,  | silt     | 163 |          | < 0.01        | 023176-01-1-01   |
| (Dacota)                        |           |          |          |       |         | BBCH 00                |          |     |          |               | 01-1-01          |
| 813885                          | 600       | 1        | nr       | 149   | 0.84    | Seed                   | Loamy    | 72  | _        | 0.14          | M-               |
| Sorga, Italy,                   | FS        | 1        |          | 142   | 0.04    | treatment,             | sand     | 153 |          | < 0.01        | 030335-          |
| 1998                            |           |          |          |       |         | 25 March,              | Sund     | 100 |          | 0.01          | 01-1             |
| (Azzuro)                        |           |          |          |       |         | BBCH 00                |          |     |          |               |                  |
| 813893                          | 600       | 1        | nr       | 138   | 0.78    | Seed                   | Sandy    | 72  | —        | 0.051         | M-               |
| Ravenna, Italy,                 | FS        |          |          |       |         | treatment,             | loam     | 150 |          | < 0.01        | 030335-          |
| 1998                            |           |          |          |       |         | 28 March,              |          |     |          |               | 01-1             |
| (Azzuro)                        |           | Ļ        |          |       |         | BBCH 00                |          |     |          |               |                  |
| 813869                          | 600<br>EG | 1        | nr       | 48    | 0.27    | Seed                   | Silty    | 72  | -        | 0.011         | M-               |
| Ravenna, Italy,                 | FS        |          |          |       |         | treatment,             | sand     | 150 |          | < 0.01        | 030342-          |
| 1998<br>(Azzuro)                |           | 1        |          |       |         | 28 March,<br>BBCH 00   |          |     |          |               | 01-1             |
| (Azzuro)<br>813850              | 600       | 1        | nr       | 51    | 0.29    | Seed                   | Loamy    | 72  | <u> </u> | 0.034         | M-               |
| Sorga, Italy,                   | FS        | 1        | 111      | 51    | 0.29    | treatment,             | sand     | 153 | _        | < 0.034       | 030342-          |
| 1998                            | 15        |          |          |       |         | 25 March,              | Sunu     | 155 |          | 0.01          | 01-1             |
| (Azzuro)                        |           |          |          |       |         | BBCH 00                |          |     |          |               |                  |
| R 1999 0050/3                   | 600       | 1        | nr       | 171   | 0.95    | Seed                   | Loamy    | 77  | _        | < 0.01        | M-               |
| Albaro, Italy,                  | FS        | 1        |          |       |         | treatment,16           | clay     | 156 |          | < 0.01        | 023176-          |
| 1999                            |           | 1        |          |       |         | March,                 | -        |     |          |               | 01-1-01          |
| (Azzurro)                       |           |          | <u> </u> |       |         | BBCH 00                |          |     |          |               |                  |
| 813214                          | 600       | 1        | nr       | 117   | 0.90    | Seed                   | Clay     | 140 | -        | < 0.01        | M-               |
| Haro, Spain,                    | FS        | 1        |          |       |         | treatment,24           | loam     | 209 |          | < 0.01        | 030335-          |
| 1998                            |           |          |          |       |         | March,                 |          |     |          |               | 01-1             |
| (Colibri)                       | 600       | <u> </u> |          | 100   | 0.50    | BBCH 00                | 011      | 100 |          | 0.011         |                  |
| 813877                          | 600       | 1        | nr       | 109   | 0.78    | Seed                   | Silty    | 188 | -        | 0.011         | M-               |

| Trial, Location                                                     | Form                   | No | Interval | g     | mg      | method, last                              | soil                  | DAT        | %  | parent,          | mg/kg  | reference                  |
|---------------------------------------------------------------------|------------------------|----|----------|-------|---------|-------------------------------------------|-----------------------|------------|----|------------------|--------|----------------------------|
| Country, year<br>(Variety)                                          | g<br>ai/kg,<br>g ai/L  |    | (d)      | ai/ha | ai/seed | application                               | type                  |            | dm |                  |        |                            |
| Lebrija, Spain,<br>1998<br>(Colibri)                                | FS                     |    |          |       |         | treatment,14<br>Oct, BBCH<br>00           | sand                  | 243        |    | < 0.01           |        | 030335-<br>01-1            |
| 811206<br>Haro, Spain,<br>1998<br>(Colibri)                         | 600<br>FS              | 1  | nr       | 39    | 0.30    | Seed<br>treatment,24<br>March,<br>BBCH 00 | Clay<br>loam          | 140<br>209 | _  | < 0.01<br>< 0.01 |        | M-<br>030342-<br>01-1      |
| 813834<br>Lebrija, Spain,<br>1998<br>(Colibri)                      | 600<br>FS              | 1  | nr       | 36    | 0.26    | Seed<br>treatment,14<br>Oct, BBCH<br>00   | Silty<br>sand         | 188<br>243 | _  | < 0.01<br>< 0.01 |        | M-<br>030342-<br>01-1      |
| TI001-04H<br>Springfield,<br>Nebraska, USA,<br>2004<br>(Beta 101)   | 474<br>SE <sup>a</sup> | 1  | nr       | 105   | 0.60    | Seed<br>treatment,<br>10 May,<br>BBCH 00  | Silt<br>loam          | 143        | 18 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1<br>b |
| TI002-04H<br>Sabin,<br>Minnesota, USA,<br>2004<br>(Beta 101)        | 474<br>SE <sup>a</sup> | 1  | nr       | 78    | 0.60    | Seed<br>treatment, 6<br>May, BBCH<br>00   | Silt                  | 147        | 21 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1<br>b |
| TI003-04H<br>Theilman,<br>Minnesota, USA,<br>2004<br>(Beta 101)     | 474<br>SE <sup>a</sup> | 1  | nr       | 94    | 0.60    | Seed<br>treatment, 7<br>June, BBCH<br>00  | Sandy<br>loam         | 112        | 20 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1<br>b |
| TI004-04H<br>Northwood,<br>North Dakota,<br>USA, 2004<br>(Beta 101) | 474<br>SE <sup>a</sup> | 1  | nr       | 89    | 0.60    | Seed<br>treatment, 7<br>May, BBCH<br>00   | Loam                  | 145        | 21 | 0.015            | < 0.01 | M-<br>281124-<br>01-1<br>b |
| TI005-04H<br>Campbell,<br>Minnesota, USA,<br>2004<br>(Beta 101)     | 474<br>SE <sup>a</sup> | 1  | nr       | 104   | 0.60    | Seed<br>treatment,19<br>May,BBCH<br>00    | Clay<br>loam          | 151        | 24 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1<br>b |
| TI006-04H<br>Velva, North<br>Dakota, USA,<br>2004<br>(Beta 102)     | 474<br>SE <sup>a</sup> | 1  | nr       | 88    | 0.60    | Seed<br>treatment, 7<br>May, BBCH<br>00   | Loam                  | 125        | 22 | 0.019            | 0.015  | M-<br>281124-<br>01-1<br>b |
| TI007-04H<br>Larned, Kansas,<br>USA, 2004<br>(Beta 102)             | 474<br>SE <sup>a</sup> | 1  | nr       | 101   | 0.60    | Seed<br>treatment, 7<br>May, BBCH<br>00   | Sandy<br>loam         | 128        | 17 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1      |
| TI008-04H<br>Eaton, Colorado,<br>USA, 2004<br>(Beta 102)            | 474<br>SE <sup>a</sup> | 1  | nr       | 99    | 0.60    | Seed<br>treatment,10<br>May, BBCH<br>00   | Sandy<br>clay<br>loam | 141        | 19 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1      |
| TI009-04H<br>Fresno,<br>California, USA,<br>2004<br>(Beta 102)      | 474<br>SE              | 1  | nr       | 89    | 0.60    | Seed<br>treatment,6<br>May, BBCH<br>00    | Sandy<br>loam         | 179        | 16 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1<br>b |
| TI010-04H<br>Live Oak,<br>California, USA,<br>2004<br>(Beta 101)    | 474<br>SE <sup>a</sup> | 1  | nr       | 88    | 0.60    | Seed<br>treatment,28<br>May, BBCH<br>00   | Clay<br>loam          | 164        | 19 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1<br>b |
| TI011-04H<br>Madras, Oregon,<br>USA, 2004                           | 474<br>SE <sup>a</sup> | 1  | nr       | 89    | 0.60    | Seed<br>treatment,28<br>May, BBCH         | Loam                  | 109        | 19 | < 0.01           | < 0.01 | M-<br>281124-<br>01-1      |

| Trial, Location<br>Country, year<br>(Variety)                   | Form<br>g<br>ai/kg,<br>g ai/L | No | Interval (d) | g<br>ai/ha | mg<br>ai/seed | method, last<br>application             | soil<br>type  | DAT | %<br>dm | parent,                   | mg/kg  | reference                  |
|-----------------------------------------------------------------|-------------------------------|----|--------------|------------|---------------|-----------------------------------------|---------------|-----|---------|---------------------------|--------|----------------------------|
| (Beta 102)                                                      |                               |    |              |            |               | 00                                      |               |     |         |                           |        | b                          |
| TI012-04H<br>Ephrata,<br>Washington,<br>USA, 2004<br>(Beta 102) | 474<br>SE <sup>a</sup>        | 1  | nr           | 98         | 0.60          | Seed<br>treatment, 3<br>May, BBCH<br>00 | Sandy<br>loam | 154 | 18      | < 0.01                    | < 0.01 | M-<br>281124-<br>01-1<br>b |
| TI013-04P<br>Sabin,<br>Minnesota, USA,<br>2004<br>(Beta 101)    | 474<br>SE <sup>a</sup>        | 1  | nr           | 392        | 3.0           | Seed<br>treatment                       | ns            | 147 | 23      | 0.009;<br>0.010;<br>0.012 |        | M-<br>282415-<br>01-1<br>c |

FS = flowable concentrate for seed treatment; SE = suspo-emulsion (in water)

nr = not relevant

ns = not stated

<sup>a</sup> 474 SE contains 474 g ai/L clothianidin and and 126 g ai/L cyfluthrin

<sup>b</sup> Results are from two replicate field samples

<sup>c</sup> Results are from three replicate field samples, samples used for processing

[Sur and Nuesslein, 2000, M-020378-01-1]. No unusual weather conditions. Plot size 54-96 m2. Seeding machines (120,000–130,000 seeds/ha). Sugar beet roots (2.73–22.25 kg or 12 units) were sampled at harvest. Samples were stored at -18 °C for 44–194 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (roots: individual 62–105%, average 85%).

[Nuesslein and Spiegel, 2000a, M-021156-01-1]. No unusual weather conditions. Plot size 54–96 m2. Seeding machines (120,000–130,000 seeds/ha). Sugar beet roots (2.20–27.7 kg or 12 units) were sampled at harvest. Samples were stored at -18 °C for 36–198 days. Samples were analysed using HPLC-MS-MS method 00552/M001.Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (roots: individual 62–105%, average 85%).

[Nuesslein and Elke, 2000b, M-023176-01-1]. No unusual weather conditions. Plot size 54-108 m2. Seeding machines (130,000–180,000 seeds/ha). Sugar beet roots (1.42–16.4 kg or 12 units) were sampled at harvest. Samples were stored at -18 °C for 58-231 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (roots: individual 62–105%, average 85%).

[Nuesslein and Huix, 2000a, M-029762-01-1]. No unusual weather conditions. Plot size 22–77 m2. Seeding machines (120,000–180,000 seeds/ha). Sugar beet roots (1.18–26.2 kg or 12–16 units) were sampled at harvest. Samples were stored at -18 °C for 209–323 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (roots: 80–101%).

[Nuesslein and Huix, 2000b, M-030310-01-1]. No unusual weather conditions. Plot size 20.2-77 m2. Seeding machines (120,000–130,000 seeds/ha). Sugar beet roots (1.03–26.75 kg or 12–16 units) were sampled at harvest. Samples were stored at -18 °C for 187–334 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (roots: 80–101%).

[Nuesslein and Huix, 2000c, M-030335-01-1]. No unusual weather conditions. Plot size 50-1035 m2. Seeding machines (130,000–177,000 seeds/ha). Sugar beet roots (1.01–24.9 kg or 11–25 units) were sampled at harvest. Samples were stored at -18 °C for 232–475 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (roots: 80-101%).

[Nuesslein and Huix, 2000d, M-030342-01-1]. No unusual weather conditions. Plot size 50-1035 m2. Seeding machines (130,000–177,000 seeds/ha). Sugar beet roots (0.79–27.61 kg or 12–25 units) were sampled at harvest. Samples were stored at -18 °C for 37-367 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (roots: 80-101%).

[Duah and Harbin, 2006a, M-281124-01-1]. No unusual weather conditions. Plot size 46-180 m2. 130640–176230 seeds/ha. Sugar beets (leaves plus roots >1 kg, at least 12 plants) were sampled at harvest. Samples were stored at -15 °C for up to 360 d. Replicate field samples were analysed for clothianidin and TMG using HPLC-MS-MS method TI-002-P05-001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (roots: 88–109 %). TMG residues were not found (< 0.01 mg/kg in each sample).

[Duah and Harbin, 2006b, M-282415-01-1]. No unusual weather conditions. Plot size 51 m2. 130714 seeds/ha. Sugar beet roots (68 kg, > 12 units) were sampled at the earliest commercial harvest and were sampled from at least 12 areas of the plot. Samples were stored at -12 °C for 385 days. Samples were analysed for clothianidin and TMG using modification A of HPLC-MS-MS method TI-002-P05-001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (94%–109%). TMG residues were not found (< 0.01 mg/kg).

# Cereal grains

The Meeting received supervised residue trials on barley, maize, rice, sorghum and wheat. Trials were available for seed treatment and subsequent culture in the field and for combined seed treatments and foliar spray treatments in the field.

### Barley

Supervised residue trials on barley were conducted in Germany (2000), the UK (2000), France (2000) and Italy (2000). Results are shown in Table 104 (seed treatment).

| Trial, Location<br>Country, year<br>(Variety)                                             | Form<br>g<br>ai/kg,g<br>ai/L | No | Interval (d) | g<br>ai/ha | kg<br>ai/t | method, last application                   | soil<br>type  | DAT | parent,<br>mg/kg | reference             |
|-------------------------------------------------------------------------------------------|------------------------------|----|--------------|------------|------------|--------------------------------------------|---------------|-----|------------------|-----------------------|
| R 2000 0063/4,<br>Burscheid,<br>Germany, 2000<br>(spring barley;<br>Scarlett)             | 250<br>FS                    | 1  | nr           | 70         | 0.44       | Seed<br>treatment,<br>23 March,<br>BBCH 00 | Loam          | 139 | < 0.01           | M-<br>070457-<br>02-1 |
| R 2000 0308/0,<br>Thurston, Bury<br>St. Edmunds, UK,<br>2000<br>(spring barley;<br>Optic) | 250<br>FS                    | 1  | nr           | 75         | 0.47       | Seed<br>treatment,<br>22 March,<br>BBCH 00 | Sandy<br>loam | 147 | < 0.01           | M-<br>070457-<br>02-1 |
| R 2000 0064/2,<br>Mas Grenier, S.<br>France, 2000<br>(spring barley;<br>Nevada)           | 250<br>FS                    | 1  | nr           | 57         | 0.44       | Seed<br>treatment,<br>10 March,<br>BBCH 00 | Sandy<br>silt | 130 | < 0.01           | M-<br>070457-<br>02-1 |
| R 2000 0309/0,<br>Albaro,<br>Italy, 2000<br>(spring barley;<br>Patty)                     | 250<br>FS                    | 1  | nr           | 69         | 0.43       | Seed<br>treatment,<br>9 March,<br>BBCH 00  | Sandy<br>loam | 116 | < 0.01           | M-<br>070457-<br>02-1 |

| Table 104 Residues of clothianidin in barley ( | (grain) | n) after seed treatment and culture in the field |  |
|------------------------------------------------|---------|--------------------------------------------------|--|
|                                                | (D      |                                                  |  |

nr = not relevant

FS = flowable concentrate for seed treatment

250 FS = contains 250 g/L clothianidin, 25 g/L HEC 5725, 15 g/L tebuconazole and 10 g/L triazoxide

[Preu and Elke, 2002, M-070457-02-1]. No unusual weather conditions. Plot size 75-120 m2. Seeding machines. The seeding rate was 130–160 kg seeds/ha. Barley (grain: 1.14–6.17 kg) was sampled at harvest. Samples were stored at – 18 °C for 341–385 days (grain). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001, supplement E001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (grain: 84–104%).

#### Maize (corn)

Supervised residue trials on maize were conducted in the USA (1999) and Canada (1999). Results are shown in Table 105 (seed treatment).

Table 105 Residues of clothianidin in maize (field corn) grains after seed treatment and subsequent culture in the field

| Trial,<br>Location<br>Country, year<br>(Variety) | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L | N<br>o | Interva<br>1 (d) | mg<br>ai/see<br>d | g<br>ai/h<br>a | method,<br>last<br>applicatio<br>n | soil<br>type | DA<br>T    | %<br>d<br>m | parent,<br>mg/kg            |            | referenc<br>e |
|--------------------------------------------------|--------------------------------------|--------|------------------|-------------------|----------------|------------------------------------|--------------|------------|-------------|-----------------------------|------------|---------------|
| BAY-T5001-<br>99H,                               | 600<br>FS                            | 1      | na               | 2.0               | 163            | Seed<br>treatment,                 | loam         | <u>170</u> | 78          | <u>&lt; 0.0</u><br><u>1</u> | < 0.0<br>1 | M-<br>106757- |

| Trial,                | Form      | Ν | Interva | mg     | g    | method,                 | soil  | DA         | %   | parent,              |            | referenc      |
|-----------------------|-----------|---|---------|--------|------|-------------------------|-------|------------|-----|----------------------|------------|---------------|
| Location              | g         | 0 | 1 (d)   | ai/see | ai/h | last                    | type  | T          | d   | mg/kg                |            | e             |
| Country, year         | ai/kg     | Ŭ | . (u)   | d      | a    | applicatio              | .jpc  | -          | m   |                      |            | ·             |
| (Variety)             | ,         |   |         |        |      | n                       |       |            |     |                      |            |               |
|                       | g         |   |         |        |      |                         |       |            |     |                      |            |               |
|                       | ai/L      |   |         |        |      |                         |       |            |     |                      |            |               |
| Germansville          |           |   |         |        |      | 4 May,                  |       |            |     |                      |            | 01-1          |
| ,                     |           |   |         |        |      | BBCH nr                 |       |            |     |                      |            | а             |
| Pennsylvania,         |           |   |         |        |      |                         |       |            |     |                      |            |               |
| USA, 1999             |           |   |         |        |      |                         |       |            |     |                      |            |               |
| (Pioneer              |           |   |         |        |      |                         |       |            |     |                      |            |               |
| 3346)                 | (00       | 1 |         | 2.0    | 175  | G 1                     | 1     | 1.00       |     | . 0. 0               | . 0. 0     |               |
| BAY-T5002-<br>99H,    | 600<br>FS | 1 | na      | 2.0    | 175  | Seed                    | loam  | <u>160</u> | 77  | $\frac{< 0.0}{1}$    | < 0.0<br>1 | M-<br>106757- |
| Germansville          | гэ        |   |         |        |      | treatment,<br>21 May,   |       |            |     | <u>1</u>             | 1          | 01-1          |
| Germansville          |           |   |         |        |      | BBCH nr                 |       |            |     |                      |            | a a           |
| ,<br>Pennsylvania,    |           |   |         |        |      | DDCITIM                 |       |            |     |                      |            |               |
| USA, 1999             |           |   |         |        |      |                         |       |            |     |                      |            |               |
| (Pioneer              |           |   |         |        |      |                         |       |            |     |                      |            |               |
| 35N05Bt)              |           |   |         |        |      |                         |       |            |     |                      |            |               |
| TGA-T5003-            | 600       | 1 | na      | 2.0    | 167  | Seed                    | loam  | <u>140</u> | 85  | < 0.0                | < 0.0      | M-            |
| 99D, Tifton,          | FS        |   |         |        |      | treatment,              | у     |            | 1   | 1                    | 1          | 106757-       |
| Georgia,              |           |   |         |        |      | 20 April,               | sand  |            |     |                      |            | 01-1<br>a     |
| USA, 1999             |           |   |         |        |      | BBCH nr                 |       |            |     |                      |            | а             |
| (Pioneer              |           |   |         |        |      |                         |       |            |     |                      |            |               |
| 3167)                 | (00       | 1 |         | 2.0    | 170  | 0 1                     |       | 146        | 0.1 |                      | (0.0       |               |
| BAY-T-<br>5004-99H,   | 600<br>FS | 1 | na      | 2.0    | 172  | Seed                    | ns    | <u>146</u> | 81  | $\frac{< 0.0}{1}$    | < 0.0<br>1 | M-<br>106757- |
| Bascom,               | гз        |   |         |        |      | treatment,<br>19 March, |       |            |     | <u>1</u>             | 1          | 01-1          |
| Florida,              |           |   |         |        |      | BBCH nr                 |       |            |     |                      |            | a             |
| USA, 1999             |           |   |         |        |      | DDCITIM                 |       |            |     |                      |            |               |
| (Pioneer              |           |   |         |        |      |                         |       |            |     |                      |            |               |
| 3167)                 |           |   |         |        |      |                         |       |            |     |                      |            |               |
| WIN-T5005-            | 600       | 1 | na      | 2.0    | 166  | Seed                    | ns    | 151        | 84  | <u>&lt; 0.0</u>      | < 0.0      | M-            |
| 99D, Oxford,          | FS        |   |         |        |      | treatment,              |       |            |     | <u>1</u>             | 1          | 106757-       |
| Indiana,              |           |   |         |        |      | 26 April,               |       |            |     |                      |            | 01-1<br>a     |
| USA, 1999             |           |   |         |        |      | BBCH nr                 |       |            |     |                      |            | a             |
| (Pioneer              |           |   |         |        |      |                         |       |            |     |                      |            |               |
| 3394)<br>STF-T5006-   | 600       | 1 |         | 2.0    | 171  | Seed                    | silt  | 121        | 80  | < 0.0                | < 0.0      | м             |
| 99H,                  | FS        | 1 | na      | 2.0    | 1/1  | treatment,              | loam  | <u>131</u> | 80  | $\frac{< 0.0}{1}$    | < 0.0<br>1 | M-<br>106757- |
| Stilwell,             | 1.2       |   |         |        |      | 7 May,                  | or    |            |     | <u>1</u>             | 1          | 01-1          |
| Kansas,               |           |   |         |        |      | BBCH nr                 | silty |            |     |                      |            | a             |
| USA, 1999             |           |   |         |        |      |                         | clay  |            |     |                      |            |               |
| (Pioneer              |           |   |         |        |      |                         | loam  |            |     |                      |            |               |
| 35N05Bt)              |           |   |         |        |      |                         |       |            |     |                      |            |               |
| SNE-T5007-            | 600       | 1 | na      | 2.0    | 172  | Seed                    | silt  | <u>137</u> | 79  | <u>&lt; 0.0</u>      | < 0.0      | M-            |
| 99Н,                  | FS        |   |         |        |      | treatment,              | loam  |            | 1   | <u>1</u>             | 1          | 106757-       |
| Springfield,          |           |   |         |        |      | 3 May,                  |       |            |     |                      |            | 01-1<br>a     |
| Nebraska,             |           |   |         |        |      | BBCH nr                 |       |            |     |                      |            | "             |
| USA, 1999<br>(Pioneer |           |   |         |        |      |                         |       |            |     |                      |            |               |
| (Ploneer<br>3394)     |           |   |         |        |      |                         |       |            |     |                      |            |               |
| BAY-T5008-            | 600       | 1 | na      | 2.0    | 168  | Seed                    | silt  | 141        | 85  | < 0.0                | < 0.0      | M-            |
| 99H, Carlyle,         | FS        | 1 | na      | 2.0    | 100  | treatment,              | loam  | 141        | 05  | $\frac{\leq 0.0}{1}$ | 1          | 106757-       |
| Illinois,             |           |   |         |        |      | 26 May,                 |       |            | 1   | <del>*</del>         | <b>*</b>   | 01-1          |
| USA, 1999             |           |   |         |        |      | BBCH nr                 |       |            | 1   |                      |            | a             |
| (Pioneer              |           |   |         |        |      |                         |       |            |     |                      |            |               |
| 32K61)                |           |   |         |        |      |                         |       |            |     |                      |            |               |
| BAY-T5009-            | 600       | 1 | na      | 2.0    | 168  | Seed                    | ns    | 144        | 81  | <u>&lt; 0.0</u>      | < 0.0      | M-            |
| 99H,                  | FS        |   |         |        |      | treatment,              |       |            | 1   | <u>1</u>             | 1          | 106757-       |
| Hedrick,              |           |   |         |        |      | 26 May,                 |       |            | 1   |                      |            | 01-1<br>a     |
| Iowa,<br>USA, 1999    |           |   |         |        |      | BBCH nr                 |       |            |     |                      |            |               |
| (Pioneer              |           |   |         |        |      |                         |       |            | 1   |                      |            |               |
| (Ploneer<br>35N05Bt)  |           |   |         |        |      |                         |       |            | 1   |                      |            |               |
| 20110200              |           | I | 1       | 1      | 1    | I                       |       | L          | L   | I                    | 1          |               |

| Trial,<br>Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg | N<br>o | Interva<br>l (d) | mg<br>ai/see<br>d | g<br>ai/h<br>a | method,<br>last<br>applicatio<br>n         | soil<br>type                                | DA<br>T           | %<br>d<br>m | parent,<br>mg/kg              |            | referenc<br>e              |
|---------------------------------------------------------------------------------------------|--------------------|--------|------------------|-------------------|----------------|--------------------------------------------|---------------------------------------------|-------------------|-------------|-------------------------------|------------|----------------------------|
|                                                                                             | g<br>ai/L          |        |                  |                   |                |                                            |                                             |                   |             |                               | 1          |                            |
| BAY-T5010-<br>99H,<br>Richland,<br>Iowa, USA,<br>1999<br>(Pioneer<br>3394)                  | 600<br>FS          | 1      | na               | 2.0               | 168            | Seed<br>treatment,<br>26 May,<br>BBCH nr   | silt<br>loam<br>or<br>silty<br>clay<br>loam | <u>149</u>        | 86          | <u>≤0.0</u><br><u>1</u>       | < 0.0      | M-<br>106757-<br>01-1<br>a |
| BAY-T5011-<br>99H,<br>BAY-T5012-<br>99H, Bagley,<br>Iowa,<br>USA, 1999<br>(Pioneer<br>3394) | 600<br>FS          | 1      | na               | 2.0               | 163            | Seed<br>treatment,<br>28 May,<br>BBCH nr   | loam<br>or<br>clay<br>loam                  | <u>143</u><br>148 | 93<br>86    | $\frac{<0.0}{\frac{1}{<}}$    | < 0.0      | M-<br>106757-<br>01-1<br>a |
| BAY-T5013-<br>99H, New<br>Holland,<br>Ohio, USA,<br>1999<br>(Pioneer<br>35N05Bt)            | 600<br>FS          | 1      | na               | 2.0               | 168            | Seed<br>treatment,<br>18 May,<br>BBCH nr   | loam<br>or<br>clay<br>loam                  | <u>136</u>        | 85          | <u>≤0.0</u><br><u>1</u>       | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-T5014-<br>99H, New<br>Holland,<br>Ohio,<br>USA, 1999<br>(Pioneer<br>3394)               | 600<br>FS          | 1      | na               | 2.0               | 170            | Seed<br>treatment,<br>20 May,<br>BBCH nr   | loam<br>or<br>clay<br>loam                  | <u>138</u>        | 74          | <u>≤0.0</u><br><u>1</u>       | < 0.0      | M-<br>106757-<br>01-1<br>a |
| BAY-T5015-<br>99H,<br>Noblesville,<br>Indiana,<br>USA, 1999<br>(Pioneer<br>Hybrid<br>32K61) | 600<br>FS          | 1      | na               | 2.0               | 165            | Seed<br>treatment,<br>3 May,<br>BBCH nr    | ns                                          | <u>141</u>        | 83          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0      | M-<br>106757-<br>01-1<br>a |
| BAY-T5016-<br>99H, Dow,<br>Illinois,<br>USA, 1999<br>(Pioneer<br>35N05Bt)                   | 600<br>FS          | 1      | na               | 2.0               | 177            | Seed<br>treatment,<br>11 May,<br>BBCH nr   | ns                                          | <u>128</u>        | 84          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-5017-<br>99H,<br>Campbell,<br>Minnesota,<br>USA, 1999<br>(Variety D:<br>N17-C5)         | 600<br>FS          | 1      | na               | 2.0               | 170            | Seed<br>treatment,<br>13 May,<br>BBCH nr   | clay<br>loam                                | <u>154</u>        | 84          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-T5018-<br>99H, Uvalde,<br>Texas,<br>USA, 1999<br>(Pioneer<br>3346)                      | 600<br>FS          | 1      | na               | 2.0               | 165            | Seed<br>treatment,<br>17 March,<br>BBCH nr | clay                                        | <u>125</u>        | 82          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| FCA-T5019-<br>99H, Fresno,<br>California,<br>USA, 1999                                      | 600<br>FS          | 1      | na               | 2.0               | 187            | Seed<br>treatment,<br>12 May,<br>BBCH nr   | sandy<br>loam                               | <u>119</u>        | 90          | $\frac{< 0.0}{\underline{1}}$ | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |

| Trial,<br>Location<br>Country, year<br>(Variety)                                              | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L | N<br>o | Interva<br>1 (d) | mg<br>ai/see<br>d | g<br>ai/h<br>a | method,<br>last<br>applicatio<br>n       | soil<br>type | DA<br>T    | %<br>d<br>m | parent,<br>mg/kg              |            | referenc<br>e              |
|-----------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|-------------------|----------------|------------------------------------------|--------------|------------|-------------|-------------------------------|------------|----------------------------|
| (D: N17-C5)                                                                                   |                                      |        |                  |                   |                |                                          |              |            |             |                               |            |                            |
| BAY-T5020-<br>99H,<br>Hermiston,<br>Oregon,<br>USA, 1999<br>(D: N17-C5)                       | 600<br>FS                            | 1      | na               | 2.0               | 179            | Seed<br>treatment,<br>4 May,<br>BBCH nr  | ns           | <u>172</u> | 86          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-T5021-<br>99H,<br>Hillsborrow,<br>Oregon,<br>USA, 1999<br>(D: N17-C5)                     | 600<br>FS                            | 1      | na               | 2.0               | 173            | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | <u>140</u> | 69          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-5022-<br>99D,<br>Branchton,<br>Ontario,<br>Canada, 1999<br>(D: N17-C5)                    | 600<br>FS                            | 1      | na               | 2.0               | 161            | Seed<br>treatment,<br>31 May,<br>BBCH nr | ns           | <u>148</u> | 78          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-T5023-<br>99H,<br>St-Paul-<br>d'Abbotsford<br>, Quebec,<br>Canada, 1999<br>(C: N2555Bt)   | 600<br>FS                            | 1      | na               | 2.0               | 167            | Seed<br>treatment,<br>18 May,<br>BBCH nr | ns           | <u>140</u> | 80          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-T5026-<br>99H,<br>St-Paul-<br>d'Abbotsford<br>,<br>Quebec,<br>Canada, 1999<br>(D: N17-C5) | 600<br>FS                            | 1      | na               | 2.0               | 167            | Seed<br>treatment,<br>20 May,<br>BBCH nr | ns           | <u>137</u> | 78          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0      | M-<br>106757-<br>01-1<br>a |
| BAY-T5024-<br>99H,<br>St-Pie,<br>Quebec,<br>Canada, 1999<br>(C: N2555Bt)                      | 600<br>FS                            | 1      | na               | 2.0               | 167            | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | <u>137</u> | 75          | $\frac{< 0.0}{\underline{1}}$ | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-T5025-<br>99H,<br>St-Pie-de-<br>Bagot,<br>Quebec,<br>Canada, 1999<br>(D: N17-C5)          | 600<br>FS                            | 1      | na               | 2.0               | 167            | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | <u>137</u> | 77          | $\frac{\leq 0.0}{1}$          | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |
| BAY-T5027-<br>99H, Taber,<br>Alberta,<br>Canada, 1999<br>(Novartis<br>4066)                   | 600<br>FS                            | 1      | na               | 2.0               | 122            | Seed<br>treatment,<br>5 May,<br>BBCH nr  | ns           | <u>159</u> | 85          | <u>&lt;0.0</u><br><u>1</u>    | < 0.0<br>1 | M-<br>106757-<br>01-1<br>a |

ns = not stated

nr = not relevant

<sup>a</sup> Results came from two replicate field samples

[Duah, 2000e, M-106757-01-1]. No unusual weather conditions. Plot size 84–520 m2. Seeds were planted manually, by tractor (mounted or by), row planter. The actual seeding rate was 60920–93663 seeds/ha. Replicate field samples of dry

#### Chlothianidin

grains ( $\geq 2.27$  kg) were collected from mature dry plants at earliest harvest. Samples were stored at  $-23.3 \pm 3$  °C for 125–251 days (grains). Samples were analysed using HPLC-MS-MS method 109240 (= 00552/M001). Results were not corrected for control levels (< 0.002 mg/kg) or for average concurrent method recoveries (grains: 74%–100%). Information on soil type was not available in the report. However, some of the same trial locations have been used in more recent field trials and soil type information came from these data [Gaston, 2010f].

## Popcorn

Supervised residue trials on maize were conducted in the USA (1999) and Canada (1999). Results for maize (corn) can also be considered for popcorn grain (see Table 105, seed treatment).

### Rice

Supervised residue trials on rice were conducted in Japan (1998, 2001, 2002, 2003 and 2005). Results are shown in Table 106 (combined seed treatment and foliar spray treatment). Residue levels in the Japanese trials were not obtained immediately after harvest (= RAC) but after a substantial drying period (9–35 days).

Table 106 Residues of clothianidin in paddy rice (husked grains) after combined seed and foliar treatments

| Trial, Location<br>Country, year<br>(Variety) | Form<br>g<br>ai/kg                                      | N<br>o      | Interva<br>1 (d)       | g ai/ha                                     | g<br>ai/h<br>L      | method,<br>last<br>applicatio<br>n                                                                               | soil<br>type | DA<br>T             | parent,<br>mg/kg                                                  |                                                | referenc<br>e                               |
|-----------------------------------------------|---------------------------------------------------------|-------------|------------------------|---------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|
|                                               | g<br>ai/L                                               |             |                        |                                             |                     |                                                                                                                  |              |                     |                                                                   |                                                |                                             |
| Ibaraki, JPPA<br>Japan, 2002<br>(Koshihikari) | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>25<br>GR  | 1<br>+<br>3 | 85–<br>92;7–<br>21;7   | 1.65 g ai/bo<br>x +3×<br>200 g ai/ha        | _                   | Seed box<br>Flooding<br>paddy<br>field<br>applic.,<br>4 Sept.;<br>28 Aug.;<br>21 Aug.;<br>14 Aug. <sup>c</sup>   | Clay         | 7<br>14<br>21<br>28 |                                                                   | < 0.0<br>1<br>0.01<br>< 0.0<br>1<br>< 0.0<br>1 | THR-<br>0427/<br>THR-<br>0428<br>a b<br>h j |
| Gifu<br>Japan, 2002<br>(Koshihikari)          | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>25<br>GR  | 1+<br>3     | 86–93;<br>7–22;<br>7–8 | 1.65 g ai/bo<br>x<br>+<br>3×<br>200 g ai/ha | -                   | Seed box<br>Flooding<br>paddy<br>field<br>applic.,<br>10 Sept.,<br>3 Sept.,<br>27 Aug.,<br>19 Aug., <sup>d</sup> | Loa<br>m     | 7<br>14<br>21<br>28 | $\begin{array}{c} 0.04 \\ 0.01 \\ 0.02 \\ < 0.0 \\ 1 \end{array}$ | 0.03<br>0.01<br>0.02<br>0.01                   | THR-<br>0427/<br>THR-<br>0428<br>a b<br>h j |
| Ibaraki, JPPA<br>Japan, 2002<br>(Koshihikari) | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>160<br>SP | 1+<br>3     | 85–92;<br>7–21;<br>7   | 1.65 g ai/bo<br>x<br>+<br>3×<br>60 g ai/ha  | -<br>3×<br>4.0      | Seed box<br>Flooding<br>paddy<br>field<br>applic.,<br>4 Sept.;<br>28 Aug.;<br>21 Aug.;<br>14 Aug. <sup>c</sup>   | Clay         | 7<br>14<br>21<br>28 | 0.010<br>0.14<br>0.11<br>0.06                                     | 0.10<br>0.12<br>0.10<br>0.06                   | THR-<br>0423/<br>THR-<br>0424<br>a b<br>h j |
| Gifu<br>Japan, 2002<br>(Koshihikari)          | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>160<br>SP | 1<br>+<br>3 | 86–93;<br>7–22;<br>7–8 | 1.65 g ai/bo<br>x +<br>3×<br>60 g ai/ha     | -<br>-<br>3×<br>4.0 | Seed box<br>Flooding<br>paddy<br>field<br>applic.,<br>10 Sept.,<br>3 Sept.,<br>27 Aug.,<br>19 Aug., <sup>d</sup> | Loa<br>m     | 7<br>14<br>21<br>28 | 0.12<br>0.10<br>0.12<br>0.08                                      | 0.11<br>0.10<br>0.08<br>0.08                   | THR-<br>0423/<br>THR-<br>0424<br>a b<br>h j |
| Ibaraki, JPPA                                 | (1)                                                     | 1+          | 85–92;                 | 1.65 g ai/bo                                | -                   | Seed box                                                                                                         | Clay         | 7                   | 0.05                                                              | 0.05                                           | THR-                                        |

| Trial, Location<br>Country, year<br>(Variety)             | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L                    | N<br>o        | Interva<br>l (d)            | g ai/ha                                     | g<br>ai/h<br>L        | method,<br>last<br>applicatio<br>n                                                         | soil<br>type | DA<br>T             | parent,<br>mg/kg             |                              | referenc<br>e                               |
|-----------------------------------------------------------|---------------------------------------------------------|---------------|-----------------------------|---------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------|--------------|---------------------|------------------------------|------------------------------|---------------------------------------------|
| Japan, 2002<br>(Koshihikari)                              | 25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>5 DP             | 3             | 7–21;<br>7                  | x +<br>3×<br>200 g ai/ha                    | _                     | Foliar<br>dust,<br>4 Sept.;<br>28 Aug.;<br>21 Aug.;<br>14 Aug. <sup>e</sup>                |              | 14<br>21<br>28      | 0.07<br>0.06<br>0.03         | 0.07<br>0.04<br>0.04         | 0419/<br>THR-<br>0420<br>a b<br>h j         |
| Gifu<br>Japan, 2002<br>(Koshihikari)                      | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>5 DP      | 1+<br>3       | 86–93;<br>7–22;<br>7–8      | 1.65 g ai/bo<br>x<br>+<br>3×<br>200 G ai/ha | _                     | Seed box<br>Foliar<br>dust,<br>10 Sept.,<br>3 Sept.,<br>27 Aug.,<br>19 Aug., <sup>d</sup>  | Loa<br>m     | 7<br>14<br>21<br>28 | 0.11<br>0.08<br>0.08<br>0.08 | 0.10<br>0.09<br>0.08<br>0.08 | THR-<br>0419/<br>THR-<br>0420<br>a b<br>h j |
| Ibaraki, JPPA<br>Japan, 2002<br>(Koshihikari)             | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>200<br>SC | 1+<br>3       | 85–92;<br>7–21;<br>7        | 1.65 g ai/bo<br>x<br>+<br>3×<br>60 g ai/ha  | $-3\times$ 4.0        | Seed box<br>Foliar<br>spray,<br>4 Sept.;<br>28 Aug.;<br>21 Aug.;<br>14 Aug. <sup>c</sup>   | Clay         | 7<br>14<br>21<br>28 | 0.08<br>0.10<br>0.10<br>0.05 | 0.08<br>0.11<br>0.12<br>0.06 | THR-<br>0411/<br>THR-<br>0412<br>a b<br>h j |
| Nakatsukawa-<br>shi, Gifu<br>Japan, 2002<br>(Koshihikari) | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>200<br>SC | 1+<br>3       | 86–93;<br>7–22;<br>7–8      | 1.65 g ai/bo<br>x<br>+<br>3×<br>60 g ai/ha  | -<br>$3\times$<br>4.0 | Seed box<br>Foliar<br>spray,<br>10 Sept.;<br>3 Sept.;<br>27 Aug.;<br>19 Aug. <sup>d</sup>  | Loa<br>m     | 7<br>14<br>21<br>28 | 0.16<br>0.13<br>0.12<br>0.11 | 0.16<br>0.12<br>0.11<br>0.10 | THR-<br>0411/<br>THR-<br>0412<br>a b<br>h j |
| Aomori<br>Japan, 2002<br>(Yumeakari)                      | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>200<br>SC | 1+<br>3       | 76–92;<br>7–21;<br>6–8      | 1.65 g ai/bo<br>x +<br>3×<br>67 g ai/ha     | -<br>3×<br>833        | Seed box<br>Aerial<br>spray,<br>20 Sept.;<br>13 Sept.;<br>7 Sept.;<br>30 Aug. <sup>c</sup> | Clay         | 7<br>14<br>21<br>28 | 0.02<br>0.02<br>0.04<br>0.03 | 0.02<br>0.02<br>0.04<br>0.03 | THR-<br>0415/<br>THR-<br>0416<br>a b<br>h j |
| Niigata<br>Japan, 2002<br>(Koshihikari)                   | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>200<br>SC | 1+<br>1+<br>3 | 88–<br>102;<br>7–14;<br>6–8 | 1.65 g ai/bo<br>x<br>+<br>3×<br>67 g ai/ha  | -<br>3×<br>833        | Seed box<br>Aerial<br>spray,<br>3 Sept.;<br>27 Aug.;<br>21 Aug.;<br>13 Aug. <sup>f</sup>   | Clay<br>loam | 7<br>14<br>21<br>28 | 0.14<br>0.16<br>0.10<br>0.04 | 0.10<br>0.14<br>0.08<br>0.03 | THR-<br>0415/<br>THR-<br>0416<br>a b<br>h j |
| Ishikawa<br>Japan, 2005<br>(Yumemizuho)                   | (1)<br>25<br>GR<br>(2-4)<br>200<br>SC                   | 1+<br>3       | 86;<br>7–21;<br>7           | 1.25 g ai/bo<br>x<br>+<br>3×<br>40 g ai/ha  | $-3\times$ 16         | Seed box<br>Foliar<br>spray,<br>1 Sept.;<br>25 Aug.;<br>18 Aug. <sup>d</sup>               | Loa<br>m     | 7<br>14<br>21       | 0.09<br>0.15<br>0.09         | 0.10<br>0.14<br>0.12         | THR-<br>0439/<br>THR-<br>0441<br>a h j      |
| Gifu<br>Japan, 2005<br>(Koshihikari)                      | (1)<br>25<br>GR                                         | 1+<br>3       | 88;<br>7–21;<br>6–8         | 1.25 g ai/bo<br>x<br>+                      | $-3\times$ 16         | Seed box<br>Foliar<br>spray,                                                               | Clay<br>loam | 7<br>14<br>21       | 0.18<br>0.12<br>0.17         | 0.21<br>0.10<br>0.18         | THR-<br>0439/<br>THR-                       |

| Trial, Location<br>Country, year<br>(Variety)                 | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L                    | N<br>o  | Interva<br>l (d)            | g ai/ha                                     | g<br>ai/h<br>L | method,<br>last<br>applicatio<br>n                                                                   | soil<br>type | DA<br>T             | parent,<br>mg/kg                                                |                                        | e<br>e                                      |
|---------------------------------------------------------------|---------------------------------------------------------|---------|-----------------------------|---------------------------------------------|----------------|------------------------------------------------------------------------------------------------------|--------------|---------------------|-----------------------------------------------------------------|----------------------------------------|---------------------------------------------|
|                                                               | (2–4)<br>200<br>SC                                      |         |                             | 3×<br>40 g ai/ha                            |                | 13 Sept.;<br>7 Sept.;<br>30 Aug. <sup>d</sup>                                                        |              |                     |                                                                 |                                        | 0441<br>ahj                                 |
| Ibaraki, JPPA<br>Japan, 2003<br>(Koshihikari)                 | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>160<br>SP | 1+<br>3 | 96–<br>103;<br>3–17;<br>3–7 | 1.65 g ai/bo<br>x<br>+<br>3×<br>40 g ai/ha  | -<br>3×<br>16  | Seed box<br>Foliar<br>spray,<br>11 Sept.;<br>4 Sept.;<br>28 Aug.;<br>21 Aug. <sup>°</sup>            | Clay         | 7<br>14<br>21<br>28 | 0.08<br>0.10<br>0.08<br>0.03                                    | 0.08<br>0.08<br>0.07<br>0.02           | THR-<br>0435/<br>THR-<br>0436<br>a b<br>h j |
| Miyazaki<br>Japan, 2003<br>(Hinohikari)                       | (1)<br>25<br>GR<br>+<br>160<br>SP<br>(2-4)<br>160<br>SP | 1+<br>3 | 84–91;<br>7–21;<br>7        | 1.65 g ai/bo<br>x<br>+<br>3×<br>40 g ai/ha  | -<br>3×<br>16  | Seed box<br>Foliar<br>spray,<br>29 Sept.;<br>22 Sept.;<br>15 Sept.;<br>8 Sept. <sup>d</sup>          | Clay<br>loam | 7<br>14<br>21<br>28 | 0.06<br>0.07<br>0.07<br>0.04                                    | 0.06<br>0.06<br>0.06<br>0.04           | THR-<br>0435/<br>THR-<br>0436<br>a b<br>h j |
| Kamagaya-shi,<br>Saitama<br>Japan, 2001<br>(Sakitamani<br>me) | (1)<br>25<br>GR<br>(2–4)<br>5 GR                        | 1+<br>3 | 69;<br>13–27;<br>7–8        | 1.25 g ai/bo<br>x<br>+<br>3×<br>200 g ai/ha | _              | Seed box<br>Flooding<br>paddy<br>field<br>applic.,<br>11 Oct.;<br>3 Oct.;<br>26 Sept. <sup>c</sup>   | Clay<br>loam | 7<br>14<br>21       | < 0.0<br>1<br>< 0.0<br>1<br>< 0.0<br>1                          | < 0.0<br>1<br>< 0.0<br>1<br>< 0.0<br>1 | THR-<br>0404/<br>THR-<br>0406<br>a h j      |
| Kamgaya-shi,<br>Fukushima<br>Japan, 2001<br>(Hitomebore)      | (1)<br>25<br>GR<br>(2-4)<br>5 GR                        | 1+<br>3 | 94;<br>15–29;<br>6–8        | 1.25 g ai/bo<br>x<br>+<br>3×<br>200 g ai/ha | _              | Seed box<br>Flooding<br>paddy<br>field<br>applic,<br>25 sept.;<br>18 Sept.;<br>10 Sept. <sup>d</sup> | Loa<br>m     | 7<br>14<br>22       | $\begin{array}{c} 0.01 \\ < 0.0 \\ 1 \\ < 0.0 \\ 1 \end{array}$ | 0.02<br>0.02<br>< 0.0<br>1             | THR-<br>0403/<br>THR-<br>0405<br>a h j      |
| Ibaragi-ken,<br>JPPA<br>Japan, 1998<br>(Koshihikari)          | (1)<br>25<br>GR<br>(2-4)<br>1.5<br>DP                   | 1+<br>3 | 95–<br>102;<br>7–14;<br>7–8 | 1.25 g ai/bo<br>x<br>+<br>3×<br>60 g ai/ha  | -              | Seed box<br>Foliar<br>dust,<br>8 Sept.;<br>31 Aug.;<br>24 Aug. <sup>g</sup>                          | Loa<br>m     | 14<br>21<br>28      | 0.041<br>0.048<br>0.045                                         | 0.047<br>0.033<br>0.024                | THR-<br>0244/<br>THR-<br>0249<br>a h j      |
| Koichi<br>Japan, 1998<br>(Kogenenishiki<br>)                  | (1)<br>25<br>GR<br>(2-4)<br>1.5<br>DP                   | 1+3     | 84–98;<br>7;<br>7           | 1.25 g ai/bo<br>x<br>+<br>3x<br>60 g ai/ha  | -              | Seed box<br>Foliar<br>dust,<br>8 Sept.;<br>1 Sept.;<br>25 Aug. <sup>g</sup>                          | Clay<br>loam | 13<br>20<br>27      | 0.016<br>0.010<br>< 0.0<br>$1^{i}$                              | 0.023<br>0.020<br>0.016                | THR-<br>0244/<br>THR-<br>0249<br>a h<br>j   |
| Ibaragi-ken,<br>JPPA<br>Japan, 1998<br>(Koshihikari)          | (1)<br>25<br>GR<br>(2-4)<br>10<br>GR                    | 1+<br>3 | 95–<br>102;<br>7–14;<br>7–8 | 1.25 g ai/bo<br>x +<br>3×<br>100 g ai/ha    | _              | Seed box<br>Flooding<br>paddy<br>field<br>applic,<br>8 Sept.;<br>31 Aug.;<br>24 Aug. <sup>g</sup>    | Loa<br>m     | 14<br>21<br>28      |                                                                 |                                        | THR-<br>0223/<br>THR-<br>0228<br>a h j      |
| Koichi<br>Japan, 1998<br>(Koganenishi                         | (1)<br>25<br>GR                                         | 1+<br>3 | 84–98;<br>7;<br>7           | 1.25 g ai/bo<br>x<br>+                      | _              | Seed box<br>Flooding<br>paddy                                                                        | Clay<br>loam | 13<br>20<br>27      | < 0.0<br>1 <sup>i</sup><br>0.012                                | 0.026<br>0.021<br>0.014                | THR-<br>0223/<br>THR-                       |

| Trial, Location<br>Country, year<br>(Variety) | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L | N<br>o | Interva<br>l (d) | g ai/ha          | g<br>ai/h<br>L | method,<br>last<br>applicatio<br>n                               | soil<br>type | DA<br>T | parent,<br>mg/kg        |       | referenc<br>e |
|-----------------------------------------------|--------------------------------------|--------|------------------|------------------|----------------|------------------------------------------------------------------|--------------|---------|-------------------------|-------|---------------|
| ki)                                           | (2–4)<br>10<br>GR                    |        |                  | 3×<br>60 g ai/ha |                | field<br>applic,<br>8 Sept.;<br>1 Sept,;<br>25 Aug. <sup>g</sup> |              |         | < 0.0<br>1 <sup>i</sup> |       | 0228<br>a h j |
| Ibaragi-ken,                                  | (1)                                  | 1+     | 95–              | 1.25 g ai/bo     | -              | Seed box                                                         | Loa          | 14      | 0.094                   | 0.12  | THR-          |
| JPPA                                          | 25                                   | 3      | 102;             | х                | 3×             | Foliar                                                           | m            | 21      | 0.13                    | 0.11  | 0200/         |
| Japan, 1998                                   | GR                                   |        | 7–14;            | +                | 4.0            | spray,                                                           |              | 28      | 0.090                   | 0.082 | THR-          |
| (Koshihikari)                                 | (2-4)                                |        | 7–8              | 3×               |                | 8 Sept.;                                                         |              |         |                         |       | 0205          |
|                                               | 160                                  |        |                  | 60 kg ai/ha      |                | 31 Aug.;                                                         |              |         |                         |       | a h j         |
|                                               | SP                                   |        |                  |                  |                | 24 Aug. <sup>g</sup>                                             |              |         |                         |       |               |
| Koichi                                        | (1)                                  | 1+     | 84–98;           | 1.25 g ai/bo     | -              | Seed box                                                         | Clay         | 13      | 0.10                    | 0.096 | THR-          |
| Japan, 1998                                   | 25                                   | 3      | 7;               | Х                | 3×             | Foliar                                                           | loam         | 20      | 0.10                    | 0.090 | 0200/         |
| (Koganenishi                                  | GR                                   |        | 7                | +                | 4.0            | spray,                                                           |              | 27      | 0.068                   | 0.066 | THR-          |
| ki)                                           | (2-4)                                |        |                  | 3×               |                | 8 Sept.;                                                         |              |         |                         |       | 0205          |
|                                               | 160                                  |        |                  | 60 kg ai/ha      |                | 1 Sept.;                                                         |              |         |                         |       | a h j         |
|                                               | SP                                   |        |                  |                  |                | 25 Aug. <sup>g</sup>                                             |              |         |                         |       |               |

<sup>a</sup>.Reversed decline trial. Plots are treated on different days; the day of harvest is equal for all plots.

<sup>b</sup> It is noted that two different treatments in seedling box were applied

<sup>c.</sup> No growth stage stated, presumably in the range of dough-ripe stage to full ripe stage.

<sup>d</sup>. The last applications were applied in range of dough-ripe stage to full ripe stage.

<sup>e</sup> Milk-ripe stage to unstated growth stage (presumably up to full ripe stage).

<sup>f.</sup> Milk-ripe stage to 31 days after heading stage

g. Growth stage not stated.

<sup>h.</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

i. Values below 0.01 mg/kg were adapted by the reviewer as < 0.01 mg/kg (the validated LOQ of the analytical method).

j. Residue levels are not obtained immediately after harvest (= RAC) but after a considerate drying period (9-35 days).

[Komatsu and Yabuzaki, 2003g, THR-0427; Ohta, 2003c, THR-0428]. No unusual weather conditions. Plot size 21– 67.2 m2. Knapsack sprayer or drenching followed by manual application of granules was used for first application on seedling boxes, followed by manual application or power granule applicators of the three following applications in paddies after transplating seedlings by machine (170 seedling boxes/ha). Rice was reaped by sickle and two replicate field samples were dried in a greenhouse (JPPA) or on paddy sheaf racks protected by plastic sheefs (Gifu) for 9–14 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter samples were stored at -20 °C for 47–60 days or 19–25 days, depending on the laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (78–103% and 78–99%, respectively).

[Komatsu and Yabuzaki, 2003e, THR-0423; Komatsu and Yabuzaki, 2003f, THR-0424]. No unusual weather conditions. Plot size 21–67.2 m2. Knapsack sprayer or drenching followed by manual application of granules was used for first application on seedling boxes, followed by backpack sprayer (1500 L/ha) or power duster for the three following applications. Rice was reaped by sickle and two replicate field samples were dried in a greenhouse (JPPA) or on paddy sheaf racks protected by plastic sheefs (Gifu) for 9–14 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter samples were stored at –20 °C for 52–53 days and 26–28 days, respectively, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (78–103% and 78–99%, respectively).

[Komatsu and Yabuzaki, 2003d, THR-0419; Ohta, 2003b, THR-0420]. No unusual weather conditions. Plot size 21– 67.2 m2. Knapsack sprayer or drenching followed by manual application of granules was used for first application on seedling boxes, followed by small size or power duster for the three following applications. Rice was reaped by sickle and two replicate field samples were dried in a greenhouse (JPPA) or on paddy sheaf racks protected by plastic sheefs (Gifu) for 9–14 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter samples were stored at -20 °C for 41–53 days and 28–34 days, respectively, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (78–103% and 78–99%, respectively).

[Komatsu and Yabuzaki, 2003a, THR-0411; Ohta, 2003a, THR-0412]. No unusual weather conditions. Plot size 21–67.2 m2. Knapsack sprayer or drenching followed by manual application of granules was used for first application on

seedling boxes, followed by three knapsack sprayer or power duster applications. Rice was reaped by sickle and two replicate field samples were dried in a greenhouse (JPPA) or on paddy sheaf racks protected by plastic sheefs (Gifu) for 9–14 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter samples were stored at -20 °C for 48–60 days and 31–33 days, respectively upon receipt until analysis. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (78–103% and 78–99%, respectively).

[Komatsu and Yabuzaki, 2003b/c, THR-0415/THR-0416]. No unusual weather conditions. Plot size 480–795 m2. Drenching followed by manual application of granules was used for first application on seedling boxes, followed by aerial spraying (8 L/ha). Rice was harvested by hand or by binder. Replicate field samples were rack-dried for 16–35 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1–2 days. Thereafter, samples were stored at -20 °C for 62–64 days and 15–27 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (91–98% and 80–104%, respectively).

[Odanaka and Wakasone, 2006b, THR-0439; Nagasawa and Wada, 2006b, THR-0441]. No unusual weather conditions. Plot size 50–200 m2. Granules were applied to each box, followed by three foliar applications by knapsack power sprayer (boom sprayer, 250 L/ha). Rice was reaped by sickle. Replicate field samples were dried indoors using an electric fan and ventilator (Ishikawa) or rack dried covered with a plastic sheet (Gifu) for 11–27 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter samples were stored at -20 °C for 18–21 days and 74–77 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (85–100% and 82–98%, respectively).

[Yabuzaki and Mizukoshi, 2003a, THR-0435; Ohta, 2003d, THR-0436]. No unusual weather conditions. Plot size 21.6–24 m2. Drenching with knapsack sprayer, followed by manually applied granules in seedling box, followed by three foliar knapsack power spray applications (250 L/ha). Rice was reaped by sickle. Replicate field samples were dried on paddy sheaf racks in a glasshouse (JPPA) or outdoors (Miyazaki) for 9–11 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1–2 days. Thereafter, samples were stored at –20 °C for 12–30 days and 3–11 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (86–101% and 81–99%, respectively).

[Komatsu and Yabuzaki, 2002b, THR-0404; Ohta, 2002b, THR-0406]. No unusual weather conditions. Plot size 110 m2. Manually applied granules in seedling box, followed by three applications by granules applicatore. Rice was hand-reaped by sickle. Replicate field samples were rack-dried in a weather protected structure and dried by sending air with an electric fan for 19–20 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter, samples were stored at -20 °C for 105 days and 86–89 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (91–99% and 92–100%, respectively).

[Komatsu and Yabuzaki, 2002a, THR-0403; Ohta, 2002a, THR-0405]. No unusual weather conditions. Plot size 30 m2. Manually applied granules in seedling box, followed by three manual sprinkling applications. Rice was reaped by sickle. Replicate field samples were rack dried in a greenhouse for 22 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter, samples were stored at -20 °C for 118 days and 84–99 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (86–99% and 87–98%, respectively).

[Komatsu and Yabuzaki, 2000i, THR-0244; Ohta, 2000e, THR-0249]. No unusual weather conditions. Plot size 21–46.8 m2. Granules for seeding box sprinkled by hand, followed by low drift dust (Midget duster) foliar applications. Rice was harvested with a binder and replicate field samples were dried in a greenhouse for 15–23 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter, samples were stored at – 20 °C for 474–482 days and 454–467 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.004 mg/kg) or for individual concurrent method recoveries (92–98% and 80–97%, respectively).

[Komatsu and Yabuzaki, 2000h, THR-0223; Ohta, 2000d, THR-0228]. No unusual weather conditions. Plot size 21–46.8 m2. Manually applied granules in seedling box, followed by three manual sprinkling applications. Rice was harvested with a binder and replicate field samples were dried in a greenhouse for 15–23 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter, samples were stored at -20 °C for 474–482 days and 453–467 days, respectively upon receipt until analysis. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.004 mg/kg) or for individual concurrent method recoveries (92–98% and 82–97%, respectively).

[Komatsu and Yabuzaki, 2000g, THR-0200; Ohta, 2000c, THR-0205]. No unusual weather conditions. Plot size 21–46.8 m2. Manually applied granules in seedling box were followed by three foliar applications by knapsack power sprayer (1500 L/ha). Rice was harvested with a binder and replicate field samples were dried in a greenhouse for 15–23 days. The rice was threshed and hulled and brown rice grains (> 2 kg per plot) were stored at + 5 °C for 1 day. Thereafter, samples were stored at -20 °C for 474–482 days and 13–26 days, depending on laboratory. Samples were analysed using the Japanese HPLC-UV method for rice. Results were not corrected for control levels (< 0.004 mg/kg) or for individual concurrent method recoveries (92–98% and 80–97%, respectively).

# Sorghum

Supervised residue trials on sorghum were conducted in the USA (2001). Results are shown in Table 107 (seed treatment).

Table 107 Residues of clothianidin in sorghum (grain) after seed treatment and subsequent culture in the field

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                    | Form<br>g<br>ai/kg,<br>g ai/L | No | Interval (d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application             | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg |        | reference             |
|------------------------------------------------------------------------|-------------------------------|----|--------------|------------|------------|--------------------------------------------|--------------|-----|---------|------------------|--------|-----------------------|
| T5046-01H,<br>Chula,<br>Georgia,<br>USA, 2001<br>(DK 52)               | 600<br>FS                     | 1  | nr           | 21         | 2.5        | Seed<br>treatment,<br>3 May,<br>BBCH 00    | ns           | 113 | 86      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5047-01H,<br>Benoit,<br>Mississippi,<br>USA, 2001<br>(DK 52)          | 600<br>FS                     | 1  | nr           | 13         | 2.5        | Seed<br>treatment,<br>1 May,<br>BBCH 00    | ns           | 134 | 84      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5058-01P<br>Benoit, MS,<br>USA 2001,<br>DK52                          | 600<br>FS                     | 1  | nr           | 27         | 5.0        | Seed<br>treatment,<br>1 May;<br>BBCH 00    | ns           | 134 | 87      | < 0.01           | < 0.01 | M-<br>087801-<br>01-1 |
| T5048-01H,<br>Stilwell,<br>Kansas,<br>USA, 2001<br>(KS 711Y)           | 600<br>FS                     | 1  | nr           | 13         | 2.5        | Seed<br>treatment,<br>2 May,<br>BBCH 00    | ns           | 133 | 90      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5049-01H,<br>Oxford,<br>Indianapolis,<br>USA, 2001<br>(KS 711Y)       | 600<br>FS                     | 1  | nr           | 15         | 2.5        | Seed<br>treatment,<br>28 May,<br>BBCH 00   | ns           | 142 | 82      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5050-01H,<br>Louisville,<br>Nebraska,<br>USA, 2001<br>(KS 711Y)       | 600<br>FS                     | 1  | nr           | 19         | 2.5        | Seed<br>treatment,<br>26 April,<br>BBCH 00 | ns           | 148 | 87      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5051-01H,<br>New<br>Holland,<br>Ohio, USA,<br>2001<br>(Garst<br>G444) | 600<br>FS                     | 1  | nr           | 9.0        | 2.5        | Seed<br>treatment,<br>31 May,<br>BBCH 00   | ns           | 147 | 83      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5052-01H,<br>Comanche,<br>Oklahoma,<br>USA, 2001<br>(DK 52)           | 600<br>FS                     | 1  | nr           | 6.7        | 2.5        | Seed<br>treatment,<br>18 May,<br>BBCH 00   | ns           | 167 | 86      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5053-01H,<br>Brookshire,<br>Texas, USA,<br>2001<br>(DK 52)            | 600<br>FS                     | 1  | nr           | 20         | 2.5        | Seed<br>treatment,<br>12 May,<br>BBCH 00   | ns           | 97  | 89      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5054-01H,<br>Jamestown,<br>North<br>Dakota,                           | 600<br>FS                     | 1  | nr           | 29         | 2.5        | Seed<br>treatment,<br>23 May,<br>BBCH 00   | ns           | 151 | 85      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |

| USA, 2001<br>(Garst<br>G444)                                 |           |   |    |     |     |                                          |    |     |    |        |        |                       |
|--------------------------------------------------------------|-----------|---|----|-----|-----|------------------------------------------|----|-----|----|--------|--------|-----------------------|
| T5055-01H,<br>Claude,<br>Texas, USA,<br>2001<br>(NC+Y363)    | 600<br>FS | 1 | nr | 9.0 | 2.5 | Seed<br>treatment,<br>23 May,<br>BBCH 00 | ns | 161 | 89 | < 0.01 | < 0.01 | M-<br>087784-<br>01-1 |
| T5056-01H,<br>Plainview,<br>Texas, USA,<br>2001<br>(NC+Y363) | 600<br>FS | 1 | nr | 21  | 2.5 | Seed<br>treatment,<br>11 May,<br>BBCH 00 | ns | 109 | 84 | < 0.01 | < 0.01 | M-<br>087784-<br>01-1 |
| T5057-01H,<br>Levelland,<br>Texas, USA<br>2001<br>(NC+Y363)  | 600<br>FS | 1 | nr | 9.0 | 2.5 | Seed<br>treatment,<br>16 May,<br>BBCH 00 | ns | 114 | 87 | < 0.01 | < 0.01 | M-<br>087784-<br>01-1 |

nr = not relevant

ns = not stated

[Duah, 2002a, M-087784-01-1]. No unusual weather conditions. Plot size 84–530 m2. Seeding machines. The seeding rate 94361–329241 seeds/ha or 93.3–11 kg seeds/ha. Sorghum grain (at least 1.134 kg) was sampled at normal harvest. Samples were stored at -15 °C for 221–297 days (grains). Samples were analysed for clothianidin using modification A of HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (grain: 80–106%).

[Duah, 2002b, M-087801-01-1]. No unusual weather conditions. Plot size 705 m2. Seeding machines. The seeding rate 180000 seeds/ha or 5.6 kg seeds/ha. Sorghum grain (226 kg) was mechanically harvested at normal harvest. Samples were stored at -15 °C for 265 days (grains). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (grain: 95%–106%).

#### Wheat

Supervised residue trials on wheat were conducted in Germany (1998 and 1999), the UK (1999), France (1998 and 1999) and the USA (2005, 2006 and 2007). Results are shown in Table 108 (seed treatment).

| Table 108 Residues of clothianidin in wheat (grain) after seed treatment and culture in the field |  |
|---------------------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------------------|--|

| Trial, Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L | N<br>o | Interva<br>l (d) | g<br>ai/h<br>a | kg<br>ai/t | method,<br>last<br>applicatio<br>n         | soil<br>type          | DA<br>T | %<br>d<br>m | parent, mg/kg | referenc<br>e         |
|------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|----------------|------------|--------------------------------------------|-----------------------|---------|-------------|---------------|-----------------------|
| 813710<br>Burscheid,<br>Germany,<br>1998<br>(spring wheat;<br>Thasos)                    | 600<br>FS                            | 1      | nr               | 104            | 0.5 2      | Seed<br>treatment,<br>26 March,<br>BBCH 00 | Sandy<br>loam         | 146     | _           | < 0.01        | M-<br>031797-<br>01-1 |
| R 1999 0042/2<br>Burscheid,<br>Germany,<br>1999<br>(spring wheat;<br>Thasos)             | 350<br>FS                            | 1      | nr               | 67             | 0.4 2      | Seed<br>treatment,<br>March 26,<br>BBCH 00 | Sandy<br>loam         | 139     | _           | < 0.01        | M-<br>26928-<br>01-1  |
| R 1999 0220/4<br>Thurston Bury<br>St. Edmunds,<br>UK, 1999<br>(spring wheat;<br>Chablis) | 350<br>FS                            | 1      | nr               | 71             | 0.4 4      | Seed<br>treatment,<br>9 April,<br>BBCH 00  | Sandy<br>clay<br>loam | 130     | _           | < 0.01        | M-<br>26928-<br>01-1  |

| Trial, Location<br>Country, year<br>(Variety)                                           | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L | N<br>o | Interva<br>1 (d) | g<br>ai/h<br>a | kg<br>ai/t | method,<br>last<br>applicatio<br>n                 | soil<br>type  | DA<br>T | %<br>d<br>m | parent,    | mg/kg      | e referenc                              |
|-----------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|----------------|------------|----------------------------------------------------|---------------|---------|-------------|------------|------------|-----------------------------------------|
| 811125<br>Fresne-<br>L'Archeveque<br>, N. France,<br>1998<br>(spring wheat;<br>Furio)   | 600<br>FS                            | 1      | nr               | 100            | 0.6 2      | Seed<br>treatment,<br>26 March,<br>BBCH 00         | Silt          | 140     | _           | < 0.01     |            | M-<br>031797-<br>01-1                   |
| R 1999 0043/0<br>Mas Gernier,<br>S. France,<br>1999<br>(spring wheat;<br>Furio)         | 350<br>FS                            | 1      | nr               | 61             | 0.3 8      | Seed<br>treatment,<br>18 March,<br>BBCH 00         | Sandy<br>silt | 134     |             | < 0.01     |            | M-<br>026930-<br>01-1<br>a              |
| R 1999 0077/5<br>St. Paul les<br>Romans, S.<br>France, 1999<br>(spring wheat;<br>Furio) | 350<br>FS                            | 1      | nr               | 66             | 0.4        | Seed<br>treatment,<br>2 March,<br>BBCH 00          | Sand          | 155     |             | < 0.01     |            | M-<br>026930-<br>01-1<br>a              |
| 811141<br>Saint Benigne,<br>S. France,<br>1998<br>(spring wheat;<br>Ventura)            | 600<br>FS                            | 1      | nr               | 87             | 0.6        | Seed<br>treatment,<br>18 March,<br>BBCH 00         | Sand          | 142     | _           | < 0.01     |            | M-<br>031786-<br>01-1                   |
| 813729<br>Marsonnas, S.<br>France, 1998<br>(spring wheat;<br>Ventura)                   | 600<br>FS                            | 1      | nr               | 109            | 0.6<br>3   | Seed<br>treatment,<br>25 March,<br>BBCH 00         | Sandy<br>silt | 135     | -           | < 0.01     |            | M-<br>031786-<br>01-1                   |
| TI009-05H<br>Tifton,<br>Georgia, USA,<br>2005-2006<br>(winter wheat:<br>Georgia Gore)   | 600<br>FS                            | 1      | nr               | 126            | 1.2<br>5   | Seed<br>treatment,<br>23 Dec.<br>2005,<br>BBCH 00  | Sandy<br>loam | 171     | 89          | < 0.0<br>1 | < 0.0      | M-<br>303764-<br>01-1<br>b c            |
| TI010-05H<br>Leland,<br>Mississippi,<br>USA, 2005-<br>2006<br>(winter wheat:<br>LA 841) | 600<br>FS                            | 1      | nr               | 128            | 1.2<br>5   | Seed<br>treatment,<br>7 Dec.<br>2005,<br>BBCH 00   | Silt<br>loam  | 181     | 91          | < 0.0<br>1 | < 0.0      | M-<br>303764-<br>01-1<br>b c            |
| TI011-05H<br>York,<br>Nebraska,<br>USA, 2006-<br>2007 (winter<br>wheat:<br>Wahoo)       | 600<br>FS                            | 1      | nr               | 120            | 1.2<br>5   | Seed<br>treatment,<br>27 Sept.<br>2006,<br>BBCH 00 | Clay<br>loam  | 281     | 91          | < 0.0      | < 0.0      | M-<br>303764-<br>01-1<br>b c            |
| TI012-05H<br>Sabin,<br>Minnesota,<br>USA, 2006<br>(spring wheat:<br>Steele)             | 600<br>FS                            | 1      | nr               | 118            | 1.2<br>5   | Seed<br>treatment,<br>8 May,<br>BBCH 00            | Silt<br>loam  | 87      | 90          | < 0.0      | < 0.0      | M-<br>303764-<br>01-1<br>b c            |
| TI013-05H<br>Campbell,<br>Minnesota,<br>USA, 2006                                       | 600<br>FS                            | 1      | nr               | 153            | 1.2<br>5   | Seed<br>treatment,<br>7 May,<br>BBCH 00            | Clay<br>loam  | 94      | 90          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br><sup>b c</sup> |

| Trial, Location<br>Country, year<br>(Variety)                                                    | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L | N<br>o | Interva<br>l (d) | g<br>ai/h<br>a | kg<br>ai/t | method,<br>last<br>applicatio<br>n                 | soil<br>type  | DA<br>T | %<br>d<br>m | parent,    | mg/kg      | e<br>e                       |
|--------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|----------------|------------|----------------------------------------------------|---------------|---------|-------------|------------|------------|------------------------------|
| (spring wheat:<br>Gunner)<br>TI014-05H<br>Arkansaw,<br>Wisconsin,<br>USA, 2006<br>(spring wheat: | 600<br>FS                            | 1      | nr               | 75             | 1.2<br>5   | Seed<br>treatment,<br>18 April,<br>BBCH 00         | Sandy<br>loam | 100     | 89          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| Ingot)<br>TI015-05H<br>Sheridan,<br>Indiana, USA,<br>2006-2007<br>(winter wheat:<br>Cutter)      | 600<br>FS                            | 1      | nr               | 192            | 1.2<br>5   | Seed<br>treatment,<br>2 Oct.<br>2006,<br>BBCH 00   | Silt<br>loam  | 273     | 90          | < 0.0<br>1 | < 0.0      | M-<br>303764-<br>01-1<br>b c |
| TI016-05H<br>East Bernard,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>Ranger 30127)        | 600<br>FS                            | 1      | nr               | 148            | 1.2<br>5   | Seed<br>treatment,<br>13 Dec.<br>2005,<br>BBCH 00  | Sandy<br>clay | 175     | 87          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| TI017-05H<br>Velva, North<br>Dakota, USA,<br>2006<br>(spring wheat:<br>Alsen)                    | 600<br>FS                            | 1      | nr               | 140            | 1.2<br>5   | Seed<br>treatment,<br>21 April,<br>BBCH 00         | Loam          | 101     | 91          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| TI018-05H<br>Eldridge,<br>North Dakota,<br>USA, 2006-<br>2007, (winter<br>wheat: Jerry)          | 600<br>FS                            | 1      | nr               | 127            | 1.2<br>5   | Seed<br>treatment,<br>15 Sept.<br>2006,<br>BBCH 00 | Loam          | 307     | 85          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| TI019-05H<br>New<br>Rockford,<br>North Dakota,<br>USA, 2006<br>(spring wheat:<br>Alsen)          | 600<br>FS                            | 1      | nr               | 127            | 1.2<br>5   | Seed<br>treatment,<br>17 May,<br>BBCH 00           | Loam          | 91      | 86          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| TI020-05H<br>Grand Island,<br>Nebraska,<br>USA, 2006<br>(spring wheat:<br>Briggs HRS<br>Wheat)   | 600<br>FS                            | 1      | nr               | 126            | 1.2<br>5   | Seed<br>treatment,<br>18 April,<br>BBCH 00         | Silt<br>loam  | 86      | 86          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| TI021-05H<br>Velva, North<br>Dakota, USA,<br>2006<br>(spring wheat:<br>Alsen)                    | 600<br>FS                            | 1      | nr               | 140            | 1.2<br>5   | Seed<br>treatment,<br>21 April,<br>BBCH 00         | Loam          | 101     | 89          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| TI022-05H<br>Levelland,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>TAM 105)                | 600<br>FS                            | 1      | nr               | 180            | 1.2<br>5   | Seed<br>treatment,<br>12 Dec.<br>2005,<br>BBCH 00  | Sandy<br>loam | 185     | 94          | < 0.0      | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| TI023-05H<br>Lubbock,                                                                            | 600<br>FS                            | 1      | nr               | 156            | 1.2<br>5   | Seed<br>treatment,                                 | Sandy<br>loam | 178     | 95          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-                |

| Trial, Location<br>Country, year<br>(Variety)                                    | Form<br>g<br>ai/kg<br>,<br>g<br>ai/L | N<br>o | Interva<br>l (d) | g<br>ai/h<br>a | kg<br>ai/t | method,<br>last<br>applicatio<br>n               | soil<br>type   | DA<br>T | %<br>d<br>m | parent,    | mg/kg      | referenc<br>e                |
|----------------------------------------------------------------------------------|--------------------------------------|--------|------------------|----------------|------------|--------------------------------------------------|----------------|---------|-------------|------------|------------|------------------------------|
| Texas, USA,<br>2005-2006<br>(winter wheat:<br>AP502CL)                           |                                      |        |                  |                |            | 12 Dec.<br>2005,<br>BBCH 00                      |                |         |             |            |            | 01-1<br>b c                  |
| TI024-05H<br>Uvalde,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>Ogallala)  | 600<br>FS                            | 1      | nr               | 107            | 1.2<br>5   | Seed<br>treatment,<br>9 Dec.<br>2005,<br>BBCH 00 | Clay           | 158     | 62          | < 0.0      | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |
| TI025-05H<br>LaPruor,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>Ogallala) | 600<br>FS                            | 1      | nr               | 100            | 1.2<br>5   | Seed<br>treatment,<br>9 Dec.<br>2005,<br>BBCH 00 | Clay<br>loam   | 165     | 87          | < 0.0      | < 0.0      | M-<br>303764-<br>01-1<br>b c |
| TI026-05H<br>Larned,<br>Kansas, USA,<br>2006<br>(winter wheat:<br>Jagger)        | 600<br>FS                            | 1      | nr               | 158            | 1.2<br>5   | Seed<br>treatment,<br>3 Jan.,<br>BBCH 00         | Loam           | 176     | 90          | < 0.0      | < 0.0      | M-<br>303764-<br>01-1<br>b c |
| TI027-05H<br>Hanston,<br>Kansas, USA,<br>2006<br>(winter wheat:<br>Jagger)       | 600<br>FS                            | 1      | nr               | 166            | 1.2<br>5   | Seed<br>treatment,<br>4 Jan.,<br>BBCH 00         | Clay<br>loam   | 176     | 82          | < 0.0<br>1 | < 0.0      | M-<br>303764-<br>01-1<br>b c |
| TI028-05H<br>Ephrata,<br>Washington,<br>USA, 2006<br>(winter wheat:<br>Stephens) | 600<br>FS                            | 1      | nr               | 138            | 1.2<br>5   | Seed<br>treatment,<br>31 Jan.,<br>BBCH 00        | Loam<br>y Sand | 182     | 91          | < 0.0<br>1 | < 0.0<br>1 | M-<br>303764-<br>01-1<br>b c |

<sup>a</sup> From August 6–7, 1999, the treated samples 7 and 9 were defrosted to a maximum of 10.5 °C.

<sup>b</sup> Results are from two replicate field samples

<sup>c</sup> Sample size was below the minimum amount of 1 kg required for sampling.

[Nuesslein and Spiegel, 2000b, M-026928-01-1]. No unusual weather conditions. Plot size 60-112 m2. Seeding machines. The seed rate was160 kg seeds/ha. Wheat grains (1.21–6.21 kg) were sampled at harvest. Samples were stored at -18 °C for 72–77 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (grain: 96%).

[Nuesslein and Spiegel, 2000c, M-026930-01-1]. No unusual weather conditions. Plot size 93.6-120 m2. Seeding machines. The seed rate was 160 kg seeds/ha. Wheat grains (1.14-2.22 kg) were sampled at harvest. Samples were stored at -18 °C for 85-90 days (grains), except where indicated. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (grain: 96%).

[Nuesslein and Huix, 2000f, M-031786-01-1]. No unusual weather conditions. Plot size 120.8–140 m2. Seeding machines. The seed rate was 143 and 173 kg seeds/ha. Wheat grains (1.70-2.85 kg) were sampled at harvest. Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  for 335 days (grains). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (grain: 78–86%).

[Nuesslein and Huix, 2000g, M-031797-01-1]. No unusual weather conditions. Plot size 57.6–60 m2. Seeding machines. The seed rate was 160 and 200 kg seeds/ha. Wheat grains (2.5-13.21 kg) were sampled at harvest. Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  for 323–329 days (grains). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (grain: 78–86%).

[Freeseman and Harbin, 2008, M-303764-01-1]. No unusual weather conditions. Plot size 93–558 m2. Drill machines. Seeding rates were 1772000–4979000 seeds/ha. Wheat grains (composite of at least 12 plants with a minimum of 0.5 kg)

were sampled at harvest. Samples were stored at -15 °C for 86–374 days (grains). Samples were analysed for clothianidin using HPLC-MS-MS method TI-004-P07-01. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (grain: 79–114%).

#### Grasses for sugar and syrup production

The Meeting received supervised residue trials on sugarcane. Trials were available for soil treatment in the field.

#### Sugarcane

Supervised residue trials on sugarcane were conducted in Australia (2004 and 2005). Results are shown in Table 109 (soil treatment in the field).

| Trial, Location<br>Country, year<br>(Variety)        | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha        | g<br>ai/100<br>m row | method,<br>last<br>application               | soil<br>type | DAT | parent,<br>mg/kg | reference    |
|------------------------------------------------------|-------------------------------|----|---------------------|-------------------|----------------------|----------------------------------------------|--------------|-----|------------------|--------------|
| Tolga, Qld,<br>Australia, 2004<br>(Q192)             | 500<br>WG                     | 1  | na                  | 500 <sup>a</sup>  | 7.5                  | Soil drench,<br>23 March,<br>6 months<br>old | Clay<br>loam | 175 | 0.02             | THR-<br>0552 |
| Tolga, Qld,<br>Australia, 2004<br>(Q192)             | 500<br>WG                     | 1  | na                  | 1000 <sup>a</sup> | 15                   | Soil drench,<br>23 March,<br>6 months<br>old | Clay<br>loam | 175 | 0.05             | THR-<br>0552 |
| Gordonvale,<br>Qld,<br>Australia, 2005<br>(Q186)     | 200<br>SC                     | 1  | na                  | 500 <sup>a</sup>  | 7.5                  | Soil drench,<br>5 April,<br>BBCH ns          | ns           | 147 | 0.04             | THR-<br>0553 |
| Gordonvale,<br>Qld,<br>Australia, 2005<br>(Q186)     | 200<br>SC                     | 1  | na                  | 1000 <sup>a</sup> | 15                   | Soil drench,<br>5 April,<br>BBCH ns          | ns           | 147 | 0.06             | THR-<br>0553 |
| Jacobs Well,<br>Qld,<br>Australia, 2005<br>(Unknown) | 200<br>SC                     | 1  | na                  | 500 <sup>a</sup>  | 7.5                  | Soil drench,<br>14 April,<br>BBCH ns         | ns           | 151 | 0.14             | THR-<br>0553 |
| Murwillumbah,<br>NSW, Australia,<br>2005<br>(Q151)   | 200<br>SC                     | 1  | na                  | 500 <sup>a</sup>  | 7.5                  | Soil drench<br>,<br>17 May,<br>BBCH ns       | ns           | 146 | < 0.02           | THR-<br>0553 |
| Murwillumbah,<br>NSW, Australia,<br>2005<br>(Q151)   | 200<br>SC                     | 1  | na                  | 1000 <sup>a</sup> | 15                   | Soil drench,<br>17 May,<br>BBCH ns           | ns           | 146 | 0.03             | THR-<br>0553 |
| Murwillumbah,<br>NSW, Australia,<br>2005<br>(Q151)   | 500<br>WG                     | 1  | na                  | 500 <sup>a</sup>  | 7.5                  | Soil drench,<br>17 May,<br>BBCH ns           | ns           | 146 | < 0.02           | THR-<br>0553 |

Table 109 Residues of clothianidin in sugarcane (billets) after soil treatment in the field

ns = not stated

<sup>a</sup> g ai/ha was calculated based on an assumption of 1.5 m row spacing and dose rate as g ai/100 m row.

[Burn, 2005a, THR-0552]. No unusual weather conditions. Plot size 3 rows  $\times$  40 m. In-furrow motorised sprayer, spray volume 15 mL/m of row. Sugarcane billets (12 stalks) were sampled at maturity. The tops were removed and billets were cut from the bottom, middle and top of the canes. Samples were stored at  $\leq$  -20 °C for 61 days. Samples were analysed using HPLC-MS-MS method ALM-022.01 (= method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (billet: 101%–120%)

[Burn, 2006c, THR-0553]. No unusual weather conditions. Plot size 4 rows  $\times$  20 m. In-furrow motorised sprayer, spray volume 1.48–1.58 L/100 m of row. Sugarcane billets (12 stalks) were sampled at maturity. The tops were removed and billets were cut from the bottom, middle and top of the canes. Samples were stored at  $\leq$  –15 °C for 25–66 days. Samples were analysed using HPLC-MS-MS method ALM-022 (= method 00552). Results were not corrected for control levels

(< 0.02 mg/kg) or for average concurrent method recoveries (99.1% for both billet and tops).

# Oilseed

The Meeting received supervised residue trials on cotton, rapeseed, and sunflower. Trials were available for seed treatment and subsequent culture in the field and for foliar spray treatment in the field.

#### *Cotton undelinted seed (OECD feedstuff table) = cotton seed (Codex)*

Supervised residue trials on cotton were conducted in Australia (2005) and USA (2003, 2006 and 2007). Results are shown in Table 110 (seed treatment) and Table 111 (foliar spray treatment in the field). Seed cotton is collected from the field and brought to a ginning facility. Undelinted cotton seed and cotton gin trash are the products after ginning the seed cotton and they represent the raw agricultural commodities for cotton [Gaston, 2010c].

Table 110 Residues of clothianidin in dry cotton seeds (after ginning) after seed treatment and subsequent culture in the field

| Trial,<br>Location<br>Country, year<br>(Variety)                         | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>applicatio<br>n         | soil<br>type                  | DAT | %<br>dm | parent,<br>mg/kg |            | referen<br>ce                           |
|--------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|--------------------------------------------|-------------------------------|-----|---------|------------------|------------|-----------------------------------------|
| T5001-03H<br>Tifton,<br>Georgia,<br>USA, 2003<br>(Fibermax<br>989 RRBT)  | 600<br>FS                     | 1  | na                  | 50         | 3.5        | Seed<br>treatment,<br>29 May,<br>BBCH 00   | San<br>d                      | 158 | 96      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a b            |
| T5002-03H<br>Proctor,<br>Arkansas,<br>USA, 2003<br>(PM 1199<br>RR)       | 600<br>FS                     | 1  | na                  | 44         | 3.5        | Seed<br>treatment,<br>10 May,<br>BBCH 00   | Silt<br>loa<br>m              | 130 | 92      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br><sup>a b</sup> |
| T5003-03H<br>Leland,<br>Mississippi,<br>USA, 2003<br>(FM 989 BR)         | 600<br>FS                     | 1  | na                  | 38         | 3.5        | Seed<br>treatment,<br>23 April,<br>BBCH 00 | Silt<br>loa<br>m              | 168 | 97      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a b            |
| T5004-03H<br>Newport,<br>Arkansas,<br>USA, 2003<br>(PM 1218<br>BG/RR)    | 600<br>FS                     | 1  | na                  | 45         | 3.5        | Seed<br>treatment,<br>30 May,<br>BBCH 00   | Loa<br>m                      | 168 | 90      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a              |
| T5005-03H<br>Raymondville<br>, Texas,<br>USA, 2003<br>(PM 2280<br>BG/RR) | 600<br>FS                     | 1  | na                  | 52         | 3.5        | Seed<br>treatment,<br>2 May,<br>BBCH 00    | San<br>dy<br>clay<br>loa<br>m | 116 | 94      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br><sup>a b</sup> |
| T5006-03H<br>Colony,<br>Oklahoma,<br>USA, 2003<br>(Delta Pine<br>237)    | 600<br>FS                     | 1  | na                  | 44         | 3.5        | Seed<br>treatment,<br>29 May,<br>BBCH 00   | Loa<br>my<br>sand             | 175 | 94      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a b            |
| T5007-03H<br>Levelland,<br>Texas,<br>USA, 2003<br>(PM 2280               | 600<br>FS                     | 1  | na                  | 45         | 3.5        | Seed<br>treatment,<br>30 May,<br>BBCH 00   | San<br>dy<br>loa<br>m         | 151 | 95      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br><sup>a b</sup> |

| Trial,<br>Location<br>Country, year<br>(Variety)                        | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>applicatio<br>n         | soil<br>type          | DAT | %<br>dm | parent,<br>mg/kg |            | referen<br>ce                     |
|-------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|--------------------------------------------|-----------------------|-----|---------|------------------|------------|-----------------------------------|
| BG/RR)                                                                  |                               |    |                     |            |            |                                            |                       |     |         |                  |            |                                   |
| T5008-03H<br>Littlefield,<br>Texas,<br>USA, 2003<br>(PM 2280<br>BG/RR)  | 600<br>FS                     | 1  | na                  | 68         | 3.5        | Seed<br>treatment,<br>23 May,<br>BBCH 00   | San<br>dy<br>loa<br>m | 164 | 94      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a b      |
| T5009-03H<br>Plainview,<br>Texas,<br>USA, 2003<br>(Paymaster<br>2344)   | 600<br>FS                     | 1  | na                  | 42         | 3.5        | Seed<br>treatment,<br>12 May,<br>BBCH 00   | Clay<br>loa<br>m      | 183 | 96      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a        |
| T5010-03H<br>Fresno,<br>California,<br>USA, 2003<br>(Acala Riata<br>RR) | 600<br>FS                     | 1  | na                  | 60         | 3.5        | Seed<br>treatment,<br>5 May,<br>BBCH 00    | San<br>dy<br>loa<br>m | 171 | 95      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a b<br>c |
| T5011-03H<br>Fresno,<br>California,<br>USA, 2003<br>(Acala<br>DP6100)   | 600<br>FS                     | 1  | na                  | 52         | 3.5        | Seed<br>treatment,<br>29 April,<br>BBCH 00 | San<br>dy<br>loa<br>m | 190 | 98      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a c      |
| TS012-03H<br>Vialia,<br>California,<br>USA, 2003<br>(DP 6211<br>Acala)  | 600<br>FS                     | 1  | na                  | 45         | 3.5        | Seed<br>treatment,<br>25 April,<br>BBCH 00 | San<br>dy<br>loa<br>m | 213 | 94      | < 0.0<br>1       | < 0.0<br>1 | M-<br>245069<br>-01-1<br>a c      |

<sup>a</sup> Results are from replicate field samples

<sup>b</sup> Unprocessed seed cotton samples exceeded a temperature of -10 °C. Samples from T5002, T5003, T5005, T5006 and T5007 were stored for 1 day at ambient temperature until received at the ginning facility. T5001 (-5 °C, 17 days), T5002 (-2 °C, 1 day), T5003 (-2 °C, 1 day), T5005 (-2 °C, 1 day), T5007 (-1 °C, 17 days), T5008 (-5 °C, 17 days) and T5010 (-5 °C, 17 days) at the ginning facility.

c Sample size was below the minimum amount of 1 kg required for sampling: T5010 (0.95 kg), T5011 (0.72 kg), T5012 (0.63 kg).

[Krolski, 2005, M-245069-01-1]. No unusual weather conditions. Plot size 93–2118 m2. Drill machines. Seeding rates were 128000 seeds/ha. Seed cotton samples were seperated into gintrash, undelinted cottonseed and cotton lint. Sample sizes for undelinted cottonseed were > 1–29 kg, except when indicated. Samples were stored below -12 °C or lower for 153–239 days, unless indicated otherwise (seeds) Replicate field samples were analysed for clothianidin using modification B of HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (84–109% seeds).

| Table 111 Residues of clothianidin in dr | v cottonseeds (aft | ter ginning) after i | foliar treatment in the field |
|------------------------------------------|--------------------|----------------------|-------------------------------|
|                                          |                    |                      |                               |

| Trial,<br>Location<br>Country, year<br>(Variety)                         | Form<br>g ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL  | method,<br>last<br>application  | soil<br>type | DAT                 | %<br>dm | parent,<br>mg/kg                               | referen<br>ce       |
|--------------------------------------------------------------------------|----------------------------|----|---------------------|------------|-------------|---------------------------------|--------------|---------------------|---------|------------------------------------------------|---------------------|
| site 1,<br>Bogabilla,<br>NSW,<br>Australia,<br>2005<br>(Sicot 289<br>BR) | 200 SC<br>+MAXX<br>2 mL/L  | 4  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>28–31 | Foliar,<br>19 April,<br>BBCH ns | ns           | 5<br>10<br>17<br>24 |         | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | THR-<br>0558<br>c e |
| idem                                                                     | 200 SC                     | 4  | 7;                  | 4×         | 4×          | Foliar,                         | ns           | 10                  |         | < 0.02                                         | THR-                |

| Trial,<br>Location<br>Country, year<br>(Variety)                        | Form<br>g ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL  | method,<br>last<br>application                             | soil<br>type | DAT            | %<br>dm | parent,<br>mg/kg           | referen<br>ce            |
|-------------------------------------------------------------------------|----------------------------|----|---------------------|------------|-------------|------------------------------------------------------------|--------------|----------------|---------|----------------------------|--------------------------|
|                                                                         | +MAXX<br>2 mL/L            |    | 7;<br>7             | 50         | 28-31       | 19 April,<br>BBCH ns                                       |              |                |         |                            | 0558<br>e                |
| site 3,<br>Bungunya,<br>Qld,<br>Australia,<br>2005<br>(Sicot 289<br>BR) | 200 SC<br>+MAXX<br>2 mL/L  | 4  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>28–31 | Foliar,<br>6 April,<br>BBCH ns                             | ns           | 10             |         | < 0.02                     | THR-<br>0558<br>e        |
| idem                                                                    | 500 WG<br>+MAXX<br>2 mL/L  | 4  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>28–31 | Foliar,<br>6 April,<br>BBCH ns                             | ns           | 10             |         | < 0.02                     | THR-<br>0558<br>e        |
| site 4,<br>Teleraga,<br>NSW,<br>Australia,<br>2005<br>(Sicot 289<br>BR) | 200 SC<br>+MAXX<br>2 mL/L  | 3  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>28–31 | Foliar,<br>29 March,<br>BBCH ns                            | ns           | 24             |         | < 0.02                     | THR-<br>0558<br>e        |
| idem                                                                    | 500 WG<br>+MAXX<br>2 mL/L  | 3  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>28–31 | Foliar,<br>29 March,<br>BBCH ns                            | ns           | 24             |         | < 0.02                     | THR-<br>0558<br>e        |
| site 1,<br>Toobeah,<br>Qld,<br>Australia,<br>2005<br>(Sicot 289i)       | 500WG<br>+MAXX<br>2 mL/L   | 4  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>40–41 | Foliar,<br>5 April<br>29 March<br>22 March,<br>boll fill   | clay         | 10<br>17<br>24 |         | < 0.02<br>< 0.02<br>< 0.02 | THR-<br>0557<br>a c<br>e |
| idem                                                                    | 500WG<br>+MAXX<br>2 mL/L   | 4  | 14;<br>14;<br>14    | 4×<br>100  | 4×<br>80–81 | Foliar,<br>5 April<br>29 March<br>22 March,<br>boll fill   | clay         | 10<br>17<br>24 |         | < 0.02<br>< 0.02<br>< 0.02 | THR-<br>0557<br>a c<br>e |
| site 1,<br>Toobeah,<br>Qld,<br>Australia,<br>2005<br>(Sicot 289i)       | 500WG<br>+MAXX<br>2 mL/L   | 4  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>40–41 | Foliar,<br>5 April,<br>boll fill                           | clay         | 5              |         | < 0.02                     | THR-<br>0557<br>a e      |
| idem                                                                    | 500WG<br>+MAXX<br>2 mL/L   | 4  | 14;<br>14;<br>14    | 4×<br>100  | 4×<br>80–81 | Foliar,<br>5 April,<br>boll fill                           | clay         | 5              |         | < 0.02                     | THR-<br>0557<br>a e      |
| site 2,<br>Boggabilla,<br>NSW,<br>Australia,<br>2005<br>(Sicot 189)     | 500WG<br>+MAXX<br>2 mL/L   | 4  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>40–41 | Foliar,<br>31 March<br>24 March,<br>17 March,<br>boll fill | clay         | 10<br>17<br>24 |         | < 0.02<br>< 0.02<br>< 0.02 | THR-<br>0557<br>a c e    |
| idem                                                                    | 500WG<br>+MAXX<br>2 mL/L   | 4  | 14;<br>14;<br>14    | 4×<br>100  | 4×<br>80–81 | Foliar,<br>31 March<br>24 March,<br>17 March,<br>boll fill | clay         | 10<br>17<br>24 |         | < 0.02<br>< 0.02<br>< 0.02 | THR-<br>0557<br>a c<br>e |
| site 2,<br>Boggabilla,<br>NSW,<br>Australia,<br>2005<br>(Sicot 189)     | 500WG<br>+MAXX<br>2 mL/L   | 4  | 7;<br>7;<br>7       | 4×<br>50   | 4×<br>40–41 | Foliar,<br>31 March                                        | clay         | 10             |         | < 0.02                     | THR-<br>0557<br>a<br>e   |
| idem                                                                    | 500WG<br>+MAXX<br>2 mL/L   | 4  | 7;<br>7;<br>7       | 4×<br>100  | 4×<br>80–81 | Foliar,<br>31 March                                        | clay         | 10             |         | < 0.02                     | THR-<br>0557<br>a e      |

| Trial,<br>Location<br>Country, year<br>(Variety)                                           | Form<br>g ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL  | method,<br>last<br>application        | soil<br>type          | DAT                        | %<br>dm                          | parent,<br>mg/kg                          |                                            | referen<br>ce                  |
|--------------------------------------------------------------------------------------------|----------------------------|----|---------------------|------------|-------------|---------------------------------------|-----------------------|----------------------------|----------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------|
| site 2,<br>Boggabilla,<br>NSW,<br>Australia,<br>2005<br>(Sicot 189)                        | 500WG<br>+MAXX<br>2 mL/L   | 4  | 14;<br>14;<br>14    | 4×<br>50   | 4×<br>40–41 | Foliar,<br>31 March,<br>boll fill     | clay                  | 5                          |                                  | < 0.02                                    |                                            | THR-<br>0557<br>°              |
| idem                                                                                       | 500WG<br>+MAXX<br>2 mL/L   | 4  | 14;<br>14;<br>14    | 4×<br>100  | 4×<br>80–81 | Foliar,<br>31 March,<br>boll fill     | clay                  | 5                          |                                  | < 0.02                                    |                                            | THR-<br>0557<br>e              |
| SARS-06-85-<br>GA, Tifton,<br>Georgia,<br>USA, 2006<br>(PHY<br>480WR<br>Picker)            | 500WG                      | 2  | 7                   | 110<br>111 | 60<br>60    | Foliar spray,<br>18 Oct.,<br>BBCH ns  | Loamy<br>sand         | 22                         | 87                               | 0.014                                     | < 0.01                                     | THR-<br>0584<br>b              |
| SARS-06-85-<br>AR3,<br>Jackson,<br>Arkansas,<br>USA, 2006<br>(FM 958 LL<br>Picker)         | 500WG                      | 2  | 8                   | 112<br>113 | 120<br>119  | Foliar spray,<br>19 Sept.,<br>BBCH ns | Sandy<br>loam         | 20                         | 92                               | 0.044                                     | 0.053                                      | THR-<br>0584<br>b              |
| idem                                                                                       | 500WG                      | 2  | 8                   | 566<br>556 | 600<br>599  | Foliar spray,<br>19 Sept.,<br>BBCH ns | Sandy<br>loam         | 20                         | 91                               | 0.13                                      | -                                          | THR-<br>0584<br><sup>b d</sup> |
| SARS-06-85-<br>TX1, Uvalde,<br>Texas, USA,<br>2006<br>(DPL 444<br>Stripper)                | 500WG                      | 2  | 6                   | 111<br>111 | 80<br>85    | Foliar spray,<br>20 Aug.,<br>BBCH ns  | Silty<br>clay<br>loam | 19                         | 90                               | 0.012                                     | 0.022                                      | THR-<br>0584<br>b              |
| SARS-06-85-<br>TX2,<br>Hockley,<br>Texas, USA,<br>2006<br>(FM 9063<br>B2F Stripper)        | 500WG                      | 2  | 6                   | 110<br>111 | 80<br>80    | Foliar spray,<br>25 Oct.,<br>BBCH ns  | Sandy<br>loam         | 21                         | 93                               | 0.014                                     | < 0.01                                     | THR-<br>0584<br>b              |
| SARS-06-85-<br>TX3, Hale,<br>Texas, USA,<br>2006<br>(Fibermax<br>958 Stripper)             | 500WG                      | 2  | 8                   | 111<br>113 | 69<br>72    | Foliar spray,<br>19 Oct.,<br>BBCH ns  | Clay<br>loam          | 11<br>16<br>21<br>26<br>31 | 89<br>90<br>92<br>92<br>92<br>92 | 0.094<br>0.012<br>0.045<br>0.013<br>0.012 | 0.080<br>< 0.01<br>0.091<br>0.014<br>0.021 | THR-<br>0584<br>b              |
| SARS-06-85-<br>CA1,<br>Madera,<br>California,<br>USA, 2006<br>(Phytogen<br>710 Picker)     | 500WG                      | 2  | 7                   | 115<br>114 | 48<br>48    | Foliar spray,<br>2 Oct.,<br>BBCH ns   | Loamy<br>sand         | 21                         | 90                               | 0.017                                     | 0.016                                      | THR-<br>0584<br>b              |
| SARS-06-85-<br>AR1,<br>Crittenden,<br>Arkansas,<br>USA, 2007<br>(DP<br>117B2RF<br>Picker ) | 500WG                      | 2  | 7                   | 112<br>112 | 85<br>85    | Foliar spray,<br>7 Sept.,<br>BBCH ns  | Silt<br>loam          | 21                         | 86                               | 0.018                                     | < 0.01                                     | THR-<br>0584<br><sup>a b</sup> |
| SARS-06-85-<br>AR2,                                                                        | 500WG                      | 2  | 7                   | 113<br>113 | 120<br>120  | Foliar spray,<br>24 Sept.,            | Sandy<br>loam         | 21                         | 89                               | < 0.01                                    | < 0.01                                     | THR-<br>0584                   |

| Trial,<br>Location<br>Country, year<br>(Variety)                                         | Form<br>g ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method,<br>last<br>application        | soil<br>type  | DAT | %<br>dm | parent,<br>mg/kg |       | referen<br>ce     |
|------------------------------------------------------------------------------------------|----------------------------|----|---------------------|------------|------------|---------------------------------------|---------------|-----|---------|------------------|-------|-------------------|
| Jackson,<br>Arkansas,<br>USA, 2007<br>(DP 393<br>Picker)                                 |                            |    |                     |            |            | BBCH ns                               |               |     |         |                  |       | b                 |
| SARS-06-85-<br>TX4, Hale,<br>Texas, USA,<br>2007<br>(All Tex<br>Patriot<br>Stripper)     | 500WG                      | 2  | 7                   | 113<br>112 | 82<br>80   | Foliar spray,<br>8 Oct.,<br>BBCH ns   | Clay<br>loam  | 21  | 94      | 0.072            | 0.087 | THR-<br>0584<br>b |
| SARS-06-85-<br>TX5,<br>Armstrong,<br>Texas, USA,<br>2007<br>(NG 3550 RF<br>Stripper)     | 500WG                      | 2  | 8                   | 112<br>112 | 80<br>80   | Foliar spray,<br>27 Sept,<br>BBCH ns  | Clay<br>loam  | 21  | 91      | 0.013            | 0.019 | THR-<br>0584<br>b |
| SARS-06-85-<br>CA2,<br>Madera,<br>California,<br>USA, 2007<br>(Acala Riata<br>3R Picker) | 500WG                      | 2  | 7                   | 113<br>112 | 48<br>48   | Foliar spray,<br>2 Oct.,<br>BBCH ns   | Loamy<br>sand | 21  | 90      | 0.081            | 0.074 | THR-<br>0584<br>b |
| SARS-06-85-<br>CA3, Fresno,<br>California,<br>USA, 2007<br>(Maxxa<br>Picker)             | 500WG                      | 2  | 7                   | 111<br>112 | 60<br>60   | Foliar spray,<br>26 Sept.,<br>BBCH ns | Sandy<br>loam | 20  | 89      | 0.022            | 0.016 | THR-<br>0584<br>b |

<sup>a</sup> Samples stored in trial number SARS-06-85-AR1 were stored above -10 °C (up to -3.3 °C). Samples from all THR-0557 trials were stored above -10 °C (-5 °C) before transport to the laboratory (55–60 days).

<sup>b</sup> Results are from replicate field samples

<sup>c</sup> Reverse residue decline study. Plots are treated on different days; the day of harvest is equal for all plots.

<sup>d</sup> Exaggerated dose rate; samples used for processing.

<sup>e</sup> Sample size not indicated

[Burn, 2005c, THR-0557]. No unusual weather conditions. Plot size 200 m<sup>2</sup>. Foliar sprayer (2 m hand boom), spray volume 123.2–124.9 L/ha. Raw cotton was picked at maturity from plants and were ginned to generate undelinted seed and trash (unstated amounts). Samples were stored at -5 °C (all trials) for 55–60 days before sample arrival followed by storage at -22 °C for 158 days. Samples were analysed for clothianidin using HPLC-MS-MS method ALM-016.01 (i.e. modification of method 00552). Results were not corrected for control levels < 0.02 mg/kg) or for individual concurrent method recoveries (seed: 89–97%).

[Burn, 2005b, THR-0558]. No unusual weather conditions. Plot size 150 m<sup>2</sup>. Foliar sprayer, spray volume 163–177 L/ha. Raw cotton specimens were collected at maturity from the field and frozen on the day of collection (unstated amounts). Raw cotton specimens were removed from the freezer and ginned to allow collection of gin trash, undelinted cottonseed and lint (unstated amounts). Samples were stored at -12 °C for 47–61 days. Samples were analysed for clothianidin using HPLC-MS-MS method ALM-016 (i.e. modification of method 00552). Results were not corrected for control levels < 0.02 mg/kg) or for individual concurrent method recoveries (seed: 72–93%).

[Stewart, 2008, 2008d, THR-0584]. No unusual weather conditions. Plot size  $93-824 \text{ m}^2$ . backpack and tractor mounted sprayer, spray volume 93-238 L/ha. Seed cotton samples were collected at normal harvest. Samples of seed cotton were ginned to obtain undelinted cotton seed and by product samples (1.0–1.86 kg). Samples were ginned within 2–3 days after collection. Samples were stored at -11 °C or lower, unless indicated otherwise, for 39-141 days (seeds). Samples were analysed for clothianidin using modification B of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (seeds: 71.5-99.8%).

# Chlothianidin

# Rape seed

Supervised residue trials on rape seed were conducted in Germany (1998), Sweden (1998), the UK (1999), France (1999), the USA (1999 and 2000) and Canada (1999). Results are shown in Table 112 (seed treatment).

| Trial, Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg,<br>g | No | Interval (d) | g<br>ai/ha | kg<br>ai/t<br>seeds | method,<br>last<br>application             | soil<br>type          | DAT        | parent,<br>mg/kg | reference                  |
|------------------------------------------------------------------------------------------|--------------------------|----|--------------|------------|---------------------|--------------------------------------------|-----------------------|------------|------------------|----------------------------|
| 813907<br>Burscheid,<br>Germany, 1998<br>(summer rape,                                   | ai/L<br>600<br>FS        | 1  | nr           | 47         | 9.3                 | Seed<br>treatment,<br>31 March,<br>BBCH 00 | Sandy<br>loam         | <u>141</u> | <u>&lt; 0.01</u> | M-<br>041713-<br>01-1      |
| Lisonne)<br>811176<br>Borlunda,<br>Sweden, 1998<br>(summer rape,<br>Maskot)              | 600<br>FS                | 1  | nr           | 43         | 8.6                 | Seed<br>treatment,<br>28 April,<br>BBCH 00 | Silty<br>loam         | <u>128</u> | <u>&lt; 0.01</u> | M-<br>041452-<br>01-1      |
| R 1999 0044/9<br>Thurston, Bury<br>St. Edmunds,<br>UK, 1999<br>(spring rape,<br>Lambada) | 600<br>FS                | 1  | nr           | 37         | 7.4                 | Seed<br>treatment,<br>8 April,<br>BBCH 00  | Sandy<br>clay<br>loam | <u>135</u> | <u>&lt;0.01</u>  | M-<br>023116-<br>01-1<br>b |
| 812676<br>Bury St.<br>Edmunds,<br>United<br>Kingdom,<br>1999<br>(winter rape,<br>Navajo) | 600<br>FS                | 1  | nr           | 46         | 9.2                 | Seed<br>treatment,<br>2 Sept.,<br>BBCH 00  | Sandy<br>loam         | 320        | <u>&lt;0.01</u>  | M-<br>041576-<br>02-1      |
| R 1999 0222/0<br>Le Favril, N.<br>France, 1999<br>(spring rape,<br>Lambada)              | 600<br>FS                | 1  | nr           | 41         | 8.1                 | Seed<br>treatment,<br>8 April,<br>BBCH 00  | Clay<br>silt          | <u>119</u> | <u>&lt; 0.01</u> | M-<br>023116-<br>01-1      |
| 813915<br>Mousseaux-<br>Neuville, N.<br>France, 1999<br>(winter rape,<br>Navajo)         | 600<br>FS                | 1  | nr           | 47         | 9.5                 | Seed<br>treatment,<br>3 Sept.,<br>BBCH 00  | Silt                  | <u>307</u> | <u>&lt;0.01</u>  | M-<br>041576-<br>02-1      |
| R 1999 0708/7<br>Bouloc, S.<br>France, 1999<br>(winter rape,<br>Synergy)                 | 600<br>FS                | 1  | nr           | 46         | 9.2                 | Seed<br>treatment,<br>12 Oct.,<br>BBCH 00  | Sandy<br>clay         | <u>262</u> | <u>&lt; 0.01</u> | M-<br>025166-<br>01-1<br>b |
| 811184<br>Lescheroux, S.<br>France, 1999<br>(winter rape,<br>Navajo)                     | 600<br>FS                | 1  | nr           | 44         | 8.8                 | Seed<br>treatment,<br>18 Sept,<br>BBCH 00  | Clay                  | <u>292</u> | <u>&lt; 0.01</u> | M-<br>041541-<br>01-1      |
| 813923<br>St. Paul les<br>Romans, S.<br>France, 1999<br>(summer rape,<br>Lambada)        | 600<br>FS                | 1  | nr           | 39         | 7.9                 | Seed<br>treatment,<br>2 April,<br>BBCH 00  | Sand                  | <u>111</u> | <u>&lt;0.01</u>  | M-<br>041541-<br>01-1      |
| -T5028-99H,<br>Lucama,                                                                   | 600<br>FS                | 1  | nr           | 40         | 6.0                 | Seed<br>treatment,                         | ns                    | 214        | < 0.01 < 0.0     | 01 M-<br>079552-           |

| Trial, Location            | Form      | No  | Interval | g     | kg    | method,               | soil | DAT  | parent, |        | reference       |
|----------------------------|-----------|-----|----------|-------|-------|-----------------------|------|------|---------|--------|-----------------|
| Country, year              | g         | 110 | (d)      | ai/ha | ai/t  | last                  | type | Dill | mg/kg   |        | reference       |
| (Variety)                  | ai/kg,    |     | ~ /      |       | seeds | application           | 51   |      | 00      |        |                 |
|                            | g         |     |          |       |       |                       |      |      |         |        |                 |
| N. 4                       | ai/L      |     |          |       |       | 1.57                  |      |      |         | 1      | 01.1            |
| North<br>Carolina, USA,    |           |     |          |       |       | 1 Nov.<br>1999,       |      |      |         |        | 01-1<br>a b     |
| 1999-2000                  |           |     |          |       |       | BBCH 00               |      |      |         |        |                 |
| (Pioneer                   |           |     |          |       |       | BBCII 00              |      |      |         |        |                 |
| 46A65                      |           |     |          |       |       |                       |      |      |         |        |                 |
| -Т5029-99Н,                | 600       | 1   | nr       | 40    | 6.0   | Seed                  | ns   | 118  | < 0.01  | < 0.01 | M-              |
| York,                      | FS        |     |          |       |       | treatment,            |      |      |         |        | 079552-         |
| Nebraska,                  |           |     |          |       |       | 9 April,              |      |      |         |        | 01-1<br>a b     |
| USA, 1999                  |           |     |          |       |       | BBCH 00               |      |      |         |        | a 0             |
| (Hyola-401)                | 600       | 1   |          | 40    | 6.0   | Seed                  |      | 102  | < 0.01  | < 0.01 | M-              |
| -T5030-99HA,<br>Northwood, | FS        | 1   | nr       | 40    | 0.0   | treatment,            | ns   | 102  | < 0.01  | < 0.01 | 079552-         |
| North Dakota,              | 15        |     |          |       |       | 4 May,                |      |      |         |        | 01-1            |
| USA, 2000                  |           |     |          |       |       | BBCH 00               |      |      |         |        | a b             |
| (Hyola-401)                |           |     |          |       |       |                       |      |      |         |        |                 |
| -T5031-99D,                | 600       | 1   | nr       | 42    | 6.0   | Seed                  | ns   | 99   | < 0.01  | < 0.01 | M-              |
| Velva,                     | FS        |     |          |       |       | treatment,            |      | 105  | < 0.01  | < 0.01 | 079552-         |
| North Dakota,              |           |     |          |       |       | 3 May,                |      | 109  | < 0.01  | < 0.01 | 01-1<br>a b     |
| USA, 1999<br>(Hyola-401)   |           |     |          |       |       | BBCH 00               |      | 114  | < 0.01  | < 0.01 |                 |
| -T5032-99H,                | 600       | 1   | nr       | 40    | 6.0   | Seed                  | ns   | 92   | < 0.01  | < 0.01 | М-              |
| New Rockford,              | FS        | 1   |          | 40    | 0.0   | treatment,            | 115  | 12   | < 0.01  | < 0.01 | 079552-         |
| North Dakota,              |           |     |          |       |       | 25 May,               |      |      |         |        | 01-1            |
| USA, 1999                  |           |     |          |       |       | BBCH 00               |      |      |         |        | a b             |
| (Hyola-401)                |           |     |          |       |       |                       |      |      |         |        |                 |
| -Т5033-99Н,                | 600       | 1   | nr       | 40    | 6.0   | Seed                  | ns   | 136  | < 0.01  | < 0.01 | M-              |
| Irrigon,                   | FS        |     |          |       |       | treatment,            |      |      |         |        | 079552-         |
| Oregon, USA,<br>1999       |           |     |          |       |       | 19 May,<br>BBCH 00    |      |      |         |        | 01-1<br>a b     |
| (Chinook)                  |           |     |          |       |       | веси оо               |      |      |         |        |                 |
| -T5034-99H,                | 600       | 1   | nr       | 41    | 6.0   | Seed                  | ns   | 101  | < 0.01  | < 0.01 | М-              |
| Hermiston,                 | FS        | -   |          |       |       | treatment,            |      |      |         |        | 079552-         |
| Oregon, USA                |           |     |          |       |       | 24 April,             |      |      |         |        | 01-1            |
| 1999                       |           |     |          |       |       | BBCH 00               |      |      |         |        | a b             |
| (Chinook)                  | (00       | 1   |          | 42    | 6.0   | G 1                   |      | 07   | .0.01   | .0.01  |                 |
| -T5035-99H,<br>Dayton,     | 600<br>FS | 1   | nr       | 43    | 6.0   | Seed                  | ns   | 97   | < 0.01  | < 0.01 | M-<br>079552-   |
| Idaho, USA                 | 13        |     |          |       |       | treatment,<br>20 May, |      |      |         |        | 079332-<br>01-1 |
| 1999                       |           |     |          |       |       | BBCH 00               |      |      |         |        | a b             |
| (Chinook)                  |           |     |          |       |       |                       |      |      |         |        |                 |
| -T5036-99D,                | 600       | 1   | nr       | 41    | 6.0   | Seed                  | ns   | 96   | < 0.01  | < 0.01 | M-              |
| Minto,                     | FS        |     |          |       |       | treatment,            |      | 101  | < 0.01  | < 0.01 | 079552-         |
| Manitoba,                  |           |     |          |       |       | 28 May,               |      | 106  | < 0.01  | < 0.01 | 01-1<br>a b     |
| Canada, 1999               |           |     |          |       |       | BBCH 00               |      | 111  | < 0.01  | < 0.01 | u o             |
| (LG3295)<br>-T5037-99H,    | 600       | 1   | nr       | 41    | 6.0   | Seed                  | ns   | 97   | < 0.01  | < 0.01 | M-              |
| Minto,                     | FS        | 1   |          | 1     | 0.0   | treatment,            | 115  | )/   | ~ 0.01  | ~ 0.01 | 079552-         |
| Manitoba,                  |           |     |          |       |       | 27 May,               |      |      |         |        | 01-1            |
| Canada, 1999               |           |     |          |       |       | BBCH 00               |      |      |         |        | a b             |
| (Quest)                    |           |     |          |       |       |                       |      |      |         |        |                 |
| -Т5038-99Н,                | 600<br>EC | 1   | nr       | 40    | 6.0   | Seed                  | ns   | 135  | < 0.01  | < 0.01 | M-              |
| Lacombe,                   | FS        |     |          |       |       | treatment,            |      |      |         |        | 079552-         |
| Alberta,<br>Canada         |           |     |          |       |       | 25 May,<br>BBCH 00    |      |      |         |        | 01-1<br>a b     |
| 1999                       |           |     |          |       |       | 5501100               |      |      |         |        |                 |
| (LG3295)                   |           |     |          |       |       |                       |      |      |         |        |                 |
| -Т5039-99Н,                | 600       | 1   | nr       | 40    | 6.0   | Seed                  | ns   | 125  | < 0.01  | < 0.01 | М-              |
| Red Deer,                  | FS        |     |          |       |       | treatment,            |      |      |         |        | 079552-         |
| Alberta,                   |           |     |          |       |       | 28 May,               |      |      |         |        | 01-1<br>a b     |
| Canada                     |           |     |          |       |       | BBCH 00               |      |      |         |        | au              |
| 1999                       |           |     |          |       |       |                       |      |      |         |        |                 |

| Trial, Location<br>Country, year<br>(Variety)                            | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Interval<br>(d) | g<br>ai/ha | kg<br>ai/t<br>seeds | method,<br>last<br>application            | soil<br>type | DAT | parent,<br>mg/kg |        | reference                               |
|--------------------------------------------------------------------------|----------------------------------|----|-----------------|------------|---------------------|-------------------------------------------|--------------|-----|------------------|--------|-----------------------------------------|
| (LG3295)                                                                 |                                  |    |                 |            |                     |                                           |              |     |                  |        |                                         |
| -T5040-99H,<br>Kipp,<br>Alberta,<br>Canada<br>1999<br>(LG3295)           | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>12 May,<br>BBCH 00  | ns           | 113 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br><sup>a b</sup> |
| -T5041-99H,<br>Rosthern,<br>Saskatchewan,<br>Canada, 1999<br>(Quest)     | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>27 May,<br>BBCH 00  | ns           | 105 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br><sup>a b</sup> |
| -T5042-99H,<br>Marcelin,<br>Saskatchewan,<br>Canada, 1999<br>(LG3295)    | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>27 May,<br>BBCH 00  | ns           | 102 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br><sup>a b</sup> |
| -T5043-99H,<br>Spruce Grove,<br>Alberta,<br>Canada 1999<br>(Quest)       | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>5 June,<br>BBCH 00  | ns           | 115 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br>a b            |
| -T5044-99H,<br>Leduc,<br>Alberta,<br>Canada 1999<br>(Quest)              | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>5 June,<br>BBCH 00  | ns           | 115 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br>a b            |
| -T5045-99H,<br>Wakaw,<br>Saskatchewan,<br>Canada, 1999<br>(Quest)        | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>26 May,<br>BBCH 00  | ns           | 106 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br>a b            |
| -T5046-99H,<br>Blaine Lake,<br>Saskatchewan,<br>Canada, 1999<br>(LG3295) | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>3 June,<br>BBCH 00  | ns           | 114 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br><sup>a b</sup> |
| -T5047-99H,<br>Hamiota,<br>Manitoba,<br>Canada, 1999<br>(Quest)          | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>11 June,<br>BBCH 00 | ns           | 116 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br>a b            |
| -T5048-99H,<br>Bethany,<br>Manitoba,<br>Canada, 1999<br>(LG3295)         | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>12 June,<br>BBCH 00 | ns           | 115 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br>a b            |
| -T5049-99H,<br>Wetaskiwin,<br>Alberta,<br>Canada<br>1999<br>(Reward)     | 600<br>FS                        | 1  | nr              | 40         | 6.0                 | Seed<br>treatment,<br>June 5,<br>BBCH 00  | ns           | 115 | < 0.01           | < 0.01 | M-<br>079552-<br>01-1<br><sup>a b</sup> |

ns = not stated

nr = not relevant

<sup>a</sup> Results are from two replicate field samples

<sup>b</sup> Sample size was below the minimum amount of 1 kg required for sampling

[Nuesslein and Elke, 2000a, M-023116-01-1]. No unusual weather conditions. Plot size 80–160 m2. Seeding machines. The target rate was 5 kg seeds/ha. Rape seeds (0.6 kg for R1999 0044/9; 5 kg for R1999 0222/0) were sampled at harvest

(BBCH 88-89). Samples were stored at -18 °C for 61-76 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (seed: 97–103%).

[Nuesslein and Elke, 2000c, M-025166-01-1]. No unusual weather conditions. Plot size 89.6 m2. Seeding machines. The target rate was 5 kg seeds/ha. Rape seeds (0.69-0.74 kg) were sampled at harvest (BBCH 89). Samples were stored at -18 °C for 68 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (seed: 97-103%).

[Nusslein and Huix, 2000i, M-041541-01-1]. No unusual weather conditions. Plot size 150–160 m2. Seeding machines. The target rate was 5 kg seeds/ha. Rape seeds (1.27-1.78 kg) were sampled at harvest (BBCH 90). Samples were stored at -18 °C for 33–49 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (seed: individual 68–100%, average 83%).

[Nuesslein and Huix, 2000j, M-041576-01-1]. No unusual weather conditions. Plot size 96–100 m2. Seeding machines. The target rate was 5 kg seeds/ha. Rape seeds (0.98-5 kg) were sampled at harvest (BBCH 89). Samples were stored at – 18 °C for 21–92 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (seed: individual 68–100%, average 83%).

[Nuesslein and Huix, 2000k, M-041713-01-1]. No unusual weather conditions. Plot size 129.6 m2. Seeding machines. The target rate was 5 kg seeds/ha. Rape seeds (2.4–3.92 kg) were sampled at harvest (BBCH 92). Samples were stored at -18 °C for 342 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for concurrent method recoveries (seed: individual 68–100%, average 83%). [Nuesslein and Huix, 2000h, M-041452-01-1]. No unusual weather conditions. Plot size 136 m2. Seeding machines. The target rate was 5 kg seeds/ha. Rape seeds (1.25–1.48 kg) were sampled at harvest (BBCH 92). Samples were stored at -18 °C for 327 days. Samples were analysed for clothianidin using method HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) for concurrent method recoveries (seed: individual 68–100%, average 83%).

[Duah, 2000d, M-079552-01-1]. No unusual weather conditions. Plot size 60-280.8 m2. Seeding machines. The actual seeding rate was 6.65-7.21 kg of seed/ha. Dry seeds (0.5 kg from at least 12 different areas) were sampled at harvest. Samples were stored at  $-23 \pm 3$  °C for 46-241 days. Samples were analysed for clothianidin using HPLC-MS-MS method 109240 (= 00552/M001). Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (seed 72–108%).

#### Sunflower seed

Supervised residue trials on sunflower were conducted in France (1998 and 1999), Italy (1998 and 1999) and Spain (1999). Results for sunflower seed are shown in Table 113 (seed treatment). Trials also contain data on whole plants without roots; these data were not summarised since this commodity is not consumed and is not listed in the OECD feedstuff table.

Table 113 Residues of clothianidin in sunflower (seeds) after seed treatment and subsequent culture in the field

| Trial, Location<br>Country, year<br>(Variety)                        | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g ai/ha | mg<br>ai/seed | method,<br>last application          | soil<br>type  | DAT | parent,<br>mg/kg | reference             |
|----------------------------------------------------------------------|-------------------------------|----|---------------------|---------|---------------|--------------------------------------|---------------|-----|------------------|-----------------------|
| Trial 811052<br>Ivry la<br>Bataille, N.<br>France, 1998<br>(Rigasol) | 600<br>FS                     | 1  | nr                  | 31      | 0.62          | Seed treatment,<br>7 May,<br>BBCH 00 | Clay<br>sand  | 140 | < 0.01           | M-<br>030949-<br>01-1 |
| Trial 813931<br>Guanville,<br>N. France,<br>1998<br>(Rigasol)        | 600<br>FS                     | 1  | nr                  | 32      | 0.64          | Seed treatment,<br>7 May, BBCH 00    | Clay<br>loam  | 140 | < 0.01           | M-<br>030949-<br>01-1 |
| Trial 811079<br>Bage la Ville<br>S. France,<br>1998<br>(Rigasol)     | 600<br>FS                     | 1  | nr                  | 36      | 0.66          | Seed treatment,<br>6 May, BBCH 00    | Sandy<br>silt | 139 | 0.010            | M-<br>046707-<br>01-1 |
| R 1999 0223/9<br>Bage la Ville,                                      | 600<br>FS                     | 1  | nr                  | 44      | 0.59          | Seed treatment, 6<br>May, BBCH 00    | Silty<br>sand | 145 | < 0.01           | M-<br>026489-         |

| Trial, Location<br>Country, year<br>(Variety)                | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g ai/ha | mg<br>ai/seed | method,<br>last application             | soil<br>type   | DAT | parent,<br>mg/kg | reference             |
|--------------------------------------------------------------|-------------------------------|----|---------------------|---------|---------------|-----------------------------------------|----------------|-----|------------------|-----------------------|
| S. France,<br>1999<br>(Fleury)                               |                               |    |                     |         |               |                                         |                |     |                  | 02-1                  |
| R 1999 0224/7<br>St. Jory,<br>S. France,<br>1999<br>(Fleury) | 600<br>FS                     | 1  | nr                  | 38      | 0.50          | Seed treatment,<br>11 May, BBCH<br>00   | Sandy<br>silt  | 115 | < 0.01           | M-<br>026489-<br>02-1 |
| Trial 813958<br>Ladispoli,<br>Italy, 1998<br>(Isanthos)      | 600<br>FS                     | 1  | nr                  | 33      | 0.67          | Seed treatment,<br>12 May, BBCH<br>00   | Sandy<br>loam  | 143 | < 0.01           | M-<br>046707-<br>01-1 |
| R 1999 0045/7<br>Ladispoly,<br>Italy, 1999<br>(Flamme)       | 600<br>FS                     | 1  | nr                  | 52      | 0.69          | Seed treatment,<br>20 April, BBCH<br>00 | Loam<br>y sand | 143 | < 0.01           | M-<br>026489-<br>02-1 |
| R 1999 0225/5<br>Riumors,<br>Spain, 1999<br>(Portasol)       | 600<br>FS                     | 1  | nr                  | 39      | 0.70          | Seed treatment, 7<br>April, BBCH 00     | Silty<br>clay  | 159 | < 0.01           | M-<br>026489-<br>02-1 |

nr = not relevant

[Nuesslein and Huix, 2000e, M-030949-01-1]. No unusual weather conditions. Plot size 80 m2. Seeding machines. The seed rate was 50000 seeds/ha. Sunflower seeds (2.8–3.1 kg) were sampled at harvest. Samples were stored at -18 °C for 301 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (seed: 81–118%).

[Nuesslein and Huix, 2000], M-046707-01-1]. No unusual weather conditions. Plot size 100–150 m2. Seeding machines. The seed rate was 50000–54400 seeds/ha. Sunflower seeds (1.21-1.61 kg) were sampled at harvest. Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  for 294–304 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001.Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (seed: 81–118%).

[Nuesslein and Elke, 2000d, M-026489-01-1]. No unusual weather conditions. Plot size 87.6-2808 m2. Seeding machines. The seed rate was 56500-75000 seeds/ha. Sunflower seeds (1.28-4.33 kg) were sampled at harvest. Samples were stored at -18 °C for 126–151 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (seed: 74-92%).

## Legume animal feeds

The Meeting received supervised residue trials on dry harvested soya beans. However, residue data on the corresponding feed commodities were not available:

- soya bean forage (OECD feedstuff table) = soya bean forage, green (Codex)—no data available
- soya bean hay (OECD feedstuff table) = soya bean fodder (Codex)—no data available.

# Straw, fodder and forage of cereal grains and grasses

The Meeting received supervised residue trials on barley, maize, rice, sorghum and wheat. Trials on feed commodities were available for seed treatment and subsequent culture in the field and for foliar spray treatment in the field.

#### Barley forage, green (OECD feedstuff table, no Codex Commodity)

Supervised residue trials on barley were conducted in Germany (2000), the UK (2000), France (2000) and Italy (2000). Results for green barley forage are shown in Table 114 (seed treatment).

| Trial, Location<br>Country, year<br>(Variety)                                             | Form<br>g<br>ai/kg,<br>g ai/L | No | Interval d | g ai/ha | kg ai/t | method,<br>last<br>application             | soil<br>type  | DAT | parent,<br>mg/kg | reference                  |
|-------------------------------------------------------------------------------------------|-------------------------------|----|------------|---------|---------|--------------------------------------------|---------------|-----|------------------|----------------------------|
| R 2000 0063/4,<br>Burscheid,<br>Germany, 2000<br>(spring barley;<br>Scarlett)             | 250<br>FS                     | 1  | nr         | 70      | 0.44    | Seed<br>treatment, 23<br>March, BBCH<br>00 | Loam          | 55  | 0.02             | M-<br>070457-<br>02-1      |
| R 2000 0308/0,<br>Thurston, Bury<br>St. Edmunds, UK,<br>2000<br>(spring barley;<br>Optic) | 250<br>FS                     | 1  | nr         | 75      | 0.47    | Seed<br>treatment, 22<br>March, BBCH<br>00 | Sandy<br>loam | 57  | 0.02             | M-<br>070457-<br>02-1      |
| R 2000 0064/2,<br>Mas Grenier, S.<br>France, 2000<br>(spring barley;<br>Nevada)           | 250<br>FS                     | 1  | nr         | 57      | 0.44    | Seed<br>treatment, 10<br>March,<br>BBCH 00 | Sandy<br>silt | 56  | 0.05             | M-<br>070457-<br>02-1<br>a |
| R 2000 0309/0,<br>Albaro,<br>Italy, 2000<br>(spring barley;<br>Patty)                     | 250<br>FS                     | 1  | nr         | 69      | 0.43    | Seed<br>treatment,<br>9 March,<br>BBCH 00  | Sandy<br>loam | 49  | 0.02             | M-<br>070457-<br>02-1      |

Table 114 Residues of clothianidin in barley forage (green) after seed treatment and culture in the field

nr = not relevant

FS = flowable concentrate for seed treatment

250 FS = contains 250 g/L clothianidin, 25 g/L HEC 5725, 15 g/L tebuconazole and 10 g/L triazoxide

a day 56 samples of trial R 2000 0064/2 were stored above -10 °C (18 hrs, -3 °C).

[Preu and Elke, 2002, M-070457-02-1]. No unusual weather conditions. Plot size 75-120 m2. Seeding machines. The seeding rate was 130–160 kg seeds/ha. Barley (green material: 1.05-1.62 kg) was sampled at growth stage 31. Samples were stored at  $-18 \text{ }^{\circ}$ C, unless indicated otherwise, 429–452 days. Samples were analysed using HPLC-MS-MS method 00552/M001, supplement E001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 86-106%).

Barley hay (OECD feedstuff table) = barley straw and fodder, dry (Codex).

No data available.

Barley straw (OECD feedstuff table) = barley straw and fodder, dry (Codex).

Supervised residue trials on barley were conducted in Germany (2000), the UK (2000), France (2000) and Italy (2000). Results on barley straw are shown in Table 115 (seed treatment).

Table 115 Residues of clothianidin in barley straw (dry) after seed treatment and culture in the field

| Trial, Location<br>Country, year<br>(Variety)                                   | Form<br>g<br>ai/kg,<br>g ai/L | No | Interval <sup>d</sup> | g<br>ai/ha | kg ai/t | method,<br>last<br>application             | soil<br>type  | DAT | parent<br>,<br>mg/kg | reference             |
|---------------------------------------------------------------------------------|-------------------------------|----|-----------------------|------------|---------|--------------------------------------------|---------------|-----|----------------------|-----------------------|
| R 2000 0063/4,<br>Burscheid,<br>Germany, 2000<br>(spring barley;<br>Scarlett)   | 250<br>FS                     | 1  | nr                    | 70         | 0.44    | Seed<br>treatment, 23<br>March, BBCH<br>00 | Loam          | 139 | < 0.02               | M-<br>070457-<br>02-1 |
| R 2000 0308/0,<br>Thurston, Bury<br>St. Edmunds, UK,<br>2000<br>(spring barley; | 250<br>FS                     | 1  | nr                    | 75         | 0.47    | Seed<br>treatment, 22<br>March, BBCH<br>00 | Sandy<br>loam | 147 | < 0.02               | M-<br>070457-<br>02-1 |

| Trial, Location<br>Country, year<br>(Variety)                                   | Form<br>g<br>ai/kg,<br>g ai/L | No | Interval <sup>d</sup> | g<br>ai/ha | kg ai/t | method,<br>last<br>application             | soil<br>type  | DAT | parent<br>,<br>mg/kg | reference             |
|---------------------------------------------------------------------------------|-------------------------------|----|-----------------------|------------|---------|--------------------------------------------|---------------|-----|----------------------|-----------------------|
| Optic)                                                                          |                               |    |                       |            |         |                                            |               |     |                      |                       |
| R 2000 0064/2,<br>Mas Grenier, S.<br>France, 2000<br>(spring barley;<br>Nevada) | 250<br>FS                     | 1  | nr                    | 57         | 0.44    | Seed<br>treatment, 10<br>March,<br>BBCH 00 | Sandy<br>silt | 130 | < 0.02               | M-<br>070457-<br>02-1 |
| R 2000 0309/0,<br>Albaro,<br>Italy, 2000<br>(spring barley;<br>Patty)           | 250<br>FS                     | 1  | nr                    | 69         | 0.43    | Seed<br>treatment,<br>9 March,<br>BBCH 00  | Sandy<br>loam | 116 | < 0.02               | M-<br>070457-<br>02-1 |

nr = not relevant

FS = flowable concentrate for seed treatment

250 FS = contains 250 g/L clothianidin, 25 g/L HEC 5725, 15 g/L tebuconazole and 10 g/L triazoxide

[Preu and Elke, 2002, M-070457-02-1] No unusual weather conditions. Plot size 75-120 m2. Seeding machines. The actual seeding rate was 130-160 kg seed/ha. Barley (straw: 0.57-1.81 kg) was sampled at harvest. Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  for 341-385 days (straw). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001, supplement E001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (straw: 81-97%).

## Field corn forage (OECD feedstuff table) = maize forage, green (Codex)

Supervised residue trials on maize were conducted in the USA (1999) and Canada (1999). Results for field corn forage are shown in Table 116 (seed treatment). Maize was harvested as forage at early milk stage and at late dough stage. Both commodities (early milk stage forage and late dough stage forage) are considered as field corn forage.

Table 116 Residues of clothianidin in field corn forage after seed treatment and subsequent culture in the field

| Trial, Location<br>Country, year<br>(Variety)                                             | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application           | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg   |                    | reference                                   |
|-------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|---------------|------------|------------------------------------------|--------------|-----|---------|--------------------|--------------------|---------------------------------------------|
| BAY-T5001-<br>99H,<br>Germansville,<br>Pennsylvania,<br>USA, 1999<br>(Pioneer 3346)       | 600<br>FS                        | 1  | na                  | 2.0           | 163        | Seed<br>treatment,<br>4 May,<br>BBCH nr  | loam         | 98  | 24      | 0.015              | 0.013              | M-<br>106757-<br>01-1<br>a<br>early<br>milk |
| BAY-T5001-<br>99H,<br>Germansville,<br>Pennsylvania,<br>USA, 1999<br>(Pioneer 3346)       | 600<br>FS                        | 1  | na                  | 2.0           | 163        | Seed<br>treatment,<br>4 May,<br>BBCH nr  | loam         | 115 | 33      | < 0.01             | < 0.01             | M-<br>106757-<br>01-1<br>a<br>late<br>dough |
| BAY-T5002-<br>99H,<br>Germansville,<br>Pennsylvania,<br>USA, 1999<br>(Pioneer<br>35N05Bt) | 600<br>FS                        | 1  | na                  | 2.0           | 175        | Seed<br>treatment,<br>21 May,<br>BBCH nr | loam         | 88  | 22      | 0.026 <sup>b</sup> | 0.028 <sup>b</sup> | M-<br>106757-<br>01-1<br>a<br>early<br>milk |
| BAY-T5002-<br>99H,<br>Germansville,<br>Pennsylvania,                                      | 600<br>FS                        | 1  | na                  | 2.0           | 175        | Seed<br>treatment,<br>21 May,<br>BBCH nr | loam         | 111 | 34      | 0.021              | 0.017              | M-<br>106757-<br>01-1<br><sup>a</sup>       |

| Trial, Location<br>Country, year<br>(Variety)                                  | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application             | soil<br>type                                | DAT                      | %<br>dm              | parent,<br>mg/kg                     |                                      | reference                                              |
|--------------------------------------------------------------------------------|----------------------------------|----|---------------------|---------------|------------|--------------------------------------------|---------------------------------------------|--------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------|
| USA, 1999<br>(Pioneer<br>35N05Bt)                                              |                                  |    |                     |               |            |                                            |                                             |                          |                      |                                      |                                      | late<br>dough                                          |
| TGA-T5003-<br>99D, Tifton,<br>Georgia,<br>USA, 1999<br>(Pioneer 3167)          | 600<br>FS                        | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>20 April,<br>BBCH nr | loam<br>y<br>sand                           | 86<br>91<br>97<br>103    | 22<br>26<br>31<br>39 | 0.016<br>< 0.01<br>0.010<br>0.012    | 0.015<br>0.016<br>< 0.01<br>< 0.01   | M-<br>106757-<br>01-1<br><sup>a</sup><br>early<br>milk |
| TGA-T5003-<br>99D, Tifton,<br>Georgia,<br>USA, 1999<br>(Pioneer 3167)          | 600<br>FS                        | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>20 April,<br>BBCH nr | loam<br>y<br>sand                           | 94<br>99<br>104<br>108   | 31<br>32<br>37<br>40 | 0.012<br>< 0.01<br>< 0.01<br>0.012   | 0.019<br>< 0.01<br>< 0.01<br>< 0.01  | M-<br>106757-<br>01-1<br><sup>a</sup><br>late<br>dough |
| BAY-T-5004-<br>99H, Bascom,<br>Florida,<br>USA, 1999<br>(Pioneer 3167)         | 600<br>FS                        | 1  | na                  | 2.0           | 172        | Seed<br>treatment,<br>19 March,<br>BBCH nr | ns                                          | 89                       | 21                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br><sup>a</sup><br>early<br>milk |
| BAY-T-5004-<br>99H, Bascom,<br>Florida,<br>USA, 1999<br>(Pioneer 3167)         | 600<br>FS                        | 1  | na                  | 2.0           | 172        | Seed<br>treatment,<br>19 March,<br>BBCH nr | ns                                          | 98                       | 24                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a<br>late<br>dough            |
| WIN-T5005-<br>99D, Oxford,<br>Indiana,<br>USA, 1999<br>(Pioneer 3394)          | 600<br>FS                        | 1  | na                  | 2.0           | 166        | Seed<br>treatment,<br>26 April,<br>BBCH nr | ns                                          | 85<br>91<br>95<br>100    | 19<br>21<br>25<br>29 | < 0.01<br>0.013<br>0.014<br>0.013    | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | M-<br>106757-<br>01-1<br>a<br>early<br>milk            |
| WIN-T5005-<br>99D, Oxford,<br>Indiana,<br>USA, 1999<br>(Pioneer 3394)          | 600<br>FS                        | 1  | na                  | 2.0           | 166        | Seed<br>treatment,<br>26 April,<br>BBCH nr | ns                                          | 126<br>130<br>134<br>140 | 42<br>46<br>53<br>53 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | M-<br>106757-<br>01-1<br>a<br>late<br>dough            |
| STF-T5006-<br>99H, Stilwell,<br>Kansas,<br>USA, 1999<br>(Pioneer<br>35N05Bt)   | 600<br>FS                        | 1  | na                  | 2.0           | 171        | Seed<br>treatment,<br>7 May,<br>BBCH nr    | silt<br>loam<br>or<br>silty<br>clay<br>loam | 89                       | 34                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a<br>late<br>dough            |
| SNE-T5007-<br>99H,<br>Springfield,<br>Nebraska,<br>USA, 1999<br>(Pioneer 3394) | 600<br>FS                        | 1  | na                  | 2.0           | 172        | Seed<br>treatment,<br>3 May,<br>BBCH nr    | silt<br>loam                                | 92                       | 24                   | < 0.01                               | < 0.01                               | M-<br>106757-<br>01-1<br>a<br>late<br>dough            |
| (Pioneer<br>32K61)                                                             | 600<br>FS                        | 1  | na                  | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr   | silt<br>loam                                | 75                       | 22                   | 0.018                                | 0.016                                | M-<br>106757-<br>01-1<br>a<br>early<br>milk            |
| BAY-T5008-<br>99H, Carlyle,<br>Illinois,<br>USA, 1999                          | 600<br>FS                        | 1  | na                  | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr   | silt<br>loam                                | 90                       | 31                   | 0.013                                | < 0.01                               | M-<br>106757-<br>01-1<br>a                             |

| Trial, Location<br>Country, year                                                      | Form<br>g           | No | Inter<br>val | mg<br>ai/seed | g<br>ai/ha | method,<br>last                          | soil<br>type                                | DAT | %<br>dm | parent,<br>mg/kg |        | reference                                              |
|---------------------------------------------------------------------------------------|---------------------|----|--------------|---------------|------------|------------------------------------------|---------------------------------------------|-----|---------|------------------|--------|--------------------------------------------------------|
| (Variety)                                                                             | ai/kg,<br>g<br>ai/L |    | (d)          |               |            | application                              |                                             |     |         |                  |        |                                                        |
| (Pioneer<br>32K61)                                                                    |                     |    |              |               |            |                                          |                                             |     |         |                  |        | late<br>dough                                          |
| BAY-T5009-<br>99H, Hedrick,<br>Iowa,<br>USA, 1999<br>(Pioneer                         | 600<br>FS           | 1  | na           | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr | ns                                          | 80  | 22      | 0.011            | 0.011  | M-<br>106757-<br>01-1<br>a<br>early                    |
| 35N05Bt)<br>BAY-T5009-<br>99H, Hedrick,<br>Iowa,<br>USA, 1999<br>(Pioneer<br>35N05Bt) | 600<br>FS           | 1  | na           | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr | ns                                          | 100 | 35      | < 0.01           | 0.011  | milk<br>M-<br>106757-<br>01-1<br>a<br>late<br>dough    |
| BAY-T5010-<br>99H, Richland,<br>Iowa, USA,<br>1999 (Pioneer<br>3394)                  | 600<br>FS           | 1  | na           | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr | silt<br>loam<br>or<br>silty<br>clay<br>loam | 81  | 23      | < 0.01           | < 0.01 | M-<br>106757-<br>01-1<br>a<br>early<br>milk            |
| BAY-T5010-<br>99H, Richland,<br>Iowa, USA,<br>1999 (Pioneer<br>3394)                  | 600<br>FS           | 1  | na           | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr | silt<br>loam<br>or<br>silty<br>clay<br>loam | 100 | 39      | < 0.01           | < 0.01 | M-<br>106757-<br>01-1<br>a<br>late<br>dough            |
| BAY-T5011-<br>99H, Bagley,<br>Iowa,<br>USA, 1999<br>(Pioneer 3394)                    | 600<br>FS           | 1  | na           | 2.0           | 163        | Seed<br>treatment,<br>28 May,<br>BBCH nr | loam<br>or<br>clay<br>loam                  | 98  | 26      | < 0.01           | < 0.01 | M-<br>106757-<br>01-1<br><sup>a</sup><br>late<br>dough |
| BAY-T5012-<br>99H, Bagley,<br>Iowa,<br>USA, 1999<br>(Pioneer 3394)                    | 600<br>FS           | 1  | na           | 2.0           | 151        | Seed<br>treatment,<br>28 May,<br>BBCH nr | loam<br>or<br>clay<br>loam                  | 98  | 31      | < 0.01           | < 0.01 | M-<br>106757-<br>01-1<br>a<br>late<br>dough            |
| BAY-T5013-<br>99H, New<br>Holland, Ohio,<br>USA, 1999<br>(Pioneer<br>35N05Bt)         | 600<br>FS           | 1  | na           | 2.0           | 168        | Seed<br>treatment,<br>18 May,<br>BBCH nr | loam<br>or<br>clay<br>loam                  | 94  | 34      | 0.031            | 0.028  | M-<br>106757-<br>01-1<br>a<br>late<br>dough            |
| BAY-T5014-<br>99H, New<br>Holland, Ohio,<br>USA, 1999<br>(Pioneer 3394)               | 600<br>FS           | 1  | na           | 2.0           | 170        | Seed<br>treatment,<br>20 May,<br>BBCH nr | loam<br>or<br>clay<br>loam                  | 95  | 28      | < 0.01           | < 0.01 | M-<br>106757-<br>01-1<br><sup>a</sup><br>late<br>dough |
| BAY-T5015-<br>99H,<br>Noblesville,<br>Indiana,<br>USA, 1999<br>(Pioneer               | 600<br>FS           | 1  | na           | 2.0           | 165        | Seed<br>treatment,<br>3 May,<br>BBCH nr  | ns                                          | 88  | 26      | < 0.01           | < 0.01 | M-<br>106757-<br>01-1<br>a<br>early<br>milk            |
| Hybrid 32K61)<br>BAY-T5015-<br>99H,<br>Noblesville,<br>Indiana,                       | 600<br>FS           | 1  | na           | 2.0           | 165        | Seed<br>treatment,<br>3 May,<br>BBCH nr  | ns                                          | 108 | 33      | < 0.01           | < 0.01 | M-<br>106757-<br>01-1<br>a                             |

| Trial, Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application             | soil<br>type      | DAT                  | %<br>dm              | parent,<br>mg/kg                  |                                               | reference                                   |
|------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|---------------|------------|--------------------------------------------|-------------------|----------------------|----------------------|-----------------------------------|-----------------------------------------------|---------------------------------------------|
| USA, 1999<br>(Pioneer<br>Hybrid 32K61)                                                   |                                  |    |                     |               |            |                                            |                   |                      |                      |                                   |                                               | late<br>dough                               |
| BAY-T5016-<br>99H, Dow,<br>Illinois,<br>USA, 1999<br>(Pioneer<br>35N05Bt)                | 600<br>FS                        | 1  | na                  | 2.0           | 177        | Seed<br>treatment,<br>11 May,<br>BBCH nr   | ns                | 83                   | 25                   | < 0.01                            | 0.011                                         | M-<br>106757-<br>01-1<br>a<br>late<br>dough |
| BAY-5017-<br>99H, Campbell,<br>Minnesota,<br>USA, 1999<br>(Variety D:<br>N17-C5)         | 600<br>FS                        | 1  | na                  | 2.0           | 170        | Seed<br>treatment,<br>13 May,<br>BBCH nr   | clay<br>loam      | 97                   | 27                   | < 0.01                            | < 0.01                                        | M-<br>106757-<br>01-1<br>a<br>late<br>dough |
| BAY-T5018-<br>99H, Uvalde,<br>Texas,<br>USA, 1999<br>(Pioneer 3346)                      | 600<br>FS                        | 1  | na                  | 2.0           | 165        | Seed<br>treatment,<br>17 March,<br>BBCH nr | clay              | 89                   | 23                   | < 0.01                            | < 0.01                                        | M-<br>106757-<br>01-1<br>a<br>late<br>dough |
| FCA-T5019-<br>99H, Fresno,<br>California,<br>USA, 1999<br>(D: N17-C5)                    | 600<br>FS                        | 1  | na                  | 2.0           | 187        | Seed<br>treatment,<br>12 May,<br>BBCH nr   | sand<br>y<br>loam | 75                   | 24                   | 0.057 <sup>c</sup>                | 0.056 <sup>b</sup>                            | M-<br>106757-<br>01-1<br>a<br>early<br>milk |
| FCA-T5019-<br>99H, Fresno,<br>California,<br>USA, 1999<br>(D: N17-C5)                    | 600<br>FS                        | 1  | na                  | 2.0           | 187        | Seed<br>treatment,<br>12 May,<br>BBCH nr   | sand<br>y<br>loam | 85                   | 30                   | 0.034 <sup>b</sup>                | 0.034 <sup>b</sup>                            | M-<br>106757-<br>01-1<br>a<br>late<br>dough |
| BAY-T5020-<br>99H,<br>Hermiston,<br>Oregon,<br>USA, 1999<br>(D: N17-C5)                  | 600<br>FS                        | 1  | na                  | 2.0           | 179        | Seed<br>treatment,<br>4 May,<br>BBCH nr    | ns                | 108                  | 22                   | < 0.01                            | < 0.01                                        | M-<br>106757-<br>01-1<br>a<br>early<br>milk |
| BAY-T5020-<br>99H,<br>Hermiston,<br>Oregon,<br>USA, 1999<br>(D: N17-C5)                  | 600<br>FS                        | 1  | na                  | 2.0           | 179        | Seed<br>treatment,<br>4 May,<br>BBCH nr    | ns                | 129                  | 32                   | < 0.01                            | < 0.01                                        | M-<br>106757-<br>01-1<br>a<br>late<br>dough |
| BAY-T5021-<br>99H,<br>Hillsborrow,<br>Oregon,<br>USA, 1999<br>(D: N17-C5)                | 600<br>FS                        | 1  | na                  | 2.0           | 173        | Seed<br>treatment,<br>21 May,<br>BBCH nr   | ns                | 111                  | 29                   | < 0.01                            | < 0.01                                        | M-<br>106757-<br>01-1<br>a<br>early<br>milk |
| (D. N17-C3)<br>BAY-T5021-<br>99H,<br>Hillsborrow,<br>Oregon,<br>USA, 1999<br>(D: N17-C5) | 600<br>FS                        | 1  | na                  | 2.0           | 173        | Seed<br>treatment,<br>21 May,<br>BBCH nr   | ns                | 126                  | 29                   | < 0.01                            | < 0.01                                        | M-<br>106757-<br>01-1<br>a<br>late<br>dough |
| BAY-5022-<br>99D,<br>Branchton,<br>Ontario,                                              | 600<br>FS                        | 1  | na                  | 2.0           | 161        | Seed<br>treatment,<br>31 May,<br>BBCH nr   | ns                | 72<br>77<br>84<br>91 | 18<br>21<br>22<br>27 | 0.022<br>0.019<br>0.014<br>< 0.01 | 0.019<br>0.019<br>0.014<br>0.013 <sup>b</sup> | M-<br>106757-<br>01-1<br>a                  |

| Trial, Location<br>Country, year<br>(Variety)                                              | Form<br>g<br>ai/kg,<br>g | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application           | soil<br>type | DAT                     | %<br>dm              | parent,<br>mg/kg                  |                                    | reference                                           |
|--------------------------------------------------------------------------------------------|--------------------------|----|---------------------|---------------|------------|------------------------------------------|--------------|-------------------------|----------------------|-----------------------------------|------------------------------------|-----------------------------------------------------|
| Canada, 1999                                                                               | ai/L                     |    |                     |               |            |                                          |              |                         |                      |                                   |                                    | early                                               |
| (D: N17-C5)<br>BAY-5022-<br>99D,<br>Branchton,<br>Ontario,<br>Canada, 1999<br>(D: N17-C5)  | 600<br>FS                | 1  | na                  | 2.0           | 161        | Seed<br>treatment,<br>31 May,<br>BBCH nr | ns           | 95<br>103<br>109<br>116 | 30<br>37<br>34<br>40 | 0.014<br>0.011<br>< 0.01<br>0.012 | 0.011<br>0.012<br>< 0.01<br>< 0.01 | milk<br>M-<br>106757-<br>01-1<br>a<br>late<br>dough |
| BAY-T5023-<br>99H,<br>St-Paul-<br>d'Abbotsford,<br>Quebec,<br>Canada, 1999<br>(C: N2555Bt) | 600<br>FS                | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>18 May,<br>BBCH nr | ns           | 83                      | 19                   | < 0.01                            | < 0.01                             | M-<br>106757-<br>01-1<br>a<br>early<br>milk         |
| BAY-T5023-<br>99H,<br>St-Paul-<br>d'Abbotsford,<br>Quebec,<br>Canada, 1999<br>(C: N2555Bt) | 600<br>FS                | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>18 May,<br>BBCH nr | ns           | 101                     | 33                   | < 0.01                            | < 0.01                             | M-<br>106757-<br>01-1<br>a<br>late<br>dough         |
| BAY-T5024-<br>99H,<br>St-Pie, Quebec,<br>Canada, 1999<br>(C: N2555Bt)                      | 600<br>FS                | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 80                      | 20                   | 0.011                             | 0.016                              | M-<br>106757-<br>01-1<br>a<br>early<br>milk         |
| BAY-T5024-<br>99H,<br>St-Pie, Quebec,<br>Canada, 1999<br>(C: N2555Bt)                      | 600<br>FS                | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 98                      | 27                   | 0.013                             | 0.011                              | M-<br>106757-<br>01-1<br>a<br>late<br>dough         |
| BAY-T5025-<br>99H, St-Pie-de-<br>Bagot, Quebec,<br>Canada, 1999<br>(D: N17-C5)             | 600<br>FS                | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 80                      | 23                   | 0.011                             | 0.014                              | M-<br>106757-<br>01-1<br>a<br>early<br>milk         |
| BAY-T5025-<br>99H, St-Pie-de-<br>Bagot, Quebec,<br>Canada, 1999<br>(D: N17-C5)             | 600<br>FS                | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 97                      | 31                   | < 0.01                            | 0.010                              | M-<br>106757-<br>01-1<br>a<br>late<br>dough         |
| BAY-T5026-<br>99H, St-Paul-<br>d'Abbotsford,<br>Quebec,<br>Canada, 1999<br>(D: N17-C5)     | 600<br>FS                | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>20 May,<br>BBCH nr | ns           | 99                      | 30                   | 0.013                             | 0.015                              | M-<br>106757-<br>01-1<br>a<br>late<br>dough         |
| BAY-T5027-<br>99H, Taber,<br>Alberta,<br>Canada, 1999<br>(Novartis 4066)                   | 600<br>FS                | 1  | na                  | 2.0           | 122        | Seed<br>treatment,<br>5 May,<br>BBCH nr  | ns           | 113                     | 23                   | 0.017                             | 0.020                              | M-<br>106757-<br>01-1<br>a<br>early<br>milk         |
| BAY-T5027-<br>99H, Taber,<br>Alberta,                                                      | 600<br>FS                | 1  | na                  | 2.0           | 122        | Seed<br>treatment,<br>5 May,             | ns           | 134                     | 28                   | 0.018                             | 0.018                              | M-<br>106757-<br>01-1                               |

| Trial, Location<br>Country, year<br>(Variety) | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg | reference                     |
|-----------------------------------------------|----------------------------------|----|---------------------|---------------|------------|--------------------------------|--------------|-----|---------|------------------|-------------------------------|
| Canada, 1999<br>(Novartis 4066)               |                                  |    |                     |               |            | BBCH nr                        |              |     |         |                  | <sup>a</sup><br>late<br>dough |

ns = not stated

nr = not relevant

<sup>a</sup>.Results came from two replicate field samples

<sup>b</sup> Results are the average of two replicate analyses

<sup>c</sup> Results are the average of three replicate analyses

[Duah, 2000e, M-106757-01-1]. No unusual weather conditions. Plot size 84–520 m2. Seeds were planted manually, by tractor (mounted or by), row planter. The actual seeding rate was 60920-93663 seeds/ha. Replicate field samples of green forage with ears ( $\geq 2.27$  kg) were sampled at early milk stage or late dough stage. Crop samples were collected from at least 12 different areas within a plot. Samples were stored at  $-23.3 \pm 3$  °C for 157–248 days (early milk stage forage) or 179–265 days (late dough stage forage). Samples were analysed using HPLC-MS-MS method 109240 (=00552/M001). Results were not corrected for control levels (< 0.002 mg/kg) or for concurrent method recoveries (individual 62%–122%, average 76%–91%). Information on soil type was not available in the report. However, some of the same trial locations have been used in more recent field trials and soil type information came from these data [Gaston, 2010f]. In the decline trials, early milk stage and late dough stage show overlap in harvest dates. The indication late dough or early milk stage is therefore not very strict. The decline trials indicated as late dough, also contain early milk stage maize samples, while the decline trials indicated as early milk also contain late dough stage maize samples [Gaston, 2010h].

#### Sweet corn forage (OECD feedstuff table) = maize forage, green (Codex)

Supervised residue trials on maize were conducted in the USA (1999) and Canada (1999). Maize was harvested as forage at early milk stage and at late dough stage. Only the early milk stage forage can be considered as sweet corn forage. Results for field corn forage harvested at early milk stage are shown in table 116 (seed treatment).

### Field corn stover (OECD feedstuff table) = maize fodder, dry (Codex)

Supervised residue trials on maize were conducted in the USA (1999) and Canada (1999). Results for field corn stover are shown in Table 117 (seed treatment).

Table 117 Residues of clothianidin in field corn stover after seed treatment and subsequent culture in the field

| Trial,<br>Location<br>Country, year<br>(Variety)                                          | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application           | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg |        | reference                  |
|-------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|---------------|------------|------------------------------------------|--------------|-----|---------|------------------|--------|----------------------------|
| BAY-T5001-<br>99H,<br>Germansville,<br>Pennsylvania,<br>USA, 1999<br>(Pioneer<br>3346)    | 600<br>FS                        | 1  | na                  | 2.0           | 163        | Seed<br>treatment,<br>4 May,<br>BBCH nr  | loam         | 170 | 34      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5002-<br>99H,<br>Germansville,<br>Pennsylvania,<br>USA, 1999<br>(Pioneer<br>35N05Bt) | 600<br>FS                        | 1  | na                  | 2.0           | 175        | Seed<br>treatment,<br>21 May,<br>BBCH nr | loam         | 160 | 47      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |

| Trial,<br>Location<br>Country, year<br>(Variety)                                  | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application             | soil<br>type                                | DAT | %<br>dm | parent,<br>mg/kg |        | reference                  |
|-----------------------------------------------------------------------------------|----------------------------------|----|---------------------|---------------|------------|--------------------------------------------|---------------------------------------------|-----|---------|------------------|--------|----------------------------|
| TGA-T5003-<br>99D, Tifton,<br>Georgia,<br>USA, 1999<br>(Pioneer<br>3167)          | 600<br>FS                        | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>20 April,<br>BBCH nr | loamy<br>sand                               | 140 | 59      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T-<br>5004-99H,<br>Bascom,<br>Florida,<br>USA, 1999<br>(Pioneer<br>3167)      | 600<br>FS                        | 1  | na                  | 2.0           | 172        | Seed<br>treatment,<br>19 March,<br>BBCH nr | ns                                          | 146 | 48      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| WIN-T5005-<br>99D, Oxford,<br>Indiana,<br>USA, 1999<br>(Pioneer<br>3394)          | 600<br>FS                        | 1  | na                  | 2.0           | 166        | Seed<br>treatment,<br>26 April,<br>BBCH nr | ns                                          | 151 | 48      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| STF-T5006-<br>99H, Stilwell,<br>Kansas,<br>USA, 1999<br>(Pioneer<br>35N05Bt)      | 600<br>FS                        | 1  | na                  | 2.0           | 171        | Seed<br>treatment,<br>7 May,<br>BBCH nr    | silt<br>loam<br>or<br>silty<br>clay<br>loam | 131 | 60      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| SNE-T5007-<br>99H,<br>Springfield,<br>Nebraska,<br>USA, 1999<br>(Pioneer<br>3394) | 600<br>FS                        | 1  | na                  | 2.0           | 172        | Seed<br>treatment,<br>3 May,<br>BBCH nr    | silt<br>loam                                | 137 | 36      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5008-<br>99H, Carlyle,<br>Illinois,<br>USA, 1999<br>(Pioneer<br>32K61)       | 600<br>FS                        | 1  | na                  | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr   | silt<br>loam                                | 141 | 57      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5009-<br>99H,<br>Hedrick,<br>Iowa,<br>USA, 1999<br>(Pioneer<br>35N05Bt)      | 600<br>FS                        | 1  | na                  | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr   | ns                                          | 144 | 40      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5010-<br>99H,<br>Richland,<br>Iowa, USA,<br>1999 (Pioneer<br>3394)           | 600<br>FS                        | 1  | na                  | 2.0           | 168        | Seed<br>treatment,<br>26 May,<br>BBCH nr   | silt<br>loam<br>or<br>silty<br>clay<br>loam | 149 | 87      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1      |
| BAY-T5011-<br>99H, Bagley,<br>Iowa,<br>USA, 1999<br>(Pioneer<br>3394)             | 600<br>FS                        | 1  | na                  | 2.0           | 163        | Seed<br>treatment,<br>28 May,<br>BBCH nr   | loam<br>or<br>clay<br>loam                  | 148 | 86      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5012-<br>99H, Bagley,<br>Iowa,<br>USA, 1999                                  | 600<br>FS                        | 1  | na                  | 2.0           | 151        | Seed<br>treatment,<br>28 May,<br>BBCH nr   | loam<br>or<br>clay<br>loam                  | 143 | 58      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |

| Trial,<br>Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application             | soil<br>type               | DAT | %<br>dm | parent,<br>mg/kg |                    | reference                  |
|---------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|---------------|------------|--------------------------------------------|----------------------------|-----|---------|------------------|--------------------|----------------------------|
| (Pioneer<br>3394)                                                                           |                                  |    |                     |               |            |                                            |                            |     |         |                  |                    |                            |
| BAY-T5013-<br>99H, New<br>Holland,<br>Ohio, USA,<br>1999 (Pioneer<br>35N05Bt)               | 600<br>FS                        | 1  | na                  | 2.0           | 168        | Seed<br>treatment,<br>18 May,<br>BBCH nr   | loam<br>or<br>clay<br>loam | 136 | 68      | 0.044<br>c       | 0.048 <sup>a</sup> | M-<br>106757-<br>01-1<br>a |
| BAY-T5014-<br>99H, New<br>Holland,<br>Ohio,<br>USA, 1999<br>(Pioneer<br>3394)               | 600<br>FS                        | 1  | na                  | 2.0           | 170        | Seed<br>treatment,<br>20 May,<br>BBCH nr   | loam<br>or<br>clay<br>loam | 138 | 43      | < 0.0<br>1       | < 0.01             | M-<br>106757-<br>01-1<br>a |
| BAY-T5015-<br>99H,<br>Noblesville,<br>Indiana,<br>USA, 1999<br>(Pioneer<br>Hybrid<br>32K61) | 600<br>FS                        | 1  | na                  | 2.0           | 165        | Seed<br>treatment,<br>3 May,<br>BBCH nr    | ns                         | 141 | 45      | 0.012            | < 0.01             | M-<br>106757-<br>01-1<br>a |
| BAY-T5016-<br>99H, Dow,<br>Illinois,<br>USA, 1999<br>(Pioneer<br>35N05Bt)                   | 600<br>FS                        | 1  | na                  | 2.0           | 177        | Seed<br>treatment,<br>11 May,<br>BBCH nr   | ns                         | 128 | 38      | 0.014            | 0.014              | M-<br>106757-<br>01-1<br>a |
| BAY-5017-<br>99H,<br>Campbell,<br>Minnesota,<br>USA, 1999<br>(Variety D:<br>N17-C5)         | 600<br>FS                        | 1  | na                  | 2.0           | 170        | Seed<br>treatment,<br>13 May,<br>BBCH nr   | clay<br>loam               | 154 | 46      | 0.011            | < 0.01             | M-<br>106757-<br>01-1<br>a |
| BAY-T5018-<br>99H, Uvalde,<br>Texas,<br>USA, 1999<br>(Pioneer<br>3346)                      | 600<br>FS                        | 1  | na                  | 2.0           | 165        | Seed<br>treatment,<br>17 March,<br>BBCH nr | clay                       | 125 | 38      | < 0.0<br>1       | < 0.01             | M-<br>106757-<br>01-1<br>a |
| FCA-T5019-<br>99H, Fresno,<br>California,<br>USA, 1999<br>(D: N17-C5)                       | 600<br>FS                        | 1  | na                  | 2.0           | 187        | Seed<br>treatment,<br>12 May,<br>BBCH nr   | sandy<br>loam              | 119 | 45      | 0.037            | 0.048 <sup>b</sup> | M-<br>106757-<br>01-1<br>a |
| BAY-T5020-<br>99H,<br>Hermiston,<br>Oregon,<br>USA, 1999<br>(D: N17-C5)                     | 600<br>FS                        | 1  | na                  | 2.0           | 179        | Seed<br>treatment,<br>4 May,<br>BBCH nr    | ns                         | 172 | 62      | < 0.0<br>1       | < 0.01             | M-<br>106757-<br>01-1<br>a |
| BAY-T5021-<br>99H,<br>Hillsborrow,<br>Oregon,<br>USA, 1999<br>(D: N17-C5)                   | 600<br>FS                        | 1  | na                  | 2.0           | 173        | Seed<br>treatment,<br>21 May,<br>BBCH nr   | ns                         | 140 | 43      | < 0.0<br>1       | < 0.01             | M-<br>106757-<br>01-1<br>a |
| BAY-5022-<br>99D,                                                                           | 600<br>FS                        | 1  | na                  | 2.0           | 161        | Seed<br>treatment,                         | ns                         | 148 | 36      | < 0.0<br>1       | < 0.01             | M-<br>106757-              |

| Trial,<br>Location<br>Country, year<br>(Variety)                                           | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | mg<br>ai/seed | g<br>ai/ha | method,<br>last<br>application           | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg |        | reference                  |
|--------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|---------------|------------|------------------------------------------|--------------|-----|---------|------------------|--------|----------------------------|
| Branchton,<br>Ontario,<br>Canada, 1999<br>(D: N17-C5)                                      |                                  |    |                     |               |            | 31 May,<br>BBCH nr                       |              |     |         |                  |        | 01-1<br>a                  |
| BAY-T5023-<br>99H,<br>St-Paul-<br>d'Abbotsford,<br>Quebec,<br>Canada, 1999<br>(C: N2555Bt) | 600<br>FS                        | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>18 May,<br>BBCH nr | ns           | 140 | 42      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5024-<br>99H,<br>St-Pie,<br>Quebec,<br>Canada, 1999<br>(C: N2555Bt)                   | 600<br>FS                        | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 137 | 31      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5025-<br>99H, St-Pie-<br>de-Bagot,<br>Quebec,<br>Canada, 1999<br>(D: N17-C5)          | 600<br>FS                        | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>21 May,<br>BBCH nr | ns           | 137 | 31      | < 0.0<br>1       | < 0.01 | M-<br>106757-<br>01-1<br>a |
| BAY-T5026-<br>99H, St-Paul-<br>d'Abbotsford,<br>Quebec,<br>Canada, 1999<br>(D: N17-C5)     | 600<br>FS                        | 1  | na                  | 2.0           | 167        | Seed<br>treatment,<br>20 May,<br>BBCH nr | ns           | 137 | 41      | 0.016            | 0.014  | M-<br>106757-<br>01-1      |
| BAY-T5027-<br>99H, Taber,<br>Alberta,<br>Canada, 1999<br>(Novartis<br>4066)                | 600<br>FS                        | 1  | na                  | 2.0           | 122        | Seed<br>treatment,<br>5 May,<br>BBCH nr  | ns           | 159 | 45      | 0.040            | 0.025  | M-<br>106757-<br>01-1      |

ns = not stated

nr = not relevant

<sup>a</sup> Results came from two replicate field samples

<sup>b</sup> Results are the average of two replicate analyses

[Duah, 2000e, M-106757-01-1] No unusual weather conditions. Plot size 84–520 m2. Seeds were planted manually, by tractor (mounted or by), row planter. The actual seeding rate was 60920–93663 seeds/ha. Replicate field samples of dry fodder ( $\geq 1.13$  kg) were collected from mature dry plants at earliest harvest. Crop samples were collected from at least 12 different areas within a plot. Samples were stored at  $-23.3 \pm 3$  °C for 133–252 days (fodder). Samples were analysed using HPLC-MS-MS method 109240 (= 00552/M001). Results were not corrected for control levels (< 0.002 mg/kg) or for concurrent method recoveries (individual 65%–105%, average 79%–84%). Information on soil type was not available in the report. However, some of the same trial locations have been used in more recent field trials and soil type information came from these data [Gaston, 2010f].

## Popcorn stover (OECD feedstuff table) = maize fodder, dry (Codex)

Supervised residue trials on maize were conducted in the USA (1999) and Canada (1999). Results for field corn stover can also be considered for popcorn stover (see Table 117, seed treatment).

# Sweet corn stover (OECD feedstuff table) = maize fodder, dry (Codex)

Supervised residue trials on maize were conducted in the USA (1999) and Canada (1999). Results for field corn stover can also be considered for sweet corn stover (see Table 117, seed treatment).

Rice whole crop silage (OECD feedstuff table, no Codex Commodity)

No data submitted.

## *Rice straw (OECD feedstuff table) = rice straw and fodder, dry (Codex)*

Supervised residue trials on rice were conducted in Japan (1998, 2001, 2002, 2003 and 2005). In the Japanese supervised field trials on rice, straw was also sampled. However the samples were not analysed and therefore no data are available on rice straw.

## Sorghum grain forage (OECD feedstuff table) = sorghum forage, green (Codex)

Supervised residue trials on sorghum were conducted in the USA (2001). Results for sorghum grain forage are shown in Table 118 (seed treatment).

| Trial, Location<br>Country, year<br>(Variety)                    | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application             | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg |        | reference             |
|------------------------------------------------------------------|----------------------------------|----|---------------------|------------|------------|--------------------------------------------|--------------|-----|---------|------------------|--------|-----------------------|
| T5046-01H,<br>Chula, Georgia,<br>USA, 2001<br>(DK 52)            | 600<br>FS                        | 1  | nr                  | 21         | 2.5        | Seed<br>treatment, 3<br>May, BBCH<br>00    | ns           | 82  | 26      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5047-01H,<br>Benoit,<br>Mississippi,<br>USA, 2001<br>(DK 52)    | 600<br>FS                        | 1  | nr                  | 13         | 2.5        | Seed<br>treatment, 1<br>May, BBCH<br>00    | ns           | 42  | 13      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5048-01H,<br>Stilwell,<br>Kansas, USA,<br>2001<br>(KS 711Y)     | 600<br>FS                        | 1  | nr                  | 13         | 2.5        | Seed<br>treatment, 2<br>May, BBCH<br>00    | ns           | 112 | 58      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5049-01H,<br>Oxford,<br>Indianapolis,<br>USA, 2001<br>(KS 711Y) | 600<br>FS                        | 1  | nr                  | 15         | 2.5        | Seed<br>treatment, 28<br>May, BBCH<br>00   | ns           | 102 | 34      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5050-01H,<br>Louisville,<br>Nebraska, USA,<br>2001<br>(KS 711Y) | 600<br>FS                        | 1  | nr                  | 19         | 2.5        | Seed<br>treatment, 26<br>April, BBCH<br>00 | ns           | 112 | 35      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5051-01H,<br>New Holland,<br>Ohio, USA,<br>2001<br>(Garst G444) | 600<br>FS                        | 1  | nr                  | 9.0        | 2.5        | Seed<br>treatment, 31<br>May, BBCH<br>00   | ns           | 103 | 34      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5052-01H,<br>Comanche,<br>Oklahoma,<br>USA, 2001<br>(DK 52)     | 600<br>FS                        | 1  | nr                  | 6.7        | 2.5        | Seed<br>treatment, 18<br>May, BBCH<br>00   | ns           | 82  | 35      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5053-01H,<br>Brookshire,<br>Texas, USA,<br>2001<br>(DK 52)      | 600<br>FS                        | 1  | nr                  | 20         | 2.5        | Seed<br>treatment, 12<br>May, BBCH<br>00   | ns           | 75  | 30      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |
| T5054-01H,<br>Jamestown,<br>North Dakota,<br>USA, 2001           | 600<br>FS                        | 1  | nr                  | 29         | 2.5        | Seed<br>treatment, 23<br>May, BBCH<br>00   | ns           | 107 | 26      | < 0.01           | < 0.01 | M-<br>087784-<br>01-1 |

Table 118 Residues of clothianidin in sorghum forage (green) after seed treatment in the field

| Trial, Location<br>Country, year<br>(Variety)                                      | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application                                    | soil<br>type | DAT      | %<br>dm  | parent,<br>mg/kg |        | reference                              |
|------------------------------------------------------------------------------------|----------------------------------|----|---------------------|------------|------------|-------------------------------------------------------------------|--------------|----------|----------|------------------|--------|----------------------------------------|
| (Garst G444)                                                                       |                                  |    |                     |            |            |                                                                   |              |          |          |                  |        |                                        |
| T5055-01H,<br>Claude, Texas,<br>USA, 2001<br>(NC+Y363)<br>T5056-01H,<br>Plainview, | 600<br>FS<br>600<br>FS           | 1  | nr<br>nr            | 9.0<br>21  | 2.5<br>2.5 | Seed<br>treatment, 23<br>May, BBCH<br>00<br>Seed<br>treatment, 11 | ns<br>ns     | 91<br>77 | 32<br>33 | < 0.01           | < 0.01 | M-<br>087784-<br>01-1<br>M-<br>087784- |
| Texas, USA,<br>2001<br>(NC+Y363)                                                   |                                  |    |                     |            |            | May, BBCH<br>00                                                   |              |          |          |                  |        | 01-1-01                                |
| T5057-01H,<br>Levelland,<br>Texas, USA<br>2001<br>(NC+Y363)                        | 600<br>FS                        | 1  | nr                  | 9.0        | 2.5        | Seed<br>treatment, 16<br>May, BBCH<br>00                          | ns           | 82       | 39       | < 0.01           | < 0.01 | M-<br>087784-<br>01-1                  |

nr = not relevant

ns = not stated

[Duah, 2002a, M-087784-01-1]. No unusual weather conditions. Plot size  $11-530 \text{ m}^2$ . Seeding machines. The seeding rate 94361–329241 seeds/ha or 93.3–11 kg seeds/ha. Sorghum forage (at least 1.134 kg) was sampled at earliest harvest (42–112 days after planting the seeds). Samples were stored at –15 °C for 274–365 days (forage). Samples were analysed for clothianidin using modification A of HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (forage: 77–94%).

# Sorghum grain stover (OECD feedstuff table) = sorghum straw and fodder, dry (Codex)

Supervised residue trials on sorghum were conducted in the USA (2001). Results for sorghum grain stover are shown in Table 119 (seed treatment).

| Trial,<br>Location<br>Country,<br>year<br>(Variety)               | Form<br>g ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application           | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg |        | refere<br>nce                                                |
|-------------------------------------------------------------------|----------------------------|----|---------------------|------------|------------|------------------------------------------|--------------|-----|---------|------------------|--------|--------------------------------------------------------------|
| T5046-01H,<br>Chula,<br>Georgia,<br>USA, 2001<br>(DK 52)          | 600 FS                     | 1  | nr                  | 21         | 2.5        | Seed<br>treatment, 3<br>May,<br>BBCH 00  | ns           | 113 | 69      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>24 d<br>field<br>dried <sup>a</sup> |
| T5047-01H<br>, Benoit,<br>Mississippi,<br>USA, 2001<br>(DK 52)    | 600 FS                     | 1  | nr                  | 13         | 2.5        | Seed<br>treatment, 1<br>May,<br>BBCH 00  | ns           | 134 | 31      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>0 d<br>field<br>dried               |
| T5048-01H,<br>Stilwell,<br>Kansas,<br>USA, 2001<br>(KS 711Y)      | 600 FS                     | 1  | nr                  | 13         | 2.5        | Seed<br>treatment, 2<br>May,<br>BBCH 00  | ns           | 133 | 72      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>1 d<br>field<br>dried <sup>a</sup>  |
| T5049-01H,<br>Oxford,<br>Indianapolis<br>, USA, 2001<br>(KS 711Y) | 600 FS                     | 1  | nr                  | 15         | 2.5        | Seed<br>treatment,<br>28 May,<br>BBCH 00 | ns           | 142 | 39      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>6 d<br>field                        |

Table 119 Residues of clothianidin in sorghum grain stover (dry) after foliar treatment in the field

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                          | Form<br>g ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application             | soil<br>type | DAT | %<br>dm | parent,<br>mg/kg |        | refere<br>nce                                                                     |
|------------------------------------------------------------------------------|----------------------------|----|---------------------|------------|------------|--------------------------------------------|--------------|-----|---------|------------------|--------|-----------------------------------------------------------------------------------|
| T5050-01H,<br>Louisville,<br>Nebraska,<br>USA, 2001<br>(KS 711Y)             | 600 FS                     | 1  | nr                  | 19         | 2.5        | Seed<br>treatment,<br>26 April,<br>BBCH 00 | ns           | 148 | 40      | < 0.01           | < 0.01 | dried <sup>a</sup><br>M-<br>08778<br>4-01-1<br>3 d<br>field<br>dried <sup>a</sup> |
| T5051-01H,<br>New<br>Holland,<br>Ohio, USA,<br>2001<br>(Garst<br>G444)       | 600 FS                     | 1  | nr                  | 9.0        | 2.5        | Seed<br>treatment,<br>31 May,<br>BBCH 00   | ns           | 147 | 23      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>0 d<br>field<br>dried                                    |
| T5052-01H,<br>Comanche,<br>Oklahoma,<br>USA, 2001<br>(DK 52)                 | 600 FS                     | 1  | nr                  | 6.7        | 2.5        | Seed<br>treatment,<br>18 May,<br>BBCH 00   | ns           | 167 | 57      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>18 d<br>field<br>dried <sup>a</sup>                      |
| T5053-01H,<br>Brookshire,<br>Texas,<br>USA, 2001<br>(DK 52)                  | 600 FS                     | 1  | nr                  | 20         | 2.5        | Seed<br>treatment,<br>12 May,<br>BBCH 00   | ns           | 97  | 48      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>0 d<br>field<br>dried                                    |
| T5054-01H,<br>Jamestown,<br>North<br>Dakota,<br>USA, 2001<br>(Garst<br>G444) | 600 FS                     | 1  | nr                  | 29         | 2.5        | Seed<br>treatment,<br>23 May,<br>BBCH 00   | ns           | 151 | 27      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>0 d<br>field<br>dried                                    |
| T5055-01H,<br>Claude,<br>Texas,<br>USA, 2001<br>(NC+Y363)                    | 600 FS                     | 1  | nr                  | 9.0        | 2.5        | Seed<br>treatment,<br>23 May,<br>BBCH 00   | ns           | 161 | 53      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>0 d<br>field<br>dried                                    |
| T5056-01H,<br>Plainview,<br>Texas,<br>USA, 2001<br>(NC+Y363)                 | 600 FS                     | 1  | nr                  | 21         | 2.5        | Seed<br>treatment,<br>11 May,<br>BBCH 00   | ns           | 109 | 54      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-<br>1-01<br>12 d<br>field<br>dried <sup>a</sup>               |
| T5057-01H,<br>Levelland,<br>Texas, USA<br>2001<br>(NC+Y363)                  | 600 FS                     | 1  | nr                  | 9.0        | 2.5        | Seed<br>treatment,<br>16 May,<br>BBCH 00   | ns           | 114 | 51      | < 0.01           | < 0.01 | M-<br>08778<br>4-01-1<br>7 d<br>field<br>dried <sup>a</sup>                       |

nr = not relevant

ns = not stated

<sup>a</sup> Residue levels are not obtained immediately after harvest (= RAC) but after a considerate drying period (up to 24 days).

<sup>[</sup>Duah, 2002a, M-087784-01-1]. No unusual weather conditions. Plot size 11–530 m2. Seeding machines. The actual seeding rate 94,361–329241 seeds/ha. Sorghum grain was sampled at normal harvest, sorghum fodder (stover) was left drying in the field for 0–14 days. Sorghum fodder (at least 1.134 kg) was stored at –15 °C for 229–305 days (fodder). Samples were analysed for clothianidin using modification A of HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (fodder: 83–90%).

Wheat forage, green (no Codex Commodity, OECD only)

Supervised residue trials on wheat were conducted in Germany (1998 and 1999), the UK (1999), France (1998 and 1999) and the USA (2005, 2006 and 2007). Results for green wheat forage are shown in Table 120 (seed treatment).

Table 120 Residues of clothianidin in wheat forage (green) after seed treatment and subsequent culture in the field

| Trial, Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application             | soil<br>type          | DAT                                       | %<br>dm | parent,<br>mg/kg                          | reference              |
|------------------------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|--------------------------------------------|-----------------------|-------------------------------------------|---------|-------------------------------------------|------------------------|
| 813710<br>Burscheid,<br>Germany,<br>1998<br>(spring wheat;<br>Thasos)                    | 600<br>FS                     | 1  | nr                  | 104        | 0.52       | Seed<br>treatment,<br>26 March,<br>BBCH 00 | Sandy<br>loam         | 53<br>88                                  | _       | < 0.02<br>< 0.02                          | M-031797-<br>01-1      |
| R 1999 0042/2<br>Burscheid,<br>Germany,<br>1999<br>(spring wheat;<br>Thasos)             | 350<br>FS                     | 1  | nr                  | 67         | 0.42       | Seed<br>treatment,<br>March 26,<br>BBCH 00 | Sandy<br>loam         | <u>54</u> °<br>84                         | _       | 0.024<br>< 0.02                           | M-26928-<br>01-1       |
| R 1999 0220/4<br>Thurston Bury<br>St. Edmunds,<br>UK, 1999<br>(spring wheat;<br>Chablis) | 350<br>FS                     | 1  | nr                  | 71         | 0.44       | Seed<br>treatment,<br>9 April,<br>BBCH 00  | Sandy<br>clay<br>loam | $\frac{28}{31}^{\circ}$<br>46<br>61<br>76 | -       | 0.19<br>0.11<br>< 0.02<br>0.020<br>< 0.02 | M-26928-<br>01-1       |
| 811125<br>Fresne-<br>L'Archeveque,<br>N. France,<br>1998<br>(spring wheat;<br>Furio)     | 600<br>FS                     | 1  | nr                  | 100        | 0.62       | Seed<br>treatment,<br>26 March,<br>BBCH 00 | Silt                  | 53<br>95                                  | _       | 0.058<br>< 0.02                           | M-031797-<br>01-1      |
| R 1999 0043/0<br>Mas Gernier,<br>S. France,<br>1999<br>(spring wheat;<br>Furio)          | 350<br>FS                     | 1  | nr                  | 61         | 0.38       | Seed<br>treatment,<br>18 March,<br>BBCH 00 | Sandy<br>silt         | 32<br>81                                  | -       | 0.23<br>< 0.02                            | M-026930-<br>01-1<br>a |
| R 1999 0077/5<br>St. Paul les<br>Romans, S.<br>France, 1999<br>(spring wheat;<br>Furio)  | 350<br>FS                     | 1  | nr                  | 66         | 0.41       | Seed<br>treatment,<br>2 March,<br>BBCH 00  | Sand                  | <u>57</u> °<br>94                         | -       | 0.022<br>< 0.02                           | M-026930-<br>01-1<br>a |
| 811141<br>Saint Benigne,<br>S. France,<br>1998<br>(spring wheat;<br>Ventura)             | 600<br>FS                     | 1  | nr                  | 87         | 0.61       | Seed<br>treatment,<br>18 March,<br>BBCH 00 | Sand                  | $\frac{61}{83}^{\circ}$                   | _       | 0.15<br>< 0.02                            | M-031786-<br>01-1      |
| 813729<br>Marsonnas, S.<br>France, 1998<br>(spring wheat;<br>Ventura)                    | 600<br>FS                     | 1  | nr                  | 109        | 0.63       | Seed<br>treatment,<br>25 March,<br>BBCH 00 | Sandy<br>silt         | <u>54</u> °<br>86                         | _       | 0.030 < 0.02                              | M-031786-<br>01-1      |
| TI009-05H<br>Tifton,                                                                     | 600<br>FS                     | 1  | nr                  | 126        | 1.25       | Seed<br>treatment,                         | Sandy<br>loam         | 76                                        | 16      | 0.021 0.024                               | M-303764-<br>01-1      |

| Trial, Location<br>Country, year<br>(Variety)                                             | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application                     | soil<br>type  | DAT | %<br>dm | parent,<br>mg/kg |        | reference                |
|-------------------------------------------------------------------------------------------|-------------------------------|----|---------------------|------------|------------|----------------------------------------------------|---------------|-----|---------|------------------|--------|--------------------------|
| Georgia, USA,<br>2005-2006<br>(winter wheat:<br>Georgia Gore)                             | g al/L                        |    |                     |            |            | 23 Dec.<br>2005,<br>BBCH 00                        |               |     |         |                  |        | b c                      |
| TI010-05H<br>Leland,<br>Mississispi,<br>USA, 2005-<br>2006<br>(winter wheat:<br>LA 841)   | 600<br>FS                     | 1  | nr                  | 128        | 1.25       | Seed<br>treatment,<br>7 Dec.<br>2005,<br>BBCH 00   | Silt<br>loam  | 93  | 15      | 0.033            | 0.034  | M-303764-<br>01-1<br>b c |
| TI011-05H<br>York,<br>Nebraska,<br>USA, 2006-<br>2007 (winter<br>wheat:<br>Wahoo)         | 600<br>FS                     | 1  | nr                  | 120        | 1.25       | Seed<br>treatment,<br>27 Sept.<br>2006,<br>BBCH 00 | Clay<br>loam  | 205 | 21      | 0.015            | 0.015  | M-303764-<br>01-1<br>b c |
| TI012-05H<br>Sabin,<br>Minnesota,<br>USA, 2006<br>(spring wheat:<br>Steele)               | 600<br>FS                     | 1  | nr                  | 118        | 1.25       | Seed<br>treatment,<br>8 May,<br>BBCH 00            | Silt<br>loam  | 37  | 17      | 0.098            | 0.019  | M-303764-<br>01-1<br>b c |
| TI013-05H<br>Campbell,<br>Minnesota,<br>USA, 2006<br>(spring wheat:<br>Gunner)            | 600<br>FS                     | 1  | nr                  | 153        | 1.25       | Seed<br>treatment,<br>7 May,<br>BBCH 00            | Clay<br>loam  | 46  | 14      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b c |
| TI014-05H<br>Arkansaw,<br>Wisconsin,<br>USA, 2006<br>(spring wheat:<br>Ingot)             | 600<br>FS                     | 1  | nr                  | 75         | 1.25       | Seed<br>treatment,<br>18 April,<br>BBCH 00         | Sandy<br>loam | 42  | 20      | 0.044            | 0.042  | M-303764-<br>01-1<br>b c |
| TI015-05H<br>Sheridan,<br>Indiana, USA,<br>2006-2007<br>(winter wheat:<br>Cutter)         | 600<br>FS                     | 1  | nr                  | 192        | 1.25       | Seed<br>treatment,<br>2 Oct.<br>2006,<br>BBCH 00   | Silt<br>loam  | 207 | 14      | < 0.01           | 0.010  | M-303764-<br>01-1<br>b c |
| TI016-05H<br>East Bernard,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>Ranger 30127) | 600<br>FS                     | 1  | nr                  | 148        | 1.25       | Seed<br>treatment,<br>13 Dec.<br>2005,<br>BBCH 00  | Sandy<br>clay | 65  | 23      | 0.13             | 0.094  | M-303764-<br>01-1<br>b c |
| TI017-05H<br>Velva, North<br>Dakota, USA,<br>2006<br>(spring wheat:<br>Alsen)             | 600<br>FS                     | 1  | nr                  | 140        | 1.25       | Seed<br>treatment,<br>21 April,<br>BBCH 00         | Loam          | 39  | 18      | 0.21             | 0.18   | M-303764-<br>01-1<br>b c |
| TI018-05H<br>Eldridge,<br>North Dakota,<br>USA, 2006-<br>2007, (winter<br>wheat: Jerry)   | 600<br>FS                     | 1  | nr                  | 127        | 1.25       | Seed<br>treatment,<br>15 Sept.<br>2006,<br>BBCH 00 | Loam          | 245 | 19      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b c |
| TI019-05H<br>New                                                                          | 600<br>FS                     | 1  | nr                  | 127        | 1.25       | Seed<br>treatment,                                 | Loam          | 33  | 14      | 0.029            | 0.023  | M-303764-<br>01-1        |

| Trial, Location<br>Country, year<br>(Variety)                                                  | Form<br>g<br>ai/kg, | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application                    | soil<br>type  | DAT | %<br>dm | parent,<br>mg/kg |       | reference                |
|------------------------------------------------------------------------------------------------|---------------------|----|---------------------|------------|------------|---------------------------------------------------|---------------|-----|---------|------------------|-------|--------------------------|
| Rockford,<br>North Dakota,<br>USA, 2006<br>(spring wheat:<br>Alsen)                            | g ai/L              |    |                     |            |            | 17 May,<br>BBCH 00                                |               |     |         |                  |       | b c                      |
| TI020-05H<br>Grand Island,<br>Nebraska,<br>USA, 2006<br>(spring wheat:<br>Briggs HRS<br>Wheat) | 600<br>FS           | 1  | nr                  | 126        | 1.25       | Seed<br>treatment,<br>18 April,<br>BBCH 00        | Silt<br>loam  | 31  | 16      | 0.075            | 0.076 | M-303764-<br>01-1<br>b c |
| TI021-05H<br>Velva, North<br>Dakota, USA,<br>2006<br>(spring wheat:<br>Alsen)                  | 600<br>FS           | 1  | nr                  | 140        | 1.25       | Seed<br>treatment,<br>21 April,<br>BBCH 00        | Loam          | 39  | 19      | 0.21             | 0.16  | M-303764-<br>01-1<br>b c |
| TI022-05H<br>Levelland,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>TAM 105)              | 600<br>FS           | 1  | nr                  | 180        | 1.25       | Seed<br>treatment,<br>12 Dec.<br>2005,<br>BBCH 00 | Sandy<br>loam | 123 | 19      | 0.18             | 0.13  | M-303764-<br>01-1<br>b c |
| TI023-05H<br>Lubbock,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>AP502CL)                | 600<br>FS           | 1  | nr                  | 156        | 1.25       | Seed<br>treatment,<br>12 Dec.<br>2005,<br>BBCH 00 | Sandy<br>loam | 123 | 21      | 0.11             | 0.12  | M-303764-<br>01-1<br>b c |
| TI024-05H<br>Uvalde, Texas,<br>USA, 2005-<br>2006<br>(winter wheat:<br>Ogallala)               | 600<br>FS           | 1  | nr                  | 107        | 1.25       | Seed<br>treatment,<br>9 Dec.<br>2005,<br>BBCH 00  | Clay          | 73  | 20      | 0.034            | 0.022 | M-303764-<br>01-1<br>b c |
| TI025-05H<br>LaPruor,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>Ogallala)               | 600<br>FS           | 1  | nr                  | 100        | 1.25       | Seed<br>treatment,<br>9 Dec.<br>2005,<br>BBCH 00  | Clay<br>loam  | 77  | 19      | 0.033            | 0.083 | M-303764-<br>01-1<br>b c |
| TI026-05H<br>Larned,<br>Kansas, USA,<br>2006<br>(winter wheat:<br>Jagger)                      | 600<br>FS           | 1  | nr                  | 158        | 1.25       | Seed<br>treatment,<br>3 Jan.,<br>BBCH 00          | Loam          | 100 | 22      | 0.27             | 0.23  | M-303764-<br>01-1<br>b c |
| TI027-05H<br>Hanston,<br>Kansas, USA,<br>2006<br>(winter wheat:<br>Jagger)                     | 600<br>FS           | 1  | nr                  | 166        | 1.25       | Seed<br>treatment,<br>4 Jan.,<br>BBCH 00          | Clay<br>loam  | 108 | 23      | 0.088            | 0.094 | M-303764-<br>01-1<br>b c |
| TI028-05H<br>Ephrata,<br>Washington,<br>USA, 2006<br>(winter wheat:<br>Stephens)               | 600<br>FS           | 1  | nr                  | 138        | 1.25       | Seed<br>treatment,<br>31 Jan.,<br>BBCH 00         | Loamy<br>Sand | 106 | 24      | 0.16             | 0.16  | M-303764-<br>01-1<br>b c |

<sup>a</sup> Samples were stored at temperatures above -10 °C (2 days, + 10.5 °C).

<sup>b</sup> Results are from two replicate field samples

<sup>c</sup> Sample size was below the minimum amount of 1 kg required for sampling

[Nuesslein and Spiegel, 2000b, M-026928-01-1]. No unusual weather conditions. Plot size 60-112 m2. Seeding machines. The seed rate was 160 kg seeds/ha. Green material (1.0–3.1 kg, except DAT 28 = 0.05 kg, DAT 31 = 0.07 kg, DAT54 = 0.87 kg) were sampled at BBCH 13-59. Samples were stored at  $-18 \degree$ C for 125–173 days (green material). Samples were analysed using method HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 85–89%).

[Nuesslein and Spiegel, 2000c, M-026930-01-1]. No unusual weather conditions. Plot size 93.6-120 m2. Seeding machines. The seed rate was 160 kg seeds/ha. Green material (1.0–3.8 kg, except DAT 57 = 0.62 kg) was sampled at BBCH 29-59. Samples were stored at -18 °C for 142–191 days (green material), but were defrosted for 2 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 85–89%).

[Nuesslein and Huix, 2000f, M-031786-01-1]. No unusual weather conditions. Plot size 120.8–140 m2. Seeding machines. The seed rate was 143 and 173 kg seeds/ha. Green material (1.0-2.0 kg, except DAT 54 = 0.43 kg and DAT 61 = 0.3 kg) were sampled at BBCH 31-59. Samples were stored at  $-18 \,^{\circ}$ C for 389–421 days (green material). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 80-92%).

[Nuesslein and Huix, 2000g, M-031797-01-1]. No unusual weather conditions. Plot size 57.6–60 m2. Seeding machines. The seed rate was 160 and 200 kg seeds/ha. Green material (1.0-7.65 kg) were sampled at BBCH 29-59. Samples were stored at -18 °C for 379–421 days (green material). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 80-92%)

[Freeseman and Harbin, 2008, M-303764-01-1]. No unusual weather conditions. Plot size 93–558 m2. Drill machines. Seeding rates were 1772000–4979000 seeds/ha. Wheat forage (0.5 kg, composite of at least 12 plants) were sampled at BBCH 24-36. Samples were stored at –15 °C for 148–421 days (forage). Samples were analysed for clothianidin using HPLC-MS-MS method TI-004-P07-01. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (forage: 72–115%).

### Wheat hay (OECD feedstuff table) = wheat straw and fodder, dry (Codex)

Supervised residue trials on wheat were conducted in Germany (1998 and 1999), the UK (1999), France (1998 and 1999) and the USA (2005, 2006 and 2007). Results for wheat hay were only available for the USA trials. Results for wheat hay are shown in Table 121 (seed treatment).

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                                             | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>applicati<br>on                       | soil<br>type  | DAT | %<br>dm | parent,<br>mg/kg |        | reference                                    |
|-------------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|------------|------------|----------------------------------------------------------|---------------|-----|---------|------------------|--------|----------------------------------------------|
| TI009-05H<br>Tifton,<br>Georgia,<br>USA, 2005-<br>2006<br>(winter<br>wheat:<br>Georgia<br>Gore) | 600<br>FS                        | 1  | nr                  | 126        | 1.25       | Seed<br>treatmen<br>t, 23<br>Dec.<br>2005,<br>BBCH<br>00 | Sandy<br>loam | 147 | 88      | 0.010            | < 0.01 | M-30376-<br>01-1-01<br>a<br>3 d field<br>dry |
| TI010-05H<br>Leland,<br>Mississippi,<br>USA, 2005-<br>2006<br>(winter<br>wheat: LA<br>841)      | 600<br>FS                        | 1  | nr                  | 128        | 1.25       | Seed<br>treatmen<br>t, 7 Dec.<br>2005,<br>BBCH<br>00     | Silt<br>loam  | 156 | 79      | 0.011            | < 0.01 | M-30376-<br>01-1-01<br>a<br>6 d field<br>dry |
| TI011-05H<br>York,<br>Nebraska,<br>USA, 2006-<br>2007                                           | 600<br>FS                        | 1  | nr                  | 120        | 1.25       | Seed<br>treatmen<br>t, 27<br>Sept.<br>2006,              | Clay<br>loam  | 240 | 66      | 0.010            | 0.011  | M-30376-<br>01-1-01<br>a<br>4 d field<br>dry |

Table 121 Residues of clothianidin in wheat hay (dry) after seed treatment and culture in the field

| Trial,<br>Location<br>Country,<br>year                                                                 | Form<br>g<br>ai/kg,<br>g | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>applicati<br>on                        | soil<br>type  | DAT | %<br>dm | parent,<br>mg/kg |        | reference                                    |
|--------------------------------------------------------------------------------------------------------|--------------------------|----|---------------------|------------|------------|-----------------------------------------------------------|---------------|-----|---------|------------------|--------|----------------------------------------------|
| (Variety)<br>(winter<br>wheat:<br>Wahoo)                                                               | ai/L                     |    |                     |            |            | BBCH<br>00                                                |               |     |         |                  |        |                                              |
| TI012-05H<br>Sabin,<br>Minnesota,<br>USA, 2006<br>(spring<br>wheat:<br>Steele)                         | 600<br>FS                | 1  | nr                  | 118        | 1.25       | Seed<br>treatmen<br>t, 8 May,<br>BBCH<br>00               | Silt<br>loam  | 71  | 80      | < 0.01           | < 0.01 | M-30376-<br>01-1-01<br>a<br>8 d field<br>dry |
| TI013-05H<br>Campbell,<br>Minnesota,<br>USA, 2006<br>(spring<br>wheat:<br>Gunner)                      | 600<br>FS                | 1  | nr                  | 153        | 1.25       | Seed<br>treatmen<br>t, 7 May,<br>BBCH<br>00               | Clay<br>loam  | 61  | 73      | < 0.01           | < 0.01 | M-30376-<br>01-1-01<br>a<br>4 d field<br>dry |
| TI014-05H<br>Arkansaw,<br>Wisconsin,<br>USA, 2006<br>(spring<br>wheat:<br>Ingot)                       | 600<br>FS                | 1  | nr                  | 75         | 1.25       | Seed<br>treatmen<br>t, 18<br>April,<br>BBCH<br>00         | Sandy<br>loam | 69  | 75      | < 0.01           | 0.011  | M-30376-<br>01-1-01<br>a<br>2 d field<br>dry |
| TI015-05H<br>Sheridan,<br>Indiana,<br>USA, 2006-<br>2007<br>(winter<br>wheat:<br>Cutter)               | 600<br>FS                | 1  | nr                  | 192        | 1.25       | Seed<br>treatmen<br>t, 2 Oct.<br>2006,<br>BBCH<br>00      | Silt<br>loam  | 231 | 58      | < 0.01           | < 0.01 | M-30376-<br>01-1-01<br>a<br>1 d field<br>dry |
| TI016-05H<br>East<br>Bernard,<br>Texas,<br>USA, 2005-<br>2006<br>(winter<br>wheat:<br>Ranger<br>30127) | 600<br>FS                | 1  | nr                  | 148        | 1.25       | Seed<br>treatmen<br>t, 13<br>Dec.<br>2005,<br>BBCH<br>00  | Sandy<br>clay | 149 | 71      | 0.032            | 0.035  | M-30376-<br>01-1-01<br>a<br>7 d field<br>dry |
| TI017-05H<br>Velva,<br>North<br>Dakota,<br>USA, 2006<br>(spring<br>wheat:<br>Alsen)                    | 600<br>FS                | 1  | nr                  | 140        | 1.25       | Seed<br>treatmen<br>t, 21<br>April,<br>BBCH<br>00         | Loam          | 68  | 63      | 0.027            | 0.022  | M-30376-<br>01-1-01<br>a<br>1 d field<br>dry |
| TI018-05H<br>Eldridge,<br>North<br>Dakota,<br>USA, 2006-<br>2007,<br>(winter<br>wheat:<br>Jerry)       | 600<br>FS                | 1  | nr                  | 127        | 1.25       | Seed<br>treatmen<br>t, 15<br>Sept.<br>2006,<br>BBCH<br>00 | Loam          | 277 | 71      | < 0.01           | < 0.01 | M-30376-<br>01-1-01<br>a<br>4 d field<br>dry |
| TI019-05H<br>New                                                                                       | 600<br>FS                | 1  | nr                  | 127        | 1.25       | Seed<br>treatmen                                          | Loam          | 63  | 70      | < 0.01           | < 0.01 | M-30376-<br>01-1-01                          |

| Trial,            | Form        | No  | Inter | <i>a</i>   | 1ra        | method,      | soil                                  | DAT | %  | noront           |        | reference      |
|-------------------|-------------|-----|-------|------------|------------|--------------|---------------------------------------|-----|----|------------------|--------|----------------|
| Location          |             | INO | val   | g<br>ai/ha | kg<br>ai/t | last         |                                       | DAI | dm | parent,<br>mg/kg |        | Telefence      |
| Country,          | g<br>ai/kg, |     | (d)   | al/11a     | al/t       |              | type                                  |     | am | mg/kg            |        |                |
| 2.7               | -           |     | (u)   |            |            | applicati    |                                       |     |    |                  |        |                |
| year<br>(Variety) | g<br>ai/L   |     |       |            |            | on           |                                       |     |    |                  |        |                |
|                   | al/L        |     |       |            |            | + 17         |                                       |     |    |                  | 1      | -              |
| Rockford,         |             |     |       |            |            | t, 17        |                                       |     |    |                  |        | a<br>6 d field |
| North<br>Dakota,  |             |     |       |            |            | May,<br>BBCH |                                       |     |    |                  |        | dry            |
| USA, 2006         |             |     |       |            |            | ввсп<br>00   |                                       |     |    |                  |        | ury            |
| · · · ·           |             |     |       |            |            | 00           |                                       |     |    |                  |        |                |
| (spring<br>wheat: |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| Alsen)            |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| TI020-05H         | 600         | 1   |       | 126        | 1.25       | Seed         | Silt                                  | 56  | 67 | 0.038            | 0.031  | M-30376-       |
| Grand             | FS          | 1   | nr    | 120        | 1.23       | treatmen     | loam                                  | 30  | 0/ | 0.038            | 0.031  | 01-1-01        |
| Island,           | 1.2         |     |       |            |            | t, 18        | IOaiii                                |     |    |                  |        | a              |
| Nebraska,         |             |     |       |            |            | April,       |                                       |     |    |                  |        | a<br>2 d field |
| USA, 2006         |             |     |       |            |            | BBCH         |                                       |     |    |                  |        | dry            |
| (spring           |             |     |       |            |            | 00           |                                       |     |    |                  |        | ury            |
| wheat:            |             |     |       |            |            | 00           |                                       |     |    |                  |        |                |
| Briggs HRS        |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| Wheat)            |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| TI021-05H         | 600         | 1   | nr    | 140        | 1.25       | Seed         | Loam                                  | 68  | 62 | 0.016            | 0.014  | M-30376-       |
| Velva,            | FS          | 1   |       | 140        | 1.23       | treatmen     | Loain                                 | 00  | 02 | 0.010            | 0.014  | 01-1-01        |
| North             | 10          |     |       |            |            | t, 21        |                                       |     |    |                  |        | a              |
| Dakota,           |             |     |       |            |            | April,       |                                       |     |    |                  |        | a<br>1 d field |
| USA, 2006         |             |     |       |            |            | BBCH         |                                       |     |    |                  |        | dry            |
| (spring           |             |     |       |            |            | 00           |                                       |     |    |                  |        | ury            |
| wheat:            |             |     |       |            |            | 00           |                                       |     |    |                  |        |                |
| Alsen)            |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| TI022-05H         | 600         | 1   | nr    | 180        | 1.25       | Seed         | Sandy                                 | 165 | 79 | 0.010            | 0.011  | M-30376-       |
| Levelland,        | FS          | 1   | m     | 100        | 1.25       | treatmen     | loam                                  | 105 | 17 | 0.010            | 0.011  | 01-1-01        |
| Texas,            | 15          |     |       |            |            | t, 12        | Iouin                                 |     |    |                  |        | a              |
| USA, 2005-        |             |     |       |            |            | Dec.         |                                       |     |    |                  |        | 4 d field      |
| 2006              |             |     |       |            |            | 2005,        |                                       |     |    |                  |        | dry            |
| (winter           |             |     |       |            |            | BBCH         |                                       |     |    |                  |        | ur y           |
| wheat:            |             |     |       |            |            | 00           |                                       |     |    |                  |        |                |
| TAM 105)          |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| TI023-05H         | 600         | 1   | nr    | 156        | 1.25       | Seed         | Sandy                                 | 156 | 81 | 0.085            | 0.056  | M-30376-       |
| Lubbock,          | FS          | -   |       |            |            | treatmen     | loam                                  |     |    |                  |        | 01-1-01        |
| Texas,            |             |     |       |            |            | t, 12        |                                       |     |    |                  |        | a              |
| USA, 2005-        |             |     |       |            |            | Dec.         |                                       |     |    |                  |        | 4 d field      |
| 2006              |             |     |       |            |            | 2005,        |                                       |     |    |                  |        | dry            |
| (winter           |             |     |       |            |            | BBCH         |                                       |     |    |                  |        | 5              |
| wheat:            |             |     |       |            |            | 00           |                                       |     |    |                  |        |                |
| AP502CL)          |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| TI024-05H         | 600         | 1   | nr    | 107        | 1.25       | Seed         | Clay                                  | 123 | 83 | 0.010            | 0.021  | M-30376-       |
| Uvalde,           | FS          |     |       |            |            | treatmen     | , , , , , , , , , , , , , , , , , , , |     |    |                  |        | 01-1-01        |
| Texas,            |             |     |       |            |            | t, 9 Dec.    |                                       |     |    |                  |        | а              |
| USA, 2005-        |             |     |       |            |            | 2005,        |                                       |     |    |                  |        | 6 d field      |
| 2006              |             |     |       |            |            | BBCH         |                                       |     |    |                  |        | dry            |
| (winter           |             |     |       |            |            | 00           |                                       |     |    |                  |        |                |
| wheat:            |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| Ogallala)         |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| TI025-05H         | 600         | 1   | nr    | 100        | 1.25       | Seed         | Clay                                  | 129 | 83 | < 0.01           | < 0.01 | M-30376-       |
| LaPruor,          | FS          |     |       |            |            | treatmen     | loam                                  |     |    |                  |        | 01-1-01        |
| Texas,            |             |     |       |            |            | t, 9 Dec.    |                                       |     |    |                  |        | а              |
| USA, 2005-        |             |     |       |            |            | 2005,        |                                       |     |    |                  |        | 5 d field      |
| 2006              |             |     |       |            |            | BBCH         |                                       |     |    |                  |        | dry            |
| (winter           |             |     |       |            |            | 00           |                                       |     |    |                  |        |                |
| wheat:            |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| Ogallala)         |             |     |       |            |            |              |                                       |     |    |                  |        |                |
| TI026-05H         | 600         | 1   | nr    | 158        | 1.25       | Seed         | Loam                                  | 149 | 74 | 0.011            | 0.014  | M-30376-       |
| Larned,           | FS          |     |       |            |            | treatmen     |                                       |     |    |                  |        | 01-1-01        |
| Kansas,           |             |     |       |            |            | t, 3 Jan.,   |                                       |     |    |                  |        | a              |
| USA, 2006         |             |     |       |            |            | BBCH         |                                       |     |    |                  |        | 3 d field      |
| (winter           |             |     |       |            |            | 00           |                                       |     |    |                  |        | dry            |
| •                 |             |     |       |            |            |              |                                       |     |    |                  |        | -              |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                                 | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>applicati<br>on               | soil<br>type      | DAT | %<br>dm | parent,<br>mg/kg |       | reference                                    |
|-------------------------------------------------------------------------------------|----------------------------------|----|---------------------|------------|------------|--------------------------------------------------|-------------------|-----|---------|------------------|-------|----------------------------------------------|
| wheat:<br>Jagger)                                                                   |                                  |    |                     |            |            |                                                  |                   |     |         |                  |       |                                              |
| TI027-05H<br>Hanston,<br>Kansas,<br>USA, 2006<br>(winter<br>wheat:<br>Jagger)       | 600<br>FS                        | 1  | nr                  | 166        | 1.25       | Seed<br>treatmen<br>t, 4 Jan.,<br>BBCH<br>00     | Clay<br>loam      | 148 | 80      | 0.016            | 0.017 | M-30376-<br>01-1-01<br>a<br>3 d field<br>dry |
| TI028-05H<br>Ephrata,<br>Washington,<br>USA, 2006<br>(winter<br>wheat:<br>Stephens) | 600<br>FS                        | 1  | nr                  | 138        | 1.25       | Seed<br>treatmen<br>t, 31<br>Jan.,<br>BBCH<br>00 | Loam<br>y<br>Sand | 125 | 60      | 0.040            | 0.041 | M-30376-<br>01-1-01<br>a<br>3 d field<br>dry |

<sup>a</sup> Results are from two replicate field samples

[Freeseman and Harbin, 2008, M-303764-01-1]. No unusual weather conditions. Plot size 93–558 m2. Drill machines. Seeding rates were 1772000–4979000 seeds/ha. Wheat hay (0.5 kg, composite of at least 12 plants) were sampled at BBCH 61-85. Hay was dried for 1–8 days in the field. Samples were stored at -15 °C for 112–373 days (hay). Samples were analysed for clothianidin using HPLC-MS-MS method TI-004-P07-01. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (hay: 81–113%).

#### Wheat straw (OECD feedstuff table) = wheat straw and fodder, dry (Codex)

Supervised residue trials on wheat were conducted in Germany (1998 and 1999), the UK (1999), France (1998 and 1999) and the USA (2005, 2006 and 2007). Results for wheat straw are shown in Table 122 (seed treatment).

Table 122 Residues of clothianidin in wheat straw (dry) after seed treatment and subsequent culture in the field

| Trial, Location<br>Country, year<br>(Variety)                                            | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application             | soil<br>type          | DAT | %<br>dm | parent,<br>mg/kg | reference         |
|------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|------------|------------|--------------------------------------------|-----------------------|-----|---------|------------------|-------------------|
| 813710<br>Burscheid,<br>Germany,<br>1998<br>(spring wheat;<br>Thasos)                    | 600<br>FS                        | 1  | nr                  | 104        | 0.52       | Seed<br>treatment,<br>26 March,<br>BBCH 00 | Sandy<br>loam         | 146 | _       | < 0.02           | M-031797-<br>01-1 |
| R 1999 0042/2<br>Burscheid,<br>Germany,<br>1999<br>(spring wheat;<br>Thasos)             | 350<br>FS                        | 1  | nr                  | 67         | 0.42       | Seed<br>treatment,<br>March 26,<br>BBCH 00 | Sandy<br>loam         | 139 | _       | < 0.02           | M-26928-<br>01-1  |
| R 1999 0220/4<br>Thurston Bury<br>St. Edmunds,<br>UK, 1999<br>(spring wheat;<br>Chablis) | 350<br>FS                        | 1  | nr                  | 71         | 0.44       | Seed<br>treatment,<br>9 April,<br>BBCH 00  | Sandy<br>clay<br>loam | 130 | _       | < 0.02           | M-26928-<br>01-1  |
| 811125<br>Fresne-<br>L'Archeveque,                                                       | 600<br>FS                        | 1  | nr                  | 100        | 0.62       | Seed<br>treatment,<br>26 March,            | Silt                  | 140 | -       | < 0.02           | M-031797-<br>01-1 |

| Trial, Location                                                                         | Form                     | No | Inter      | g     | kg       | method,                                            | soil          | DAT   | %  | parent, |        | reference              |
|-----------------------------------------------------------------------------------------|--------------------------|----|------------|-------|----------|----------------------------------------------------|---------------|-------|----|---------|--------|------------------------|
| Country, year<br>(Variety)                                                              | g<br>ai/kg,<br>g<br>ai/L |    | val<br>(d) | ai/ha | ai/t     | last<br>application                                | type          |       | dm | mg/kg   |        |                        |
| N. France,                                                                              | al/L                     |    |            |       |          | BBCH 00                                            |               |       |    |         |        |                        |
| 1998<br>(spring wheat;<br>Furio)                                                        |                          |    |            |       |          |                                                    |               |       |    |         |        |                        |
| R 1999 0043/0<br>Mas Gernier,                                                           | 350<br>FS                | 1  | nr         | 61    | 0.38     | Seed<br>treatment,                                 | Sandy<br>silt | 134   | -  | < 0.02  |        | M-026930-<br>01-1      |
| S. France,<br>1999<br>(spring wheat;                                                    |                          |    |            |       |          | 18 March,<br>BBCH 00                               |               |       |    |         |        | a                      |
| Furio)                                                                                  | 2.5.0                    |    |            |       | <u> </u> | <u> </u>                                           | <u> </u>      | 1.5.5 |    |         |        | 16.00.000              |
| R 1999 0077/5<br>St. Paul les<br>Romans, S.<br>France, 1999<br>(spring wheat;<br>Furio) | 350<br>FS                | 1  | nr         | 66    | 0.41     | Seed<br>treatment,<br>2 March,<br>BBCH 00          | Sand          | 155   | -  | < 0.02  |        | M-026930-<br>01-1<br>a |
| 811141<br>Saint Benigne,<br>S. France,<br>1998<br>(spring wheat;<br>Ventura)            | 600<br>FS                | 1  | nr         | 87    | 0.61     | Seed<br>treatment,<br>18 March,<br>BBCH 00         | Sand          | 142   | -  | < 0.02  |        | M-031786-<br>01-1      |
| 813729<br>Marsonnas, S.<br>France, 1998<br>(spring wheat;<br>Ventura)                   | 600<br>FS                | 1  | nr         | 109   | 0.63     | Seed<br>treatment,<br>25 March,<br>BBCH 00         | Sandy<br>silt | 135   | -  | < 0.02  |        | M-031786-<br>01-1      |
| TI009-05H<br>Tifton,<br>Georgia, USA,<br>2005-2006<br>(winter wheat:<br>Georgia Gore)   | 600<br>FS                | 1  | nr         | 126   | 1.25     | Seed<br>treatment,<br>23 Dec.<br>2005,<br>BBCH 00  | Sandy<br>loam | 171   | 87 | < 0.01  | < 0.01 | M-303764-<br>01-1<br>b |
| TI010-05H<br>Leland,<br>Mississippi,<br>USA, 2005-<br>2006<br>(winter wheat:<br>LA 841) | 600<br>FS                | 1  | nr         | 128   | 1.25     | Seed<br>treatment,<br>7 Dec.<br>2005,<br>BBCH 00   | Silt<br>loam  | 181   | 82 | 0.019   | 0.015  | M-303764-<br>01-1<br>b |
| TI011-05H<br>York,<br>Nebraska,<br>USA, 2006-<br>2007 (winter<br>wheat:<br>Wahoo)       | 600<br>FS                | 1  | nr         | 120   | 1.25     | Seed<br>treatment,<br>27 Sept.<br>2006,<br>BBCH 00 | Clay<br>loam  | 281   | 88 | 0.014   | < 0.01 | M-303764-<br>01-1<br>b |
| TI012-05H<br>Sabin,<br>Minnesota,<br>USA, 2006<br>(spring wheat:<br>Steele)             | 600<br>FS                | 1  | nr         | 118   | 1.25     | Seed<br>treatment,<br>8 May,<br>BBCH 00            | Silt<br>loam  | 87    | 83 | < 0.01  | < 0.01 | M-303764-<br>01-1<br>b |
| TI013-05H<br>Campbell,<br>Minnesota,<br>USA, 2006<br>(spring wheat:<br>Gunner)          | 600<br>FS                | 1  | nr         | 153   | 1.25     | Seed<br>treatment,<br>7 May,<br>BBCH 00            | Clay<br>loam  | 94    | 86 | < 0.01  | < 0.01 | M-303764-<br>01-1<br>b |
| TI014-05H<br>Arkansaw,                                                                  | 600<br>FS                | 1  | nr         | 75    | 1.25     | Seed<br>treatment,                                 | Sandy<br>loam | 100   | 87 | < 0.01  | < 0.01 | M-303764-<br>01-1      |

| Trial, Location<br>Country, year<br>(Variety)                                                  | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application                     | soil<br>type  | DAT | %<br>dm | parent,<br>mg/kg |        | reference              |
|------------------------------------------------------------------------------------------------|----------------------------------|----|---------------------|------------|------------|----------------------------------------------------|---------------|-----|---------|------------------|--------|------------------------|
| Wisconsin,<br>USA, 2006<br>(spring wheat:<br>Ingot)                                            |                                  |    |                     |            |            | 18 April,<br>BBCH 00                               |               |     |         |                  |        | b                      |
| TI015-05H<br>Sheridan,<br>Indiana, USA,<br>2006-2007<br>(winter wheat:<br>Cutter)              | 600<br>FS                        | 1  | nr                  | 192        | 1.25       | Seed<br>treatment,<br>2 Oct.<br>2006,<br>BBCH 00   | Silt<br>loam  | 273 | 80      | < 0.01           | 0.013  | M-303764-<br>01-1<br>b |
| TI016-05H<br>East Bernard,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>Ranger 30127)      | 600<br>FS                        | 1  | nr                  | 148        | 1.25       | Seed<br>treatment,<br>13 Dec.<br>2005,<br>BBCH 00  | Sandy<br>clay | 175 | 65      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b |
| TI017-05H<br>Velva, North<br>Dakota, USA,<br>2006<br>(spring wheat:<br>Alsen)                  | 600<br>FS                        | 1  | nr                  | 140        | 1.25       | Seed<br>treatment,<br>21 April,<br>BBCH 00         | Loam          | 101 | 83      | < 0.01           | 0.010  | M-303764-<br>01-1<br>b |
| TI018-05H<br>Eldridge,<br>North Dakota,<br>USA, 2006-<br>2007, (winter<br>wheat: Jerry)        | 600<br>FS                        | 1  | nr                  | 127        | 1.25       | Seed<br>treatment,<br>15 Sept.<br>2006,<br>BBCH 00 | Loam          | 307 | 62      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b |
| TI019-05H<br>New<br>Rockford,<br>North Dakota,<br>USA, 2006<br>(spring wheat:<br>Alsen)        | 600<br>FS                        | 1  | nr                  | 127        | 1.25       | Seed<br>treatment,<br>17 May,<br>BBCH 00           | Loam          | 91  | 80      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b |
| TI020-05H<br>Grand Island,<br>Nebraska,<br>USA, 2006<br>(spring wheat:<br>Briggs HRS<br>Wheat) | 600<br>FS                        | 1  | nr                  | 126        | 1.25       | Seed<br>treatment,<br>18 April,<br>BBCH 00         | Silt<br>loam  | 86  | 72      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b |
| TI021-05H<br>Velva, North<br>Dakota, USA,<br>2006<br>(spring wheat:<br>Alsen)                  | 600<br>FS                        | 1  | nr                  | 140        | 1.25       | Seed<br>treatment,<br>21 April,<br>BBCH 00         | Loam          | 101 | 88      | < 0.01           | 0.011  | M-303764-<br>01-1<br>b |
| TI022-05H<br>Levelland,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>TAM 105)              | 600<br>FS                        | 1  | nr                  | 180        | 1.25       | Seed<br>treatment,<br>12 Dec.<br>2005,<br>BBCH 00  | Sandy<br>loam | 185 | 86      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b |
| TI023-05H<br>Lubbock,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>AP502CL)                | 600<br>FS                        | 1  | nr                  | 156        | 1.25       | Seed<br>treatment,<br>12 Dec.<br>2005,<br>BBCH 00  | Sandy<br>loam | 178 | 84      | 0.042            | 0.031  | M-303764-<br>01-1<br>b |

| Trial, Location<br>Country, year<br>(Variety)                                    | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application                   | soil<br>type  | DAT | %<br>dm | parent,<br>mg/kg |        | reference              |
|----------------------------------------------------------------------------------|----------------------------------|----|---------------------|------------|------------|--------------------------------------------------|---------------|-----|---------|------------------|--------|------------------------|
| TI024-05H<br>Uvalde, Texas,<br>USA, 2005-<br>2006<br>(winter wheat:<br>Ogallala) | 600<br>FS                        | 1  | nr                  | 107        | 1.25       | Seed<br>treatment,<br>9 Dec.<br>2005,<br>BBCH 00 | Clay          | 158 | 65      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b |
| TI025-05H<br>LaPruor,<br>Texas, USA,<br>2005-2006<br>(winter wheat:<br>Ogallala) | 600<br>FS                        | 1  | nr                  | 100        | 1.25       | Seed<br>treatment,<br>9 Dec.<br>2005,<br>BBCH 00 | Clay<br>loam  | 165 | 80      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b |
| TI026-05H<br>Larned,<br>Kansas, USA,<br>2006<br>(winter wheat:<br>Jagger)        | 600<br>FS                        | 1  | nr                  | 158        | 1.25       | Seed<br>treatment,<br>3 Jan.,<br>BBCH 00         | Loam          | 176 | 64      | < 0.01           | < 0.01 | M-303764-<br>01-1<br>b |
| TI027-05H<br>Hanston,<br>Kansas, USA,<br>2006<br>(winter wheat:<br>Jagger)       | 600<br>FS                        | 1  | nr                  | 166        | 1.25       | Seed<br>treatment,<br>4 Jan.,<br>BBCH 00         | Clay<br>loam  | 176 | 75      | 0.018            | 0.015  | M-303764-<br>01-1<br>b |
| TI028-05H<br>Ephrata,<br>Washington,<br>USA, 2006<br>(winter wheat:<br>Stephens) | 600<br>FS                        | 1  | nr                  | 138        | 1.25       | Seed<br>treatment,<br>31 Jan.,<br>BBCH 00        | Loamy<br>Sand | 182 | 83      | 0.038            | 0.041  | M-303764-<br>01-1<br>b |

<sup>a</sup> Samples were stored at temperatures above  $-10 \degree$ C (2 days,  $+10.5 \degree$ C).

<sup>b</sup> Results are from two replicate field samples

[Nuesslein and Spiegel, 2000b, M-026928-01-1]. No unusual weather conditions. Plot size 60-112 m2. Seeding machines. The seed rate was 160 kg seeds/ha. Straw (0.6–2.4 kg) were sampled at harvest. Samples were stored at -18 °C for 72–77 days (straw). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (straw: 93%).

[Nuesslein and Spiegel, 2000c, M-026930-01-1]. No unusual weather conditions. Plot size 93.6-120 m2. Seeding machines. The seed rate was 160 kg seeds/ha. Straw (0.54–1.71 kg) was sampled at harvest. Samples were stored at – 18 °C for 85–90 days (straw), unless stated otherwise (remark a). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (straw: 93%).

[Nuesslein and Huix, 2000f, M-031786-01-1]. No unusual weather conditions. Plot size 120.8–140 m2. Seeding machines. The seed rate was 143 and 173 kg seeds/ha. Straw (0.52-0.58 kg) were sampled at harvest. Samples were stored at -18 °C for 340–342 days (straw). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (straw: 73–85%).

[Nuesslein and Huix, 2000g, M-031797-01-1]. No unusual weather conditions. Plot size 57.6–60 m2. Seeding machines. The seed rate was 160 and 200 kg seeds/ha. Straw (2.01–4.08 kg) were sampled at harvest. Samples were stored at –18 °C for 328–334 days (straw). Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (straw: 73–85%).

[Freeseman and Harbin, 2008, M-303764-01-1]. No unusual weather conditions. Plot size 93–558 m2. Drill machines. Seeding rates were 1772000–4979000 seeds/ha. Wheat straw (0.5 kg, composite of at least 12 plants) were sampled at harvest. Samples were stored at -15 °C for 86–344 days (straw). Samples were analysed for clothianidin using HPLC-MS-MS method TI-004-P07-01. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (straw: individual 66–110%, average 88%–101%).

## Miscellaneous fodder and forage crops

The Meeting received supervised residue trials on cotton, rapeseed, sugar beet and sugarcane. Trials were available for seed treatment and subsequent culture in the field and for foliar spray treatment in the field.

# Cotton gin by-products (OECD feedstuff table) = cotton fodder, dry (Codex)

Supervised residue trials on cotton were conducted in Australia (2005) and USA (2003, 2006 and 2007). Seed cotton is collected from the field and brought to a ginning facility. Undelinted cotton seed and cotton gin trash are the products after ginning the seed cotton and they represent the raw agricultural commodities for cotton [Gaston, 2010c]. Only the 2005 Australian trials and 2003 USA trials contained residue data on cotton gin by-products. The Australian trials contain additional residue data in/on cotton forage and cotton lint. Cotton forage is the 10–15 cm of green terminal growth remaining on cotton plant branches after defoliation [Gaston, 2010e]. Therefore, the forage is the left-over leaf and stem material collected from the top of the plants at the time of normal harvest for seed cotton. Cotton forage and cotton lint data were not summarised because they are not listed in the OECD feedstuff table, or in the Codex commodity list. Results for cotton gin by-products (gin trash) are shown in Table 123 (seed treatment) and Table 124 (foliar spray treatment in the field).

Table 123 Residues of clothianidin in cotton gin by-products (trash) after seed treatment and subsequent culture in the field

| Trial, Location<br>Country, year<br>(Variety)                           | Form<br>g<br>ai/kg,<br>g<br>ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | kg<br>ai/t | method,<br>last<br>application             | soil<br>type          | DAT | %<br>dm | parent,<br>mg/kg |        | reference                               |
|-------------------------------------------------------------------------|----------------------------------|----|---------------------|------------|------------|--------------------------------------------|-----------------------|-----|---------|------------------|--------|-----------------------------------------|
| T5001-03H<br>Tifton, Georgia,<br>USA, 2003<br>(Fibermax 989<br>RRBT)    | 600<br>FS                        | 1  | nr                  | 50         | 3.5        | Seed<br>treatment,<br>29 May,<br>BBCH 00   | Sand                  | 158 | 83      | < 0.01           | < 0.01 | M-<br>245069-<br>01-1<br><sup>a b</sup> |
| T5002-03H<br>Proctor,<br>Arkansas, USA,<br>2003<br>(PM 1199 RR)         | 600<br>FS                        | 1  | nr                  | 44         | 3.5        | Seed<br>treatment,<br>10 May,<br>BBCH 00   | Silt<br>loam          | 130 | 77      | < 0.01           | < 0.01 | M-<br>245069-<br>01-1<br><sup>a b</sup> |
| T5003-03H<br>Leland,<br>Mississippi,<br>USA, 2003,<br>(FM 989 BR)       | 600<br>FS                        | 1  | nr                  | 38         | 3.5        | Seed<br>treatment,<br>23 April,<br>BBCH 00 | Silt<br>loam          | 168 | 88      | < 0.01           | < 0.01 | M-<br>245069-<br>01-1<br><sup>a b</sup> |
| T5005-03H<br>Raymondville,<br>Texas,<br>USA, 2003<br>(PM 2280<br>BG/RR) | 600<br>FS                        | 1  | nr                  | 52         | 3.5        | Seed<br>treatment,<br>2 May,<br>BBCH 00    | Sandy<br>clay<br>loam | 116 | 89      | < 0.01           | < 0.01 | M-<br>245069-<br>01-1<br><sup>a b</sup> |
| T5006-03H<br>Colony,<br>Oklahoma,<br>USA, 2003<br>(Delta Pine<br>237)   | 600<br>FS                        | 1  | nr                  | 44         | 3.5        | Seed<br>treatment,<br>29 May,<br>BBCH 00   | Loamy<br>sand         | 175 | 82      | < 0.01           | < 0.01 | M-<br>245069-<br>01-1<br><sup>a b</sup> |
| T5007-03H<br>Levelland,<br>Texas, USA,<br>2003<br>(PM 2280<br>BG/RR)    | 600<br>FS                        | 1  | nr                  | 45         | 3.5        | Seed<br>treatment,<br>30 May,<br>BBCH 00   | Sandy<br>loam         | 151 | 85      | < 0.01           | < 0.01 | M-<br>245069-<br>01-1<br><sup>a b</sup> |

nr = not relevant

<sup>a</sup> Results are from replicate field samples

<sup>b</sup> Unprocessed seed cotton samples exceeded a temperature of -10 °C. Samples from T5002, T5003, T5005, T5006 and T5007 were stored for 1 day at ambient temperature until received at the ginning facility. T5001 (-5 °C, 17 days), T5002 (-2 °C, 1 day), T5003 (-2 °C, 1 day), T5005 (-2 °C, 1 day), T5007 (-1 °C, 17 days) at the ginning facility.

[Krolski, 2005, M-245069-01-1]. No unusual weather conditions. Plot size  $93-2118 \text{ m}^2$ . Drill machines. Seeding rates were 128000 seeds/ha. Seed cotton samples were separated into gintrash, undelinted cottonseed, and cotton lint. Sample sizes for gin trash were 1.4–4.3 kg. Samples were stored at -12 °C for 194–280 days (gin trash), unless indicated otherwise. Replicate field samples were analysed for clothianidin using modification B of HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (75–110% gintrash).

| <b>TILL 101 D 11</b> | 0 1 1           | • • •         |                    |                                           |                |
|----------------------|-----------------|---------------|--------------------|-------------------------------------------|----------------|
| Table 124 Residues   | of clothianidin | in cotton gin | by-products (trash | <ul> <li>after foliar treatmen</li> </ul> | t in the field |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                      | Form<br>g ai/kg,<br>g ai/L | N<br>o | Interv<br>al<br>d | g<br>ai/ha | g<br>ai/h<br>L  | method,<br>last<br>applicatio<br>n                       | soil<br>type      | DAT                 | %<br>dm              | parent,<br>(TMG)<br>mg/kg                                                                         | reference         |
|--------------------------------------------------------------------------|----------------------------|--------|-------------------|------------|-----------------|----------------------------------------------------------|-------------------|---------------------|----------------------|---------------------------------------------------------------------------------------------------|-------------------|
| site 1,<br>Bogabilla,<br>NSW,<br>Australia,<br>2005<br>(Sicot 289<br>BR) | 200 SC<br>+MAXX<br>2 mL/L  | 4      | 14;<br>14;<br>14  | 4×<br>50   | 4×<br>28–<br>31 | Foliar,<br>19 April,<br>BBCH ns                          | ns                | 5<br>10<br>17<br>24 | 72<br>81<br>86<br>90 | 1.7 (fw),<br>2.3 (dw)<br>1.4 (fw),<br>1.8 (dw)<br>1.1 (fw),<br>1.3 (dw)<br>0.25 (fw)<br>0.28 (dw) | THR-0558<br>e d   |
| idem                                                                     | 200 SC<br>+MAXX<br>2 mL/L  | 4      | 7;<br>7;<br>7     | 4×<br>50   | 4×<br>28–<br>31 | Foliar,<br>19 April,<br>BBCH ns                          | ns                | 10                  | 86                   | 1.6 (fw)<br>1.9 (dw)                                                                              | THR-0558          |
| site 3<br>Bungunya,<br>Qld,<br>Australia,<br>2005<br>(Sicot 289<br>BR)   | 200 SC<br>+MAXX<br>2 mL/L  | 4      | 14;<br>14;<br>14  | 4×<br>50   | 4×<br>28–<br>31 | Foliar,<br>6 April,<br>BBCH ns                           | ns                | 10                  | 84                   | 1.3 (fw),<br>1.5 (dw)                                                                             | THR-0558<br>d     |
| site 3<br>Bungunya,<br>Qld,<br>Australia,<br>2005<br>(Sicot 289<br>BR)   | 500 WG<br>+MAXX<br>2 mL/L  | 4      | 14;<br>14;<br>14  | 4×<br>50   | 4×<br>28–<br>31 | Foliar,<br>6 April,<br>BBCH ns                           | ns                | 10                  | 82                   | 1.5 (fw),<br>1.8 (dw)                                                                             | THR-0558          |
| site 4,<br>Teleraga,<br>NSW,<br>Australia,<br>2005<br>(Sicot 289<br>BR)  | 200 SC<br>+MAXX<br>2 mL/L  | 3      | 14;<br>14;<br>14  | 4×<br>50   | 4×<br>28–<br>31 | Foliar,<br>29 March,<br>BBCH ns                          | ns                | 24                  | 81                   | 1.6 (fw),<br>2.0 (dw)                                                                             | THR-0558          |
| site 4,<br>Teleraga,<br>NSW,<br>Australia,<br>2005<br>(Sicot 289<br>BR)  | 500 WG<br>+MAXX<br>2 mL/L  | 3      | 14;<br>14;<br>14  | 4×<br>50   | 4×<br>28–<br>31 | Foliar,<br>29 March,<br>BBCH ns                          | not<br>state<br>d | 24                  | 80                   | 1.1 (fw),<br>1.3 (dw)                                                                             | THR-0558          |
| site 1,<br>Toobeah,<br>Qld,<br>Australia,<br>2005<br>(Sicot<br>289i)     | 500 WG<br>+MAXX<br>2 mL/L  | 4      | 14;<br>14;<br>14  | 4×<br>50   | 4×<br>40–<br>41 | Foliar,<br>5 April<br>29 March<br>22 March,<br>boll fill | Clay              | 10<br>17<br>24      | 79<br>86<br>90       | 1.2 (fw),<br>1.5 (dw)<br>0.88 (fw),<br>1.0 (dw)<br>0.73 (fw),<br>0.81 (dw)                        | THR-0557<br>a c d |
| site 1,<br>Toobeah,                                                      | 500 WG<br>+MAXX            | 4      | 14;<br>14;        | 4×<br>100  | 4×<br>80–       | Foliar,<br>5 April                                       | Clay              | 10                  | 79                   | 2.2 (fw),<br>2.8 (dw)                                                                             | THR-0557<br>a c d |

| $ \begin{array}{c} \mbox{result} \\ \mbox{result} \\ \mbox{year} \\ \mbo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trial,     | Form      | Ν | Interv   | σ          | a          | method,     | soil  | DAT | %  | parent,   | reference |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---|----------|------------|------------|-------------|-------|-----|----|-----------|-----------|
| $ \begin{array}{c} \text{Courty,} & \textbf{g} ai/L & \textbf{g} & \textbf{g} \\ \text{(Yariey)} & \textbf{g} \\ \text{(Yariey)} & \textbf{g} \\ \text{(Yariey)} & \textbf{g} \\ \text{(Yariey)} & \textbf{g} \\ \text{(Soc)} \\ \text{(Soc)} & \textbf{g} \\ \text{(Soc)} & g$ |            |           |   |          | g<br>ai/ha | g<br>ai/h  |             |       | DAI |    |           | reference |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           | 0 | d        | ai/iia     |            |             | type  |     | um |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>.</i>   | 8         |   |          |            | 2          |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 2 mL/L    |   | 14       |            | 81         | 29 March    |       | 17  | 86 | 1.8 (fw), |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Australia, |           |   |          |            |            | 22 March,   |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            | boll fill   |       | 24  | 91 | 1.2 (fw), |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |   |          |            |            |             |       |     |    | 1.4 (dw)  |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            |             |       | _   |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           | 4 |          |            |            |             | Clay  | 5   | 74 |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,          |           |   |          | 50         | -          |             |       |     |    | 1.8 (dw)  | au        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 2  mL/L   |   | 14       |            | 41         | DOII III    |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /          | 500 WG    | 4 | 14;      | $4 \times$ | $4 \times$ | Foliar,     | Clay  | 5   | 74 | 2.8 (fw), | THR-0557  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toobeah,   | +MAXX     |   |          | 100        | 80-        |             |       |     |    |           | a d       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 2  mL/L   |   | 14       |            | 81         | boll fill   |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 500 WC    | 4 | 14.      | 4~         | 4~         | Folior      | Clay  | 10  | 01 | 0.06 (fw) | THD 0557  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /          |           | 4 |          |            |            |             | Clay  | 10  | 01 |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          | 50         | -          |             |       | 17  | 84 |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 2 1112/12 |   | 17       |            | 71         |             |       | 17  | 01 |           |           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            | ,           |       | 24  | 88 |           |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Sicot     |           |   |          |            |            |             |       |     |    | 0.66 (dw) |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 189)       |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           | 4 |          |            |            |             | Clay  | 10  | 81 |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          | 100        |            |             |       |     |    |           | acd       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 2  mL/L   |   | 14       |            | 81         | ,           |       | 17  | 84 |           |           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |   |          |            |            |             |       | 24  | 00 |           |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |   |          |            |            |             |       | 24  | 00 |           |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |   |          |            |            |             |       |     |    | 1.1 (uw)  |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /          | 500WG     | 4 | 7;       | $4 \times$ | $4 \times$ | Foliar,     | clay  | 10  | 83 | 1.3 (fw), | THR-0557  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Boggabilla | +MAXX     |   | 7;       | 50         | 40-        |             | 5     |     |    |           | a d       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 2  mL/L   |   | 7        |            | 41         |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,          |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 500WC     | 4 | 7.       | 4~         | 4~         | Folior      | alari | 10  | 02 | 2.2 (fru) | THD 0557  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           | 4 | 7.<br>7. |            |            |             | Ciay  | 10  | 05 |           |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |   |          | 100        |            | 51 11101011 |       |     |    | 2.7 (uw)  |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | ,         |   |          |            | ~ -        |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2005       |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |   |          |            |            |             |       |     |    |           |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |   |          |            |            |             |       |     |    |           |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           | 4 |          |            |            |             | Clay  | 5   | 77 |           |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |   |          | 50         |            |             |       |     |    | 1.3 (dw)  |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |   | 14       |            | 41         | doll till   |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,          | 2 IIIL/L  |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |   |          |            |            |             |       |     |    |           |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /          | 500 WG    | 4 | 14;      | 4×         | 4×         | Foliar.     | Clav  | 5   | 77 | 1.9 (fw), | THR-0557  |
| 2 mL/L         14         81         boll fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |   |          |            |            |             |       |     |    |           |           |
| 85-GA,<br>Tifton,11160spray,<br>18 Oct.,my<br>sand(T(TbMGMMMMMMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |   | 14       |            |            |             |       |     |    | <u> </u>  |           |
| Tifton, III 00 Spray, IIIy (1 (1<br>18 Oct., sand MG M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 500 WG    | 2 | 7        |            |            |             |       | 22  | 83 |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · ·  |           |   |          | 111        | 60         |             |       |     |    |           | D         |
| Georgia, I I I I BBCH ns I I I 0.0 I G I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |   |          |            |            |             | sand  |     |    |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Georgia,   |           |   |          |            |            | BBCH ns     |       |     |    | 0.0 G     |           |

| Trial,<br>Location<br>Country,<br>year<br>(Variety)                                         | Form<br>g ai/kg,<br>g ai/L | N<br>o | Interv<br>al<br>d | g<br>ai/ha | g<br>ai/h<br>L | method,<br>last<br>applicatio<br>n       | soil<br>type              | DAT | %<br>dm | paren<br>(TMC<br>mg/k              | G)                                     | reference |
|---------------------------------------------------------------------------------------------|----------------------------|--------|-------------------|------------|----------------|------------------------------------------|---------------------------|-----|---------|------------------------------------|----------------------------------------|-----------|
| USA,<br>2006<br>(PHY<br>480WR<br>Picker)                                                    |                            |        |                   |            |                |                                          |                           |     |         | 97)                                | 0.1<br>0)                              |           |
| SARS-06-<br>85-AR3,<br>Jackson,<br>Arkansas,<br>2006<br>(FM 958<br>LL,<br>Picker)           | 500 WG                     | 2      | 8                 | 112<br>113 | 120<br>119     | Foliar<br>spray,<br>19 Sept.,<br>BBCH ns | San<br>dy<br>loa<br>m     | 20  | 88      | 0.8<br>8<br>(T<br>MG<br>0.0<br>48) | 0.9<br>2<br>(T<br>M<br>G<br>0.0<br>48) | THR-0584  |
| SARS-06-<br>85-TX1,<br>Uvalde,<br>Texas,<br>USA,<br>2006<br>(DPL 444<br>Stripper)           | 500 WG                     | 2      | 6                 | 111<br>111 | 80<br>85       | Foliar<br>spray,<br>20 Aug.,<br>BBCH ns  | Silty<br>clay<br>loa<br>m | 19  | 84      | 0.8<br>6<br>(T<br>MG<br>0.0<br>95) | 1.5<br>(T<br>M<br>G<br>0.1<br>3)       | THR-0584  |
| SARS-06-<br>85-TX2,<br>Hockley,<br>Texas,<br>USA<br>2006<br>(FM 9063<br>B2F,<br>Stripper)   | 500 WG                     | 2      | 6                 | 110<br>111 | 80<br>80       | Foliar<br>spray,<br>25 Oct.,<br>BBCH ns  | San<br>dy<br>loa<br>m     | 21  | 85      | 0.4<br>9<br>(T<br>MG<br>0.0<br>59) | 0.5<br>7<br>(T<br>M<br>G<br>0.0<br>63) | THR-0584  |
| SARS-06-<br>85-TX3,<br>Hale,<br>Texas,<br>USA<br>2006<br>(Fibermax<br>958<br>Stripper)      | 500 WG                     | 2      | 8                 | 111<br>113 | 69<br>72       | Foliar<br>spray,<br>19 Oct, .<br>BBCH ns | Clay<br>loa<br>m          | 21  | 93      | 1.1<br>(T<br>MG<br>0.0<br>89)      | 1.2<br>(T<br>M<br>G<br>0.0<br>90)      | THR-0584  |
| SARS-06-<br>85-CA1,<br>Madera,<br>California,<br>USA<br>2006<br>(Phytogen<br>710<br>Picker) | 500 WG                     | 2      | 7                 | 115<br>114 | 48<br>48       | Foliar<br>spray,<br>2 Oct.,<br>BBCH ns   | Loa<br>my<br>sand         | 21  | 85      | 2.1<br>(T<br>MG<br>0.1<br>3)       | 2.5<br>(T<br>M<br>G<br>0.1<br>4)       | THR-0584  |

<sup>a</sup> Samples from all THR-0557 trials were stored at -5 °C before transport to the laboratory (55–60 days).

<sup>b</sup> Results are from replicate field samples

<sup>c</sup> Reverse residue decline study. Plots are treated on different days; the day of harvest is equal for all plots.

<sup>d</sup>.Sample size not indicated

[Burn, 2005c, THR-0557]. No unusual weather conditions. Plot size 200 m<sup>2</sup>. Foliar sprayer (2 m hand boom), spray volume 123.2–124.9 L/ha. Raw cotton was picked at maturity from plants and were ginned to generate undelinted cotton seed and gin trash (unstated amounts). Samples were stored at -5 °C (all trials) for 55–60 days before sample arrival followed by storage at -22 °C for 158 days. Samples were analysed using HPLC-MS-MS method ALM-016.01 (i.e. modification of method 00552). Results were not corrected for control levels < 0.02 mg/kg) or for individual concurrent method recoveries (trash: 91–118%).

[Burn, 2005b, THR-0558]. No unusual weather conditions. Plot size 150 m<sup>2</sup>. Foliar sprayer, spray volume 163–177 L/ha.

Raw cotton specimens were collected at maturity from the field and frozen on the day of collection (unstated amounts). Raw cotton specimens were removed from the freezer and ginned to allow collection of undelinted cottonseed, trash and lint (unstated amounts). Samples were stored at -12 °C for 47–61 days. Samples were analysed using HPLC-MS-MS method ALM-016 (i.e. modification of method 00552). Results were not corrected for control levels < 0.02 mg/kg) or for individual concurrent method recoveries (trash: 78–94%).

[Stewart, 2008, 2008d, THR-0584]. No unusual weather conditions. Plot size  $93-824 \text{ m}^2$ . backpack and tractor mounted sprayer, spray volume 93-238 L/ha. Seed cotton samples were collected at normal harvest. Samples of seed cotton were ginned to obtain undelinted cotton seed and by product samples (1.0–1.86 kg). Samples were ginned within 2–3 days after collection. Samples were stored at –11 °C or lower for 106–172 days (by product samples). Samples were analysed for clothianidin and TMG using modification A of HPLC-MS-MS method 164. Results were not corrected for control levels (< 0.01 mg/kg) or for average concurrent method recoveries (parent and TMG: 70–116%).

### Rape forage, green (OECD feedstuff table; no Codex Commodity)

Supervised residue trials on rape seed were conducted in Germany (1998), Sweden (1998), UK (1999), France (1999), USA (1999 and 2000) and Canada (1999). Only the European trials contained residue data on green rape forage. Results for green rape forage are shown in Table 125 (seed treatment). In addition the European trials also contained residue data for rape straw. Since rape straw is not listed in the OECD feedstuff table, or in the Codex Commodity list, results for rape straw were not summarised.

| Trial, Location<br>Country, year<br>(Variety)                                           | Form<br>g<br>ai/kg,<br>g ai/L | No | Interval (d) | g<br>ai/ha | kg ai/t<br>seeds | method, last application                   | soil<br>type          | DAT                               | parent,<br>mg/kg                           | reference             |
|-----------------------------------------------------------------------------------------|-------------------------------|----|--------------|------------|------------------|--------------------------------------------|-----------------------|-----------------------------------|--------------------------------------------|-----------------------|
| 813907<br>Burscheid,<br>Germany, 1998<br>(summer rape,<br>Lisonne)                      | 600<br>FS                     | 1  | na           | 47         | 9.3              | Seed<br>treatment, 31<br>March, BBCH<br>00 | Sandy<br>loam         | <u>58</u><br>66                   | $\frac{< 0.02}{< 0.02}$                    | M-<br>041713-<br>01-1 |
| 811176<br>Borlunda,<br>Sweden, 1998<br>(summer rape,<br>Maskot)                         | 600<br>FS                     | 1  | na           | 43         | 8.6              | Seed<br>treatment, 28<br>April, BBCH<br>00 | Silty<br>loam         | $\frac{27}{43}^{a}$               | <u>0.055</u><br>0.025                      | M-<br>041452-<br>01-1 |
| R 1999 0044/9<br>Thurston, Bury<br>St. Edmund,<br>UK, 1999<br>(spring rape,<br>Lambada) | 600<br>FS                     | 1  | na           | 37         | 7.4              | Seed<br>treatment, 8<br>April, BBCH<br>00  | Sandy<br>clay<br>loam | $\frac{46}{69}^{a}$               | $\frac{< 0.02}{< 0.02}$                    | M-<br>023116-<br>01-1 |
| 812676<br>Bury St.<br>Edmunds,<br>United<br>Kingdom, 1999<br>(winter rape,<br>Navajo)   | 600<br>FS                     | 1  | na           | 46         | 9.2              | Seed<br>treatment, 2<br>Sept., BBCH<br>00  | Sandy<br>loam         | <u>191</u><br>216                 | < <u>&lt;0.02</u> <0.02                    | M-<br>041576-<br>02-1 |
| R 1999 0222/0<br>Le Favril, N.<br>France, 1999<br>(spring rape,<br>Lambada)             | 600<br>FS                     | 1  | na           | 41         | 8.1              | Seed<br>treatment, 8<br>April, BBCH<br>00  | Clay<br>silt          | 34<br>43<br>49<br>54              | <u>0.038</u><br>< 0.02<br>< 0.02<br>< 0.02 | M-<br>023116-<br>01-1 |
| 813915<br>Mousseaux-<br>Neuville, N.<br>France, 1999<br>(winter rape,<br>Navajo)        | 600<br>FS                     | 1  | na           | 47         | 9.5              | Seed<br>treatment, 3<br>Sept., BBCH<br>00  | Silt                  | $\frac{176}{208}$                 | $\frac{< 0.02}{< 0.02}$                    | M-<br>041576-<br>02-1 |
| R 1999 0708/7<br>Bouloc, S.<br>France, 1999                                             | 600<br>FS                     | 1  | na           | 46         | 9.2              | Seed<br>treatment, 12<br>Oct., BBCH        | Sandy<br>clay         | $\frac{\underline{146}}{169}^{a}$ | $ \frac{< 0.02}{< 0.02} $                  | M-<br>025166-<br>01-1 |

Table 125 Residues of clothianidin in rape forage (green) after seed treatment and culture in the field

| Trial, Location<br>Country, year<br>(Variety)                                             | Form<br>g<br>ai/kg,<br>g ai/L | No | Interval (d) | g<br>ai/ha | kg ai/t<br>seeds | method, last application                   | soil<br>type | DAT                            | parent,<br>mg/kg        | reference             |
|-------------------------------------------------------------------------------------------|-------------------------------|----|--------------|------------|------------------|--------------------------------------------|--------------|--------------------------------|-------------------------|-----------------------|
| (winter rape,<br>Synergy)                                                                 |                               |    |              |            |                  | 00                                         |              |                                |                         |                       |
| R 1999 0709/5<br>Saint Paul les<br>Romans, S<br>France, 1999<br>(winter rape,<br>Synergy) | 600<br>FS                     | 1  | na           | 47         | 9.4              | Seed<br>treatment, 16<br>Sept., BBCH<br>00 | Sand         | <u>77</u> <sup>a</sup><br>181  | < <u>&lt;0.02</u> <0.02 | M-<br>025166-<br>01-1 |
| 813923<br>St. Paul les<br>Romans, S.<br>France, 1999<br>(summer rape,<br>Lambada)         | 600<br>FS                     | 1  | na           | 39         | 7.9              | Seed<br>treatment, 2<br>April, BBCH<br>00  | Sand         | <u>47</u><br>56                | <u>0.027</u><br>< 0.02  | M-<br>041541-<br>01-1 |
| 811184<br>Lescheroux, S.<br>France, 1999<br>(winter rape,<br>Navajo)                      | 600<br>FS                     | 1  | na           | 44         | 8.8              | Seed<br>treatment, 18<br>Sept, BBCH<br>00  | Clay         | <u>111</u> <sup>a</sup><br>202 | < <u>&lt;0.02</u> <0.02 | M-<br>041541-<br>01-1 |

<sup>a</sup> Sample size was below the minimum amount of 1 kg required for sampling

[Nuesslein and Elke, 2000a, M-023116-01-1]. No unusual weather conditions. Plot size 80–160 m2. Seeding machines. The target rate was 5 kg seeds/ha. Green material (1.0-1.9 kg, except DAT 34 = 0.46 kg, DAT 69 = 0.66 kg) was sampled at BBCH 19-55. Samples were stored at -18 °C for 127–161 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 81–103%).

[Nuesslein and Elke, 2000c, M-025166-01-1]. No unusual weather conditions. Plot size 89.6-160 m2. Seeding machines. The target rate was 5 kg seeds/ha. Green material (1.0–1.4 kg, except DAT 77 = 0.62 kg and DAT 146 = 0.81 kg) was sampled at BBCH 19-53. Samples were stored at -18 °C for 175–279 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 81-103%).

[Nusslein and Huix, 2000i, M-041541-01-1]. No unusual weather conditions. Plot size 150–160 m2. Seeding machines. The target rate was 5 kg seeds/ha. Green material (1.0-4.23 kg, except DAT 111 = 0.51 kg) was sampled at BBCH 17-59. Samples were stored at -18 °C for 88–196 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 76–96%).

[Nuesslein and Huix, 2000j, M-041576-01-1]. No unusual weather conditions. Plot size 96–100 m2. Seeding machines. The target rate was 5 kg seeds/ha. Green material (1.72-3.03 kg) was sampled at BBCH 19. Samples were stored at -18 °C for 146–221 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 76–96%).

[Nuesslein and Huix, 2000k, M-041713-01-1]. No unusual weather conditions. Plot size 129.6 m2. Seeding machines. The target rate was 5 kg seeds/ha. Green material (1.98–5.51 kg) was sampled at BBCH 19-53. Samples were stored at -18 °C for 412–420 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 76–96%).

[Nuesslein and Huix, 2000h, M-041452-01-1]. No unusual weather conditions. Plot size 136 m2. Seeding machines. The target rate was 5 kg seeds/ha. Green material (1.1 kg, except DAT 27 = 0.60 kg) was sampled at BBCH 19-53. Samples were stored at -18 °C for 423 days. Samples were analysed for clothianidin using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (green material: 76–96%).

#### Sugar beet tops (OECD feedstuff table) = sugar beet leaves or tops (Codex)

Supervised residue trials on sugar beets were conducted in Belgium (1998), Germany (1998 and 1999), the UK (1998 and 1999), France (1998 and 1999), Italy (1998 and 1999), Spain (1998) and USA (2004). Sugar beet tops (leaves) from mature plants were analysed for clothianidin. In addition European trials also contained data on immature whole plants (leaves plus roots). Furthermore, samples from the USA trials were also analysed for metabolite TMG. Clothianidin results for sugar beet tops are shown in Table 126 (seed treatment). TMG levels were < 0.01 mg/kg, expressed as

clothianidin equivalents, except in trials TI010, Live Oak, California (< 0.01–0.01 mg/kg) and TI012, Ephrata, Washington (0.021–0.026 mg/kg).

Table 126 Residues of clothianidin in sugar beet leaves after seed treatment and subsequent culture in the field

| Trial, Location                | Form       | Ν | Inte     | g         | mg          | method,                 | soil          | DA                    | %      | parent,                 | referenc           |
|--------------------------------|------------|---|----------|-----------|-------------|-------------------------|---------------|-----------------------|--------|-------------------------|--------------------|
| Country, year<br>(Variety)     | g<br>ai/kg | 0 | r<br>val | ai/h<br>a | ai/see<br>d | last<br>applicatio      | type          | Т                     | d<br>m | mg/kg                   | e                  |
| (variety)                      | ,          |   | (d)      | a         | u           | n                       |               |                       | 111    |                         |                    |
|                                | g          |   |          |           |             |                         |               |                       |        |                         |                    |
|                                | ai/L       |   |          |           |             |                         |               |                       |        |                         |                    |
| 813753                         | 600<br>EG  | 1 | nr       | 37        | 0.28        | Seed                    | Clay          | 44 <sup>a</sup>       | -      | 0.17                    | M-                 |
| Clavier, Belgium<br>1998       | FS         |   |          |           |             | treatment,<br>9 May,    | loam          | 60<br>160             |        | < 0.02<br>< 0.02        | 029762-<br>01-1-01 |
| (Dacota)                       |            |   |          |           |             | BBCH 00                 |               | 100                   |        | < 0.02                  | 01-1-01            |
| 813796                         | 600        | 1 | nr       | 109       | 0.84        | Seed                    | Loam          | 58 <sup>a</sup>       | - 1    | 0.097                   | M-                 |
| Gembloux,                      | FS         |   |          |           |             | treatment,              |               | 75                    |        | 0.034                   | 030310-            |
| Belgium 1998                   |            |   |          |           |             | 9 May,                  |               | 181                   |        | < 0.02                  | 01-1-              |
| (Dacota)                       | (          |   |          |           |             | BBCH 00                 | ~ .           | 1.1.0                 |        |                         |                    |
| 811192                         | 600<br>ES  | 1 | nr       | 32        | 0.27        | Seed                    | Sandy         | 148                   | -      | < 0.02                  | M-<br>029762-      |
| Monheim,<br>Germany, 1998      | FS         |   |          |           |             | treatment,<br>23 April, | loam          |                       |        |                         | 029762-<br>01-1-01 |
| (Aries)                        |            |   |          |           |             | BBCH 00                 |               |                       |        |                         | 01-1-01            |
| 813206                         | 600        | 1 | nr       | 86        | 0.72        | Seed                    | Sandy         | 148                   | -      | < 0.02                  | M-                 |
| Monheim,                       | FS         |   |          |           |             | treatment,              | loam          |                       |        |                         | 030310-            |
| Germany, 1998                  |            |   |          |           |             | 23 April,               |               |                       |        |                         | 01-1               |
| (Aries)                        | (00        | 1 |          | 100       | 0.00        | BBCH 00                 | 0 1           | 42 <sup>a</sup>       |        | 0.17                    | N                  |
| R 1999 0048/1<br>Monheim,      | 600<br>FS  | 1 | nr       | 108       | 0.90        | Seed<br>treatment,      | Sandy<br>loam | 42 -<br>66            | -      | 0.17<br>0.036           | M-<br>020378-      |
| Germany, 1999                  | 13         |   |          |           |             | 26 April,               | IOaiii        | 149                   |        | < 0.02                  | 020378-            |
| (Aries)                        |            |   |          |           |             | BBCH 00                 |               | 1.0                   |        | 0.02                    | (900481            |
|                                |            |   |          |           |             |                         |               |                       |        |                         | )                  |
| R 1999 0046/5                  | 600        | 1 | nr       | 31        | 0.26        | Seed                    | Sandy         | 42 <sup>a</sup>       | -      | 0.077                   | M-                 |
| Monheim,                       | FS         |   |          |           |             | treatment,              | loam          | 66                    |        | < 0.02                  | 021156-            |
| Germany, 1999<br>(Aries)       |            |   |          |           |             | 26 April,<br>BBCH 00    |               | 149                   |        | < 0.02                  | 01-1-01            |
| 813788                         | 600        | 1 | nr       | 37        | 0.28        | Seed                    | Sandy         | 66 <sup>a</sup>       | _      | < 0.02                  | M-                 |
| Thurston, Bury                 | FS         | 1 |          | 57        | 0.20        | treatment,              | clay          | 87                    |        | < 0.02                  | 029762-            |
| St. Edmunds,                   |            |   |          |           |             | 7 April,                | loam          | 181                   |        | < 0.02                  | 01-1-01            |
| UK, 1998                       |            |   |          |           |             | BCH 00                  |               |                       |        |                         |                    |
| (Dacota)                       | (00        | 1 |          | 100       | 0.04        | G 1                     | 0 1           | 51.8                  |        | 0.001                   |                    |
| 813826<br>Thurston, Bury       | 600<br>FS  | 1 | nr       | 109       | 0.84        | Seed<br>treatment,      | Sandy<br>clay | 51 <sup>a</sup><br>72 | -      | 0.091<br>0.024          | M-<br>030310-      |
| St. Edmunds,                   | 13         |   |          |           |             | 22 April,               | loam          | 166                   |        | < 0.024                 | 01-1               |
| UK, 1998                       |            |   |          |           |             | BBCH 00                 |               |                       |        |                         |                    |
| (Dacota)                       |            |   |          |           |             |                         |               |                       |        |                         |                    |
| R 1999 0232/8                  | 600<br>EC  | 1 | nr       | 94        | 0.72        | Seed                    | Sandy         | 67 <sup>a</sup>       | -      | 0.078                   | M-                 |
| Thurston, Bury<br>St. Edmunds, | FS         |   |          |           |             | treatment,<br>8 April,  | clay<br>loam  | <u>92</u><br>180      |        | $\frac{< 0.02}{< 0.02}$ | 020378-<br>01-1    |
| UK, 1999                       |            |   |          |           |             | BBCH 00                 | IOaiii        | 100                   |        | < 0.02                  | (902328            |
| (Aries)                        |            |   |          |           |             | DECHOU                  |               |                       |        |                         | )                  |
| R 1999 0227/1                  | 600        | 1 | nr       | 34        | 0.26        | Seed                    | Sandy         | 67 <sup>a</sup>       | -      | 0.022                   | M-                 |
| Thurston, Bury                 | FS         |   |          |           |             | treatment,              | clay          | 92                    |        | < 0.02                  | 021156-            |
| St. Edmunds,                   |            |   |          |           |             | 8 April,                | loam          | 180                   |        | < 0.02                  | 01-1-01            |
| UK, 1999<br>(Aries)            |            |   |          |           |             | BBCH 00                 |               |                       |        |                         |                    |
| 813761                         | 600        | 1 | nr       | 37        | 0.28        | Seed                    | Silt          | 70 <sup>a</sup>       | 1_     | < 0.02                  | M-                 |
| Marbeuf, N.                    | FS         | 1 |          |           | 0.20        | treatment,              |               | 86                    |        | < 0.02                  | 029762-            |
| France, 1998                   |            |   |          |           |             | 24 March,               |               | 219                   |        | < 0.02                  | 01-1-01            |
| (Dacota)                       |            |   |          |           |             | BBCH 00                 |               |                       |        |                         |                    |
| 813818                         | 600<br>EG  | 1 | nr       | 101       | 0.78        | Seed                    | Silt          | 70 <sup>a</sup>       | -      | 0.080                   | M-                 |
| Marbeuf, N.                    | FS         |   |          |           |             | treatment,              |               | 86                    |        | < 0.02                  | 030310-            |
| France, 1998<br>(Dacota)       |            |   |          |           |             | 24 March,<br>BBCH 00    |               | 219                   |        | < 0.02                  | 01-1               |
| (Dacola)                       |            | I | L        | L         | L           | DDCI100                 | 1             | L                     | 1      | L                       |                    |

| Trial, Location                | Form      | Ν | Inte | g    | mg     | method,                 | soil          | DA                     | % | parent,                     | referenc           |
|--------------------------------|-----------|---|------|------|--------|-------------------------|---------------|------------------------|---|-----------------------------|--------------------|
| Country, year                  | g         | 0 | r    | ai/h | ai/see | last                    | type          | Т                      | d | mg/kg                       | e                  |
| (Variety)                      | ai/kg     |   | val  | а    | d      | applicatio              |               |                        | m |                             |                    |
|                                | ,<br>a    |   | (d)  |      |        | n                       |               |                        |   |                             |                    |
|                                | g<br>ai/L |   |      |      |        |                         |               |                        |   |                             |                    |
| R 1999 0230/1                  | 600       | 1 | nr   | 101  | 0.78   | Seed                    | Silt          | 75 <sup>a</sup>        | — | 0.063                       | M-                 |
| Guiseniers, N.                 | FS        |   |      |      |        | treatment,              |               | 112                    |   | < 0.02                      | 020378-            |
| France, 1999                   |           |   |      |      |        | 17 March,               |               | 195                    |   | < 0.02                      | 01-1               |
| (Dacota)                       |           |   |      |      |        | BBCH 00                 |               |                        |   |                             | (902301            |
| R 1999 0233/6                  | 600       | 1 | nr   | 94   | 0.72   | Seed                    | Silt          | 47 <sup>a</sup>        | - | 0.55                        | )<br>              |
| Marbeuf, N.                    | FS        | 1 | 111  | 94   | 0.72   | treatment,              | Sin           | 70 <sup>a</sup>        |   | 0.035                       | 020378-            |
| France, 1999                   |           |   |      |      |        | 31 March,               |               | 85 <sup>a</sup>        |   | 0.020                       | 01-1               |
| (Dacota)                       |           |   |      |      |        | BBCH 00                 |               | <u>103</u>             |   | <u>&lt; 0.02</u>            | (902336            |
|                                |           |   |      |      |        |                         |               | 176                    |   | < 0.02                      | )                  |
| R 1999 0226/3                  | 600       | 1 | nr   | 34   | 0.26   | Seed                    | Silt          | 75 <sup>a</sup>        | - | 0.024                       | M-                 |
| Guiseniers, N.<br>France, 1999 | FS        |   |      |      |        | treatment,<br>17 March, |               | 112<br>195             |   | < 0.02<br>< 0.02            | 021156-<br>01-1-01 |
| (Dacota)                       |           |   |      |      |        | BBCH 00                 |               | 195                    |   | < 0.02                      | 01-1-01            |
| R 1999 0229/8                  | 600       | 1 | nr   | 37   | 0.28   | Seed                    | Silt          | 47 <sup>a</sup>        | _ | 0.16                        | M-                 |
| Marbeuf, N.                    | FS        |   |      |      |        | treatment,              |               | 70 <sup>a</sup>        |   | < 0.02                      | 021156-            |
| France, 1999                   |           |   |      |      |        | 31 March,               |               | 85 <sup>a</sup>        |   | < 0.02                      | 01-1-01            |
| (Dacota)                       |           |   |      |      |        | BBCH 00                 |               | 103                    |   | < 0.02                      |                    |
| 814024                         | 600       | 1 |      | 109  | 0.84   | Seed                    | Conder        | 176<br>70 <sup>a</sup> |   | < 0.02<br>0.18 <sup>a</sup> | M-                 |
| St. Etienne du                 | FS        | 1 | nr   | 109  | 0.84   | treatment,              | Sandy<br>loam | 85                     | - | 0.18                        | 030335-            |
| gres, S. France,               | 13        |   |      |      |        | 25 March,               | Ioani         | 168                    |   | < 0.02                      | 01-1               |
| 1998                           |           |   |      |      |        | BBCH 00                 |               | 100                    |   | 0.02                        | 01 1               |
| (Dacota)                       |           |   |      |      |        |                         |               |                        |   |                             |                    |
| 813842                         | 600       | 1 | nr   | 39   | 0.30   | Seed                    | Loam          | 54 <sup>a</sup>        | - | 0.058                       | M-                 |
| Les Valayans, S.               | FS        |   |      |      |        | treatment,              | y sand        | 85                     |   | < 0.02                      | 030342-            |
| France, 1998<br>(Dacota)       |           |   |      |      |        | 25 March,<br>BBCH 00    |               | 168                    |   | < 0.02                      | 01-1               |
| (Dacota)<br>R 1999 0218/2      | 600       | 1 | nr   | 105  | 0.81   | Seed                    | Clay          | 61 <sup>a</sup>        | _ | 0.041                       | M-                 |
| Beauvais/Tescou                | FS        | 1 | m    | 105  | 0.01   | treatment,              | silt          | 88                     |   | < 0.02                      | 023176-            |
| , S. France, 1999              | 10        |   |      |      |        | 4 June,                 | 5111          | 143                    |   | < 0.02                      | 01-1-01            |
| (Dacota)                       |           |   |      |      |        | BBCH 00                 |               |                        |   |                             |                    |
| R 1999 0219/0                  | 600       | 1 | nr   | 101  | 0.77   | Seed                    | Sandy         | 44 <sup>a</sup>        | - | 0.044                       | M-                 |
| St. Jory, S.                   | FS        |   |      |      |        | treatment,              | silt          | 59                     |   | 0.051                       | 023176-            |
| France, 1999<br>(Dacota)       |           |   |      |      |        | 11 May,<br>BBCH 00      |               | 163                    |   | < 0.02                      | 01-1-01            |
| 813885                         | 600       | 1 | nr   | 149  | 0.84   | Seed                    | Loam          | 61 <sup>a</sup>        | _ | 0.12                        | M-                 |
| Sorga, Italy,                  | FS        | 1 |      | 115  | 0.01   | treatment,              | y sand        | 72                     |   | 0.12                        | 030335-            |
| 1998                           |           |   |      |      |        | 25 March,               | 5             | 153                    |   | < 0.02                      | 01-1               |
| (Azzuro)                       |           |   |      |      |        | BBCH 00                 |               |                        |   |                             |                    |
| 813893                         | 600<br>FG | 1 | nr   | 138  | 0.78   | Seed                    | Sandy         | 55 <sup>a</sup>        | - | 0.17                        | M-                 |
| Ravenna, Italy, 1998           | FS        |   |      |      |        | treatment, 28 March,    | loam          | 72<br>150              |   | 0.037<br>< 0.02             | 030335-<br>01-1    |
| (Azzuro)                       |           |   |      |      |        | BBCH 00                 |               | 150                    |   | < 0.02                      | 01-1               |
| R 1999 0050/3                  | 600       | 1 | nr   | 171  | 0.95   | Seed                    | Loam          | 58 <sup>a</sup>        | _ | 0.12                        | M-                 |
| Albaro, Italy,                 | FS        |   |      |      |        | treatment,              | y clay        | 77                     |   | < 0.02                      | 023176-            |
| 1999                           |           |   |      |      |        | 16 March,               |               | 156                    |   | < 0.02                      | 01-1-01            |
| (Azzurro)                      | (00       | 1 | L    | 117  | 0.00   | BBCH 00                 | Cl            | 05 a                   |   | 0.021                       | N                  |
| 813214<br>Haro, Spain,         | 600<br>FS | 1 | nr   | 117  | 0.90   | Seed<br>treatment,      | Clay<br>loam  | 85 <sup>a</sup><br>140 | - | 0.031 < 0.02                | M-<br>030335-      |
| 1998                           | 1.5       |   |      |      |        | 24 March,               | ioani         | 209                    |   | < 0.02                      | 01-1               |
| (Colibri)                      |           |   |      |      |        | BBCH 00                 |               |                        |   | 0.02                        |                    |
| 813877                         | 600       | 1 | nr   | 109  | 0.78   | Seed                    | Silty         | 140 <sup>a</sup>       | - | 0.11                        | M-                 |
| Lebrija, Spain,                | FS        |   |      |      |        | treatment,              | sand          | 188                    |   | < 0.02                      | 030335-            |
| 1998                           |           |   |      |      |        | 14 Oct,                 |               | 243                    |   | < 0.02                      | 01-1               |
| (Colibri)                      | (0.5      |   |      |      | 0.00   | BBCH 00                 | <u></u>       | 053                    |   | 0.000                       |                    |
| 811206                         | 600<br>ES | 1 | nr   | 39   | 0.30   | Seed                    | Clay          | 85 <sup>a</sup>        | - | 0.023                       | M-                 |
| Haro, Spain,<br>1998           | FS        |   |      |      |        | treatment,<br>24 March, | loam          | 140<br>209             |   | < 0.02<br>< 0.02            | 030342-<br>01-1    |
| (Colibri)                      |           |   |      |      |        | BBCH 00                 |               | 209                    |   | ~ 0.02                      | 01-1               |
|                                | 1         |   | I    | I    | 1      | DDCI100                 | 1             | 1                      | 1 | 1                           |                    |

| Trial, Location           | Form                   | Ν | Inte | g    | mg     | method,              | soil          | DA               | %  | parent,              |            | referenc        |
|---------------------------|------------------------|---|------|------|--------|----------------------|---------------|------------------|----|----------------------|------------|-----------------|
| Country, year             | g                      | 0 | r    | ai/h | ai/see | last                 | type          | Т                | d  | mg/kg                |            | e               |
| (Variety)                 | ai/kg                  |   | val  | а    | d      | applicatio           |               |                  | m  |                      |            |                 |
|                           | ,<br>a                 |   | (d)  |      |        | n                    |               |                  |    |                      |            |                 |
|                           | g<br>ai/L              |   |      |      |        |                      |               |                  |    |                      |            |                 |
| 813834                    | 600                    | 1 | nr   | 36   | 0.26   | Seed                 | Silty         | 140 <sup>a</sup> | _  | 0.022                |            | M-              |
| Lebrija, Spain,           | FS                     |   |      |      |        | treatment,           | sand          | 188              |    | < 0.02               |            | 030342-         |
| 1998                      |                        |   |      |      |        | 14 Oct,              |               | 243              |    | < 0.02               |            | 01-1            |
| (Colibri)                 |                        |   |      |      |        | BBCH 00              |               |                  |    |                      |            |                 |
| 813850                    | 600                    | 1 | nr   | 51   | 0.29   | Seed                 | Loam          | 61 <sup>a</sup>  | -  | 0.060                |            | M-              |
| Sorga, Italy,<br>1998     | FS                     |   |      |      |        | treatment,           | y sand        | 72<br>153        |    | 0.043 < 0.02         |            | 030342-<br>01-1 |
| (Azzuro)                  |                        |   |      |      |        | 25 March,<br>BBCH 00 |               | 155              |    | < 0.02               |            | 01-1            |
| 813869                    | 600                    | 1 | nr   | 48   | 0.27   | Seed                 | Silty         | 55 <sup>a</sup>  | _  | 0.033                |            | M-              |
| Ravenna, Italy,           | FS                     | - |      |      | 0.27   | treatment,           | sand          | 72               |    | < 0.02               |            | 030342-         |
| 1998                      |                        |   |      |      |        | 28 March,            |               | 150              |    | < 0.02               |            | 01-1            |
| (Azzuro)                  |                        |   |      |      |        | BBCH 00              |               |                  |    |                      | <b>T</b>   |                 |
| TI001-04H                 | 474                    | 1 | nr   | 105  | 0.60   | Seed                 | Silt          | <u>143</u>       | 13 | $\frac{< 0.0}{1}$    | < 0.0      | M-              |
| Springfield,              | SE <sup>b</sup>        |   |      |      |        | treatment,           | loam          |                  |    | <u>1</u>             | 1          | 281124-         |
| Nebraska, USA, 2004       |                        |   |      |      |        | 10 May,<br>BBCH 00   |               |                  |    |                      |            | 01-1            |
| (Beta 101)                |                        |   |      |      |        | BBCII 00             |               |                  |    |                      |            |                 |
| ТІ002-04Н                 | 474                    | 1 | nr   | 78   | 0.60   | Seed                 | Silt          | 147              | 11 | < 0.0                | < 0.0      | M-              |
| Sabin,                    | SE <sup>b</sup>        |   |      |      |        | treatment,           |               |                  |    | 1                    | 1          | 281124-         |
| Minnesota,                |                        |   |      |      |        | 6 May,               |               |                  |    |                      |            | 01-1            |
| USA, 2004                 |                        |   |      |      |        | BBCH 00              |               |                  |    |                      |            |                 |
| (Beta 101)                | 474                    | 1 |      | 0.4  | 0.00   | C 1                  | C l           | 112              | 10 | < 0.0                | < 0.0      | м               |
| TI003-04H<br>Theilman,    | 474<br>SE <sup>ь</sup> | 1 | nr   | 94   | 0.60   | Seed<br>treatment,   | Sandy<br>loam | <u>112</u>       | 12 | $\frac{\leq 0.0}{1}$ | < 0.0<br>1 | M-<br>281124-   |
| Minnesota,                | SE                     |   |      |      |        | 7 June,              | IOaiii        |                  |    | 1                    | 1          | 01-1            |
| USA, 2004                 |                        |   |      |      |        | BBCH 00              |               |                  |    |                      |            | 01 1            |
| (Beta 101)                |                        |   |      |      |        |                      |               |                  |    |                      |            |                 |
| TI004-04H                 | 474                    | 1 | nr   | 89   | 0.60   | Seed                 | Loam          | <u>145</u>       | 11 | <u>&lt; 0.0</u>      | < 0.0      | M-              |
| Northwood,                | SE <sup>b</sup>        |   |      |      |        | treatment,           |               |                  |    | <u>1</u>             | 1          | 281124-         |
| North Dakota,             |                        |   |      |      |        | 7 May,               |               |                  |    |                      |            | 01-1            |
| USA, 2004<br>(Beta 101)   |                        |   |      |      |        | BBCH 00              |               |                  |    |                      |            |                 |
| (Deta 101)<br>TI005-04H   | 474                    | 1 | nr   | 104  | 0.60   | Seed                 | Clay          | 151              | 13 | < 0.0                | < 0.0      | M-              |
| Campbell,                 | SE <sup>b</sup>        |   |      |      |        | treatment,           | loam          |                  |    | 1                    | 1          | 281124-         |
| Minnesota,                |                        |   |      |      |        | 19 May,              |               |                  |    |                      |            | 01-1            |
| USA, 2004                 |                        |   |      |      |        | BBCH 00              |               |                  |    |                      |            |                 |
| (Beta 101)                | 474                    | 1 |      | 88   | 0.60   | C 1                  | T             | 125              | 14 | < 0.0                | < 0.0      | м               |
| TI006-04H<br>Velva, North | 474<br>SE <sup>b</sup> | 1 | nr   | 88   | 0.60   | Seed<br>treatment,   | Loam          | <u>125</u>       | 14 | $\frac{< 0.0}{1}$    | < 0.0<br>1 | M-<br>281124-   |
| Dakota, USA,              | SL                     |   |      |      |        | 7 May,               |               |                  |    | <u>1</u>             | 1          | 01-1            |
| 2004                      |                        |   |      |      |        | BBCH 00              |               |                  |    |                      |            |                 |
| (Beta 102)                |                        |   |      |      |        |                      |               |                  |    |                      |            |                 |
| TI007-04H                 | 474                    | 1 | nr   | 101  | 0.60   | Seed                 | Sandy         | <u>128</u>       | 11 | <u>&lt; 0.0</u>      | < 0.0      | M-              |
| Larned, Kansas,           | SE <sup>b</sup>        |   |      |      |        | treatment,           | loam          |                  |    | <u>1</u>             | 1          | 281124-         |
| USA, 2004<br>(Beta 102)   |                        |   |      |      |        | 7 May,<br>BBCH 00    |               |                  |    |                      |            | 01-1            |
| TI008-04H                 | 474                    | 1 | nr   | 99   | 0.60   | Seed                 | Sandy         | 141              | 12 | 0.01                 | < 0.0      | M-              |
| Eaton, Colorado,          | SE <sup>b</sup>        |   |      |      | 0.00   | treatment,           | clay          | 171              | 12 | 0.01                 | 1          | 281124-         |
| USA, 2004                 |                        |   |      |      |        | 10 May,              | loam          |                  |    |                      |            | 01-1            |
| (Beta 102)                |                        |   |      |      |        | BBCH 00              |               |                  |    |                      |            |                 |
| ТІ009-04Н                 | 474                    | 1 | nr   | 89   | 0.60   | Seed                 | Sandy         | <u>179</u>       | 11 | <u>0.011</u>         | 0.011      | M-              |
| Fresno,                   | SE <sup>b</sup>        |   |      |      |        | treatment,           | loam          |                  |    |                      |            | 281124-         |
| California, USA, 2004     |                        |   |      |      |        | 6 May,<br>BBCH 00    |               |                  |    |                      |            | 01-1            |
| (Beta 102)                |                        |   |      |      |        | DDCH 00              |               |                  |    |                      |            |                 |
| TI010-04H                 | 474                    | 1 | nr   | 88   | 0.60   | Seed                 | Clay          | 164              | 15 | < 0.0                | < 0.0      | M-              |
| Live Oak,                 | SE <sup>b</sup>        | - |      |      |        | treatment,           | loam          | <u></u>          |    | 1                    | 1          | 281124-         |
| California, USA,          |                        |   |      |      |        | 28 May,              |               |                  |    | -                    |            | 01-1            |
| 2004                      |                        |   |      |      |        | BBCH 00              |               |                  |    |                      |            |                 |
| (Beta 101)                |                        |   |      |      |        |                      |               |                  |    |                      |            |                 |

| Trial, Location | Form            | Ν | Inte | g    | mg     | method,    | /     |            |    | · · · · · · · · · · · · · · · · · · · |       |         |
|-----------------|-----------------|---|------|------|--------|------------|-------|------------|----|---------------------------------------|-------|---------|
| Country, year   | g               | 0 | r    | ai/h | ai/see | last       | type  | Т          | d  | mg/kg                                 | e     |         |
| (Variety)       | ai/kg           |   | val  | а    | d      | applicatio |       |            | m  |                                       |       |         |
|                 | ,               |   | (d)  |      |        | n          |       |            |    |                                       |       |         |
|                 | g               |   |      |      |        |            |       |            |    |                                       |       |         |
|                 | ai/L            |   |      |      |        |            |       |            |    |                                       |       |         |
| TI011-04H       | 474             | 1 | nr   | 89   | 0.60   | Seed       | Loam  | 109        | 15 | < 0.0                                 | < 0.0 | M-      |
| Madras, Oregon, | SE <sup>b</sup> |   |      |      |        | treatment, |       |            |    | 1                                     | 1     | 281124- |
| USA, 2004       |                 |   |      |      |        | 28 May,    |       |            |    |                                       |       | 01-1    |
| (Beta 102)      |                 |   |      |      |        | BBCH 00    |       |            |    |                                       |       |         |
| TI012-04H       | 474             | 1 | nr   | 98   | 0.60   | Seed       | Sandy | <u>154</u> | 18 | < 0.0                                 | < 0.0 | M-      |
| Ephrata,        | SE <sup>b</sup> |   |      |      |        | treatment, | loam  |            |    | <u>1</u>                              | 1     | 281124- |
| Washington,     |                 |   |      |      |        | 3 May,     |       |            |    |                                       |       | 01-1    |
| USA, 2004       |                 |   |      |      |        | BBCH 00    |       |            |    |                                       |       |         |
| (Beta 102)      |                 |   |      |      |        |            |       |            |    |                                       |       |         |

FS = flowable concentrate for seed treatment

SE = suspo-emulsion (in water)

nr = not relevant

<sup>a</sup> Immature whole plant with roots.

<sup>b</sup> 474 SE contains 474 g ai/L clothianidin and 126 g ai/L cyfluthrin

[Sur and Nuesslein, 2000, M-020378-01-1]. No unusual weather conditions. Plot size 54–96 m2. Seeding machines. Seed rate 120,000-130,000 seeds/ha. Sugar beet leaves (3.75-25.1 kg, at least 12 plants) were sampled at harvest. Samples were stored at -18 °C for 44–194 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for concurrent method recoveries (leaves: individual 61%–127%, average 92%).

[Nuesslein and Spiegel, 2000a, M-021156-01-1]. No unusual weather conditions. Plot size 54–96 m2. Seeding machines. Seed rate 120,000-130,000 seeds/ha. Sugar beet leaves (3.75-27.7 kg, at least 12 plants) were sampled at harvest. Samples were stored at -18 °C for 36–197 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for concurrent method recoveries (leaves: individual 61%–127%, average 92%).

[Nuesslein and Elke, 2000b, M-023176-01-1]. No unusual weather conditions. Plot size 54–108 m2. Seeding machines. Seed rate 130,000–180,000 seeds/ha. Sugar beet leaves (2.05–9.85 kg, at least 12 plants) were sampled at harvest. Samples were stored at -18 °C for 58–232 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or concurrent method recoveries (leaves: individual 61%–127%, average 92%).

[Nuesslein and Huix, 2000a, M-029762-01-1]. No unusual weather conditions. Plot size 22-77 m2. Seeding machines. Seed rate 130,000-180,000 seeds/ha. Sugar beet leaves (2.0-26.2 kg, at least 12 plants) were sampled at harvest. Samples were stored at -18 °C for 209-323 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (leaf: 80-96%).

[Nuesslein and Huix, 2000b, M-030310-01-1]. No unusual weather conditions. Plot size 20.2-77 m2. Seeding machines. Seed rate 120,000-130,000 seeds/ha. Sugar beet leaves (4.25-26.75 kg, at least 12 plants) were sampled at harvest. Samples were stored at  $-18 \text{ }^{\circ}\text{C}$  for 187-334 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (leaf: 80-96%).

[Nuesslein and Huix, 2000c, M-030335-01-1]. No unusual weather conditions. Plot size 50-1035 m2. Seeding machines. Seed rate 130,000-177,000 seeds/ha. Sugar beet leaves (1.15-16.54 kg, at least 12 plants) were sampled at harvest. Samples were stored at -18 °C for 232–475 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (leaf: 80-96%).

[Nuesslein and Huix, 2000d, M-030342-01-1]. No unusual weather conditions. Plot size 50-1035 m2. Seeding machines. Seed rate 130,000-177,000 seeds/ha. Sugar beet leaves (1.21-17.77 kg, at least 12 plants) were sampled at harvest. Samples were stored at -18 °C for 37-367 days. Samples were analysed using HPLC-MS-MS method 00552/M001. Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (leaf: 80-96%).

[Duah and Harbin, 2006a, M-281124-01-1]. No unusual weather conditions. Plot size 46–180 m2. Seed rate 130640–176230 seeds/ha. Sugar beets (> 1 kg, at least 12 plants) were sampled at harvest. Samples were stored at –15 °C for up to 360 d. Replicate field samples were analysed for clothianidin and TMG using HPLC-MS-MS method TI-002-P05-001. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (parent 83–113%, TMG 70%–115%). TMG levels were < 0.01 mg/kg except in trials TI010, Live Oak, California (< 0.01–0.01 mg/kg) and TI012, Ephrata, Washington (0.021–0.026 mg/kg), expressed as clothianidin equivalents.

### Sugarcane tops (OECD feedstuff table) = sugarcane forage, green (Codex)

Supervised residue trials on sugarcane were conducted in Australia (2004 and 2005). Results for sugarcane tops are shown in Table 127 (soil treatment in the field). The Australian trials also contained data on sugar beet roots. Since sugar beet roots were not listed in the OECD feedstuff table, or in the Codex Commodity list, results were not summarised.

| Trial, Location<br>Country, year<br>(Variety)        | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha        | g ai/100<br>m row | method,<br>last<br>application               | soil<br>type | DAT        | parent,<br>mg/kg          | reference    |
|------------------------------------------------------|-------------------------------|----|---------------------|-------------------|-------------------|----------------------------------------------|--------------|------------|---------------------------|--------------|
| Tolga, Qld,<br>Australia, 2004<br>(Q192)             | 500<br>WG                     | 1  | na                  | 500 <sup>a</sup>  | 7.5               | Soil drench,<br>23 March,<br>6 months<br>old | Clay<br>loam | <u>175</u> | fw: 0.04<br>dw:<br>(0.17) | THR-<br>0552 |
| Tolga, Qld,<br>Australia, 2004<br>(Q192)             | 500<br>WG                     | 1  | na                  | 1000 <sup>a</sup> | 15                | Soil drench,<br>23 March,<br>6 months<br>old | Clay<br>loam | 175        | fw: 0.07<br>dw:<br>(0.27) | THR-<br>0552 |
| Gordonvale,<br>Qld,<br>Australia, 2005<br>(Q186)     | 200<br>SC                     | 1  | na                  | 500 <sup>a</sup>  | 7.5               | Soil drench,<br>5 April,<br>BBCH ns          | ns           | <u>147</u> | fw: 0.07<br>dw:<br>(0.27) | THR-<br>0553 |
| Gordonvale,<br>Qld,<br>Australia, 2005<br>(Q186)     | 200<br>SC                     | 1  | na                  | 1000 <sup>a</sup> | 15                | Soil drench,<br>5 April,<br>BBCH ns          | ns           | 147        | fw: 0.09<br>dw:<br>(0.34) | THR-<br>0553 |
| Jacobs Well,<br>Qld,<br>Australia, 2005<br>(Unknown) | 200<br>SC                     | 1  | na                  | 500 <sup>a</sup>  | 7.5               | Soil drench,<br>14 April,<br>BBCH ns         | ns           | <u>151</u> | fw: 0.05<br>dw:<br>(0.21) | THR-<br>0553 |
| Murwillumbah,<br>NSW, Australia,<br>2005<br>(Q151)   | 200<br>SC                     | 1  | na                  | 500 <sup>a</sup>  | 7.5               | Soil drench,<br>17 May,<br>BBCH ns           | ns           | <u>146</u> | fw: 0.02<br>dw:<br>(0.08) | THR-<br>0553 |
| Murwillumbah,<br>NSW, Australia,<br>2005<br>(Q151)   | 200<br>SC                     | 1  | na                  | 1000 <sup>a</sup> | 15                | Soil drench,<br>17 May,<br>BBCH ns           | ns           | 146        | fw: 0.10<br>dw:<br>(0.38) | THR-<br>0553 |
| Murwillumbah,<br>NSW, Australia,<br>2005<br>(Q151)   | 500<br>WG                     | 1  | na                  | 500 <sup>a</sup>  | 7.5               | Soil drench,<br>17 May,<br>BBCH ns           | ns           | <u>146</u> | fw: 0.04<br>dw:<br>(0.15) | THR-<br>0553 |

Table 127 Residues of clothianidin in sugarcane tops (tops or trash) after soil treatment in the field

ns = not stated

<sup>a</sup> g ai/ha was calculated based on an assumption of 1.5 m row spacing and dose rate as g ai/100 m row.

[Burn, 2005a, THR-0552]. No unusual weather conditions. Plot size 3 rows  $\times$  40 m. In-furrow motorised sprayer, spray volume 15 mL/m of row. Sugarcane billets (12 stalks) were sampled at maturity. The tops were collected. Samples were stored at  $\leq$ -20 °C for 61 days. Samples were analysed using HPLC-MS-MS method ALM-022.01 (= method 00552).Results were not corrected for control levels (< 0.02 mg/kg) or for individual concurrent method recoveries (trash: 100%-102%).

[Burn, 2006c, THR-0553]. No unusual weather conditions. Plot size 4 rows  $\times$  20 m. In-furrow motorised sprayer, spray volume 1.48–1.58 L/100 m of row. Sugarcane billets (12 stalks) were sampled at maturity. The tops were collected. Samples were stored at  $\leq$ -15 °C for 25–66 days. Samples were analysed using HPLC-MS-MS method ALM-022 (= method 00552). Results were not corrected for control levels (< 0.02 mg/kg) or for average concurrent method recoveries (99.1% for both billet and tops).

Sugarcane fodder (Codex Commodity only, not in OECD feedstuff table)

No data available.

Tea, green, black (black, fermented and dried)

The Meeting received supervised residue trials on teas. Trials were available for foliar treatment in the field.

Supervised residue trials on tea were conducted in Japan (1999 and 2007). Results are shown in Table 128 (foliar treatment in the field). Supervised residue trials on tea in China (2004) were not summarised because storage data (temperature and duration) and analytical information (method description and validation) were not available.

| Trial,<br>Location<br>Country, year<br>(Variety) | Form<br>g<br>ai/kg,<br>g ai/L | No | Inter<br>val<br>(d) | g<br>ai/ha | g<br>ai/hL | method, soil<br>last application type                                         |              | DAT                 | parent,<br>mg/kg        |                    | reference                    |  |
|--------------------------------------------------|-------------------------------|----|---------------------|------------|------------|-------------------------------------------------------------------------------|--------------|---------------------|-------------------------|--------------------|------------------------------|--|
| Kyoto,<br>Japan, 1999<br>(Kyoken 129)            | 160<br>SG                     | 1  | nr                  | 320        | 8          | 5 May; loam                                                                   |              | 7<br>14<br>21       | 35<br>7.0<br>3.0        | 38<br>7.7<br>3.2   | THR-0177/<br>THR-0182<br>a b |  |
| Miyazaki,<br>Japan, 1999<br>(Yamanami)           | 160<br>SG                     | 1  | nr                  | 320        | 8          | Foliar spray;<br>3 May;<br>26 April;<br>19 April,<br>0.5–3 leaf stage         | Loam         | 7<br>14<br>21       | 2.2<br>2.3<br>0.22      | 2.2<br>2.4<br>0.23 | THR-0177/<br>THR-0182<br>a b |  |
| Shizuoka,<br>Japan 2007<br>(Yabukita)            | 480<br>SP                     | 1  | nr                  | 480        | 12         | Foliar spray;<br>23 April;<br>19 April;<br>12 April,<br>1.5–4.0 leaf<br>stage | Clay<br>loam | 3<br><u>7</u><br>14 | 21<br><u>18</u><br>4.8  | 18<br>17<br>5.2    | THR-0088/<br>THR-0641<br>a b |  |
| Fukuoka,<br>Japan, 2007<br>(Yabukita)            | 480<br>SP                     | 1  | nr                  | 480        | 12         | Foliar spray,<br>4 May;<br>30 April;<br>23 April, 1.0–<br>3.5 leaf stage      | Clay<br>loam | 3<br><u>7</u><br>14 | 11<br><u>5.3</u><br>1.7 | 10<br>5.0<br>1.8   | THR-0088/<br>THR-0641<br>a b |  |

| Table 128 Residues of clothianidin in tea | dry | v leaves) | after | foliar | treatment | in | the | field | d |
|-------------------------------------------|-----|-----------|-------|--------|-----------|----|-----|-------|---|
|                                           |     |           |       |        |           |    |     |       |   |

nr = not relevant

ns = not stated

<sup>a</sup> Reversed decline trial. Plots are treated on different days; the day of harvest is equal for all plots.

<sup>b</sup> Replicate field samples were divided over two labs. Each lab analysed their field sample in duplicate and averaged the result.

[Komatsu and Yabuzaki, 2000j, THR-0177; Ohta, 2000g, THR-0182]. No unusual weather conditions. Plot size  $10.8-21.6 \text{ m}^2$  (13–32 trees). Power sprayer, spray volume 4000 L/ha. Leaves (> 0.2 kg) were sampled at harvest. Samples were processed on the harvest day and stored for 1–2 days at 5 °C. Thereafter, samples were stored at –20 °C for 284–306 days. Samples were analysed for clothianidin using a Japanese HPLC-UV method for dry tea leaves. Results were not corrected for control levels (< 0.04 mg/kg) or for average concurrent method recoveries (87–108%).

[Nagasawa and Inada, 2007, THR-0088; Yabuzaki et al, 2008, THR-0641]. No unusual weather conditions. Plot size 7.2–10.82 m<sup>2</sup>. Power sprayer or knapsack powder applicator, spray volume 4000 L/ha Leaves (> 0.18 kg) were sampled at harvest. The harvested leaves were processed with a tea manufacturing machine. The harvested leaves received a steam treatment. The steamed leaves were dried at 60 °C for 60 min and stored for 1–2 days at 5 °C. Thereafter, samples were stored at –20 °C for 55–273 days. Samples were analysed using a Japanese HPLC-UV method for dry tea leaves. Results were not corrected for control levels (< 0.05 mg/kg) or for average concurrent method recoveries (75–101%).

## FATE OF RESIDUES IN STORAGE AND PROCESSING

#### In storage

No data submitted.

## In processing

The Meeting received information on the fate of incurred residues of clothianidin during the processing of apples, grapes, tomato, potato, sugar beets, cottonseed, soya beans and tea.

### Processing studies on apples

A processing study was conducted on apples as part of the field trials in the USA (Stearns, 2001a, THR-0066). Apple trees were treated with a WG formulation (500 g ai/kg clothianidin) at a rate of 665 g ai/ha. Further details can be found in Table 59 (see trial V-12016-Q). Mature fruits were collected 7 days after the application and were stored for 3 days at 5 °C. Apple samples were processed into juice simulating commercial practices.

## Preparation of apple juice and wet pomace

Apples (35.6 kg) were inspected for rotten or damaged fruit. Remaining apples (28.6 kg) were washed for 5 minutes in cold water (ratio 2 kg water: 1 kg fruit) and crushed in a hammer mill to uniform consistency. The crushed apple pulp was heated to 40-50 °C and treated with enzyme (1.5 g enzyme/kg apple pulp) for 2 hours. Following enzyme treatment the apple pulp was pressed twice using a hydraulic style apple press to produce the apple juice (22.5 kg) and wet pomace (3.10 kg). The fresh juice was filtered.

Samples were stored at -20 °C for 38–42 days (fruits, juice and wet pomace). Clothianidin was determined by HPLC-MS-MS method RM-39-A (i.e. modification of method 00552). Results were not corrected for individual concurrent method recoveries (81%–103%, each matrix) or for matrix interferences (< 0.01 mg/kg, each matrix). Results from the processing trial are summarised in Table 59.

### Processing studies on grapes

#### Study 1

Samples of grapes from two trials in the USA were processed into grape juice and raisins (Carringer, 2004a, THR-0068). In one trial, grape vines received two foliar applications of a WG formulation (500 g ai/kg clothianidin) at the rate of 545 and 567 g ai/ha and an interval of 14 days. Grape bunches were harvested at DAT 0. In the other trial, grape vines received a soil treatment via a single drip irrigation with a SG formulation (160 g ai/kg clothianidin) at a rate of 1111 g ai/ha. Bunches of grapes were collected at maturity, 30 days after application. Further details can be found in Table 59 for the foliar treatment and Table 60 for the soil treatment (each trial TCI-03-076-10). Samples were placed in coolers (2 to 4 °C) until processing (2 days). Grape samples were processed into juice and raisins simulating commercial practices as closely as possible.

### Preparation of grape juice

Grape bunches (63.0–71.6 kg) were passed through a crusher/de-stemmer to remove the stems from the crushed berries. The crushed berries were treated with enzyme, heated at 48–60 °C, and held for two hrs for depectinization. The resulting slurry was pressed and unclarified juice collected and transferred to a steam-jacket kettle. The resulting pomace was discarded. The unclarified juice was heated at 86–91 °C to inactivate the enzyme and cooled to 28 °C. Argot settling then took place under refrigeration, with a settling time of 46 days. At the end of the period, argot-settled juice was filtered. Clarified single-strength juice was placed in a steam-jacketed kettle, and heated to canning temperature of 90–91 °C. The hot juice (34.3–47.6 kg) was filled into cans, sealed, and cooled.

## Preparation of raisins

Grape bunches (12.7–13.4 kg) were spread on stainless steel drying trays, which were placed on stands under the sun. Grapes were allowed to dry for 66 days during all daylight hrs, until a moisture content of 12.7% to 13.8% had been reached. The dried grapes were then placed into plastic bags, which acted as sweat boxes and were placed in a 21 °C room for one day. The grapes were then removed from the bags for de-stemming and cap stem removal. A sub-sample of the dried grape

samples (2.5 lb out of 5.45 lb) were washed and re-hydrated by placing the de-stemmed dried grapes into a stainless steel mesh basket and briefly immersing them into fresh water. After immersion, excess surface water was drained and the moisture determined to be about 20%. Finally 2.6–3.0 kg of raisins remained (corrected for sub-sampling).

Samples were stored at -20 °C for 68 days for whole fruits, 6-17 days for raisins and 9 days for juice. Clothianidin and TMG were determined by HPLC-MS-MS method 164 and modification A of method 164. Results were not corrected for individual concurrent method recoveries (74%–93%, each matrix and each analyte), nor for matrix interferences (< 0.02 mg/kg in fruits/juice, < 0.04 mg/kg in raisins and each analyte). The results of the grape processing trials are summarised in Table 59. TMG residues were not detected in grapes or in juice (< 0.02 mg/kg), but TMG residues were found in raisins (0.36 mg/kg in WG treated samples and < 0.04 mg/kg in SG treated samples). Since samples from the trial using the drip irrigation application method resulted in residues for the grape (RAC) below the LOQ, it was not possible to calculate processing factors.

#### Study 2

Samples of table grapes from a trial in Australia were processed into grape juice, grape pomace and raisins (Frost, 2008, THR-0550). Grape vines received two foliar applications of a WG formulation (500 g ai/kg clothianidin) at the rate of 40 g ai/hL + MAXX at 50 ml/hL each and an interval of 14 days. At least 40 grape bunches (20 kg) were harvested at DAT 42. Further details can be found in Table 59 (trial 6866). Samples were stored refrigerated for 1 day until processing. Grape samples were processed into juice, pomace and raisins.

## Preparation of grape juice (Gaston, 2010g)

Grapes were mechanically crushed and de-stemmed in batches of 10–12 kg in the presence of potassium metabisulphite and di-ammoniumphosphate (at 50 mg/kg and 200 mg/kg, respectively, expressed as free SO<sub>2</sub>). The resulting must was thoroughly mixed. The must was filtered using cheesecloth or a basket press. The preparation of grape pomace was not described.

#### Preparation of grape raisins

Raisins were produced by drying grape samples in a commercial drying oven at 40 °C for 72 hrs until the moisture content was 18%.

Samples were stored at -10 °C for a maximum of 41-176 days. Samples were analysed using modification E of HPLC-MS-MS method 00552. The results of the grape processing trials are summarised in Table 59. Results were not corrected for control levels (< 0.01 mg/kg) or for individual concurrent method recoveries (68–89%).

#### Processing studies on tomatoes

Tomato samples from a trial in the USA were collected for processing into puree and paste (Stewart, 2008a, THR-0578). The plot was treated with two foliar applications of a 500 WG formulation of clothianidin at the rate of 564 g ai/ha on a 7-day interval. Samples of tomatoes were taken from random areas across the plots at 7 days after the last treatment. Further details can be found in Table 59 (trial SARS-07-80-NY). Samples were processed at the day of harvest. Processing procedures simulated commercial practices as closely as possible.

#### Preparation of tomato puree and paste

Tomato samples (13.6 kg) were washed, cut into small pieces and ground in a food strainer/sauce maker, resulting in 10 kg tomato puree. A subsample of the puree (7.9 kg) was placed in a kettle and heated to 82–93 °C and cooked at this temperature for 6 to 8 hrs, resulting in 2.3 kg tomato paste. Percentage of dry matter of the tomato paste samples ranged from 14 to 17%, while those for puree were 5 to 6%. No percentage of dry matter correction was made for residues found in the samples.

Samples (fruit, paste, puree) were stored frozen at -13 °C for 48 days at the processing facility and thereafter for 7–8 days at -20 °C at the laboratory (total 55–56 days of storage). Clothianidin was determined by modification B of HPLC-MS-MS method 164. Samples were not corrected for individual concurrent method recoveries (75–116% each matrix), nor for matrix interferences (< 0.01 mg/kg, each matrix). The results from the processing study on tomatoes are summarised in Table 59.

### Processing studies on soya beans

Soya bean samples from a trial in the USA in 2007 were processed into hulls, meal and refined oil (Stewart, 2008e, THR-0585). The plot was treated with two applications of 500 WG formulation of clothianidin at 561 g ai/ha with a 7 day interval. Soya bean seeds were harvested 21 days after the last application. Further details can be found in Table 59 (trial SARS-07-86-AR-2). Soya bean seeds were shipped at ambient temperature to the processing lab (2 days) and were thereafter stored below -13 °C until processing (40 days). Processing procedures simulated commercial practices as closely as possible.

# Preparation of hulls, meal and refined oil

Soya bean seeds (29.5 kg) were dried at 54–71 °C until the moisture content was 10.0–13.5%. Seed was cleaned by aspiration and screening. Whole seeds were cracked in a roller mill and hulls (3.3 kg) and kernels (24.9 kg) were separated by aspiration. A subsample of the kernels (11.3 kg) was heated to 71–79 °C for 15 min, flaked and steam expanded. The resulting collets were dried at 66–82 °C for 30 min, extracted with hexane at 49–60 °C three times, dried, and ground to meal (7.6 kg). Crude oil was recovered from the miscella (crude oil and hexane) by heating to 91–96 °C and refined oil was produced by adding sodium hydroxide followed by separating and removing the soapstock. A final amount of 1.9 kg refined oil was obtained. Percentage dry matter was 96% in soya bean meal samples and 88% in soya bean hull samples.

Processed samples were stored for 17–23 days at -20 °C. Total storage period from harvest/processing to analysis is 42 days for seeds and 17–23 days for refined oil, hulls and meal. Clothianidin was determined by modification B of HPLC-MS-MS method 164. Samples were not corrected for individual concurrent method recoveries (70–114%, each matrix), nor for matrix interferences (< 0.01 mg/kg). Clothianidin residues are summarised in Table 59. Since residues for the soya bean seeds (RAC) were below the LOQ, it was not possible to calculate processing factors.

## Processing studies on potatoes

Samples of potato tubers from two trials in the USA were processed into granules, chips, and wet peel (Carringer, 2004b, THR-0069). In one trial, the plot received a single in-furrow application of clothianidin 160 SG at 1104 g ai/ha. Tubers were harvested at normal harvest, 124 days after treatment. In the other trial, three foliar applications of a 500 WG formulation of clothianidin at the rate of 376 g ai/ha were made at intervals of 7 days. Tubers were collected 14 days after the last application. Further details can be found in Table 59 and Table 60 (trial TCI-03-075-11, foliar and soil treatment). Samples were placed in cool storage (6 °C) until processing (2–3 days). Samples were processed to simulate industrial practice as closely as possible.

## Washing and peeling

Washing was undertaken using a brush-water set up with re-circulating wash water. A small amount of disinfectant was added to the fresh water in the tank prior to washing each sample lot. Potatoes (31.7–34.0 kg) were manually fed into the brushwasher. The rotating brushes of the washer cleaned the potatoes and carried them under spray nozzles out to a perforated plastic drum. All washed potatoes were passed through an abrasion peeler producing peeled potatoes and a wet peel slurry. The peeled potatoes (30.5–31.6 kg) were rinsed by placing them in a perforated drum with a pre-weighed amount of water poured over them. Two lots of peeled, rinsed potatoes were randomly selected from the entire

barrel and weighed for production of potato chips and granules. A final amount of 1.7–2.2 kg wet peel was obtained.

## Preparation of potato chips

Potato chips were produced by slicing peeled rinsed potatoes (9.8-10.8 kg) into 0.8-1.6 mm slices and then frying the slices in fresh vegetable oil at temperatures of 177 °C. A final amount of 4.1-4.2 kg chips was obtained.

# Preparation of potato granules

Potato granules were produced by dicing the peeled rinsed potatoes (18.6–21.4 kg). The diced potatoes were divided into two batches, one for producing seed granules and one for producing the final granules. The diced potatoes were cooked in boiling water until soft. The batch for seed granules was mashed until smooth, spread on dryer sheets, dried in a forced air dryer at 65–85 °C, and ground. The remaining cooked diced potatoes for the final granules were mashed until smooth. The seed granules were blended in until the mash had a grainy appearance. The mixture was them spread on dryer sheets, dried in a forced air dryer at 74–83 °C, and ground. A final amount of 3.0–3.5 kg potato granules was obtained.

All processed samples were stored at -4 to -12 °C until they were shipped to the laboratory (4–7 days). Samples were stored frozen in the laboratory at -20 °C until analysis. The storage period from sampling to analysis ranged from 11–12 days for whole tubers, and 11–17 days for the processed commodities. Clothianidin and TMG were determined by HPLC-MS-MS method 164. Result were not corrected for individual concurrent method recoveries (63%–104%, each analyte and for each matrix) or for matrix interferences (< 0.02 mg/kg for tubers, wet peel, granules, < 0.04 mg/kg for chips and for each analyte). Results of the processing study are summarised in Table 59. TMG was not detected in any of the samples. Since samples from the trial foliar application resulted in residues for the potato (RAC) below the LOQ, it was not possible to calculate processing factors.

## Processing studies on sugarbeet

Sugar beet seeds were treated with a SE formulation (474 g ai/L clothianidin) at a rate of 3 mg ai/seed (Duah and Harbin, 2006b, M-282415-01-1). Following treatment, the seeds were planted at a seeding rate of 130714 seeds/ha for a resulting soil application rate of 392 g ai/ha. Further details can be found in Table 59 (trial TI013-04P). Mature sugar beet roots were collected at earliest commercial harvest at DAT 147 days. Sugar beets were stored frozen at -12 °C until processing (397 days). Sugar beets were processed into refined sugar, dried pulp, and molasses using simulated commercial processing practices.

# Preparation of refined sugar, dried pulp and molasses

Sugar beets (33.1 kg) were cleaned prior to processing. Heavy deposits of soil were removed with brush and water; loose leaves and foreign matter were separated from the roots. Cleaned beets (29.5 kg) were sliced into cossettes. During diffusion, cossettes were first exposed to 88-92 °C water for 30 to 45 seconds and then diffused in five kettles in a 68-74 °C water bath for 9 minutes. After diffusion, the raw juice was screened with a US #100 standard sieve to remove small pieces of beet from the juice. Water was removed from diffused cossettes with a pulper/finisher. Dried pulp was produced by drying the material in an oven at 54–71 °C to a moisture content of 15% or less (= 1.41 kg dried pulp, 85% dry matter). During the first phosphatization step, raw juice was mixed, the temperature increased to 80-85 °C and 20% calcium oxide solution added until the pH reached 10.5. The precipitate or mud was removed by centrifugation. In the second phosphatization step, the juice was then centrifuged and vacuum filtered to separate out the clear juice (thin juice), which was further treated with sodium bisulfate to reduce the pH to 8.8-9.0. This thin juice was evaporated to 50-60% concentration (thick juice), maintaining temperature to below 85 °C. The thick juice was filtered and evaporated until 80-85% syrup was achieved. A solution of pulverized white sugar in isopropyl

alcohol was added to seed the crystallization process. The solution was allowed to cool, after which, the sugar and molasses were separated by centrifuging. After centrifuging, the crystallized white sugar was fed into a basket centrifuge with filter baskets. Steam was added to remove residual molasses from the crystallized sugar. After removing the molasses, white sugar was dried in an oven at 54–71 °C up to a final moisture content of 1.0%. Finally 0.245 kg refined sugar and 1.1 kg molasses (62% dry matter) was obtained.

Samples were stored at -12 °C for 385 days (roots), 24 days (dried pulp and refined sugar) or 130 days (molasses). Residues of clothianidin and TMG were determined using modification A of HPLC-MS-MS method TI-002-P05-001. Results were not corrected for matrix interferences (< 0.01 mg/kg for roots, sugar and pulp, < 0.02 mg/kg for molasses and for each analyte), or for average concurrent method recoveries (89%–110%, each matrix and for each analyte). Clothianidin results of the processing study on sugar beet roots are summarised in Table 59. TMG residues were < 0.01 mg/kg in all sugarbeet, sugar and pulp samples and < 0.02 mg/kg in all molasses samples (expressed as clothianidin equivalents).

### Processing studies on cottonseed

Cotton samples from a trial in the USA in 2006 were ginned to obtain cottonseed samples for processing into cottonseed hulls, meal and refined oil (Stewart, 2008d, THR-0584). The plot was treated with two foliar applications of 500 WG formulation of clothianidin at 561 g ai/ha with an 8 day interval. Cottonseed samples were harvested 20 days after the last application. Further details can be found in Table 59 (trial SARS-06-85-AR-3). Cottonseed samples were ginned and shipped at ambient temperature to the processing lab (2 days) and were thereafter stored below -12 °C until processing (12 days). Processing procedures simulated commercial practices as closely as possible.

# Preparation of hulls, meal and refined oil

Ginned cottonseed (28.8 kg) was saw delintered to remove most remaining lint. The delinted seed (25.0 kg) was mechanically cracked to liberate the kernels. A screen cleaner and aspirator separated the hulls (10.7 kg) and kernels (14.2 kg). The kernels were heated to 79–91 °C for 15–30 min, flaked and steam expanded. The resulting collets were dried at 66–82 °C for 30–40 min, extracted with hexane at 49–60 °C three times, dried, and ground to meal (7.4 kg). Crude oil was recovered from the miscella (crude oil and hexane) by heating to 73–90 °C and refined oil was produced by adding sodium hydroxide followed by separating and removing the soapstock. A final amount of 1.8 kg refined oil was obtained. Percentage dry matter was 96% in cotton meal samples and 90% in cotton hull samples.

Processed samples were stored for 91 days at -20 °C. Total storage period from harvest/processing to analysis is 91–112 days for seeds, refined oil, hulls and meal. Clothianidin and TMG were determined by modification B of HPLC-MS-MS method 164. Samples were not corrected for individual concurrent method recoveries (71–113%, each matrix and for each analyte), nor for matrix interferences (< 0.01 mg/kg for each matrix). Clothianidin residues are summarised in Table 59. TMG residues were only analysed in cotton gin byproducts from the 2006 field trials. Cotton gin byproducts contained 0.05–0.14 mg/kg TMG (expressed as clothianidin).

| Location,<br>year,<br>(variety) | Treatment         | DAT | Processed<br>products | Residues,<br>mg/kg   | Processing<br>factor | Reference<br>(trial) |
|---------------------------------|-------------------|-----|-----------------------|----------------------|----------------------|----------------------|
| Quincy, WA,                     | foliar spray;     | 7   | apple (RAC)           | 0.38 <sup>a, b</sup> | -                    | THR-0066;            |
| USA, 1999                       | 500 WG            |     | apple juice           | 0.052 <sup>a</sup>   | 0.14                 | (V-12016-Q)          |
| (Oregon Spur)                   | 1× 665 g ai/ha    |     | wet pomace            | 0.092 <sup>a</sup>   | 0.24                 |                      |
| Delano, Kern,                   | foliar spray;     | 0   | grapes (RAC)          | 0.62 <sup>a</sup>    | -                    | THR-0068             |
| CA, USA, 2003                   | 500 WG;           |     | raisins               | 1.0 <sup>a</sup>     | 1.6                  | (trt 5,              |
| (Thompson)                      | 545 + 567 g ai/ha |     | grape juice           | 0.71 <sup>a</sup>    | 1.1                  | TCI-03-076-10)       |
| Delano, Kern,                   | drip application; | 30  | grapes (RAC)          | < 0.02 <sup>a</sup>  | -                    | THR-0068             |
| CA, USA, 2003                   | 160 SG            |     | raisins               | < 0.04 <sup>a</sup>  | -                    | (trt 6,              |
| (Thompson)                      | 1× 1111 g ai/ha   |     | grape juice           | < 0.02 <sup>a</sup>  | -                    | TCI-03-076-10)       |

Table 129 Residues of clothianidin after processing

| Location,                                              | Treatment                                                     | DAT | Processed                                                                             | Residues,                                                                             | Processing                    | Reference                             |
|--------------------------------------------------------|---------------------------------------------------------------|-----|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|
| year,<br>(variety)                                     |                                                               |     | products                                                                              | mg/kg                                                                                 | factor                        | (trial)                               |
| Beri, SA,<br>Australia, 2007<br>(Thompson<br>Seedless) | foliar spray;<br>500 WG;<br>2x40 g ai/hL<br>+ MAXX            | 42  | grapes (RAC)<br>raisins<br>grape juice<br>grape pomace                                | 2.4<br>8.6<br>4.4<br>4.5                                                              | -<br>3.6<br>1.8<br>1.9        | THR-0550<br>(trial 6866)              |
| Wayne, NY,<br>USA, 2007<br>(Roma)                      | foliar spray;<br>500 WG;<br>2× 564 g ai/ha                    | 7   | tomato (RAC)<br>tomato paste<br>tomato puree                                          | 0.026<br>0.031 <sup>a</sup><br>0.020 <sup>a</sup>                                     | -<br>1.2<br>0.77              | THR-0578;<br>(SARS-07-80-<br>NY)      |
| Payette, ID,<br>USA, 2003<br>(Shepody)                 | in furrow applic,<br>160 SG,<br>1× 1105 g ai/ha               | 124 | potatoes (RAC)<br>granules<br>chips<br>wet peel                                       | 0.026 <sup>a</sup><br>0.055 <sup>a</sup><br>0.040 <sup>a</sup><br>< 0.02 <sup>a</sup> | -<br>2.1<br>1.5<br>< 0.77     | THR-0069<br>(trt 4,<br>TCI-03-075-11) |
| Payette, ID,<br>USA, 2003<br>(Shepody)                 | foliar spray,<br>500 WG,<br>3× 376 g ai/ha                    | 14  | potatoes (RAC)<br>granules<br>chips<br>wet peel                                       | $< 0.02^{a}$<br>$0.032^{a}$<br>$< 0.04^{a}$<br>$< 0.02^{a}$                           | -<br>-<br>-                   | THR-0069<br>(trt 5,<br>TCI-03-075-11) |
| Sabin, MN,<br>USA, 2004<br>(Beta 101)                  | seed treatment;<br>474 SE,<br>3 mg ai/seed;<br>1× 392 g ai/ha | 147 | sugarbeet roots<br>(RAC)<br>refined sugar<br>dried pulp (dm 85%)<br>molasses (dm 62%) | $\begin{array}{c} 0.010^{a} \\ < 0.01^{a} \\ 0.017^{a} \\ 0.032^{a} \end{array}$      | -<br>< 1<br>1.7<br>3.2        | M-282415-01-1;<br>(TI013-04P)         |
| Jackson, AR,<br>USA, 2006<br>(FM 958LL,<br>picker)     | foliar spray;<br>500 WG;<br>2× 561 g ai/ha                    | 20  | cottonseed (RAC)<br>meal (dm 96%)<br>hulls (dm 90%)<br>refined cotton oil             | 0.13<br>0.012 <sup>a</sup><br>0.099 <sup>a</sup><br>< 0.01 <sup>a</sup>               | -<br>0.092<br>0.76<br>< 0.077 | THR-0584;<br>(SARS-06-85-<br>AR-3)    |
| Jackson, AR,<br>USA, 2007<br>(LS 55-56NRR)             | foliar spray;<br>500 WG;<br>2× 561 g ai/ha                    | 21  | soya bean seed<br>(RAC)<br>hulls (dm 88%)<br>meal (dm 96%)<br>refined soya bean oil   |                                                                                       |                               | THR-0585;<br>(SARS-07-86-<br>AR-2)    |

<sup>a</sup>, Average of replicate field samples

<sup>b</sup>, Result differs from the value listed in Table 59, because the sample was re-analysed just before processing.

# Processing studies summary

An overview of calculated processing factors for apples, grapes, tomatoes, potatoes and cottonseed is given in Table 60.

| Table 130 Overview of calcula | ated processing factors |
|-------------------------------|-------------------------|
|-------------------------------|-------------------------|

| Commodity   | Processed fraction        | Processing factors |  |
|-------------|---------------------------|--------------------|--|
|             |                           | (n = 1 - 2)        |  |
| Apple       | Apple pomace (wet)        | 0.24               |  |
|             | Apple juice               | 0.14               |  |
| Grape       | Raisins                   | 1.6, 3.6           |  |
|             | Grape juice               | 1.1, 1.8           |  |
|             | Grape pomace              | 1.9                |  |
| Tomato      | Tomato paste              | 1.2                |  |
|             | Tomato puree              | 0.77               |  |
| Potato      | Potato granules           | 2.1                |  |
|             | Potato chips              | 1.5                |  |
|             | Wet peel                  | < 0.77             |  |
| Sugar beets | Refined sugar             | < 1                |  |
|             | Dried pulp (85% dm)       | 1.7                |  |
|             | Molasses (62% dm)         | 3.2                |  |
| Cottonseed  | Cottonseed meal (96% dm)  | 0.1                |  |
|             | Cottonseed hulls (88% dm) | 0.76               |  |
|             | Refined cotton oil        | < 0.077            |  |

### Residues in the edible portion of food commodities

No data submitted.

### **Residues in animal commodities**

# Direct animal treatments

Not relevant for the present intended uses.

### Farm animal feeding studies

The Meeting received information on feeding studies with lactating cows.

# Cattle feeding study

A feeding study was conducted in lactating cows (Nuesslein and Auer, 2000, THR-0071). Groups of three dairy cows (Holstein-Friesian) were fed once a day with oral dose capsules of clothianidin for 28 days at actual dosages of 0.27, 0.80 and 2.6 mg/kg in the diet ( $1\times$ ,  $3\times$  and  $10\times$ ) corresponding respectively to dose rates of 0.0083, 0.0285 and 0.091 mg ai/kg bw/day. The actual daily feed intake was calculated as 3.2% to 3.7% of bodyweight. Bodyweights of animals ranged between 473–673 kg. The animals were sacrificed within 15–17 hrs after the final dose. Milk was collected twice a day. Samples were stored for -18 °C for 20–28 days. The edible tissues (kidney, liver, composite fat (omental and perirenal), and composite muscle (flank, leg, loin) and milk samples were analysed for clothianidin and the metabolites TZG, TZU and ATMG-Pyr according to modification A of HPLC-MS-MS method 00624. Results were not corrected for levels in control samples (< 0.3LOQ) or for concurrent method recoveries (67%–114%, all analytes and all matrices).

The milk production, feed consumption and body weight were not adversely affected by the dosing levels. Tissue residue levels from individual cows were below the LOQ at all dose levels (< 0.02 mg/kg, each analyte and for each tissue). Levels of TZG, TZU and ATMG-Pyr in whole milk were below the LOQ at all dose levels (< 0.01 mg/kg, each analyte). Levels of parent in all samples of whole milk from the 1× dosage groups were below the LOQ of the analytical method (< 0.002 mg/kg for parent). Results for the 3× and 10× dosing groups are shown in Table 61. Residue levels (parent) ranged between < 0.002–0.004 mg/kg in the 3× dose group and between < 0.002–0.012 mg/kg in the 10× dosing group.

| Day | 3× dosage | e group b |                                                                                             |         | 10× dosag | e group |        |         |
|-----|-----------|-----------|---------------------------------------------------------------------------------------------|---------|-----------|---------|--------|---------|
|     | cow 8     | cow 10    | cow 11                                                                                      | average | cow 12    | cow 13  | cow 15 | average |
| 1   | na        | na        | na                                                                                          |         | na        | na      | na     |         |
| 2   | < LOQ     | < LOQ     | < LOQ                                                                                       | 0.0020  | na        | na      | na     |         |
| 3   | < LOQ     | < LOQ     | < LOQ                                                                                       | 0.0020  | < LOQ     | < LOQ   | < LOQ  | 0.0020  |
| 4   | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.010     | 0.004   | 0.003  | 0.0057  |
| 5   | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.009     | 0.004   | 0.002  | 0.0050  |
| 6   | 0.003     | < LOQ     | < LOQ                                                                                       | 0.0023  | 0.010     | 0.005   | 0.002  | 0.0057  |
| 7   | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.009     | 0.005   | 0.002  | 0.0053  |
| 8   | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.009     | 0.003   | 0.002  | 0.0047  |
| 9   | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.009     | 0.003   | < LOQ  | 0.0047  |
| 10  | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.010     | 0.004   | < LOQ  | 0.0053  |
| 11  | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.011     | 0.004   | < LOQ  | 0.0057  |
| 12  | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.009     | 0.004   | 0.002  | 0.0050  |
| 13  | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.007     | 0.004   | 0.002  | 0.0043  |
| 14  | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.012     | 0.004   | 0.002  | 0.0060  |
| 15  | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.010     | 0.003   | 0.003  | 0.0053  |
| 16  | 0.002     | 0.002     | < LOQ                                                                                       | 0.0020  | 0.012     | 0.004   | 0.002  | 0.0060  |
| 17  | 0.002     | < LOQ     | < LOQ                                                                                       | 0.0020  | 0.011     | 0.004   | 0.002  | 0.0057  |
| 18  | < LOQ     | 0.002     | <loq< td=""><td>0.0020</td><td>0.008</td><td>0.004</td><td>0.002</td><td>0.0047</td></loq<> | 0.0020  | 0.008     | 0.004   | 0.002  | 0.0047  |

Table 61 Residue levels (parent, mg/kg) in whole milk from 3× and 10× dosage groups

| Day                  | Day $3 \times \text{dosage group b}$ $10 \times \text{dosage group}$ |                    |                                                                                             | e group | roup               |                    |                    |         |
|----------------------|----------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------|---------|--------------------|--------------------|--------------------|---------|
|                      | cow 8                                                                | cow 10             | cow 11                                                                                      | average | cow 12             | cow 13             | cow 15             | average |
| 19                   | < LOQ                                                                | < LOQ              | <loq< td=""><td>0.0020</td><td>0.007</td><td>0.003</td><td>0.002</td><td>0.0040</td></loq<> | 0.0020  | 0.007              | 0.003              | 0.002              | 0.0040  |
| 20                   | < LOQ                                                                | < LOQ              | < LOQ                                                                                       | 0.0020  | 0.005              | 0.003              | < LOQ              | 0.0033  |
| 21                   | < LOQ                                                                | < LOQ              | <loq< td=""><td>0.0020</td><td>0.009</td><td>0.004</td><td>0.002</td><td>0.0050</td></loq<> | 0.0020  | 0.009              | 0.004              | 0.002              | 0.0050  |
| 22                   | < LOQ                                                                | < LOQ              | < LOQ                                                                                       | 0.0020  | 0.006              | 0.002              | 0.002              | 0.0033  |
| 23                   | < LOQ                                                                | < LOQ              | <loq< td=""><td>0.0020</td><td>0.007</td><td>0.003</td><td>0.002</td><td>0.0040</td></loq<> | 0.0020  | 0.007              | 0.003              | 0.002              | 0.0040  |
| 24                   | < LOQ                                                                | < LOQ              | < LOQ                                                                                       | 0.0020  | 0.006              | 0.003              | < LOQ              | 0.0037  |
| 25                   | 0.002                                                                | < LOQ              | < LOQ                                                                                       | 0.0020  | 0.006              | 0.003              | < LOQ              | 0.0037  |
| 26                   | 0.002                                                                | < LOQ              | < LOQ                                                                                       | 0.0020  | 0.008              | 0.004              | 0.002              | 0.0047  |
| 27                   | 0.002                                                                | < LOQ              | <loq< td=""><td>0.0020</td><td>0.008</td><td>0.003</td><td>0.002</td><td>0.0043</td></loq<> | 0.0020  | 0.008              | 0.003              | 0.002              | 0.0043  |
| 28                   | 0.002                                                                | < LOQ              | < LOQ                                                                                       | 0.0020  | 0.006              | 0.003              | 0.002              | 0.0037  |
| 29                   | 0.002                                                                | < LOQ              | < LOQ                                                                                       | 0.0020  | 0.007              | 0.004              | 0.002              | 0.0043  |
| 30                   | 0.004 <sup>a</sup>                                                   | 0.002 <sup>a</sup> | 0.002 <sup>a</sup>                                                                          |         | 0.006              | 0.003              | 0.002              | 0.0037  |
| 31                   | -                                                                    | -                  | -                                                                                           |         | 0.012 <sup>a</sup> | 0.005 <sup>a</sup> | 0.004 <sup>a</sup> |         |
| Average <sup>d</sup> |                                                                      |                    |                                                                                             | 0.0020  |                    |                    |                    | 0.0046  |
| Median               |                                                                      |                    |                                                                                             | 0.0020  |                    |                    |                    | 0.0047  |

na, not analysed

<sup>a</sup>, morning milk only

<sup>b</sup>, Dosage started on day 2 and ended on day 29; animals were slaughtered on day 30

<sup>c</sup>, Dosage started on day 3 and ended on day 30; animals were slaughtered on day 31

<sup>d</sup>, Excluding the value on day 30 ( $3 \times$  dose level) or day 31 ( $10 \times$  dose level), because morning milk contains higher residue levels than combined milk samples (confirmed by metabolism studies)

# Residues in food in commerce or at consumption

No data submitted.

### National residue definition

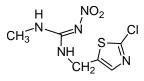
In countries where clothianidin is registered, the residue definition for compliance with the MRL/enforcement and risk assessment is the parent only, clothianidin. Among these countries are: USA, Australia, Japan, Korea, Brazil, and EU (Gaston, 2010a).

The New Zealand residue definition is the "sum of clothianidin, TMG, TZU, and the pyruvate derivative of TMG", expressed as clothianidin. MRLs in New Zealand exist only for animal products, as this insecticide is only authorised for use as a pasture seed treatment (information from JMPR panel member).

# APPRAISAL

Residue and analytical aspects of clothianidin were considered for the first time by the present Meeting. The residue evaluation was scheduled for the 2010 JMPR by the Forty-first Session of the CCPR (ALINORM 09/32/24).

Clothianidin is an insecticide that can be used for soil, foliar and seed treatment belonging to the chemical class of nitromethylenes or neonicotinoids and acts as an agonist of the nicotinic acetylcholine receptor, affecting the synapses in the insect central nervous system of sucking and chewing insects. It has registered uses in many countries on soya beans, cereals, sugar cane, oilseeds, tea and a range of fruits and vegetables.


The Meeting received information from the manufacturer on identity, metabolism, storage stability, residue analysis, use pattern, residues resulting from supervised trials on pome fruit, stone fruit, cranberries, grapes, persimmon, bananas, Brassica vegetables, fruiting vegetables, lettuce, dry

soya beans, root and tuber vegetables, cereal grains, sugar cane, oilseeds, animal feeds and teas, fate of residue during processing, and livestock feeding studies. In addition, the Meeting received information from the Netherlands and Japan on use pattern.

# Chemical name

Clothianidin or (E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine

Structural formula:



Clothianidin exists predominantly in the E-form. This has been confirmed by NMR analysis. Quantum chemical calculations revealed that in water the E-isomer is more stable than the Z-isomer. At room temperature the theoretical ratio between E/Z isomers is estimated as 65:1.

The compound clothianidin is equivalent to the E form of CGA 322704, a metabolite arising from thiamethoxam use. Thiamethoxam is described as an E/Z mixture and the situation is similar for metabolite CGA 322704. No information is given on the actual ratio between E and Z isomers, nor which of these isomers is the active one. Information on the activation energy to convert Z-isomers to E-isomers is not available. If the activation energy for conversion is high, it is likely that the CGA 322704 appears as E/Z mixture in crops, soil, water and animal commodities. HPLC chromatograms of CGA 322704 from supervised trials show a single peak, so it is not clear whether E/Z mixtures cannot be separated by HPLC or whether there is only one isomer present in plant and animal commodities. As a consequence both isomers need to be considered.

Metabolites referred to in the appraisal by codes:

| 2-chlorothiazolyl-5-ylmethylamine                                   |
|---------------------------------------------------------------------|
| N'-[amino(2-chlorothiazol-5-ylmethyl)guanidine                      |
| N'-[amino(2-chlorothiazol-5-ylmethyl)-N"-methylguanidine            |
| 3-amino-4-(2-chlorothiazolyl-5-yl)methyl-5-methyl-4H-1,2,4-triazole |
| methylguanidine                                                     |
| methylnitroguanidine                                                |
| methylurea                                                          |
| thiazolylmethylguanidine                                            |
| 3-(2-chlorothiazolyl-5-yl)methylamino-5-methyl-1H-1,2,4-triazole    |
| thiazolylguanidine                                                  |
| thiazolylmethylurea                                                 |
| thiazolylnitroguanidine                                             |
| thiazolylurea                                                       |
|                                                                     |

## Animal metabolism

The Meeting received results of animal metabolism studies in a lactating goat and in laying hens. Experiments were carried out using clothianidin <sup>14</sup>C labelled at the nitroimino position.

Metabolism in laboratory animals was summarised and evaluated by the WHO panel of the JMPR in 2010.

A <u>lactating goat</u>, orally treated once daily for three consecutive days with nitroimino- $[^{14}C]$ clothianidin at an actual dose rate of 201 ppm in the dry weight feed (equivalent to

9.8 mg ai/kg bw/d), was sacrificed 5 hours after the last dose. Of the administered dose 70.4% was recovered: 13.5% in faeces, 48.8% in urine, 6.6% in tissues and 6.6% in milk. The radioactivity in the gastrointestinal tract or in breathed air was not measured. The radioactivity in the tissues ranged from 16 mg/kg in liver and 9.3 mg/kg in kidney to 4.3 mg/kg in muscle and 2.1 mg/kg clothianidin equivalents in fat. Maximum residue levels in milk were found within 24 hours: 6.0–6.6 mg/kg was found at 8 hours after the 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup> doses and decreased to 0.92–0.97 mg/kg clothianidin equivalents at 24 hours after the 1<sup>st</sup> and 2<sup>nd</sup> doses.

Radioactivity was characterised in all tissues and milk. A total of 51%, 67%, 81%, 89% and 94% of the total radioactivity could be identified in liver, kidney, muscle, fat and milk, respectively. Parent was the major compound found at 51%, 25% and 37% of the total radioactivity in milk, muscle and fat, respectively. The major metabolites were TZNG at 14% in milk, TZMU at 13% in fat, and TZU at 11% in milk, 13% in muscle and 12% in fat. In liver and kidney, the parent compound was not found. The major metabolite in liver was TMG and conjugates at 13%. The major metabolites in kidney were TZU at 15%, TZG at 12%, TZMU at 11% and an ATMG-pyruvate at 10%. Other minor metabolites identified were below 8% of the total radioactivity. Part of the extractable residue in tissues and milk remained unidentified (7.3%–42% of the total radioactivity). The non-identified part of the radioactivity consisted mainly of polar compounds. Up to 14% of the total radioactivity remained unextracted.

Six <u>laying hens</u>, orally treated once daily for three consecutive days with nitroimino-[<sup>14</sup>C]clothianidin at an actual dose rate of 134 ppm in the dry weight feed (equivalent to 10.4 mg ai/kg bw/d), were sacrificed 5 hours after the last dose. Of the administered doses 98% was recovered: 95% in excreta, 3.1% in tissues and 0.15% in eggs. The radioactivity in the tissues ranged from 7.9 mg/kg in kidney and 5.1 mg/kg in liver to 1.4–1.7 mg/kg in muscle, 1.1 mg/kg in skin and 0.19 mg/kg clothianidin equivalents in fat. Residue levels in eggs increased from 0.38–0.94 mg/kg clothianidin equivalents at 24 to 53 hours after the 1<sup>st</sup> dose.

Radioactivity was characterised in liver, muscle, fat and eggs. At least 65% of the total radioactivity could be identified. Parent was only a minor compound and was found at levels of up to 5.3% of the total radioactivity in tissues and at 21% in eggs. Major metabolites were TZNG at 88% in eggs, 46% in liver and 24% in fat, TZG at 22% in liver and ATG conjugates at 35% in muscle and 38% in fat. Other minor metabolites identified were below 4% of the total radioactivity. Part of the extractable residue in tissues and eggs remained unidentified (0.7%–31% of the total radioactivity). Up to 11% of the total radioactivity remained unextracted.

Clothianidin is efficiently degraded in goats and hens into a large number of metabolites reflecting the existence of numerous degradation pathways such as denitrification, hydrolysis, oxidative methylation and C-N bond cleavage to form TMG, TZMU, TZNG, or MNG, respectively, followed by further transformation to form ATMG conjugates, TZU, TZG and ATG conjugates.

The metabolic pathway proposed for ruminants and poultry is consistent with that for rats. Some poultry specific metabolites such as the ATG conjugates (35-38%) in muscle and fat), TMT (2.4% in muscle) and ATMT (3.0% in muscle) and some ruminant specific metabolites like THMG (1.6% in milk) and ATMG-pyruvate (2.5–10.4% in liver, kidney, muscle, fat) were not present in rat metabolism.

### Plant metabolism

The Meeting received plant metabolism studies for clothianidin seed treatments on sugar beets or maize, foliar spray treatment of apple trees or tomatoes and granular soil treatment of tomatoes. Experiments were carried out using clothianidin <sup>14</sup>C labelled at the nitroimino or the thiazolyl moiety.

<u>Sugar beet</u> seeds were treated with nitroimino- $[^{14}C]$ clothianidin at a rate of 190 g ai/ha. Sugar beets were grown outdoors. Total radioactive residues in the roots harvested 48, 55 and 144 days following last application were 0.86, 0.20, and 0.034 mg/kg clothianidin equivalents. Total radioactive residues in the leaves harvested 48, 55 and 144 days following last application were 1.8, 0.52 and 0.89 mg/kg clothianidin equivalents. At harvest (144 days) a total of 46% and 75% of the total

radioactivity could be identified in respectively roots and leaves. At harvest, sugar beet roots contained predominantly the parent compound at 24% of the total radioactivity, whereas the leaves showed a predominant amount of TMG and MG metabolites at 27–29% of the radioactivity and only a low level of parent (4.3%). Other minor metabolites identified were below 10% of the total radioactivity. Part of the extractable residue in roots and leaves at harvest remained unidentified (19–41% of the total radioactivity). Up to 13% of the total radioactivity remained unextracted. At earlier harvest times (48 and 55 days) parent was the major compound in both roots and leaves (49–68%).

<u>Maize</u> seeds were treated with nitroimino-[<sup>14</sup>C]clothianidin at a rate of 1.06 mg ai/seed. Maize was grown outdoors. Total radioactive residues in the forage harvested 60 days following last application was 0.130 mg/kg clothianidin equivalents. Total radioactive residues in the stover and kernels harvested 145 days following last application were 0.170 and 0.006 mg/kg clothianidin equivalents. A total of 70%, 56% and 53% of the total radioactivity could be identified in forage, stover and kernels, respectively. The parent was the major compound recovered in forage, stover and kernels and accounted for 43%, 20% and 14% of the total radioactivity, respectively. A major metabolite found in stover and kernels was MG at 15% and 22% of the total radioactivity. Other minor metabolites identified were below 10% of the total radioactivity. Part of the extractable residue in forage, stover and kernels remained unidentified (27–36% of the total radioactivity). Up to 12% of the total radioactivity remained unextracted.

<u>Maize</u> seeds were treated with thiazolyl-2-[<sup>14</sup>C]clothianidin at a rate of 2.52 mg ai/seed. Maize was grown indoors. Total radioactive residues in the forage harvested 63 days following last application was 0.89 mg/kg clothianidin equivalents. Total radioactive residues in the stover and kernels harvested 160 days following last application were 3.1 and 0.063 mg/kg clothianidin equivalents. A total of 80%, 65%, and 62% of the total radioactivity could be identified in respectively forage, stover and kernels. The parent was the major compound recovered in forage, stover and kernels identified were below 10% of the total radioactivity. Part of the extractable residue in forage, stover and kernels remained unidentified (14–33% of the total radioactivity). Up to 8.5% of the total radioactivity remained unextracted.

Outdoors grown <u>apple trees</u> were sprayed two times with nitroimino-[<sup>14</sup>C]clothianidin at a dose rate of 150 g ai/ha each and an interval of 85 days. Total radioactive residues in the apple fruits and leaves harvested 14 days following last application were 0.076 and 6.45 mg/kg clothianidin equivalents. The radioactivity was distributed within the fruit and leaves: 33% and 70% of the total radioactivity could be removed from fruits and leaves by a methanolic surface wash respectively, while 63% and 24% could be extracted from fruits and leaves, respectively. A total of 80% and 84% of the total radioactivity could be identified in fruits and leaves, respectively. Parent was the major compound both in the surface washed phase and in the solvent extract accounting for 61% and 54% and of the total radioactivity in fruits and leaves, respectively. The major metabolite found in fruits was TZMU at 11% of the total radioactivity. Minor metabolites identified in fruits and leaves were below 10% of the total radioactivity. Part of the extractable residue remained unidentified (10–16% of the total radioactivity). Up to 5.6% of the total radioactivity remained unextracted.

Indoors grown tomato plants were sprayed two times with nitroimino-[ $^{14}$ C]clothianidin at a dose rate of 158 g ai/ha each and an interval of 14 days. Total radioactive residues in the tomato fruits harvested 3 days following last application were 0.57 mg/kg clothianidin equivalents. The major part of the radioactivity was located on the surface: 97% of the radioactivity could be removed by a methanolic surface wash. A total of 97% of the total radioactivity could be identified, which was allocated solely to the parent compound. Only a small part of the extractable residue remained unidentified (3.3% of the total radioactivity), while only 0.1% of the total radioactivity remained unextracted.

Planting holes were treated with nitroimino-[ $^{14}$ C]clothianidin at a dose rate of 15 mg ai/hole and 33 day old <u>tomato</u> plants were transplanted in the holes. Tomato plants were grown indoors. Total radioactive residues in the tomato fruits harvested 97 days following the application were 0.014 mg/kg clothianidin equivalents. A total of 92% of the total radioactivity could be identified.

Parent was the predominant residue at 66% of the total radioactivity. The major metabolite found was MNG at 18% TRR. Other minor metabolites were below 10% of the radioactivity. Only a small part of the extractable residue remained unidentified (6.0% of the total radioactivity), while only 1.9% of the total radioactivity remained unextracted.

In each commodity tested, except sugar beet leaves at harvest, clothianidin was found to be the major residue (14–97% of the total radioactivity). Major metabolites found were TMG (27% in mature sugar beet leaves), MG (29% in mature sugar beet leaves, 15% in maize stover, 22% in maize kernels), TZMU (11% in apple fruit), and MNG (18% in tomato fruit).

In crops, clothianidin is degraded into a large number of metabolites reflecting the existence of numerous degradation pathways. The major pathways are denitrification, hydrolysis, and C-N bond cleavage to form TMG, TZMU, and MNG, followed by further transformation to MG. Degradation occurred at a relatively low to medium level, leaving the parent compound as the predominant component.

All plant metabolites identified were also found in rats.

## Environmental fate in soil

The Meeting received information on the fate of clothianidin after aerobic degradation in soil and after photolysis on the soil surface. In addition, the Meeting received information on the uptake of clothianidin soil residues by rotational crops. Experiments were carried out using clothianidin <sup>14</sup>C labelled at the nitroimino or the thiazolyl moiety.

An aerobic soil degradation study was conducted with three different soils. Soils were mixed with nitroimino-[<sup>14</sup>C]clothianidin at 0.133 mg ai/kg, equivalent to 300 g ai/ha. Soils were incubated for 120 days in the dark at 20 °C at 40% of maximum water holding capacity (silt loam and silt), or for 365 days at 75% of 333 mbar moisture (sandy loam). Calculated half lives (DT<sub>50</sub>) were 143, 227, and 490 days for silt, silt loam, and loamy sand, respectively. Parent was the predominant residue at the end of the study (54–69% of the total applied radioactivity). The major metabolites were TZNG at 9.1% and MNG at 11% of the total applied radioactivity.

A second aerobic soil degradation study was conducted with two silt loam soils. Soils were mixed with thiazolyl-2-[<sup>14</sup>C]clothianidin at 0.133 mg ai/kg, equivalent to 300 g ai/ha. Soils were incubated for 181 or 379 days in the dark at 20 °C at 75% of 333 mbar moisture. Calculated half lives (DT<sub>50</sub>) for the silt loam soils were 541 and 808 days. Parent was the predominant residue at the end of the study (60–78% of the total applied radioactivity). Only minor metabolites were found (less than 2% of total applied radioactivity).

A photolysis study was conducted on a soil surface. Nitroimino- $[^{14}C]$ clothianidin was applied uniformly on a sandy loam soil surface, equivalent to a rate of 300 g ai/ha. Samples were exposed to artificial sunlight for 17 days, equivalent to 42 days of natural sunlight. The half live was calculated as 8.2 days. Parent was the predominant residue at the end of the study (22% of the total applied radioactivity). Only minor metabolites were found (less than 5% of the applied radioactivity).

In a confined rotational crop study, nitroimino-[<sup>14</sup>C]clothianidin was sprayed on a sandy loam soil at a rate of 328 g ai/ha under greenhouse conditions. Rotational crops were sown 29, 153 and 314 days after the application, representing first, second and third rotations. Wheat forage was harvested at 41–50 days after sowing, wheat hay 77–106 days after sowing and wheat straw/grain, Swiss chard and turnip leaves/roots at 123–161 and 41–61, 75–84 days after sowing, i.e., at maturity. Total radioactivity was 0.016, 0.011 and 0.007 mg/kg clothianidin equivalents in turnip roots after the first, second and third rotations respectively, 0.11, 0.052 and 0.044 mg/kg in the wheat grain, 0.15, 0.25 and 0.12 mg/kg in wheat forage, 0.53, 0.36 and 0.37 mg/kg in wheat hay and 2.6, 1.2 and 1.2 mg/kg in wheat straw. Parent was the major compound in turnip roots at 27–40% of total radioactivity. Parent, TZNG and MNG were the major compounds at 12–46%, 3.9–16% and 11–37% of total radioactivity

in green crop parts including wheat hay. Parent, TZNG, MG and MNG were the major compounds in wheat straw at 7.2–12%, 7.3–11%, 9.3–18% and 9.1–13% of total radioactivity, respectively.

In a field rotational crop study, maize seeds were treated at a rate of 2 mg ai/seed and sown in the field, corresponding to a rate of 162–192 g ai/ha. Maize plants were tilled into the soil and rotational crops were sown 1, 4, 8 and 12 months after sowing the maize seeds. Turnips (roots, tops), wheat (forage, hay, straw, grain) and mustard greens were harvested at earliest crop maturity. Clothianidin levels in green crop parts including wheat hay ranged from < 0.01-0.025 mg/kg, < 0.01-0.017 mg/kg, and < 0.01-0.023 mg/kg at the 1, 4 and 8 month plant back intervals, respectively. Clothianidin was not found at the 12 month plant back intervals (< 0.01 mg/kg). Clothianidin was not found at the 12 month plant back intervals (< 0.01 mg/kg). Clothianidin was not found at the 12 month plant back intervals (< 0.01 mg/kg). TZNG was only quantified at the 1 month plant back interval and was not found in any of the commodities (< 0.01 mg/kg).

The proposed degradation pathway in soil proceeds via two main routes with clothianidin being transformed in TZNG by oxidative methylation and to MNG by C-N bond cleavage. These soil metabolites could then be taken up by plants and further metabolised.

# Environmental fate in water-sediment systems

The Meeting received information on the hydrolysis and photolysis of clothianidin in sterile water. Experiments were carried out using clothianidin <sup>14</sup>C labelled at the nitroimino or the thiazolyl moiety.

Clothianidin is regarded as hydrolytically stable at pH 4 and 7 at 50 °C, but is unstable at pH 9 at this high temperature. At ambient temperature, clothianidin is stable at pH 4, 7 and 9. The experimental half-life for clothianidin at pH 9 was 14.4 days at 50 °C, 3.7 days at 62 °C and 0.68 days at 74 °C. After 33 days there is a clothianidin decrease of 6% at 25 °C. Clothianidin is degraded to a low extent by hydrolysis to form mainly TZMU and ACT.

A photolysis study was conducted in sterile water with artificial sunlight for 18 days, equivalent to 22.5 days of natural sunlight. The half-life for clothianidin was 3.3 hours for artificial sunlight, equivalent to 4.1 hours in natural sunlight. When the study was repeated with non-sterile water, a half-life for clothianidin of 35–37 minutes was found. Photo-degradation therefore contributes significantly to the elimination of clothianidin in aquatic systems. Clothianidin is degraded by hydrolysis, denitrification and complex cyclisation reactions to form mainly TZMU, MU and MG.

### Methods of analysis

The Meeting received description and validation data for analytical methods for clothianidin, TZNG, TMG, TZMU and MNG in plant commodities or for clothianidin, TZG, TZU and the pyruvate conjugate of ATMG in animal commodities.

Three single residue analytical methods were proposed to the Meeting as post-registration monitoring and enforcement method for parent clothianidin in plant and animal commodities. Compatibility of clothianidin in an existing multi-residue HPLC-MS method (e.g., DFG S19) was not tested.

The Meeting considers the HPLC-MS-MS single residue method 00552 and modifications thereof and the HPLC-UV single residue method 00657 and modifications thereof sufficiently validated for the determination of parent clothianidin in plant commodities with high water content, plant commodities with high acid content, plant commodities with high fat content, and dry plant commodities. The use of deuterated standards in HPLC-MS-MS method 00552 makes the method very expensive and therefore less suitable as enforcement-monitoring method for world-wide use. The Meeting considers the HPLC-UV single-residue method 00656 and modifications thereof sufficiently validated for the determination of parent clothianidin in animal tissues, milk and eggs. The LOQs for these three methods were in the range of 0.01–0.02 mg/kg, depending on the matrix.

The methods reported to the Meeting and used in the supervised residue trials, processing studies, storage stability studies and feeding studies determined parent clothianidin and in some cases

also the metabolites TZNG, TMG, TZMU and MNG (in plant commodities) or TZG, TZU and the pyruvate conjugate of ATMG (in animal commodities). Macerated samples were generally extracted with acetonitrile/water. The extract was cleaned up by solvent partition and/or column chromatography and/or solid phase extraction, if necessary. The final residue could then be determined by HPLC-UV or HPLC-MS-MS. The Meeting considers validation sufficient for all commodities and all analytes analysed in the supervised residue trials and feeding studies. LOQs were in the 0.01–0.05 mg/kg range for clothianidin and its metabolites in plant and animal commodities. LOQs for milk were in the 0.002–0.01 mg/kg range for clothianidin.

Extraction efficiencies for acetonitrile/water (2:1) including clean-up steps as used in HPLC-MS-MS method 00552 for plant commodities were verified using samples with incurred radioactive residues from metabolism studies on apple (14 day surface washed fruit sample) and maize (63 day forage, 160 day stover and 160 day kernel sample). Extraction efficiency for acetonitrile/water (2:1) for clothianidin was 85%, 81%, 74%, 61% respectively in surface washed apple fruit, maize forage, maize stover and maize kernels. The Meeting considers the extraction efficiencies for the extraction and clean-up steps as used in the analytical methods generally sufficient for plant commodities. However the study is not conclusive on grains, since the recovery of 61% might be within analytical errors at such low residue levels.

Extraction efficiencies for acetonitrile/water (2:1) including clean-up steps as used in HPLC-MS-MS method 00624 for animal commodities were verified using samples with incurred radioactive residues from metabolism studies on goat (milk, muscle, fat and liver). Extraction efficiency was 100%, 75%, 73% in milk, muscle and fat for clothianidin, 72%, 46%, 106% in muscle, fat and liver for the pyruvate conjugate of ATMG, 62%, 69%, 67% in muscle, fat and liver for TZG, and 87%, 73%, 94% and 68% for milk, muscle, fat and liver for TZU. The Meeting considers the extraction efficiencies for the extraction and clean-up steps as used in the analytical methods for clothianidin sufficient for animal commodities. However, extractions efficiencies for metabolites TZG, the pyruvate conjugate of ATMG and TZU are considered insufficient (less than 70% for some or all commodities).

## Stability of pesticide residues in stored analytical samples

The Meeting received information on the stability of clothianidin and TMG in plant commodities stored frozen. No storage stability studies were provided for animal commodities. Since the samples from the animal feeding study were analysed within 30 days after slaughter, there is no need to have storage stability studies on animal commodities.

Parent clothianidin was stable when stored at -10 °C or lower for at least 24 months in crops with high water content (apple, Japanese pear, apricot, peach, cauliflower, head cabbage, cucumber, tomato, lettuce, maize and forage), for at least 18 months in crops with high acid content (cranberries and grapes), for at least 24 months in crops with high oil content (dry soya beans, cottonseed, rape and seed), for at least 24 months in crops with high starch content (maize grain, rice grain, sugar beet roots and potatoes), for at least 10 months in dry tea leaves, for at least 24 months in maize straw, for at least 2 months in tomato paste, for at least 4 months in cotton meal, and for at least 4 months in cotton oil.

Metabolite TMG was stable when stored at -10 °C or lower for at least 25 months in crops with high water content (cauliflower, lettuce and sugar beet leaves), at least 162 days in crops with high acid content (grapes), at least 25 months in crops with high starch content (potatoes) and at least 25 months in processed potato commodities (flakes and chips).

All crop commodities from supervised residue trials were analysed within this period, although storage temperatures varied. Since clothianidin is shown to be stable for a long period of time, trials where samples were stored for a few days at + 5 °C before being frozen and trials where temperatures of frozen samples increased to -1 °C were not rejected.

### Definition of the residue

The composition of the residue was investigated for livestock, plant commodities, soil and water.

Based on the available livestock studies, parent clothianidin was the major component in ruminant muscle, ruminant fat and milk (21–51% of the total radioactivity TRR), but was metabolised further in ruminant liver, ruminant kidney, poultry tissues and eggs. The major residue in ruminant liver consists of TMG including conjugates (13%); the major residue in ruminant kidney consists of TZU (15%), TZG (12%), TZMU (11%) and ATMG-pyruvate (10%) and parent was not found in liver and kidney. Because the lactating goat was sacrificed only 5 hours after dosing, parent levels might decrease further, while metabolite levels might rise in time. However the metabolite study on goats shows that maximum levels in milk are reached within 24 hours, showing that the residue disappears very quickly. The major residue in poultry consists of ATG conjugates (35%) in muscle; TZNG (24%) and ATG conjugates (38%) in fat; and TZNG (46%) and TZG (22%) in liver. Parent was only found at low levels (up to 5.2%). The major residue in poultry eggs consists of TZNG (88%), parent was found at 21% of the total radioactivity. Of these metabolites, ATMG (conjugates) and ATG (conjugates) were not found in rats. Additional toxicity studies with ATMG-pyruvate and ATG-acetate indicated no toxicological concern,  $(LD_{50} > 2000 \text{ mg/kg}, \text{ negative mutagenicity test})$ . Because of this and because the conjugates of ATMG and ATG are expected to be excreted readily, these metabolites are not included in the residue definition. Since TZNG forms a major part of the residue in poultry fat (24%), poultry liver (46%) and poultry eggs (88%), and TZNG may be significant in ruminants, TZNG is considered for inclusion in the residue definition.

No poultry feeding study has been conducted, therefore actual residue levels in poultry tissues and eggs are not available. Since poultry dietary burden is very low compared to dose levels in the metabolism study (0.25 ppm versus 134 ppm), no residues are anticipated in poultry tissues and eggs. A feeding study on dairy cows was conducted at a maximum level of 2.6 ppm dry feed which is in the same order of magnitude as the dietary burden (0.75 ppm). At this level, the parent compound was only found in milk at levels of up to 0.012 mg/kg. TZNG was not tested. Metabolites TZG, TZU and ATMG-pyruvate were not found in tissues or in milk (< 0.01 mg/kg). Based on these results it is not expected that metabolites will be found in ruminant tissues and milk, nor in poultry tissues and eggs. Therefore the Meeting concluded that the residue definition should only include the parent compound.

Fat solubility of clothianidin in milk has not been investigated in metabolism studies or in feeding studies. The log  $K_{ow}$  for clothianidin of approximately 0.7–0.9 does not suggest fat solubility. Fat solubility of TZNG has not been investigated, but based on its molecular structure it is expected to be in the same order of magnitude as the parent compound. The Meeting considers the residue in animal commodities (clothianidin and TZNG) not to be fat-soluble.

Based on the available comparative plant metabolism studies, parent clothianidin is the major component (14–97% of the total radioactivity TRR) of the crops tested, except in mature sugar beet leaves (27% TMG, 29% MG). TMG, MNG, TZMU and TZNG have been analysed in some supervised field trials. TMG was not found in grapes, persimmons, potatoes, sugar beet roots (< 0.01 or < 0.01 mg/kg), but was found in leafy crops like head cabbage (< 0.01–0.013 mg/kg), head lettuce (< 0.01–0.078 mg/kg), cotton gin trash (0.048–0.14 mg/kg), sugar beet tops (< 0.01–0.026 mg/kg). MNG was not found in persimmons (< 0.01 mg/kg). TZMU and TZNG were found in persimmon at 0.02–0.03 mg/kg. In rotational crops, clothianidin was metabolised further and metabolites TZNG, MNG, and MG were found at quantifiable levels. TZNG is found as a minor metabolite in primary crops (< 10% TRR) and as a major metabolite in rotational crops (10–23% in grain, 3.9–16% in green crop parts and 7.3–11% in wheat straw). However in a field rotational crop study, TZNG could not be found (< 0.01 mg/kg) at the earliest 1 month plant back interval. All plant metabolites identified were also found in rats. Therefore, metabolites are not included in the residue definition.

Clothianidin exists predominantly in the E-form. The compound clothianidin is equivalent to the E form of CGA 322704, a metabolite arising from thiamethoxam use. No information is given on the actual ratio between E and Z isomers, nor which of these isomers is the active one. Information on the activation energy to convert Z-isomers to E-isomers is not available. If the activation energy for conversion is high, it is likely that the CGA 322704 appears as E/Z mixture in crops, soil, water and

animal commodities. HPLC chromatograms of CGA 322704 from supervised trials show a single peak, so it is not clear whether E/Z mixtures cannot be separated by HPLC or whether there is only one isomer present in plant and animal commodities. Therefore, both isomers should be included in the residue definition. Clothianidin and the CGA 322704 metabolite of thiamethoxam will appear the same as clothianidin in the analytical methods. The Z-isomer may result from use of thiamethoxam.

The Meeting recommended the following as residue definitions for clothianidin:

Definition of the residue for compliance with the MRL or for estimation of the dietary intake for plant commodities: *sum of clothianidin and its Z-isomers* 

Definition of the residue for compliance with the MRL or for estimation of the dietary intake for animal commodities: *sum of clothianidin and its Z-isomers*.

The Meeting considers the residue in animal commodities not fat soluble.

## Results of supervised trials on crops

The Meeting received supervised trials data for clothianidin on apples, pears, apricots, cherries, nectarines, peaches, plums, cranberries, grapes, persimmons, bananas, head cabbages, broccoli, cucumber, summer squash, egg plants, sweet corn, tomatoes, head lettuce, leaf lettuce, dry soya beans, carrots, chicory roots, potatoes, sugar beet roots, barley, maize, popcorn, rice, sorghum, wheat, sugarcane, cotton seed, rape seed, sunflower seed and tea.

The Meeting noted that clothianidin residues may arise from use of clothianidin as well as from use of thiamethoxam. The compound clothianidin is equivalent to the E form of CGA 322704, a metabolite arising from thiamethoxam use. Residues of CGA 322704 occurring in food are included in the clothianidin MRLs. In the present appraisal first the maximum residue levels, STMRs and HRs for clothianidin use are evaluated. The same is done for the CGA 322704 metabolite in the thiamethoxam appraisal. In the present appraisal an overview table is given, where a recommendation is given for both uses.

## Pome fruits

Field trials involving <u>apples</u> were performed in Australia, Germany, Hungary, the UK, France, Italy, Spain, Japan and the USA.

GAP for apples and pears in Australia is for two foliar spray applications (interval 14 days) at 20 g ai/hL with a PHI of 21 days, either with or without adjuvant. In trials from Australia matching this GAP ( $2 \times 20$  g ai/hL, interval 15 days and PHI 21 days, with adjuvant) clothianidin residues in apple whole fruit were 0.24 mg/kg (n = 1).

GAP for apples in Australia is for one soil drench application at 2.5 g ai/tree with a PHI of 21 days. Field trials performed in Australia did not match this GAP.

GAP for pome fruit in Hungary is for one foliar spray application at 75 g ai/ha with a PHI of 28 days. Field trials performed in Germany, the UK and France did not match this GAP. In trials in Hungary matching this GAP ( $1 \times 72$  g ai/ha and PHI 28 days) clothianidin residues in apple whole fruit were < 0.02 mg/kg (n = 1).

GAP for apples and pears in Italy is for one foliar spray application at 7.5 g ai/hL with a PHI of 14 days). Field trials performed in Italy, France and Spain did not match this GAP. However trials performed with two applications can be taken into account, since results from samples taken prior to the 2nd application showed residues to be < 0.01-0.011 mg/kg. In trials in France and Italy with two applications (2 × 7.5–7.6 g ai/hL, interval 7 days and PHI 14 days) clothianidin residues in apple whole fruit were < 0.01 (3) and 0.014 mg/kg (n = 4).

GAP for apples in Romania is for an unstated number of foliar spray applications at 10 g ai/hL, unstated interval and unstated PHI. In trials in France, Italy and Spain matching this GAP  $(1-2 \times 7.5-13 \text{ g ai/hL}, \text{ interval } 7 \text{ days}, \text{ PHI of } 0-21 \text{ days})$  clothianidin residues in apple whole fruit were < 0.01, < 0.01, 0.013, 0.014, 0.049, 0.058 0.067 and 0.12 mg/kg (n = 8) without adjuvant and

0.012 and 0.085 mg/kg (n = 2) with adjuvant on the same location. Since an adjuvant is not indicated in the label only the dataset without adjuvant is taken into account.

GAP for apples in Japan is for three spray applications at 8.0 g ai/hL, unstated interval and PHI 1 day. In trials from Japan matching this GAP ( $3 \times 8.0$  g ai/hL, interval 7 days and PHI 1 day) clothianidin residues in apple whole fruit were 0.06 and 0.15 mg/kg (n = 2). The Meeting noted that trial plots consisted of only three trees with a height of 3 m. As the trial design complied with official Japanese guidelines with sampling done randomly and of sufficient size, the Meeting decided to accept the residue results.

GAP for Pome fruit in the USA is for one foliar spray application at 224 g ai/ha (maximum of 224 g ai/ha per season, interval 10 days and a PHI of 7 days. In trials from the USA matching this GAP ( $1 \times 219-225$  g ai/ha and PHI 6–7 days) clothianidin residues in apple whole fruit were < 0.01, 0.010, 0.019, 0.025, 0.052, 0.087, 0.094, 0.10, 0.10, 0.12, 0.15, 0.16 and 0.20 mg/kg (n = 13).

The datasets corresponding to the GAPs for Australia, Hungary, Italy and Japan were considered insufficient to support a recommendation. The Meeting noted that the GAP for Romania resulted in a similar dataset when compared to the GAP for USA (Mann-Whitney U test). However, as the GAPs are different the data cannot be combined. Since the highest residue is found in the USA dataset, the Meeting decided to use only the apple data corresponding to the GAP of the USA.

Field trials involving <u>pears</u> were performed in Australia, Germany, France, Italy, Spain, Japan and the USA.

GAP for apples and pears in Australia is for two foliar spray applications at 20 g ai/hL (interval 14 days) and PHI 21 days, either with or without adjuvant. In trials from Australia matching this GAP ( $2 \times 20$  g ai/hL, interval 15 days and PHI 21 days, with adjuvant) clothianidin residues in pear whole fruit were 0.13 mg/kg (n = 1).

GAP for Pome fruit in Hungary is for one foliar spray application at 75 g ai/ha and PHI 28 days. Field trials performed in Germany and France did not match this GAP.

GAP for apples and pears in Italy is for one foliar spray application at 7.5 g ai/hL (PHI 14 days). Field trials performed in Italy, France and Spain did not match this GAP.

GAP for pears in Japan is for three spray applications at 8.0 g ai/hL, unstated interval and PHI 1 day. In trials from Japan matching this GAP ( $3 \times 8.0$  g ai/hL; interval 7 days and PHI 1 day) clothianidin residues in pear minus stylar scar, core and peduncle base were 0.18 and 0.39 mg/kg (n = 2). The Meeting noted that there was only one tree/plot with tree height 2 m. Since the trial design complied with Japanese guidelines and sampling was random with sufficient size, the Meeting decided to accept the residue results

GAP for Pome fruit in the USA is for one foliar spray application at 224 g ai/ha (max 224 g ai/ha per season, interval 10 days and PHI 7 days. In trials from the USA matching this GAP (1  $\times$  221–224 g ai/ha and PHI 6–7 days) clothianidin residues in pear whole fruit were 0.042, 0.071, 0.10, 0.14, 0.15, 0.15 and 0.18 mg/kg (n = 7).

The datasets corresponding to the GAPs for Australia, Hungary, Italy and Japan were considered insufficient to support a recommendation. The Meeting decided to use only the pear data corresponding to the GAP of the USA.

The Meeting noted that the USA datasets for apples and pears were from similar populations (Mann-Whitney U test). Since residue behaviour within the pome fruit group is expected to be similar, the Meeting agreed that they could be combined. Clothianidin residues in pome fruit (whole fruit) were: < 0.01, 0.010, 0.019, 0.025, 0.042, 0.052, 0.071, 0.087, 0.094, 0.10, 0.10, 0.10, 0.12, 0.14, 0.15, 0.15, 0.15, 0.16, 0.18 and 0.20 mg/kg (n = 20).

The Meeting agreed that the USA data for apples and pears could be used to support a pome fruit commodity maximum residue level recommendation and estimated a maximum residue level of 0.4 mg/kg for clothianidin on pome fruit and estimated an STMR of 0.10 mg/kg and an HR of 0.20 mg/kg.

The maximum residue level estimate derived from use of the NAFTA statistical calculator (mean + 3 SD) was 0.27 mg/kg, which differed from the estimate made by the Meeting. The chosen level was higher in recognition of the ratio between the median and the highest residue.

## Stone fruits

### **Apricots**

Field trials involving apricots were performed in Japan.

GAP for Ume (Japanese apricot) in Japan is for three spray applications at 8.0 g ai/hL at unstated interval and PHI 3 days. In field trials on apricots and Japanese apricots from Japan matching this GAP ( $3 \times 8.0$  ai g/hL; interval 6–7 days, PHI 3 days) clothianidin residues in Japanese apricot pitted fruit were 0.50 and 1.1 mg/kg (n = 2). The Meeting noted that there were only 1–2 trees/plot with tree heights of 5 m. Since the trial design complied with Japanese guidelines and sampling was random with sufficient size, the Meeting decided to accept the residue results.

#### Cherries

Field trials involving cherries were performed in Japan.

GAP for cherries in Japan is for two spray applications at 8.0 g ai/hL, unstated interval with a PHI 1 day. In indoor trials from Japan matching this GAP ( $2 \times 8.0$  g/hL, interval 7 days and PHI 1 day) clothianidin residues in cherry pitted fruit were 1.1 and 2.0 mg/kg (n = 2). The Meeting noted that there was only one tree/plot with tree height of 4 m. Since the trial design complied with Japanese guidelines and sampling was random with sufficient size, the Meeting decided to accept the residue results.

## Nectarines

Field trials involving nectarines were performed in Australia and Japan.

GAP for peaches and nectarines in Australia is for two foliar spray applications at 20 g ai/hL, 14 day interval, and PHI 21 days. Field trials performed in Australia did not match this GAP.

GAP for nectarines in Japan is for three spray applications at 8.0 g ai/hL, unstated interval and PHI 3 days. In trials from Japan matching this GAP ( $3 \times 8.0$  g ai/hL, interval 7 days and PHI 3 days) clothianidin residues in nectarine pitted fruit were 0.58 and 0.64 mg/kg (n = 2). The Meeting noted that there were only 1–2 trees/plot with tree height of 2 m. Since the trial design complied with Japanese guidelines and sampling was random with sufficient size, the Meeting decided to accept the residue results.

### Peaches

Field trials involving peaches were performed in Australia, Hungary, Japan, USA and Canada.

GAP for peaches and nectarines in Australia is for two foliar spray applications at 20 g ai/hL, 14 day interval and PHI 21 days. Field trials performed in Australia did not match this GAP.

GAP for peaches in Hungary is for one foliar spray application at 8.8 g ai/hL and PHI 14 days. In field trials performed in Hungary matching this GAP ( $1 \times 10$  g ai/hL and PHI 14 days) clothianidin residues in peach whole fruit were < 0.02 mg/kg (n = 1).

GAP for peaches in Japan is for three spray applications at 8.0 g ai/hL, unstated interval and PHI 7 days. In field trials performed in Japan matching this GAP ( $3 \times 8.0$  g ai/hL, interval 7–8 days and PHI 7 days) clothianidin residues in peach pitted fruit were 0.25 mg/kg (n = 1). In indoor trials performed in Japan matching this GAP ( $3 \times 8.0$  g ai/hL, interval 6–8 days and PHI 7 days) clothianidin residues in peach gitted fruit were 0.33 mg/kg (n = 1). The Meeting noted that there were only 1–3 trees/plot with tree height of 2 m. Since the trial design complied with Japanese guidelines and sampling was random with sufficient size, the Meeting decided to accept the residue results.

GAP for peaches in the USA is for two foliar spray applications at 112 g ai/ha (max 224 g ai/ha per season), 10 day interval and PHI 7 days. Field trials performed in the USA and Canada did not match this GAP.

# Plums

Field trials involving plums were performed in Japan.

GAP in Japan for Japanese plums is for three spray applications at 8.0 g ai/hL, unstated interval and PHI 3 days. In field trials performed in Japan matching this GAP ( $3 \times 8.0$  g ai/hL, interval 7 days and PHI 3 days) clothianidin residues in plums pitted fruit were 0.03 and 0.06 mg/kg (n = 2). The Meeting noted that there was only 1 tree/plot with tree height of 3 m. Since the trial design complied with Japanese guidelines and sampling was random and of sufficient size, the Meeting decided to accept the residue results.

The datasets for apricots, cherries, nectarines, peaches and plums were considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for each of these commodities individually or for a stone fruit group.

## Berries and other small fruits

Field trials involving <u>cranberries</u> were performed in the USA. GAP for cranberries in the USA is for three foliar spray applications at 75 g ai/ha (max 224 g ai/ha per season), interval 7 days and PHI 21 days. In field trials performed in the USA matching this GAP ( $3 \times 73-80$  g ai/ha, interval 6–8 days and PHI 21–22 days) clothianidin residues in cranberry whole fruit (berries) were < 0.01, < 0.01, < 0.01, < 0.01 and < 0.01 mg/kg (n = 5).

GAP for cranberries in the USA is for one soil treatment at 224 g ai/ha (max 224 g ai/ha per season) and PHI 21 days. In field trials performed in the USA matching this GAP (233–243 g ai/ha and PHI 21–22 days) clothianidin residues in cranberry whole fruit (berries) were < 0.01, < 0.01, < 0.01 and < 0.01 mg/kg (n = 5).

The Meeting noted that the foliar spray treatment and the soil treatment according to the USA GAP both showed no residues (< 0.01 mg/kg). The Meeting estimated a maximum residue level of 0.01\* mg/kg for clothianidin on cranberries and estimated an STMR of 0.01 mg/kg and an HR of 0.01 mg/kg.

Statistical calculations using the NAFTA calculator were not possible, since all levels are below LOQ.

## Grapes

Field trials involving grapes were performed in Australia, Japan and the USA.

GAP for grapes (table) in Australia is for two foliar spray applications at 20 g ai/hL, interval 21 days and with a PHI 42 days, with or without adjuvant. In field trials performed in Australia matching this GAP ( $2 \times 20$ –25 g ai/hL, interval 13–22 days and PHI 41–44 days) clothianidin residues in grapes (whole fruit without stems) were  $0.288C^{\$}$ , 0.82WG,  $1.68C^{\$}$  mg/kg (n = 3) without adjuvant and 0.06WG, 0.17WG and 1.9WG mg/kg (n = 3) with adjuvant. SC and WG mark the use of SC and WG formulations. In those cases where residues at higher PHI were higher, these residues were selected instead. However, figures marked with \$ could not be used for a recommendation, because of sampling deficiencies and poor condition of the fruit. In a single bridging study with a WG formulation with and without adjuvant, residue levels with adjuvant were higher (1.9 mg/kg with versus 0.82 mg/kg without). Therefore only the dataset with adjuvant will be used in the estimation.

GAP for grapes (table and wine) in Australia is for one soil treatment at 300 g ai/ha. In field trials performed in Australia matching this GAP (300 g ai/ha and PHI 96–132 days) clothianidin residues in grapes whole fruit without stems were  $< 0.02SC^{\$}$ , < 0.02SC and < 0.02WG mg/kg (n = 3). SC and WG mark the use of SC and WG formulations. However, the figure marked with \$ could not be used for a recommendation, due to sampling deficiencies and the poor condition of the fruit.

GAP for grapes in Japan is for three spray applications at 8.0 g ai/hL, unstated interval and PHI 1 day. Indoor trials performed in Japan matching this GAP ( $2 \times 8.0$  g ai/hL and interval 7–8 days, in grapes (whole fruit without stems) were  $0.66^{\$}$  and  $1.0^{\$}$  mg/kg (n = 2). In those cases where residues at higher PHI were higher, these residues were selected instead. However, values marked with \$ could not be used for a recommendation because of sampling deficiencies.

GAP for grapes in the USA is for two foliar spray applications at 112 g ai/ha (maximum of 224 g ai/ha per season), interval 14 days and PHI 0 days. In field trials performed in the USA matching this GAP ( $2 \times 110-116$  g ai/ha, interval 13–14 days and PHI 0 days) clothianidin residues in grapes whole fruit with stems were 0.042, 0.053, 0.074, 0.090, 0.098, 0.11, 0.13, 0.13, 0.14, 0.28, 0.33 and 0.41 mg/kg (n = 12).

A second GAP for grapes in the USA is for one soil treatment at 224 g ai/ha (max 224 g ai/ha per season) and a PHI of 30 days. In field trials performed in the USA matching this GAP ( $1 \times 221-223$  g ai/ha total and PHI 30 days) clothianidin residues in grapes (whole fruit with stems) were < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, <

The datasets corresponding to the GAPs for Australia and Japan were considered insufficient to support a recommendation. The Meeting noted that the GAP for foliar treatment in the USA resulted in higher residues when compared to the GAP for soil treatment in the USA. Therefore, the Meeting decided to use only the grape data corresponding to the GAP of the USA for foliar treatment: 0.042, 0.053, 0.074, 0.090, 0.098, 0.11, 0.13, 0.13, 0.14, 0.28, 0.33 and 0.41 mg/kg (n = 12).

The Meeting estimated a maximum residue level of 0.7 mg/kg for clothianidin on grapes and estimated an STMR of 0.12 mg/kg and an HR of 0.41 mg/kg.

The maximum residue level estimate derived from use of the NAFTA calculator (95/99 99th percentile) was 0.64 mg/kg, which was in agreement with the Meetings estimate (after rounding up to one figure).

### Assorted tropical and sub-tropical fruits, edible peel

Field trials involving persimmon were performed in Japan and Korea.

GAP for Japanese persimmon in Japan is for three spray applications at 8.0 g ai/hL, unstated interval and PHI 7 days. In field trials performed in Japan matching this GAP ( $3 \times 8.0$  g ai/hL, interval 5–9 days and PHI 7 days) clothianidin residues in persimmon whole fruit were 0.11 and 0.14 mg/kg (n = 2). The Meeting noted that there were only 1–2 trees/plot with tree height of 3 m. Since the trial design complied with Japanese guidelines and sampling was random with sufficient size, the Meeting decided to accept the residue results.

GAP for persimmon in Korea is for three foliar applications at 8.0 g ai/hL, interval 7–10 days and PHI 10 days. In field trials performed in Korea matching this GAP ( $3 \times 8.0$  g ai/hL, interval 10 days and PHI 10 days) clothianidin residues in persimmon whole fruit were  $0.047^{\$}$  mg/kg (n = 1). However, the values marked with \$ cannot be used for a recommendation because of sampling deficiencies.

The datasets for persimmon were considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for persimmon.

## Assorted tropical and sub-tropical fruits, inedible peel

Field trials involving bananas were performed in Australia.

GAP for bananas in Australia is for one stem spray application at 0.9 g ai/stem. In field trials performed in Australia matching this GAP (0.9 g ai/stem and PHI 256–553 days) clothianidin residues in banana whole fruit (including peel) were < 0.02, < 0.02, < 0.02, < 0.02, < 0.02 and < 0.02 mg/kg (n = 6).

GAP for bananas in Australia is for one stem injection application at 0.6 g ai/stem. In field trials performed in Australia matching this GAP (0.6 g ai/stem and PHI 256–553 days) clothianidin

residues in banana whole fruit (including peel) were < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, <

The Meeting noted that the stem injection application according to the Australian GAP showed residues below or at LOQ (< 0.02-0.02 mg/kg). The Meeting estimated a maximum residue level of 0.02 mg/kg for clothianidin on banana whole fruit and estimated an STMR of 0.02 mg/kg and an HR of 0.02 mg/kg.

Statistical calculations using the NAFTA calculator were not possible, as all levels were at or below the LOQ.

## Brassica vegetables

### Cabbages, Head

Field trials involving <u>head cabbage</u> were performed in Belgium, Germany, the UK, France, Italy, Spain, Japan and the USA.

GAPs for seed treatments in Belgium, Germany, the UK, France, Italy and Spain are not available. GAP for New Zealand cannot be matched to European trials because the New Zealand GAP is only for forage Brassicas, not meant for human consumption.

GAP for head cabbage in Japan is for one application, soil incorporated, at 10 mg ai/plant (at seeding up to transplanting) combined with two foliar applications at 8.0 g ai/hL, unstated interval and PHI 3 days. In field trials performed in Japan matching this GAP ( $1 \times 10$  mg ai/plant plus two foliar applications at 8.0 g ai/hL, interval 6–8 days and PHI 3 days) clothianidin residues in cabbage (head only without core) were  $0.16^{\$}$  and  $0.18^{\$}$  mg/kg (n = 2). However, values marked with \$ could not be used for a recommendation due to sampling deficiencies.

GAP for Brassica (cole) leafy vegetables in the USA is for three foliar spray applications at 74 g ai/ha (max 224 g ai/ha per season), interval 10 days and PHI 7 days. Field trials performed in the USA did not match this GAP.

GAP for Brassica (cole) leafy vegetables in the USA is for one soil treatment at 224 g ai/ha (max 224 g ai/ha per season) at planting. In trials performed in the USA matching this GAP (1  $\times$  224 g ai/ha and PHI 77 days) clothianidin residue levels were 0.015 mg/kg (n = 1).

The datasets for head cabbages were considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for head cabbages.

#### Broccoli

Field trials involving broccoli were performed in Japan.

GAP for broccoli in Japan is for one soil incorporated treatment at 10 mg ai/plant (at seeding up to transplanting) combined with three foliar applications at 8.0 g ai/hL, unstated interval and PHI 3 days. In field trials performed in Japan matching this GAP ( $1 \times 10$  mg ai/plant plus three foliar applications at 8.0 g ai/hL, interval 6–7 days and PHI 3 days) clothianidin residues in broccoli (buds without leaves) were 0.07\$ and 0.33\$ mg/kg (n = 2). However, values marked with \$ cannot be used for a recommendation because of sampling deficiencies.

GAP for broccoli in Japan is for one soil incorporation at 10 mg ai/plant (at seeding up to transplanting). In field trials performed in Japan matching this GAP ( $1 \times 10$  mg ai/plant and PHI 71–151 days), clothianidin residues in broccoli (buds without leaves) were  $< 0.01^{\$}$  and  $0.04^{\$}$  mg/kg (n = 2). However, values marked with \$ could not be used for a recommendation because of sampling deficiencies.

The datasets for broccoli were considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for broccoli.

# Fruiting vegetables, Cucurbits

### Cucumbers

Field trials involving cucumbers were performed in Brazil, Japan and the USA.

GAP for cucumber in Brazil is for four foliar treatments at 10 g ai/hL, unstated interval and PHI 1 day. Field trials performed in Brazil did not match this GAP.

GAP for cucumber in Japan is for one soil incorporation at 10 mg ai/plant (at transplanting) combined with three foliar sprays at 8.0 g ai/hL, unstated interval and PHI 1 day. In indoor trials performed in Japan matching this GAP ( $1 \times 10 \text{ mg ai/plant}$  at planting +  $3 \times$  foliar spray at 8.0 g ai/hL, interval 7 days and PHI 1 day) clothianidin residues in cucumber were: 0.2 and, 0.70 mg/kg (n = 2).

GAP for cucurbit vegetables in the USA is for three foliar spray applications at 74 g ai/ha (seasonal maximum of 224 g ai/ha), interval 10 days and PHI 7 days. Field trials performed in the USA did not match this GAP.

GAP for cucurbit vegetables in the USA is for one soil treatment at 224 g ai/ha (max 224 g ai/ha per season) at planting. In field trials performed in the USA matching this GAP (1  $\times$  232 g ai/ha and PHI 21 days) clothianidin residue levels in cucumber whole fruit were 0.014 mg/kg (n = 1).

### Summer, Squash

Field trials involving summer squash were performed in the USA.

GAP for cucurbit vegetables in the USA is for three foliar spray applications at 74 g ai/ha (max 224 g ai/ha per season), interval 10 days and PHI 7 days. Field trials performed in the USA did not match this GAP.

GAP for cucurbit vegetables in the USA is for one soil treatment at 224 g ai/ha (max 224 g ai/ha per season) at planting. In field trials performed in the USA matching this GAP (1  $\times$  231 g ai/ha and PHI 73 days) clothianidin residue levels in summer squash whole fruit were < 0.01 mg/kg (n = 1).

The datasets for cucumbers and summer squash were considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for each of these commodities individually or for a cucurbit fruiting vegetable group.

### Fruiting vegetables, other than Cucurbits

## Egg plants

Field trials involving egg plants were performed in Japan.

GAP for egg plants in Japan is for one soil incorporation at 5 mg ai/plant (at transplanting) combined with three foliar sprays at 8.0 g ai/hL, unstated interval and PHI 1 day. In indoor trials performed in Japan matching this GAP ( $1 \times 10 \text{ mg ai/plant}$  at planting +  $3 \times$  foliar spray at 8.0 g ai/hL, interval 7 days and PHI 1 day) clothianidin residues in egg plants were: 0.29 and 0.38 mg/kg (n = 2). Where residue levels at higher PHIs were higher, these were selected instead.

The dataset for egg plant was considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for egg plant.

## Sweet corn

Field trials involving sweet corn were performed in the USA and Canada.

GAP for maize (field corn, popcorn and sweet corn) in the USA and Canada is for one seed treatment at 1.25 mg ai/seed. Seed treatment with subsequent field trials performed in the USA and

Canada did not match this GAP. However, seed treatments performed at an exaggerated rate of 2.0 mg ai/seed and subsequent field trials performed in the USA and Canada (PHI 72–113) showed no residues in sweet corn (kernels plus cobs with husks removed): < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, <

The Meeting decided that the trials performed at an exaggerated rate could be used for a recommendation. The Meeting estimated a maximum residue level of 0.01\* mg/kg for clothianidin on sweet corn and estimated an STMR of 0.01 mg/kg and an HR of 0.01 mg/kg.

Statistical calculations using the NAFTA calculator were not possible, as all residue levels were below the LOQ.

#### Tomatoes

Field trials involving tomatoes were performed in Japan and the USA.

GAP for tomatoes in Japan is for one soil incorporation at 10 mg ai/plant (at transplanting) combined with three foliar sprays at 8.0 g ai/hL, unstated interval and PHI 1 day. In indoor trials performed in Japan matching this GAP ( $1 \times 10 \text{ mg ai/plant}$  at planting +  $3 \times$  foliar spray at 8.0 g ai/hL, interval 7 days and PHI 1 day) clothianidin residues in tomatoes were: 0.66 and 0.90 mg/kg (n = 2) in grape tomatoes and 0.12 and 0.23 mg/kg (n = 2) in regular size tomatoes. Where residue levels at higher PHIs were higher, these were selected instead.

GAP for tomatoes in Japan is for one soil incorporation at 10 mg ai/plant (at transplanting) In indoor trials performed in Japan matching this GAP ( $1 \times 10 \text{ mg ai/plant}$  and PHI 77–98 days) clothianidin residues were < 0.01 and < 0.01 mg/kg (n = 2). The laboratory results with the higher LOQ value of 0.05 mg/kg were not taken into account.

GAP for fruiting vegetables in the USA is for three foliar spray applications at 74 g ai/ha (max 224 g ai/ha per season), interval 7 days and PHI 7 days. Field trials performed in the USA did not match this GAP.

GAP for fruiting vegetables in the USA is for one soil treatment at 224 g ai/ha (max 224 g ai/ha per season) at planting. In field trials performed in the USA matching this GAP ( $1 \times 222-226$  g ai/ha and PHI 21–82 days) clothianidin residue levels in tomato whole fruit were < 0.01 and 0.028 mg/kg (n = 2).

The datasets for tomato were considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for tomato.

# Leafy vegetables

## Lettuce, Head

Field trials involving head lettuce were performed in the USA.

GAP for leafy vegetables in the USA is for three foliar spray applications at 74 g ai/ha (max 224 g ai/ha per season), interval 10 days and PHI 7 days. Field trials performed in the USA did not match this GAP.

GAP for leafy vegetables in the USA is for one soil treatment at 224 g ai/ha (max 224 g ai/ha per season) at planting. In field trials performed in the USA matching this GAP ( $1 \times 224$  g ai/ha and PHI 32 days) clothianidin residues in head lettuce were  $0.044^{8}$  mg/kg (n = 1). However, the value marked with \$ could not be used for a recommendation because the heads didn't form properly.

## *Lettuce, Leaf*

Field trials involving leaf lettuce were performed in the USA.

GAP for leafy vegetables in the USA is for three foliar spray applications at 74 g ai/ha (max 224 g ai/ha per season), interval 10 days and PHI 7 days. Field trials performed in the USA did not match this GAP.

GAP for leafy vegetables in the USA is for one soil treatment at 224 g ai/ha (max 224 g ai/ha per season) at planting. In field trials performed in the USA matching this GAP ( $1 \times 227$  g ai/ha and PHI 22 days) clothianidin residues in leaf lettuce were 0.046 mg/kg (n = 1).

The datasets for head lettuce and leaf lettuce were considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for each of these commodities individually or for a leafy vegetable group.

# Pulses

Field trials involving soya bean (dry) were performed in Japan and the USA.

GAP for soya beans in Japan is either for three high volume spray applications at 8.0 g ai/hL or for three aerial spray applications at 833 g ai/hL or for three dusting applications at 200 g ai/ha, unstated interval and PHI 7 days. Trials performed in Japan did not match this GAP.

GAP for soya beans in the USA is for three foliar spray applications at 75 g ai/ha (maximum 224 g ai/ha per season), interval 7 days and PHI 21 days. Field trials performed in the USA did not match this GAP.

Since the datasets for dry soya beans did not match GAP, the Meeting could not estimate a maximum residue level for soya beans.

## Root and tuber vegetables

### Carrots

Field trials involving <u>carrots</u> were performed in Belgium, Germany, Netherlands, the UK, France, Italy, Portugal and Spain.

GAPs for seed treatments in Belgium, Germany, Netherlands, the UK, France, Italy and Spain were not available.

Since there was no GAP available, the Meeting could not estimate a maximum residue level for carrots.

### Chicory roots

Field trials involving chicory roots were performed in Belgium.

GAP for chicory roots in Belgium is for one seed treatment at 0.3 mg ai/seed. In field trials performed in Belgium matching this GAP ( $1 \times 0.265$  mg ai/seed and PHI 161 days) clothianidin residue levels in chicory roots were < 0.01 mg/kg (n = 1).

The dataset for chicory roots was considered insufficient to support a recommendation. The Meeting could not estimate a maximum residue level for chicory roots.

### Potatoes

Field trials involving potatoes were performed in the USA and Canada.

GAP for tuberous and corm vegetables in the USA is for four foliar spray treatments at 56 g ai/ha (maximum of 224 g ai/ha per season), interval 7 days with a PHI of 14 days. Field trials performed in the USA and Canada did not match this GAP. However, treatments performed in the USA and Canada at an exaggerated rate  $(3 \times 73-77 \text{ g ai/ha}, interval 5-8 \text{ days and PHI 13-14 days})$  showed no residues: < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02,

GAP for tuberous and corm vegetables in the USA is for one soil treatment at 224 g ai/ha (maximum of 224 g ai/ha per season) at planting. In field trials performed in the USA and Canada matching this GAP ( $1 \times 217-226$  g ai/ha and a PHI of 48–145 days) clothianidin residue levels in potato tubers with peel were: < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0

The Meeting noted that the GAP for soil treatment in the USA resulted in higher residues when compared to the GAP for foliar treatment in the USA. Therefore, the Meeting decided to use only the potato data corresponding to the GAP of the USA for soil treatment: < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, <

The Meeting estimated a maximum residue level of 0.05 mg/kg for clothianidin on potatoes with peel and estimated an STMR of 0.02 mg/kg and an HR of 0.033 mg/kg (considering potatoes with peel as edible portion).

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 0.03 mg/kg (mean + 3 SD, no MLE used) differed from the estimate made by the Meeting. The higher level was chosen in recognition of the number of majority of values below LOQ and the small number above.

### Sugar beet roots

Field trials involving sugar beet roots were performed in Belgium, Germany, the UK, France, Italy, Spain and the USA.

GAP for sugar beets in Belgium, Denmark, Finland, Germany, Netherlands, Slovakia and the UK is for one seed treatment at 0.6 mg ai/seed. For seed treatments and subsequent field trials performed in the UK, France and Germany matching this GAP ( $1 \times 0.6$  mg ai/seed and PHI 92–148 days) clothianidin residues in sugar beet roots were < 0.01, < 0.01 and 0.012 mg/kg (n = 3).

GAP for sugar beets in Italy, Slovenia, and Spain is for one seed treatment at 0.6 mg ai/seed. Trials performed in Spain and Italy did not match this GAP.

GAP for sugar beets in the USA is for one seed treatment at 0.6 mg ai/seed (FS formulation). For seed treatments and subsequent field trials performed in the USA matching this GAP (1  $\times$  0.6 mg ai/seed and PHI 109–179 days SE formulation) clothianidin residues in sugar beet roots were < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01,

The Meeting noted that the GAP for Northern Europe resulted in a similar dataset when compared to the GAP for USA (Mann-Whitney U test). Because the GAPs are identical the data can be combined. The Meeting decided to use the combined dataset for sugar beet roots corresponding to the GAP of Northern Europe and the USA: < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.

The Meeting estimated a maximum residue level of 0.03 mg/kg for clothianidin on sugar beet roots and estimated an STMR of 0.01 mg/kg and an HR of 0.019 mg/kg.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 0.02 mg/kg (mean + 3 SD, no MLE used), which differed from the estimate made by the Meeting. The NAFTA calculator value was not considered as it does not give reliable results with large numbers of censored data.

# Cereal grains

## Maize

Field trials involving maize (corn) were performed in the USA and Canada.

GAP for maize (field corn, popcorn and sweet corn) in the USA and Canada is for one seed treatment at 1.25 mg ai/seed. Seed treatment with subsequent field trials performed in the USA and Canada did not match this GAP. However, seed treatments performed at an exaggerated rate of 2.0 mg ai/seed and subsequent field trials performed in the USA and Canada (PHI 119–170 days) showed no residues in maize seed: < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01

### Popcorn

Field trials involving popcorn were performed in the USA and Canada.

GAP for maize (field corn, popcorn and sweet corn) in the USA and Canada is for one seed treatment at 1.25 mg ai/seed. Seed treatment with subsequent field trials performed in the USA and Canada did not match this GAP. However, seed treatments performed at an exaggerated rate of 2.0 mg ai/seed and subsequent field trials performed in the USA and Canada (PHI 119–170 days) showed no residues: < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01,

## Rice

Field trials involving rice were performed in Japan.

GAP for rice in Japan is for one application in a seedling box at 0.75 g ai/box and three GR spreading applications at 200 g ai/ha, unstated interval and a 7 day PHI. Since the application in a seedling box is not expected to contribute to the final residue, trials where the spreading applications are according to GAP are considered acceptable. For field trials performed in Japan matching this GAP (seedling treatment at 1.25-1.65 g ai/box + three spreading (GR) applications at 200 g ai/ha, interval 6–29 days and PHI 7 days) clothianidin residues in rice grains were < 0.01, 0.01, 0.02 and 0.04 mg/kg, n = 4. When higher residues were found at later PHIs these residues were selected instead. After harvest, rice was dried and protected from rain for 9–22 days. Residue values are for husked rice grain (brown rice).

GAP for rice in Japan is for one application in a seedling box at 0.75 g ai/box and three DP dust applications at 200 g ai/ha, unstated interval and a 7 day PHI. Since the application in a seedling box is not expected to contribute to the final residue, trials where dusting applications were according to GAP were considered acceptable. For field trials performed in Japan matching this GAP (seedling treatment at 1.65 g ai/box + three dusting (DP) applications at 200 g ai/ha, interval 7–22 days and a 7 day PHI) clothianidin residues in rice grains were 0.07 and 0.11 mg/kg, n = 2. When higher residues were found at later PHIs these residues were selected instead. After harvest, rice was dried and protected from rain for 9–14 days. Residue values were for husked rice grain.

GAP for rice in Japan is for one application in a seedling box at 0.75 g ai/box and three high volume spray applications at 4 g ai/hL, unstated interval, and PHI 7 days. Since the application in a seedling box is not expected to contribute to the final residue, trials where the spray applications are according to GAP are considered acceptable. For field trials performed in Japan matching the GAP (seedling treatment at 1.65 g ai/box + three high volume spray applications at 4.0 g ai/hL with SC or SP formulations, interval 7–22 days and a 7 day PHI) clothianidin residues in rice grains were 0.12 and 0.14 mg/kg, n = 2 for an SP formulation and 0.12 and 0.16 mg/kg, n = 2 for an SC formulation on the same locations. When higher residues were found at later PHIs these residues were selected instead. After harvest, rice was dried and protected from rain for 9–14 days. Residue values were for husked rice grain.

GAP for rice in Japan is for one application in a seedling box at 0.75 g ai/box and three low volume spray applications at 16 g ai/hL, unstated interval, and PHI 7 days. Since the application in a seedling box is not expected to contribute to the final residue, trials where the spray applications are according to GAP are considered acceptable. For field trials performed in Japan matching the GAP (seedling treatment at 1.25-1.65 g ai/box + three high volume spray applications at 16 g ai/hL with SC or SP formulations, interval 3–21 days and a 7 day PHI) clothianidin residues in rice grains were 0.07 and 0.10 mg/kg, n = 2 for an SP formulation and 0.15 and 0.21 mg/kg, n = 2 for an SC formulation (on different locations). When higher residues were found at later PHIs these residues were selected instead. After harvest, rice was dried and protected from rain for 9–27 days. Residue values were for husked rice grain.

GAP for rice in Japan is for one application in a seedling box at 0.75 g ai/box and three aerial spray applications at 833 g ai/hL, unstated interval and PHI 14 days. Since the application in a seedling box is not expected to contribute to the final residue, trials where the spray applications are according to GAP are considered acceptable. For field trials performed in Japan matching the GAP (seedling treatment at 1.65 g ai/box + three aerial spray applications at 833 g ai/hL with SC formulations, interval 6–21 days and PHI 7 days) clothianidin residues in rice grains were 0.04 and 0.16 mg/kg, n = 2. When higher residues were found at later PHIs these residues were selected instead. After harvest, rice was dried protected from rain for 16–35 days. Residue values were for husked rice.

In all Japanese rice trials, the rice was left to dry after harvest. The Meeting considered this acceptable, since it is normal practice in Japan. Trials conducted at different GAPs generally cannot be combined. However, The Meeting decided that the trials from the three different foliar spray treatments could be combined, since the trials resulted in similar residues. For trials conducted at the same location on the same day, only the maximum value for that location was selected. This resulted in the following dataset: 0.04, 0.07, 0.10, 0.14, 0.15, 0.16, 0.16 and 0.21 mg/kg (n = 8).

The Meeting estimated a maximum residue level of 0.5 mg/kg for clothianidin in husked rice and an STMR of 0.145 mg/kg.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 0.41 mg/kg (95/99 rule), which was in agreement with the estimate made by the Meeting (after rounding up to one figure).

#### Sorghum

Field trials involving sorghum were performed in the USA.

The GAP for sorghum in the USA is for one seed treatment at 2.5 kg ai/T seeds. In field trials performed in the USA matching this GAP ( $1 \times 2.5$  kg ai/T seeds and PHI 97–167 days) clothianidin residues in sorghum grain were: < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0

### Barley

Field trials involving barley were performed in Germany, the UK, France and Italy.

GAP for winter barley in the UK and Ireland is for one seed treatment at 0.50 kg ai/T seeds. For seed treatments and subsequent trials performed in Germany, the UK and France matching this GAP ( $1 \times 0.44-0.47$  kg ai/T seed and PHI 130–147 days, spring barley) clothianidin residue levels in barley grain were < 0.01, < 0.01 and < 0.01 mg/kg (n = 3).

GAP for seed treatments in Italy were not available.

### Wheat

Field trials involving wheat were performed in Germany, the UK, France and the USA.

The GAP for wheat in the UK is for one seed treatment at 0.50 kg ai/T seeds. For seed treatments and subsequent field trials performed in the UK, Germany and France, matching this GAP

 $(1 \times 0.38-0.63 \text{ kg ai/T} \text{ seeds and PHI } 130-155 \text{ days})$  clothianidin residues in wheat (grain) were: < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01 and < 0.01 mg/kg (n = 8).

GAP for wheat in the USA is for one seed treatment at 0.07 kg ai/T seeds. Trials performed in the USA did not match this GAP.

The Meeting noted that after seed treatment on maize, popcorn and sorghum according to GAP in the USA and after seed treatments on barley and wheat according to GAP in Northern EU, no residues were found in grains (< 0.01 mg/kg). Since GAP and residue levels for rice was different from other cereals, the results for barley, wheat, maize, popcorn and sorghum cannot be extrapolated to rice or vice versa. Although the USA and EU data on barley, wheat, maize, popcorn and sorghum could be used to support a cereal grains commodity group (excluding rice) recommendation, the Meeting decided to recommend maximum residue levels for individual cereals, to be in line with the thiamethoxam evaluation, where quantitative amounts of metabolite CGA 322704 differed in different cereals. The Meeting estimated a maximum residue level of  $0.01^*$  mg/kg for clothianidin on barley, maize, popcorn, sorghum and wheat and estimated an STMR of 0.01 mg/kg.

Statistical calculations using the NAFTA calculator were not possible, as all levels were below the LOQ.

### Grasses for sugar and syrup production

Sugar cane

Field trials involving sugar cane were performed in Australia.

GAP for sugar cane in Australia is for one soil directed spray application at 500 g ai/ha and PHI 147 days. In trials performed in Australia matching this GAP ( $1 \times 500$  g ai/ha and PHI 146–175 days) clothianidin residue levels in sugarcane billets were < 0.02, 0.04 and 0.14 mg/kg (n = 3) using an SC formulation and < 0.02 mg/kg (n = 2) using a WG formulation, on partly the same locations. In a single bridging study using a WG and SC formulation, residue levels were identical (both < 0.02 mg/kg). The datasets are too small for a Mann-Whitney U test. The Meeting agreed to combine the datasets and take only the maximum value per location. This resulted in the following dataset for sugarcane billets: < 0.02, 0.02, 0.04 and 0.14 mg/kg (n = 4).

The Meeting estimated a maximum residue level of 0.4 mg/kg for clothianidin on sugar cane and estimated an STMR of 0.03 mg/kg and an HR of 0.14 mg/kg.

The value using the NAFTA calculator (NAFTA UCL/median 95 = 0.31, no MLE used) differed from the estimate of 0.4 mg/kg made by the Meeting. The chosen level was higher to recognize the small dataset.

## Oilseeds

### Cotton seed

Field trials involving undelinted cotton seed were performed in Australia and the USA.

GAP for cotton in Australia is for two foliar aerial or ground spray applications at 50 g ai/ha, with adjuvant, unstated interval and PHI 5 days. Trials performed in Australia did not match this GAP. However, foliar treatments performed at an exaggerated rate in Australia ( $4 \times 50$  g ai/ha, with adjuvant, interval 14 days, PHI 5 days) showed no residues:  $< 0.02^{\$}$ ,  $< 0.02^{\$}$  and  $< 0.02^{\$}$  mg/kg, n = 3. However, values marked with \$ could not be used for a recommendation because of sampling deficiencies.

GAP for cotton in the USA is for one seed treatment at 2.1 kg ai/T seeds. Trials performed in the USA did not match this GAP. However, trials performed at an exaggerated dose rate of 3.5 kg ai/T seeds, showed no residues:  $<0.01^{\$}$ ,  $<0.01^{\$}$ ,  $<0.01^{\$}$ , <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <

GAP for cotton in the USA is for three foliar spray applications at 75 g ai/ha (max 224 g ai/ha per season), interval 7 days and PHI 21 days. Field trials performed in the USA did not match this GAP.

Since USA foliar treatments at exaggerated dose rates show residues, the seed treatment dataset is considered not representative for cotton GAP. The dataset for cottonseed is considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for cottonseed.

### Rape seed

Field trials involving <u>rape seed</u> were performed in Germany, Sweden, the UK, France, the USA and Canada.

GAP for rape seed in the Czech Republic, Estonia, Finland, and Germany is for one seed treatment at 10 kg ai/T seeds. In field trials performed in Germany, Sweden and France matching this GAP ( $1 \times 7.4-9.5$  kg ai/T seeds and PHI 111–320 days) clothianidin residue levels in rapeseeds were  $< 0.01^{\$}, < 0.01^{\$}, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01$  and < 0.01 mg/kg (n = 9). However, values marked with \$ could not be used for a recommendation because of sampling deficiencies.

GAP for rapeseed (including canola) in the USA and Canada is for one seed treatment at 4.0 kg ai/T seeds. Field trials performed in the USA and Canada did not match this GAP. Although field trials are available at an exaggerated dose rate, the results of these trials are considered not reliable because of sampling deficiencies.

The Meeting estimated a maximum residue level of 0.01\* mg/kg for clothianidin on rape seed and estimated an STMR of 0.01 mg/kg.

Statistical calculations using the NAFTA calculator were not possible, since all levels are below LOQ.

#### Sunflower seed

Field trials involving sunflower seed were performed in France, Italy and Spain.

GAP for sunflower seeds in Romania is for one seed treatment at 0.5 mg ai/seed. Trials performed in Italy and Spain did not match this GAP. For seed treatments and subsequent field trials performed in France matching this GAP ( $1 \times 0.50-0.62$  mg ai/seed, 115-145 days PHI) clothianidin residues in sunflower seeds were < 0.01, < 0.01 and < 0.01 mg/kg (n = 3).

The dataset for sunflower seed is considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for sunflower seed.

### Legume animal feeds

Field trials involving soya bean forage and soya bean hay were not available.

## Straw, fodder and forage of cereal grains and grasses

Field trials involving field corn forage were performed in the USA and Canada.

GAP for maize (field corn, popcorn and sweet corn) in the USA and Canada is for one seed treatment at 1.25 mg ai/seed. Seed treatment with subsequent field trials performed in the USA and Canada did not match this GAP.

The Meeting could not estimate an STMR or highest residue for field corn forage as there were no trials matching the GAP.

Field trials involving sweet corn forage were performed in the USA and Canada.

GAP for maize (field corn, popcorn and sweet corn) in the USA and Canada is for one seed treatment at 1.25 mg ai/seed. Seed treatment with subsequent field trials performed in the USA and Canada did not match this GAP.

The Meeting could not estimate an STMR or highest residue for sweet corn forage as there were no trials matching the GAP.

Field trials involving field corn stover were performed in the USA and Canada.

GAP for maize (field corn, popcorn and sweet corn) in the USA and Canada is for one seed treatment at 1.25 mg ai/seed. Seed treatment with subsequent field trials performed in the USA and Canada did not match this GAP.

The Meeting could not estimate an STMR or highest residue for field corn stover as there were no trials matching the GAP.

Field trials involving popcorn stover were performed in the USA and Canada.

GAP for maize (field corn, popcorn and sweet corn) in the USA and Canada is for one seed treatment at 1.25 mg ai/seed. Seed treatment with subsequent field trials performed in the USA and Canada did not match this GAP.

The Meeting could not estimate an STMR or highest residue for popcorn stover as there were no trials matching the GAP.

Field trials involving sweet corn stover were performed in the USA and Canada.

GAP for maize (field corn, popcorn and sweet corn) in the USA and Canada is for one seed treatment at 1.25 mg ai/seed. Seed treatment with subsequent field trials performed in the USA and Canada did not match this GAP.

The Meeting could not estimate an STMR or highest residue for sweet corn stover as there were no trials matching the GAP.

Field trials involving rice whole crop silage were not available.

Field trials involving rice straw were not available.

Field trials involving sorghum grain forage were performed in the USA.

GAP for sorghum in the USA is for one seed treatment at 2.5 kg ai/T seeds. In field trials performed in the USA matching this GAP ( $1 \times 2.5$  kg ai/T seeds and PHI 42–112 days) clothianidin residues in green sorghum forage were < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01

The Meeting estimated an STMR of 0.01 mg/kg and a highest residue of 0.01 mg/kg for clothianidin in sorghum grain forage. A maximum residue level is not required, since forage is not traded.

The NAFTA calculator is not needed here, since maximum residue levels are not proposed for livestock forage.

Field trials involving sorghum grain stover were performed in the USA.

GAP in the USA for sorghum is for one seed treatment at 2.5 kg ai/T seeds. In field trials performed in the USA matching this GAP ( $1 \times 2.5$  kg ai/T seeds and PHI 97–167 days) clothianidin residues in dry sorghum grain stover were < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01 and < 0.01 mg/kg (n = 12). After harvest, sorghum stover was left drying in the field for 0–24 days. The Meeting considered this acceptable, since it is normal practice in the USA.

The Meeting estimated a maximum residue level of 0.01\* mg/kg for clothianidin in sorghum grain stover, an STMR of 0.01 mg/kg and a highest residue of 0.01 mg/kg. A correction for dry weight is not necessary here since all the values are below LOQ. The dry weight values are considered to be the same.

Statistical calculations using the NAFTA calculator were not possible, since all levels are below LOQ.

Field trials involving <u>green barley forage</u> were performed in Germany, the UK, France and Italy.

GAP for winter barley in the UK and Ireland is for one seed treatment at 0.50 kg ai/T seeds. For seed treatments and subsequent trials performed in Germany, the UK and France matching this GAP ( $1 \times 0.44-0.47$  kg ai/T seed and PHI 55–57 days, spring barley) clothianidin residue levels in barley forage were 0.02, 0.02 and 0.05 mg/kg (n = 3).

GAP for seed treatments in Italy are not available.

The dataset for green barley forage is considered insufficient to support a recommendation. The Meeting could not estimate an STMR or highest residue for green barley forage.

Field trials involving green wheat forage were performed in Germany, the UK, France and the USA.

GAP for wheat in the UK is for one seed treatment at 0.50 kg ai/T seeds. For seed treatments and subsequent field trials performed in the UK, Germany and France matching this GAP ( $1 \times 0.38$ – 0.63 kg ai/T seeds and PHI 28–61 days) clothianidin residues in wheat green wheat forage were  $< 0.02, 0.022^{\$}, 0.024^{\$}, 0.030^{\$}, 0.058, 0.15^{\$}, 0.19^{\$}$  and 0.23 mg/kg (n = 8). However, values marked with \$ could not be used for a recommendation because of sampling deficiencies.

GAP for wheat in the USA is for seed treatment at 0.07 kg ai/T seeds. Trials performed in the USA did not match this GAP.

The dataset for green wheat forage is considered insufficient to support a recommendation. The Meeting could not estimate an STMR or highest residue for green wheat forage.

Field trials involving <u>barley hay</u> were not available. However, the Meeting decided that for the purpose of dietary burden calculations, data from barley straw can be used for barley hay.

Field trials involving wheat hay were performed in the USA.

GAP for wheat in the USA is for seed treatment at 0.07 kg ai/T seeds. Trials performed in the USA did not match this GAP.

The Meeting could not estimate an STMR or highest residue for wheat hay as there were no trials matching the GAP. However, the Meeting decided that for the purpose of dietary burden calculations, data from wheat straw can be used for wheat hay.

Field trials involving barley straw were performed in Germany, the UK, France and Italy.

GAP for winter barley in the UK and Ireland is for one seed treatment at 0.50 kg ai/T seeds. For seed treatments and subsequent trials performed in Germany, the UK and France matching this GAP ( $1 \times 0.44-0.47$  kg ai/T seed; PHI 130–147 days, spring barley) clothianidin residue levels in barley straw were < 0.02, < 0.02 and < 0.02 mg/kg (n = 3).

GAP for seed treatments in Italy are not available.

Field trials involving wheat straw were performed in Germany, the UK, France and the USA.

GAP for wheat in the UK is for one seed treatment at 0.50 kg ai/T seeds. For seed treatments and subsequent field trials performed in the UK, Germany and France matching this GAP ( $1 \times 0.38$ – 0.63 kg ai/T seeds and PHI 130–155 days) clothianidin residues in wheat straw (dry) were  $< 0.02^{\$}$ ,  $< 0.02^{\$}$ , < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.0

GAP for wheat in the USA is for seed treatment at 0.07 kg ai/T seeds. Field trials performed in the USA did not match this GAP.

Since wheat straw may not always be readily distinguishable from barley straw in trade, (since residues of wheat straw and barley straw are similar and since the GAPs for barley and wheat are similar), residues from wheat straw can be combined with residues from barley straw. This

resulted in the following dataset: < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02, < 0.02,

The Meeting estimated a maximum residue level of 0.02\* mg/kg for clothianidin in barley and wheat straw, an STMR of 0.02 mg/kg and a highest residue of 0.02 mg/kg. A correction for dry weight is not necessary here since all the values are below LOQ. The dry weight values are considered to be the same.

Statistical calculations using the NAFTA calculator were not possible, since all levels are below LOQ.

## Miscellaneous fodder and forage crops

Field trials involving cotton gin by-products were performed in Australia and the USA.

GAP for cotton in Australia is for two foliar aerial or ground spray applications at 50 g ai/ha, unstated interval and PHI 5 days. Trials performed in Australia did not match this GAP.

GAP for cotton in the USA is for one seed treatment at 2.1 kg ai/T seeds. Trials performed in the USA did not match this GAP.

GAP for cotton in the USA is for three foliar spray applications at 75 g ai/ha (max 224 g ai/ha per season), interval 7 days, PHI 21 days. Field trials performed in the USA did not match this GAP.

The Meeting could not estimate an STMR or highest residue for cotton gin by-products as there were no trials matching the GAP.

Field trials involving green rape forage were performed in Germany, Sweden, the UK, and France.

GAP for rape seed in the Czech Republic, Estonia, Finland, and Germany is for one seed treatment at 10 kg ai/T seeds. In field trials performed in Germany, Sweden and France matching this GAP ( $1 \times 7.4$ –9.5 kg ai/T seeds and PHI 27–191 days) clothianidin residue levels in green rape forage were < 0.02, < 0.02, < 0.02,  $< 0.02^{\circ}$ ,  $< 0.02^{\circ}$ 

The meeting estimated an STMR of 0.02 mg/kg and a highest residue of 0.027 mg/kg of clothianidin in green rape forage. A maximum residue level is not required, since forage is not traded.

The NAFTA calculator is not needed here, since maximum residue levels are not proposed for livestock forage.

Field trials involving <u>sugar beet tops</u> were performed in Belgium, Germany, the UK, France, Italy, Spain and the USA.

GAP for sugar beets in Belgium, Denmark, Finland, Germany, Netherlands, Slovakia and the UK is for one seed treatment at 0.6 mg ai/seed. For seed treatments and subsequent field trials performed in the UK, France and Germany matching this GAP ( $1 \times 0.6$  mg ai/seed and PHI 92–148 days) clothianidin residues in sugar beet tops were < 0.02, < 0.02 and < 0.02 mg/kg (n = 3). Residue levels in immature plants were not selected, because sugar beet leaves are normally harvested when roots are mature.

GAP for sugar beet in Italy, Slovenia, and Spain is for one seed treatment at 0.6 mg ai/seed. Trials performed in Spain and Italy did not match this GAP.

GAP for sugar beets in the USA is for one seed treatment at 0.6 mg ai/seed (FS formulation). For seed treatments and subsequent field trials performed in the USA matching this GAP (1 × 0.6 mg ai/seed, PHI 109–179 days, SE formulation) clothianidin residues in sugar beet leaves were < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, <

The Meeting noted that the GAP for Northern Europe is identical to the GAP for the USA. But because the LOQ of the USA dataset was lower, the Meeting decided to use only the USA dataset for a recommendation. The Meeting estimated an STMR of 0.01 mg/kg and a highest residue of 0.011 mg/kg of clothianidin in sugar beet tops. A maximum residue level is not required, since forage is not traded.

The NAFTA calculator was not used as maximum residue levels are not proposed for livestock forage.

Field trials involving sugarcane tops were performed in Australia.

GAP for sugar cane in Australia is for one soil directed spray application at 500 g ai/ha (PHI 147 days). In field trials performed in Australia matching this GAP ( $1 \times 500$  g ai/ha and a PHI 146–175 days) clothianidin residue levels in sugarcane tops were 0.08, 0.21 and 0.27 mg/kg (n = 3), expressed on dry weight (dw) for an SC formulation and 0.15 and 0.17 mg/kg dw (n = 2) for a WG formulation at similar locations. In a single bridging study using a WG and SC formulation, residue levels for the WG formulation were higher (0.15 versus 0.08 mg/kg for WG and SC formulation). The datasets are too small for a Mann-Whitney U test. The Meeting agreed to combine the datasets and take only the maximum value per location. This resulted in the following dataset for sugarcane tops: 0.15, 0.17, 0.21 and 0.27 mg/kg dw (n = 4)

The meeting estimated an STMR of 0.19 mg/kg and a highest residue of 0.27 mg/kg of clothianidin in sugarcane tops, based on dry weight basis. A maximum residue level is not required, since forage is not traded.

The NAFTA calculator is not needed here, since maximum residue levels are not proposed for livestock forage.

Field trials involving sugarcane fodder were not available.

Teas

Field trials involving dry leaves of tea were performed in Japan.

GAP for tea (green, black) in Japan is for one spray application at 12 g ai/hL and PHI 7 days. In field trials performed in Japan matching this GAP ( $1 \times 12$  g ai/hL and PHI 7 days) clothianidin residues in tea (dry leaves) were 5.3 and 18 mg/kg (n = 2).

The dataset for tea is considered insufficient to support a recommendation. The Meeting could not estimate maximum residue levels for tea.

### *Combination of residues from clothianidin use and thiamethoxam use*

As indicated before, clothianidin residues may arise from use of clothianidin as well as from use of thiamethoxam (metabolite CGA 322704). The Meeting considered it unlikely that both pesticides are used on the same crop and therefore the maximum estimated levels, the maximum STMR, and the maximum HR of each use is taken as recommendation.

| CCN     | Commodity name                 | Origin       | Recommendation    | STMR  | HR    |
|---------|--------------------------------|--------------|-------------------|-------|-------|
|         |                                |              | mg/kg             | mg/kg | mg/kg |
| FC 0001 | Citrus fruits                  | CGA 322704   | 0.07              | 0.02  | 0.02  |
|         |                                | clothianidin | no GAP            |       |       |
|         |                                | both uses    | 0.07 <sup>b</sup> | 0.02  | 0.02  |
| FP 0009 | Pome fruits                    | CGA 322704   | 0.1               | 0.025 | 0.04  |
|         |                                | clothianidin | 0.4               | 0.10  | 0.20  |
|         |                                | both uses    | $0.4^{a,b}$       | 0.10  | 0.20  |
| FS 0012 | Stone fruits                   | CGA 322704   | 0.2               | 0.04  | 0.12  |
|         |                                | clothianidin | insufficient data |       |       |
|         |                                | both uses    | $0.2^{a,b}$       | 0.04  | 0.12  |
| FB 0018 | Berries and other small fruits | CGA 322704   | 0.07              | 0.01  | 0.05  |
|         | Cranberries                    | clothianidin | 0.01*             | 0.01  | 0.01  |

| CCN      | Commodity name                                                | Origin       | Recommendation mg/kg | STMR<br>mg/kg | HR<br>mg/kg |
|----------|---------------------------------------------------------------|--------------|----------------------|---------------|-------------|
|          | Grapes                                                        | clothianidin | 0.7                  | 0.12          | 0.41        |
|          | Berries and other small fruits, except                        | both uses    | 0.07 <sup>a,b</sup>  | 0.12          | 0.41        |
|          | grapes                                                        | both uses    | 0.07                 | 0.01          | 0.05        |
|          | Grapes                                                        | both uses    | $0.7^{a,b}$          | 0.12          | 0.41        |
| FI 0327  | Banana                                                        | CGA 322704   | 0.02*                | 0.02          | 0.02        |
|          |                                                               | clothianidin | 0.02                 | 0.02          | 0.02        |
|          |                                                               | both uses    | 0.02 <sup>a,b</sup>  | 0.02          | 0.02        |
| FI 0350  | Рарауа                                                        | CGA 322704   | 0.01*                | 0             | 0           |
| 10000    | 1 upuju                                                       | clothianidin | no GAP               | 0             | Ŭ           |
|          |                                                               | both uses    | 0.01*,b              | 0             | 0           |
| FI 0353  | Pineapple                                                     | CGA 322704   | 0.01*                | 0             | 0           |
| 1 0555   | 1 meuppie                                                     | clothianidin | no GAP               | 0             | Ů           |
|          |                                                               | both uses    | 0.01*,b              | 0             | 0           |
| VB 0040  | Brassica (cole or cabbage) vegetables,                        | CGA 322704   | 0.2                  | 0.015         | 0.04        |
| VD 0040  | Head cabbages, flowerhead Brassicas                           | CUA 322704   | 0.2                  | 0.015         | 0.04        |
|          | Cabbages, head                                                | clothianidin | insufficient data    |               |             |
|          | Broccoli                                                      | clothianidin | insufficient data    |               |             |
|          | Brassica (cole or cabbage) vegetables,                        | both uses    | 0.2 <sup>b</sup>     | 0.015         | 0.04        |
|          | Head cabbages, flowerhead Brassicas                           | oour uses    | 0.2                  | 0.015         | 0.04        |
|          | Head cabbage with wrapper leaves (for                         | CGA 322704   | -                    | 0.03          | 0.08        |
|          | livestock dietary burden)                                     | clothianidin | insufficient data    | <u> </u>      |             |
|          |                                                               | both uses    | _                    | 0.03          | 0.08        |
| VC 0045  | Fruiting vegetables, Cucurbits                                | CGA 322704   | 0.02*                | 0.03          | 0.02        |
| VC 0045  | Cucumber                                                      | clothianidin | insufficient data    | 0.02          | 0.02        |
|          | Squash, summer                                                | clothianidin | insufficient data    |               |             |
|          | Fruiting vegetables, Cucurbits                                | both uses    | 0.02 <sup>*,b</sup>  | 0.02          | 0.02        |
| VO 0050  |                                                               | CGA 322704   | 0.02                 | 0.02          | 0.02        |
| VO 0030  | Fruiting vegetables, other than cucurbits (except sweet corn) | CGA 322704   | 0.03                 | 0.02          | 0.03        |
|          | Egg plant                                                     | clothianidin | insufficient data    |               | 1           |
|          | Tomato                                                        | clothianidin | insufficient data    |               |             |
|          | Fruiting vegetables, other than cucurbits                     | both uses    | 0.05 <sup>b</sup>    | 0.02          | 0.03        |
|          | (except sweet corn)                                           |              |                      |               |             |
| VO 0447  | Sweet corn (corn-on-the-cob)                                  | CGA 322704   | 0.01*                | 0.01          | 0.01        |
|          |                                                               | clothianidin | 0.01*                | 0.01          | 0.01        |
|          |                                                               | both uses    | 0.01*, a,b           | 0.01          | 0.01        |
| HS 0444  | Pepper Chilli, dried                                          | CGA 322704   | 0.5                  | 0.2           | 0.3         |
| 115 0111 | repper emili, allea                                           | clothianidin | no GAP               | 0.2           | 0.5         |
|          |                                                               | both uses    | 0.5 <sup>b</sup>     | 0.2           | 0.3         |
| VL 0053  | Leafy vegetables                                              | CGA 322704   | 2                    | 0.52          | 0.80        |
| · L 0055 | Lettuce. Head                                                 | clothianidin | insufficient data    | 0.32          | 0.00        |
|          | Lettuce, Leaf                                                 | clothianidin | insufficient data    |               |             |
|          | Leafy vegetables                                              | both uses    |                      | 0.52          | 0.80        |
| VP 0060  | Legume vegetables                                             | CGA 322704   | 0.01*                | 0.32          | 0.80        |
| vr 0000  | Leguine vegetables                                            | clothianidin | no GAP               | 0.01          | 0.01        |
|          |                                                               |              | 0.01* <sup>,b</sup>  | 0.01          | 0.01        |
| VD 0070  | Dulana                                                        | both uses    |                      | 0.01          | 0.01        |
| VD 0070  | Pulses                                                        | CGA 322704   | 0.02                 | 0.02          | -           |
|          | Soya bean (dry)                                               | clothianidin | insufficient data    | 0.02          |             |
| UD 0075  | Pulses                                                        | both uses    | 0.02 <sup>b</sup>    | 0.02          | -           |
| VR 0075  | Root and tuber vegetables                                     | CGA 322704   | 0.2                  | 0.01          | 0.15        |
|          | Carrots                                                       | clothianidin | insufficient data    |               |             |
|          | Chicory roots                                                 | clothianidin | insufficient data    | 0.05          | 0.04-       |
|          | Potato                                                        | clothianidin | 0.05                 | 0.02          | 0.033       |
|          | Sugar beet roots                                              | clothianidin | 0.03                 | 0.01          | 0.019       |
|          | Root and tuber vegetables                                     | both uses    | $0.2^{a,b}$          | 0.02          | 0.15        |
| VS 0620  | Artichoke, Globe                                              | CGA 322704   | 0.05                 | 0.024         | 0.029       |
|          |                                                               | clothianidin | no GAP               |               |             |
|          |                                                               | both uses    | 0.05 <sup>b</sup>    | 0.024         | 0.029       |
| VS 0624  | Celery                                                        | CGA 322704   | 0.04                 | 0.01          | 0.02        |
|          |                                                               | clothianidin | no GAP               |               |             |
|          |                                                               | both uses    | 0.04 <sup>b</sup>    | 0.01          | 0.02        |

| CCN     | Commodity name                     | Origin                                   | Recommendation                      |                      | HR                   |
|---------|------------------------------------|------------------------------------------|-------------------------------------|----------------------|----------------------|
| 00.0(40 | D 1                                | 004 222704                               | mg/kg                               | mg/kg                | mg/kg                |
| GC 0640 | Barley                             | CGA 322704                               | 0.04 0.01*                          | 0.01                 |                      |
|         |                                    | clothianidin                             | 0.01*<br>0.04 <sup>a,b</sup>        | 0.01                 |                      |
| 00.0(45 |                                    | both uses                                |                                     | 0.01                 |                      |
| GC 0645 | Maize                              | CGA 322704                               | 0.02                                | 0.02                 | -                    |
|         |                                    | clothianidin                             |                                     | 0.01                 | -                    |
|         |                                    | both uses                                | 0.02 <sup>a,b</sup>                 | 0.02                 |                      |
| GC 0656 | Popcorn                            | CGA 322704                               | 0.01                                | 0.01                 |                      |
|         |                                    | clothianidin                             | 0.01*                               | 0.01                 | -                    |
|         |                                    | both uses                                | 0.01 <sup>a,b</sup>                 | 0.01                 | -                    |
| GC 0649 | Rice                               | CGA 322704                               | insufficient data                   | -                    |                      |
|         |                                    | clothianidin                             | 0.5 <sup>a</sup>                    | 0.145                |                      |
|         |                                    | both uses                                | 0.5 <sup>a</sup>                    | 0.145                | —                    |
| GC 0651 | Sorghum                            | CGA 322704                               | no GAP                              |                      | -                    |
|         |                                    | clothianidin                             | 0.01*                               | 0.01                 | -                    |
|         |                                    | both uses                                | 0.01* <sup>a</sup>                  | 0.01                 | -                    |
| GC 0654 | Wheat                              | CGA 322704                               | 0.02*                               | 0.02                 | -                    |
|         |                                    | clothianidin                             | 0.01*                               | 0.01                 | -                    |
|         |                                    | both uses                                | 0.02* <sup>,a,b</sup>               | 0.02                 | _                    |
| GS 0659 | Sugarcane                          | CGA 322704                               | no GAP                              |                      |                      |
|         | -                                  | clothianidin                             | 0.4                                 | 0.03                 | 0.14                 |
|         |                                    | both uses                                | 0.4 <sup>a</sup>                    | 0.03                 | 0.14                 |
| TN 0672 | Pecan                              | CGA 322704                               | 0.01*                               | 0.01                 | 0.01                 |
|         |                                    | clothianidin                             | no GAP                              | .1                   |                      |
|         |                                    | both uses                                | 0.01* <sup>,b</sup>                 | 0.01                 | 0.01                 |
| SO 0088 | Oilseed                            | CGA 322704                               | 0.02*                               | 0.02                 | _                    |
| 50 0000 | Cottonseed (undelinted seed)       | clothianidin                             | insufficient data                   | 0.02                 |                      |
|         | Rape seed                          | clothianidin                             | 0.01*                               | 0.01                 | _                    |
|         | Sunflower seed                     | clothianidin                             | insufficient data                   | 0.01                 |                      |
|         | Oilseed                            | both uses                                | 0.02* <sup>,a,b</sup>               | 0.02                 | _                    |
| SB 0715 | Cacao beans                        | CGA 322704                               | 0.02*                               | 0.02                 |                      |
| SB 0/15 | Cacao beans                        | clothianidin                             | no GAP                              | 0.02                 |                      |
|         |                                    |                                          | 0.02* <sup>,b</sup>                 | 0.02                 |                      |
| CD 071( |                                    | both uses                                |                                     | 0.02                 |                      |
| SB 0716 | Coffee beans                       | CGA 322704                               | 0.05                                | 0.015                |                      |
|         |                                    | clothianidin                             | no GAP                              | 0.015                |                      |
|         |                                    | both uses                                | 0.05 <sup>b</sup>                   | 0.015                | -                    |
| AL 0528 | Pea vines                          | CGA 322704                               | -                                   | 0.05                 | 0.05                 |
|         |                                    | clothianidin                             | no GAP                              | 1                    |                      |
|         |                                    | both uses                                | -                                   | 0.05                 | 0.05                 |
| AL 0072 | Pea hay or Pea fodder (dry)        | CGA 322704                               | 0.2, dw                             | 0.05, dw             | 0.10, dw             |
|         |                                    | clothianidin                             | no GAP                              |                      | -                    |
|         |                                    | both uses                                | 0.2, dw <sup>b</sup>                | 0.05, dw             | 0.10, dw             |
| AF      | Barley forage (green)              | CGA 322704                               | -                                   | 0.04                 | 0.05                 |
|         |                                    | clothianidin                             | insufficient data                   |                      |                      |
|         |                                    | both uses                                | _ <sup>b</sup>                      | 0.04                 | 0.05                 |
| AF 0645 | Field corn forage (maize forage)   | CGA 322704                               | -                                   | 0.01                 | 0.02                 |
|         |                                    | clothianidin                             | insufficient data                   | ·                    | -                    |
|         |                                    | both uses                                | _b                                  | 0.01                 | 0.02                 |
| AF 0645 | Sweet corn forage (maize forage)   | CGA 322704                               | -                                   | 0.01                 | 0.02                 |
|         |                                    | clothianidin                             | insufficient data                   |                      |                      |
|         |                                    | both uses                                | _b                                  | 0.01                 | 0.02                 |
| AF 0651 | Sorghum grain forage (green)       | CGA 322704                               | no GAP                              | 1 *** -              |                      |
| 5051    | - Signam Brain Iorage (Broon)      | clothianidin                             | not required                        | 0.01                 | 0.01                 |
|         |                                    | both uses                                | _a                                  | 0.01                 | 0.01                 |
| AF      | Wheat forage (green)               | CGA 322704                               |                                     | 0.01                 | 0.01                 |
| 4 11    | (green)                            | clothianidin                             | insufficient data                   | 0.05                 | 0.00                 |
|         |                                    |                                          |                                     | 0.05                 | 0.04                 |
|         | Doulous atmosts and for the states | both uses                                |                                     | 0.05                 | 0.06                 |
| 10000   | Barley straw and fodder, dry       | CGA 322704                               | 0.2, dw                             | 0.05, dw             | 0.14, dw             |
| AS 0640 |                                    | .1. (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |                                     |                      |                      |
| AS 0640 |                                    | clothianidin<br>both uses                | 0.02*, dw<br>0.2, dw <sup>b,a</sup> | 0.02, dw<br>0.05, dw | 0.02, dw<br>0.14, dw |

| CCN     | Commodity name                                          | Origin       | Recommendation          | STMR              | HR                 |
|---------|---------------------------------------------------------|--------------|-------------------------|-------------------|--------------------|
|         |                                                         |              | mg/kg                   | mg/kg             | mg/kg              |
|         |                                                         | clothianidin | insufficient data       |                   |                    |
|         |                                                         | both uses    | 0.01* <sup>b</sup> , dw | 0.01, dw          | 0.01, dw           |
| AS 0645 | Popcorn stover (Maize fodder)                           | CGA 322704   | 0.01*, dw               | 0.01, dw          | 0.01, dw           |
|         |                                                         | clothianidin | insufficient data       |                   |                    |
|         |                                                         | both uses    | $0.01^{*b}$ , dw        | 0.01, dw          | 0.01, dw           |
| AS 0645 | Sweet corn stover (Maize fodder)                        | CGA 322704   | 0.01, dw                | 0.01, dw          | 0.01, dw           |
|         |                                                         | clothianidin | insufficient data       |                   |                    |
|         |                                                         | both uses    | 0.01, dw <sup>b</sup>   | 0.01, dw          | 0.01, dw           |
| AS 0651 | Sorghum grain stover<br>(sorghum straw and fodder, dry) | CGA 322704   | no GAP                  |                   |                    |
|         |                                                         | clothianidin | 0.01*, dw               | 0.01, dw          | 0.01, dw           |
|         |                                                         | both uses    | 0.01*, dw <sup>a</sup>  | 0.01, dw          | 0.01, dw           |
| AS 0654 | Wheat straw and fodder, dry                             | CGA 322704   | 0.2, dw                 | 0.05, dw          | 0.14, dw           |
|         |                                                         | clothianidin | 0.02*, dw               | 0.02, dw          | 0.02, dw           |
|         |                                                         | both uses    | 0.2, dw <sup>b,a</sup>  | 0.05, dw          | 0.14, dw           |
| AV      | Rape forage (green)                                     | CGA 322704   | -                       | 0.05              | 0.05               |
|         |                                                         | clothianidin | -                       | 0.02              | 0.027              |
|         |                                                         | both uses    | a,b                     | 0.02 <sup>c</sup> | 0.027 <sup>c</sup> |
| AV 0596 | Sugar beet tops (Sugar beet leaves or tops)             | CGA 322704   | _                       | 0.02              | 0.02               |
|         |                                                         | clothianidin | -                       | 0.01              | 0.011              |
|         |                                                         | both uses    | _ <sup>b</sup>          | 0.02              | 0.02               |
| AV 0659 | Sugarcane tops (sugarcane forage)                       | CGA 322704   | no GAP                  |                   |                    |
|         |                                                         | clothianidin | -                       | 0.19, dw          | 0.27, dw           |
|         |                                                         | both uses    | _ <sup>a</sup>          | 0.19, dw          | 0.27, dw           |
| DT 1114 | Tea, Green, Black (black, fermented and dried)          | CGA 322704   | 0.7                     | 0.12              | -                  |
|         |                                                         | clothianidin | insufficient data       |                   |                    |
|         |                                                         | both uses    | 0.7 <sup>b</sup>        | 0.12              | _                  |

<sup>a</sup> based on clothianidin use as derived from 2010 clothianidin evaluation

<sup>b</sup> based on thiamethoxam use as derived from 2010 thiamethoxam evaluation (metabolite CGA 322704).

<sup>c</sup> overall residue based on trials with the lower LOQ

- not required to recommend MRL (animal forage) or HR (seeds, grains)

dw = residue value expressed as dry weight (i.e., corrected to 100% dry matter)

# **Residues from rotational crops**

In a field rotational crop study, where the soil was treated with 162–192 g ai/ha, clothianidin levels in green crop parts ranged from < 0.01-0.025 mg/kg, < 0.01-0.017 mg/kg, and < 0.01-0.023 mg/kg at the 1, 4 and 8 month plant back intervals, respectively. Clothianidin was not found at the 12 month plant back intervals (< 0.01 mg/kg). Clothianidin was not found in turnip roots, wheat grain and wheat straw at any of the plant back intervals (< 0.01 mg/kg).

Dose rates used in the field rotational crop study are within the normal GAP ranges; therefore, residues from rotational crops need to be taken into account for the MRL recommendation. The field rotational crop study shows that residues from rotational crops are only expected in leafy crop types like Brassica vegetables (010, VB), leafy vegetables (013, VL), legume vegetables (014, VP), stalk and stem vegetables (017, VS), legume feeds (050, AL), forage of cereal grains and grasses (051, AF), and miscellaneous forage crops (052, AV).

The proposed MRL recommendation for direct treatment of Brassica vegetables, leafy vegetables, legume vegetables with clothianidin or thiamethoxam use covers the residues from rotation. However, for stalk and stem vegetables (017, VS), legume feeds (050, AL), forage of cereal grains and grasses (051, AF) and miscellaneous forage crops (052, AV) only a few of the commodities within the group are covered by the direct treatment recommendations.

At the 1 month plant back interval in the field rotational crop study, the following residues were found in different rotational leafy crops: < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, 0.011, 0.014, 0.014, 0.014 and 0.025 mg/kg (n = 9). For the commodities in groups 017 VS without a recommendation for direct treatment, the Meeting decided to recommend a maximum residue level of 0.04 mg/kg, an STMR of 0.01 mg/kg, and an HR of 0.025 mg/kg. For the animal forage commodities, a maximum residue level is not appropriate, since these commodities are not traded. The Meeting decided to recommend an STMR of 0.01 mg/kg and a highest residue of 0.025 mg/kg in animal forage crops (050 AL, 051 AF, 052 AV) without a recommendation for direct treatment.

# Fate of residues during processing

Information on the fate of residues during processing by radioactivity studies was not available. Processing studies with clothianidin were undertaken for apples, grapes, tomatoes, potatoes, sugar beets, and cottonseed. In the table below, relevant processing factors for these commodities are summarised.

In addition, processing studies for apple, coffee beans, plums and tomatoes were available from the 2010 thiamethoxam evaluation. A hydrolysis study on thiamethoxam showed that thiamethoxam is stable under the hydrolysis conditions used in food processing. Therefore clothianidin levels do not arise from thiamethoxam hydrolysis and processing factors for CGA 322704 from the thiamethoxam evaluation can be used to estimate processing factors for clothianidin.

Processing factors obtained from high level residue levels in the RAC were considered to be more reliable than processing factors obtained from low level residues in the RAC. For this reason, the processing factors for apple pomace and apple juice from the clothianidin evaluation are considered the best estimate, while the processing factors for tomato paste and tomato puree from the thiamethoxam evaluation are considered the best estimate.

Using the  $STMR_{RAC}$  obtained from both the thiamethoxam and clothianidin use, the Meeting estimated STMR-Ps for processed commodities as listed below. The Meeting considered the appropriate STMR-P to be used in the livestock dietary burden calculation or dietary intake calculation. An HR-P is not required for processed commodities.

| Commodity                      | Processing factors                                  | Processing factor   | STMR-P                          |
|--------------------------------|-----------------------------------------------------|---------------------|---------------------------------|
|                                | C                                                   | (median or best     | mg/kg                           |
|                                |                                                     | estimate)           | $\binom{a,b}{use}$              |
| Apple pomace (wet)             | 0.24 <sup>a</sup>                                   | 0.24 <sup>a</sup>   | $0.10 \times 0.24 = 0.024$      |
|                                | 1.4, 1.5, 1.5 <sup>b</sup>                          |                     | (pome fruits)                   |
| Apple juice                    | 0.14 <sup>a</sup>                                   | 0.14 <sup>a</sup>   | $0.10 \times 0.14 = 0.014$      |
|                                | 1.0, 1.0, 1.0 <sup>b</sup><br>1.5, 2.0 <sup>b</sup> |                     | (pome fruits)                   |
| Dried plums, prunes            | 1.5, 2.0 <sup>b</sup>                               | 1.75 <sup>b</sup>   | $0.04 \times 1.75 = 0.07$       |
|                                |                                                     |                     | (stone fruits)                  |
| Grape raisins                  | 1.6, 3.6 <sup>a</sup>                               | 2.6 <sup>a</sup>    | $0.12 \times 2.6 = 0.31$        |
| Grape juice                    | 1.1, 1.8 <sup>a</sup>                               | 1.45 <sup>a</sup>   | $0.12 \times 1.45 = 0.18$       |
| Grape pomace                   | 1.9 <sup>a</sup>                                    | 1.9 <sup>a</sup>    | $0.12 \times 1.9 = 0.23$        |
| Tomato paste                   | 1.2 <sup>a</sup>                                    | 5.9 <sup>b</sup>    | $0.02 \times 5.9 = 0.12$        |
|                                | 2.00, 2.38, 3.33, 3.75, 5.50, 5.78,                 |                     | (fruiting veg)                  |
|                                | 6.0, 6.0, 6.5, 6.5, 9.7, 11.3 <sup>b</sup>          |                     |                                 |
| Sugar beet dried pulp (85% dm) | 1.7 <sup>a</sup>                                    | 1.7 <sup>a</sup>    | $0.02 \times 1.7 = 0.034$       |
|                                |                                                     |                     | (root and tubers)               |
| Sugar beet molasses (62% dm)   | 3.2 <sup>a</sup>                                    | 3.2 <sup>a</sup>    | $0.02 \times 3.2 = 0.064$       |
|                                |                                                     |                     | (root and tubers)               |
| Cottonseed meal (96% dm)       | 0.1 <sup>a</sup>                                    | 0.1 <sup>a</sup>    | $0.02 \times 0.1 = 0.002$       |
|                                |                                                     |                     | (oilseeds)                      |
| Cottonseed hulls (88% dm)      | 0.76 <sup>a</sup>                                   | 0.76 <sup>a</sup>   | $0.02 \times 0.76 = 0.015$      |
|                                |                                                     |                     | (oilseeds)                      |
| Cottonseed, refined oil        | $< 0.077^{a}$                                       | < 0.077             | $0.02 \times < 0.077 = 0.0015$  |
|                                |                                                     |                     | (oilseeds)                      |
| Coffee beans, roasted          | < 0.33, < 0.33, < 0.33, < 0.33,                     | < 0.33 <sup>b</sup> | $0.015 \times < 0.33 = < 0.005$ |
|                                | < 0.33, < 0.50, < 0.50, < 0.50,                     |                     |                                 |

| Commodity | Processing factors   | Processing factor | STMR-P                |
|-----------|----------------------|-------------------|-----------------------|
|           |                      | (median or best   | mg/kg                 |
|           |                      | estimate)         | ( <sup>a,b</sup> use) |
|           | $< 0.50, < 0.50^{b}$ |                   |                       |

<sup>a</sup>: based on clothianidin use as derived from 2010 clothianidin evaluation

<sup>b</sup>: based on thiamethoxam use as derived from 2010 thiamethoxam evaluation (metabolite CGA 322704).

Based on a highest residue of 0.12 mg/kg for stone fruits and processing factor of 1.75, The Meeting estimated a maximum residue level of 0.2 mg/kg for dried plums, prunes (based on thiamethoxam and clothianidin use) and an HR of 0.21 mg/kg.

Based on a highest residue of 0.41 mg/kg for grapes and a processing factor of 2.6, The Meeting estimated a maximum residue level of 1 mg/kg for raisins (based on thiamethoxam and clothianidin use) and an HR of 1.066 mg/kg.

Based on an STMR of 0.12 mg/kg for grapes and a processing factor of 1.45, The Meeting estimated a maximum residue level of 0.2 mg/kg for grape juice (based on thiamethoxam and clothianidin use).

# Livestock dietary burden

The Meeting estimated the dietary burden of clothianidin residues (both from thiamethoxam and clothianidin use) on the basis of the livestock diets listed in the FAO manual appendix IX (OECD feedstuff table). Calculation from highest residue, STMR (some bulk commodities) and STMR-P values provides the levels in feed suitable for estimating MRLs, while calculation from STMR and STMR-P values from feed is suitable for estimating STMR values for animal commodities.

Forage commodities do not appear in the Recommendations Table (because no maximum residue level is needed) but they are used in estimating livestock dietary burden. Therefore all plant commodities used in the dietary burden calculation are listed below. Also, the terminology for commodities in the OECD feed tables is not always identical to the descriptions in the original studies or Codex description and some clarification is needed. Codex groups have been assigned in the JMPR 2009 and 2010 Meeting. Despite the long list of plant commodities used in dietary burden calculation, data on pea silage, sova bean hay, sova bean silage, barley silage, sorghum grain silage, wheat silage, barley bran fractions, sugar beet ensiled pulp, brewer's grain, canola meal, citrus dried pulp, maize aspirated grain fractions, maize milled by-products, hominy meal of field corn, sweet corn cannery waste, maize gluten, maize gluten meal, distiller's grain, cotton gin by-products, pineapple process waste, potato process waste, potato dried pulp, rape meal, rice hulls, rice bran, sorghum grain aspirated grain fractions, soya bean aspirated grain fractions, soya bean meal, soya bean hulls, soya bean okara, sova bean pollard, sugarcane molasses, sugarcane bagasse, tomato wet pomace, wheat aspirated grain fractions, wheat gluten meal, wheat milled by-products are not available and are therefore not taken into account in dietary burden calculations. Dietary burden for livestock therefore might be underestimated.

The Meeting decided that residue values for pea vines could be extrapolated to cowpea forage, that residue values for pea hay could be extrapolated to cowpea hay, that residue values for barley straw could be extrapolated to barley hay and that residue values for wheat straw could be extrapolated to wheat hay in the calculation of livestock dietary burden. Residues in cotton meal could not be extrapolated to other oilseed meals, because different processing processes are involved.

| Codex Group | Codex commodity description | Crop    | Feed Stuff | Highest residue | STMR or<br>STMR-P | Residue<br>Level | DM (%) |
|-------------|-----------------------------|---------|------------|-----------------|-------------------|------------------|--------|
|             |                             | Forages |            |                 |                   |                  |        |
| AL          | Alfalfa forage (green)      | Alfalfa | forage     | 0.025           | 0.01              | HR               | 35     |
| AF/AS       |                             | Barley  | forage     | 0.05            | 0.04              | HR               | 30     |

| Codex Group | Codex commodity description  | Сгор              | Feed Stuff           | Highest residue | STMR or<br>STMR-P | Residue<br>Level | DM (%) |
|-------------|------------------------------|-------------------|----------------------|-----------------|-------------------|------------------|--------|
| AF/AS       | Barley straw and fodder, dry | Barley            | hay                  | 0.14            | 0.05              | HR               | 100    |
| AF/AS       | Barley straw and fodder, dry | Barley            | straw                | 0.14            | 0.05              | HR               | 100    |
| AL          | Bean forage (green)          | Bean              | vines                | 0.025           | 0.01              | HR               | 35     |
| AM/AV       | Sugar beet leaves or tops    | Beet, mangel      | fodder               | 0.02            | 0.02              | HR               | 15     |
| AM/AV       | Sugar beet                   | Beet, sugar       | tops                 | 0.02            | 0.02              | HR               | 23     |
| AM/AV       | Cabbages, head               | Cabbage           | heads, leaves        | 0.08            | 0.03              | HR               | 15     |
| AL          | Clover                       | Clover            | forage               | 0.025           | 0.01              | HR               | 30     |
| AF/AS       | Maize forage                 | Corn, field       | forage/silage        | 0.02            | 0.01              | HR               | 40     |
| AF/AS       | Maize fodder                 | Corn, field       | stover               | 0.01            | 0.01              | HR               | 100    |
| AF/AS       |                              | Corn, pop         | stover               | 0.01            | 0.01              | HR               | 100    |
| AF/AS       |                              | Corn, sweet       | forage               | 0.02            | 0.01              | HR               | 48     |
| AF/AS       |                              | Corn, sweet       | stover               | 0.01            | 0.01              | HR               | 100    |
| AL          |                              | Cowpea            | forage               | 0.05            | 0.05              | HR               | 30     |
| AL          |                              | Cowpea            | hay                  | 0.1             | 0.05              | HR               | 100    |
| AL          |                              | Crown vetch       | forage               | 0.025           | 0.01              | HR               | 30     |
| AF/AS       |                              | Grass             | forage (fresh)       | 0.025           | 0.01              | HR               | 25     |
| AM/AV       | Kale forage                  | Kale              | leaves               | 0.025           | 0.01              | HR               | 15     |
| AL          | Lespedeza                    | Lespedeza         | forage               | 0.025           | 0.01              | HR               | 22     |
| AF/AS       |                              | Millet            | forage               | 0.025           | 0.01              | HR               | 30     |
| AF/AS       | Oat forage                   | Oat               | forage               | 0.025           | 0.01              | HR               | 30     |
| AL          | Pea vines (green)            | Pea               | vines                | 0.05            | 0.05              | HR               | 25     |
| AL          | Pea hay or fodder            | Pea               | hay                  | 0.1             | 0.05              | HR               | 100    |
| AM/AV       | Rape greens                  | Rape              | forage               | 0.027           | 0.02              | HR               | 30     |
| AF/AS       |                              | Rice              | whole crop<br>silage | 0.025           | 0.01              | HR               | 40     |
| AF/AS       | Rye forage (green)           | Rye               | forage               | 0.025           | 0.01              | HR               | 30     |
| AF/AS       |                              | Sorghum,<br>grain | forage               | 0.01            | 0.01              | HR               | 35     |
| AF/AS       |                              | Sorghum,<br>grain | stover               | 0.01            | 0.01              | HR               | 100    |
| AL          | Soya bean forage<br>(green)  | Soya bean         | forage               | 0.025           | 0.01              | HR               | 56     |
| AM/AV       |                              | Sugarcane         | tops                 | 0.27            | 0.19              | HR               | 100    |
| AL          |                              | Trefoil           | forage               | 0.025           | 0.01              | HR               | 30     |
| AF/AS       |                              | Triticale         | forage               | 0.025           | 0.01              | HR               | 30     |
| AM/AV       | Turnip leaves or tops        | Turnip            | tops (leaves)        | 0.025           | 0.01              | HR               | 30     |
| AL          |                              | Vetch             | forage               | 0.025           | 0.01              | HR               | 30     |
| AF/AS       |                              | Wheat             | forage               | 0.06            | 0.05              | HR               | 25     |
| AF/AS       | Wheat straw and fodder, dry  | Wheat             | hay                  | 0.14            | 0.05              | HR               | 100    |

## Chlothianidin

| Codex Group | Codex commodity description | Crop              | op Feed Stuff   |      | STMR or<br>STMR-P | Residue<br>Level | DM (%) |
|-------------|-----------------------------|-------------------|-----------------|------|-------------------|------------------|--------|
| AF/AS       | Wheat straw and fodder, dry | Wheat             | straw           | 0.14 | 0.05              | HR               | 100    |
|             |                             | Roots & Tuber     | rs              |      |                   |                  |        |
| VR          | Carrot                      | Carrot            | culls           | 0.15 | 0.02              | HR               | 12     |
| VR          | ca                          |                   | 0.02            | HR   | 37                |                  |        |
| VR          | Potato culls                | Potato            | culls           | 0.15 | 0.02              | HR               | 20     |
| VR          | Swede                       | Swede             | roots           | 0.15 | 0.02              | HR               | 10     |
| VR          | Turnip, Garden              | Turnip            | roots           | 0.15 | 0.02              | HR               | 15     |
|             |                             | Cereal Grains/    | Crops Seeds     |      | •                 |                  |        |
| GC          | Barley                      | Barley            | grain           |      | 0.01              | STMR             | 88     |
| VD          | Beans, dry                  | Bean              | seed            |      | 0.02              | STMR             | 88     |
| GC          | Maize                       | Corn, field       | grain           |      | 0.02              | STMR             | 88     |
| GC          | Popcorn                     | Corn, pop         | grain           |      | 0.01              | STMR             | 88     |
| VD          | Cowpea                      | Cowpea            | seed            |      | 0.02              | STMR             | 88     |
| VD          | Lupin                       | Lupin             | seed            |      | 0.02              | STMR             | 88     |
| VD          | Field pea, (dry)            | Pea               | seed            |      | 0.02              | STMR             | 90     |
| GC          | Rice                        | Rice              | grain           |      | 0.145             | STMR             | 88     |
| GC          | Sorghum                     | Sorghum,<br>grain | grain           |      | 0.01              | STMR             | 86     |
| VD          | Soya bean, dry              | Soya bean         | seed            |      | 0.02              | STMR             | 89     |
| VD          | Vetch                       | Vetch             | seed            |      | 0.02              | STMR             | 89     |
| GC          | Wheat                       | Wheat             | grain           |      | 0.02              | STMR             | 89     |
|             |                             | By-products       |                 |      |                   |                  |        |
| AB          | Apple pomace, dry           | Apple             | pomace, wet     |      | 0.024             | STMR             | 40     |
| AB          | Sugar beet pulp, dry        | Beet, sugar       | dried pulp      |      | 0.034             | STMR             | 85     |
| DM          | Sugar beet molasses         | Beet, sugar       | molasses        |      | 0.064             | STMR             | 62     |
| SM          | Cotton meal                 | Cotton            | meal            |      | 0.002             | STMR             | 96     |
| SO          |                             | Cotton            | undelinted seed |      | 0.02              | STMR             | 88     |
| SM          | Cotton hulls                | Cotton            | hulls           |      | 0.015             | STMR             | 88     |
| AB          | Grape pomace, dry           | Grape             | pomace, wet     |      | 0.23              | STMR             | 15     |

Dietary burden calculations for beef cattle, dairy cattle, broilers and laying poultry are provided in Annex 6. A mean and maximum dietary burden for livestock, based on thiamethoxam and clothianidin use, is shown in the table below.

Animal dietary burden for clothianidin (from thiamethoxam and clothianidin use), expressed as ppm of dry matter diet

|                 | US    | EU    | AU    | JPN   | overall    |     |
|-----------------|-------|-------|-------|-------|------------|-----|
|                 | max   | max   | max   | max   | max        |     |
| beef cattle     | 0.298 | 0.795 | 0.640 | 0.027 | 0.795 (EU) | а   |
| dairy cattle    | 0.277 | 0.586 | 0.632 | 0.061 | 0.632 (AU) | b   |
| poultry broiler | 0.051 | 0.209 | 0.094 | 0.022 | 0.209 (EU) |     |
| poultry layer   | 0.051 | 0.258 | 0.094 | 0.021 | 0.258 (EU) | c,d |
|                 | mean  | mean  | mean  | mean  | mean       |     |

|                 | US    | EU    | AU    | JPN   | overall    |     |
|-----------------|-------|-------|-------|-------|------------|-----|
| beef cattle     | 0.089 | 0.170 | 0.465 | 0.024 | 0.465 (AU) | а   |
| dairy cattle    | 0.119 | 0.170 | 0.459 | 0.033 | 0.459 (AU) | b   |
| poultry broiler | 0.051 | 0.040 | 0.094 | 0.020 | 0.094 (AU) |     |
| poultry layer   | 0.051 | 0.070 | 0.094 | 0.021 | 0.094 (AU) | c,d |

<sup>a</sup> Highest mean and maximum beef or dairy cattle dietary burden suitable for maximum residue level and STMR estimates for mammalian meat.

<sup>b</sup> Highest mean and maximum dairy cattle dietary burden suitable for maximum residue level and STMR estimates for milk.

<sup>c</sup> Highest mean and maximum poultry broiler or layer dietary burden suitable for maximum residue level and STMR estimates for poultry meat.

<sup>d</sup> Highest mean and maximum poultry layer suitable for maximum residue level and STMR estimates for eggs.

### Livestock feeding studies

The Meeting received a feeding study on lactating cows.

Three groups of three lactating Holstein-Friesian cows were dosed once daily via capsules at levels of 0.27, 0.80 and 2.6 ppm dry weight feed for 28 consecutive days. Milk was collected throughout the study and tissues were collected on day 29 within 15–17 hrs after the last dose.

No residues of clothianidin were found in tissues at any dose level (< 0.02 mg/kg). Levels of clothianidin in milk were < 0.002 mg/kg in the 1 × dose group, < 0.002-0.003 mg/kg (mean 0.0020 mg/kg) in the 3 × dose group and < 0.002-0.012 mg/kg (mean 0.0046 mg/kg) in the 10 × dose group.

### **Residues in animal commodities**

### Cattle

In a feeding study where lactating cows were dosed with clothianidin at up to 2.6 ppm dry feed, no clothianidin was found in tissues (< 0.02 mg/kg). Therefore, no residues are to be expected in tissues at the mean and maximum calculated dietary burden of 0.465 and 0.795 ppm based on clothianidin dietary burden.

For milk MRL estimation, the highest residues in the milk resulting from dietary burden based on clothianidin were calculated by interpolating the maximum dietary burden for dairy cattle (0.632 ppm) between the relevant feeding levels (0.27 and 0.8 ppm) from the dairy cow feeding study and using the mean milk concentration from those feeding groups.

For milk STMR estimation, the median residues in the milk resulting from dietary burden were calculated by interpolating the mean dietary burden for dairy cattle (0.459 ppm) between the relevant feeding levels (0.27 and 0.80 ppm) from the dairy cow feeding study and using the mean milk concentration from those feeding groups.

In the table below, dietary burdens are shown in round brackets (), feeding levels and residue concentrations from the feeding study are shown in square brackets [] and estimated concentrations related to the dietary burdens are shown without brackets.

| Dietary burden (ppm) | Milk              |
|----------------------|-------------------|
| Feeding level [ppm]  | (mg/kg residue)   |
|                      | mean              |
| MRL dairy cattle     |                   |
| (0.632 ppm)          | < 0.0020          |
| [0.27–0.80 ppm]      | [< 0.0020–0.0020] |
| STMR dairy cattle    |                   |
| (0.459 ppm)          | < 0.0020          |
| [0.27–0.80 ppm]      | [< 0.0020-0.0020] |

#### Chlothianidin

Another route for clothianidin residues to end up in animal commodities is from dietary burden resulting from thiamethoxam use. Based on a lactating cow feeding study with thiamethoxam, the CGA 322704 residues in milk were estimated at 0.011 and 0.004 mg/kg resulting from the maximum (5.23 ppm) and mean (1.59 ppm) dietary burden from thiamethoxam use. The CGA 322704 residues in liver were estimated at 0.10 and 0.035 mg/kg resulting from the maximum (5.23 ppm) dietary burden from thiamethoxam use. The CGA 322704 residues in liver were estimated at 0.10 and 0.035 mg/kg resulting from the maximum (5.23 ppm) and mean (1.59 ppm) dietary burden from the maximum (5.23 ppm) dietary burden from thiamethoxam use. The CGA 322704 residues in muscle, fat and kidney were below the LOQ of 0.01 mg/kg for the maximum (5.23 ppm) dietary burden from thiamethoxam use. These residues need to be taken into account.

The Meeting estimated a maximum residue level for clothianidin of 0.02\* mg/kg in meat from mammals other than marine mammals, mammalian offal, except liver, and mammalian fat (based on clothianidin use). The Meeting estimated a maximum residue level for clothianidin of 0.2 mg/kg in liver of cattle, goats, pigs and sheep (based on thiamethoxam use). The meeting estimated a maximum residue for clothianidin of 0.02 mg/kg in milks (based on thiamethoxam use). The residue in animal commodities is considered not fat-soluble.

The Meeting estimated an STMR and HR of 0.02 mg/kg in meat from mammals other than marine mammals, mammalian offal, except liver and mammalian fat (based on clothianidin use). The Meeting estimated an STMR of 0.035 mg/kg and HR of 0.10 mg/kg in liver (based on thiamethoxam use). The Meeting estimated an STMR of 0.004 mg/kg in milks (based on thiamethoxam use).

#### Poultry

No poultry feeding study is available for clothianidin, but the metabolism studies in laying hens can be used to estimate residue levels resulting from dietary burden based on clothianidin in poultry tissues or eggs from a mean and maximum dietary burden of 0.070 and 0.258 ppm. When extrapolating from a dose rate of 134 ppm in the laying hen metabolism study to 0.258 ppm as maximum dietary burden for poultry, and using the maximum total residues in liver of 5.1 mg/kg, residue levels in tissues and eggs are expected to be well below the LOQ of 0.01 mg/kg.

Another route for clothianidin residues to end up in animal commodities is from dietary burden resulting from thiamethoxam use. Based on a poultry metabolism study with thiamethoxam, CGA 322704 residues in poultry meat, fat and eggs from a thiamethoxam dietary burden of 1.59 ppm are also well below the LOQ of 0.01 mg/kg. However, CGA 322704 residues in poultry offal from thiamethoxam dietary burden of 1.59 ppm are higher than from clothianidin dietary burden. These residues need to be taken into account. Maximum residue levels from thiamethoxam dietary burden in poultry liver are 0.050 mg/kg clothianidin; mean residue levels in poultry liver are 0.018 mg/kg clothianidin.

The Meeting estimated a maximum residue level for clothianidin of 0.01\* mg/kg in poultry meat, poultry fats, and eggs (based on clothianidin use). The Meeting estimated a maximum residue level for clothianidin of 0.1 mg/kg in poultry offal (based on thiamethoxam use). The residue in animal commodities is considered not fat-soluble.

The Meeting estimated an STMR and HR of 0.01 mg/kg in poultry meat, poultry fats, and eggs (based on clothianidin use). The Meeting estimated an STMR of 0.018 mg/kg in poultry offal and an HR of 0.050 mg/kg in poultry offal (based on thiamethoxam use).

# **RECOMMENDATIONS, FURTHER WORK OR INFORMATION**

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI and IESTI assessment.

Definition of the residue for compliance with the MRL and for estimation of dietary intake for plant commodities: *sum of clothianidin and its Z-isomers*.

Definition of the residue for compliance with the MRL and for estimation of dietary intake for animal commodities: *sum of clothianidin and its Z-isomers*.

The residue is considered not fat-soluble.

Note that clothianidin residues may arise from use of clothianidin as well as from use of thiamethoxam (metabolite CGA 322704). The origin of the MRL, STMR and HR is indicated by a T or t when thiamethoxam use dominates or contributes and by a C or c when clothianidin use dominates or contributes to the proposed residue level.

| CCN      | Commodity name                                                | MRL                | STMR     | HR       |
|----------|---------------------------------------------------------------|--------------------|----------|----------|
|          |                                                               | mg/kg              | mg/kg    | mg/kg    |
| FC 0001  | Citrus fruits                                                 | 0.07 (T)           | 0.02     | 0.02     |
| FP 0009  | Pome fruits                                                   | 0.4 (C,t)          | 0.10     | 0.20     |
| FS 0012  | Stone fruits                                                  | 0.2 (cT)           | 0.04     | 0.12     |
| DF 0014  | Prunes                                                        | 0.2 (cT)           | 0.07     | -        |
| FB 0018  | Berries and other small fruits, except grapes                 | 0.07 (c,T)         | 0.01     | 0.05     |
| FB 0269  | Grapes                                                        | 0.7 (C,t)          | 0.12     | 0.41     |
| DF 0269  | Dried grapes (= currants, Raisins and Sultanas)               | 1 (C,t)            | 0.31     | 1.066    |
| JF 0269  | Grape juice                                                   | 0.2 (C,t)          | 0.18     | -        |
| FI 0327  | Banana                                                        | 0.02 (C,t)         | 0.02     | 0.02     |
| FI 0350  | Papaya                                                        | 0.01* (T)          | 0        | 0        |
| FI 0353  | Pineapple                                                     | 0.01* (T)          | 0        | 0        |
| VB 0040  | Brassica (cole or cabbage) vegetables, Head cabbages,         | 0.2 (T)            | 0.015    | 0.04     |
| 1/0 0045 | flowerhead brassicas                                          | 0.0 <b>2</b> * (T) | 0.02     | 0.02     |
| VC 0045  | Fruiting vegetables, Cucurbits                                | 0.02* (T)          | 0.02     | 0.02     |
| VO 0440  | Fruiting vegetables, other than cucurbits (except sweet corn) | 0.05 (1)           | 0.02     | 0.03     |
| VO 0447  | Sweet corn (corn-on-the-cob)                                  | 0.01* (C,T)        | 0.01     | 0.01     |
| HS 0444  | Peppers Chilli, dried                                         | 0.5 (T)            | 0.2      | 0.3      |
| VL 0053  | Leafy vegetables                                              | 2 (T)              | 0.52     | 0.80     |
| VP 0060  | Legume vegetables                                             | 0.01* (T)          | 0.01     | 0.01     |
| VD 0070  | Pulses                                                        | 0.02 (T)           | 0.02     | -        |
| VR 0075  | Root and tuber vegetables                                     | 0.2 (C,T)          | 0.02     | 0.15     |
| VS 0078  | Stalk and stem vegetables, except artichoke and celery        | 0.04 (C)           | 0.01     | 0.025    |
| VS 0620  | Artichoke, Globe                                              | 0.05 (T)           | 0.024    | 0.029    |
| VS 0624  | Celery                                                        | 0.04 (T)           | 0.01     | 0.02     |
| GC 0640  | Barley                                                        | 0.04 (cT)          | 0.01     | -        |
| GC 0645  | Maize                                                         | 0.02 (cT)          | 0.02     | -        |
| GC 0656  | Popcorn                                                       | 0.01* (c,T)        | 0.01     | -        |
| GC 0649  | Rice                                                          | 0.5 (C)            | 0.145    | -        |
| GC 0651  | Sorghum                                                       | 0.01* (C)          | 0.01     | -        |
| GC 0654  | Wheat                                                         | 0.02* (c,T)        | 0.02     | -        |
| GS 0659  | Sugarcane                                                     | 0.4 (C)            | 0.03     | 0.14     |
| TN 0672  | Pecan                                                         | 0.01* (T)          | 0.01     | 0.01     |
| SO 0088  | Oilseed                                                       | 0.02* (c,T)        | 0.02     | -        |
| SB 0715  | Cacao beans                                                   | 0.02* (T)          | 0.02     | -        |
| SB 0716  | Coffee beans                                                  | 0.05 (T)           | 0.015    | -        |
| AL 0072  | Pea hay or Pea fodder (dry)                                   | 0.2, dw (T)        | 0.05, dw | 0.10, dw |
| AS 0640  | Barley straw and fodder, dry                                  | 0.2, dw (T,c)      | 0.05, dw | 0.14, dw |
| AS 0645  | Maize fodder                                                  | 0.01*, dw (T)      | 0.01, dw | 0.01, dw |
| AS 0651  | Sorghum straw and fodder, dry                                 | 0.01*, dw (C)      | 0.01, dw | 0.01, dw |
| AS 0654  | Wheat straw and fodder, dry                                   | 0.2, dw (T,c)      | 0.05, dw | 0.14, dw |
| DT 1114  | Tea, Green, Black (black, fermented and dried)                | 0.7 (T)            | 0.12     | -        |
| MM0095   | meat from mammals other than marine mammals                   | 0.02* (C,t)        | 0.02     | 0.02     |
| MF0100   | Mammalian fats (except milk fats)                             | 0.02* (C,t)        | 0.02     | 0.02     |
| MO 0105  | Edible offal, mammalian (except liver)                        | 0.02* (C,t)        | 0.02     | 0.02     |
| MO 0099  | Liver of cattle, goats, pigs and sheep                        | 0.2 (c,T)          | 0.035    | 0.10     |
| ML0106   | milks                                                         | 0.02 (c,T)         | 0.004    | -        |
| PM 0110  | Poultry meat                                                  | 0.01* (C,t)        | 0.01     | 0.01     |
| PF 0111  | Poultry fats                                                  | 0.01* (C,t)        | 0.01     | 0.01     |
| PO 0111  | Poultry, edible offal of                                      | 0.1 (T,c)          | 0.018    | 0.050    |

| CCN     | Commodity name |             |      | HR<br>mg/kg |
|---------|----------------|-------------|------|-------------|
| PE 0112 | Eggs           | 0.01* (C,t) | 0.01 | 0.01        |

### DIETARY RISK ASSESSMENT

# Long-term intake

The International Estimated Daily Intakes (IEDI) of for clothianidin was calculated from recommendations for STMRs for raw and processed commodities in combination with consumption data for corresponding food commodities. The results are shown in Annex 3 of the 2010 Report of the JMPR.

The IEDI of in the 13 GEMS/Food cluster diets, based on the estimated STMRs were in the range 1%-2% of the maximum ADI of 0.1 mg/kg bw. The Meeting concluded that the long-term intake of residues of clothianidin from uses considered by the Meeting is unlikely to present a public health concern.

### Short-term intake

The International Estimated Short Term Intake (IESTI) for clothianidin was calculated from recommendations for STMRs and HRs for raw and processed commodities in combination with consumption data for corresponding food commodities. The results are shown in Annex 4 of the 2010 Report of the JMPR.

| Author         | Year  | Title, Institute, Report reference                                                                                                          | Code            |
|----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Babczinski, P  | 1999a | Metabolism of TI-435 in apples Part 1 of 2: Apple fruits Bayer AG,                                                                          | THM-0001        |
|                |       | Leverkusen, Germany Report No.: 109733, Sumitomo Chemical Company,                                                                          | (M-020477-01-2) |
|                |       | Report No.: THM-0001, Date: 17 December 1999 GLP, unpublished                                                                               |                 |
| Babczinski, P  | 1999b | Metabolism of TI-435 in apples Part 2 of 2: Apple leaves Bayer AG,                                                                          | THM-0002        |
|                |       | Leverkusen, Germany Report No.: 109733-1, Sumitomo Chemical                                                                                 | (M-020487-01-2) |
|                |       | Company, Report No.: THM-0002, Date: 17 December 1999GLP, unpublished                                                                       |                 |
| Babczinski, P  | 2000  | Photolysis of [nitroimino- <sup>14</sup> C]TI-435 and [thiazolyl-2- <sup>14</sup> C]TI-435 in sterile                                       | THM-0013        |
| and Bornatsch, |       | aqueous buffer solution Bayer AG, Leverkusen, Germany Report No.: MR-                                                                       | (M-023549-02-1) |
| W              |       | 248/00, Sumitomo Chemical Company, Report No.: THM-0013, Date: 19                                                                           |                 |
|                |       | September 2000, Amended: 13 Dec 2000 GLP, unpublished                                                                                       |                 |
| Brookey, FM    | 2006  | Independent laboratory validation of the residue analytical method: an                                                                      | M-283049-01-1   |
|                |       | analytical method—or the determination of clothianidin (TI-435) and the                                                                     |                 |
|                |       | metabolite TMG residues in root and leafy vegetables using LC MS/MS-                                                                        |                 |
|                |       | Method no. TI-002-P05-001 Morse Laboratories, Inc., Sacramento, CA,                                                                         |                 |
|                |       | USA Bayer CropScience, Report No.: RATIY018, Date: 17 November                                                                              |                 |
| Duringhand     | 2002- | 2006 GLP, unpublished                                                                                                                       | TILA 005(       |
| Brumhard, B    | 2003a | Independent laboratory validation of the enforcement method 00656/M001                                                                      | THA-0056        |
|                |       | for the determination of residues of TI-435 in/on matrices of animal origin<br>by HPLC-UVBayer CropScience, Report No.: MR-008/03, Sumitomo |                 |
|                |       | Chemical Company, Report No.: THA-0056 Date: 28 February 2003 GLP,                                                                          |                 |
|                |       | unpublished                                                                                                                                 |                 |
| Brumhard, B    | 2003b | Independent laboratory validation of the enforcement method 00657/M001                                                                      | THA-0058        |
|                |       | for the determination of residues of TI-435 in/on matrices of plant origin by                                                               | (M-081855-01-1) |
|                |       | HPLC-UV Bayer CropScience, Report No.: MR-009/03, Sumitomo                                                                                  |                 |
|                |       | Chemical Company, Report No.: THA-0058 Date: 28 February 2003 GLP,                                                                          |                 |
|                |       | unpublished                                                                                                                                 |                 |

### REFERENCES

| Author        | Year                   | Title, Institute, Report reference                                                                                                               | Code          |
|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Brungardt, JN | 2007                   | Bayer Method TI-004-P07-01. An analytical method for the determination of residues of clothianidin in crop matrices using LC/MS/MS. Bayer Crop   | M-297573-01-1 |
|               |                        | Science, Report no TI-004-P07-01. Date 4 April 2007. GLP, unpublished.                                                                           |               |
| Burn, R       | 2005a                  | Determination of clothianidin residues in sugarcane billets, trash and roots                                                                     | THR-0552      |
| uiii, it      | 20054                  | following a soil application of TI-435 500 WG Serve-Ag Research Pty Ltd,                                                                         | 11110 0002    |
|               |                        | Australia Study No: 104-002-435-SUG-RES Sumitomo Chemical Company                                                                                |               |
|               |                        | Report No: THR-0552 Date: 24 March 2005 GLP, Unpublished                                                                                         |               |
| Burn, R       | 2005b                  | Determination of clothianidin residues in banana fruit following an                                                                              | THR-0554      |
| ,             |                        | application of TI-435 200 SC and TI-435 500 WG to the pseudostem base                                                                            |               |
|               |                        | by injection or spray Serve-Ag Research Pty., Ltd. Australia Study No. 104-                                                                      |               |
|               |                        | 013-435-BAN RES Sumitomo Chemical Company, Report No: THR-0554                                                                                   |               |
|               |                        | Date: 6 October 2005 GLP, Unpublished                                                                                                            |               |
| urn, R        | 2005c                  | Determination of Clothianidin residues in cotton seed and trash following                                                                        | THR-0557      |
|               |                        | four applications of TI-435 500 WDG Serve-Ag Research Pty. Ltd.,                                                                                 |               |
|               |                        | Australia Study No: 104-003-435-COT RES Sumitomo Chemical Company                                                                                |               |
|               |                        | Study No: THR-0557 Date: 23 March 2005 GLP, Unpublished                                                                                          |               |
| urn, R        | 2005d                  | Determination of clothianidin residues in cotton seed, lint, trash and forage                                                                    | THR-0558      |
|               |                        | following various applications of OZ-TI-435 200 SC and TI-435 500 WG at                                                                          |               |
|               |                        | various timings Serve-Ag Research Pty., Ltd., Australia Study No: 105-011-                                                                       |               |
|               |                        | 435-COT RES Sumitomo Chemical Company Study No: THR-0558 Date:                                                                                   |               |
|               |                        | 22 July 2005 GLP, Unpublished                                                                                                                    |               |
| lurn, R       | 2006a                  | Determination of residues of Clothianidin in wine grapes Peracto Pty Ltd,                                                                        | THR-0549      |
|               |                        | Australia Study No: 105-073-435-GRAPE – RES Sumitomo Chemical                                                                                    |               |
|               |                        | Company Report No: THR-0549 Date: 15 December 2006 GLP,                                                                                          |               |
|               | <b>2</b> 00 <i>C</i> 1 | Unpublished                                                                                                                                      |               |
| Surn, R       | 2006b                  | Determination of clothianidin residues in banana fruit Peracto, Pty. Ltd,                                                                        | THR-0555      |
|               |                        | Australia Study No: 105-012-435-BAN RES Sumitomo Chemical                                                                                        |               |
|               |                        | Company, Report No: THR-0555 Date: 18 December 2006 GLP,                                                                                         |               |
| D.            | 2006-                  | Unpublished                                                                                                                                      | THD 0552      |
| lurn, R       | 2006c                  | Determination of clothianidin residues in sugarcane Serve-Ag Research Pty                                                                        | THR-0553      |
|               |                        | Ltd, Australia Study No: 105-014-435-SUG-RES Sumitomo Chemical                                                                                   |               |
| Durn D        | 20064                  | Company Study No: THR-0553 Date: 1 September 2006 GLP, Unpublished                                                                               | TUD 0556      |
| Burn, R       | 2006d                  | Determination of clothianidin residues in banana fruit Serve-Ag Research<br>Pty., Ltd. Australia Study No: 105-013-435-BAN RES Sumitomo Chemical | THR-0556      |
|               |                        | Company, Report No: THR-0556 Date: 1 September 2006 GLP,                                                                                         |               |
|               |                        | Unpublished                                                                                                                                      |               |
| urn, R        | 2006e                  | Determination of clothianidin residues in apple fruit following one soil                                                                         | THR-0559      |
| uni, ic       | 20000                  | application of OZ-TI-435 200 SC Peracto Pty Ltd, Australia Sumitomo                                                                              | 1111( 055)    |
|               |                        | Chemical Company Study No: I05-025-435-APPL-RES Report No.: THR-                                                                                 |               |
|               |                        | 0559 Date: 9 November 2006 GLP, Unpublished                                                                                                      |               |
| Burn, R       | 2006f                  | Determination of clothianidin residues in apple fruit following one soil                                                                         | THR-0560      |
| , iii, iii    | 20001                  | application of TI-435 500 WG Peracto Pty Ltd, Australia Sumitomo                                                                                 | 11111 00 00   |
|               |                        | Chemical Company Study No: 105-063-435-APPL-SOIL-RES Report No.:                                                                                 |               |
|               |                        | THR-0560 Date: 9 November 2006 GLP, Unpublished                                                                                                  |               |
| arringer, SJ  | 2003                   | Comparison of TM-444 residues in potato raw agricultural commodity                                                                               | THR-0070      |
| <i>.</i>      |                        | following in-furrow, side-dress, and foliar applications of TM-444                                                                               |               |
|               |                        | formulated products Valent USA Corporation Report No: TCI-02-063                                                                                 |               |
|               |                        | Sumitomo Chemical Company Report No: THR-0070 Date: 3 September                                                                                  |               |
|               |                        | 2003 GLP, Unpublished                                                                                                                            |               |
| arringer, SJ  | 2004a                  | Magnitude of the residue of TM-444 and its metabolite in grape raw                                                                               | THR-0068      |
|               |                        | agricultural and processed commodities-Japan Sumitomo Chemical                                                                                   |               |
|               |                        | Company Study No: TCI-03-0076 Report No: THR-0068 Date: 10 February                                                                              |               |
|               |                        | 2004 GLP, Unpublished                                                                                                                            |               |
| arringer, SJ  | 2004b                  | Magnitude of the residues of TM-444 and its metabolites in potato raw                                                                            | THR-0069      |
|               |                        | agricultural and processed commodities Valent USA Corporation Report                                                                             |               |
|               |                        | No: TCI-03-075 Sumitomo Chemical Company Report No: THR-0069Date:                                                                                |               |
|               |                        | 16 February 2004 GLP, Unpublished                                                                                                                |               |
| Coopersmith,  | 2008                   | Storage stability of TMG in potatoes (tuberous vegetables) and sugarbeet                                                                         | M-303705-01-1 |
| I             |                        | leaves (leaves of root vegetables) and associated processed products of                                                                          |               |
|               |                        | potatoes. Bayer CropScience, Stillwell, KS, USA. Report No RATIY015                                                                              |               |
|               |                        | Date: 30 June 2008 GLP, Unpublished.                                                                                                             |               |
| Corley, J     | 2008                   | Clothianidin: Magnitude of the Residue on Cranberry IR-4 Project, USA                                                                            | THR-0570      |
|               |                        | Report No: IR-4 PR 09399 Sumitomo Chemical Company Report No:<br>THR-0570 Date: 23 June 2008 GLP, Unpublished                                    |               |
|               |                        |                                                                                                                                                  |               |

| Author                             | Year           | Title, Institute, Report reference                                                                                                                                                                                                                                                                                                                                                                 | Code                                                     |
|------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Croucher, A                        | 1999           | TI-435: Validation of an analytical method to determine residues in apples.<br>Covance Laboratories Ltd, Harrogate, North Yorkshire, UK. Covance report                                                                                                                                                                                                                                            | THA-0019                                                 |
| Croucher, A                        | 2000           | number 586/149-D2140. Date September 1999. GLP, unpublished.<br>TI-435: Evaluation of residue stability in apple under deep freeze storage<br>conditions Covance Laboratories Ltd., Harrogate, North Yorkshire, United<br>Kingdom Report No: 586/185- D2140 Sumitomo Chemical Company                                                                                                              | THR-0010                                                 |
| Dorschner, K                       | 2007           | Report No: THR-0010 Date: 29 September 2000 GLP, Unpublished<br>Clothianidin: Magnitude of the residue on peach IR-4 Project, USA Report<br>No: IR-4 PR 08544 Sumitom—Chemical Company Report No: THR-0586<br>Date: 28 September 2007 GLP, Unpublished                                                                                                                                             | THR-0586                                                 |
| Duah, FK                           | 2000d          | TI-435 600 FS—Magnitude of the residue in canola Bayer Corporation,<br>Stilwell, KS, USA Bayer Crop Science, Report No.: 109879, Date: 8<br>December 2000 GLP, unpublished                                                                                                                                                                                                                         | M-079552-01-1                                            |
| Duah, FK                           | 2000e          | TI-435 600 FS—Magnitude of the residue in field, pop, and sweet corn<br>Bayer Corporation, Stilwell, KS, USA.Bayer CropScience, Report No.: 10–<br>724, Date: 4 December 2000 GLP, unpublished                                                                                                                                                                                                     | M-106757-01-1                                            |
| Duah, FK                           | 2001           | TI-435 600 FS—Magnitude of the residue in field rotational crops plus<br>Addendum 1 Magnitude of the residue of TZNG Bayer Corporation, Kansas<br>City, MO, USA Bayer CropScience, Report No.: 109880, Sumitomo<br>Chemical Company, Report No. THR-0013 and THR-0012 (Addendum 1)<br>Date: 6 February 2001 GLP, unpublished                                                                       | THR-0013;<br>THR-0012<br>(Addendum 1)<br>(M-073973-01-2) |
| Duah, FK                           | 2002a          | TI 435 600 FS—Magnitude of the residue in sorghum Bayer Corporation,<br>Stilwell, KS, USA Bayer CropScience, Report No.: 200233, Date: 23<br>September 2002 GLP, unpublished                                                                                                                                                                                                                       | M-087784-01-1                                            |
| Duah, FK                           | 2002b          | TI-435 600 FS—Magnitude of the residue in sorghum processed<br>commodities (request for waiver of the study for the magnitude of the<br>residue in sorghum aspirated grain fractions and processed commodities)<br>Bayer Corporation, Stilwell, KS, USA Bayer CropScience, Report No.:<br>200244 Date: 6 September 2002 GLP, Unpublished                                                           | M-087801-01-1                                            |
| Duah, FK and<br>Harbin, AM         | 2006a          | Clothianidin + cyfluthrin—Magnitude of the residue in/on sugar beets<br>Bayer CropScience LP, Stilwell, KS, USA Bayer CropScience, Report No.:<br>RATIY006, Date: 20 September 2006 GLP, unpublished                                                                                                                                                                                               | M-281124-01-1                                            |
| Duah, FK and<br>Harbin, AM         | 2006b          | Clothianidin + cyfluthrin 600 SE—Magnitude of the residue in/on sugar<br>beet processed commodities Bayer CropScience LP, Stilwell, KS, USA<br>Bayer CropScience, Report No.: RATIY007 Date: 21 November 2006 GLP,<br>Unpublished                                                                                                                                                                  | M-282415-01-1                                            |
| Freeseman, PL<br>and Harbin,<br>AM | 2008           | Magnitude of the clothianidin residue in/on wheat following seed treatment<br>with Poncho 600 FS and prothioconazole 480 SC Bayer CropScience LP,<br>Stilwell, KS, USA Bayer CropScience, Report No.: RATIY013, Date: 23<br>June 2008 GLP, unpublished                                                                                                                                             | M-303764-01-1                                            |
| Frost, B                           | 2008           | Determination of residues of Clothianidin in table grapes following foliar<br>applications of TI-435 500 WG Agrisearch Services Pty Ltd, Australia<br>Report No: SCA/GLP/0607-1 Sumitomo Chemical Company, Report No:<br>THR-0550 Date: 6 February 2008 GLP, Unpublished                                                                                                                           | THR-0550                                                 |
| Gaston, C                          | 2010a          | E-mail response to questions 01, 30 March 2010                                                                                                                                                                                                                                                                                                                                                     | _                                                        |
| Gaston, C                          | 2010b          | E-mail response to questions 02, 11 May 2010                                                                                                                                                                                                                                                                                                                                                       | _                                                        |
| Gaston, C                          | 2010c          | E-mail response to questions 03, 1 June 2010                                                                                                                                                                                                                                                                                                                                                       | _                                                        |
| Gaston, C                          | 2010d          | E-mail response to questions 04, 11 August 2010                                                                                                                                                                                                                                                                                                                                                    | _                                                        |
| Gaston, C                          | 2010e          | E-mail response to questions 03, addendum, 11 August 2010                                                                                                                                                                                                                                                                                                                                          | _                                                        |
| Gaston, C<br>Gaston, C             | 2010f          | E-mail response to questions 05, 14 August 2010                                                                                                                                                                                                                                                                                                                                                    | _                                                        |
| Gaston, C<br>Gaston, C             | 2010g<br>2010h | E-mail response to questions 05, addendum, 19 August 2010<br>E-mail response to questions 05, addendum, 2 September 2010                                                                                                                                                                                                                                                                           | _                                                        |
| Gilges, M                          | 201011<br>2000 | Aerobic degradation and metabolism of TI-435 in four soils Bayer AG,<br>Leverkusen, Germany Report No.: MR-497/99, Sumitomo Chemical<br>Company, Report No.: THM-0018, Date: 13 March 2000, Amended: 9                                                                                                                                                                                             |                                                          |
| Gould, TJ and<br>Murphy, IM        | 2001           | April 2001 GLP, unpublished<br>Additional validation data for the analytical method for the detection of TI-<br>435 residues in crop matrices. Bayer Corporation, Stillwell, Kansas City,                                                                                                                                                                                                          | M-053921-01-1                                            |
| Haas, M                            | 2000           | MO, USA. Report no 109240-2. Date 26 February 2001. GLP, unpublished.<br>Extraction efficiency testing of the residue method for the determination of<br>TI-435 residues in corn and apple using aged radioactive residues Bayer<br>AG, Leverkusen, Germany Bayer CropScience Report No.: MR-298/00,<br>Sumitomo Chemical Company, Report No.: THA-0018, Date: 18 October<br>2000 GLP, unpublished | THA-0018<br>(M-024758-01-1                               |

| Author                                                                                                 | Year  | Title, Institute, Report reference                                                                                                                                                                                                                                                                          | Code                        |
|--------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Hellpointner, E                                                                                        | 1999a | Photolysis of [guanidine- <sup>14</sup> C]TI-435 on soil surface Bayer AG, Leverkusen,<br>Germany Report No.: MR-154/99, Sumitomo Chemical Company, Report<br>No.: THM-0014, Date: 30 August 1999 GLP, unpublished                                                                                          | THM-0014<br>(M-014537-01-1) |
| Hellpointner, E                                                                                        | 1999b | Determination of the quantum yield and assessment of the environmental<br>half-life of the direct photodegradation of TI-435 in water Bayer AG,<br>Leverkusen, Germany Report No.: MR-360/99, Sumitomo Chemical<br>Company, Report No.: THP-0023, Date: 2 August 1999, Amended: 12                          | THP-0023<br>(M-010153-02-1  |
| Ishii, Y                                                                                               | 1998  | August 1999 GLP, unpublished<br>Metabolism of TI-435 in tomatoes using an SC formulation Bayer AG,<br>Leverkusen, Germany Report No.: 107928, Sumitomo Chemical Company,<br>Report No.: THM-0026, Date: 28 October 1998 GLP, unpublished                                                                    | THM-0026<br>(M-005118-02-2  |
| Ishii, Y                                                                                               | 2000a | Metabolism of TI-435 in corn Bayer AG, Leverkusen, Germany Report No.: 109881, Sumitomo Chemical Company, Report No.: THM-0023, Date: 27                                                                                                                                                                    | ТНМ-0023<br>(М-253356-01-2  |
| Ishii, Y                                                                                               | 2000b | September 2000 GLP, unpublished<br>Metabolism of [thiazolyl-2- <sup>14</sup> C]TI-435 in corn (second label study) Bayer<br>AG, Leverkusen, Germany Report No.: 109741, Sumitomo Chemical<br>Company, Report No.: THM-0024, Date:27 September 2000 GLP,                                                     | THM-0024<br>(M-024714-01-2  |
| Ishii, Y                                                                                               | 2000c | unpublished<br>Metabolism of TI-435 in tomatoes using a GR formulation Bayer AG,<br>Leverkusen, Germany Report No.: 109598, Sumitomo Chemical Company,<br>Report No.: THM 0025, Dote: 25 January 2000 GLR, unpublished                                                                                      | THM-0025<br>(M-023388-01-2  |
| Ishii, Y                                                                                               | 2000d | Report No.: THM-0025, Date: 25 January 2000 GLP, unpublished<br>Confined rotational crop study with TI-435 Bayer AG, Leverkusen,<br>Germany Report No.: 110488, Sumitomo Chemical Company, Report No.:<br>THM-0028, Date: 1 December 2000 GLP, unpublished                                                  | THM-0028<br>(M-031764-01-2  |
| Ishii, Y                                                                                               | 2000e | Extraction efficiency testing of the residue method for the determination of TI-435 residues in animal tissues using aged radioactive residues. Bayer AG, report no MR-556/00 Sumitomo Chemical Company, Report no THA-0031, Date: 12 December 2000 GLP, unpublished                                        | THA-0031<br>(M-032442-01-1  |
| Ishii, Y                                                                                               | 2001a | Independent laboratory validation of the enforcement method 00657 for the determination of residues of TI-435 in plant material. Bayer AG, report no. MR-520/00 Sumitomo Chemical Company, Report No.: THA-0021 14                                                                                          | THA-0021<br>(M-046947-01-1  |
| Ishii, Y                                                                                               | 2001b | March 2001 GLP, unpublished<br>Independent laboratory validation of the enforcement method 00656 for the<br>determination of residues of TI-435 in animal matrices. Bayer AG, report<br>no. MR-521/00, project P612002453 Sumitomo Chemical Company, Report<br>No.: THA-0033 14 March 2001 GLP, unpublished | THA-0033                    |
| Ishii, M and<br>Asari, T                                                                               | 2005  | Magnitude of the residues in crop (Clothianidin, broccoli) Sumitomo<br>Chemical, Takeda Ago Company Sumitomo Chemical Company, Report<br>No: THR-0371 Date: 13 May 2005 Non-GLP, Unpublished                                                                                                                | THR-0371                    |
| Jeschke, P,<br>Uneme H,<br>Benet-Bucholz,<br>J, Stolting, J,<br>Sirges, W,<br>Beck, ME and<br>Etzel, W | 2003  | Clothianidin (TI-435)–the third member of the chloronicotinyl insecticide (CNI) family. Pflanzenschutz-Nachrichten Bayer 56, 2003, 5-25.                                                                                                                                                                    | _                           |
| Kadooka, O<br>and<br>Yanai, T                                                                          | 2006  | Magnitude of the residue of clothianidin in soya beans—2005 (GR, FL)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company<br>Report No: THR-0528 Date: 31 March 2006 Non-GLP, Unpublished                                                                                                       | THR-0528                    |
| Kamiya, Y and<br>Itoh, S                                                                               | 2000a | Determination of odor of TI-435 pure active ingredient (PAI)<br>Takeda Chemical Industries, Ltd., Tokyo, Japan Report No.: DPCI007,<br>Sumitomo Chemical Company, Report No.: THP-0009, Date: 12 April 2000<br>GLP, unpublished                                                                             | THP-0009<br>(M-025307-01-1  |
| Kamiya, Y and<br>Itoh, S                                                                               | 2000b | Determination of odor of TI-435 technical grade of the active ingredient<br>(TGAI) Takeda Chemical Industries, Ltd., Tokyo, Japan Report No.:<br>DPCI004, Sumitomo Chemical Company, Report No.: THP-0010, Date: 13<br>July 2000 GLP, unpublished                                                           | THP-0010<br>(M-025296-01-1  |
| Kamiya, Y and<br>Itoh, S                                                                               | 2000c | Determination of colour of TI-435 pure active ingredient (PAI) Takeda<br>Chemical Industries, Ltd., Tokyo, Japan Report No.: DPCI005, Sumitomo<br>Chemical Company, Report No.: THP-0011, Date: 12 April 2000 GLP,<br>unpublished                                                                           | THP-0011<br>(M-025298-01-1  |
| Kamiya, Y and<br>Itoh, S                                                                               | 2000d | Determination of colour of TI-435 technical grade of the active ingredient<br>(TGAI) Takeda Chemical Industries, Ltd., Tokyo, Japan Report No.:<br>DPCI002, Sumitomo Chemical Company, Report No.: THP-0012, Date: 13<br>July 2000 GLP, unpublished                                                         | THP-0012<br>(M-025286-01-1  |

| Author                   | Year  | Title, Institute, Report reference                                                                                                                                                                               | Code                       |
|--------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Kamiya, Y and<br>Itoh, S | 2000e | Determination of physical state of TI-435 pure active ingredient (PAI)<br>Takeda Chemical Industries, Ltd., Tokyo, Japan Report No.: DPCI006,<br>Sumitomo Chemical Company, Report No.: THP-0016, Date: 12 April | THP-0016<br>(M-025301-01-1 |
|                          |       | 2000 GLP, unpublished                                                                                                                                                                                            |                            |
| Kamiya, Y and            | 2000f | Determination of physical state of TI-435 technical grade of the active                                                                                                                                          | THP-0017                   |
| Itoh, S                  | 20001 | ingredient (TGAI) Takeda Chemical Industries, Ltd., Tokyo, Japan Report                                                                                                                                          | (M-025295-01-1             |
|                          |       | No.: DPCI003, Sumitomo Chemical Company, Report No.: THP-0017,                                                                                                                                                   | ( 0202)0 01 1              |
|                          |       | Date: 13 July 2000 GLP, unpublished                                                                                                                                                                              |                            |
| Kamiya, Y and            | 2000g | Determination of melting point/melting range of TI-435 pure active                                                                                                                                               | THP-0018                   |
| Itoh, S                  | U     | ingredient (PAI) Takeda Chemical Industries, Ltd., Tokyo, Japan Report                                                                                                                                           | (M-025309-02-1             |
| ,                        |       | No.: DPCI008 Sumitomo Chemical Company, Report No.: THP-0018                                                                                                                                                     |                            |
|                          |       | Date:12 April 2000, Amended; 27 November 2000 GLP, unpublished                                                                                                                                                   |                            |
| Komatsu, K               | 1998a | Magnitude of Clothianidin residues in cucumber-1997 Sumitomo                                                                                                                                                     | THR-0264                   |
| and                      |       | Chemical Company Report No: THR-0264 Date-20 May 1998 Non-GLP,                                                                                                                                                   |                            |
| Yabuzaki, T              |       | Unpublished                                                                                                                                                                                                      |                            |
| Komatsu, K               | 1998b | Magnitude of Clothianidin residues in eggplant, 1997 Sumitomo Chemical                                                                                                                                           | THR-0294                   |
| and                      |       | Company Report No: THR-0294 Date: 20 May 1998 Non-GLP,                                                                                                                                                           |                            |
| Yabuzaki, T              |       | Unpublished                                                                                                                                                                                                      |                            |
| Komatsu, K               | 1998c | Magnitude of the residues of clothianidin in tomatoes (greenhouse),1998                                                                                                                                          | THR-0304                   |
| and                      |       | (GR, WG) Takeda Pharmaceutical Company Ltd Sumitomo Chemical                                                                                                                                                     |                            |
| Yabuzaki, T              |       | Company Report No: THR-0304 Date: 20 May 1998 Non-GLP,                                                                                                                                                           |                            |
| **                       | 0000  | Unpublished                                                                                                                                                                                                      | THE AGAS                   |
| Komatsu, K               | 2000a | Magnitude of the residues of clothianidin in apples, 1998 Sumitomo                                                                                                                                               | THR-0092                   |
| and                      |       | Chemical Company Report No.: THR-0092 Date: 17 February 2000 Non-                                                                                                                                                |                            |
| Yabuzaki, T              | 20001 | GLP, Unpublished                                                                                                                                                                                                 | THD 0102                   |
| Komatsu, K               | 2000b | Magnitude of the residue of clothianidin in peach, 1998–99 (WG) Takeda                                                                                                                                           | THR-0102                   |
| and<br>Yabuzaki, T       |       | Pharmaceutical Company Ltd. Sumitomo Chemical Company Report No.:<br>THP 0102 Date: 17 February 2000 Non CLP: Unpublished                                                                                        |                            |
| Komatsu, K               | 2000c | THR-0102 Date: 17 February 2000 Non-GLP; Unpublished<br>Magnitude of the residue of clothianidin in peach, 1998-99 (WG) Takeda                                                                                   | THR-0107                   |
| and                      | 20000 | Pharmaceutical Company Ltd. Sumitomo Chemical Company Report No.:                                                                                                                                                | 111K-0107                  |
| Yabuzaki, T              |       | THR-0107 Date: 22 February 2000 Non-GLP; Unpublished                                                                                                                                                             |                            |
| Komatsu, K               | 2000d | Magnitude of the residue of clothianidin in peach, 1998–99 (WG) Takeda                                                                                                                                           | THR-0112                   |
| and                      | 20000 | Pharmaceutical Company Ltd. Sumitomo Chemical Company Report No.:                                                                                                                                                | 11110112                   |
| Yabuzaki, T              |       | THR-0112 Date: 17 February 2000 Non-GLP; Unpublished                                                                                                                                                             |                            |
| Komatsu, K               | 2000e | Magnitude of the residue of clothianidin in peach, 1998–99 (WG) Takeda                                                                                                                                           | THR-0117                   |
| and                      |       | Pharmaceutical Company Ltd. Sumitomo Chemical Company Report No.:                                                                                                                                                |                            |
| Yabuzaki, T              |       | THR-0117 Date: 22 February 2000 Non-GLP; Unpublished                                                                                                                                                             |                            |
| Komatsu, K               | 2000f | Magnitude of Clothianidin residues in greenhouse grapes—Japan, 1998                                                                                                                                              | THR-0122                   |
| and                      |       | Sumitomo Chemical Company Report No: THR-0122 Date: 17 February                                                                                                                                                  |                            |
| Yabuzaki, T              |       | 2000 Non-GLP, Unpublished                                                                                                                                                                                        |                            |
| Komatsu, K               | 2000g | Magnitude of the residue of clothianidin in rice in paddy, 1998 (Granule and                                                                                                                                     | THR-0200                   |
| and                      |       | WG) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                                                                                |                            |
| Yabuzaki, T              |       | Report No: THR-0200 Date: 21 March 2000 Non-GLP, Unpublished                                                                                                                                                     |                            |
| Komatsu, K               | 2000h |                                                                                                                                                                                                                  | THR-0223                   |
| and                      |       | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                                                                                    |                            |
| Yabuzaki, T              |       | Report No: THR-0223 Date: 21 March 2000 Non-GLP, Unpublished                                                                                                                                                     |                            |
| Komatsu, K               | 2000i | Magnitude of the residue of clothianidin in rice in paddy, 1998 (Granule and                                                                                                                                     | THR-0244                   |
| and                      |       | Dust) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical                                                                                                                                                      |                            |
| Yabuzaki, T              |       | Company Report No: TH-0244 Date: 21 March 2000 Non-GLP,                                                                                                                                                          |                            |
| Vomotor V                | 2000: | Unpublished<br>Magnitude of the residues in group, tee) Japan Food Research Laboratories                                                                                                                         | TUD 0177                   |
| Komatsu, K               | 2000j | Magnitude of the residues in crop—tea) Japan Food Research Laboratories                                                                                                                                          | THR-0177                   |
| and Yabuzaki,<br>T       |       | Sumitomo Chemical Company Report No: THR-0177 Date: 22 March 2000 GLP, Unpublished                                                                                                                               |                            |
| I<br>Komatsu, K          | 2002a | Magnitude of the residue of clothianidin in rice in paddy, 2001 (Granule)                                                                                                                                        | THR-0403                   |
| and                      | 2002a | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                                                                                    | 1111-0403                  |
| Yabuzaki, T              |       | Report No: THR-0403 Date: 4 April 2002 Non-GLP, Unpublished                                                                                                                                                      |                            |
| Komatsu, K               | 2002b | Magnitude of the residue of clothianidin in rice in paddy, 2001 (Granule)                                                                                                                                        | THR-0404                   |
| and                      | 20020 | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                                                                                    |                            |
| Yabuzaki, T              |       | Report No: THR-0404 Date: 4 April 2002 Non-GLP, Unpublished                                                                                                                                                      |                            |
| Komatsu, K               | 2002c | Magnitude of the residue of clothianidin in Japanese apricot - 2001 (WG)                                                                                                                                         | THR-0457                   |
| and                      |       | Takeda Pharmaceutical Company Ltd. Sumitomo Chemical Company                                                                                                                                                     |                            |
| Yabuzaki, T              |       | Report No.: THR-0457 Date: 19 March 2002 Non-GLP; Unpublished                                                                                                                                                    |                            |
| Komatsu, K               | 2002d | Magnitude of the residues of clothianidin in Japanese pear, 2001 Sumitomo                                                                                                                                        | THR-0463                   |
| and                      |       | Chemical Company Report No.: THR-0463 Date: 4 April 2002 Non-GLP,                                                                                                                                                |                            |
| Yabuzaki, T              |       | Unpublished                                                                                                                                                                                                      |                            |

| Author            | Year   | Title, Institute, Report reference                                                                                                         | Code             |
|-------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Komatsu, K<br>and | 2003a  | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR, FL) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company | THR-0411         |
| Yabuzaki, T       |        | Report No: THR-0411 Date: 3 February 2003 Non-GLP, Unpublished                                                                             |                  |
| Komatsu, K        | 2003b  | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR,                                                                   | THR-0415         |
| and               |        | FL) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                          |                  |
| Yabuzaki, T       |        | Report No: THR-0415 Date: 5 February 2003 Non-GLP, Unpublished                                                                             |                  |
| Komatsu, K        | 2003c  | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR,                                                                   | THR-0416         |
| and               |        | FL) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                          |                  |
| Yabuzaki, T       |        | Report No: THR-0416 Date: 5 March 2003 Non-GLP, Unpublished                                                                                |                  |
| Komatsu, K        | 2003d  | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR,                                                                   | THR-0419         |
| and               |        | Dust) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical                                                                                |                  |
| Yabuzaki, T       |        | Company Report No: THR-0419 Date: 20 January 2003 Non-GLP,                                                                                 |                  |
| i uouzuitt, i     |        | Unpublished                                                                                                                                |                  |
| Komatsu, K        | 2003e  | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR)                                                                   | THR-0423         |
| and               | 20000  | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                              | 11111 0 120      |
| Yabuzaki, T       |        | Report No: THR-0423 Date: 20 January 2003 Non-GLP, Unpublished                                                                             |                  |
| Komatsu, K        | 2003f  | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR)                                                                   | THR-0424         |
| and               | 20051  | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                              | 11111-0424       |
| Yabuzaki, T       |        | Report No: THR-0424 Date: 5 March 2003 Non-GLP, Unpublished                                                                                |                  |
| Komatsu, K        | 2003g  | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR)                                                                   | THR-0427         |
| and               | 2005g  | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                              | 11111-042/       |
| Yabuzaki, T       |        | Report No: THR-0427 Date: 21 January 2003 Non-GLP, Unpublished                                                                             |                  |
| Komatsu, K        | 2003h  | Magnitude of the residue of clothianidin in cherry (greenhouse), 2003 (WG)                                                                 | THR-0492         |
| and               | 200311 | Sumitomo Chemical Takeda Agro Company Sumitomo Chemical                                                                                    | 111K-0492        |
| Yabuzaki, T       |        | Company, Report No.: THR-0492 Date: 21 July 2003 Non-GLP;                                                                                  |                  |
| i douzaki, i      |        | Unpublished                                                                                                                                |                  |
| Komatsu, K        | 2003i  | Magnitude of the residues in crop (Clothianidin, cabbage) Sumitomo                                                                         | THR-0505         |
| and               | 20051  | Chemical, Takeda Ago Company Sumitomo Chemical Company, Report                                                                             | 11110 00 00      |
| Yabuzaki, T       |        | No: THR-0505 Date: 31 March 2003 Non-GLP, Unpublished                                                                                      |                  |
| Kramer, HT        | 2000   | Physical-Chemistry Tests with TI-435 Technical Grade Active Ingrdient                                                                      | THP-0014         |
| and               | 2000   | (TGAI) Covance Laboratories Inc., Madison, WI, USA Study No.: 6155-                                                                        | (M-036032-02-2   |
| Telleen, K        |        | 117 Sumitomo Chemical Company, Report No: THP-0014, Date: 21 Dec                                                                           | (101-050052-02-2 |
| rencen, K         |        | 2000, Amended: 19 January 2001 GLP, unpublished                                                                                            |                  |
| Krolski, ME       | 2005   | Poncho 600 FS—Magnitude of the residue in cotton Bayer CropScience LP,                                                                     | M-245069-01-1    |
| KIOISKI, WIL      | 2005   | Stilwell, KS, USA Bayer CropScience, Report No.: 201161, Date: 11                                                                          | 101-245005-01-1  |
|                   |        | February 2005 GLP, unpublished                                                                                                             |                  |
| Langford-         | 2000   | [Nitroimino- <sup>14</sup> C]TI-435 sugar beet metabolism seed treatment Huntingdon                                                        | THM-0027         |
| Pollard, AD       | 2000   | Life Sciences Ltd., Huntingdon, United Kingdom Report No.: TDA                                                                             | (M-021062-01-2   |
| rollalu, AD       |        | 222/984497 Sumitomo Chemical Company, Report No.: THM-0027, Date:                                                                          | (101-021002-01-2 |
|                   |        | 15 September 2000 GLP, unpublished                                                                                                         |                  |
| Lewis, CJ         | 2000   | ( <sup>14</sup> C)-TI-435: Hydrolytic stability Covance Laboratories Ltd., Harrogate,                                                      | THP-0024         |
| Lewis, CJ         | 2000   | North Yorkshire, United Kingdom Report No.: CLE 586/140-D2142                                                                              | (M-048047-01-)   |
|                   |        | Sumitomo Chemical Company, Report No.: THP-0024 Date: 5 June 2000                                                                          | (191-040047-01-  |
|                   |        | GLP, unpublished                                                                                                                           |                  |
| Melrose, I        | 2007a  | Determination of the residues of TI 435 and Spinosad in/on red cabbage and                                                                 | M_202020 01 1    |
| wien05c, 1        | 2007a  | round cabbage after seed treatment and spraying of TI 435 & DE 105 (75                                                                     | 191-295057-01-1  |
|                   |        | WS) and Spinosad SC 480 (480 SC) in the field in Germany, Northern                                                                         |                  |
|                   |        | France and the United Kingdom Bayer CropScience S.A., Lyon, France                                                                         |                  |
|                   |        | Bayer CropScience, Report No.: RA-2637/06, Date: 24 September 2007                                                                         |                  |
|                   |        | GLP, unpublished                                                                                                                           |                  |
| Melrose, I        | 2007b  | Determination of the residues of TI 435 and Spinosad in/on red cabbage and                                                                 | M-293047-01-1    |
| 14101050, 1       | 20070  | round cabbage after seed treatment and spraying of TI 435 & DE 105 (75                                                                     | 191-295047-01-1  |
|                   |        | WS) and Spinosad SC 480 (480 SC) in the field in Italy and Spain Bayer                                                                     |                  |
|                   |        |                                                                                                                                            |                  |
|                   |        | CropScience S.A., Lyon, France Bayer CropScience, Report No.: RA-<br>2638/06, Date: 26 September 2007 GLP, unpublished                     |                  |
| Melrose I         | 2007c  | Determination of the residues of TI 435 and spinosad in/on carrot after seed                                                               | M-295533-01-1    |
| Melrose, I        | 20070  |                                                                                                                                            | 191-273333-01-1  |
|                   |        | treatment of TI 435 & DE 105 (75 WS) in the field in Northern France,                                                                      |                  |
|                   |        | Belgium and Germany Bayer CropScience S.A., Lyon, France Bayer<br>CropScience Bayer No : BA 2630/06 Date: 11 December 2007 CLB             |                  |
|                   |        | CropScience, Report No.: RA-2639/06, Date: 11 December 2007 GLP,                                                                           |                  |
|                   |        | unpublished                                                                                                                                | M 20/227 01 1    |
| N 1 -             | 0000   | Determination of the residues of TI 435 and spinosad in/on carrot after seed                                                               | M-296527-01-1    |
| Melrose, I        | 2008   |                                                                                                                                            |                  |
| Melrose, I        | 2008   | treatment of TI 435 & DE 105 (75 WS) in the field in Italy, Spain, Portugal                                                                |                  |
| Melrose, I        | 2008   | treatment of TI 435 & DE 105 (75 WS) in the field in Italy, Spain, Portugal and Southern France Bayer CropScience S.A., Lyon, France Bayer |                  |
| Melrose, I        | 2008   | treatment of TI 435 & DE 105 (75 WS) in the field in Italy, Spain, Portugal                                                                |                  |

| Author         | Year  | Title, Institute, Report reference                                                                                                        | Code              |
|----------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Mitchell, L    | 2005a | Determination of residues of clothianidin in pome fruit following<br>applications of TI-435 500 WG Agrisearch Services Pty Ltd, Australia | THR-0561          |
|                |       | Report No: SCA/GLP/0311-1 Sumitomo Chemical Company Report No.:                                                                           |                   |
|                |       | THR-0561 Date: 2 December 2005 GLP, Unpublished                                                                                           |                   |
| Mitchell, L    | 2005b | Determination of residues of clothianidin in pome fruit following                                                                         | THR-0562          |
|                |       | applications of TI-435 500 WG or OZ-TI-435 200 SC Agrisearch Services                                                                     |                   |
|                |       | Pty Ltd, Australia Report No: SCA/GLP/0502-1 Sumitomo Chemical                                                                            |                   |
|                |       | Company Report No: THR-0562 Date: November 2005 GLP, Unpublished                                                                          |                   |
| Mitchell, L    | 2005c | Determination of residues of clothianidin in stone fruit following                                                                        | THR-0564          |
|                |       | applications of TI-435 500 WG or OZ-TI-435 200 SC Agrisearch Services                                                                     |                   |
|                |       | Pty Ltd., Australia Report No: SCA/GLP/0503-1 Sumitomo Chemical                                                                           |                   |
|                |       | Company Report No: THR-0564 Date: November 2005                                                                                           |                   |
| Mitchell, L    | 2005d | Determination of residues of clothianidin in stone fruit following                                                                        | THR-0565          |
|                |       | applications of TI-435 500 WG Agrisearch Services Pty Ltd., Australia                                                                     |                   |
|                |       | Report No: SCA/GLP/0312-1 Sumitomo Chemical Company Report No:                                                                            |                   |
|                |       | THR-0565 Date: November 2005                                                                                                              |                   |
| Mitchell, L    | 2006a | Determination of residues of clothianidin in table grapes and wine grapes                                                                 | THR-0547          |
|                |       | following applications of TI-435 200 SC Agrisearch Services Pty Ltd,                                                                      |                   |
|                |       | Australia Report No: SCA/GLP/0440-1 Sumitomo Chemical Company                                                                             |                   |
|                |       | Report No: THR-0547 Date: 1 December 2006 GLP, Unpublished                                                                                |                   |
| Mitchell, L    | 2006b | Determination of residues of Clothianidin in table grapes Agrisearch                                                                      | THR-0548          |
|                |       | Services Pty Ltd, Australia Report No: SCA/GLP/0509-1 Sumitomo                                                                            |                   |
|                |       | Chemical Company Report No: THR-0548 Date: 1 December 2006 GLP,                                                                           |                   |
|                |       | Unpublished                                                                                                                               |                   |
| Morrissey, MA  | 2000a | Determination of Dissociation Constant and Physical-chemical Properties of                                                                | THP-0013          |
| and            |       | TI-435 Pure Active Ingredient (PAI) (Density, Solubility, Octanol/Water                                                                   | (M-026209-04-1    |
| Kramer, HT     |       | Partition Coefficient, and Dissociation Constant) Covance Laboratories Inc.,                                                              | (                 |
|                |       | Madison, WI, USA Study No.: 6155-122 Sumitomo Chemical Company,                                                                           |                   |
|                |       | Report No.: THP-0013, Date: 10 April 2000, Amended: 31 October 2000,                                                                      |                   |
|                |       | 26 July 2001 GLP, unpublished                                                                                                             |                   |
| Morrissey, MA  | 2000b | Vapor Pressure of TI-435, Pure Active Ingredient Covance Laboratories                                                                     | THP-0026          |
| and            |       | Inc., Madison, WI, USA Sumitomo Chemical Company, Report No.: THP-                                                                        | (M-026219-03-2    |
| Kramer, HT     |       | 0026, Date: 10 April 2000, Amended: 22 May 2000 GLP, unpublished                                                                          | (111 02021) 00 2  |
| Nagasawa, S    | 2007  | Magnitude of the residues in crop—tea Sumika Technoservice Corporation                                                                    | THR-0088          |
| and Inada, S   | 2007  | Sumitomo Chemical Company, Report No.: THR-0088 Date: 19 December                                                                         | 11111 00000       |
| una maaa, o    |       | 2007 GLP, Unpublished                                                                                                                     |                   |
| Nagasawa, S    | 2006a | Magnitude of the residues of clothianidin in apples, 2005 Sumitomo                                                                        | THR-0392          |
| and            |       | Chemical-Takeda Agro Company Sumitomo Chemical Company, Report                                                                            |                   |
| Wada, T        |       | No.: THR-0392 Date: 23 March 2006 Non-GLP, Unpublished                                                                                    |                   |
| Nagasawa, S    | 2006b | Magnitude of the residue of clothianidin in rice in paddy, 2005 (GR, FL)                                                                  | THR-0441          |
| and            | 20000 | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                             | 11110 0441        |
| Wada, T        |       | Report No: THR-0441 Date: 23 March 2006 Non-GLP, Unpublished                                                                              |                   |
| Nagasawa, S    | 2007  | Magnitude of Clothianidin residues in greenhouse grapes, Japan, 2006                                                                      | THR-0369          |
| and            | 2007  | Sumitomo Chemical Company Report No: THR-0369 Date: 15 January                                                                            | 111K-0509         |
| Wada, T        |       | 2007 Non-GLP, Unpublished                                                                                                                 |                   |
| Nuesslein, F   | 1999  | Residue analytical method 00552 for the determination of TI 435 in plant                                                                  | THA-0014          |
| Nucssiem, 1    | 1999  | materials by LC-MS/MS Bayer AG, Leverkusen, Germany Bayer                                                                                 | (M-013379-01-2)   |
|                |       | CropScience, Report No.: 109240, Method Report No.: MR-036/99                                                                             | (11-013379-01-2   |
|                |       |                                                                                                                                           |                   |
|                |       | Sumitomo Chemical Company, Report No.: THA-0014 Date: 19 August                                                                           |                   |
| Nuosslain E    | 2000a | 1999 GLP, unpublished<br>Modification M001 of the method 00552 for the determination of residues                                          | TUA 0015          |
| Nuesslein, F   | 2000a | Modification M001 of the method 00552 for the determination of residues                                                                   | THA-0015          |
|                |       | of TI-435 in/on plant materials Bayer AG, Leverkusen, Germany Bayer                                                                       | (M-029431-01-2    |
|                |       | CropScience, Report No.: 109240-1, Method Report No.: MR-735/99<br>Sumitana Chamical Company, Report No.: THA 0015 Date: 20 March         |                   |
|                |       | Sumitomo Chemical Company, Report No.: THA-0015 Date: 29 March                                                                            |                   |
| Nu agalation P | 20001 | 2000 GLP, unpublished                                                                                                                     | TILA 0020         |
| Nuesslein, F   | 2000b | Validation of the residue analytical method 00624 for the determination of                                                                | THA-0028          |
|                |       | TI-435, TZG, TZU and PTMG (pyruvate) in animal materials by HPLC-                                                                         |                   |
|                |       | MS/MS. Amendment no 1 from 2001-01-08 (pages 8 and 9                                                                                      |                   |
|                |       | exchanged).Bayer AG, Leverkusen, Germany Report no MR-093/00, study                                                                       |                   |
|                |       | no 612002033 Date: 9 June 2000 GLP, unpublished.                                                                                          |                   |
| Nuesslein, F   | 2001  | Determination of the storage stability of TI-435 residues in fortified                                                                    | THR-0008          |
| ,              |       | analytical samples of plant materials Bayer AG, Leverkusen, Germany                                                                       | (M-031360-01-2)   |
| ,              |       |                                                                                                                                           | (101 051500 01 2) |
| ,              |       | Bayer CropScience, Report No.: 109734, Sumitomo Chemical Company,                                                                         | (11 051500 01 2)  |

| Author                         | Year          | Title, Institute, Report reference                                                                                                                                                                                                    | Code                       |
|--------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Nuesslein, F                   | 2002          | Supplement E001 to method 00552/M001 for the determination of residues<br>of TI-435 in/on sample materials of barley. Bayer AG, Leverkusen,<br>Germany Report no MR-48–/01, Study no P612012043 Date 11 March<br>2002 GLB userblicked | M-053099-01-1              |
| Nuesslein, F<br>and            | 2000          | 2002 GLP, unpublished<br>TI-435—dairy cattle feeding study Bayer AG, Leverkusen, Germany Bayer<br>CropScience, Report No.: MR-385/00 Sumitomo Chemical Company,                                                                       | THR-0071<br>(M-030467-02-1 |
| Auer, S                        |               | Report No.: THR-0071 Date: 13 December 2000, Amended: 13 Feb 2001 GLP, Unpublished                                                                                                                                                    |                            |
| Nuesslein, F<br>and            | 2000a         | Determination of residues of clothianidin on spring rape after seed dressing with TI 435 600 FS in the field in France and Great Britain Bayer AG,                                                                                    | M-023116-01-1              |
| Elke, K                        | <b>2</b> 0001 | Leverkusen, Germany Bayer CropScience, Report No.: RA-2056/99, Date:<br>19 October 2000 GLP, unpublished                                                                                                                              |                            |
| Nuesslein, F<br>and            | 2000b         | Determination of residues of clothianidin on sugar beet after seed dressing with TI 435 600 FS in the field in France and Italy Bayer AG, Leverkusen,                                                                                 | M-023176-01-1              |
| Elke, K                        | 2000-         | Germany Bayer CropScience, Report No.: RA-2055/99, Date: 17 October<br>2000 GLP, unpublished                                                                                                                                          | M 025166 01 1              |
| Nuesslein, F<br>and<br>Elke, K | 2000c         | Determination of residues of clothianidin on winter rape after seed dressing with TI 435 600 FS in the field in France Bayer AG, Leverkusen, Germany Bayer CropScience, Report No.: RA-2168/99, Date: 13 October 2000 GLP,            | M-025166-01-1              |
| Nuesslein, F                   | 2000d         | unpublished<br>Determination of residues of clothianidin on sunflower after seed dressing                                                                                                                                             | M-026489-02-1              |
| and<br>Elke, K                 | 20000         | with TI 435 600 FS in the field in France, Italy and Spain Bayer AG,<br>Leverkusen, Germany Bayer CropScience, Report No.: RA-2060/99, Date:                                                                                          | M-020489-02-1              |
| Nuesslein, F                   | 2000a         | 13 November 2000, Amended: 7 Dec 2000 GLP, unpublished<br>Determination of residues of TI 435 600 FS (a.s. clothianidin) in sugar beet                                                                                                | M-029762-01-1              |
| and<br>Huix, M                 |               | in the field in the Federal Republic of Germany, Belgium, France and Great<br>Britain Bayer AG, Leverkusen, Germany Bayer CropScience, Report No.:                                                                                    |                            |
| Nuesslein, F<br>and            | 2000b         | RA-2052/98, Date: 3 April 2000 GLP, unpublished<br>Determination of residues of TI 435 600 FS (a.s. clothianidin) in sugar beet<br>in the field in the Federal Republic of Cormany, Paleium France and Creat                          | M-030310-01-1              |
| Huix, M                        |               | in the field in the Federal Republic of Germany, Belgium, France and Great<br>Britain Bayer AG, Leverkusen, Germany Bayer CropScience, Report No.:<br>RA-2053/98, Date: 11 April 2000 GLP, unpublished                                |                            |
| Nuesslein, F<br>and            | 2000c         | Determination of residues of TI 435 600 FS (a.s. clothianidin) in sugar beet<br>in the field in Spain, Italy and France Bayer AG, Leverkusen, Germany                                                                                 | M-030335-01-1              |
| Huix, M                        |               | Bayer CropScience, Report No.: RA-2055/98, Date: 11 April 2000 GLP,<br>unpublished                                                                                                                                                    |                            |
| Nuesslein, F<br>and            | 2000d         | Determination of residues of TI 435 600 FS (a.s. clothianidin) in sugar beet<br>in the field in Spain, Italy and France Bayer AG, Leverkusen, Germany                                                                                 | M-030342-01-1              |
| Huix, M                        |               | Bayer CropScience, Report No.: RA-2054/98, Date: 11 April 2000 GLP, unpublished                                                                                                                                                       |                            |
| Nuesslein, F<br>and            | 2000e         | Determination of residues of TI 435 600 FS (a. s. Clothianidin) in sunflower<br>in the field in France Bayer AG, Leverkusen, Germany Bayer CropScience,                                                                               | M-030949-01-1              |
| Huix, M<br>Nuesslein, F        | 2000f         | Report No.: RA-2059/98, Date: 18 April 2000 GLP, unpublished Determination of residues of TI 435 600 FS (a.s. clothianidin) in spring                                                                                                 | M-031786-01-1              |
| and<br>Huix, M                 |               | wheat in the field in France Bayer AG, Leverkusen, Germany Bayer<br>CropScience, Report No.: RA-2062/98, Date: 4 May 2000 GLP,                                                                                                        |                            |
| Nuesslein, F<br>and            | 2000g         | unpublished<br>Determination of residues of TI 435 600 FS (a.s. clothianidin) in spring<br>wheat in the field in France and the Federal Republic of Germany Bayer                                                                     | M-031797-01-1              |
| Huix, M                        |               | AG, Leverkusen, Germany Bayer CropScience, Report No.: RA-2061/98,<br>Date: 4 May 2000 GLP, unpublished                                                                                                                               |                            |
| Nuesslein, F<br>and            | 2000h         | Determination of residues of TI 435 600 FS (a.s. clothianidin) in summer<br>rape in the field in Sweden Bayer AG, Leverkusen, Germany Bayer                                                                                           | M-041452-01-1              |
| Huix, M                        |               | CropScience, Report No.: RA-2051/98, Date: 20 July 2000 GLP, unpublished                                                                                                                                                              |                            |
| Nuesslein, F<br>and            | 2000i         | Determination of residues of TI 435 600 FS (a.s. clothianidin) in winter and summer rape in the field in France Bayer AG, Leverkusen, Germany Bayer                                                                                   | M-041541-01-1              |
| Huix, M                        |               | CropScience, Report No.: RA-2058/98, Date: 21 July 2000 GLP, unpublished                                                                                                                                                              |                            |
| Nuesslein, F<br>and            | 2000j         | Determination of residues of TI 435 600 FS (a.s. clothianidin) in winter rape<br>in the field in Great Britain and France Bayer AG, Leverkusen, Germany                                                                               | M-041576-02-1              |
| Huix, M                        |               | Bayer CropScience, Report No.: RA-2057/98, Date: 21 July 2000, Amended: 1 August 2000 GLP, unpublished                                                                                                                                |                            |

| Author                     | Year  | Title, Institute, Report reference                                                                                                               | Code           |
|----------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Nuesslein, F<br>and        | 2000k | Determination of residues of TI 435 600 FS (a.s. clothianidin) in summer<br>rape in the field in the Federal Republic of Germany Bayer AG,       | M-041713-01-1  |
| Huix, M                    |       | Leverkusen, Germany Bayer CropScience, Report No.: RA-2056/98, Date:<br>24 July 2000 GLP, unpublished                                            |                |
| Nuesslein, F               | 20001 | Determination of residues of TI 435 600 FS (a.s. clothianidin) in sunflower                                                                      | M-046707-01-1  |
| and                        |       | in the field in France and Italy Bayer AG, Leverkusen, Germany Bayer                                                                             |                |
| Huix, M                    |       | CropScience, Report No.: RA-2060/98, Date: 24 August 2000 GLP, unpublished                                                                       |                |
| Nuesslein, F               | 2000a | Determination of residues of clothianidin on sugar beet after seed dressing                                                                      | M-021156-01-1  |
| and<br>Spiecel V           |       | with TI 435 600 FS in the Federal Republic of Germany, France and Great                                                                          |                |
| Spiegel, K                 |       | Britain Bayer AG, Leverkusen, Germany Bayer CropScience, Report No.:<br>RA-2052/99, Date: 28 September 2000 GLP, unpublished                     |                |
| Nuesslein, F               | 2000b | Determination of residues of clothianidin on spring wheat after seed                                                                             | M-026928-01-1  |
| and<br>Spiegel, K          |       | dressing with TI 435 350 FS in the Federal Republic of Germany and Great<br>Britain Bayer AG, Leverkusen, Germany Bayer CropScience, Report No.: |                |
| Spiegei, K                 |       | RA-2061/99, Date: 22 November 2000 GLP, unpublished                                                                                              |                |
| Nuesslein, F               | 2000c | Determination of residues of clothianidin on spring wheat after seed                                                                             | M-026930-01-1  |
| and<br>Spiegel, K          |       | dressing with TI 435 350 FS in France Bayer AG, Leverkuse', Germany<br>Bayer CropScience, Report No.: RA-2062/99, Date: 22 November 2000         |                |
| Spiegei, K                 |       | GLP, unpublished                                                                                                                                 |                |
| O'Connor, BJ               | 2001  | TI-435 (Pure Active Ingredient, PAI): Determination of the Effect of pH on                                                                       | THP-0065       |
| and<br>Mullee, DM          |       | Water Solubility and Partition Coefficient Safepharm Lab. Ltd., Derby,<br>United Kingdom Project No.: 178/125 Sumitomo Chemical Company,         | (M-041740-01-1 |
|                            |       | Report No.: THP-0065, Date: 10 August 2001 GLP, unpublished                                                                                      |                |
| Odanaka, Y<br>and          | 2004a | Magnitude of the residue of clothianidin in nectarine, 2004 (WG) Sumitomo<br>Chemical Takeda Agro Company Sumitomo Chemical Company, Report      | THR-0360       |
| Wakasone, Y                |       | No.: THR-0360 Date: 10 September 2004 Non-GLP; Unpublished                                                                                       |                |
| Odanaka, Y                 | 2004b | Magnitude of the residue of clothianidin in Japanese plum, 2004 (WG)                                                                             | THR-0516       |
| and<br>Wakasone, Y         |       | Sumitomo Chemical Takeda Agro Company Sumitomo Chemical<br>Company, Report No.: THR-0516 Date: 9 July 2004 Non-GLP;                              |                |
| wakasone, 1                |       | Unpublished                                                                                                                                      |                |
| Odanaka, Y                 | 2005a | Magnitude of the residue of clothianidin in cherry fruit, 2004 (WG)                                                                              | THR-0481       |
| and<br>Wakasone, Y         |       | Sumitomo Chemical Takeda Agro Company Sumitomo Chemical<br>Company, Report No.: THR-0481 Date: 7 February 2005 Non-GLP;                          |                |
|                            |       | Unpublished                                                                                                                                      |                |
| Odanaka, Y<br>and          | 2005b | Magnitude of the residue of clothianidin in soya beans, 2004 (GR, FL)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company           | THR-0525       |
| Wakasone, Y                |       | Report No: THR-0525 Date: 7 February 2004 Non-GLP, Unpublished                                                                                   |                |
| Odanaka, Y                 | 2006a | Magnitude of the residues of clothianidin in apples, 2005 Sumitomo                                                                               | THR-0391       |
| and<br>Wakasone, Y         |       | Chemical-Takeda Agro Company Sumitomo Chemical Company, Report<br>No.: THR-0391 Date: 7 April 2006 Non-GLP, Unpublished                          |                |
| Odanaka, Y                 | 2006b | Magnitude of the residue of clothianidin in rice in paddy, 2005 (GR, FL)                                                                         | THR-0439       |
| and                        |       | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                    |                |
| Wakasone, Y<br>Odanaka, Y, | 2007  | Report No: THR-0439 Date: 10 April 2006 Non-GLP, Unpublished<br>Magnitude of Clothianidin residues in greenhouse grapes, Japan, 2006             | THR-0368       |
| Sugimoto, S,               |       | Sumitomo Chemical Company Report No: HR-0368 Date: 21 February                                                                                   |                |
| Wakasone, Y                | 1998a | 2007 Non-GLP, Unpublished<br>Magnitude of Clothianidin residues in cucumber, 1998 Sumitomo Chemical                                              | THE 0260       |
| Ohta, K                    | 19968 | Company Report No: THR-0269 Date: 16 March 1998 Non-GLP,                                                                                         | THR-0269       |
| o1                         | 1000  | Unpublished                                                                                                                                      |                |
| Ohta, K                    | 1998b | Magnitude of Clothianidin residues in eggplant, Japan, 1997 Sumitomo<br>Chemical Company Report No: THR-0299 Date: 16 May 1998 Non-GLP,          | THR-0299       |
|                            |       | Unpublished                                                                                                                                      |                |
| Ohta, K                    | 2000a | Magnitude of the residues of clothianidin in apples, 1998 Sumitomo                                                                               | THR-0097       |
|                            |       | Chemical Company Report No.: THR-0097 Date: 24 February 2000 Non-<br>GLP, Unpublished                                                            |                |
| Ohta, K                    | 2000b | Magnitude of Clothianidin residues in greenhouse grapes, Japan, 1998                                                                             | THR-0127       |
|                            |       | Sumitomo Chemical Company Report No: THR-0127 Date: 2 March 2000                                                                                 |                |
| Ohta, K                    | 2000c | Non-GLP, Unpublished<br>Magnitude of the residue of clothianidin in rice in paddy, 1998 (Granule and                                             | THR-0205       |
| ···, ·                     |       | WG) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                |                |
| Ohta V                     | 2000d | Report No: THR-0205 Date: 1 February 2000 Non-GLP, Unpublished                                                                                   | THR-0228       |
| Ohta, K                    | 20000 | Magnitude of the residue of clothianidin in rice in paddy, 1998 (Granule)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company       | 1111-0220      |
|                            |       | Report No: THR-0228 Date: 14 February 2000 Non-GLP, Unpublished                                                                                  |                |

| Author   | Year  | Title, Institute, Report reference                                                                                                                                                                                                                                | Code     |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Ohta, K  | 2000e | Magnitude of the residue of clothianidin in rice in paddy, 1998 (Granule and<br>Dust) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical<br>Company Report No: THR-0249 Date: 14 February 2000 Non-GLP,<br>Unpublished                                         | THR-0249 |
| Ohta, K  | 2000f | Magnitude of the residues of clothianidin in tomatoes (greenhouse), 1998<br>(GR, WG) Takeda Pharmaceutical Company Ltd Sumitomo Chemical<br>Company Report No: THR-0309 Date: 31 January 2000 Non-GLP,<br>Unpublished                                             | THR-0309 |
| Ohta, K  | 2000g | Magnitude of the residues in crop—tea Takeda Pharmaceutical Company<br>Ltd Sumitomo Chemical Company Report No: THR-0182 Date: 14 April<br>2000 GLP, Unpublished                                                                                                  | THR-0182 |
| Ohta, K  | 2001a | Magnitude of the residue of clothianidin in Japanese apricot, 2001 (WG)<br>Takeda Pharmaceutical Company Ltd. Sumitomo Chemical Company<br>Report No.: THR-0458 Date: 30 October 2001 Non-GLP; Unpublished                                                        | THR-0458 |
| Ohta, K  | 2001b | Magnitude of the residues of clothianidin in Japanese pear, 2001 Sumitomo<br>Chemical Company Report No.: THR-0464 Date: 19 October 2001 Non-<br>GLP, Unpublished                                                                                                 | THR-0464 |
| Ohta, K  | 2002a | Magnitude of the residue of clothianidin in rice in paddy, 2001 (Granule)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company<br>Report No: THR-0405 Date: 15 April 2002 Non-GLP, Unpublished                                                        | THR-0405 |
| Ohta, K  | 2002b | Magnitude of the residue of clothianidin in rice in paddy, (Granule) Takeda<br>Pharmaceutical Company Ltd., Sumitomo Chemical Company Report No:<br>THR-0406 Date: 15 April 2002 Non-GLP, Unpublished                                                             | THR-0406 |
| Ohta, K  | 2003a | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR, FL) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company Report No: THR-0412 Date: 5 March 2003 Non-GLP, Unpublished                                                            | THR-0412 |
| Ohta, K  | 2003b | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR,<br>Dust) Takeda Pharmaceutical Company Ltd., Sumitomo Chemical<br>Company Report No: THR-0420 Date: 5 March 2003 Non-GLP,<br>Unpublished                                                 | THR-0420 |
| Ohta, K  | 2003c | Magnitude of the residue of clothianidin in rice in paddy, 2002 (WG, GR)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company<br>Report No: THR-0428 Date: 5 March 2003 Non-GLP, Unpublished                                                          | THR-0428 |
| Ohta, K  | 2003d | Magnitude of the residue of clothianidin in rice in paddy, 2003 (WG, GR)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company<br>Report No: THR-0436 Date: 3 December 2003 Non-GLP, Unpublished                                                       | THR-0436 |
| Ohta, K  | 2003e | Magnitude of the residue of clothianidin in cherry (greenhouse), 2003 (WG)<br>Sumitomo Chemical Takeda Agro Company Sumitomo Chemical<br>Company, Report No.: THR-0493 Date: 14 July 2003 Non-GLP;<br>Unpublished                                                 | THR-0493 |
| Ohta, K  | 2003f | Magnitude of the residues in crop (Clothianidin, persimmon) Sumitomo<br>Chemical, Takeda Ago Company Sumitomo Chemical Company, Report<br>No: THR-0496 Date: 27 February 2003 Non-GLP, Unpublished                                                                | THR-0496 |
| Ohta, K  | 2003g | Magnitude of the residues in crop (Clothianidin, cabbage) Sumitomo<br>Chemical, Takeda Ago Company Sumitomo Chemical Company, Report<br>No: THR-0506 Date: 17 February 2003 Non-GLP, Unpublished                                                                  | THR-0506 |
| Ohta, K  | 2004a | Magnitude of the residue of clothianidin in soya beans, 2003 (GR, WG)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company<br>Report No: THR-0521 Date: 8 January 2004 Non-GLP, Unpublished                                                           | THR-0521 |
| Ohta, K  | 2004b | Magnitude of the residue of clothianidin in soya beans, 2003 (GR, Dust)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company<br>Report No: THR-0524 Date: 8 January 2004 Non-GLP, Unpublished                                                         | THR-0524 |
| Orosz, F | 2005a | Residue study with Clothianidin in apples (treatment with APACS 50 WG,<br>Hungary—Season 2005) Sumitomo Chemical Company Study No: 05-<br>ARYS-AAND14-01 Report No.: THR-0004 Date: 14 October 2005 GLP,<br>Unpublished                                           | THR-0004 |
| Orosz, F | 2005b | Residue study with clothianidin in peaches (treatment with APACS 50 WG,<br>Hungary—Season 2005) Arysta LifeScience, Hungary Report No; 05-<br>ARYS-AAND14-02 Sumitomo Chemical Company Report No: THR-0005<br>Date: 14 October 2005 GLP, Unpublished              | THR-0005 |
| Orosz, F | 2005c | Method validation for the determination of residues of clothianidin in apples<br>by HPLC/diode array detection. Plant Protection and Soil Conservation<br>Service (PPSCS), Kaposvar, Hungary Study no 05-ARYS-AA-14-02, Date:<br>14 October 2005 GLP, unpublished | THA-0003 |

| Author                             | Year  | Title, Institute, Report reference                                                                                                                                                                                                                                                                                                                                                 | Code                        |
|------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Orosz, F                           | 2005d | Method validation for the determination of residues of clothianidin in<br>peaches by HPLC/diode array detection. Plant Protection and Soil<br>Conservation Service (PPSCS), Kaposvar, Hungary Study no 05-ARYS-                                                                                                                                                                    | THA-0004                    |
| Perez, R                           | 2000  | AA-14-02, Date: 14 October 2005 GLP, unpublished<br>Independent laboratory validation of analytical method 109240 residue<br>analytical method 00552 for the determination of TI 435 in plant materials                                                                                                                                                                            | THA-0022<br>(M-032258-01-1) |
|                                    |       | by LC-MS/MS ADPEN Laboratories Inc., Jacksonville, FL, USA Bayer<br>CropScience, Report No.: 110158, Sumitomo Chemical Company, Report<br>No.: THA-0022 Date: 20 November 2000 GLP, unpublished                                                                                                                                                                                    |                             |
| Preu, M and<br>Elke, K             | 2002  | Determination of residues of HEC 5725, Tebuconazole, Triazoxide and<br>Clothianidin in/on spring barley after seed dressing with HEC 5725 &<br>HWG 1608 & SAS 9244 & TI 435 300 FS () in Germany, France, Great<br>Britain and Italy Bayer AG, Leverkusen, Germany Bayer CropScience,<br>Report No.: RA-2059/00, Date: 20 June 2002. Amended: 20 November<br>2002 GLP, unpublished | M-070457-02-1               |
| Qadri, S                           | 2007  | Validation of Bayer CropScience method TI-002-P05-001: An analytical method for the determination of clothianidin (TI-435) and the metabolite TMG residues in root and leafy vegetables using LC/MS/MS Bayer CropScience LP, Stilwell, KS, USA Bayer CropScience, Report No.: RATIY008, Method Report No US: RATIY008 Date: 23 May 2007 GLP, unpublished                           | M-289314-01-1               |
| Schad, T                           | 2000a | Calculation of half-lives of TI-435 and its main metabolites generated by<br>photolysis in sterile aqueous buffer solution Bayer AG, Leverkusen,<br>Germany Report No.: MR-121/00, Sumitomo Chemical Company, Report<br>No.: THM-0016 Date: 19 April 2000 Non GLP, unpublished                                                                                                     | THM-0016<br>(M-031153-01-1) |
| Schad, T                           | 2000b | Aerobic degradation and metabolism of TI-435 in six soils Bayer AG,<br>Leverkusen, Germany Report No.: MR-419/99, Sumitomo Chemical<br>Company, Report No.: THM-0019, Date: 31 July 2000, Amended: 9 April<br>2001 GLP, unpublished                                                                                                                                                | THM-0019<br>(M-044938-02-1) |
| Schindler, M                       | 2010  | Results concerning the molecular geometry of clothianidin based on<br>quantum chemical calculations. Bayer Crop Science, Monheim, Germany.<br>Report no BCS-R-DIS, 28 September 2010                                                                                                                                                                                               | _                           |
| Schoening, R                       | 2007a | Determination of the residues of TI 435 and beta-cyfluthrin in/on carrot<br>after seed treatment of TI 435 & FCR 4545 (453.3 FS) in the field in<br>Northern France and Germany Bayer CropScience, Report No.: RA-<br>2629/06, Date: 27 February 2007 GLP, unpublished                                                                                                             | M-284431-01-1               |
| Schoening, R                       | 2007b | Determination of the residues of TI 435 and beta-cyfluthrin in/on carrot<br>after seed treatment of TI 435 & FCR 4545 (453.3 FS) in the field in Italy<br>and Spain Bayer CropScience, Report No.: RA-2630/06, Date: 27 February<br>2007 GLP, unpublished                                                                                                                          | M-284447-01-1               |
| Schoening, R                       | 2007c | Determination of the residues of TI 435 and beta-cyfluthrin in/on chicory, witloof after seed treatment of TI 435 & FCR 4545 (453.3 FS) in the field in Belgium Bayer CropScience, Report No.: RA-2633/06, Date: 12 March 2007 GLP, unpublished                                                                                                                                    | M-285150-01-1               |
| Schoening, R                       | 2007d | Determination of the residues of TI 435 and beta-cyfluthrin in/on round cabbage after seed treatment of TI 435 & FCR 4545 (453.3 FS) in the field in Italy and Spain Bayer CropScience, Report No.: RA-2632/06, Date: 21 June 2007 GLP, unpublished                                                                                                                                | M-289508-01-1               |
| Schoening, R                       | 2007e | Determination of the residues of TI 435 and beta-cyfluthrin in/on round cabbage after seed treatment of TI 435 & FCR 4545 (453.3 FS) in the field in Germany and Belgium Bayer CropScience, Report No.: RA-2631/06, Date: 21 June 2007 GLP, unpublished                                                                                                                            | M-289560-01-1               |
| Schoening, R<br>and<br>Billian, P  | 2009  | Determination of the residues of TI 435 and imidacloprid in/on carrot after seed treatment of TI 435 & NTN 33893 (75 WS) in the field in the United Kingdom, the Netherlands, Germany and Belgium BCS, Report No.: RA-2678/07, Date: 5 February 2009 GLP, unpublished                                                                                                              | M-328911-01-1               |
| Shim, K, Cho,<br>KW and Sin,<br>KS | 2001  | Residue study of clothianidin and its metabolites in persimmon in Korea in 2001 Agricultural Research Center, HanKookSamGong, Co, Ltd, Sumitomo Chemical Company Report no THR-0644 Date: December 2001 GLP, unpublished                                                                                                                                                           | THR-0644                    |
| Spiegel, K and<br>Weber, H         | 2000  | [Nitroimino- <sup>14</sup> C]TI-435 Absorption, distribution, excretion, and metabolism<br>in the lactating goat Bayer AG, Leverkusen, Germany Report No.: MR-<br>255/00, Sumitomo Chemical Company, Report No.: THM-0031, Date: 17<br>October 2000,Amended: 17 Feb 2001 GLP, unpublished                                                                                          | THM-0031<br>(M-024742-02-1) |

| Author                     | Year  | Title, Institute, Report reference                                                                                                                                                                                                                                                                                 | Code                       |
|----------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Stearns, JW                | 2001a | Magnitude of the residues of clothianidin in apples and apple processing<br>products Valent USA Corporation Report No: V-12016 Sumitomo<br>Chemical Company Report No: THR-0066 Date: 11 April 2001 GLP,<br>Unwhiched                                                                                              | THR-0066                   |
| Stearns, JW                | 2001b | Unpublished<br>Magnitude of the residues of clothianidin in pears (amended report #1)<br>Valent USA Corporation Report No: V-12097 Sumitomo Chemical<br>Company Report No: THR-0067 Date: 12 April 2001, Amended 6 June<br>2001 CLB. Unexplored black                                                              | THR-0067                   |
| Stewar,t ER                | 2007a | 2001 GLP, Unpublished<br>Clothianidin residues on cabbage from trials conducted in the United States<br>in 2006 Valent USA, Corp. Study No: SARS-06-83 Sumitomo Chemical                                                                                                                                           | THR-0572                   |
| Stewart, ER                | 2007b | Company Report No: THR-0572 Date: 19 June 2007 GLP, Unpublished<br>Clothianidin residues on summer squash from trials conducted in the United<br>States in 2006 and 2007 Valent USA Corporation Report No: SARS-06-79<br>Sumitomo Chemical Company, Report No: THR-0577 Date: 28 November<br>2007 GLP, Unpublished | THR-0577                   |
| Stewart, ER                | 2007c | Clothianidin Residues on Cucumber from Trials Conducted in the United<br>States in 2006 and 2007 Valent USA Corporation Study No: SARS-06-77<br>Sumitomo Chemical Company, Report No: THR-0575 Date: 28 November<br>2007 GLP, Unpublished                                                                          | THR-0575                   |
| Stewart, ER                | 2007d | Clothianidin Residues on Cauliflower from Trials Conducted in the United<br>States in 2006 Stewart Agricultural Research Services Inc, Clarence,<br>Missouri, USA, Study No: SARS-06-82 Sumitomo Chemical Company,<br>Report No: THR-0573 Date: 19 June 2007 GLP, Unpublished                                      | THR-0573                   |
| Stewart, ER                | 2008a | Clothianidin residues on tomato and tomato processed commodities from<br>trials conducted in the United States in 2007 Valent USA Corporation Study<br>No: SARS-07-80 Sumitomo Chemical Company, Report No: THR-0578<br>Date: 14 March 2008 GLP, Unpublished                                                       | THR-0578                   |
| Stewart, ER                | 2008b | Clothianidin residues on head lettuce from trials conducted in the United<br>States in 2007 Valent USA Corporation Study No: SARS-07-74 Sumitomo<br>Chemical Company, Report No: THR-0580 Date: 16 January 2008 GLP,<br>Unpublished                                                                                | THR-0580                   |
| Stewart, ER                | 2008c | Clothianidin residues on leaf lettuce from trials conducted in the United<br>States in 2007 Valent USA Corporation Study No: SARS-07-73 Sumitomo<br>Chemical Company, Report No: THR-0581 Date: 14 March 2008 GLP,<br>Unpublished                                                                                  | THR-0581                   |
| Stewart, ER                | 2008d | Clothianidin Residues on Cotton and Cotton Processed Commodities from<br>Trials Conducted in the United States in 2006 and 2007 Valent USA<br>Corporation Study No: SARS-06-85 Sumitomo Chemical Company Study<br>No: THR-0584 Date: 14 March 2008 GLP, Unpublished                                                | THR-0584                   |
| Stewart, ER                | 2008e | Clothianidin residues on soya bean and soya bean processed commodities<br>from trials conducted in the United States in 2007 Valent USA Corporation<br>Report No: SARS-07-86 Sumitomo Chemical Company Report No: THR-<br>0585 Date: 25 April 2008 GLP, Unpublished                                                | THR-0585                   |
| Sur, R and<br>Nuesslein, F | 2000  | Determination of residues of TI 435 600 FS (a.s. clothianidin) in sugar beet<br>following seed dressing in the field in Germany, France and Great Britain<br>Bayer AG, Leverkusen, Germany Bayer CropScience, Report No.: RA-<br>2053/99, Date: 19 September 2000 GLP, unpublished                                 | M-020378-01-1              |
| Fornisielo, WL             | 2001a | Determination of HIT-98 (Clothianidin) residue in Cucumber fruits,<br>Pereiras/ SP Universidade de Sao Paulo Hokko do Brasil I-ustria Quimica e<br>Agro Pecuaria, Ltda. Report No: R.236/01 Sumitomo Chemical Company,<br>Report No: THR-0626 17 November 2001                                                     | THR-0626                   |
| Fornisielo, WL             | 2001b | Determination of HIT-98 (Clothianidin) residue in Cucumber fruits,<br>Engenheiro Coelho/ SP Universidade de Sao Paulo Hokko do Brasil I-ustria<br>Quimica e Agro Pecuaria, Ltda. Report No: R.52/01 Sumitomo Chemical<br>Company, Report No: THR-0627 26 September 2001                                            | THR-0627                   |
| Jceda, LG                  | 2007  | Analytical method 00552/M002 for the determination of residues of<br>clothianidin (AE 1283742) in/on plant material by HPLC-MS/MS Bayer<br>CropScience S.A., Lyon, France Bayer CropScience, Report No.:<br>00552/M002, Method Report No.: MR-07/301 Date:3 September 2007<br>GLP, unpublished                     | M-292120-01-1              |
| Weber, H                   | 2000a | Enforcement method 00657 for the determination of residues of TI-435 in plant material. DR. Specht & Partner, Report No.: BAY-0007V / Az. G00-0063 Sumitomo Chemical Company, Report No.: THA-0016 30 November 2000; 1st adde-um 16 February 2001 GLP, unpublished                                                 | THA-0016<br>(M-030193-03-1 |

| Author                             | Year  | Title, Institute, Report reference                                                                                                                                                                             | Code                        |
|------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Weber, H                           | 2001a | Enforcement method 00657/M001 for the determination of the residues of TI-435 in plant material Dr. Specht & Partner, Chemische Laboratorien GmbH, Hamburg, Germany Bayer CropScience, Report No.: 00657/M001, | THA-0017<br>(M-087197-01-1) |
|                                    |       | Method Report No.: BAY-0113V Sumitomo Chemical Company, Report                                                                                                                                                 |                             |
|                                    |       | No.: THA-0017 Date: 16 November 2001 GLP, unpublished                                                                                                                                                          |                             |
| Weber, H                           | 2001b | Enforcement method 00656 for the determination of the residues of TI-435                                                                                                                                       | THA-0029                    |
|                                    |       | in animal matrices. Dr. Specht & Partner, Chemische Laboratorien GmbH,                                                                                                                                         |                             |
|                                    |       | Hamburg, Germany Bayer AG, Report No.: BAY-0008V-1 <sup>st</sup> addendum, Az                                                                                                                                  |                             |
|                                    |       | G00-0064, Sumitomo Chemical Company, Report No.: THA-0029 Date: 16 February 2001 GLP, unpublished                                                                                                              |                             |
| Weber, H                           | 2001c | Enforcement method 00656/M001 for the determination of the residues of                                                                                                                                         | THA-0030                    |
|                                    | 20010 | TI-435 in animal matrices. Dr. Specht & Partner, Chemische Laboratorien                                                                                                                                        | 11111 0000                  |
|                                    |       | GmbH, Hamburg, Germany Bayer AG, Report No.: BAY-0114V, Az G01-                                                                                                                                                |                             |
|                                    |       | 0099, Sumitomo Chemical Company, Report No.: THA-0030 Date: 16                                                                                                                                                 |                             |
| Wahan Faul                         | 2000  | November 2001 GLP, unpublished                                                                                                                                                                                 | THN ( 0022                  |
| Weber, E and<br>Weber, H           | 2000  | [Nitroimino- <sup>14</sup> C] TI-435 Investigation of the metabolites in tissues and eggs of laying hen Bayer AG, Leverkusen, Germany Report No.: MR-516/00,                                                   | THM-0033<br>(M-028196-01-1) |
| weber, II                          |       | Sumitomo Chemical Company, Report No.: THM-0033, Date: 12                                                                                                                                                      | (101-028190-01-1            |
|                                    |       | December 2000 GLP, unpublished                                                                                                                                                                                 |                             |
| Womack, JG                         | 2000a | TI-435: The determination of residues in/on apples in Northern Europe,                                                                                                                                         | THR-0060                    |
| and                                |       | 1998 Covance Laboratories Ltd., Harrogate, North Yorkshire, United                                                                                                                                             |                             |
| Mills, H                           |       | Kingdom Report No: 586/147-D-2143 Sumitomo Chemical Company<br>Report No: THR-0060 Date: 2 October 2000 GLP, Unpublished                                                                                       |                             |
| Womack, JG                         | 2000b | TI-435: The determination of residues in/on apples in Southern Europe,                                                                                                                                         | THR-0062                    |
| and                                | 20000 | 1998 Covance Laboratories Ltd., Harrogate, North Yorkshire, United                                                                                                                                             | 11110 0002                  |
| Mills, H                           |       | Kingdom Report No: 586/148-D-2143 Sumitomo Chemical Company                                                                                                                                                    |                             |
|                                    |       | Report No: THR-0062 Date: 2 October 2000 GLP, Unpublished                                                                                                                                                      |                             |
| Womack, JG                         | 2000c | TI-435 50% WDG: The determination of residues in/on pome fruit in                                                                                                                                              | THR-0063                    |
| and<br>Mill,s H                    |       | Southern Europe, 1999 Covance Laboratories Ltd., Harrogate, North<br>Yorkshire, United Kingdom Report No: 586/183-D-2143 Sumitomo                                                                              |                             |
| 1111,511                           |       | Chemical Company Report No: THR-0063 Date: 11 October 2000 GLP,                                                                                                                                                |                             |
|                                    |       | Unpublished                                                                                                                                                                                                    |                             |
| Womack, JG                         | 2001  | TI-435 50% WDG: The determination of residues in/on pome fruit in                                                                                                                                              | THR-0061                    |
| and                                |       | Northern Europe, 1999 Covance Laboratories Ltd., Harrogate, North                                                                                                                                              |                             |
| Mills, H                           |       | Yorkshire, United Kingdom Report No: 586/182-D-2143 Sumitomo                                                                                                                                                   |                             |
|                                    |       | Chemical Company Report No: THR-0061 Date: 11 July 2001 GLP,<br>Unpublished                                                                                                                                    |                             |
| Yabuzaki, T                        | 2003a | Magnitude of the residue of clothianidin in rice in paddy, 2003 (WG, GR)                                                                                                                                       | THR-0435                    |
| and                                |       | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                                                                                  |                             |
| Mizukoshi, K                       |       | Report No: THR-0435 Date: 3 December 2003 Non-GLP, Unpublished                                                                                                                                                 |                             |
| Yabuzaki, T                        | 2003b | Magnitude of the residue of clothianidin in persimmon, 2003 (SP) Takeda                                                                                                                                        | THR-0495                    |
| and<br>Mizukoshi, K                |       | Pharmaceutical Company Ltd., Sumitomo Chemical Company Report No:<br>THR-0495 Date: 15 April 2003 Non-GLP, Unpublished                                                                                         |                             |
| Yabuzaki, T                        | 2004a | Magnitude of the residue of clothianidin in soya beans, 2003 (GR, WG)                                                                                                                                          | THR-0520                    |
| and                                | 200.4 | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                                                                                  | 11111 0020                  |
| Mizukoshi, K                       |       | Report No: THR-0520 Date: 21 January 2004 Non-GLP, Unpublished                                                                                                                                                 |                             |
| Yabuzaki, T                        | 2004b | Magnitude of the residue of clothianidin in soya beans, 2003 (GR, Dust)                                                                                                                                        | THR-0523                    |
| and<br>Mizukoshi, K                |       | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company<br>Report No: THR-0523 Date: 21 January 2004 Non-GLP, Unpublished                                                                                |                             |
| Yabuzaki, T                        | 2004c | Magnitude of the residues of clothianidin in grape tomatoes (greenhouse),                                                                                                                                      | THR-0541                    |
| and                                | 20010 | 2003-04 (GR, WG) Sumitomo Chemical Takeda Agro Company Sumitomo                                                                                                                                                |                             |
| Mizukoshi, K                       |       | Chemical Company, Report No: THR-0541 Date: 24 September 2004 Non-                                                                                                                                             |                             |
| <b>V</b> 1 1 1 m                   | 2005  | GLP, Unpublished                                                                                                                                                                                               | <b>THD 027</b> 0            |
| Yabuzaki, T,<br>Mizukoshi <i>K</i> | 2005  | Magnitude of the residues in crop (Clothianidin, broccoli) Sumitomo                                                                                                                                            | THR-0370                    |
| Mizukoshi, K<br>and                |       | Chemical, Takeda Ago Company Sumitomo Chemical Company, Report<br>No: THR-0370 Date: 5 May 2005 Non-GLP, Unpublished                                                                                           |                             |
| Mizuguchi, E                       |       | 10. THE 0570 Date. 5 May 2005 Hon-OLA, Onpublished                                                                                                                                                             |                             |
| Yabuzaki, T,                       | 2006  | Magnitude of the residue of clothianidin in soya beans, 2005 (GR, FL)                                                                                                                                          | THR-0527                    |
| Mizukoshi, K                       |       | Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company                                                                                                                                                  |                             |
| and Watanabe,                      |       | Report No: THR-0527 Date: 15 February 2006 Non-GLP, Unpublished                                                                                                                                                |                             |
| A<br>Vahuralii T                   | 2009  | Magnituda of the mariduce in one to I and Fred Decremb I at the                                                                                                                                                | THD 0641                    |
| Yabuzaki, T,<br>Mizukoshi, K       | 2008  | Magnitude of the residues in crop—tea Japan Food Research Laboratories<br>Sumitomo Chemical Company, Report No.: THR-0641 Date: 1 February                                                                     | THR-0641                    |
| and                                |       | 2008 GLP; Unpublished                                                                                                                                                                                          |                             |
|                                    |       |                                                                                                                                                                                                                |                             |

| Author    | Year  | Title, Institute, Report reference                                                                                                                                                                                                   | Code     |
|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Yokota, T | 2004  | Magnitude of the residue of clothianidin in nectarine, 2004 (WG) Sumitomo<br>Chemical Takeda Agro Company Sumitomo Chemical Company, Report                                                                                          | THR-0361 |
|           |       | No.: THR-0361 Date: 15 December 2004 Non-GLP; Unpublished                                                                                                                                                                            |          |
| Yokota, T | 2005a | Magnitude of the residue of clothianidin in soya beans, 2004 (GR, FL)<br>Takeda Pharmaceutical Company Ltd., Sumitomo Chemical Company<br>Report No: THR-0526 Date: 25 January 2005 Non-GLP, Unpublished                             | THR-0526 |
| Yokota, T | 2005b | Magnitude of the residues of clothianidin in grape tomatoes (greenhouse),<br>2003–04 (GR, WG) Sumitomo Chemical Takeda Agro Company Sumitomo<br>Chemical Company, Report No: THR-0542 Date: 18 January 2005 Non-<br>GLP, Unpublished | THR-0542 |