FLONICAMID (282)

The first draft was prepared by Ms Monique Thomas, Pest Management Regulatory Agency, Canada

EXPLANATION

Flonicamid is a new insecticide for control of aphids and other sucking insects. It belongs to a new class of chemistry known as pyridinecarboxamide. Flonicamid has been registered in Canada since 2009. At the 46th Session of the CCPR (2014), flonicamid was scheduled for evaluation as a new compound by 2015 JMPR.

The Meeting received information on the metabolism of flonicamid in peaches, Bell peppers, potatoes, wheat, lactating goats, laying hens and rotational crops, environmental fate, methods of residue analysis, freezer storage stability, GAP, supervised residue trials on various fruits, vegetables, tree nuts, oil seeds, dried hops, mint and tea, processing studies, as well as livestock feeding studies.

IDENTITY

ISO common name: Flonicamid

Chemical name:

IUPAC: N-cyanomethyl-4-(trifluoromethyl)nicotinamide

CAS: *N*-(cyanomethyl)-4-(trifluoromethyl)-3-pyridinecarboxamide

CAS Registry. No.: 158062-67-0

CIPAC No.: 763

Trade Name: IKI-220

Structural formula:

Molecular formula: $C_9H_6F_3N_3O$ Molecular weight: 229.16 g/mol

Physical and chemical properties

Property	Findings	Findings		
Pure Active Ingredient				
Melting Point	157.5 °C			
Mean Relative Density (20 °C)	1.54 g/mL		010153-1	
Physical State, colour	solid powder, off v	vhite		
Odour	odourless			
Vapour Pressure	Temperature, °C	Pa	010341-1	
	20	9.43×10^{-7} (extrapolated)	010341-1	

Property	Findings		Report, Reference
	25	2.55×10^{-6} (extrapolated)	Reference
	30	6.48×10^{-6} (experimental)	-
	40.1	$4.40 \times 10^{-5} \text{ (experimental)}$	_
	50.1	$2.31 \times 10^{-4} \text{ (experimental)}$	
Solubility in water	5.2 g/L at 20 °C	2.31 × 10 (experimental)	010251-1
	Solvent	g/L	010231-1
(20 °C)	Acetone	163.5	-
(20°C)		34.2	4
	Ethyl Acetate		-
	Methanol	104.3	4
	Dichloromethane	4.5	0.10250-1
	Toluene	0.55	
	Hexane	0.0002	
	n-Octanol	3	
	Acetonitrile	132.8	
	Isopropyl Alcohol	18.7	
Partition coefficient	$1.9 \text{ (Log P}_{ow} = 0.3)$	at 29.8 °C	010252-1
Hydrolysis rate		DT ₅₀ (days)	1
at 25 °C	pH 5	no hydrolysis	
	pH 7	no hydrolysis	
	pH 9	204 (max. 31% TFNG-AM)	008076-2
at 50 °C	pH 4	no hydrolysis	0000702
	pH 5	no hydrolysis	-
	pH 7	578 (no major degradation products)	-
	pH 9	9 (max. 65% TFNG-AM, max. 86% TFNG)	-
at 40 °C	pH 9	17 (max. 63% TFNG-AM, max. 26% TFNG)	4
	I L		11:
conditions) and can then be hy		TFNG-AM is formed from this reaction (under al	kanne
Quantum yield	DT ₅₀ at pH 7 and 23 °C was 267 days. flonicamid did not degrade in		011050-1
	dark controls. The r	najor degradate TFNA-AM, only degraded	
	slightly (from 2.4% at time 0 and increased slightly to 2.9% by Day		
	15)		
Dissociation constant	11.60 ± 0.03 in 5%	ethanol/water at 20 ± 1 °C	010141-1
Flammability	Not flammable		T
Auto-flammability	No relative self-ign	ition temperature	20334
Explosive properties		potential explosive and does not have a potential	
Emplosive properties		ease (decomposition energy = 374 J/g)	
Technical material	ror rapid energy ren	case (accomposition energy 37 1 6/g)	1
Physical State, colour	Solid powder, light	heige	
pH	4.5 at 25 °C	beige	-
Mean Relative Density	1.531 g/mL		012575-1
(20 °C)	1.331 g/IIIL		012373-1
Odour	Odourless		
Solubility in organic solvents	Solvent	g/L	
(20 °C)	Acetone	157.1	1
	Ethyl Acetate	34.9	1
	Methanol	89	1
	Dichloromethane	4	1
	Toluene	0.3	011201-1
	Hexane	0.0003	1
I	n-Octanol	2.6	+
			-
	Acetonitrile	111.4	-
	Isopropyl Alcohol	14.7	

Formulation

Flonicamid is commercially marketed as a soluble or wettable granule containing 50% flonicamid.

Specification

Flonicamid has not been evaluated by the FAO/WHO Joint Meeting of Pesticide Specifications (JMPS).

METABOLISM AND ENVIRONMENTAL FATE

The metabolism and distribution of flonicamid in plants and animals was investigated using ¹⁴C-labelled test material as shown below:

$$CF_3$$
 $-CONHCH_2CN$
 $* = ^{14}C$

Chemical names, structures and code names of metabolites and degradation products of flonicamid are summarized in the following table. Compounds are referred to primarily by the code name.

Code names, chemical names and structures of flonicamid related substances

Code Name	Structure	Chemical Name	Occurrence
Flonicamid IKI-220	CF ₃ —CONHCH₂CN	N-cyanomethyl-4- (trifluoromethyl)nicotinamide	Goat Hen Peach Peppers Potato Wheat Rotational crop (wheat) Soil
TFNA	CF ₃	4-trifluoromethylnicotinic acid	Goat Hen Peach Peppers Potato Wheat Rotational crop (wheat) Soil
TFNA-AM	CF ₃ CONH ₂	4-trifluoromethylnicotinamide	Goat Hen Peach Peppers Potato Wheat Rotational crop (wheat)

Code Name	Structure	Chemical Name	Occurrence
OH-TFNA-AM	$HO \longrightarrow CF_3$ CF_3 $CONH_2$	6-hydroxy-4- trifluoromethylnicotinamide	Goat Hen
TFNA-OH	но————————————————————————————————————	6-hydroxy-4- trifluoromethylnicotinic acid	Rotational crop (wheat)
TFNG	CF ₃ —CONHCH₂COOH	<i>N</i> -(4-trifluoromethylnicotinoyl)glycine	Peach Peppers Potato Wheat Rotational crop (wheat) Soil
TFNG-AM	CF ₃ CONHCH ₂ CONH ₂	N-(4- trifluoromethylnicotinoyl)glycinami de	Hen Peach Peppers Wheat Rotational crop (wheat)

Plant metabolism

The Meeting received information on the fate of flonicamid radio-labelled at the 3 position of the pyridine ring following foliar application to peaches, Bell peppers, potatoes and wheat (immature and mature).

Peach

Flonicamid, radio-labelled at the 3 position of the pyridine ring (specific activity: 1.67 MBq/mg), formulated as a wettable granule formulation, was applied to single <u>peach</u> trees (variety: Elberta), grown outdoors in individual 1.4 m² plots of clay loam. Each tree received two foliar applications, at a 14-day re-treatment interval, at rates of 100 g ai/ha (low rate) or 500 g ai/ha (high rate) per application, resulting in total seasonal rates of 200 g ai/ha or 1000 g ai/ha. Mature fruits and leaves were harvested 21 days following the second application.

To remove surface residues the fruit was washed with deionised water. Following the removal of pits, the surface-washed fruits were then cut into small pieces and homogenised. The homogenates were then centrifuged to give an aqueous fraction (juice) and a solid fraction (pomace). The juice was decanted, total volume measured and the radioactivity measured. The remaining pomace was weighed and then ground with dry ice in a blender.

Radioactivity was measured by liquid scintillation counting (LSC). Dry-ice-ground peach leaves, pomace and PES were combusted in an oxidizer (Table 1).

Overall total radioactive residues (TRRs) in fruits at the low rate and the high rate were 0.10 mg eq/kg and 0.32 mg eq/kg, respectively, while in the leaves, TRRs were higher than those of fruits, 6.24 mg eq/kg at the low rate and 24.21 mg eq/kg at the high rate.

Table 1 TRRs in peach fruits and leaves

Crop part	TRRs (mg eq/kg)		
	Low rate (200 g ai/ha)	High rate (1000 g ai/ha)	
Fruits	0.10	0.32	
Leaves	6.24	24.21	

both Subsamples of pomace and leaves were extracted with acetonitrile:water:phosphoric acid (40:60:0.1, v/v/v). The extracts of each subsample were pooled and the PES were air dried. Quantification and characterization/identification of residues were done by HPLC. To determine the ¹⁴C residue profiles, fractions were collected from the HPLC effluent and analysed by LSC. Flonicamid and metabolites were isolated and purified from peach juice and leaf extracts of both treatment groups. The isolated radioactive components were purified by reverse phase HPLC. The identification was supported by other methods such as TLC and LC-MS.

Table 2 Distribution of TRRs in mature fruit harvested 21 days following application at low rate and high rate

Fraction	Low Rate (200 g ai	i/ha)	High Rate (1000 g ai/ha)	
	mg eq/kg	%TRR	mg eq/kg	%TRR
Surface wash	0.006	5.6	0.05	15.3
Flonicamid	0.006	2.7	0.03	8.6
TFNG	0.000	0.2	0.001	0.3
TFNA	0.000	0.3	0.001	0.3
TFNG-AM	0.000	0.2	0.003	0.9
TFNA-AM	0.000	0.2	0.003	0.8
Unknowns	0.000	0.4	0.006	1.9
Polar	0.000	0.2	0.001	0.3
Nonpolar	0.001	1.0	0.007	2.0
Diffuse Radioactivity	0.001	0.6	0.001	0.2
Juice (aqueous fraction)	0.073	73.2	0.205	63.7
Extracted	0.073	73.2	0.205	63.7
Flonicamid	0.020	20.3	0.13	40.2
TFNG	0.005	5.0	0.01	3.0
TFNA	0.040	39.9	0.04	12.9
TFNG-AM	0.001	1.2	0.006	1.8
TFNA-AM	0.001	1.1	0.005	1.6
Unknowns	0.003	3.2	0.007	2.1
Polar	0.002	2.0	0.005	1.5
Nonpolar	_	_	0.001	0.3
Diffuse Radioactivity	0.001	0.6	0.000	0.1
Pomace (solid fraction)	0.021	21.1	0.067	21.0
Extracted	0.019	19.5	0.06	19.1
Flonicamid	0.007	7.1	0.04	11.8
TFNG	0.001	0.8	0.003	1.0
TFNA	0.009	9.0	0.14	4.2
TFNG-AM	0.000	0.3	0.001	0.4
TFNA-AM	0.000	0.3	0.001	0.4
Unknowns	0.001	1.4	0.003	0.9
Polar	0.000	0.4	0.000	0.1
Nonpolar	0.000	0.1	0.000	0.1
Diffuse Radioactivity	0.000	0.1	0.000	0.0
Nonextracted	0.002	1.6	0.006	1.9
Total	0.10	100.0	0.322	100.0

Table 3 Identification/Characterization of TRRs in whole fruit harvested 21 days following application at low rate and high rate

Analyte			High Rate (1000 g ai/ha)	
	mg eq/kg	%TRR	mg eq/kg	%TRR
Flonicamid	0.033	30.1	0.20	60.6
TFNG	0.006	6.0	0.14	4.3
TFNA	0.049	49.2	0.55	17.4
TFNG-AM	0.001	1.7	0.01	3.1
TFNA-AM	0.001	1.6	0.009	2.8

Analyte	Low Rate (200 g ai/ha)		High Rate (1000 g ai/ha)	
	mg eq/kg	%TRR	mg eq/kg	%TRR
Total Identified	0.09	88.6	0.91	88.2
Total Unidentfied a	0.006	6.3	0.017	5.2
Total Characterized b	0.003	3.7	0.014	4.3
Total Extracted c	0.098	98.3	0.315	98.1
Total Nonextracted	0.002	1.6	0.006	1.9
Total	0.10	100.0	0.322	100.0

^a Total unidentified = Unknowns + Diffuse Radioactivity

Table 4 Distribution of TRRs in mature leaves harvested 21 days following application at low rate and high rate

	Low Rate (200 g ai/ha)		High Rate (1000 g ai/ha)	
	mg eq/kg	%TRR	mg eq/kg	%TRR
Extracted	5.58	89.2	22.27	92.0
Flonicamid	2.05	32.9	15.72	64.9
TFNG	1.21	19.3	2.06	8.5
TFNA	0.99	15.8	1.28	5.3
TFNG-AM	0.21	3.4	0.40	1.6
TFNA-AM	0.25	4.1	0.48	2.0
Unknowns	0.18	2.8	0.18	0.7
Polar	0.39	6.3	0.92	3.8
Nonpolar	0.29	4.6	1.24	5.1
Diffuse Radioactivity	0.001	0.0	0.002	0.0
Unextracted	0.67	10.8	1.94	8.0
Total	6.25	100.0	24.21	100.0

Representative samples of peach fruit fractions (surface wash, pomace and juice) were extracted and analysed immediately after collection and re-analysed after 5 months of storage. Considering the metabolite profiles from the initial and final analyses were very similar, flonicamid and the metabolites were stable during this storage interval.

According to Table 2, the surface wash removed very little radioactivity, 6–15%, demonstrating limited penetration. The majority of the radioactivity in peach fruits was partitioned in the juice fraction, accounting for 64–73% of the TRR while the radioactivity in pomace represented 21% of the TRR.

While juice was not further extracted with organic solvents, extraction of the pulp with acetonitrile:water:phosphoric acid recovered 92% TRR. When treated at the low rate, flonicamid (30.1% of the TRR), and TFNA (49.2% of TRR) were the predominant residues. In peaches treated at the high rate, flonicamid accounted for 60.6% of the TRR while TFNA accounted for 17.4% of the TRR. All other metabolites, TFNG, TFNG-AM and TFNA- AM, were \leq 6% of the TRR.

In leaves, (Table 4), flonicamid accounted for 33-65% of the TRR followed by the major metabolites TFNG (8–19% of the TRR) and TFNA (5–16% of the TRR). All other metabolites, TFNG-AM and TFNA-AM, were \leq 6% of the TRR.

^b Total Characterized = Polar + Nonpolar

^c Total extracted = Surface wash + Juice extracted + Pomace extracted

$$\begin{array}{c} \mathsf{CF_3} \\ \\ \mathsf{N} \\ \mathsf{CONHCH_2CN} \\ \\ \mathsf{CF_3} \\ \\ \mathsf{CONHCH_2CONH_2} \\ \\ \mathsf{N} \\ \mathsf{CONHCH_2COOH} \\ \\ \mathsf{N} \\ \mathsf{CONHCH_2COOH} \\ \\ \mathsf{N} \\ \mathsf{CONHCH_2COOH} \\ \\ \mathsf{N} \\ \mathsf{COOH} \\ \mathsf{COOH} \\ \mathsf{TFNG-AM} \\ \\ \mathsf{TFNA-AM} \\ \\ \mathsf{TFNA-AM} \\ \\ \mathsf{CF_3} \\ \mathsf{COOH_2} \\ \mathsf{COO$$

Figure 1 Proposed metabolic pathway in peaches

Bell pepper

Bell pepper plants (variety Wanderbell), grown in individual pots maintained in greenhouses, received a single application of flonicamid, radio-labelled at the 3 position of the pyridine ring (specific activity: 0.182 MBq/mg) and formulated as a 50% wettable granule formulation, at 100 g ai/ha. Bell pepper plants (fruits and leaves) were harvested 7 days and 14 days after application.

Bell pepper fruits and leaves were surface washed with methanol:water (10:90, v/v) prior to being homogenised in a food processor with dry ice. TRRs were determined by combusting triplicate aliquots of the homogenates.

TRRs in leaves decreased from 2.23 mg eq/kg, when harvested 7 days after treatment (DAT) to 1.35 mg eq/kg at 14 DAT. Similarly in fruits, the TRRs decreased insignificantly from 0.17 mg eq/kg (7 DAT) to 0.11 mg eq/kg (14 DAT).

TRRs in each tissue was determined by combusting the samples using an oxidizer. Unextracted residues in post-extraction solids were also determined by combustion.

Table 5 TRRs in bell pepper leaves and fruits

Crop part	TRRs (mg eq/kg)		
	7-DAT	14-DAT	
Leaves	2.22	1.35	
Fruits	0.17	0.11	

Aliquots of fruit and leaf homogenates were extracted twice with methanol:water (50:50) followed by partitioning with hexane and ethyl acetate. The remaining aqueous phase was further separated by open column chromatography. All extracts were analysed by HPLC and TLC.

Table 6 Distribution of radioactivity in bell pepper leaves and fruits

Fraction	7-DAT		14-DAT	
	mg eq/kg	%TRR	mg eq/kg	%TRR
Leaves				
Surface wash	0.81	36.1	0.23	17.3
Extracted	1.35	60.5	1.05	78.2

Fraction	7-DAT		14-DAT	
	mg eq/kg	%TRR	mg eq/kg	%TRR
Hexane	0.004	0.2	0.00	0.0
Ethyl acetate	0.88	39.7	0.46	34.1
Aqueous soluble	0.46	20.6	0.59	44.1
PES	0.08	3.4	0.06	4.3
Total	2.23	100.0	1.35	100.0
Fruits				
Surface wash	0.06	33.6	0.02	18.2
Extracted	0.11	65.6	0.09	80.5
Hexane	0.00	0.0	0.00	0.0
Ethyl acetate	0.10	56.9	0.06	60.8
Aqueous soluble	0.02	8.6	0.02	19.6
PES	0.001	0.8	0.001	1.3
Total	0.17	100.0	0.11	100.0

Table 7 Identification/Characterization of TRRs in mature bell pepper leaves harvested 7 DAT and 14 DAT

	Surface wash		Extracted		Total	
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
7 DAT						
Flonicamid	0.81	36.1	0.85	38.2	1.66	74.3
TFNA	n.d.	n.d.	0.04	2.0	0.04	2.0
TFNG	n.d.	n.d.	0.27	12.2	0.27	12.2
TFNA-AM	n.d.	n.d.	0.02	0.7	0.02	0.7
TFNG-AM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Others	n.d.	n.d.	0.10	4.6	0.10	4.6
Total	0.81	36.1	1.28	57.7	2.09	93.8
14 DAT						
Flonicamid	0.22	16.1	0.42	31.3	0.64	47.4
TFNA	n.d.	n.d.	0.03	2.4	0.03	2.4
TFNG	n.d.	n.d.	0.38	28.2	0.38	28.2
TFNA-AM	n.d.	n.d.	0.02	1.1	0.02	1.1
TFNG-AM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Others	n.d.	n.d.	0.15	10.8	0.16	12.0
Total	0.24	17.3	0.99	73.7	1.22	91.0

n.d. = Not detected

Others: consists of multiple peaks, each of which accounted for $\leq 2.1\%$ of the TRR

Table 8 Identification/Characterization of TRRs in mature bell pepper fruits harvested 7 DAT and 14 DAT

	Surface wash		Extracted		Total	
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
7 DAT						
Flonicamid	0.06	33.6	0.10	57.8	0.16	91.4
TFNA	n.d.	n.d.	0.001	0.9	0.001	0.9
TFNG	n.d.	n.d.	0.005	2.8	0.005	2.8
TFNA-AM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
TFNG-AM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Others	n.d.	n.d.	0.005	2.9	0.005	2.9
Total	0.06	33.6	0.11	64.3	0.17	97.9
14 DAT						
Flonicamid	0.02	17.8	0.06	58.8	0.08	76.6
TFNA	n.d.	n.d.	0.004	3.7	0.004	3.7
TFNG	n.d.	n.d.	0.008	7.8	0.008	7.8
TFNA-AM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
TFNG-AM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Others	n.d.	n.d.	0.008	7.1	0.008	7.5

	Surface wash		Extracted	Extracted		Total	
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	
Total	0.02	18.2	0.08	77.4	0.10	95.6	

n.d. = Not detected

Others: consists of multiple peaks, each of which accounted for ≤2.0% of the TRR

No information was provided on the duration of storage of the fruit and leaf samples.

While the %TRR in the surface wash decreased with increasing DAT in the leaves and fruit (36% to 17% of the TRR in leaves and 34% to 18% of the TRR in fruits). The extracted TRRs and those in the PES increased with increasing DAT: 61–78% of the TRR and 3–4% of the TRR in leaves, respectively, and 66–81% of the TRR and 0.8–1% of the TRR in fruits, respectively. This trend demonstrates the translocation of the radioactivity from the surface into the leaves and fruits (Table 6).

Analysis of each of the fractions indicated that flonicamid and TFNG were the predominant residues in leaves and fruits at both harvest intervals. In leaves, the parent accounted for 47–74% of the TRR (0.6–1.7 mg/kg) while TFNG accounted for 12–28% of the TRR (0.3–0.4 mg/kg). Similarly in fruits, flonicamid accounted 77–91% of the TRR (0.08–0.16 mg/kg) while TFNG accounted for 3–8% of the TRR (0.005–0.008 mg/kg). All identified metabolites (TFNA, TFNA-AM and TFNG-AM) were either not detected or were \leq 12% of the TRR.

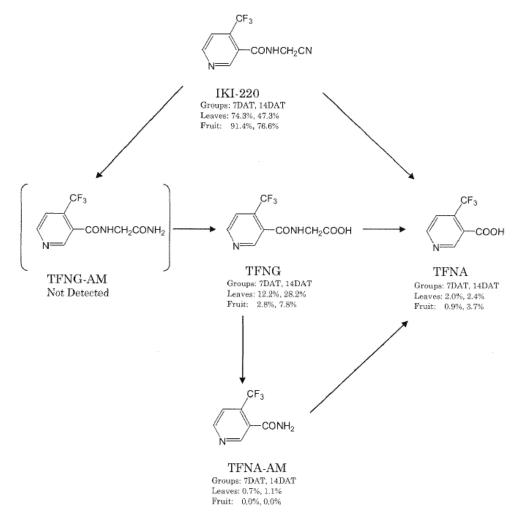


Figure 2 Proposed metabolic pathway in peppers

Potato

Flonicamid, radio-labelled at the 3 position of the pyridine ring (specific activity: 9.08 MBq/mg) and formulated as a 50% wettable powder formulation was applied to potted <u>potato</u> plants (variety Kennebec) maintained outdoors. The plants were treated at either the lower rate of 100 g ai/ha or the higher rate of 500 g ai/ha. Both treatments were repeated after a two-week interval and potato tubers and foliage were harvested 14 days following the second application.

One subsample of potato tubers from each group was washed with ACN:water (80:20, v/v) prior to homogenisation to determine the radioactivity in the surface wash whilst another subsample of potato tubers from each group was homogenised without rinsing the tubers. Potato foliage was processed to isolate the metabolites and to further elucidate the metabolic pathway of flonicamid. Total radioactive residue in each tissue was determined by combusting the samples using an oxidizer. Unextracted residues in PES were also determined by combustion. The radioactivity in the samples was measured by Liquid Scintillation Counting (LSC).

Overall total radioactive residues (TRRs) in unwashed tubers at the low rate and the high rate were 0.11 mg eq/kg and 0.20 mg eq/kg, respectively, whilst those in washed tubers were slightly higher; 0.14 mg eq/kg and 0.53 mg eq/kg. TRRs in mature foliage were higher than those in tubers; 1.53 mg eq/kg at the low rate and 7.67 mg eq/kg at the high rate (Table 9).

Table 9 TRRs in potato tubers and foliag	Table 9	TRRs in	ı potato	tubers	and	foliage
--	---------	---------	----------	--------	-----	---------

Crop part	TRRs (mg eq/kg)			
	Low rate (200 g ai/ha)	High rate (1000 g ai/ha)		
Unwashed potato tubers	0.11	0.20		
Washed potato tubers	0.14	0.53		
Foliage	1.53	7.67		

Tuber samples were homogenised and consecutively extracted with ACN, ACN:water (80:20, v/v) and twice with ACN:water (50:50, v/v), vortexed, sonicated and centrifuged. The extracts were combined. Foliage samples were homogenised with dry ice and extracted three times with ACN:water:acetic acid (60:40:0.1, v/v/v) and then filtered. The extracts were combined and concentrated.

Metabolites were first identified with HPLC by comparison with reference compounds isolated from repeated HPLC separations of foliage extract of the high treatment group. Most of the isolated metabolites were further purified by normal-phase chromatography. Their identification was supported by other methods such as LC-MS, HPLC on a C8 column and acid hydrolysis (with 3 N HCl).

Table 10 Identification/Characterization of TRRs in unwashed and washed potato tubers following treatment at the low rate and high rate

Fraction	Unwashed Potato Tubers			Washed Potato Tubers				
	Low rate		High rate		Low rate High rate			
	(200 g ai/ha	1)	(1000 g ai/h	na)	(200 g ai/ha)	(1000 g ai/h	a)
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
Surface wash	_	_	_	_	0.0004	0.3	0.002	0.4
Extracted	0.098	92.6	0.18	90.9	0.14	94.6	0.49	92.6
Flonicamid	0.006	5.6	0.04	19.3	0.02	11.5	0.04	7.5
TFNG	0.042	39.3	0.05	25.1	0.05	35.9	0.18	33.6
TFNA	0.036	34.4	0.07	33.7	0.05	31.8	0.21	40.0
TFNA conjugate	0.006	6.0	0.01	4.8	0.01	5.2	0.02	4.8
TFNG-AM	0.001	1.0	0.002	1.2	0.001	1.0	0.01	1.1
TFNA-AM	0.001	1.0	0.003	1.4	0.002	1.2	0.01	1.1
PM-3a	0.0	0.0	0.004	1.8	0.006	3.9	n.d.	n.d.
Others	0.006	5.3	0.007	3.7	0.006	4.2	0.02	4.5
Unextracted	0.008	7.4	0.018	9.1	0.007	5.1	0.04	7.0

	Fraction	Unwashed Potato Tubers				Washed Pota	ato Tubers		
		Low rate		High rate		Low rate		High rate	
		(200 g ai/ha)		(1000 g ai/ha)		(200 g ai/ha)		(1000 g ai/ha)	
		mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
Г	Total	0.11	100	0.20	100	0.14	100	0.53	100.0

PM-3a: Conjugate of TFNA-AM

Table 11 Identification/Characterization of TRRs in foliage following treatment at the low rate and high rate

Fraction	Potato Foliage							
	Low rate		High rate					
	(200 g ai/ha)		(1000 g ai/ha)					
	mg eq/kg	%TRR	mg eq/kg	%TRR				
Extracted	1.36	88.7	6.91	90.1				
Flonicamid	0.15	9.8	1.87	24.5				
TFNG	0.56	36.4	2.13	27.8				
TFNA	0.26	17.3	0.91	11.9				
TFNA conjugate	0.08	5.2	0.30	3.9				
TFNG-AM	0.06	4.0	0.22	2.8				
TFNA-AM	0.07	4.8	0.60	7.9				
PM-1a	0.05	3.2	0.19	2.4				
PM-1b	0.06	3.6	0.21	2.7				
Others	0.07	4.4	0.47	6.2				
Unextracted	0.17	11.3	0.76	9.9				
Total	1.53	100	7.67	100				

PM-1a/1b: Acid hydrolyzable conjugates of TFNA

Tuber samples (from the low treatment rate) were analysed 10 days and 397 days after being placed in frozen storage. Extracted and bound residues at the 397-day interval were found to be comparable to those at the 10-day interval. The profiles were also similar between the initial and final analysis.

Considering the applications were made to the foliage of the potato plants, the presence of measurable TRRs in the tubers is evidence of translocation of the radioactivity from the foliage to the tubers. Furthermore, while the TRRs in tubers and foliage increased with increased application rate, the distribution of TRRs was relatively the same irrespective of the treatment rate.

The identity of the radioactive residues in the surface wash of tubers was not further investigated as the TRRs were too low. Analysis of each of the extracted fractions of unwashed and washed potato tubers and foliage from the low and high rate demonstrated that the predominant metabolites, TFNA and TFNG, accounted for a significant portion of the TRRs. Moreover, TFNA accounted for 32–40% of the TRR (0.04–0.21 mg eq/kg) in the unwashed and washed tubers and 12–17% TRR (0.26–0.91 mg eq/kg) in the foliage while TFNG accounted for 25–39% of the TRR in tubers (0.04–0.18 mg eq/kg) and 28–36% of the TRR in foliage (0.6–2.1 mg eq/kg). The parent, flonicamid, was also a major residue in tubers (6–12% of the TRR; 0.01–0.04 mg eq/kg) and foliage (10–25% of the TRR; 0.2–1.9 mg eq/kg), but accounted for less than the major metabolites. All other identified metabolites (TFNA conjugate, TFNG-AM< TFNA-AM, PM-1a, PM-1b and PM-3a) accounted for \leq 6% of the TRR (0.02 mg eq/kg) in tubers and \leq 8% of the TRR (0.6 mg eq/kg) in foliage. Overall, the general metabolic profile in foliage was similar to that in tubers.

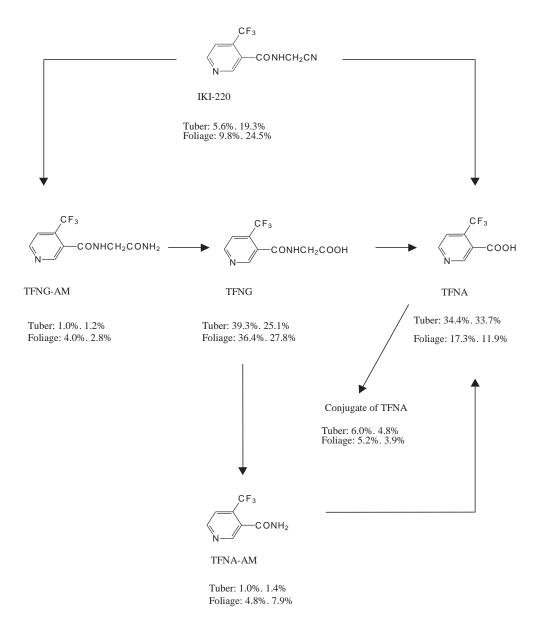


Figure 3 Proposed metabolic pathway in potato

Wheat

Study 1

Spring wheat plants (variety: Kulm) were grown in four separate plots maintained outdoor. Wheat plants grown in Plot I were designated as the control plants. Plants from Plots II and III were treated with flonicamid, radio-labelled at the 3 position of the pyridine ring (specific activity: 9.08 MBq/mg), formulated as a wettable powder, at a single application rate of 100 g ai/ha. Plants in Plot IV were treated twice at 100 g ai/ha/application with a re-treatment interval of 7 days. Forage was harvested 14 days after treatment, from Plot II. Hay was harvested from Plot III, 42 days after treatment. At final harvest, approximately 95 DAT, mature plants from Plot IV were separated into straw, chaff and grain.

The forage, hay, grain, straw and chaff were analysed to determine the total radioactive residue (TRR) levels. The radioactivity was measured with by LSC. Homogenised samples of forage, hay, straw, chaff and grain as well as the PES were combusted in an oxidizer.

Overall residues were lower in the wheat grain sample than the straw or chaff. The TRR levels in the chaff were higher compared to straw potentially because of tissue size differences (higher surface area to weight ratio) assuming a uniform application.

				, chaff and	

Plant part	Application rate (g ai/ha)	DAT (days)	TRRs (mg eq/kg)
Forage (Plot II)	100	14	0.648
Hay (Plot III)	100	42	0.951
Straw (Plot IV)			5.571
Chaff (Plot IV)	200	95	6.553
Grain (Plot IV)			2.559

Only samples of forage and hay were analysed to elucidate the nature of the flonicamid residues. These were homogenised in a blender with dry ice, extracted with ACN: water: acetic acid (60:40:0.1, v/v/v), blended with a tissue homogeniser, and then vacuum filtered. The process was repeated twice. The extracts were combined and concentrated by rotary evaporation under vacuum to a small volume. The concentrate was transferred to a vial with appropriate solvent and analysed by HPLC. The radioactivity in the eluate was detected using a radioactivity flow detector.

Table 13 Identification/Characterization of TRRs in wheat forage and hay

Fraction	Forage		Нау		
	mg eq/kg	%TRR	mg eq/kg	%TRR	
Extracted	0.58	96.0	0.89	96.0	
Flonicamid	0.26	42.8	0.20	21.7	
TFNA	0.04	6.5	0.04	3.8	
TFNG	0.20	32.7	0.49	52.6	
TFNA-AM	0.002	0.3	0.01	1.1	
TFNG-AM	0.07	11.0	0.12	13.1	
TFNA conjugate	0.004	0.7	n.d.	n.d.	
Unknowns	< 0.012	<1.9	0.02	1.6	
Polar	n.d.	n.d.	0.02	2.0	
Unextracted	0.02	4.0	0.04	4.0	
Total	0.60	100.0	0.93	100.0	

The extracts were re-analysed by HPLC after storage in the freezer for approximately 2–3 months. Re-analysis confirmed the stability of metabolites in the matrices during storage.

The analysis of forage and hay samples showed that the metabolite profiles were qualitatively similar. Identified residues included flonicamid, TFNA, TFNG, TFNA-AM and TFNG-AM. Differences were observed in the distribution of minor metabolites only. Minor unknown components were observed at less than 0.02 mg eq/kg, \leq 2% of the TRR. A trace amount (0.1% of the TRR) of the N-oxide of flonicamid was tentatively identified in forage.

The nature and distribution of metabolites were similar in both wheat forage and hay. The parent compound, flonicamid, accounted for 42.8 and 21.7% of the TRR in forage and hay, respectively. TFNG was the predominant metabolite, accounting for 32.7 and 52.6% of the TRR in forage and hay, respectively. TFNG-AM was present at 11.0-13.1% of the TRR. Metabolites TFNA and TFNA-AM were present at < 7% of the TRR. The unextracted 14 C residues in forage and hay represented 0.02-0.04 mg eq/kg (4% of the TRR). Since the samples contained less than 10% of the TRR, the PES were not characterised.

Study 2

Spring wheat plants (variety: Kulm), grown outdoors in metal containers were treated with flonicamid radio-labelled at the 3 position of the pyridine ring (specific activity: 9.08 MBq/mg), formulated as a

wettable granule (WG) and applied on wheat plants as an over-the-top foliar spray at Zadok's stage 86 (soft dough stage), 76 days after sowing. A single application was made at a rate equivalent to 100 g ai/ha. An additional set of wheat plants was treated at a higher rate of 500 g ai/ha. Plants were protected from rain for one week after the spray application. The wheat plants were harvested at maturity, i.e. 21 days after application and separated to straw (leaves and stem), chaff and grain (with hulls attached).

The radioactivity was measured by LSC. Homogenised samples of straw, chaff and grain as well as the PES were combusted in an oxidizer.

The TRRs in wheat straw, chaff and grain samples were 2.03 mg eq/kg, 3.60 mg eq/kg and 0.28 mg eq/kg in the 100 g ai/ha treatment plot (low rate), and 9.28 mg eq/kg, 18.88 mg eq/kg and 1.47 mg eq/kg in the 500 g ai/ha treatment plot (high rate), respectively (Table 14).

Crop part	TRRs (mg eq/kg)					
	Low rate (100 g ai/ha)	High rate (500 g ai/ha)				
Straw	2.03	9.28				
Chaff	3.60	18.88				
Grain	0.28	1.47				

Samples of homogenised straw, grain and chaff were mixed with ACN: water: acetic acid $(60:40:0.1,\ v/v/v)$, blended with a tissue homogeniser, and then vacuum filtered. This process was repeated twice, following which, the extracts were concentrated and analysed using various HPLC and TLC techniques. The identification of metabolites was supported by other methods such as LC-MS, HPLC on different columns and TLC. The PES were allowed to dry, then combusted to quantitate the unextracted residues. The unextracted residues in the PES obtained by extraction of a second set of subsamples of the normal treatment rate Plot were characterised by acid $(1\ N\ HCl)$ and base hydrolysis $(1\ N\ NaOH)$. For straw and chaff the HCl digestion was followed by treatment with $72\%\ H_2SO_4$ to digest the carbohydrate (cellulose) fraction from the matrix leaving behind lignin fraction.

Table 15 Identification/Characterization of TRRs in wheat straw, chaff and grain

Fraction	Straw				Chaff				Grain			
	Low rate High rate (500 g ai/ha)					High ra			Low rate (100 g ai/ha)		High rate (500 g ai/ha)	
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
Extracted	1.63	80.1	7.42	79.9	2.73	75.7	15.40	81.6	0.25	89.4	1.38	94.3
Flonicamid	1.02	50.2	4.10	44.2	1.47	40.7	8.85	46.9	0.08	29.9	0.35	23.9
TFNG	0.40	19.6	1.98	21.3	0.60	16.6	3.57	18.9	0.11	39.4	0.65	44.1
TFNA	0.04	2.0	0.36	3.8	0.20	5.7	0.57	3.0	0.02	8.1	0.05	3.8
TFNG-AM	0.09	4.5	0.52	5.6	0.19	5.4	0.77	4.1	0.01	3.1	0.08	5.7
TFNA-AM	0.04	1.8	0.22	2.4	0.09	2.5	0.71	3.8	0.02	6.2	0.14	9.5
N-oxide of TFNA-AM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.008	2.7	0.09	6.1
Unknown (M10)	0.04	2.0	0.09	1.0	0.18	4.9	0.31	1.6	0.0	0.0	0.0	0.0
Others			0.14	1.5			0.61	3.2			0.02	1.5
Unextracted	0.40	19.9	1.86	20.1	0.88	24.3	3.48	18.4	0.03	10.6	0.08	5.7
Total	2.03	100.0	9.28	100.0	3.60	100.0	18.88	100.0	0.28	100.0	1.47	100.0

Homogenized straw, chaff and grain, from the low treatment rate experiment, were extracted and analysed immediately after collection and subsequently stored for 480–505 days in a freezer prior to re-analysis. For all three commodities, extracted and bound residues were found to be comparable to those of the initial extraction. The results indicate a similar metabolite profile for straw and chaff between the first and final analysis; however, for grain a decrease in

the concentration of parent and TFNA with a simultaneous increase in TFNG is observed. This does not have any significant impact on the metabolite profile.

Although the TRRs in wheat straw, chaff and grain increased with increased application rates, the distribution of TRRs was relatively the same irrespective of the treatment rate. Considering the timing of application of the test material and the measurable TRRs in grain, chaff and straw at maturity, there appears to have been translocation of the radioactivity from the site of application to the mature plant parts.

The majority of the radioactivity (76–94% of the TRR) in straw, chaff and grain was extracted with organic solvents. Analysis of the organic fractions indicated that flonicamid and TFNG were the predominant residues at both treatment rates. In straw, chaff and grain, the parent accounted for 44-50% of the TRR (1.0-4.1 mg/kg), 41-47% of the TRR (1.5-8.8 mg/kg) and 24-30% of the TRR (0.08-0.4 mg/kg), respectively. The major metabolite TFNG accounted for approximately 20% of the TRR (0.4-2.0 mg eq/kg), 17-19% of the TRR (0.6-3.6 mg eq/kg) and 39-44% of the TRR (0.11-0.65 mg eq/kg) in straw, chaff and grain, respectively. All identified metabolites (TFNA, TFNG-AM, TFNA-AM and N-oxide of TFNA AM) were either not detected or were $\le 8\%$ of the TRR.

The unextracted residues amounted to approximately 20, 24 and 11% of the TRR in straw, chaff and grain, respectively, at the low rate and to about 20, 18 and 6% TRR at the high rate. Samples from the low rate treatment were further characterized by:

- Hydrolysis with 1 N HCl at 40 °C to release covalently bound residues
- Hydrolysis with 1 N HCl followed by digestion with 72% H2SO4 to determine the reincorporated activity in the carbohydrate (cellulose) and lignin fractions of straw and chaff
- Hydrolysis with 1 N HCl followed by 1 N NaOH.

The radioactivity released following hydrolysis with 1 N HCl accounted for 7% of the TRR (straw), 6% of the TRR (chaff) and 3% TRR (grain) and was identified as either parent and metabolites (straw and chaff) or as metabolites of flonicamid only (grain; TFNG, TFNG-AM and TFNA-AM). Each of the identified metabolites was present at \leq 2% of the TRR. As a result of sequential digestion with HCl and H₂SO4, ¹⁴C incorporation into carbohydrates amounted to 3% of the TRR in straw and 5% of the TRR in chaff. Base digestion with 1 N NaOH released 56, 61 and 59% of the bound radioactivity in straw, chaff and grain, respectively, corresponding to 12, 14 and 5% of the TRR, respectively. Part of this radioactivity may have been due to polar sugars as released by sulphuric acid digestion, with the remainder of ¹⁴C attributed to lignin (straw: 10.9% of the TRR, chaff: 13.6% of the TRR).

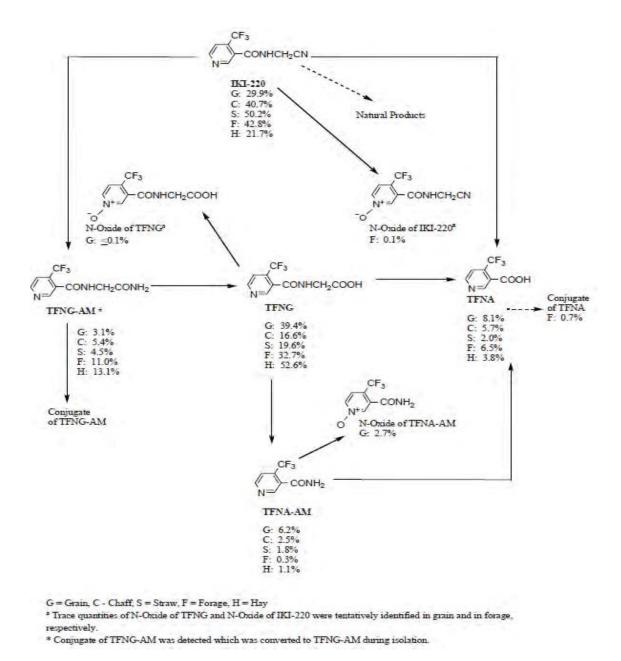


Figure 4 Proposed metabolic pathway in mature wheat

Animal metabolism

The Meeting received information on the fate of 3-pyridine -¹⁴C- labelled flonicamid in lactating goats and laying hens. Metabolism in laboratory animals (rat) was summarized and evaluated by the WHO panel of the 2015 JMPR.

Lactating goat

The metabolism of [14 C]flonicamid was investigated in two lactating goats (*Capra hircus*), weighing 45–47 kg, dosed orally once daily, using a balling gun, immediately after the morning milking, for 5 consecutive days. The animals were dosed with 3-pyridine- 14 C-labelled flonicamid (specific activity: 245 μ C/mg) at a dose level of 15 mg/day equivalent to 10 ppm in the diet. Milk production ranged from 1.5–1.9 L/day. During the treatment period, milk was collected twice daily, after the morning and evening milking, while urine and faeces were collected once daily. At sacrifice (within 5–8 hours

after the last dose) samples of liver, kidney, muscle (loin and hind leg), fat (omental and peri-renal), heart and GI tract were collected.

Radioactivity in liquid samples (milk, urine, stanchion wash and extracts) was measured LSC. Samples were combusted to verify the total radioactive residues (TRR) prior to extraction. Liver, kidney, muscle, fat, faeces, heart samples and post-extraction solids (PES) were combusted in an oxidizer. The extracted samples were dried before combustion.

The major route of elimination of the radioactivity was via the urine which accounted for 49% of the total administered radioactivity (AD), while faeces accounted for 17–21% of the AD and milk accounted for 1% of the AD. Overall, the tissue burden was low, accounting for < 10% of the AD. The overall recovery of administered radioactivity averaged 95%.

The total radioactive residues (TRRs) were highest in liver (1.2 mg eq/kg), followed by kidney (0.70 mg eq/kg), muscle (0.34–0.39 mg eq/kg) and fat (0.05–0.14 mg eq/kg).

Table 16 Balance of radioactivity	in goats following	oral administration of	[14C]flonicamid for 5 days

Sample	Goat 1		Goat 2	
	%AD	mg eq/kg	%AD	mg eq/kg
Milk	1.18	0.078-0.204	0.97	0.081-0.216
Liver	1.67	1.21	1.71	1.22
Kidney	0.17	0.67	0.15	0.66
Loin muscle	3.80	0.38	3.97	0.39
Hind muscle	3.35	0.34	3.48	0.34
Perirenal fat	0.09	0.14	0.05	0.07
Omental fat	0.07	0.11	0.03	0.05
Heart	0.08	0.22	0.08	0.22
Blood	0.77	0.18	0.88	0.21
Feces	17.06	_	20.59	_
Urine	48.79	_	48.65	_
Cage wash	1.23	_	0.80	_
Subtotal	78.26	_	81.36	_
GI tract	16.62	_	14.09	_
Total Recovery	94.88	_	95.45	_

For collection Days 1–4, evening and morning milk were combined while Day 5 samples consisted of evening milk only. As TRRs were consistently higher in evening milk compared with the morning milk, in the absence of the morning milk on Day 5, ¹⁴C-residues were higher than on other collection days.

Table 17 TRRs in goat milk following oral administration of [14C]flonicamid for 5 days

Collection Day	Goat 1		Goat 2			
	mg eq/kg	% AD	mg eq/kg	% AD		
Day 1	0.086	0.26	0.081	0.17		
Day 2	0.078	0.26	0.090	0.21		
Day 3	0.087	0.25	0.090	0.21		
Day 4	0.095	0.27	0.096	0.22		
Day 5	0.204	0.19	0.216	0.16		

Extraction of milk samples with ethanol and ethanol:water (80:20, v/v) and partitioning with hexane released 97–98% of the TRRs. The PES was combusted. The procedure used for the extraction of organs and tissues was relatively similar to that of milk. However, different solvents were used. Kidney and liver samples were extracted with acetonitrile and acetonitrile:water (50:50, v/v) containing 1% acetic acid while muscle samples (loin and rear leg) were extracted with acetonitrile only. The fat samples (omental and peri-renal) were first extracted with hexane and then with acetonitrile. Use of these solvents resulted in extraction efficiencies ranging from 42–57% of the TRRs for organs, 43–52% of the TRRs for muscle and 81–86% of the TRRs for fat.

The unextracted 14 C residues in liver, kidney, fat and muscle tissues were sequentially hydrolysed with 1 N HCl and 6 N HCl. The PES from these organs also underwent protease digestion.

Quantification and identification of parent and metabolites were carried out by HPLC (using different solid phases). Purified metabolite isolates were analysed by mass spectrometry.

Table 18 Characterization and identification of radioactivity in goat milk, kidney and liver

Fraction	Milk				Liver				Kidney			
	Goat 1		Goat 2		Goat 1	Goat 1 Goat 2			Goat 1	Goat 1 Goat 2		
	mg	%TRR	mg	%TRR	mg	%TRR	mg	%TRR	mg	%TRR	mg	%TRR
	eq/kg		eq/kg		eq/kg		eq/kg		eq/kg		eq/kg	
Extracted	0.084	97.4	0.09	97.7	0.57	47.3	0.513	42.1	0.362	53.9	0.377	57.3
Flonicamid	n.d.	n.d.	0.001	1.2	0.008	0.6	0.006	0.5	0.009	1.3	0.010	1.6
TFNA	n.d.	n.d.	n.d.	n.d.	0.009	0.4	0.008	0.7	0.009	1.4	0.037	5.6
TFNA unstable conjugate	n.d.	n.d.	0.004	4.6	0.082	6.8	0.051	4.2	0.080	11.9	0.010	1.6
TFNA-AM	0.084	97.4	0.082	91.9	0.355	29.4	0.352	28.9	0.207	30.8	0.270	41.1
6-OH TFNA-AM	n.d.	n.d.	n.d.	n.d.	0.069	5.7	0.078	6.4	0.041	3.2	0.041	6.3
Others	n.d.	n.d.	n.d.	n.d.	0.049	4.1	0.018	1.5	0.016	2.3	0.007	1.1
Unextracted residues	0.002	2.6	0.002	2.3	0.635	52.7	0.705	57.9	0.309	46.1	0.281	42.7
Total	0.087	100.0	0.090	100.0	1.206	100.0	1.218	100.0	0.671	100.0	0.658	100.0

n.d.= Not detected

Table 19 Characterization and identification of radioactivity in goat fat

Fraction	Omental fa	.t			Perirenal fa	ıt		
	Goat 1		Goat 2		Goat 1		Goat 2	
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
Extracted	0.094	85.2	0.038	80.7	0.123	85.9	0.058	81.1
Flonicamid	0.006	5.5	0.001	2.1	0.004	3.2	0.002	2.6
TFNA	0.005	4.6	0.001	2.6	0.009	6.5	0.002	2.2
TFNA unstable conjugate	n.d.	n.d.	0.000	0.9	0.002	1.5	0.000	1.0
TFNA-AM	0.080	72.9	0.035	73.7	0.105	73.5	0.0532	74.1
6-OH TFNA-AM	0.002	1.4	n.d.	n.d.	n.d.	n.d.	0.000	0.4
Others	0.001	0.9	0.001	1.4	0.002	1.2	0.001	0.8
Unextracted residues	0.016	14.8	0.009	19.3	0.020	14.1	0.014	18.9
Total	0.110	100.0	0.047	100.0	0.143	100.0	0.072	100.0

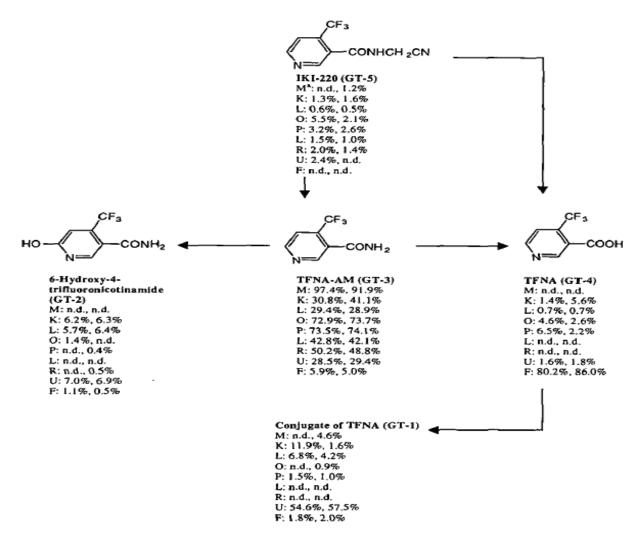
n.d.= Not detected

Table 20 Characterization and identification of radioactivity in goat muscle

Fraction	Loin musc	le			Hind leg muscle				
	Goat 1		Goat 2		Goat 1	Goat 1			
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	
Extracted	0.170	44.3	0.167	43.1	0.177	52.1	0.172	50.8	
Flonicamid	0.006	1.5	0.004	1.0	0.007	2.0	0.005	1.4	
TFNA	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
TFNA unstable conjugate	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
TFNA-AM	0.165	42.8	0.163	42.1	0.170	50.2	0.166	48.8	
6-OH TFNA-AM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.002	n.d.	
Others	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
Unextracted residues	0.214	55.7	0.220	56.9	0.162	47.9	0.167	49.2	
Total	0.385	100.0	0.387	100.0	0.340	100.0	0.339	100.0	

n.d.= Not detected

Table 21 Distribution of flonicamid and metabolites released from unextracted residues of selected goat samples


	1 N HCl d	igestion		6 N HCl d	igestion		Protease d	ligestion		
	mg/kg	% NER	% TRR	mg/kg	% NER	% TRR	mg/kg	% NER	% TRR	
Liver										
Flonicamid	_	_	_	0.006	1.0	0.5	_	_	_	
TFNA	_	_	_	0.033	5.2	2.8	_	_	_	
TFNA-AM	0.025	4.0	2.1	0.250	39.5	20.8	0.340	53.5	28.2	
6-OH TFNA-	0.082	13.0	6.5	0.051	8.1	4.2	_	_	_	
AM										
Kidney										
Flonicamid	n.a.	n.a.	n.a.	_	_	_	n.a.	n.a.	n.a.	
TFNA	n.a.	n.a.	n.a.	0.024	7.6	3.5	n.a.	n.a.	n.a.	
TFNA-AM	n.a.	n.a.	n.a.	0.169	54.6	25.2	n.a.	n.a.	n.a.	
6-OH TFNA-	n.a.	n.a.	n.a.	0.13	4.2	1.9	n.a.	n.a.	n.a.	
AM										
Loin muscle										
Flonicamid	n.a.	n.a.	n.a.	_	_	_	n.a.	n.a.	n.a.	
TFNA	n.a.	n.a.	n.a.	_	_	_	n.a.	n.a.	n.a.	
TFNA-AM	n.a.	n.a.	n.a.	0.120	56.1	31.2	n.a.	n.a.	n.a.	
6-OH TFNA-	n.a.	n.a.	n.a.	-	_	-	n.a.	n.a.	n.a.	
AM										

NER = Unextracted residues

n.a.= Not analysed

All samples of liver, kidney, muscle, fat and Day 3 milk were extracted and analysed within one month of collection, and re-extracted and analysed after 9 months of storage. A comparison of distribution of the TRRs in the initial and final profiles demonstrated minimal changes, indicating stability of the radioactive components under the storage conditions.

Flonicamid was rapidly metabolised in lactating goats, accounting for 0.5-5.5% of the TRRs in tissues and organs. TFNA-AM was the major metabolite in organs (29% of the TRRs in liver, 31-41% of the TRRs in kidney), tissues (74% of the TRRs in fat, 42-50% of the TRRs in muscle) and milk (97% of the TRRs). The metabolite 6-hydroxy TFNA-AM accounted for approximately 3-6% of the TRRs in liver and kidney and less than 1.4% of TRRs in tissue samples and milk.

 ^{2}M = milk, day 3, K = kidney, L = liver, O = omental fat, P = perirenal fat, L = loin muscle, R = rear leg muscle, U = urine, day 2 and F = feces, day 3. The values given are % TRR distribution for the samples from goat replicates 1 and 2, respectively.

Figure 5 Proposed metabolic pathway in lactating goats

Laying Hen

Leghorn <u>laying hens</u> (*Gallus domesticus*), weighing 1.37–1.87 kg, were dosed orally once daily for 5 consecutive days with 3-pyridine-¹⁴C-labelled flonicamid (specific activity: 1.67 MBq/mg), at 1.3 mg/day, equivalent to 10 mg/kg feed. Eggs were collected twice daily, in the morning before and in the afternoon after administration, while excreta were collected once daily. The average egg production was 95%. The animals were sacrificed approximately 6 h after the last dose and the liver, kidney, thigh muscle, breast muscle, skin and fat were collected and pooled per dose group. Radioactivity in sample solutions was determined by LSC. Solid samples of liver, kidney, muscle, fat, skin, egg and excreta were first combusted in an oxidizer to verify the total radioactive residues (TRR) prior to extraction. Both the dried extracts of tissues and the PES were combusted.

Approximately 91.1% of the administered dose (AD) including 5.7% from the gastrointestinal tract and its contents was recovered. Most of the AD (72.3%) was excreta-related. Total radioactive residues (TRR) in egg white and egg yolk accounted for about 2.4% of AD (1.8% AD in egg white plus 0.6% AD in yolk). The TRR levels in both egg white and egg yolk reached a plateau by Day 3 of dosing. The tissue burden was very low (< 6% of the AD) with highest concentrations found in skin (2.3% of the AD), followed by muscle (evenly

distributed between breast and thigh muscle; each approximately 1.1% of the AD), liver (0.8% of the AD), fat (0.3% of the AD) and kidney (0.2% of the AD). Blood contained 4.7% of the AD.

Table 22 Balance of radioactivity in hens following oral administration of [14C]flonicamid for 5 days

Sample	%AD	mg eq/kg
Egg white	1.84	0.04–0.89
Egg yolk	0.60	0.01-0.68
Liver	0.79	1.18
Kidney	0.22	1.42
Breast muscle	1.13	0.99
Thigh muscle	1.08	0.95
Skin	2.31	0.70
Fat	0.33	0.15
Blood	4.72	1.26
Excreta	67.18	5.20-9.51 a
Cage wash	5.16	1.55
Gastrointestinal tract	5.72	_
Total Recovery	91.08	

^a Excreta collected just before sacrifice

Table 23 TRRs in eggs following oral administration of [14C]flonicamid for 5 days

Day	Egg White		Egg Yolk	Egg Yolk		
	%TAR	mg/kg eq	%TAR	mg/kg eq		
1	0.02	0.04	0.00	0.01		
2	0.34	0.56	0.09	0.31		
3	0.46	0.74	0.15	0.50		
4	0.53	0.87	0.18	0.63		
Sacrifice	0.49	0.89	0.18	0.68		
Total	1.84		0.60			

Extraction of egg yolk and white (Day 3), liver, kidney, breast and thigh muscle with acetonitrile, and acetonitrile:water (80:20, v/v) containing 1% acetic acid released 81–99% of the TRRs. The radioactivity in each extract and in the PES, after combustion, was quantitated. Skin and fat were extracted in the same manner except that an extraction with hexane was done initially, which resulted in an extraction efficiency of 99% of the TRRs.

Each of the PES of liver and kidney was sequentially hydrolysed with 1 N HCl and 6 N HCl. Aliquots of the PES from liver and kidney were additionally hydrolysed using protease. In a separate experiment, digestion of liver PES was carried out with enzyme.

Quantification and identification of parent and metabolites were carried out by HPLC using different columns. For samples containing low levels of radioactivity, fractions of the effluent were collected and analysed by LSC. Analytical methods (HPLC) were validated with authentic standards and shown to achieve the necessary resolution and sensitivity. HPLC column performance and chromatographic resolution were validated with authentic labelled and non-labelled standards.

Table 24 Characterization and identification of radioactivity in eggs, liver and kidney

Fraction	Day 3 Egg yolk		Day 3 Egg white		Liver		Kidney	
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
Extracted	0.493	99.3	0.739	99.9	1.117	94.6	1.149	81.2
Flonicamid	0.019	3.8	0.018	2.5	0.004	0.3	0.005	0.4
TFNA	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.020	1.4
TFNA-AM	0.047	94.7	0.710	96.0	1.100	92.9	1.081	76.4
OH TFNA-AM	n.d.	n.d.	n.d.	n.d.	0.001	0.1	0.034	2.4
TFNG-AM	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.002	0.1

Fraction	Day 3 Egg y	Day 3 Egg yolk		white	Liver	Liver Kidney		
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
Unknown	n.d.	n.d.	0.002	0.3	0.005	0.4	0.001	0.1
Others	0.004	0.8	0.009	1.2	0.011	0.9	0.006	0.4
Unextracted	0.004	0.7	0.0005	0.1	0.063	5.4	0.266	18.8
residues								
Total	0.497	100.0	0.740	100.0	1.182	100.0	1.42	100.0

Table 25 Characterization and identification of radioactivity in muscle, skin and fat

Fraction	Breast musc	cle	Thigh mus	cle	Skin		Fat	
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR
Extracted	0.988	99.4	0.939	99.1	0.694	98.9	0.147	98.9
Flonicamid	0.006	0.6	0.004	0.4	0.003	0.4	0.001	0.7
TFNA	n.d.	n.d.	0.001	0.1	n.d.	n.d.	n.d.	n.d.
TFNA-AM	0.961	96.8	0.918	96.8	0.677	96.4	0.141	94.7
OH TFNA-AM	0.003	0.3	0.012	1.3	0.002	0.3	0.0007	0.5
TFNG-AM	n.d.	n.d.	0.001	0.1	0.0004	0.1	0.0001	0.1
Unknown	0.011	1.1	0.0003	0.0	0.002	0.3	n.d.	n.d.
Others	0.006	0.6	0.003	0.3	0.009	1.3	0.004	3.0
Unextracted residues	0.006	0.6	0.009	0.9	0.008	1.1	0.002	1.1
Total	0.99	100.0	0.95	100.0	0.70	100.0	0.15	100.0

Table 26 Distribution of metabolites released from unextracted residues of liver and kidney

	1 N HCl d	igestion		6 N HCl d	igestion		Protease d	igestion	
	mg/kg	% NER	% TRR	mg/kg	% NER	% TRR	mg/kg	% NER	% TRR
Liver (NER = 0.06	3 mg/kg)								
Flonicamid	0.036	56.5	3.0	0.028	43.5	2.3	0.063	100	5.4
TFNA	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	_	_	
TFNA-AM	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.020	_	1.7
OH TFNA-AM	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	_	_	_
Unknown	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.043	_	3.6
Kidney (NER $= 0$.	267 mg/kg)								
Flonicamid	0.090	33.9	6.4	0.176	66.1	12.4	0.257	96.6	_
TFNA	_	_	_	0.021	7.9	1.5	_	_	_
TFNA-AM	0.022	8.3	1.6	0.143	53.6	10.1	0.216	_	15.3
OH TFNA-AM	0.068	25.6	4.8	0.012	4.6	0.9	_	_	_
Unknown	_	_	_	_	_	_	0.041	_	2.9

NER = Unextracted residues

n.a.= Not analysed

All samples of liver, kidney, muscle, fat and Day 3 egg yolks and egg whites were extracted and analysed approximately 9 months after collection. A comparison of distribution of the TRRs in the initial and final profiles demonstrated minimal changes, indicating stability of the radioactive components under the storage conditions.

Flonicamid was rapidly metabolised and excreted with only a very small percentage of the administered dose found in eggs, tissues and organs. TFNA-AM was the predominant metabolite in egg whites and egg yolks (\leq 96.0% of the TRR), liver (92.9% of the TRR), kidney (76.4% of the TRR) and tissues (96.8% of the TRR in both breast muscle and thigh muscle, 96.4% of the TRR in skin and 94.7% of the TRR in fat).

Other metabolites identified in organs and tissues were OH-TFNA-AM and TFNG-AM; however, neither of these accounted for greater than 4.8% of TRR. One metabolite found in breast muscle and accounting for 1.1% of the TRR remained unidentified (named HN-1).

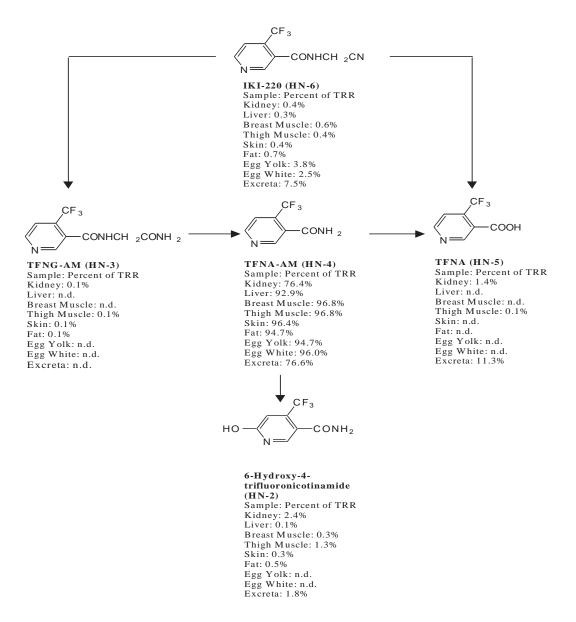


Figure 6 Proposed metabolic pathway in laying hens

Environmental fate in soil

The FAO Manual (FAO, 2009) explained the data requirements for studies of environmental fate. The focus should be on those aspects that are most relevant to MRL setting. For flonicamid, supervised residue trials data were received for foliar spray on permanent crops and on annual crops. Therefore, according to the FAO manual, only studies on aerobic degradation, photolysis and rotational crops (confined, field) were evaluated. For information on hydrolysis and photolysis see also Physical and Chemical Properties.

Aerobic degradation

The route of degradation of [14C]flonicamid (specific activity 8.91 MBq/mg) in soil under aerobic conditions was investigated in a biologically active loamy sand soil collected from Madison, Ohio, USA. A subsample was transferred to a growing pot and stored in a greenhouse. Subsamples of the sieved moist soil were weighed into separate plastic bottles and treated after 43 days of equilibration.

The dosing solution was prepared in water and each subsample was treated to produce a soil concentration of $0.1 \,\mu\text{g/g}$ ($0.1 \,\text{ppm}$). The soil sample was connected to a series of traps to retain any volatiles. Duplicate samples of the treated soil were extracted after treatment on Day 0 and after 0.5, 1, 2, 3, 7, 14 and 30 days of incubation.

The average recovery of applied radioactivity (AR) over the 30-day course of the study was 86.3%. The recovery of radiocarbon was low in the definitive experiment for sampling times days 3, 7, 14 and 30 days due to very rapid extensive metabolism and mineralization which formed $^{14}\text{CO}_2$.

A second set of soil samples (mass balance experiment) was dosed and sampled at Days 3, 7, 14 and 30 to correct for mass balance and volatiles. The average recovery of applied radioactivity for the mass balance experiment was 93.3%. Extracted residues decreased from 101.4% AR on Day 0 to 13.7% AR after 30 days incubation. Unextracted soil residues increased steadily from 0.7% on Day 0 to 35.2% on Day 30. Evolution of ¹⁴CO₂ increased throughout the study, reaching a maximum of 47.0% AR after thirty days in this experiment.

Table 27 Distribution of radioactivity in loamy sand soil treated with [14C]flonicamid and incubated at 20 °C and 45% WHC_{max} (values are the average of duplicate analyses)

Sampling	Extracted	Unextracted	CO2	Total recovery
	[% AR]			
Day 0	101.4	0.7	NA	102.1
Day 0.5	94.8	1.5	NA	96.3
Day 1	99.7	4.0	0.2	103.9
Day 2	82.7	8.0	0.3	91.0
Day 3	75.8	12.0	8.1 a	95.9
Day 7	51.9	30.8	26.1 a	108.8
Day 14	20.0	34.9	40.0 a	94.9
Day 30	13.7	35.2	47.0 a	95.9

NA = Not analysed

Flonicamid rapidly declined from 99.3% AR at Day 0 to 2.3% by Day 30. Five metabolites were identified; TFNA, TFNA-OH, TFNG, TFNG-AM and TFNA-AM. TFNA and TFNA-OH were the major metabolites exceeding 10% AR. TFNA peaked at 36.4% AR on Day 3, before declining to 0% by the end of the 30-day interval. Levels of the metabolite TFNA-OH increased steadily, to 20.2% AR through 7 days, then declined to 0.5% AR at Day 30. The metabolite TFNG-AM reached a maximum of 9.6% AR by Day 0.5, but decreased to 0% on Day 7 and 1.8% AR on Day 30. TFNA-AM remained below 7% AR and TFNG below 3% AR over the course of the experiment. TFNA-AM was present in the dose solution at a level of 2.3% AR. Other more polar, minor components were detected on several days, for a combined total of less than 7% AR. The distribution of metabolites in soil treated with [14C]flonicamid is shown in Table 28.

Table 28 Distribution of extracted components from soil treated with [14 C]flonicamid and incubated at 20 $^{\circ}$ C and 45% WHC_{max} (values are the average of duplicate analyses)

Sampling	Flonicamid	TFNA	TFNA-OH	TFNG	TFNG-AM	TFNA-AM	Others a	Total
	[% AR]							
Day 0	99.3	0.0	0.0	0.0	0.0	2.1	0.0	101.4
Day 0.5	66.8	14.9	0.0	0.0	9.6	3.5	0.0	94.8
Day 1	52.1	28.0	5.6	0.8	8.2	5.1	0.0	99.7
Day 2	25.2	33.5	9.7	1.7	5.0	6.2	1.4	82.7
Day 3	13.8	36.4	14.0	0.7	2.3	6.9	1.7	75.8
Day 7	4.6	20.4	20.2	0.0	0.0	5.4	1.3	51.9
Day 14	4.3	1.2	1.9	2.5	2.4	2.1	5.6	20.0
Day 30	2.3	0.0	0.5	1.6	1.8	0.9	6.6	13.7

 $^{^{}a}$ Values corrected with the data of the mass balance experiment. In the definitive study, the $^{14}CO_{2}$ was not trapped efficiently.

Flonicamid degraded rapidly at 20 °C and 45% WHC_{max} in the loamy sand soil with a DT₅₀ of 1 day and a DT₉₀ of 3.4 days ($r^2 = 0.9960$), exhibiting first-order decay kinetics.

Table 29 Degradation of [14C]Flonicamid in soil under aerobic conditions

Soil	DT ₅₀ [days]	DT ₉₀ [days]	r^2
loamy sand (Madison, Ohio, USA)	1.0	3.4	0.9960

An effort was made to extract larger quantities of bound residues from the PES and to determine if flonicamid or metabolites were less extracted with time. After acid hydrolysis with 6 N HCl (at ca. 40 °C overnight), the additional radioactivity extracted from the PES represented 37% of the bound residues. Approximately 46% of the released radioactivity was organosoluble. HPLC analysis of the organic phase showed negligible amounts of parent material. The majority of residues released from soil PES were polar in nature. Based on HPLC/LSC of the acid extraction, it was concluded that the unextracted residues remaining after the initial extractions did not contain significant amounts of flonicamid (or its known metabolites).

The major degradates observed exceeding 10% of AR were TFNA and TFNA-OH. TFNG-AM, TFNG and TFNA-AM were detected as minor degradates and were formed as intermediate products. Rapid hydrolysis of the cyano group and the resulting amide group led to the formation of TFNG. Further cleavage of the glycine moiety led to the formation of TFNA. TFNA was apparently rapidly hydroxylated to TFNA-OH by micro-organisms. Mineralisation of the radioactive residues to CO₂ and binding to the soil matrix were the terminal steps in soil metabolism of flonicamid. At the end of the 30-day period, approximately half of the applied dose was mineralized to ¹⁴CO₂ and incorporated into the soil organic matter, primarily into the fulvic acid fraction.

^a Region of diffuse radioactivity containing multiple minor components.

Figure 7 Aerobic degradation pathway in soil

Rate of aerobic degradation in soil

The rate of degradation of [14 C]flonicamid, radio-labelled at the 3 position of the pyridine ring (specific activity 9.08 MBq/mg), was investigated in three biologically active <u>soils</u> from the U.K. (Bedfordshire; loamy sand and Birmingham; sandy loam) and one from Germany (LUFA Speyer 2.1; sand) under aerobic conditions at 20 ± 2 °C. In addition, the degradation under aerobic conditions at 10 ± 2 °C was studied in the Bedfordshire soil.

The soil concentration of [^{14}C]flonicamid was 0.1 mg/kg (2 µg/20 g dry soil weight). The moisture content of each subsample was adjusted to approximately 50% of its maximum water holding capacity (MWHC). All three soils were connected to a series of traps to retain any volatiles and maintained in dark environmental chambers at 10 \pm 2 °C or 20 \pm 2 °C. Soil samples were taken at 0.33, 0.67, 1, 2, 3, 7, 14 and 30 days after treatment.

In UK soils incubated at 20 °C, the total 14 C recovery (based on the Day 0 dose) averaged 96% (Table 30). Extracted radioactivity decreased from 98% on Day 0 to 3% after 30 days. For the Bedfordshire soil, unextracted radioactivity reached a maximum of 37.7% by Day 30 and evolution of 14 CO₂ reached 56.6% by Day 30. In Birmingham soil, the PES reached 46.2% by Day 3 and decreased slightly to 43.3% at Day 30 and evolution of 14 CO₂ reached 49.3% by Day 30.

In the German soil, the total 14 C recovery (based on the Day 0 dose) averaged 97.2%. Extracted radioactivity decreased from 100.0% on Day 0 to 8.5% at 30 days. The PES reached a maximum of 34.6% by Day 14 and decreased slightly to 29.6% AR by Day 30. Evolution of 14 CO₂ reached 56.2% by Day 30.

In all soils negligible quantities of 14 C (< 1%) were detected in the volatile organic compound traps.

Table 30 Mass balance of radioactivity of [14C]flonicamid incubated at 20 °C in three soils (average of duplicates)

Sampling	Bedford	lshire				Birming	ham				Speyer 2	2.1			
	Extrac-	Unex-	CO_2	VOC	Total	Extrac-	Unex-	CO_2	VOC	Total	Extrac-	Unex-	CO_2	VOC	Total
	ted	tracted				ted	tracted				ted	tracted			
	[% of ap	oplied ra	adioact	ivity]											
Day 0	98.1	1.7	NA	NA	99.8	98.4	2.2	NA	NA	100.6	100.0	0.7	NA	NA	100.7
Day 0.33	96.8	3.4	NA	NA	100.2	88.6	8.4	NA	NA	97.0	96.9	2.5	NA	NA	99.4
Day 0.67	90.8	6.3	NA	NA	97.1	81.0	15.8	NA	NA	96.8	96.1	3.9	NA	NA	99.9
Day 1	84.8	12.3	4.1	n.d.	101.2	69.3	23.3	5.3	0.01	97.8	94.5	3.1	1.7	0.01	99.2
Day 2	61.8	19.8	12.4	0.04	94.0	42.6	37.8	14.8	0.1	95.3	84.9	7.7	4.7	0.03	97.3
Day 3	44.1	29.2	21.7	0.08	95.1	21.7	46.2	26.1	0.2	94.1	76.8	9.4	8.5	0.06	94.8
Day 7	8.2	34.1	46.9	0.20	89.4	7.0	46.0	40.8	0.4	94.2	50.2	16.5	25.6	0.24	92.5
Day 14	4.9	36.4	52.3	0.27	93.9	4.6	42.3	45.4	0.5	92.8	13.4	34.6	47.8	0.43	96.2
Day 30	3.2	37.7	56.6	0.31	97.8	2.8	43.3	49.3	0.5	95.9	8.5	29.6	56.2	0.5	94.8

VOC = Volatile organic compounds trapped in ethylene glycol

NA = not analysed n.d. = Not detected

In Bedfordshire soil incubated at 10 °C, the total 14 C recovery (based on the Day 0 dose) from this soil averaged 97.9%. Extracted radio-label decreased from 99.2% on Day 0 to 6.4% after 30 days. The PES reached a maximum of 39.6% and evolution of 14 CO $_2$ reached 52.4% by Day 30. Negligible quantities of 14 C (< 1%) were detected in the volatile organic compounds traps.

Table 31 Mass Balance of radioactivity of [14C]flonicamid incubated at 10 °C in Bedfordshire soil (average of duplicates)

Sampling	Bedfordshire				
	Extracted	Unextracted	CO ₂	VOC	Total
	[% of applied d	lose]		<u>.</u>	
Day 0	99.2	1.4	NA	NA	100.5
Day 0.33	99.9	2.9	NA	NA	102.8
Day 0.67	95.1	3.9	NA	NA	99.0
Day 1	92.3	4.0	0.7	nd	97.0
Day 2	93.3	5.5	1.9	0.03	100.6
Day 3	82.7	9.4	3.7	0.13	95.8
Day 7	61.9	19.5	12.4	0.15	93.9
Day 14	25.5	32.0	34.8	0.18	92.5
Day 30	6.4	39.6	52.4	0.4	98.8

VOC = Volatile organic compounds trapped in ethylene glycol

NA = Not analysed Nd = Not detected

[\$^4C]Flonicamid incubated in UK soils at 20 °C declined rapidly from 95% on Day 0 to 0.5% of the applied radioactivity (AR) by Day 14 (Bedfordshire soil) or to 1.5% by Day 7 and non-detectable at Day 14 (Birmingham soil). TFNA rose to a maximum of 19.2–30.6% by Day 1, and then dropped to non-detectable levels by Day 7. TFNA-OH rose to a maximum of 12.1–21.3% by Day 2/3 and declined to non-detectable levels by Day 7. TFNG-AM rose to a maximum of 7.8–9.7% by Day 0.33 and declined to less than 1.0% by Day 3 (Bedfordshire soil) or non-detectable levels by Day 7 (Birmingham soil). Minor metabolites TFNA-AM and TFNG were detected at levels \leq 3.7% between Day 0.33 and Day 14. Minor polar components were observed in the HPLC chromatograms at Days 1–14. All polar components were \leq 2.2% AR.

In Speyer 2.1 soil, a similar trend was observed where flonicamid decreased from 96.8% of the AD at Day 0 to less than 1% by Day 14. TFNA rose to a maximum of 12.2% by Day 3 then dropped to less than 0.5% of the AD at Day 14. TFNA-OH rose to a maximum of 17.6% by Day 7 and declined to 1.0% of the AD at Day 14. TFNG-AM rose to a maximum of 10.2% by Day 2 and dropped to less than 1% of the applied dose at Day 14. TFNA-AM rose to a maximum of 7.6% at Day 7 and then declined to less than 0.5% by Day 14. Minor metabolite TFNG was detected at levels below 4% between Day 0.33 and Day 14. Several minor polar components were observed in the HPLC chromatograms at Days 2–14. All polar components were less than 7.1% of the applied dose.

Table 32 Distribution of radioactivity in three soils treated with [14C]flonicamid and incubated at 20 °C (average of duplicates)

Sampli	Loamy	sand ((Bedfo	rdshire	e)		Sandy	loam (Birmiı	ngham))		Sand (Speyer	2.1)			
ng	TFN	TFN	TFN	TFN	TFN	Flon	TFN	TFN	TFN	TFN	TFN	Flon	TFN	TFN	TFN	TFN	TFN	Flon
[day]	G-	A-	G	A-	A	i-	G-	A-	G	A-	A	i-	G-	A-	G	A-	A	i-
	AM	AM		OH		cami	AM	AM		OH		cami	AM	AM		ОН		cami
						d						d						d
	[% of	applied	l radio	activity	/]													
0	n.d.	2.5 a	n.d.	n.d.	n.d.	95.1	n.d.	2.7 a	n.d.	n.d.	ND	95.3	n.d.	2.5 a	n.d.	n.d.	n.d.	96.8
0.33	9.7	2.9	2.8	2.5	12.1	66.6	7.8	2.5	2.0	3.0	11.6	61.6	4.8	2.4	1.7	n.d.	1.3	86.2
0.67	8.4	3.6	2.6	6.5	22.8	46.6	6.6	2.4	2.0	6.4	17.9	44.9	8.0	3.3	2.3	1.0	4.4	76.7
1	5.6	3.5	2.2	12.4	30.6	29.5	4.9	1.8	1.8	9.7	19.2	29.9	9.8	4.1	3.0	2.0	6.6	68.6
2	1.9	1.6	1.8	20.6	21.8	12.4	2.0	0.3	1.5	12.1	12.7	12.1	10.2	5.5	3.5	5.8	11.3	47.2
3	0.8	0.6	1.8	21.3	13.0	4.9	0.9	0.3	1.6	6.2	4.4	5.1	8.1	7.5	3.4	10.6	12.2	32.9
7	n.d.	0.6	2.9	n.d.	n.d.	1.5	n.d.	n.d.	2.1	n.d.	n.d.	1.5	2.2	7.6	3.9	17.6	6.4	6.6
14	n.d.	n.d.	2.9	n.d.	n.d.	0.5	n.d.	n.d.	2.7	n.d.	n.d.	n.d.	0.7	0.3	3.3	1.0	0.2	0.7
30	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

^a TFNA-AM existed as an impurity in the dose test solution at approximately 2.5%

NA = Not analysed

In Bedfordshire soil incubated at 10 °C parent flonicamid decreased from 96.3% AR at Day 0 to 1.7% by Day 14 (Table 33). TFNA rose to a maximum of 24.3% by Day 3, and then dropped to less than 2% by Day 14. TFNA-OH rose to a maximum of 32.7% by Day 7 and declined to 16.1% at Day 14. TFNG-AM rose to a maximum of 8.1% by Day 0.67 and dropped to less than 1% by Day 14. Minor metabolites TFNA-AM and TFNG were detected at levels below 6% between Day 0.33 and Day 14. Minor polar components were observed in the HPLC chromatograms at Days 2–14. All polar components were less than 2.3% of the administered dose.

Table 33 Distribution of radioactivity in Bedfordshire soil treated with $[^{14}C]IKI-220$ and incubated at 10 °C (average of duplicates)

Sampling	Loamy sand (I	Bedfordshire)				
	TFNG-AM	TFNA-AM	TFNG	TFNA-OH	TFNA	Flonicamid
	[% of applied	radioactivity]		<u>.</u>		
Day 0	n.d.	2.6 a	n.d.	n.d.	n.d.	96.3
Day 0.33	7.4	3.0	2.4	0.8	5.1	80.6
Day 0.67	8.1	2.9	2.8	2.2	9.3	69.0
Day 1	8.0	3.9	3.9	4.7	15.6	55.6
Day 2	6.6	5.3	3.0	12.3	24.0	41.4
Day 3	4.1	5.4	2.7	20.4	24.3	25.0
Day 7	1.0	4.1	2.5	32.7	11.8	6.7
Day 14	0.5	0.4	2.5	16.1	0.5	1.7
Day 30	NA	NA	NA	NA	NA	NA

^a TFNA-AM existed as an impurity in the dose test solution at approximately 2.5%

n.d.= Not detected

n.d. = Not detectedNA = not analysed

The DT_{50} and DT_{90} values were calculated for each soil set. First-order kinetics were observed for all soils. For the soils incubated at 20 °C the DT_{50} and DT_{90} values ranged from 0.7 to 1.8 days and 2.3 to 6.0 days, respectively. The DT_{50} value was 2.4 days and the DT_{90} value was 7.9 days for the soil incubated at 10 °C. The most rapid degradation kinetics were observed for the Bedfordshire soil and the Birmingham soil at 20 °C. The DT_{50} and DT_{90} values for each soil set are shown in Table 34.

Table 34 Aerobic degradation of flonicamid in soil incubated at 20 °C and 10 °C

Soil		Incubation	DT ₅₀	DT ₉₀	
Type	Origin	temperature	[days]	[days]	r ²
Loamy sand	Bedfordshire	20 °C	0.7	2.3	0.9898
Sandy loam	Birmingham		0.7	2.4	0.9890
Sand	Speyer 2.1		1.8	6.0	0.9989
Loamy sand	Bedfordshire	10 °C	2.4	7.9	0.9721

TFNA, TFNA-OH and TFNG-AM were the major degradates in all soils over the course of the study which peaked at levels of 12.2 to 30.6%, 12.1 to 32.7% and 7.8 to 10.2% respectively, of the applied radioactivity. Minor degradates TFNG and TFNA-AM were detected at less than 7.7% AR at all sampling points over the course of the study. All of the degradates were metabolised and mineralised to carbon dioxide and immobilised as soil-bound residue.

Soil photolysis

The photochemical degradation of [pyridyl-¹⁴C]flonicamid (specific activity 9.08 MBq/mg) was investigated in a loamy sand soil (pH 7.2, 0.98% organic matter, origin Madison, Ohio, USA) under laboratory conditions.

Ten grams (10 g) of dried soil was weighed into each photolysis vessel, made of clear glass, to a depth of approximately 3 mm. The fortification solution of [\$^{14}\$C]flonicamid (ca. 50 \$\mu\$L) was added onto the soil surface of each sample jar at a rate of approximately 0.1 mg eq/kg (0.1 \$\mu g/g\$) by means of a syringe. A total of 16 dark control and 16 light exposed samples were prepared. Two additional sample vessels were prepared for each treatment condition at an exaggerated rate (4×) for use in metabolite isolation as required. The temperature of the light-exposed and dark control samples was maintained at 20 \pm 1 °C throughout the study. The light exposed and dark control samples were analysed at 0, 1, 3, 7, 9, 11 and 15 days after fortification.

Whilst volatile radioactivity was not trapped, based on the overall recoveries, good material balance was achieved, precluding the requirement for volatile traps.

[14C]Flonicamid decreased from 99.0% of the applied radioactivity (AR) on Day 0 to 59.5% AR after 15 days continuous illumination. Concurrently, the metabolite TFNG-AM was detected in Day 1 sample extracts at 2.9% AR and increased to 29.5% AR by Day 15. TFNA-AM and TFNG were also detected as minor metabolites in the illuminated soils, reaching maximum concentrations of 5.0% (Day 11 and Day 15) and 2.0% AR (Day 15), respectively.

In the dark controls flonicamid decreased from 99.0% of the AR on Day 0 to 80.4% AR after 15 days dark storage. The metabolite TFNG-AM was detected in Day 1 sample extracts at 1.2% AR and increased to 13.8% AR by Day 15 samples. TFNA-AM and TFNG were detected as minor metabolites reaching maximum concentrations of 2.8% (Day 9 and Day 15) and 2.0% AR (Day 15), respectively. The mass balance and ¹⁴C distribution of radioactivity from the photochemical degradation of [¹⁴C]flonicamid on soil is shown in Table 35.

Table 35 ¹⁴C distribution of radioactivity from the photochemical degradation of [¹⁴C]flonicamid on soil—light-exposed and dark-control samples

Sampling	Extracted	Flonicamid a	TFNG-AM ^a	TFNA-AM a	TFNG a	Bound	Recovery
1 0		[% AR]	[% AR]	[% AR]	[% AR]		
Exposed							
Day 0	101.3	99.0	_	2.3	_	0.3	101.6
Day 1	97.8	92.0	2.9	2.9	_	0.8	98.5
Day 3	96.5	88.0	5.9	2.6	_	1.2	97.7
Day 7	99.8	79.8	15.0	4.6	0.4	2.0	101.8
Day 9	99.1	77.2	17.0	3.9	1.0	1.7	100.7
Day 11	98.5	69.9	22.0	5.0	1.6	1.7	100.2
Day 15	96.0	59.5	29.5	5.0	2.0	1.7	97.7
Dark							
Day 0	101.3	99.0	_	2.3	_	0.3	101.6
Day 1	99.6	95.8	1.2	2.5	_	0.7	100.3
Day 3	99.4	93.2	3.8	2.3	_	1.1	100.4
Day 7	99.5	88.3	7.8	2.5	1.0	1.2	100.7
Day 9	100.3	86.1	10.1	2.8	1.4	1.2	101.6
Day 11	99.4	85.7	11.1	2.6	_	0.9	100.3
Day 15	98.9	80.4	13.8	2.8	2.0	1.8	100.7

^a (% 14 C in designated fractions) × (% extracted)

Recovery = Extracted plus bound residues

Values are average of duplicate samples

The degradation of flonicamid appears to have followed first order kinetics. A linear regression analysis was performed on the data generated by the HPLC analyses of the samples. The resultant DT_{50} values were 22.4 days for the exposed samples (correlation coefficient (R^2) = 0.9729) and 53.3 days (R^2 = 0.9589) for the dark control samples (Table 36).

Table 36 Calculated values of the DT₅₀ from the soil photolysis of flonicamid

	DT ₅₀ [days]	\mathbb{R}^2
Loamy sand (Madison, Ohio, USA)		
exposed	22.4	0.9729
dark controls	53.3	0.9589

Residues in succeeding crops

Confined rotational crop

Flonicamid, radio-labelled at the 3 position of the pyridine ring (specific activity: 9.08 MBq/mg), formulated as a wettable granule (WG) was applied twice to loamy sand soil at a rate equivalent to 100 g ai/ha at an interval of two weeks. Soils were allowed to age under greenhouse conditions after treatment and prior to planting. After the appropriate plant-back intervals (PBIs) of 30, 120 or 360 days, the rotational crops, representative of the root vegetable (carrot), small grain (wheat), and leafy vegetable (lettuce) crop groups, were planted.

The crop samples of lettuce, carrot and wheat (forage, straw, chaff and grain) were homogenised with dry ice and analysed for total ¹⁴C residues by combustion analysis. The PES were also analysed by combustion analysis. The TRR combustion data for crop samples are summarized in Table 37.

Table 37 Distribution of TRR levels of harvested crops

Plant-back	Plant part	TRR	%TRR						
Interval		(mg/kg)	Extracted	Unextracted	Total	Total			
(days)					Identified	Characterized			
30	Immature lettuce	0.006	76.4	23.6	45.4	16.5			
	Mature lettuce	0.004	59.9	40.1	36.1	20.1			
	Immature carrot	0.011	78.4	21.7	Not reported				
	Mature carrot root	0.004	71.6	28.4	48.7	19.3			
	Mature carrot foliage	0.019	73.5	26.5	50.8	18.9			
	Wheat forage	0.077	92.6	7.4	85.6	3.1			
	Wheat straw	0.140	77.7	22.3	62.1	9.8			
	Wheat chaff	0.078	82.2	17.8	63.3	12.8			
	Wheat grain	0.029	81.5	18.6	73.3	3.9			
120	Immature lettuce	0.004	Not extracted	Not extracted					
	Mature lettuce	0.004	Not extracted						
	Immature carrot	0.006	65.9	34.1	48.2	11.0			
	Mature carrot root	0.003	Not extracted						
	Mature carrot	0.005	55.0	45.0	39.1	12.1			
	foliage								
	Wheat forage	0.009	80.8	19.2	70.1	7.8			
	Wheat straw	0.031	73.0	27.0	54.7	9.5			
	Wheat chaff	0.023	67.2	32.8	55.9	6.7			
	Wheat grain	0.010	67.2	32.9	59.8	2.5			
360	Immature lettuce	0.002	n.e.	n.e.					
	Mature lettuce	0.001	n.e.	n.e.					
	Immature carrot	0.003	n.e.	n.e.					
	Mature carrot root	< 0.001	n.e.	n.e.					
	Mature carrot	0.002	n.e.	n.e.	Not analysed				
	foliage				Not allarysed				
	Wheat forage	0.007	40.8	59.1					
	Wheat straw	0.017	43.6	56.4					
	Wheat chaff	0.013	47.5	52.5					
	Wheat grain	0.005	27.7	72.3					

Table 38 Identification/Characterization of TRRs

Plant-	Plant part	%TRR (mg/k	g in parenthe	eses)				
back		Flonicamid	TFNA	TFNA-OH	TFNG	TFNA-AM	TFNG-	Unknowns
Interval							AM	
(days)								
30	Immature	8.9 (0.0)	8.2 (0.0)	4.9 (0.0)	10.0 (0.0)	4.4 (0.0)	9.0 (0.0)	16.5 (0.001)
	lettuce							
	Mature	5.7 (0.0)	1.8 (0.0)	2.0 (0.0)	2.7 (0.0)	3.7 (0.0)	20.2	20.1 (0.001)
	lettuce						(0.001)	
	Immature	Not reported						
	carrot							
	Mature	2.3 (0.0)	1.0 (0.0)	1.9 (0.0)	4.9 (0.0)	15.4 (0.001)	23.2	19.3 (0.001)
	carrot						(0.001)	
	root							
	Mature	5.2 (0.001)	2.0 (0.0)	2.2 (0.0)	7.7 (0.001)	7.9 (0.002)	25.8	18.9 (0.004)
	carrot						(0.005)	
	foliage							
	Wheat	3.3 (0.003)	11.4	37.8	15.0	6.9 (0.006)	11.2	3.1 (0.003)
	forage		(0.010)	(0.033)	(0.013)		(0.010)	
	Wheat	4.5 (0.007)	2.5	9.6 (0.023)	15.4	8.6 (0.013)	21.5	9.8 (0.014)
	straw		(0.004)		(0.023)		(0.032)	
	Wheat	4.1 (0.003)	9.4	9.1 (0.008)	18.3	7.5 (0.006)	14.9	12.8 (0.011)
	chaff		(0.008)		(0.015)		(0.013)	
	Wheat	5.1 (0.001)	19.6	4.7 (0.001)	36.3	2.2 (0.001)	5.4	3.9 (0.001)
	grain		(0.005)		(0.010)		(0.002)	
120	Immature	Not further a	nalysed					

Plant-	Plant part	%TRR (mg/k	g in parenth	eses)					
back		Flonicamid	TFNA	TFNA-OH	TFNG	TFNA-AM	TFNG-	Unknowns	
Interval							AM		
(days)									
	lettuce								
	Mature	Not further a	nalysed						
	lettuce								
	Immature	4.7 (0.0)	4.6 (0.0)	4.0 (0.0)	11.0	7.1 (0.0)	16.8	11.0 (0.001)	
	carrot				(0.001)		(0.001)		
	Mature	Not further a	Not further analysed						
	carrot								
	root		T	1	1	1	1	1	
	Mature	1.6 (0.0)	4.0 (0.0)	2.1 (0.0)	7.9 (0.0)	10.8 (0.001)	12.7	12.1 (0.001)	
	carrot						(0.001)		
	foliage								
	Wheat	10.5	4.5 (0.0)	6.2 (0.001	20.9	8.0 (0.001)	19.9	7.8 (0.001)	
	forage	(0.001)			(0.002)		(0.002)		
	Wheat	1.4 (0.0)	2.3	4.4 (0.001)	10.9	10.7 (0.003)	25.0	9.5 (0.003)	
	straw		(0.001)		(0.004)		(0.006)		
	Wheat	5.9 (0.001)	1.8 (0.0)	6.4 (0.002)	15.9	8.2 (0.002)	17.7	6.7 (0.002)	
	chaff				(0.004)		(0.004)		
	Wheat	12.9	8.6	1.0 (0.0)	32.1	3.0 (0.0)	3.2 (0.0)	2.5 (0.0)	
	grain	(0.001)	(0.001)		(0.003)				

The homogenized tissue samples were extracted three times with acetonitrile/water 40:60 v/v (0.1%) phosphoric acid). Each extract was centrifuged or vacuum filtered. The PES was allowed to air dry and then was subjected to combustion analysis. The solvent extracts were pooled then reduced to a small volume by rotary evaporation under reduced pressure. If sufficient residue was detected in the extract or the PES, additional analysis was conducted by HPLC-LSC to characterize the nature of the 14 C residue present.

TRRs in all raw agricultural commodities (RACs) declined with prolonged PBIs such that, at the 120-day PBI, no further characterization/identification of the TRRs was performed for immature and mature lettuce and mature carrot roots due to the low total radioactivity. Further to this, at the 360-day PBI, none of the TRRs from any of the crop parts were further subjected to characterization/identification as these were too low.

Overall, extraction of the TRRs with organic solvents released greater than 55% of the TRRs. In most commodities, only small amounts of flonicamid and TFNA-OH were detected with TFNG and TFNG-AM identified as major metabolites. In wheat grain, TFNA was also observed as a major metabolite while in wheat forage, TFNA and TFNA-OH accounted for greater than 10% of the TRRs. TFNA-AM was the only predominant metabolite in mature carrot root.

Field rotational crop

At each of the six field trials conducted in the US, three applications of flonicamid 50WG were made to the primary crop (cotton) at the maximum rate of 0.1 kg ai/ha at 7 ± 1 day intervals, resulting in a total seasonal application rate of approximately 0.31 kg ai/ha. Following harvest of the treated cotton, the rotational crops, wheat (four sites) and turnips (two sites), were planted at 30 and 60 days following the last application. The wheat and turnip samples were taken for analysis at normal maturity for each crop matrix.

Aliquots of homogenised samples were extracted twice with acetonitrile:water (50/50, v/v). Concentrated HCl was added to the combined extracts prior to being filtered and partitioned with ethyl acetate (twice). The combined ethyl acetate extract was evaporated just to dryness and residues taken up in acetonitrile:water (30/70, v/v) and analysed by LC-MS/MS. For wheat straw, an additional SPE clean-up step using a C_{18} cartridge before the partitioning with ethyl acetate was inserted.

Table 39 Maximum residues in rotated crop samples 30 and 60 days following the last application of Flonicamid 50WG to cotton

	Plant back interval [days]	Flonicamid [mg/kg]	TFNG [mg/kg]	TFNA [mg/kg]	TFNA-AM [mg/kg]
Wheat forage	30–32	n.d.	n.d.	< LOQ (< 0.01)	n.d.
Wheat straw	30–32	n.d.	< LOQ (< 0.02)	n.d.	n.d.
Wheat grain	30–32	n.d.	n.d.	< LOQ (< 0.01)	n.d.
Turnip tops	30	n.d.	n.d.	n.d.	n.d.
Turnip roots	30	n.d.	n.d.	n.d.	n.d.
Wheat forage	58–63	n.d.	n.d.	n.d.	n.d.
Wheat straw	58-63	n.d.	n.d.	n.d.	n.d.
Wheat grain	58-63	n.d.	n.d.	n.d.	n.d.
Turnip tops	59–60	n.d.	n.d.	n.d.	n.d.
Turnip roots	59–60	n.d.	n.d.	n.d.	n.d.

n.d. = Not detectedLOD = 0.005 mg eq/kg

No quantifiable residues of flonicamid or its metabolites TFNG, TFNA, and TFNA-AM were detected in any crop matrix in any rotational crop planted at either 30 or 60 days after the last application of flonicamid to the primary crop of cotton.

RESIDUE ANALYSIS

Analytical Methods

The Meeting received descriptions and validation data for analytical methods for residues of flonicamid and its metabolites TFNA-AM, TFNA and TFNG in plant commodities and flonicamid, TFNA-AM, TFNA, TFNG and OH-TFNA-AM in animal commodities. All residue analytical methods rely on LC-MS/ MS. Typical LOQs achieved for plant and animal commodities fall in the range of 0.01–0.02 mg/kg. The LOQs for milk and animal products (liver, kidney, muscle, eggs) were 0.01 mg/kg for each analyte. Methods have been subjected to independent laboratory validation. The methods described briefly below have been used for the analysis of the samples generated during the supervised field trials, processing studies and storage stability investigations.

Table 40 Characterization of Enforcement Analytical Methods for Plant and Animal Commodities

Method ID	Method Type	Detector	Analytes	LOQ/analyte	Matrices	Report		
Plant Commodities								
P-3561M	Enforcement	HPLC-MS/MS	Flonicamid TFNA-AM TFNA TFNG	0.01 mg/kg for peach and potato tuber 0.02 mg/kg for wheat straw	Peach Potato tuber Wheat straw	IB-2002- JLW-011- 00		
	ILV	HPLC-MS/MS	Flonicamid TFNA-AM TFNA TFNG	0.01 mg/kg	Cottonseed	02-0031		
P-3822	Enforcement	HPLC-MS/MS	Flonicamid TFNA-AM TFNA TFNG	0.01 mg/kg all matrices 0.02 mg/kg wheat straw and cotton matrices	Various RACs and processed commodities	178MVL05 R1		
	ILV	HPLC-MS/MS	Flonicamid TFNA-AM TFNA TFNG	0.01 mg/kg	Various RACs and processed commodities			
AGR/MOA/I KI220-1 v.1	Enforcement	HPLC-MS/MS	Flonicamid TFNA-AM	0.01 mg/kg	Lemon Potato	ISK/IKI/060 01		

Method ID	Method Type	Detector	Analytes	LOQ/analyte	Matrices	Report
			TFNA TFNG		Oilseed rape Wheat grain Plum Prune	
	ILV	HPLC-MS/MS	Flonicamid TFNA-AM TFNA TFNG	0.01 mg/kg	Lemon Potato Oilseed rape Wheat grain Plum Prune	S09-01231
Animal Commo	odities					
842993	Enforcement	HPLC-MS/MS	Flonicamid TFNA TFNA-AM OH-TFNA-AM TFNG	0.01 mg/kg	Milk	
844743	Enforcement	HPLC-MS/MS	Flonicamid TFNA TFNA-AM OH-TFNA-AM TFNG	0.01 mg/kg	Bovine muscle, liver, kidney, fat Poultry muscle, liver, fat and eggs	
P-3581	ILV	HPLC-MS/MS	Flonicamid TFNA TFNA-AM OH-TFNA-AM TFNG	0.01 mg/kg	Eggs	178ILV02R 1
ADPEN-2K2- 1126	ILV	HPLC-MS/MS	Flonicamid TFNA TFNA-AM OH-TFNA-AM TFNG	0.01 mg/kg	Beef muscle	
AGR/MOA/I KI-5	Enforcement	HPLC-MS/MS	Flonicamid TFNA-AM	0.01 mg/kg	Bovine muscle, fat and liver, milk and eggs	S12-04426
P-2960	ILV	HPLC-MS/MS	Flonicamid TFNA-AM	0.01 mg/kg	Bovine muscle, fat and liver, milk and eggs	

Plant Commodities

Method P-3561M

Residues of flonicamid and its metabolites TFNG, TFNA and TFNA-AM were extracted twice with acetonitrile/deionised water (1/1, v/v). After centrifugation, the extracts were combined and evaporated until dryness. The sample extract was then acidified and filtered. In the case of wheat straw, the sample extract underwent clean-up using a C_{18} SPE column eluted with acetonitrile/deionised water (1/4, v/v). The eluate (in the case of wheat straw sample) or the filtrate (in the case of potato tuber or peach sample) was liquid-liquid partitioned twice in ethyl acetate. The ethyl acetate layer was evaporated to near dryness and diluted in acetonitrile/deionised water (3/7, v/v) before quantification by HPLC-MS/MS.

The method underwent successful inter-laboratory validation by EN-CAS laboratories using cottonseed. Average recoveries of flonicamid, TFNG, TFNA and TFNA-AM ranged from 70–110% with RSD of \leq 16%, demonstrating good reproducibility.

Method P-3822

The HPLC-MS/MS method P3822 quantifies residues of flonicamid and its metabolites TFNG, TFNA and TFNA-AM in raw agricultural commodities and processed commodities. The extraction and clean-up steps of method P-3822 are very similar to those of P-3561M, however; for oily crop samples (e.g. cotton matrices and potato chips), an additional hexane partition step and acidification is included before filtration.

The method underwent successful inter-laboratory validation by EN-CAS laboratories using the same commodities. Average recoveries of flonicamid, TFNG, TFNA and TFNA-AM ranged from 70–110% with RSD of \leq 16% (with the exception of pepper/TFNG at 0.1 mg/kg where the RSD was 33%), demonstrating overall good reproducibility.

AGR/MOA/IKI220-1 v.1

Flonicamid and its major metabolites were extracted with a mixture of acetonitrile/water/acetic acid (60/40/0.1, v/v/v), followed by a washing with hexane (except for potato) and a clean-up using a C_{18} phase SPE cartridge (except for potato and lemon), and followed by a liquid/liquid partition with ethyl acetate. After evaporation to dryness, the residues of flonicamid and its major metabolites were dissolved in a mixture of acetonitrile/water (30/70, v/v) prior to analysis by HPLC-MS/MS using two mass transitions. For oil-seed rape, the TFNA results were confirmed by the use of another liquid chromatographic column.

The method underwent successful inter-laboratory validation by Eurofins laboratories using the same commodities. Average recoveries of flonicamid, TFNG, TFNA and TFNA-AM ranged from 70–110% with RSD of \leq 20%, demonstrating good reproducibility.

AATM-R-165

Residues of flonicamid and its metabolites were extracted by shaking with acetonitrile:water (1:1). The extract was then decanted and the extraction was repeated with acetonitrile. An aliquot of the combined acetonitrile extracts was diluted with water, filtered and analysed by ultra performance liquid chromatography (UPLC) with positive-ion electrospray ionization (ESI) tandem mass spectrometry (MS/MS). Quantitation of the analytes was achieved by comparison with mixed external standards of flonicamid and its metabolites.

Due to the nature of the cottonseed oil samples, the method was modified such that cottonseed oil was dissolved in hexane and then partitioned with acetonitrile. An aliquot of the acetonitrile layer was taken and diluted with water and analysed.

Determination of Residues of IKI-220 and its Metabolites TFNG, TFNA and TFNA-AM in Various Crops—Validation of the Method"

This method was used for the freezer storage stability study A-22-00-03 whereby residues of flonicamid and its metabolites TFNG, TFNA and TFNA-AM were extracted with methanol. After filtration, the sample solution was washed with n-hexane, concentrated and then cleaned-up on a C₁₈ SPE cartridge. The eluate was evaporated to dryness and methylated with diazomethane/diethylether. After concentration, the residues were liquid-liquid partitioned twice in ethyl acetate. The ethyl acetate layer was filtered through anhydrous sodium sulphate and evaporated to dryness. The residues were purified on a Florisil SPE cartridge and reconstituted in acetone prior to analysis by GC/MSD.

Animal Commodities

Method 842993

Residues of flonicamid and its metabolites TFNA, TFNA-AM, OH-TFNA-AM and TFNG in milk samples were extracted twice with ethanol/water (4/4, v/v). The sample extracts were combined and evaporated to dryness prior to liquid-liquid partitioning twice with hexane. The aqueous phase was evaporated to dryness and the residue was dissolved in water/acetonitrile/trifluoroacetic acid (90/10/0.1, v/v/v) prior to HPLC-MS/MS analysis.

Method 844743

Bovine and Poultry Tissues

Residues of flonicamid and its metabolites TFNA, TFNA-AM, OH-TFNA-AM and TFNG were extracted twice with acetonitrile/water (8/2, v/v). After addition of silicon anti foaming agent to the combined extracts of each tissue/egg sample, the solution was evaporated to dryness. The residue was then dissolved in methanol/water/acetic acid (2000/500/15, v/v/v) prior to liquid-liquid partitioning twice with hexane. The aqueous phase was evaporated to dryness and the residue was dissolved in water/acetonitrile/trifluoroacetic acid (90/10/0.1, v/v/v) prior to clean-up using gel permeation chromatography (GPC). The eluate was evaporated to dryness and redissolved in methanol/water (1/9, v/v) and subject to HPLC-MS/MS analysis.

Eggs

Residues of flonicamid and its metabolites TFNA, TFNA-AM, OH-TFNA-AM and TFNG in egg samples were extracted with acetonitrile/water (8:2; v/v) and the suspension was treated at 60 °C for 1 h. After denaturisation, the process was repeated. The extracts were subsequently combined and partitioned by a liquid-liquid extraction with cyclohexane. The acetonitrile/water phase was evaporated to dryness and the residue was dissolved in methanol/water/acetic acid (2000:500:15; v/v/v) followed by clean-up using GPC. The eluate was evaporated to dryness and the residue was redissolved with 30% acetonitrile in water prior to analysis using HPLC-MS/MS.

The method underwent successful inter-laboratory validation by FMC Princeton Environmental Sciences Laboratory using poultry eggs. Average recoveries of flonicamid, TFNG, TFNA and TFNA-AM ranged from 77–108% with RSD of \leq 21%, demonstrating good reproducibility.

AGR/MOA/IKI-5

Residues of flonicamid and its metabolite TFNA-AM in samples of bovine, muscle, fat, liver, milk and eggs were extracted with acidified acetonitrile/water (80/20, v/v). All the contents of the dispersive SPE citrate extraction tube were added to the extracts and shaken vigorously by hand, vortexed and centrifuged. The supernatant was evaporated to dryness and residues were dissolved in acetonitrile/ water (10/90, v/v) and filtered (liver only) prior to analysis by HPLC-MS/MS.

The method underwent successful inter-laboratory validation by PTRL Europe using the same commodities. Average recoveries of flonicamid and TFNA-AM were within the range of 70-110% with RSD of $\leq 20\%$, demonstrating good reproducibility.

P-3580

While the Meeting did not receive a description of the method P-3580 titled `Radio-validation of Goat Muscle Treated with 14 C-Radio-labelled IKI-220 (F1785) Insecticide and method Validation of Residue Methodology for IKI-220 (F1785) and its Major Metabolites in/on Cow Muscle, Kidney and Liver`, the results of the ILV performed by ADPEN Laboratories was provided, and the method was subsequently renumbered to P-3581. Average recoveries of flonicamid and its metabolites TFNA, TFNA-AM, OH-TFNA-AM and TFNG in bovine muscle were within the range of 82–110% with RSD of \leq 17%, demonstrating good reproducibility.

Validation data for the methods described above are available from specific method validation studies or from residue studies where specific method validation recovery experiments were performed separately from routine sample analysis. These method recovery data, for plant and animal commodities are summarized in Table 41.

Table 41 Method recovery data of flonicamid and metabolites in plants and animal products

Matrix	Compound			Recovery [%]			Method	Reference
			samples	Range	Mean	RSD		
		[mg/kg]						
Plant Commod					1			
Wheat Straw	Flonicami d	0.02	3	83–127	109.7	21.4	P-3561M	IB-2002-JLW- 011-00
		0.04	3	107-128	114.7	10.1		
		0.1	3	105-122	114	7.5		
	TFNG	0.02	3	66–96	78.3	20		
		0.04	3	72–88	81.3	10.2		
		0.1	3	80–97	86.7	10.5		
	TFNA	0.02	3	84–109	92.3	15.6		
		0.04	3	63–95	83.7	21.4		
		0.1	3	86-110	97.3	12.4		
	TFNA- AM	0.02	3	61–80	70.3	13.5		
		0.04	3	63–71	66	6.6		
		0.1	3	77–86	80.3	6.1		
Peach	Flonicami d	0.01	3	95–113	105.3	8.8		
		0.02	3	105-108	106.3	1.4		
		0.05	3	102-106	104	1.9		
	TFNG	0.01	3	74–95	84.7	12.4		
		0.02	3	96–99	97	1.8		
		0.05	3	102-110	106	3.8		
	TFNA	0.01	3	92–97	94.7	2.7		
		0.02	3	94–108	102.3	7.2		
		0.05	3	105–107	106	0.9		
	TFNA- AM	0.01	3	88–96	93.3	4.9		
		0.02	3	97–103	100	3.0		
		0.05	3	97–98	97.7	0.6		
Potato Tuber	Flonicami d	0.01	3	92–108	98	8.9		
		0.02	3	98–109	103.7	5.3		
		0.05	3	82–106	95.7	12.9		
	TFNG	0.01	3	82–107	91.7	14.6		
		0.02	3	80–95	86.7	8.8		
		0.05	3	74–87	78.7	9.2		
	TFNA	0.01	3	102–115	108	6.1	4	
		0.02	3	107–122	114.7	6.5	4	
	TFNA- AM	0.05 0.01	3	93–106 80–98	98.3 92	6.9		
	CATA1	0.02	3	83–89	86.3	3.5	+	
		0.02	3	73–85	79.3	7.6	1	
Apple	Flonicami d		1	84	NA	NA	P-3822	IB-2001-MDG- 003
	-	0.1	4	90–100	94	4.5	1	
		0.2	1	102	NA	NA	1	
	TFNA- AM	0.05	1	76	NA	NA		
		0.1	4	73–80	75.7	3	7	
		0.2	1	90	NA	NA	1	
	TFNA	0.05	1	79	NA	NA	1	
		0.1	4	79–86	82.5	3.1	1	
		0.2	1	96	NA	NA	1	
	TFNG	0.05	1	69	NA	NA	1	
		0.1	4	67–77	72.5	5.3		
		0.2	1	90	NA	NA	1	

Matrix	Compound	Fortificatio	n No. of	Recovery [%]			Method	Reference	
171441171	Compound	Levels		Range	Mean	RSD	ivictilou	reservate	
		[mg/kg]	1	- Lunge	1110411				
Apple Juice	Flonicami d	0.25	5	90–113	96.2	9.6		01LJL045C	
	u	0.5	1	125	NA	NA			
	TFNA-	0.25	5	72–86	78.6	5.4			
	AM								
		0.5	1	97	NA	NA			
	TFNA	0.25	5	89–105	96.4	6.9			
		0.5	1	136	NA	NA			
	TFNG	0.25	5	65–115	86.4	18.1			
		0.5	1	133	NA	NA			
Apple Pomace	Flonicami d	0.01	2	91	NA	NA		IB-2001-MDG- 003	
		0.2	2	79–99	89	NA			
	TFNA- AM	0.01	2	75–84	79.5	NA			
		0.2	2	76–89	82.5	NA			
	TFNA	0.01	2	81–83	82	NA			
		0.2	2	100–112	106	NA			
	TFNG	0.01	2	73–107	90	NA			
		0.2	2	104–115	109.5	NA			
Pear	Flonicami d		1	92	NA	NA		IB-2001-MDG- 003	
		0.2	2	94–95	94.5	NA		003	
	TFNA- AM	0.01	1	75	NA	NA			
		0.2	2	74–86	80	NA			
	TFNA	0.01	1	97	NA	NA			
		0.2	2.	93–94	93.5	NA			
	TFNG	0.01	1	65	NA	NA			
	11110	0.2	2	73–88	80.5	NA			
Peach	Flonicami d	0.01	3	95–113	105.3	9.3		01LJL071C	
	a .	0.02	3	105–108	106.3	1.5			
		0.05	3	102-106	104	2			
	TFNA- AM	0.01	3	88–96	93.3	4.6			
		0.02	3	97-103	100	3			
		0.05	3	97–98	97.7	0.6			
	TFNA	0.01	3	92–97	94.7	2.5			
		0.02	3	97–103	102.3	7.4			
		0.05	3	105-107	106	1			
	TFNG	0.01	3	74–95	84.7	10.5			
		0.02	3	96–99	97	1.7			
		0.05	3	102–110	106	4			
Peach	Flonicami d		1	97	NA	NA		IB-2001-MDG- 005	
		0.05	2	107–111	109	NA			
		0.2	1	89	NA	NA			
		0.4	1	108	NA	NA			
	TFNA- AM	0.01	1	100	NA	NA			
		0.05	2	106–112	109	NA			
		0.2	1	82	NA	NA			
		0.4	1	102	NA	NA			
	TFNA	0.01	1	99	NA	NA			
		0.05	2	93–97	95	NA			
		0.2	1	97	NA	NA			
		0.4	1	93	NA	NA			
	TFNG	0.01	1	92	NA	NA			
i	<u> </u>	0.05	2	98-127	112.5	NA			

Matrix Compour		Fortificatio	n No. of	Recovery [%	61		Method	Reference
TVICE IX	Compound	Levels	samples		Mean	RSD	- Ivicinoa	reservate
		[mg/kg]	r	runge	I TOUIT	TGD.		
		0.2	1	85	NA	NA		
		0.4	1	120	NA	NA		
Cherry	Flonicami	0.01	2	95–115	105	NA	P-3822	IB-2001-MDG-
	d	0.01		75 115	100	1,11	1 3022	005
		0.5	2	85–92	88.5	NA		
	TFNA-	0.01	2	92–114	103	NA		
	AM	0.01		72 11.	100	1,11		
		0.5	2	76–77	76.5	NA		
	TFNA	0.01	2	87–109	98	NA		
		0.5	2	93–106	99.5	NA		
	TFNG	0.01	2	99–119	109	NA		
		0.5	2	77–89	83	NA		
Plum	Flonicami		1	85	NA	NA		IB-2001-MDG-
10111	d	0.00			11.2	1,11		005
	<u></u>	0.1	1	83	NA	NA		
		0.2	1	86	NA	NA		
		0.01	2	103–109	106	NA		
		1	1	102	NA	NA		
	TFNA-	0.05	1	85	NA	NA		
	AM	5.05	1		1111	12.1		
		0.1	1	74	NA	NA		
		0.2	1	82	NA	NA		
		0.01	2	103–107	105	NA		
		1	1	92	NA	NA		
	TFNA	0.05	1	78	NA	NA		
	111421	0.03	1	84	NA	NA		
		0.2	1	88	NA	NA		
		0.01	2	110	110	NA		
TI		1	1	106	NA	NA		
	TFNG	0.05	1	77	NA NA	NA NA		
	IFNG	0.03	1	74	NA NA	NA NA		
		0.1	1	74	NA NA	NA NA		
			2	96–111	103.5	NA NA		
		0.01	1	101				
Prune	Flonicami	0.01	2	100–109	NA 104.5	NA NA		IB-2001-MDG-
Prune	d	0.01	2	100-109	104.3	NA		005
	u	0.5	2	80–90	85	NA		003
	TFNA-	0.01	2	92–98	95	NA NA		
	AM	0.01	2	92-90	93	INA		
	Aivi	0.5	2	79–82	80.5	NA		
	TFNA	0.01	2	94–105	99.5	NA NA		
	IFNA	0.01	2	73–82	77.5	NA NA		
	TFNG	0.01	2	98–100	99	NA NA		
	ITNG	0.01	2	76–79	77.5	NA NA		
Donner	Elani		3		90	_		ID 2001 MDC
Pepper	Flonicami d	0.01	3	78–99	90	11		IB-2001-MDG- 006
	u	0.05	1	65	NA	NA		000
		0.03	1	77	NA NA	NA NA		
		0.1	1	87	NA NA	NA NA		
			1					
		0.5	1	81	NA NA	NA NA	 	
	TENTA	0.01	2	104	NA	NA 6		
	TFNA-	0.01	3	68–79	74	6		
	AM	0.05	1	79	NT A	NT A		
	-	0.05	1		NA NA	NA NA	 	
		0.1	1	82	NA NA	NA NA		
		0.2	1	64	NA NA	NA NA		
		0.5	1	67	NA	NA NA		
	TOPATA	0.01	1	67	NA 00	NA o		
	TFNA	0.01	3	81–101	90	8		
		0.05	1	83	NA	NA		

Matrix	Compound	Fortification	No of	Recovery [%]			Method	Reference
	Compound	Levels	samples	Range	Mean	RSD		recipionee
		[mg/kg]						
		0.1	1	94	NA	NA		
		0.2	1	89	NA	NA		
		1	1	96	NA	NA		
	TFNG	0.01	3	63–124	101	33		
		0.05	1	87	NA	NA		
		0.1	1	84	NA	NA		
		0.2	1	66	NA	NA		
		0.5	1	66	NA	NA		
		1	1	77	NA	NA		
Tomato	Flonicami d	0.01	1	131	NA	NA	P-3822	IB-2001-MDG- 006/
		0.1	4	88–93	90	2.2		
		1.5	1	96	NA	NA		
	TFNA- AM	0.01	1	80	NA	NA		
		0.1	4	61–76	69.3	6.2		
ı		1.5	1	88	NA	NA		
	TFNA	0.01	1	136	NA	NA		
		0.1	4	80–98	89.3	7.4		
		1.5	1	90	NA	NA		
	TFNG	0.01	1	74	NA	NA		
		0.1	4	67–80	72.5	5.4		
		1.5	1	89	NA	NA		
Γomato	Flonicami d	0.05	1	87	NA	NA		CA147-A
		0.25	1	102	NA	NA		
		0.5	5	82-111	93.2	11.3		
	TFNA- AM	0.05	1	74	NA	NA		
		0.25	1	79	NA	NA		
		0.5	5	73–89	80.8	7.4		
	TFNA	0.05	1	84	NA	NA		
		0.25	1	102	NA	NA		
		0.5	5	89–122	101.8	13.8		
	TFNG	0.05	1	74	NA	NA		
		0.25	1	112	NA	NA		
		0.5	5	82-120	91.8	16		
Tomato Paste	Flonicami d	0.01	2	75–85	80	NA		CA137-S
		1	2	92–93	92.5	NA		
	TFNA- AM	0.01	2	77–84	80.5	NA		
		1	2	84–85	84.5	NA		
	TFNA	0.01	2	103-111	107	NA		
		1	2	100-101	100.5	NA		
	TFNG	0.01	2	90–92	91	NA		
		1	2	113–115	114	NA	-	
Tomato Puree	Flonicami d	0.01	2	81–85	83	NA		CA137-V
		0.5		97–100	98.5	NA		
	TFNA- AM	0.01	2	70–76	73	NA		
		0.5	2	82–85	83.5	NA		
	TFNA	0.01	2	66–71	68.5	NA		
		0.5	2	93–94	93.5	NA		
	TFNG	0.01	2	66–68	67	NA		
		0.5	2	101–109	105	NA		
Potato Tuber	Flonicami d	0.01		92–108	98.8	7.3	P-3822	01JRA/IB-2001- MDG-002
		0.02	3	98–109	103.7	5.5		

Matrix	Compound	Fortification	No. of	Recovery [%]			Method	Reference
	1 1 1	Levels [mg/kg]	samples	Range	Mean	RSD		
			5	77–106	89.8	12.2		
			5	78–102	89	10		
		0.4	1	100	NA	NA		
	TFNA- AM	0.01	4	80–98	89.3	10.1		
		0.02	3	80–89	85.3	4.7		
			5	63–85	75.2	8.3		
		0.1	5	64–97	79.2	13.8		
		0.4	1	86	NA	NA		
	TFNA	0.01	4	99–115	105.8	7		
		0.02	3	107-122	114.7	7.5		
		0.05	5	73–106	88.8	14		
		0.1	5	82–96	88.6	5.5		
		0.4	1	86	NA	NA		
	TFNG	0.01	4	68–107	85.8	16.1		
				80–95	86.7	7.6		
				69–87	77	6.8		
		0.1		64–80	72.2	6.1		
		0.4		91	NA	NA		
Potato Tuber	Flonicami d	0.25	5	92–112	103.8	8.4		01JFC667C
		0.5	5	92–124	106.6	15.6		
	TFNA- AM	0.25	5	75–105	86	11.9		
	7 1111	0.5	5	71–102	88	14.4	_	
	TFNA	0.25		85–119	103.4	12	_	
	11111	0.5		86–104	95	7.7		
	TFNG	0.25		78–102	91	9.2	_	
	11110			86–104	95	7.7	_	
Potato Flakes	Flonicami d		2	78–86	82	NA	1	IB-2001-MDG- 002
		0.2	1	96	NA	NA		
		0.5	2	63–89	76	NA		
	TFNA- AM	0.01	2	83–89	86	NA	_	
		0.2	1	87	NA	NA		
			2	76–80	78	NA		
	TFNA	0.01	2	91–102	96.5	NA		
		0.2	1	92	NA	NA		
		0.5	2	76–91	83.5	NA		
	TNFG	0.01	2	100-109	104.5	NA		
		0.2	1	87	NA	NA		
		0.5		90–95	92.5	NA		
Potato Wet Peel	Flonicami d	0.01	2	101–117	109	NA		IB-2001-MDG- 002
		0.1	2	103-117	110	NA		
	TFNA- AM	0.01	2	86–98	92	NA		
		0.1	2	84–98	91	NA		
	TFNA	0.01	2	69–77	73	NA		
		0.1		97–113	105	NA		
	TFNG	0.01		64–85	74.5	NA		
		0.1		90–102	96	NA		
Potato Chips	Flonicami d		2	71–100	85.5	NA	1	IB-2001-MDG- 002
	-	0.2	2	100-101	100.5	NA		
	TFNA- AM		2	83–86	84.5	NA		
	. 1171	0.2	2	90–92	91	NA	+	
	TFNA	0.01		87–90	88.5	NA	+	
	1111/1	V.V.1		01 70	50.5	F 12.3	1	1

Matrix	Compound	Fortification	on No. of Recovery [%]				Method Reference		
Within	Compound	Levels	samples	Range	Mean	RSD		Reference	
		[mg/kg]	F	runge	ricuii	TGD.			
		0.2	2	100-103	101.5	NA			
	TFNG	0.01	2	72–73	72.5	NA			
		0.2	2	110-117	103.5	NA			
Cottonseed	Flonicami d	0.02	2	113–118	115.5	NA		IB-2001-MDG- 004/99AWC	
	-	0.05	1	76	NA	NA			
		0.1	3	79–105	88.7	14.2			
		0.2	4	78–112	90.5	15			
		0.25	5	78–97	85	7.4			
		0.5	8	84–128	98.5	14.3			
		1	1	93	NA	NA			
	TFNA- AM	0.02	2	78–81	79.5	NA			
		0.05	1	69	NA	NA			
		0.1	3	72–102	84	15.9			
		0.2	4	74–93	80.5	9			
		0.25	5	65–86	74.6	8.7			
		0.5	8	66–104	83.5	14.6	7		
		1	1	82	NA	NA	7		
	TFNA	0.02	2	115-128	121.5	11.6			
		0.1	3	81–103	90.7	11.2	7		
		0.05	1	68	NA	NA			
		0.2	4	77–101	89.3	11.6			
		0.25	5	81–95	89.2	5.6			
		0.5	8	66–120	101	17.6			
		1	1	86	NA	NA			
	TFNG	0.02	2	97–100	98.5	NA			
		0.1	3	69–100	85	15.5			
		0.05	1	71	NA	NA			
		0.2	4	69–97	81.5	12.6			
		0.25	5	71–91	82	7.2			
		0.5	8	77–111	92.9	12.6			
		1	1	83	NA	NA			
Cotton Meal	Flonicami d	0.02	2	81–93	87	NA		IB-2001-MDG- 004/99AWC	
		0.25	5	73–122	97.6	18			
		0.5	1	99	NA	NA	7		
		2	2	81–88	84.5	NA			
	TFNA- AM	0.02	2	94–117	105.5	NA			
		0.25	5	67–78	73.2	5.4	7		
		0.5	1	72	NA	NA			
		2	2	78–79	78.5	NA			
	TFNA	0.02	2	79–119	99	NA			
		0.25	5	76–99	83.2	9.4			
		0.5	1	77	NA	NA			
		2	2	118-123	120.5	NA			
	TFNG	0.02	2	73–108	90.5	NA			
		0.25	5	69–85	79	6.8			
		0.5	1	81	NA	NA			
		2	2	117	117	NA			
Cotton Hulls	Flonicami d	0.02	2	70–90	80	NA		IB-2001-MDG- 004/99AWC	
		0.5	2	84–125	104.5	NA			
		1	2	100-101	100.5	NA			
		0.25	5	72–100	88	11			
	TFNA- AM	0.02	2	75–83	79	NA			
		0.5	2	80–100	90	NA			
}	-	1.	2	76–91	83.5	NA	⊣	1	

Matrix	Compound	Fortification	No. of	Recovery [%]]		Method	Reference
		Levels	samples		Mean	RSD		
		[mg/kg]						
	TOTAL A	0.25	5	65–89	77	9.2		
	TFNA	0.02	2	71–92	81.5	NA NA		
		0.5	2	91–133 119–126	112 122.5	NA NA		
		0.25	5	86–121	96.6	14.2		
	TFNG	0.23	2	87–95	90.0	NA		
	IFNG	0.02	2	80–106	93	NA NA		
		1	2	99–118	108.5	NA NA		
		0.25	5	73–92	82.2	7		
Refined Oil	Flonicami	0.02	2	81–101	91	NA		P06-2/IB-2001- MDG-
		0.25	5	86–125	101.6	15.2		004/99AWC
		0.5	5	82–110	93	14		
		1	1	92	NA	NA		
	TFNA- AM	0.02	2	82–87	84.5	NA		
		0.25	5	65-102	78.8	14.2		
		0.5	5	68–100	84.6	12.3		
		1	1	74	NA	NA		
	TFNA	0.02	2	73–84	78.5	NA		
		0.25	5	69–126	91.2	21.3		
		0.5	5	68-100	84.6	12.3		
		1	1	84	NA	NA		
	TFNG	0.02	2	90–94	92	NA		
		0.25	5	64–114	84.2	18.3		
		0.5	5	63-100	78.4	13.6		
		1	1	80	NA	NA		
Gin Trash	Flonicami d	0.02	2	69	69	NA		IB-2001-MDG- 004
		0.5	1	80	NA	NA		
		5	1	91	NA	NA		
	TFNA- AM	0.02	2	114–119	116.5	NA		
		0.5	1	84	NA	NA		
		5	1	81	NA	NA		
	TFNA	0.02	2	85–95	90	NA		
		0.5	1	82	NA	NA		
		5	1	83	NA	NA		
	TNFG	0.02	2	110–111	110.5	NA		
		0.5	1	72	NA	NA		
G 1		5	1	81	NA	NA		TD 2001 1 TD C
Cucumber	Flonicami d		1	117	NA	NA		IB-2001-MDG- 007
	TENTA	0.1	2	84–94	89 N.A	NA NA	 	
	TFNA- AM	0.01	1	85	NA	NA		
	TENIA	0.1	2	66–79	72.5	NA NA	 	
	TFNA	0.01 0.1	2	95 77–97	NA 87	NA NA		
	TFNG	0.01	1	75	NA	NA NA	—	
	11'110	0.01	2	77–80	78.5	NA NA	—	
Summer Squash	Flonicami d	0.01	2	70–84	77	NA		IB-2001-MDG- 007
1		0.05	1	84	NA	NA		
		0.1	2	86–90	88	NA		
	TFNA- AM	0.01	2	74–87	80.5	NA		
Ì		0.05	1	74	NA	NA		
		0.1	2	72–75	73.5	NA		
	TFNA	0.01	2	73–82	77.5	NA		

Matrix	Compound	Fortification	No of	Recovery [%]			Method	Reference
Matrix	Compound	Levels	samples	Range	Mean	RSD	Ivictiou	Reference
		[mg/kg]	1					
		0.05	1	85	NA	NA		
		0.1	2	88–98	93	NA		
	TNFG	0.01	2	72–79	75.5	NA		
		0.05	1	77	NA	NA		
		0.1	2	69-81	75	NA		
Muskmelon	Flonicami	0.01	2	87–92	89.5	NA		IB-2001-MDG-
	d							007
		0.1	1	93	NA	NA		
		0.2	2	95-107	101	NA		
		0.5	1	94	NA	NA		
	TFNA- AM	0.01	2	74–87	80.5	NA		
		0.1	1	71	NA	NA		
		0.2	2	83–84	83.5	NA		
		0.5	1	80	NA	NA		
	TFNA	0.01	2	90–95	92.5	NA		
		0.1	1	89	NA	NA		
		0.2	2	97–102	99.5	NA		
		0.5	1	99	NA	NA		
	TFNG	0.01	2	76–89	82.5	NA		
	11110	0.1	1	70	NA	NA		
		0.2	2	87–88	87.5	NA		
		0.5	1	83	NA	NA		
Wheat Forage	Flonicami	0.01	1	115	NA	NA		IB-2001-JLW-
	d							001/99WDN
		0.1	2	108–122	110	NA		
		0.2	1	93	NA	NA		
		0.25	1	79	NA	NA		
		0.5	5	72–100	92.2	11.5		
	TFNA- AM	0.01	1	85	NA	NA		
		0.1	2	76–92	84	NA		
		0.2	1	78	NA	NA		
		0.25	1	73	NA	NA		
		0.5	5	74–91	82	7.6		
	TFNA	0.01	1	94	NA	NA		
		0.1	2	85-102	93.5	NA		
		0.2	1	83	NA	NA		
		0.25	1	109	NA	NA		
		0.5	5	81-121	97.8	14.8		
	TFNG	0.01	1	75	NA	NA		
		0.1	2	73–102	87.5	NA		
		0.2	1	83	NA	NA		
		0.25	1	80	NA	NA		
		0.5	5	84–94	89.6	3.8		
Wheat Straw	Flonicami d	0.02	4	65–127	98.5	29.4		WCS/IB-2001- JLW-001/99WDN
		0.04	3	107-128	114.7	11.6		
		0.05	4	61–85	74.8	10		
		0.1	5	69–122	97.8	23.2		
		0.25	1	93	NA	NA		
		0.5	5	71–76	78.4	10		
	TFNA- AM	0.02	4	61–80	71.8	8.3		
		0.04	3	63–71	66	4.4		
		0.05	4	72–92	80.3	8.4		
		0.1	5	73–86	79	4.8		
		0.25	1	69	NA	NA		
		0.5	5	62–77	69	6.4		
	TFNA	0.02	4	77–109	88.5	14		
	ITTINA	0.02	<u> </u>	1 1-107	00.3	114		

Matrix	Compound	Fortification	No. of	Recovery [%]			Method	Reference
		Levels	samples		Mean	RSD	7	
		[mg/kg]	1	8-				
		0.04	3	63–95	83.7	18		
		0.05	4	73–99	86.8	11		
		0.1	5	81–110	92.8	11.1		
		0.25	1	83	NA	NA		
		0.5	5	71–87	82	6.3	-	
	TFNG	0.02	4	66–96	82.5	7.6	\dashv	
	11110	0.04	3	72–88	81.3	8.3	_	
		0.05	4	85–101	93.8	8	_	
		0.03	5	80–97	88.4	8	-	
		0.1	1	76	NA	NA	_	
			1				_	
777 . C :	E1	0.5	5	75–89	80	5.6	- 	ID 2001 H W
Wheat Grain	Flonicami d	0.01	1	121	NA	NA		IB-2001-JLW- 001/99WDN
		0.05	1	91	NA	NA		
		0.1	2	79–121	100	NA		
		0.25	5	76–103	85.2	10.6		
		0.5	1	89	NA	NA		
	TFNA- AM	0.01	1	67	NA	NA		
	2 3171	0.05	1	83	NA	NA	\dashv	
1		0.03	2	79–80	79.5	NA	-	
1		0.1	5	60–80	72	9.7	\dashv	
		0.23	1	71	NA	NA	_	
	TFNA	0.01	1	75	NA	NA NA	\dashv	
	IFNA		1				_	
		0.05	1	115	NA	NA	_	
		0.1	2	96–97	96.5	NA	_	
		0.25	5	73–105	84.4	12		
		0.5	1	93	NA	NA		
	TFNG	0.01	1	74	NA	NA		
		0.05	1	89	NA	NA		
		0.1	2	83–89	86	NA		
		0.25	5	64–93	78.2	10.5		
		0.5	1	78	NA	NA		
Wheat Bran	Flonicami d	0.25	1	76	NA	NA		99WDN
		0.5	5	83–100	92.2	6.9		
	TFNA- AM	0.25	1	67	NA	NA		
1	CTIA1	0.5	5	71–89	78	8.8	\dashv	
	TFNA	0.25	1	63	NA	NA	\dashv	
	IIIM	0.25	5		NA 88		\dashv	
1	TEMC	+	1	76–99		9.9	\dashv	
	TFNG	0.25	1	71	NA	NA o	-	
WI C	L1	0.5	5	74–96	83.6	8		0210 4
Wheat Germ	Flonicami d		1	99	NA	NA		02JRA
1		0.5	5	80–110	94	11.2		
	TFNA- AM	0.25	1	68	NA	NA		
		0.5	5	67–80	72.4	5.2	7	
	TFNA	0.25	1	66	NA	NA	7	
1		0.5	5	70–92	78.8	9.7	\dashv	
	TFNG	0.25	1	80	NA	NA	\dashv	
	11110	0.5	5	70–92	79.6	9.7	\dashv	
Wheat Middlings	Flonicami d	0.25	5	76–114	85.6	16		99WDN
3.		0.5	5	77–89	82.6	6	7	
	TFNA- AM	0.25	5	80–94	87.8	6.8		
1	4 3171	0.5	5	68–97	84.6	10.7	\dashv	
	TFNA	0.25	5	84–94	89.6	4.4	\dashv	
	11.11/1	V.4J	٢	U T -74	07.0	[TT		

Matrix	Compound	Fortification	No of	Recovery [%]			Method	Reference
Within	Compound	Levels	samples		Mean	RSD	- Triculou	Reference
		[mg/kg]	1					
		0.5	5	75–104	87.6	10.7	7	
	TFNG	0.25	5	91–105	98.8	5		
		0.5	5	87–118	97	12		
Turnip Tops	Flonicami d	0.01	1	83	NA	NA		IB-2001-JLW-001
		0.05	1	89	NA	NA		
	TFNA- AM	0.01	1	82	NA	NA		
		0.05	1	75	NA	NA		
	TFNA	0.01	1	77	NA	NA		
		0.05	1	73	NA	NA		
	TFNG	0.01	1	76	NA	NA		
		0.05	1	70	NA	NA		
Turnip Roots	Flonicami d	0.01	1	96	NA	NA		IB-2001-JLW-001
		0.1	1	95	NA	NA	7	
	TFNA- AM	0.01	1	88	NA	NA	1	
		0.1	1	74	NA	NA	1	
	TFNA	0.01	1	91	NA	NA	1	
		0.1	1	70	NA	NA	7	
	TFNG	0.01	1	94	NA	NA	7	
		0.1	1	72	NA	NA	7	
Leaf Lettuce	Flonicami d	0.01	1	79	NA	NA	7	01JWB
	4	0.1	1	73	NA	NA	-	
		0.5	1	84	NA	NA	-	
		10	1	81	NA	NA	-	
	TFNA- AM	0.01	1	68	NA	NA	1	
	AW	0.1	1	74	NA	NA		
		0.5	1	70	NA	NA		
		10	1	73	NA	NA		
	TFNA	0.01	1	72	NA	NA	_	
		0.1	1	80	NA	NA	_	
		0.5	1	73	NA	NA		
		10	1	80	NA	NA	_	
	TFNG	0.01	1	72	NA	NA	_	
		0.1	1	76	NA	NA		
		0.5	1	75	NA	NA	_	
		10	1	79	NA	NA		0.4 ****
Head Lettuce	Flonicami d	0.01	2	88–115	101.5	NA		01JWB
		0.1	2	72–85	78.5	NA		
		0.5	2	88–91	89.5	NA		
		1	2	93–115	104	NA	_	
	TFNA- AM	0.01	2	90–101	95.5	NA		
		0.1	2	72–74	73	NA	7	
		0.5	2	79	79	NA	7	
		1	2	80–88	84	NA	7	
	TFNA	0.01	2	77–113	95	NA	7	
		0.1	2	73–83	78	NA		
		0.5	2	89–97	93	NA	7	
		1	2	94-110	102	NA	7	
	TFNG	0.01	2	122-125	123.5	NA	7	
		0.1	2	77–78	77.5	NA	7	
		0.5	2	82–88	85	NA	7	
		1	2	86–107	96.5	NA		
Celery	Flonicami	0.01	2	66–73	69.5	NA	7	01JWB

Matrix	Compound	Fortification	No of	Recovery [%	1	Method	Reference	
Within	Compound	Levels	samples		Mean	RSD	- Ivicinou	Reference
		[mg/kg]	samples	Range	ivican	KSD		
	d	[mg/kg]						
	<u>u</u>	0.05	1	72	NA	NA		
		0.03	2.	75–108	91.5	NA		
		0.25	1	78	NA	NA		
		5	1	83		NA NA		
	TEENIA	0.01	2		NA			
	TFNA-	0.01	2	76–85	80.5	NA		
	AM	0.05	1		27.4	27.4		
		0.05	1	71	NA	NA		
		0.1	2	66–88	77	NA		
		0.25	1	67	NA	NA		
		5	1	72	NA	NA		
	TFNA	0.01	2	76–78	77	NA		
		0.05	1	73	NA	NA		
		0.1	2	91–97	94	NA		
		0.25	1	0.25	NA	NA		
		5	1	77	NA	NA		
	TFNG	0.01	2	112	112	NA		
	11110	0.05	1	81	NA	NA		
		0.03	2	75–98				
		0.1	1		86.5	NA NA		
		+	1	66	NA			
		5	1	81	NA	NA		
Spinach	Flonicami d	0.01	2	97–100	98.5	NA		01JWB
		0.1	1	88	NA	NA		
		0.2	1	104	NA	NA		
		0.25	5	88–107	96.4	8		
		0.23	1	117	NA	NA		
		2	1					
		1	1	116	NA	NA		
	TFNA- AM	0.01	2	90–94	92	NA		
		0.1	1	66	NA	NA		
		0.2	1	99	NA	NA		
		0.25	5	73–93	83.2	8.2		
		0.5	1	98	NA	NA		
		2	1	88	NA	NA		
	TFNA	0.01	2	83–105	94	NA		
		0.1	1	83	NA	NA		
		0.2	1	108	NA	NA		
		0.25	5	77–117	90.6	16.1		
		0.23	1	118		NA		
			1		NA			
	TIEN I C	2	1	99	NA	NA		
	TFNG	0.01	2	82–84	83	NA		
		0.1	1	73	NA	NA		
		0.2	1	111	NA	NA		
		0.25	5	68–99	88	13.2		
		0.5	1	101	NA	NA		
		2	1	92	NA	NA		
Broccoli	Flonicami d	0.01	2	74–81	77.5	NA		03WDN
		0.025	1	113	NA	NA		
		1	4	88–95	92	3.2		
	TFNA-	0.01	2	82–87	84.5	NA		
	AM	0.027		110	.	,		
		0.025	1	112	NA	NA		
		1	4	77–92	85	6.3		
	TFNA	0.01	2	71–85	78	NA		
		0.025	1	119	NA	NA		
		1	4	78–106	96.3	13.2		
	TFNG	0.01	2	69–72	70.5	NA		
	-11.5	0.025	1	97	NA	NA		
		0.023	1	//	μ1/Δ	μıα		

Matrix	Compound	Fortification	on No. of Recovery [%]				Method	Reference
iviatiix	Compound	Levels	samples		Mean	RSD	Method	Reference
		[mg/kg]	F	runge	T-T-Cull	TOD.		
		1	4	79–98	89.3	8	1	
Cabbage	Flonicami d	0.01	2	94	94	NA		03WDN
		0.025	1	123	NA	NA	1	
		0.1	1	123	NA	NA	1	
		1	2	109-128	118.5	NA]	
		2	1	118	NA	NA]	
	TFNA- AM	0.01	2	93–97	95	NA		
		0.025	1	108	NA	NA	1	
		0.1	1	95	NA	NA	1	
		1	2	86-105	95.5	NA	1	
		2	1	83	NA	NA	1	
	TFNA	0.01	2	88	88	NA	1	
		0.025	1	119	NA	NA	1	
		0.1	1	78	NA	NA	1	
		1	2	87-111	99	NA]	
		2	1	97	NA	NA	1	
1	TFNG	0.01	2	97-100	NA	NA]	
		0.025	1	128	NA	NA	1	
		0.1	1	87	NA	NA	1	
		1	2	94-105	99.5	NA	1	
		2	1	90	NA	NA	1	
Mustard Greens	Flonicami d	0.5	1	117	NA	NA		03WDN
		2	1	100	NA	NA	1	
		16	1	99	NA	NA	1	
	TFNA- AM	0.5	1	90	NA	NA	-	
		2	1	89	NA	NA	1	
		16	1	92	NA	NA	1	
	TFNA	0.5	1	105	NA	NA	1	
	111111	2	1	107	NA	NA	1	
		16	1	99	NA	NA	1	
	TFNG	0.5	1	102	NA	NA	1	
		2	1	99	NA	NA	1	
		16	1	106	NA	NA	1	
Lemon	Flonicami d		5	86–100	93	6	AGR/MOA/ IKI220-1 v.1	ISK/IKI/06001
1		0.1	5	76–87	84	5	1	
1	TFNG	0.01	10	68–84	76	7	1	
		0.1	10	63–85	70	10	1	
1	TFNA	0.01	5	78–89	85	5	1	
		0.1	5	70–80	77	6	1	
	TFNA- AM	0.01	10	68–86	78	7	1	
1		0.1	10	56–94	72	15	1	
Oilseed rape	Flonicami d	0.01	5	77–106	90	13	Ī	
1		0.1	5	75–96	83	5	1	
	TFNG	0.01	5	58–84	75	13	1	
1		0.1	5	74–100	86	12	1	
	TFNA	0.01	5	74–90	81	8	1	
1		0.1	5	67–91	77	13	1	
	TFNA- AM	0.01	5	67–98	88	14	1	
	2 2171	0.1	5	74–101	87	13	1	
Wheat grain	Flonicami	0.01	5	102–117	109	5		
1	u	0.1	5	05 110	0.2	1.1	-	
	1	V.1	þ	85–110	93	11	<u> </u>	

Matrix	Compound	Fortification	No. of	Recovery [%]			Method	Reference
			samples		Mean	RSD		
		[mg/kg]						
		0.5	5	84–101	91	8		
	TFNG	0.01	5	85–113	101	12		
		0.1		81–113	94	13		
		1.0	5	74–89	83	7		
	TFNA			88–95	92	3		
			5	87–92	89	3		
	TFNA-	0.01	5	94–114	108	8		
	AM							
				83–116	96	13		
Plum	Flonicami d	0.01	5	89–121	105	12		
		0.1	5	80–102	94	9		
		0.5	5	82–93	89	5		
	TFNG	0.01	5	83–119	103	16		
		0.1	5	77–98	85	10		
	TFNA	0.01	5	95–113	102	7		
			5	76–105	88	13	1	
	TFNA- AM		5	101–113	107	5		
		0.1	5	77–91	82	7		
Prune	Flonicami			87–103	92	7		
1 10.110	d							
			5	81–93	89	6		
	TFNG		5	78–85	81	4		
			5	73–85	82	6		
	TFNA	0.01	5	75–87	80	7		
		0.1	5	80–97	90	7		
	TFNA- AM	0.01	5	69–75	72	4		
		0.1	5	76–86	83	5		
Animal Commo	odities					•	•	
Milk		0.01	5	72–81	76	6	842993	
	-	0.10	5	74–82	79	4		
	TFNA		5	79–105	94	11		
				80–93	88	6		
	TFNA-			78–91	83	6		
	AM	0.01	5	70-71	03			
		0.10	5	86–97	92	5		
	OH– TFNA- AM	0.01	5	74–83	80	5		
			5	74–86	82	7		
	TFNG	0.01	5	79–107	95	12		
		0.10	5	71–79	76	5		
Bovine Muscle	Flonicami d	0.01	5	102–108	107	2	844743	
		0.10	5	84–108	92	11		
	TFNA	0.01	5	85–108	98	8		
				95–108	101	6		
	TFNA- AM	0.01		95–101	98	3		
		0.10	5	86–106	92	10		
	OH-			83–100	94	7		
	TFNA- AM			87–99	94	6		
	TFNG	0.01	5	86–100	95	6		
	111,5			95–106	100	5		
Bovine Liver	Flonicami			72–80	78	4		
	d			. =				

Matrix	Compound	Fortification	No. of	Recovery [%]			Method	Reference
	- F June	Levels	samples		Mean	RSD	1	
		[mg/kg]						
		0.10	5	73–78	75	2	1	
	TFNA	0.01	5	82-107	91	12	1	
		0.10	5	82-88	86	3		
	TFNA-	0.01	5	79–87	82	4	1	
	AM							
		0.10	5	76–82	79	3	1	
	OH-	0.01	5	80–94	86	6	7	
	TFNA-	0.10	5	86–106	95	10	1	
	AM							
	TFNG	0.01	5	85–92	87	8	1	
		0.10	5	94–107	100	6	7	
Bovine Kidney	Flonicami d	0.01	5	72–101	82	14	1	
		0.10	5	78–97	87	10	7	
	TFNA	0.01	5	76–90	83	7	1	
	111121	0.10	5	89–96	92	4	1	
	TFNA- AM	0.01	5	90–105		6		
	μ Χ1 V1	0.10	5	99–106	103	3	-	
	OH-	0.10	5			7	-	
	OH- TFNA-	0.01	5	88–105 100–105	102	2	-	
A <u>N</u> TF	AM							
	TFNG	0.01	5	78–107	91	13	4	
		0.10	5	88–96		4	↓	
Bovine Fat	Flonicami d	0.01	5	108–110	109	1		
		0.10	5	104-108	106	2		
	TFNA	0.01	5	72–108	82	18		
		0.10	5	73–79	75	2	1	
	TFNA- AM	0.01	5	88–108	96	8		
		0.10	5	89–96	92	3	1	
	OH-	0.01	5	71–73	72	1	1	
	TFNA- AM	0.10	5	71–83		6		
	TFNG	0.01	5	88–99	93	4	1	
		0.10	5	99–108	104	4	1	
Poultry Egg	Flonicami d		5	81–88	ļ	3	1	
		0.10	5	92–101	96	4	1	
	TFNA	0.01	5	70–76	72	3	1	
		0.10	5	81–98	90	8	1	
	TFNA- AM	0.01	5	78–86	82	4	1	
	<u> </u>	0.10	5	87–99	93	6	1	
	OH-	0.10	1	81–91	87	5	╡	
	TFNA- AM	0.10	5	94–106	99	5	1	
	TFNG	0.01	5	74–85	78	5	1	
	12.10	0.10	5	94–110	100	6	1	
Poultry Muscle	Flonicami d		2	109–110		NA NA		
		0.10	2	105	105	NA	╡	
		1.0		98–99		NA	╡	
	TFNA	0.01	2	88		NA NA	-	
	11.1 N A	0.01	2	88–93		NA NA	-	
		1.0	2			NA NA	-	
	TENIA		2.	97–101			-	
	TFNA- AM	0.01		108–109		NA		
		0.10	2	103–106	104	NA		

Matrix	Compound	Fortification	No. of	Recovery [%]			Method	Reference
		Levels	samples	Range	Mean	RSD		
		[mg/kg]				1	_	
		1.0		98–99	98	NA	_	
	OH-	0.01	2	101–105	103	NA		
	TFNA-							
	AM	0.10	2	104 110	107	D.T.A	4	
		0.10	2	104–110	107	NA	4	
		1.0	2	100–102	101	NA	4	
	TFNG	0.01	2	89–107	98	NA		
		0.10	2	98–105	101	NA		
	<u> </u>	1.0	2	97–98	98	NA	4	
Poultry Liver	Flonicami d	0.01	2	106–107	106	NA		
		0.10	2	95–97	96	NA		
		1.0	2	96-100	98	NA	1	
	TFNA	0.01	2	80–94	88	NA	1	
		0.10	2	90–94	92	NA	1	
		1.0	2	95–97	96	NA	1	
	TFNA- AM	0.01	2	107–109	108	NA		
	. 11/1	0.10	2	97–99	98	NA	1	
		1.0	2	97–98	98	NA	1	
	OH-	0.01	2	80–89	84	NA	1	
	TFNA- AM							
		0.10	2	95–97	96	NA		
		1.0	2	92–94	93	NA		
	TFNG	0.01	2	83–90	86	NA		
		0.10	2	93–109	101	NA		
		1.0	2	99–101	100	NA		
Poultry Fat	Flonicami d	0.01	2	107–108	108	NA		
		0.10	2	107-108	107	NA	1	
		1.0	2	104-110	107	NA	1	
	TFNA	0.01	2	72–89	81	NA	1	
		0.10	2	70–76	73	NA	1	
		1.0	2	72–74	73	NA	1	
	TFNA- AM	0.01	2	92–104	98	NA		
	2 2171	0.10	2.	96–99	97	NA	1	
		1.0		95–101	98	NA NA	1	
	OH- TFNA-	0.01	2	75–78	76	NA		
	AM							
		0.10	2	74–81	78	NA	_	
		1.0	2	83	83	NA	_	
	TFNG	0.01	2	100-105	102	NA		
		0.10	2	106-108	107	NA		
		1.0	2	97–105	101	NA		
Milk	Flonicami d	0.01	5	88–92	90	2	AGR/MOA/ IKI-5	
		0.10	5	89–92	91	2	1	
	TFNA- AM	0.01	5	86–90	88	2		
		0.10	5	88–92	90	2	1	
Eggs	Flonicami d	0.01	5	87–93	90	3	1	
		0.10	5	92–98	95	3	1	
	TFNA- AM	0.01	5	91–93	92	2		
	4 3141	0.10	5	93–96	94	1	1	
Bovine Muscle	Flonicami		5	79–87	84	4	†	

Matrix	Compound	Compound Fortification No. of					Method	Reference
		Levels	samples	Range	Mean	RSD		
		[mg/kg]						
	d							
		0.10	5	81–88	84	4		
	TFNA- AM	0.01	5	83–88	85	2		
		0.10	5	85–91	87	3		
Bovine Fat	Flonicami d	0.01	5	91–93	92	1]	
		0.10	5	88–95	91	3	7	
	TFNA- AM	0.01	5	91–94	92	1		
		0.10	5	91–96	93	2		
Bovine Liver	Flonicami d	0.01	5	79–84	82	3		
		0.10	5	77–84	81	3		
	TFNA- AM	0.01	5	81–88	83	4		
		0.10	5	80–86	83	3		

Stability of residues in stored analytical samples

Information was received on the freezer storage stability of flonicamid and its metabolites in plant commodities. The storage stability of flonicamid and its metabolites TFNA, TFNA-AM and TFNG are described as follows. The results are shown in Table 42.

Wheat (grain, forage, straw, bran, middling, germ), cottonseed (seed, hulls, meal, refined oil), spinach, potato tuber, apple juice and tomato

Report: P-3570

Study No. 178CSS02R1

Method: P-3561

Description: Untreated control samples were fortified with flonicamid and its metabolites TFNA, TFNA-AM and TFNG at a concentration of 0.5 mg/kg per analyte and then frozen below -17 °C. Samples were analysed immediately after fortification (0 day) and after storage intervals up to 2 years (23 months). At each interval, three stored samples were analysed, with one or more procedural recovery samples (control samples spiked just before analysis at 0.5 mg/kg).

Table 42 Storage Stability of Flonicamid, TFNA, TFNA-AM and TFNG in wheat, cotton, potato, apple and tomato

Time	Flonicamid							
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)			
Wheat Gra	n	•	•	•				
0	0.50, 0.47, 0.53	0.5	100%	76				
3	0.42, 0.37, 0.40	0.4	80%	89				
6	0.39, 0.38, 0.46	0.41	82%	103				
9	0.40, 0.40, 0.45	0.42	84%	86				
15	0.50, 0.49, 0.44	0.48	96%	79				
23	0.48, 0.52, 0.54	0.51	102%	82				
Wheat Fora	ıge							
0	0.57, 0.52, 0.53	0.54	100%	79				

Time	Flonicamid							
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)			
3	0.52, 0.48, 0.53	0.51	94%	96				
6	0.22, 0.29, 0.68	0.40	74%	72				
9	0.49, 0.48, 0.52	0.50	93%	98				
15	0.43, 0.41, 0.46	0.43	80%	95				
23	0.48, 0.57, 0.55	0.53	98%	100				
Wheat St		0.55	7070	100				
0	0.55, 0.58, 0.53	0.55	100%	93				
3	0.52, 0.51, 0.48	0.5	91%	96				
6	0.44, 0.46, 0.40	0.44	80%	75				
9	0.48, 0.50, 0.46	0.48	87%	75				
15	0.44, 0.47, 0.46	0.46	84%	71				
23	0.52, 0.53, 0.53	0.52	95%	75				
Wheat B		0.32	7370	13				
0	0.53, 0.38, 0.48	0.46	100%	76				
3	0.49, 0.44, 0.47	0.47	102%	83				
6	0.37, 0.40, 0.35	0.37	80%	91				
9	0.43, 0.45, 0.40	0.43	93%	100				
15	0.47, 0.45, 0.49	0.47	102%	98				
23	0.51, 0.57, 0.53	0.54	117%	89				
Wheat G		0.54	11770	07				
0	0.55, 0.50, 0.54	0.53	100%	99				
3	0.59, 0.51, 0.42	0.51	96%	110				
6	0.52, 0.46, 0.53	0.50	94%	80				
9	0.47, 0.45, 0.45	0.46	87%	99				
15	0.39, 0.47, 0.37	0.41	77%	91				
23	0.42, 0.41, 0.44	0.41	79%	90				
Wheat M		0.42	1770	70				
0	0.30, 0.34, 0.51	0.38	100%	79				
3	0.24, 0.39, 0.43	0.35	92%	81				
6	0.58, 0.36, 0.58	0.51	134%	76, 89	83			
9	0.54, 0.50, 0.53	0.53	139%	77, 89	83			
15	0.51, 0.53, 0.60	0.55	145%	82, 77	80			
23	0.45, 0.48, 0.50	0.48	126%	114, 77	96			
Spinach	0.43, 0.40, 0.30	0.40	12070	117, 77	70			
0	0.48, 0.48, 0.50	0.49	100%	89				
3	0.43, 0.44, 0.46	0.44	90%	117				
6	0.62, 0.65, 0.59	0.62	127%	101				
9	0.46, 0.52, 0.47	0.48	98%	88				
15	0.49, 0.41, 0.41	0.44	90%	94				
23	0.45, 0.46, 0.44	0.45	92%	107				
Cottonse	<u> </u>	1 05	/ - / 0		1			
0	0.56, 0.55, 0.59	0.57	100%	78				
3	0.46, 0.48, 0.54	0.43	75%	96				
6	0.42, 0.39, 0.38	0.40	70%	86, 106	96			
9	0.35, 0.38, 0.38	0.37	65%	97, 105	101			
15	0.48, 0.45, 0.47	0.47	82%	80, 84	82			
23	0.43, 0.48, 0.53	0.47	84%	84, 90	87			
Cotton H		0.40	O+ /0	UT, 7U	07			
		0.46	1000/	100				
3	0.30, 0.53, 0.56		100%					
3	0.51, 0.53, 0.56	0.53	92%	125				

Time	Flonicamid								
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)				
6	0.56, 0.55, 0.57	0.56	122%	72					
9	0.55, 0.45, 0.54	0.51	111%	93					
15	0.55, 0.58, 0.62	0.58	126%	82					
23	0.61, 0.36, 0.56	0.51	111%	93					
Cotton M	I eal								
0	0.40, 0.42, 0.41	0.41	100%	100					
3	0.59, 0.50, 0.48	0.52	127%	99					
6	0.58, 0.58, 0.46	0.54	132%	73					
9	0.45, 0.34, 0.44	0.41	100%	103					
15	0.49, 0.48, 0.50	0.49	120%	90					
23	0.44, 0.44, 0.40	0.43	86%	122					
Cotton R	efined oil								
0	0.48, 0.45, 0.47	0.47	100%	125					
3	0.49, 0.43, 0.47	0.46	98%	83					
6	0.59, 0.53, 0.47	0.53	113%	103, 110	107				
9	0.54, 0.53, 0.55	0.54	115%	86, 83	85				
15	0.52, 0.49, 0.54	0.52	111%	90, 92	86				
23	0.41, 0.47, 0.42	0.43	91%	104, 107	106				
Apple jui	ice								
0	0.52, 0.54, 0.47	0.51	100%	113					
3	0.48, 0.47, 0.43	0.48	75%	125					
6	0.41, 0.47, 0.50	0.46	90%	91					
9	0.46, 0.45, 0.47	0.46	90%	95					
15	0.47, 0.48, 0.56	0.50	98%	92					
23	0.58, 0.55, 0.48	0.54	106%	90					
Tomato		•	•	•	•				
0	0.52, 0.55, 0.57	0.55	100%	102					
3	0.56, 0.54, 0.52	0.54	98%	111					
6	0.48, 0.43, 0.54	0.48	87%	91					
9	0.45, 0.46, 0.51	0.47	85%	96					
15	0.55, 0.52, 0.51	0.53	96%	82					
23	0.59, 0.55, 0.61	0.58	105%	86					
Potato Tu	ıber	•	•	•	•				
0	0.46, 0.41, 0.45	0.44	100%	111					
3	0.41, 0.44, 0.44	0.43	79%	124					
6	0.38, 0.40, 0.40	0.39	89%	105, 123	114				
9	0.51, 0.50, 0.62	0.54	123%	92 ,97	95				
15	0.45, 0.52, 0.42	0.46	105%	99, 97	98				
23	0.56, 0.53, 0.49	0.53	120%	112, 92	102				
TFNG		L	•	<u> </u>					
Wheat gr									
0	0.51, 0.49, 0.58	0.53	100%	64					
3	0.46, 0.48, 0.49	0.48	91%	78					
6	0.39, 0.43, 0.46	0.43	81%	93					
9	0.45, 0.51, 0.53 0.58, 0.53, 0.50	0.49	92%	76					
23	0.50, 0.52, 0.50	0.54	96%	82					
Wheat Fo		1 0.02	1 / 5 / 6	, 02	1				
0	0.54, 0.52, 0.52	0.53	100%	80					
3	0.53, 0.48, 0.51	0.51	96%	91					
6	0.42, 0.41, 0.41	0.41	77%	91					

Time	Flonicamid				
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)
9	0.56, 0.59, 0.56	0.57	108%	94	
15	0.48, 0.47, 0.47	0.47	89%	88	
23	0.49, 0.56, 0.56	0.54	102%	84	
Wheat St		'		'	'
0	0.63, 0.65, 0.63	0.63	100%	76	
3	0.56, 0.53, 0.53	0.54	114%	75	
6	0.46, 0.49, 0.42	0.46	82%	89	
9	0.47, 0.41, 0.48	0.45	90%	79	
15	0.49, 0.53, 0.50	0.51	100%	81	
23	0.49, 0.55, 0.56	0.53	111%	76	
Wheat Br		Louis	T 40001	1 =-	
0	0.53, 0.38, 0.47	0.46	100%	71	
3	0.52, 0.45, 0.46	0.47	102%	74	
9	0.36, 0.41, 0.37	0.38	83%	96	
15	0.45, 0.53, 0.48 0.48, 0.47, 0.50	0.48	104%	80 85	
23	0.50, 0.46, 0.48	0.48	111%	81	
Wheat Ge		0.31	11170	01	
0	0.52, 0.54, 0.53	0.53	100%	80	
3	0.63, 0.58, 0.59	0.6	113%	92	
6	0.50, 0.47, 0.47	0.48	91%	70	
9	0.56, 0.54, 0.57	0.56	106%	78	
15	0.44, 0.49, 0.51	0.48	91%	87	
23	0.53, 0.60, 0.62	0.58	109%	71	
Wheat M		•	•	•	•
0	0.48, 0.52, 0.49	0.5	100%	91	
3	0.55, 0.57, 0.55	0.56	112%	90	
6	0.58, 0.40, 0.59	0.52	104%	100, 96	98
9	0.49, 0.56, 0.47	0.51	102%	99, 87	93
15	0.53, 0.55, 0.60	0.56	112%	105, 118	112
23	0.56, 0.53, 0.56	0.55	110%	99, 94	97
Spinach	0.50.050.054	0.52	1000/	1.01	
3	0.50, 0.50, 0.54	0.52	100%	81	
6	0.43, 0.45, 0.44 0.40, 0.43, 0.39	0.44	85% 79%	96	
9	0.44, 0.48, 0.47	0.46	88%	68	
15	0.55, 0.47, 0.47	0.40	96%	96	
23	0.46, 0.47, 0.46	0.46	88%	99	
Cottonsee		0.40	0070		
0	0.56, 0.57, 0.56	0.56	100%	71	
3	0.48, 0.53, 0.53	0.51	91%	87	
6	0.43, 0.38, 0.37	0.39	70%	84, 92	88
9	0.46, 0.42, 0.43	0.44	79%	83, 111	97
15	0.50, 0.47, 0.47	0.48	86%	81, 77	79
23	0.48, 0.50, 0.54	0.51	91%	91, 95	93
Cotton H	1				
0	0.57, 0.61, 0.61	0.6	100%	92	
3	0.65, 0.63, 0.60	0.63	105%	106	
6	0.46, 0.48, 0.48	0.47	78%	84	
9	0.39, 0.54, 0.41	0.45	75%	80	
15	0.54, 0.55, 0.58	0.56	93%	73	
23	0.59, 0.60, 0.55	0.58	97%	82	
Cotton M	eal 0.43, 0.45, 0.43	0.42	1000/	05	
	i U.43. U.43. U.43	0.43	100%	85	1
0		0.55	128%	Q1	
3	0.56, 0.54, 0.54 0.46, 0.50, 0.44	0.55 0.47	128% 109%	81 75	

Time	Flonicamid				
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)
15	0.48, 0.50, 0.52	0.5	116%	84	
23	0.55, 0.52, 0.52	0.53	123%	82	
Cotton F	Refined Oil	•	•	•	•
0	0.42, 0.37, 0.43	0.41	100%	83	
3	0.39, 0.37, 0.42	0.39	151%	63	
6	0.47, 0.60, 0.49	0.52	127%	79, 73	76
9	0.53, 0.56, 0.58	0.56	137%	64, 76	70
15	0.53, 0.48, 0.54	0.52	127%	81, 80	81
23	0.44, 0.51, 0.45	0.47	115%	114, 100	107
Apple Ju		0.51	1,000/	115	
0	0.55, 0.51, 0.48	0.51	100%	115	
6	0.47, 0.48, 0.49	0.48	71%	133 82	
9	0.42, 0.46, 0.46	0.45	88%		
15	0.41, 0.47, 0.50 0.50, 0.49, 0.57	0.46	90%	82 88	
23	0.59, 0.62, 0.50	0.52	102%	65	
Tomato	0.57, 0.02, 0.50	0.57	11270	1 03	
0	0.59, 0.49, 0.52	0.53	100%	112	
3	0.51, 0.51, 0.51	0.51	96%	120	
6	0.46, 0.45, 0.44	0.45	85%	87	
9	0.48, 0.50, 0.51	0.5	94%	82	
15	0.51, 0.51, 0.49	0.5	94%	88	
23	0.54, 0.60, 0.64	0.59	111%	82	
Potato T		•	·	'	<u>'</u>
0	0.48, 0.43, 0.49	0.47	100%	90	
3	0.45, 0.48, 0.46	0.46	98%	104	
6	0.42, 0.40, 0.41	0.41	87%	97, 102	100
9	0.58, 0.48, 0.60	0.53	113%	78, 90	84
15	0.48, 0.54, 0.48	0.5	106%	88, 86	87
23	0.56, 0.54, 0.55	0.55	117%	102, 93	98
TFNA					
Wheat C		T =	Lance	T ==	
0	0.43, 0.47, 0.48	0.46	100%	73	
3	0.47, 0.42, 0.44	0.44	96%	93	
6	0.37, 0.37, 0.42	0.39	85%	105	
	0.46, 0.51, 0.54	0.5	109% 111%	80	
15 23	0.53, 0.52, 0.47 0.52, 0.48, 0.53	0.51	111%	83	
Wheat F		0.31	11170	01	
0	0.53, 0.48, 0.48	0.49	100%	79	
3	0.52, 0.45, 0.46	0.48	98%	96	
6	0.49, 0.44, 0.39	0.44	90%	72	
9	0.50, 0.53, 0.56	0.53	108%	98	
15	0.40, 0.39, 0.44	0.47	96%	95	
23	0.47, 0.67, 0.62	0.59	120%	100	
Wheat S					· · · · · · · · · · · · · · · · · · ·
0	0.66, 0.67, 0.66	0.66	100%	83	
3	0.57, 0.56, 0.54	0.56	102%	83	
6	0.38, 0.40, 0.39	0.39	70%	84	
9	0.44, 0.42, 0.45	0.44	77%	87	
15	0.45, 0.49, 0.45	0.46	82%	85	
23	0.49, 0.49, 0.50	0.49	105%	71	
Wheat B	+	T 0.45	I 4000	1.0	
0	0.48, 0.40, 0.47	0.45	100%	63	
3	0.47, 0.48, 0.29	0.41	91%	80	
6	0.37, 0.43, 0.36	0.39	87%	99	
9	0.46, 0.53, 0.46	0.48	107%	89	

Time	Flonicamid				
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)
15	0.46, 0.44, 0.46	0.45	100%	96	
23	0.44, 0.53, 0.46	0.48	107%	76	
Wheat Go	erm	·		<u> </u>	·
0	0.59, 0.68, 0.65	0.64	100%	66	
3	0.76, 0.62, 0.72	0.7	109%	71	
6	0.62, 0.54, 0.57	0.58	91%	70	
9	0.50, 0.49, 0.52	0.5	78%	86	
15	0.41, 0.44, 0.46	0.44	69%	92	
23	0.53, 0.53, 0.52	0.53	83%	75	
Wheat M					
0	0.49, 0.52, 0.49	0.5	100%	91	
3	0.52, 0.57, 0.54	0.55	110%	89	
6	0.60, 0.38, 0.62	0.53	106%	84, 88	86
9	0.47, 0.58, 0.52	0.52	104%	86, 75	81
15	0.50, 0.53, 0.54	0.52	104%	93, 104	99
23	0.48, 0.51, 0.57	0.52	104%	94, 82	88
Spinach	0.51 0.40 0.51	10.5	1000/	104	
0	0.51, 0.48, 0.51	0.5	100%	94	
3	0.42, 0.45, 0.44	0.43	86%	118	
6	0.40, 0.49, 0.45	0.44	88%	85	
9	0.47, 0.54, 0.50	0.5	100%	80	
15 23	0.51, 0.42, 0.42	0.45	90%	117	
Cottonse	0.45, 0.54, 0.51	0.5	100%	77	
0		0.50	1000/	02	
3	0.56, 0.57, 0.57 0.45, 0.47, 0.51	0.56	100% 86%	92	
6	0.42, 0.36, 0.35	0.48	68%	95, 108	102
9	0.41, 0.39, 0.40	0.38	71%	92, 120	106
15	0.48, 0.47, 0.44	0.46	82%	86, 92	89
23	0.41, 0.46, 0.51	0.46	82%	81, 95	88
Cotton H		0.40	0270	01, 73	00
0	0.55, 0.58, 0.57	0.57	100%	121	
3	0.62, 0.59, 0.59	0.6	79%	133	
6	0.53, 0.51, 0.52	0.52	91%	97	
9	0.42, 0.56, 0.40	0.46	81%	90	
15	0.55, 0.55, 0.60	0.57	100%	89	
23	0.60, 0.61, 0.61	0.61	107%	86	
Cotton M	eal	•	•	•	<u>'</u>
0	0.43, 0.40, 0.48	0.43	100%	76	
3	0.60, 0.57, 0.55	0.58	135%	77	
6	0.56, 0.59, 0.52	0.56	130%	84	
9	0.44, 0.43, 0.44	0.44	102%	77	
15	0.49, 0.51, 0.50	0.5	116%	99	
23	0.50, 0.54, 0.50	0.51	119%	80	
Cottonse	ed Refined Oil				
0	0.46, 0.45, 0.45	0.45	100%	93	
3	0.41, 0.46, 0.39	0.42	137%	68	
6	0.51, 0.64, 0.55	0.57	127%	82, 77	80
9	0.51, 0.54, 0.58	0.54	120%	69, 89	79
15	0.49, 0.48, 0.53	0.5	111%	86, 89	88
23	0.29, 0.35, 0.42	0.35	78%	126, 100	113
Apple Jui		0.74	1000:	107	
0	0.61, 0.56, 0.51	0.56	100%	105	
3	0.49, 0.55, 0.52	0.52	68%	136	
6	0.40, 0.43, 0.46	0.43	77%	101	
9	0.44, 0.44, 0.50	0.46	82%	90	
15	0.45, 0.46, 0.54	0.48	86%	97	

Time	Flonicamid				
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)
23	0.55, 0.53, 0.47	0.52	93%	89	
Tomato	T 0 = 0 + 0 0 = =	T	1,000	1.00	
0	0.53, 0.49, 0.57	0.53	100%	102	
3	0.51, 0.50, 0.47	0.49	76%	122	
9	0.43, 0.43, 0.41	0.43	81%	110 89	
15	0.48, 0.50, 0.55 0.48, 0.47, 0.46	0.51	96% 89%	95	
23	0.54, 0.54, 0.62	0.57	108%	93	
Potato Ti		0.37	10070	73	
0	0.46, 0.39, 0.47	0.44	100%	105	
3	0.41, 0.43, 0.44	0.43	79%	124	
6	0.43, 0.39, 0.47	0.43	98%	104, 98	101
9	0.50, 0.47, 0.58	0.52	118%	85, 109	97
15	0.46, 0.49, 0.44	0.46	105%	104, 96	100
23	0.48, 0.50, 0.49	0.49	111%	119, 96	108
TFNA-A					
Wheat G					
0	0.44, 0.48, 0.54	0.48	100%	60	
3	0.40, 0.40, 0.45	0.42	88%	71	
6	0.38, 0.37, 0.44	0.40	83%	80	
9	0.43, 0.43, 0.50	0.45	94%	79	
15	0.55, 0.50, 0.47	0.51	169%	63	
23	0.49, 0.48, 0.50	0.49	102%	78	
Wheat Fo	, 	1054	1000/	1.70	
0	0.55, 0.51, 0.55	0.54	100%	73	
3	0.51, 0.47, 0.50	0.49	91%	82	
9	0.43, 0.42, 0.39 0.51, 0.53, 0.54	0.41	76% 96%	91	
15	0.45, 0.45, 0.46	0.45	83%	75	
23	0.49, 0.53, 0.55	0.52	96%	74	
Wheat St		0.32	7070	7 -	
0	0.68, 0.70, 0.67	0.68	100%	69	
3	0.60, 0.57, 0.56	0.58	85%	72	
6	0.42, 0.45, 0.39	0.42	62%	77	
9	0.44, 0.44, 0.45	0.44	65%	71	
15	0.46, 0.50, 0.47	0.48	112%	63	
23	0.51, 0.52, 0.51	0.51	121%	62	
Wheat B	ran				
0	0.53, 0.42, 0.48	0.48	100%	67	
3	0.50, 0.46, 0.43	0.46	96%	71	
6	0.37, 0.42, 0.38	0.39	81%	89	
9	0.44, 0.47, 0.43	0.45	94%	86	
15	0.45, 0.48, 0.48	0.47	98%	73	
23	0.50, 0.50, 0.48	0.5	104%	71	
Wheat G		0.54	1000/	60	
3	0.54, 0.55, 0.52	0.54	100%	68 80	
6	0.62, 0.57, 0.59	0.39	109%	68	
9	0.54, 0.52, 0.52	0.43	98%	74	
15	0.40, 0.46, 0.49	0.45	83%	73	
23	0.53, 0.57, 0.56	0.55	152%	67	
Wheat M		1 0.55	15270	1 0,	<u> </u>
0	0.47, 0.53, 0.51	0.5	100%	94	
3	0.53, 0.58, 0.50	0.54	108%	89	
6	0.60, 0.40, 0.58	0.53	106%	93, 87	90
9	0.54, 0.55, 0.57	0.55	110%	81, 82	82
15	0.52, 0.54, 0.57	0.54	108%	91, 97	94

Time	Flonicamid				
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)
23	0.51, 0.54, 0.56	0.54	108%	80, 68	74
Spinach		-			
0	0.53, 0.53, 0.54	0.53	100%	79	
3	0.43, 0.46, 0.43	0.44	83%	98	
6	0.40, 0.44, 0.37 0.44, 0.49, 0.50	0.4	75% 91%	93	
15	0.44, 0.49, 0.30	0.48	92%	81	
23	0.42, 0.44, 0.47	0.49	83%	90	
Cottonsee	· · · · ·	0.77	0370] 70	
0	0.56, 0.57, 0.56	0.56	100%	78	
3	0.48, 0.48, 0.52	0.49	88%	96	
6	0.42, 0.38, 0.36	0.38	68%	86, 106	96
9	0.42, 0.39, 0.41	0.41	73%	97, 105	101
15	0.46, 0.43, 0.45	0.45	80%	80, 84	82
23	0.41, 0.47, 0.52	0.47	84%	84, 90	87
Cotton Hu			T		
0	0.55, 0.57, 0.59	0.57	100%	89	
3	0.63, 0.58, 0.59	0.6	105%	100	
6	0.46, 0.49, 0.46	0.47	82%	82	
9	0.45, 0.56, 0.43	0.48	84%	76	
15 23	0.53, 0.57, 0.60	0.57	154%	65 72	
Cotton Me	0.65, 0.63, 0.59	0.62	109%	12	
0	0.41, 0.44, 0.42	0.42	100%	78	
3	0.56, 0.54, 0.55	0.55	131%	72	
6	0.49, 0.50, 0.46	0.48	114%	78	
9	0.47, 0.44, 0.45	0.45	160%	67	
15	0.47, 0.48, 0.51	0.49	117%	75	
23	0.55, 0.52, 0.51	0.53	186%	68	
Cottonsee	d Refined Oil	•		•	•
0	0.40, 0.39, 0.42	0.4	100%	102	
3	0.41, 0.37, 0.41	0.4	100%	76	
6	0.52, 0.66, 0.57	0.58	145%	77, 71	74
9	0.55, 0.57, 0.59	0.57	207%	65 73	69
15	0.51, 0.46, 0.51	0.49	178%	70, 68	69
23	0.35, 0.48, 0.45	0.43	108%	80, 77	79
Apple Juio		0.52	1000/	80	
3	0.55, 0.53, 0.50 0.47, 0.51, 0.49	0.53 0.49	100% 92%	97	
6	0.40, 0.44, 0.44	0.49	79%	86	
9	0.44, 0.49, 0.52	0.42	92%	80	
15	0.49, 0.52, 0.57	0.53	100%	75	
23	0.57, 0.61, 0.47	0.55	104%	72	
Tomato	, ,	•	•	•	•
0	0.60, 0.52, 0.54	0.55	100%	79	
3	0.53, 0.50, 0.53	0.52	95%	89	
6	0.46, 0.42, 0.41	0.43	78%	88	
9	0.51, 0.52, 0.56	0.53	96%	79	
15	0.53, 0.51, 0.51	0.52	95%	73	
23	0.54, 0.57, 0.67	0.59	107%	75	
Potato Tu		10.46	1000/	100	
0	0.48, 0.43, 0.48	0.46	100%	89	
6	0.43, 0.45, 0.45 0.40, 0.38, 0.38	0.44	96% 85%	101	104
U			111%	78, 91	85
0	0/18/0/18/0/57				
9 15	0.48, 0.48, 0.57 0.47, 0.53, 0.44	0.51 0.48	104%	75, 75	75

Apples, potatoes, wheat grain and wheat straw

Report: Not assigned

Study No. A-22-00-03

Method: "Determination of Residues of IKI-220 and its Metabolites TFNG, TFNA and TFNA-AM in Various Crops—Validation of the Method"

Description: Untreated control samples were fortified with flonicamid and its metabolites TFNA, TFNA-AM and TFNG at a concentration of 0.1 mg/kg per analyte for apple, potato and wheat grain and 0.2 mg/kg for wheat straw and then frozen below–17 °C. Samples were analysed immediately after fortification (0 day) and after storage intervals up to 18 months. At each interval, two stored samples were analysed, with one or more procedural recovery samples (control samples spiked just before analysis).

Table 43 Storage Stability of Flonicamid, TFNA, TFNA-AM and TFNG in apple, potato and wheat

Time	Flonicamid				
	Individual Stored	Mean Stored	Remaining	Individual Procedural	Mean Procedural
	Sample Residues	Sample Residue		Recoveries (%)	Recovery (%)
	(mg/kg)	(mg/kg)			
Apples					
0		0.093	100%	95, 89, 86	90
3	0.09, 0.09	0.09	97%	93	93
6	0.11, 0.11	0.11	118%	106	106
12	0.11, 0.10	0.11	118%	99	99
18	0.10, 0.09	0.10	108%	89, 87	88
Potatoes					
0		0.09	100%	89, 92, 93	91
3	0.09, 0.10	0.09	100%	107	107
6	0.11, 0.10	0.10	111%	109	109
12	0.10, 0.14	0.12	133%	82	82
18	0.12, 0.10	0.10	111%	113, 96	104
Wheat grain	1				
0		0.10	100%	93, 92, 98	94
3	0.10, 0.10	0.10	100%	96	96
6	0.08, 0.08	0.08	80%	87	87
12	0.08, 0.10	009	90%	96	96
18	0.09, 0.10	0.10	100%	94, 94	94
Wheat straw	/				•
0		0.19	100%	104, 110, 82	99
3	0.20, 0.18	0.19	100%	90	90
6	0.22, 0.22	0.22	116%	113	113
12	0.21, 0.22	0.21	111%	102	102
18	0.20, 0.23, 0.21	0.22	116%	87, 111	99
TFNG	<u> </u>	•	<u>'</u>		•
Apples					
0	0.09, 0.08	0.09	100%	76, 93, 78	82
3	0.10, 0.09	0.10	111%	91.00	91
6	0.08, 0.09	0.09	100%	74.00	74
12	0.12, 0.11	0.12	133%	56.00	89
18	0.10, 0.10	0.10	111%	94, 102	97
Potatoes					
0		0.08	100%	90, 84, 84	86
3	0.08, 0.09	0.08	100%	102	102
6	0.10, 0.09	0.09	113%	93	93
12	0.09, 0.11	0.10	125%	80	80
18	0.11, 0.10	0.10	125%	106, 91	98

Time	Flonicamid				
	Individual Stored	Mean Stored	Remaining	Individual Procedural	Mean Procedural
	Sample Residues	Sample Residue		Recoveries (%)	Recovery (%)
	(mg/kg)	(mg/kg)			
0		0.08	100%	87, 67, 86	80
3	0.08, 0.08	0.08	100%	78	78
6	0.08, 0.08	0.08	100%	92	92
12	0.17, 0.09	0.13	163%	85	85
18	0.08, 0.08	0.08	100%	83	83
Wheat straw	/	0.15	1000/	70 94 97	77
3	0.16, 0.15	0.15	100%	79, 84, 87 78	78
6	0.18, 0.18	0.18	120%	93	93
12	0.20, 0.20	0.18	133%	100	100
18	0.16, 0.20, 0.23	0.2	133%	68, 124	96
	0.10, 0.20, 0.23	0.2	13370	00, 124	170
TFNA					
Apples					
0		0.10	100%	90, 81, 83	85
3	0.08, 0.07	0.07	70%	66	66
6	0.08, 0.07	0.07	70%	77	77
12	0.12, 0.11	0.12	120%	83	83
18	0.08, 0.08	0.08	80%	88, 86	87
Potatoes	T	Laur	Tier	Tana are are	L
0		0.11	100%	115, 106, 113	112
3	0.10, 0.12	0.11	100%	78	78
6	0.08, 0.08	0.08	73%	77	77
12	0.09, 0.11	0.10	91%	80	80
18	0.07, 0.09	0.08	73%	71	71
Wheat grain	· ·				
0	·	0.1	100%	117, 101, 99	106
3	0.07, 0.07	0.07	70%	71	71
				89	89
6	0.09, 0.08	0.08	80%		
12	0.12, 0.08	0.1	100%	79	79
18	0.07, 0.07	0.07	70%	72	72
Wheat straw	7				
0		0.18	100%	109, 109, 76	98
3	0.14, 0.13	0.13	72%	72	72
6	0.15, 0.15	0.15	83%	77	77
12	0.19, 0.19	0.19	106%	97	97
18	0.13, 0.15, 0.14	0.14	120%	45, 85	65
TFNA-AM	,,	1		,	1
Apples					
0		0.08	100%	93, 81, 83	86
3	0.08, 0.09	0.09	113%	97	97
6	0.10, 0.09	0.10	125%	94	94
12	0.11, 0.08	0.10	125%	91	91
18	0.07, 0.10	0.09	113%	83, 100	92
Potatoes		•			•
0		0.08	100%	80, 73, 79	78
3	0.08, 0.09	0.08	100%	89	89
6	0.09, 0.09	0.09	113%	87	87
12	0.08, 0.10	0.09	113%	77	77
18	0.09, 0.10	0.09	113%	78	78
Wheat grain	<u> </u>				
0		0.09	100%	93, 84, 99	92
3	0.08, 0.08	0.08	89%	82	82
6	0.08, 0.07	0.08	89%	81	81
12	0.07, 0.08	0.08	89%	76	76
18	0.08, 0.08	0.08	89%	87	87

Time	Flonicamid				
	Individual Stored Sample Residues (mg/kg)	Mean Stored Sample Residue (mg/kg)	Remaining	Individual Procedural Recoveries (%)	Mean Procedural Recovery (%)
Wheat straw					
0		0.17	100%	85, 86, 80	84
3	0.17, 0.15	0.16	94%	80	80
6	0.19, 0.19	0.19	112%	99	99
12	0.17, 0.17	0.17	100%	87	86
18	0.16, 0.19, 0.20	0.18	106%	70, 107	89

USE PATTERN

The insecticide flonicamid is registered in Canada, the United States, Slovenia, Cyprus and Australia for control of various insects on a variety of crops. The information available to the Meeting on registered uses on various fruits, vegetables, tree nuts, oilseeds, dried hops, mint and tea is summarized in Table 44. The manufacturer submitted labels for all flonicamid uses.

Table 44 Registered uses of flonicamid

Crop	Country	Form.	Application							
			Method	Rate, kg ai/ha	Spray conc., kg ai/hL	No.	Days			
Pome fruits										
Pome fruits	USA	50WG/50SG	Foliar	0.07-0.1	0.01-0.02	3	21			
Apples	AUS	500WG	Foliar	NS	0.005-0.01	3	21			
Apples, pears	Cyprus	50WG	Foliar	0.06-0.14	0.006-0.01	3	21			
Apples	Slovenia	50WG	Foliar	0.07	0.014	3	21			
Stone fruits										
Stone fruits	USA	50WG/50SG	Foliar	0.07-0.1	0.01-0.02	3	14			
Peaches	Cyprus	50WG	Foliar	0.06-0.07	0.006-0.007	2	14			
Plums							35			
Peaches	Slovenia	50WG	Foliar	0.07	0.014	3	14			
Berries and other sma	all fruit	1		<u>'</u>	•	-U				
Low growing berries	USA	50SG	Foliar	0.1	0.02-0.10	3	0			
Brassica (cole or cabl	bage) veget	ables				•	•			
Brassica (cole) leafy vegetables		50WG/50SG	Foliar	0.07-0.1	0.07-0.1	3	0			
Fruiting vegetables, c	cucurbits									
Cucurbits	USA	50WG/50SG	Foliar	0.07-0.1	0.07-0.1	3	0			
Greenhouse	USA	50WG/50SG	Foliar	0.15	0.1-0.15	2	0			
cucumber			Soil	0.15	NS	2	0			
Cucurbits	AUS	50WG	Foliar	0.05-0.1	NS	3	1			
Cucurbits (Field and	Cyprus	50WG	Soil	0.05	0.005	3 (total)	3			
Greenhouse)			Foliar	0.10	NS					
Cucurbits	Slovenia	50WG	Foliar	0.05	0.005	3	1			
Fruiting vegetables, o	ther than c	ucurbits		•						
Fruiting vegetables	USA	50WG/50SG	Foliar	0.1	0.1	3	0			
				0.15	0.15	2	0			
Greenhouse tomatoes	USA	50WG/50SG	Foliar	0.15	0.15	2	0			
Tomatoes (field and greenhouse)	Cyprus	50WG	Soil Foliar	0.05-0.06 0.10	0.005-0.006 NS	3 (total)	3			
Leafy vegetables (inc	ludino Bra	ssica leafy vege		0.10	IND	1				
Leafy vegetables (Inc	USA		Foliar	0.07-0.1	0.07-0.3	3	0			
Leary vegetables	UDA	D606/D000	1 Onai	0.07-0.1	0.07-0.3	٦	U			

Crop	Country	Form.	Applicatio	n			PHI,
			Method	Rate, kg ai/ha	Spray conc., kg ai/hL	No.	Days
(except Brassica							
vegetables)							
Brassica (cole) leafy vegetables	USA	50WG/50SG	Foliar	0.07-0.1	0.07-0.3	3	0
Root and tuber vegeta	ables			<u> </u>			<u>l</u>
Tuberous and corm	USA	50WG/50SG	Foliar	0.07-0.1	0.07-0.3	3	7
vegetables							
Root vegetables	USA	50WG/50SG	Foliar	0.07-0.1	0.07-0.3	3	3
(except sugar beets) Potatoes	AUS	500WG	Foliar	0.07-0.1	NS	2	14
Potatoes	Slovenia	50WG	Foliar	0.08	0.016	2	14
Stems and petioles	Sioveilla	Jowa	Tonai	0.08	0.010	2	14
Leafy vegetables	USA	50WG/50SG	Foliar	0.07-0.1	0.07-0.1	3	0
(except Brassica)	USA	30 W G/303G	Tonai	0.07-0.1	0.07-0.1	3	U
Cereal grains							
Wheat, rye, triticale	Slovenia	50WG	Foliar	0.07	0.014	2	28
Tree Nuts						•	•
Tree nuts	USA	50WG/50SG	Foliar	0.07-0.1	0.01-0.02	3	40
Oilseed	•	•	•	<u> </u>		•	•
Cotton	USA	50WG/50SG	Foliar	0.05-0.1	0.02-0.05	3	30
Cotton	AUS	500 WG	Foliar	0.05-0.07	NS	2	7
Rape seed	USA	50WG/50SG	Foliar	0.1	0.1	3	7
Herbs	•						
Mint	USA	50WG/50SG	Foliar	0.07-0.1	0.04-0.05	3	7
Dried herbs	-	•					
Hops	USA	50WG/50SG	Foliar	0.06-0.1	0.01-0.02	3	10
Hops	Slovenia	50WG	Foliar	0.09	0.0225	2	21
Straw, fodder and for	age of cere	al grains and gra	asses				
Alfalfa seed	USA	50WG/50SG	Foliar	0.1	0.05	2	forage and seed 62 hay
Teas							
Tea	Japan	DF	Foliar	0.1	0.01	1	7

NS Not specified

RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS

The Meeting received information on supervised field trials for flonicamid uses that produced residues on the following commodities:

Commodity	Casua	Table No
Commodity	Group	Table No.
Apples	FP Pome fruits	45
Pears		46
Peaches	FS Stone fruits	47
Cherries		48
Plums		49
Strawberries	FB Berries and small fruits	50
Broccoli	VB Brassica vegetables	51

Commodity	Group	Table No.
Cabbage		52
Cucumber	VC Fruiting vegetables, Cucurbits	53
Melon		54
Summer squash		55
Tomatoes	VO Fruiting vegetables, other than	56
Bell peppers	Cucurbits	57
Non-bell peppers		58
Head lettuce	VL Leafy vegetables (including	59
Leaf lettuce	Brassica leafy vegetables)	60
Spinach		61
Radish leaves		62
Mustard greens		63
Potato	VR Root and tuber vegetables	64
Carrot		65
Radish		66
Celery	VS Stem and petioles	67
Wheat	Cereal grains	68
Barley		69
Almonds	TN Tree nuts	70
Pecans		71
Pistachios		72
Rape seed	SO Oilseed	73
Cotton seed		74
Mint	HH Herbs	75
Hops	DH Dried herbs	76
Tea	DT Teas	77
Wheat forage and straw	AS Straw, fodder and forage of	78
Barley forage and straw	cereal grains and grasses	79
Alfalfa		80
Almond hulls		81
Cottonseed gin trash		82

In the residue supervised trials tables, where two samples were taken from a single plot, the average value is reported (individual sample results in parentheses). Where results from separate plots with distinguishing characteristics such as different formulations, varieties or treatment schedules were reported, results are listed for each plot. In these cases, the higher residue has been used for calculation purposes. Dates of duration of residue sample storage before analysis were provided.

Residue values from the trials conducted according to the maximum GAP have been used for the estimation of maximum residue levels. Those results included in the calculations by the OECD MRL-calculator are underlined.

Pome fruits

Apple

Twelve independent trials were conducted on <u>apples</u> in the US between 1968 and 1995. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Apples were harvested 14–21 days after last treatment (DALT).

In Australia. fourteen independent trials were conducted on between 1983 and 2009. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days and apples were harvested 21 DALT.

The analytical method P-3568 (based on method P-3561M) was used to analyse samples collected from the US trials while method AATM-R-165 was used to analyse the samples from the Australian trials. The LOQ was determined to be 0.01 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 35 days for the Australian trials and 297 days (ca. 10 months) for the US trials Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 45.

Table 45 Residues of Flonicamid in Apples Following Foliar Spray with Flonicamid WG Formulation in Regions of North America

	Applic	cation						Residues, m	ng/kg			
Location, year (variety)	For m	kg ai/ha	kg ai/hL	Wate r, L/ha	no	RTI , day s	DAL T, days	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/ SG	0.07 - 0.10	0.01- 0.02	100– 500	3	7	21					
Lyons, NY, 1998 (Jonigold)	WG	0.10	0.01	756	3	7	0	0.065 (0.063, 0.067)	< 0.01 (< 0.01, < 0.01)	0.034 (0.030, 0.038)	< 0.01 (< 0.01, < 0.01)	
							7	0.055 (0.052, 0.058)	< 0.01 (< 0.01, < 0.01)	0.037 (0.035, 0.039)	< 0.01 (< 0.01, < 0.01)	
							14	0.064 (0.062, 0.065)	< 0.01 (< 0.01, < 0.01)	0.037 (0.040, 0.049)	< 0.01 (< 0.01, < 0.01)	
							21	0.033 (0.032, 0.034)	< 0.01 (< 0.01, < 0.01)	0.039 (0.039, 0.039)	< 0.01 (< 0.01, < 0.01)	
							28	0.047 (0.060, 0.034)	< 0.01 (< 0.01, < 0.01)	0.018 (0.018, 0.017)	< 0.01 (< 0.01, < 0.01)	IB- 200 1-
Dundee, NY, 1973 (Macoun)	WG	0.10	0.01	941	3	7	21	0.037 (0.032, 0.042)	< 0.01 (< 0.01, < 0.01)	0.021 (0.017, 0.024)	< 0.01 (< 0.01, < 0.01)	MD G- 003
Herford, PA, 1968 (Starkrims on Red Delicious)	WG	0.10	0.02	511	3	7	20	0.037 (0.043, 0.031)	< 0.01 (< 0.01, < 0.01)	0.024 (0.011, 0.013)	< 0.01 (< 0.01, < 0.01)	-00- 01
Cana, VA, 1994 (Red Delicious)	WG	0.10	0.01	940	3	7	20	0.047 (0.045, 0.048)	< 0.01 (< 0.01, < 0.01)	0.018 (0.016, 0.019)	< 0.01 (< 0.01, < 0.01)	
Conklin, MI, 1993 (Golden Delicious)	WG	0.10	0.01	794	3	7	21	0.097 (0.099, 0.095)	< 0.01 (< 0.01, < 0.01)	0.038 (0.038, 0.038)	< 0.01 (< 0.01, < 0.01)	
Menomoni e, WI,	WG	0.10	0.02	468	3	7	21	<u>0.066</u> (0.067,	< 0.01 (< 0.01,	0.018 (0.017,	< 0.01 (< 0.01,	

	Applio	cation						Residues, m	ıg/kg			
Location, year (variety)	For m	kg ai/ha	kg ai/hL	Wate r, L/ha	no	RTI , day s	DAL T, days	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
1985 (Prairie Sky)						3		0.064)	< 0.01)	0.018)	< 0.01)	
Eckert, CO, 1984 (Red Delicious)	WG	0.10	0.01	749	3	7	21	0.049 (0.044, 0.054)	< 0.01 (< 0.01, < 0.01)	0.018 (0.016, 0.020)	< 0.01 (< 0.01, < 0.01)	
Fairfield, CA, 1992 (Golden Delicious)	WG	0.10	0.02	637	3	7	14	0.111 (0.104, 0.117)	< 0.01 (< 0.01, < 0.01)	0.041 (0.037, 0.044)	< 0.01 (< 0.01, < 0.01)	
Hood River, OR, 1991 (Red Delicious)	WG	0.10	0.02	665	3	7	20	0.057 (0.055, 0.058)	< 0.01 (< 0.01, < 0.01)	0.016 (0.017, 0.015)	< 0.01 (< 0.01, < 0.01)	
Hood River, OR, 1993 (Jonigold)	WG	0.10	0.01	742	3	7	20	0.023 (0.024, 0.022)	< 0.01 (< 0.01, < 0.01)	0.015 (0.014, 0.016)	< 0.01 (< 0.01, < 0.01)	
Hood River, OR, 1995 (Gala)	WG	0.10	0.01	1032	3	7	21	0.039 (0.038, 0.039)	< 0.01 (< 0.01, < 0.01)	0.014 (0.015, 0.012)	< 0.01 (< 0.01, < 0.01)	
Outlook, WA, 1995 (Red Delicious)	WG	0.10	0.01	960	3	7	21	0.052 (0.053, 0.051)	< 0.01 (< 0.01, < 0.01)	0.019 (0.019, 0.019)	< 0.01 (< 0.01, < 0.01)	
AUS GAP	WG	NS	0.005- 0.01	100– 1000	3	14	21					
Batlow, New South Wales, 2006 (Sundown er)	WG	NS	0.01	2933 - 3352	3	7	0 14 21 27	0.34 0.16 <u>0.12</u> 0.093	< 0.01 < 0.01 < 0.01 < 0.01	0.017 0.040 0.049 0.054	< 0.01 < 0.01 < 0.01 < 0.01	
Batlow, New South Wales, 2006 (Sundown er)	WG	NS	0.02	2438 - 2952	3	7	0 14 21 27	0.86 0.24 0.23 0.17	< 0.01 < 0.01 < 0.01 < 0.01	0.032 0.074 0.11 0.11	< 0.01 < 0.01 < 0.01 < 0.01	
Batlow, New South Wales, 2000 (Pink Lady)	WG	NS	0.01	1856 - 2022	3	7	21	0.24	< 0.01	0.033	< 0.01	UP L- 100 2
Batlow, New South Wales, 2000 (Pink Lady)	WG	NS	0.02	1800 - 2078	3	7	21	0.47	< 0.01	0.067	0.011	
Spreyton, Tasmania, 2009 (Pink Lady)	WG	NS	0.01	201– 240	3	7	0 14 21 28	0.20 0.097 <u>0.086</u> 0.010	< 0.01 < 0.01 < 0.01 < 0.01	0.010 0.023 0.034 0.045	< 0.01 < 0.01 < 0.01 0.012	
Grove, Tasmania, 1996 (Fuji)	WG	NS	0.02	1600 - 1659	3	7	21	0.024	< 0.01	0.1	0.018	
Yering,	WG	NS	0.01	4115	3	7	0	0.43	< 0.01	< 0.01	< 0.01	UP

	Applio	cation						Residues, m	ıg/kg			
Location, year (variety)	For m	kg ai/ha	kg ai/hL	Wate r, L/ha	no	RTI , day s	DAL T, days	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
Victoria, 1984 (Fuji)				- 4398			14 21 28	0.16 <u>0.15</u> 0.16	< 0.01 < 0.01 < 0.01	0.023 0.029 0.032	0.011 0.018 0.023	L- 110 8
Yering, Victoria, 1984 (Fuji)	WG	NS	0.02	3978 - 4374	3	7	0 14 21 28	0.59 0.38 0.29 0.25	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 0.026 0.039 0.040	< 0.01 0.018 0.028 0.033	
Arding, New South Wales, 1983 (Red Delicious)	WG	NS	0.01	2153 - 2500	3	7	21	0.13	< 0.01	0.036	0.012	
Arding, New South Wales, 1983 (Red Delicious)	WG	NS	0.02	2153 - 2361	3	7	21	0.27	< 0.01	0.063	0.023	
Spreyton, Tasmania, 2010 (Golden Delicious)	WG	NS	0.01	1144 - 1337	3	7	21	0.12	< 0.01	0.069	0.01	
Spreyton, Tasmania, 2010 (Golden Delicious)	WG	NS	0.02	1248 - 1381	3	7	21	0.23	< 0.01	0.099	0.019	
Stanthorpe , Queenslan d, 1985 (Granny Smith)	WG	NS	0.01	2645 - 3043	3	7	0 14 21 28	0.28 0.19 <u>0.22</u> 0.22	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 0.030 0.035 0.057	< 0.01 0.026 0.033 0.050	
Stanthorpe , Queenslan d, 1985 (Granny Smith)	WG	NS	0.02	2101 - 3043	3	7	0 14 21 28	0.48 0.38 0.43 0.45	< 0.01 < 0.01 < 0.01 < 0.01	0.011 0.050 0.079 0.13	0.018 0.046 0.071 0.11	

Pear

Six independent trials were conducted on <u>pears</u> in the US between 1962 and 1996. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Pears were harvested 14–21 DALT.

The analytical method P-3568 (based on method P-3561M) was used to analyse the samples. The LOQ was determined to be 0.01~mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 329 days (ca. 11 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 46.

Table 46 Residues of Flonicamid in Pears Following Foliar Spray with Flonicamid 50 WG Formulation in Regions of North America

Location,	Application	DAL	Residues (mg/kg)	Ref

year (variety)	Form	kg ai/ha	kg ai/h L	Wat er, L/ha	no.	RT I, da ys	T, days	Flonicam id	TFNA- AM	TFNA	TFNG	
US GAP	WG/ WS	0.07- 0.10	0.01 - 0.02	100 - 500	3	7	21					
Lyons, NY, 1968 (Clapps Favorite)	WG	0.10	0.01	936	3	7	21	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.021 (0.021, 0.020)	< 0.01 (< 0.01, < 0.01)	
Fairfield, CA, 1986 (Bartlett)	WG	0.10	0.02	654	3	7	14	0.018 (0.017, 0.019)	< 0.01 (< 0.01, < 0.01)	0.045 (0.048, 0.041)	< 0.01 (< 0.01, < 0.01)	
Isleton, CA, 1972- 1996 (Bartlett)	WG	0.10	0.02	650	3	7	14	0.016 (0.013, 0.018)	< 0.01 (< 0.01, < 0.01)	0.038 (0.031, 0.044)	< 0.01 (< 0.01, < 0.01)	
Soap Lake, WA, 1962 (Bartlett)	WG	0.10	0.00 5	188 0	3	7	21	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.023 (0.023, 0.022)	< 0.01 (< 0.01, < 0.01)	IB- 2001_
							0	0.020 (0.019, 0.020)	< 0.01 (< 0.01, < 0.01)	0.037 (0.040, 0.034)	< 0.01 (< 0.01, < 0.01)	MDG -003- 00-01
Hood River, OR, 1994	WG	0.10	0.01	861	3	7	7	0.014 ((0.015, 0.013)	< 0.01 (< 0.01, < 0.01)	0.033 (0.036, 0.030)	< 0.01 (< 0.01, < 0.01)	
(Starkrims on)	WG	0.10	0.01	001	3	,	14	0.010 (0.010, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.022 (0.020, 0.024)	< 0.01 (< 0.01, < 0.01)	
							21	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.026 (0.030, 0.022)	< 0.01 (< 0.01, < 0.01)	
Zillah, WA, 1985 (Bartlett)	WG	0.099	0.01	905	3	7	21	0.020 (0.019, 0.021)	< 0.01 (< 0.01, < 0.01)	0.031 (0.029, 0.033)	< 0.01 (< 0.01, < 0.01)	

Stone Fruit

Peach

Nine independent trials were conducted on <u>peaches</u> in the US between 1976 and 1998. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Peaches were harvested 10–14 DALT.

The analytical method P-3561M was used to analyse the samples. The LOQ was determined to be 0.01~mg/kg/analyte.

The maximum period of sample storage at -20 °C was 329 days (ca. 11 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 47.

Table 47 Residues of Flonicamid in Peaches Following Foliar Spray with Flonicamid 50 WG Formulation in Regions of North America

	Applicat	ion						Residues (mg/kg)				
Location, year (variety)	Form	kg ai/h a	kg ai/h L	Wate r, L/ha	no	RTI , day s	DAL T, days	Flonicam id	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/W S	0.07 - 0.10	0.01 - 0.02	100– 500	3	7	14					

		,										
								0.298	< 0.01	0.026	0.015	
							0	(0.284,	(< 0.01,	(0.026,	(0.015,	
								0.311)	< 0.01)	0.026)	0.014)	
								0.308	< 0.01	0.024	0.014	
Lyons,							3	(0.289,	(< 0.01,	(0.024,	(0.013,	
NY, 1998	WC	0.10	0.01	754	2	7		0.326)	< 0.01)	0.025)	0.014)	
(Harcrest	WG	0.10	0.01	754	3	7		0.190	< 0.01	0.032	0.014	1
)							7	(0.179,	(< 0.01,	(0.037,	(0.015,	
								0.201)	< 0.01)	0.027)	0.012)	
								0.216	< 0.01	0.038	0.024	
							14	(0.225,	(< 0.01,	(0.050,	(0.026,	
								0.207)	< 0.01)	0.026)	0.022)	
Covesvill												1
e, VA,		0.40		400		_		0.087	< 0.01	0.036	0.025	
1985	WG	0.10	0.02	680	3	7	14	(0.091,	(< 0.01,	(0.043,	(0.032,	
(Blake)								0.082)	< 0.01)	0.028)	0.018)	
Monetta,								0.001	0.04		0.012	1
SC, 1990	W.G	0.10	0.01	020	_	_		0.086	< 0.01	0.020	0.012	
(Crest	WG	0.10	0.01	829	3	7	14	(0.096,	(< 0.01,	(0.023,	(0.011,	
Haven)								0.075)	< 0.01)	0.017)	0.012)	IB-
Kinston,								0.423	< 0.01	0.020	0.015	2001-
NC, 1995	WG	0.10	0.01	938	3	7	14	(0.400,	(< 0.01,	(0.019,	(0.014,	MD
(Legend)								0.446)	< 0.01)	0.021)	0.015)	G- 005-
Conklin,									0.01			005-
MI, 1995	wa	0.10	0.01	070	_	_	1.4	0.095	< 0.01	0.011	0.012	00-01
(Red	WG	0.10	0.01	979	3	7	14	(0.100,	(< 0.01,	(< 0.01,	(0.013,	
Haven)								0.090)	< 0.01)	0.012)	< 0.01)	
Waller,								0.045	0.01	0.01=	0.014	1
TX, 1989	W.G	0.11	0.00	2120	_	_	1.0	0.065	< 0.01	0.017	0.011	
(Idylwild	WG	0.11	5	2120	3	7	10	(0.055,	(< 0.01,	(0.014,	(< 0.01,	
)								0.074)	< 0.01)	0.020)	0.012)	
Winters,								0.454	0.01	0.074	0.000	1
CA, 1976					_	_		0.151	< 0.01	0.054	0.023	
(Fay	WG	0.11	0.02	521	3	7	14	(0.184,	(< 0.01,	(0.065,	(0.027,	
Elberta)								0.117)	< 0.01)	0.042)	0.018)	
Berenda.												1
CA, 1988					_	l _		0.219	< 0.01	0.051	0.057	
(Last	WG	0.10	0.01	935	3	7	14	(0.218,	(< 0.01,	(0.054,	(0.060,	
Chance)								0.220)	< 0.01)	0.047)	0.053)	
Selma,												1
CA. 1996								0.134	< 0.01	0.067	0.023	
(Septemb	WG	0.10	0.01	938	3	7	14	(0.149,	(< 0.01,	(0.070,	(0.026,	
er Sun)								0.119)	< 0.01)	0.063)	0.020)	
CI Sull)	I.	<u> </u>	L	L	I	<u> </u>	<u> </u>	<u> </u>		l		

Cherry

Six independent trials were conducted on <u>cherries</u> in the US between 1989 and 1995. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Cherries were harvested 14 DALT.

The analytical method P-3561M was used to analyse the samples. The LOQ was determined to be $0.01\ mg/kg/analyte$.

The maximum period of sample storage at -20 °C was 329 days (ca. 11 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 48.

Table 48 Residues of Flonicamid in Cherries Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applic	ation						Residues (mg/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicam id	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/ WS	0.07- 0.10	0.01- 0.02	100–500	3	7	14					
Conklin MI, 1995 (Napoleon)							0	0.759 (0.736, 0.782)	< 0.01 (< 0.01, < 0.01)	0.036 (0.031, 0.021)	0.022 (0.022, 0.022)	
			0.01				3	0.360 (0.326, 0.394)	< 0.01 (< 0.01, < 0.01)	0.032 (0.027, 0.036)	0.021 (0.019, 0.023)	
	WG	0.10	0.01	945–963	3	7–8	7	0.290 (0.282, 0.297)	< 0.01 (< 0.01, < 0.01)	0.038 (0.042, 0.034)	0.027 (0.026, 0.027)	-
							14	0.273 (0.292, 0.253)	< 0.01 (< 0.01, < 0.01)	0.042 (0.042, 0.041)	0.042 (0.045, 0.039)	1.5
Conklin MI, 1993 (Mont- morency)	WG	0.10	0.01	935–954	3	7–8	14	0.276 (0.289, 0.262)	< 0.01 (< 0.01, < 0.01)	0.028 (0.028, 0.027)	0.026 (0.028, 0.024)	IB- 2001- MDG- 005-00-
Fairfield, CA, 1990 (Ranier)	WG	0.10	0.02	655	3	6	14	0.281 (0.271, 0.290)	< 0.01 (< 0.01, < 0.01)	0.167 (0.161, 0.172)	0.048 (0.044, 0.052)	01
Courtland CA, 1992 (Bing)	WG	0.10	0.02	655–673	3	6	14	0.256 (0.238, 0.273)	< 0.01 (< 0.01, < 0.01)	0.044 (0.041, 0.047)	0.030 (0.029, 0.031)	-
Parkdale OR, 1994 (Bing)	WG	0.10	0.01	973– 1094	3	7	14	0.266 (0.302, 0.230)	< 0.01 (< 0.01, < 0.01)	0.037 (0.040, 0.034)	0.035 (0.037, 0.032)	
Granger WA, 1989, (Bing)	WG	0.10	0.01	926–963	3	7	14	0.365 (0.387, 0.343)	< 0.01 (< 0.01, < 0.01)	0.065 (0.065, 0.064)	0.062 (0.061, 0.063)	

Plum

Five independent trials were conducted on <u>plums</u> in the US between 1980 and 1995. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Plums were harvested 14 DALT.

The analytical method P-3561M was used to analyse the samples. The LOQ was determined to be $0.01\ mg/kg/analyte$.

The maximum period of sample storage at -20 °C was 329 days (ca. 11 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 49.

Table 49 Residues of Flonicamid in Plums Following Foliar Spray with Flonicamid 50 WG Formulation in Regions of North America

Location, year (variety)	Applicat	ion						Residues (n				
	Form	kg ai/ha	lkorai/hl	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/SG		0.01- 0.02	100– 500	3	7	14					
Conklin MI, 1995 (Stanley)	WG	0.10	0.01	954	3	7	14	0.041 (0.040, 0.042)	0.012 (0.014, < 0.01)	0.016 (0.017, 0.015)	< 0.01 (< 0.01, < 0.01)	IB- 2001- MDG-

Location.	Applicat	ion						Residues (n	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
Fairfield ^a CA, 1992 (French)	WG	0.10	0.02	505– 514	3	5–8	14	0.044 (0.044, 0.044)	0.025 (0.026, 0.023)	0.011 (0.011, < 0.01)	0.012 (0.011, 0.012)	005-00- 01
Fairfield ^a CA, 1992 (French)	WG	0.10	0.02	514	3	6–7	14	0.045 (0.051, 0.038)	0.016 (0.019, 0.013)	0.012 (< 0.01, 0.014)	0.01 (0.012, < 0.011)	
		0.10					0	0.011 (0.011, 0.011)	< 0.01 (< 0.01, < 0.01)	0.040 (0.044, 0.035)	< 0.01 (< 0.01, < 0.01)	
Madera CA, 1990	WG		0.01	935– 963	3	7	3	0.012 (0.012, 0.012)	< 0.01 (< 0.01, < 0.01)	0.040 (0.041, 0.038)	< 0.01 (< 0.01, < 0.01)	_
(Fortune)							7	0.012)	< 0.01 (< 0.01, < 0.01)	0.043 (0.041, 0.044)	< 0.01 (< 0.01, < 0.01)	
							14	0.013 (0.012, 0.014)	< 0.01 (< 0.01, < 0.01)	0.045 (0.043, 0.046)	< 0.01 (< 0.01, < 0.01)	
Selma CA, 1997 (Howard Sun)	WG	0.10	0.01	917– 926	3	7	14	0.032 (0.041, 0.023)	0.010 (0.010, < 0.01)	0.027 (0.017, 0.037)	0.010 (0.010, < 0.01)	
Hillsboro OR, 1980 (Italian)	WG	0.10	0.01	823– 851	3	7	14	0.023 (0.023, 0.023)	< 0.01 (< 0.01, < 0.01)	0.011 (0.011, 0.010)	< 0.01 (< 0.01, < 0.01)	

^a The last applications at each trial site were made on the same day and varieties were the same rendering the trials dependent

Berries and other small fruits

Strawberry

Eight independent trials were conducted on <u>strawberries</u> in the US in 2008. In all trials, three foliar spray applications of a SG formulation were made with a re-treatment interval of 6–8 days. Strawberries were harvested 14 DALT.

The analytical method P-3561M was used to analyse the samples. The LOQ was determined to be $0.02\ mg/kg/analyte$.

The maximum period of sample storage at -20 °C was 498 days (ca. 17 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 50.

Table 50 Residues of Flonicamid in Strawberries Following Foliar Spray with Beleaf 50 SG Formulation in Regions of North America

	Applic	cation						Residues	(mg/kg)			
Location, year (variety)	For m	kg ai/ha	kg ai/hL	Water, L/ha	n o.	RTI , day s	DAL T, days	Flonica mid	TFNA- AM	TFNA	TFNG	Ref
US GAP	SG	0.10	0.02- 0.10	100– 500	3	7	0					
Salinas, CA, 2008 (Albion) ^a	SG	0.10	0.02- 0.04	253– 440	3	7	0	0.47 (0.42, 0.51)	< 0.020 (0.020, < 0.020)	0.041 (0.037, 0.044)	0.038 (0.034, 0.042)	96
Salinas, CA, 2008	SG	0.10	0.02- 0.04	299– 496	3	6	0	<u>0.59</u> (0.52,	< 0.020 (0.020,	0.047 (0.044,	0.033 (0.030,	04

	Applic	cation						Residues	(mg/kg)						
Location, year (variety)	For m	kg ai/ha	kg ai/hL	Water, L/ha	n o.	RTI , day s	DAL T, days	Flonica mid	TFNA- AM	TFNA	TFNG	Ref			
(Albion) a								0.66)	< 0.020)	0.049)	0.036)]			
Parlier, CA, 2008 (Seascape)	SG	0.10	0.025	402– 412	3	7	0	0.54 (0.48, 0.60)	< 0.020 (0.020, < 0.020)	0.10 (0.10, 0.10)	0.056 (0.053, 0.58)				
Balm, FL, 2008 (Festival)	SG	0.10	0.027	374	3	8- 11	0	0.27 (0.29, 0.24)	< 0.020 (< 0.020 , < 0.020)	0.051 (0.058, 0.044)	0.028 (0.032, 0.024)				
Clinton,		G 0.10								0	0.33 (0.34, 0.32)	< 0.020 (< 0.020 , < 0.020)	0.021 (0.020, 0.022)	< 0.020 (< 0.020 , < 0.020)	
				318– 327	3	7	3	0.23 (0.19, 0.27)	< 0.02 (< 0.02, < 0.02)	0.024 (0.024, 0.025)	< 0.02 (< 0.02,, < 0.02)				
NC, 2008 (Chandler)	SG		0.03				5	0.16 (0.16, 0.15)	< 0.020 (< 0.020 , < 0.020)	0.031 (0.030, 0.032)	< 0.020 (< 0.020 , < 0.020)				
							7	0.14 (0.14, 0.14)	< 0.020 (< 0.020 , < 0.020)	0.037 (0.036, 0.037)	< 0.020 (< 0.020 , < 0.020)				
Penn Yan, NY, 2008 (Honeoye)	SG	0.099 -0.1	0.034– 0.035	281– 290	3	7	0	0.41 (0.35, 0.46)	< 0.020 (< 0.020 , < 0.020)	0.046 (0.040, 0.051)	0.087 (0.084, 0.090)				
Salem, OR, 2008 (Totem)	SG	0.104 - 0.105	0.024	430– 440	3	6– 10	0	0.13 (0.11, 0.15)	< 0.020 (< 0.020 , < 0.020)	0.022 (< 0.02, 0.023)	0.021 (< 0.020 , 0.022)				
Arlington, WI, 2008 (Kent)	SG	0.096 - 0.102	0.029	327– 346	3	7–8	0	0.19 (0.20, 0.18)	< 0.020 (< 0.020 , < 0.020)	< 0.020 (< 0.020 , < 0.020)	< 0.020 (< 0.020 , < 0.020)				

^a The last applications at each site were made 2 months apart, rendering the trials independent

Brassica (Cole or cabbage) vegetables

Broccoli

Six independent trials were conducted on <u>broccoli</u> in the US during the 2003 growing season. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Plants were harvested 0 DALT.

The analytical method P-3561M was used to analyse the samples. The LOQ was determined to be $0.025\ mg/kg/a$ nalyte.

The maximum period of sample storage at -20 °C was 4 days. Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 51.

Table 51 Residues of Flonicamid in Broccoli Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Application	ALT, Residues (mg	/kg)	Ref
-----------	-------------	-------------------	------	-----

year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonicamid	TFNA-AM	TFNA	TFNG	
US GAP	WG/SG	0.07-0.10	0.07-0.10	100	3	7	0					
East Bernard, TX, 2003 (Early Dividend)	WG	0.10	0.10	95–96	3	6–7	0	0.428 (0.484. 0.372)	< 0.025 (< 0.025, < 0.025)	< 0.025 (0.025, < 0.025)	0.077 (0.086, 0.068)	
							0	0.373 (0.331, 0.435)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	0.034 (0.031, 0.036)	
Camarillo	W.C.	0.11	0.11	02.05	2	- O	1	0.432 (0.338, 0.525)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	0.045 (0.041, 0.048)	
CA, 2003 (Marathon)	WG	0.11	0.11	93–95	3	5–8	3	0.308 (0.327, 0.288)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	0.048 (0.046, 0.049)	
							7	0.178 (0.186, 0.170)		0.032 (0.033, 0.030)	0.060 (0.062, 0.057)	P- 3679
Visalia CA, 2003 (Waltham 29)	WG	0.10	0.10	94	3	7	0	0.462 (0.430, 0.493)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	0.144 (0.127, 0.161)	
Casa Grande AZ, 2003 (Marathon)	WG	0.10	0.11	95	3	6–7	0	0.499 (0.416, 0.581)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	
Yuma AZ, 2003 (Everest)	WG	0.10	0.11	93–96	3	7–9	0	0.250 (0.268, 0.232)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	0.027 (0.028, < 0.025)	
Hillsboro OR, 2003 (Packman)	WG	0.10	0.06	153–159	3	7	0	0.553 (0.515, 0.590)	< 0.025 (< 0.025, < 0.025)	0.056 (0.059, 0.053)	0.144 (0.150, 0.137)	

Cabbage

Six independent trials were conducted on <u>cabbage</u> in the US during the 2003 growing season. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Cabbage heads were harvested $0~\mathrm{DALT}$.

The analytical method P-3561M was used to analyse samples. The LOQ was determined to be $0.025 \, \text{mg/kg/analyte}$.

The maximum period of sample storage at -20 °C was up to 180 days (6 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 52.

Table 52 Residues of Flonicamid in Cabbage Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applic	ation							Residues (n	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Matrix	Flonicamid	TFNA-AM	TFNA	TFNG	Ref
US GAP	WG/S G	0.07- 0.10	0.07- 0.10	100	3	7	0						
North Rose NY, 2003	WG	0.10	0.10	94	3	7	0	Cabbage w/wrapp er leaves	0.062 (0.066, 0.057)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025 , < 0.025)	0.032 (0.034, 0.029)	
(Early Thunder)	WG	0.10	0.10	34	3	,	U	Cabbage w/out wrapper leaves	<0.025 (0.025, <0.025)	< 0.025 (< 0.025, < 0.025)	0.091 (0.099, 0.082)	0.165 (0.184, 0.145)	
Delmar DE, 2003	WG	0.10	0.11	93–94	3	6–7	0	Cabbage w/wrapp er leaves	0.205 (0.217, 0.193)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025 , < 0.025)	0.053 (0.055, 0.051)	
(Blue Thunder)	,,,	0.10	0.11	73 74	3	0 7	O	Cabbage w/out wrapper leaves	<0.025 (0.025, <0.025)	< 0.025 (< 0.025, < 0.025)	0.085 (0.088, 0.082)	0.141 (0.152, 0.129)	
Jennings	wc	0.10	0.10	0.7	2	7	0	Cabbage w/wrapp er leaves	1.262 (1.281, 1.243)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025 , < 0.025)	0.089 (0.087, 0.090)	
FL, 2003 (Bravo)	WG	0.10	0.10	97	3	7	0	Cabbage w/out wrapper leaves	1.138 (1.067, 1.208)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025 , < 0.025)	0.072 (0.069, 0.075)	P- 3679
East Bernard, TX, 2003								Cabbage w/wrapp er leaves	0.288 (0.311, 0.265)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025 , < 0.025)	0.037 (0.036, 0.037)	
(Early Jersey Wakefield)	WG	0.10	0.10	91–97	3	7–8	0	Cabbage w/out wrapper leaves	0.055 (0.059, 0.050)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025 , < 0.025)	< 0.025 (< 0.02 5, < 0.025	
Ellendale								Cabbage w/wrapp er leaves	0.025 (0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	0.074 (0.072, 0.075)	0.127 (0.123, 0.130)	
MN, 2003 (Dannish Ball)	WG	0.10	0.12	88–90	3	7	0	Cabbage w/out wrapper leaves	<0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	0.070 (0.061, 0.079)	0.110 (0.087, 0.132)	
Visalia CA, 2003	WG	0.10	0.11	94	3	7	0	Cabbage w/wrapp er leaves	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025, < 0.025)	< 0.025 (< 0.025 , < 0.025)	0.031 (0.031, 0.031)	
(Copenhag an)	WU	0.10	0.11	74	J	,	U	Cabbage w/out wrapper leaves	<0.025, (< 0.025 < 0.025)	< 0.025 (< 0.025, < 0.025)	0.035 (0.033, 0.036)	0.067 (0.064, 0.069)	

Fruiting vegetables, cucurbits

Cucumber

Six independent trials were conducted on field <u>cucumbers</u> in the US during the 2001 growing season. In all trials, three foliar spray applications of a WG formulation were made at 0.10 kg ai/ha with a retreatment interval of 6–7 days. Cucumbers were harvested 0 DALT. Four independent trials were conducted on greenhouse cucumbers in Canada and the US during the 2008 and 2009 growing seasons. In each of the greenhouse trials, one of the plots was treated with two foliar spray applications of a SG formulation at 0.15 kg ai/ha with a re-treatment interval of 6–7 days. The other plot was treated twice via syringe to the rock wool cubes in which the plants were grown. Application rates were determined using an average plant density of 2.4 plants per square meter, regardless of the actual density in the respective trials. The nominal rate was 0.15 kg ai/ha per application for a total range of 0.30 kg ai/ha per season. In all trials, cucumbers were harvested 0 DALT.

Two independent trials were also conducted on field cucumbers in Australia during the 2011 and 2012 growing seasons. In both trials, three foliar spray applications of a WG formulation were made at 0.10 kg ai/ha or 0.20 kg ai/ha with a re-treatment interval of 7 days. Cucumbers were harvested 0, 1, 3 and 7 DALT.

For the North American trials, the analytical method P-3561M was used to analyse all samples. The LOQ for the field cucumbers was determined to be 0.025~mg/kg/analyte while the LOQ for greenhouse cucumbers was 0.02~mg/kg/analyte. In Australia, the analytical method AATM-R-165 was used to analyse all samples. The LOQ was determined to be 0.01~mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 340 days (ca. 11.5 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 53.

Table 53 Residues of Flonicamid in Field and Greenhouse Cucumbers Following Foliar Spray with Flonicamid 50 WG (Field) in North American Regions and Australia and Beleaf 50SG (Greenhouse) in North American Regions

Location , year	Applica	tion					DALT, days	Residues	(mg/kg)			Ref
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days		Flonica mid	TFNA-AM	TFNA	TFNG	
Field Cuc	umbers											
US GAP	WG	0.07- 0.10	0.07- 0.10	100	3	7	0					
Cotton GA, 2001 (Cross Country)	WG	0.10	0.05	187	3	7	0	0.065 (0.063, 0.067)	< 0.01 (< 0.01, < 0.01)	0.042 (0.040, 0.044)	< 0.01 (< 0.01, < 0.01)	IB- 2001 - MD G-
Rose Hill NC, 2001	WG	0.10	0.05	187	3	7	0	0.081 (0.086, 0.076)		0.052 (0.054, 0.050)	0.027 (0.028, 0.01)	007- 00- 01
(Poinsett)							1	0.116 (0.118, 0.113)	< 0.01 (< 0.01, < 0.01)	0.085 (0.085, 0.084)	0.082 (0.080, 0.084)	
							3	0.102 (0.094, 0.110)	< 0.01 (< 0.01, < 0.01)	0.060 (0.055, 0.064)	0.067 (0.063, 0.071)	
							7	0.049 (0.042, 0.056)	< 0.01 (< 0.01, < 0.01)	0.067 (0.063, 0.070)	0.075 (0.070, 0.079)	
Hobe Sound FL, 2001	WG	0.10	0.05	187	3	6–7	0	0.073 (0.076, 0.069)	< 0.01 (< 0.01, < 0.01)	0.045 (0.046, 0.044)	0.026 (0.027, 0.024)	

Location , year	Applica	ation					DALT, days	Residues	(mg/kg)			Ref
	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonica mid	TFNA-AM	TFNA	TFNG	
(Speedw ay)		ui/iiu	ui/iiL	L/ Hu		days		inid				
Northwo od ND, 2001 (Market-	WG	0.10	0.05	187	3	7	0	0.055 (0.047, 0.063)	< 0.01 (< 0.01, < 0.01)	0.102 (0.099, 0.104)	0.076 (0.069, 0.082)	
more 76) Arkansas WI, 2001 (Eureka)		0.10	0.05	187	3	7	0	0.055 (0.052, 0.058)	< 0.01 (< 0.01, < 0.01)	0.155 (0.145, 0.164)	0.105 (0.098, 0.111)	
Eakly OK, 2001 (Boston pickling)	WG	0.10	0.05	178–187	3	6–7	0	0.039 a (0.041, 0.040; 0.038, 0.038)	< 0.01 ¹ (< 0.01, < 0.01; < 0.01, < 0.01)	0.090 ¹ (0.059, 0.057; 0.123, 0.121)	0.070 ¹ (0.043, 0.041; 0.108, 0.086)	
AUS GAP	WG	0.05- 0.10			3	14	1					
Bowen, Queensla nd, 2011 (Black	WG	0.10	0.02	502	3	7	0 1 3 7	0.031 0.03 0.028 0.029	< 0.01 < 0.01 < 0.01 < 0.01	0.045 0.063 0.06 0.071	0.043 0.051 0.054 0.061	UPL- 1003
Prince)		0.20	0.04	502	3	7	0 1 3 7	0.059 0.042 0.048 0.048	< 0.01 < 0.01 < 0.01 < 0.01	0.073 0.066 0.054 0.12	0.056 0.052 0.043 0.1	
Bowen, Queensla nd, 2012 (Gremlin	WG	0.10	0.03	395	3	7	0 1 3 7	0.034 0.027 0.031 0.019	< 0.01 < 0.01 < 0.01 < 0.01	0.065 0.055 0.063 0.077	0.096 0.074 0.12 0.12	UPL- 1007
)		0.20	0.05	395	3	7	0 1 3	0.052 0.044 0.055	< 0.01 < 0.01 < 0.01	0.086 0.062 0.073	0.13 0.1 0.12	- - -
Greenhou	se Cucu	mbers					/	0.014	< 0.01	0.032	0.071	
	SG	0.15	0.15	minimu m 100	2	7	0					7151 2-9
Foliar app	olication		1		<u>I</u>						1	
Fort Collins CO, USA, 2009 (DRL 1061 F1)	SG	0.16	0.03	505–561	2	6	0	0.054 (0.046, 0.061)	<0.02 (<0.02 <0.02)	<0.02)	0.02 (0.02 0.02)	
Salisbury MD, USA, 2008 (Samir)	SG	0.15	0.03	468	2	7	0	0.14 (0.14, 0.14)	<0.02 (<0.02 <0.02)	2 <0.02 (<0.02 <0.02)	0.03 (0.03 0.02)	3
Crossvill e TN, USA, 2008 (DRL 1061 F1)	SG	0.16	0.05	290	2	7	0	0.54 (0.69, 0.39)	<0.02 (<0.02 <0.02)	0.03 (0.03, 0.03)	0.02 (<0.02, 0.03)	
Harrow ON, CAN,	SG	0.14– 0.15	0.012	1162– 1197	2	7	0	0.061 (0.059, 0.062)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	
2009 (Pyralis)							3	0.053 (0.052,	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	

Location , year	Applic	ation					DALT, days	Residues	(mg/kg)			Ref
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days		Flonica mid 0.054)	TFNA-AM	TFNA	TFNG	
							5	0.048 (0.046, 0.050)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	0.02 (<0.02 (0.02)	
							7	0.042 (0.038, 0.048)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	0.03 (0.02, 0.04)	
Soil appli												
Fort Collins CO, USA, 2009 (DRL 1061 F1)	SG	0.15	N/A		2	6	0	0.13 (0.13, 0.12)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	
Salisbury MD, USA, 2008 (Samir)	SG	0.15	N/A		2	7	0	0.20 (0.20, 0.20)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	0.11 (0.11, 0.11)	
Crossvill e TN, USA, 2008 (DRL 1061 F1)	SG	0.15	N/A		2	7	0	0.094 (0.094, 0.094)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	
Harrow ON, CAN,	SG	0.15	N/A		2	7	0	0.14 (0.13, 0.14)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	
2009 (Pyralis)							3	0.15 (0.14, 0.16)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	
							5	0.16 (0.17, 0.15)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	0.02 (0.03, 0.02)	
							7	0.16 (0.18, 0.13)	<0.02 (<0.02 <0.02)	<0.02 (<0.02 <0.02)	0.04 (0.05, 0.03)	

^a Mean of four duplicate samples

N/A = Not applicable as treatment was made via syringe to the growth media

Melons

Six independent trials were conducted on <u>melons</u> in the USA during the 2003 growing season. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Melons were harvested 0 DALT.

The analytical method P-3561M was used to analyse samples. The LOQ was determined to be 0.01 mg/kg/analyte. On average, for all the trials, 12 fruits were sampled from each control and treated plot. In trials 5, 11, 13 and 17, fruits were quartered and each quarter was placed in a plastic bag and stored in a freezer. In Trial 14, melons were cut and 1/8th of each melon was placed into plastic bags. In Trial 15, the study only reported that fruits were placed into plastic bags. Trials 1 through 4, 6 through 10, 12 and 16 were conducted on cucumbers or summer squash.

Five independent trials were conducted on <u>rockmelons</u> (cantaloupe) in Australia during the 2010, 2011 and 2012 growing seasons. In all trials, three foliar spray applications of a WG

formulation were made at 0.10 kg ai/ha or 0.20 kg ai/ha with a re-treatment interval of 7 days and DALTs of 0, 1, 3 and 7 days.

The analytical method AATM-R-165 was used to analyse all samples. The LOQ was determined to be 0.01 mg/kg/analyte. Five commercially mature fruit weighing > 7 kg were collected by hand from five plants per plot and placed in labelled specimen bags. No specimens were collected from the buffer areas of each plot. Sampling was conducted after the spray solution had dried at the 0-day DALT. Any soil adhering to the fruit was removed by brushing not washing. Gloves were worn and changed between treatments. All specimens were double bagged and labelled in accordance with the specimen list defined in the study plan. No information was provided as to whether the melons were cut prior to bagging.

A total of thirteen independent trials were conducted in Southern Europe (France, Italy and Spain) on field and greenhouse-grown melons during the 2003, 2004 and 2011 growing seasons. In the trials conducted during 2003 and 2004, three foliar spray applications of a WG formulation were made at 0.08 kg ai/ha with re-treatment intervals of 4–10 days. In the trials conducted in 2011, three foliar spray applications of a WG formulation were made at 0.05 kg ai/ha with a re-treatment interval of 7 days. In all trials, melons were harvested 0, 1, 2, 3 and/or 7 DALT.

For the 2003 and 2004 trials, the analytical method was based on the method A22-00-02 and adapted to melon peel by changing the C_{18} clean-up. For the 2011 trials, the LC-MS/MS method AGR/MOA/IKI220-1 was used to analyse all samples. For both methods, the LOQ was determined to be 0.01 mg/kg/analyte for each peel and pulp. In general, each harvested fruit was cut in minimum of two slices. From each retained slice, the peel was separated from the pulp.

In total, the maximum period of sample storage at -20 °C was up to 340 days (11.5 months). Storage stability data on water content commodities show that residues are stable for at least 23 months. The results are summarized in Table 54.

Table 54 Residues of Flonicamid in Whole Melons Following Foliar Spray with a 50 WG Formulation of Flonicamid in North American Regions, Australia and Southern EU

Location, year	Trial	Applicat	tion					DALT , days	Residues	(mg/kg)			Ref
(variety)	No.	Form	kg ai/ha	kg ai/hL	Water , L/ha	no.	RTI, days		Flonicam id	TFNA- AM	TFNA	TFNG	
US GAP		WG	0.07- 0.10	0.07- 0.10	100	3	7	0					
Rose Hill NC, 2001 (Hales Best Jumbo)	5	WG	0.10	0.05	187	3	7	0	0.086 (0.089, 0.082)	< 0.01 (< 0.01, < 0.01)	0.107 (0.107, 0.107)	0.044 (0.046, 0.042)	
Arkansaw WI, 2001 (Hybrid Primo)	11	WG	0.10	0.05	187	3	7	0	0.037 (0.036, 0.037)	< 0.01 (< 0.01, < 0.01)	0.054 (0.057, 0.050)	0.028 (0.029, 0.026)	
East Bernard TX, 2001 (Hales Best 36)	13	WG	0.10	0.08	131	3	7	0	0.056 (0.054, 0.058)	< 0.01 (< 0.01, < 0.01)	0.074 (0.076, 0.072)	0.023 (0.023, 0.022)	IB-
Arbuckle CA, 2001 (Tendral Amaraillo Tandio)	14	WG	0.10	0.04	234	3	7	0	0.050 (0.045, 0.055)	< 0.01 (< 0.01, < 0.01)	0.044 (0.041, 0.046)	0.026 (0.023, 0.028)	2001- MDG -007- 00-01
Maricopa AZ, 2001 (Olympic Gold)	15	WG	0.10	0.05	178– 187	3	7	0	0.019 (0.021, 0.017)	< 0.01 (< 0.01, < 0.01)	0.077 (0.075, 0.079)	0.047 (0.047, 0.046)	
Fresno CA, 2001 (Top Mark)	17	WG	0.10	0.05	187– 196	3	7	0	0.031 (0.029, 0.033) 0.019 (0.021, 0.017)	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01)	0.082 (0.081, 0.083) 0.092 (0.113, 0.071)	0.053 (0.053, 0.052) 0.059 (0.071, 0.046)	_

Location, year	Trial	Applica	tion					DALT , days	Residues				Ref
(variety)	No.	Form	kg ai/ha	kg ai/hL	Water , L/ha	no.	RTI, days		Flonicam id	TFNA- AM	TFNA	TFNG	
					,				0.024	< 0.01	0.113	0.082	
								3	(0.024,	(< 0.01,	(0.102,	(0.075,	
									0.023)	< 0.01)	0.124)	0.088)	
									0.020	< 0.01	0.153	0.125	1
								7	(0.014,	(< 0.01,	(0.153,	(0.116,	
									0.026)	< 0.01)	0.153)	0.134)	
AUS GAP		WG	0.05- 0.10	NS	NS	3		1					
								0	0.091	< 0.01	0.065	0.023	
			0.10	0.02	499	3	7	1	0.17	< 0.01	0.063	0.026	
D			0.10	0.02	499	3	/	3	0.076	< 0.01	0.047	0.017	
Bowen, Queensland,	NA	WG						7	0.031	< 0.01	0.049	0.023	
2011 (Hotshot)	NA	WG						0	0.25	< 0.01	0.14	0.055	
2011 (Hotshot)			0.20	0.04	499	2	7	1	0.25	< 0.01	0.13	0.046	
			0.20	0.04	499	3	7	3	0.18	< 0.01	0.13	0.06	
								7	0.098	< 0.01	0.17	0.071	UPL-
								0	0.078	< 0.01	0.034	< 0.01	1003
			0.10	0.017	500	2	7	1	0.092	< 0.01	0.049	< 0.01	1
Caversham,			0.10	0.017	582	3	7	3	0.043	< 0.01	0.04	< 0.01	1
Western	N.T. 4							7	0.034	< 0.01	0.12	0.026	1
Australia, 2010	NA	WG						0	0.18	< 0.01	0.053	0.013	1
(Sienna)							<u> </u>	1	0.14	< 0.01	0.053	0.013	1
			0.20	0.034	582	3	7	3	0.13	< 0.01	0.091	0.021	1
								7	0.092	< 0.01	0.13	0.039	1
								0	0.038	< 0.01	0.039	0.016	
							L	1	0.05	< 0.01	0.033	0.012	1
Wallaville,			0.10	0.02	636	3	7	3	0.031	< 0.01	0.048	0.019	1
Queensland,								7	0.05	< 0.01	0.11	0.03	1
2012	NA	WG						0	0.058	< 0.01	0.04	0.018	1
(Caribbean							L	1	0.12	< 0.01	0.051	0.026	1
Queen)			0.20	0.03	636	3	7	3	0.084	< 0.01	0.052	0.025	1
								7	0.12	< 0.01	0.19	0.089	1
								0	0.13	< 0.01	0.091	0.054	1
								1	0.047	< 0.01	0.055	0.038	1
Caversham,			0.10	0.017	576	3	7	3	0.032	< 0.01	0.074	0.04	1
Western								7	0.036	< 0.01	0.084	0.053	UPL-
Australia, 2011	NA	WG						0	0.083	< 0.01	0.08	0.048	1007
(Sienna)								1	0.11	< 0.01	0.13	0.083	-
(222222)			0.20	0.03	576	3	7	3	0.039	< 0.01	0.13	0.083	1
								7	0.066	< 0.01	0.16	0.099	1
							 	0	0.05	< 0.01	0.049	0.015	┪
								1	0.028	< 0.01	0.04	0.015	1
Whitton, New			0.10	0.03	317	3	7	3	< 0.01	< 0.01	0.042	0.013	1
South Wales,								7	0.021	< 0.01	0.042	0.013	1
	NA	WG				1		0	0.021	< 0.01	0.04	0.017	1
								1	0.025	< 0.01	0.003	0.024	1
			0.20	0.06	317	3	7	3	0.025	< 0.01	0.039	0.02	┨
Dubloon)	l	1	1	I	1	1	1	J	0.026	< 0.01	0.040	0.023	⊣

Location, year	Applic	ation						Commodit y	Residue	s (mg/kg)			Ref.
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT , days		Flonica mid	TFNA- AM	TFNA	TFNG	
Slovenia GAP	WG	0.05	0.005	1000	3	7	1						
Greenhouse me	lons												
Languedoc Le				700				Peel	0.13	< 0.01	0.07	0.05	FA-
		0.080	0.010	788– 802	3	8–9	0	Pulp	0.01	< 0.01	0.04	0.02	22-
France, 2003				002				Whole	0.06	< 0.01	0.05	0.03	03-

Location, year	Applic	ation						Commodit y	Residue	s (mg/kg)			Ref.
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT , days		Flonica mid	TFNA- AM	TFNA	TFNG	
Slovenia GAP	WG	0.05	0.005	1000	3	7	1						_
(Arpege) a								fruit					01/01
								Peel	0.08	< 0.01	0.06	0.07	_
							1	Pulp	0.02	< 0.01	0.06	0.02	
							1	Whole fruit	0.04	< 0.01	0.06	0.04	
								Peel	0.09	< 0.01	0.07	0.04	7
								Pulp	0.01	< 0.01	0.07	0.04	
							2	Whole fruit	0.04	< 0.01	0.07	0.04	
								Peel	0.08	< 0.01	0.06	0.05	1
								Pulp	0.01	< 0.01	0.07	0.02	1
							3	Whole fruit	0.04	< 0.01	0.07	0.03	
									0.06	. 0.01	0.04	0.06	-
								Peel	0.06	< 0.01 < 0.01	0.04	0.06	4
							7	Pulp	0.01	< 0.01	0.08	0.06	-
								Whole fruit	0.03	< 0.01	0.06	0.06	
								Peel	0.05	< 0.01	0.02	0.08	
							0	Pulp	< 0.01	< 0.01	< 0.01	< 0.01	4
								Whole fruit	0.03	< 0.01	0.01	0.04	
								Peel	0.07	< 0.01	0.03	0.09	
							1	Pulp	< 0.01	< 0.01	< 0.01	< 0.01	
							1	Whole fruit	0.04	< 0.01	0.02	0.05	
								Peel	0.03	< 0.01	0.03	0.10	FA-
Almeria,			0.085	900-	_			Pulp	< 0.01	< 0.01	< 0.01	0.04	22-
Spain, 2003 (Cantarino) ^b	WG	0.080	0.000	930	3	6–8	2	Whole fruit	0.02	< 0.01	0.02	0.07	03-02/01
								Peel	0.04	< 0.01	< 0.01	0.05	- 02,01
								Pulp	< 0.04	< 0.01		0.03	-
							3	Whole	0.01	< 0.01		0.02	
								fruit					4
								Peel	0.01	< 0.01	0.06	0.16	4
							7	Pulp	< 0.01	< 0.01	< 0.01	< 0.01	4
								Whole fruit	0.01	< 0.01	0.03	0.08	
								Peel	0.07	< 0.01	0.05	0.05	_
							0	Pulp	< 0.01	< 0.01	0.03	0.02	
							O	Whole fruit	0.02	< 0.01	0.04	0.03	
								Peel	0.10	< 0.01	0.06	0.05	7
							1	Pulp	< 0.01	< 0.01	0.03	0.03	7
							1	Whole fruit	0.03	< 0.01	0.04	0.05	
								Peel	0.09	< 0.01	0.06	0.08	FA-
Veneto Italy		0.080-		801-				Pulp	< 0.01	< 0.01	0.04	0.04	22-
Veneto, Italy, 2003 (Tazio) ^c	WG	0.082	0.010	819	3	6–7	2	Whole	0.03	< 0.01	0.05	0.05	03-
								fruit					03/01
								Peel	0.05	< 0.01	0.08	0.10	4
							3	Pulp	0.01	< 0.01	0.04	0.06	4
								Whole fruit	0.02	< 0.01	0.05	0.07	
								Peel	0.08	< 0.01	0.13	0.17	_
							7	Pulp	< 0.01	< 0.01	0.04	0.05	7
							7	Whole fruit	0.02	< 0.01	0.07	0.09	
Murcia, Spain,	WG	0.079-	0.083-	944–	3	8	1	Peel	0.04	< 0.01	0.09	0.19	FA-

Location, year	Applic	cation						Commodit	Residue	s (mg/kg)			Ref.
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT , days		Flonica mid	TFNA- AM	TFNA	TFNG	
Slovenia GAP	WG	0.05	0.005	1000	3	7	1						
2004		0.081	0.084	964				Pulp	< 0.01	< 0.01	0.02	0.02	22-
(Cantagrillo) e								Whole fruit	0.02	< 0.01	0.05	0.09	04-02
								Peel	0.05	< 0.01	0.14	0.09	FA-
Aquitaine, South France,	WG	0.079 -	0.010	788–	3	6–9	1	Pulp	< 0.01	< 0.01	0.02	0.01	22-
2004 (Amigo)	WG	0.081	0.010	813	3	0-9	1	Whole fruit	0.02	< 0.01	0.06	0.03	04- 04/02
Field Melons	•		•		•		•				•	•	•
								Peel	0.07	< 0.01	0.03	0.10	FA-
Valencia, Spain, 2003	WG	0.080	0.0084	932– 960	3	6–8	1	Pulp	< 0.01	< 0.01	< 0.0 1	< 0.01	22- -03-
(Piel Sapo) b				300				Whole fruit	0.04	< 0.01	0.02	0.05	02/02
Emilia								Peel	0.10	< 0.01	0.06	0.09	FA-
Romagna,	WG	0.078-	0.013	584–	3	4–10	1	Pulp	< 0.01	< 0.01	0.03	0.04	22-
Italy, 2003 (Bingo) ^c	WU	0.083	0.013	620	3	4-10	1	Whole fruit	0.03	< 0.01	0.02	0.03	03- 03/02
								Peel	0.10	< 0.01	0.06	0.05	
							0	Pulp	< 0.01	< 0.01	0.03	0.02	
							U	Whole fruit	0.04	< 0.01	0.04	0.03	
								Peel	0.03	< 0.01	0.07	0.05	
							1	Pulp	0.01	< 0.01		0.02	
							1	Whole fruit	0.02	< 0.01		0.03	
Emilia								Peel	0.05	< 0.01	0.06	0.05	
Romagna,	TI G	0.080-	0.010	599_				Pulp	0.01	< 0.01	_	0.02	FA-
Italy, 2004 (Colorado) ^d	WG	0.082	0.013	618	3	7	2	Whole fruit	0.03	< 0.01	1	0.03	22- 04-02
(,								Peel	0.02	< 0.01	0.07	0.05	1
							_	Pulp	< 0.01	< 0.01		0.01	1
							3	Whole fruit	0.01	< 0.01		0.03	
								Peel	0.04	< 0.01	0.10	0.07	1
							_	Pulp	0.01	< 0.01		0.02	-
							7	Whole fruit	0.02	< 0.01		0.04	
								Peel	0.09	< 0.01	0.01	0.01	FA-
								Pulp	< 0.01	< 0.01	0.01	< 0.01	22-
							0	Whole fruit	0.04	< 0.01	0.01	< 0.01	04- 04/01
								Peel	0.10	< 0.01	0.02	0.02	1
							1	Pulp	< 0.01	< 0.01	0.01	< 0.01	1
							1	Whole fruit	0.05	< 0.01		0.01	
Poitou-								Peel	0.04	0.01	0.02	0.01	1
Charentes,		0.075-		564-				Pulp	< 0.01	< 0.01		< 0.01	-
	WG	0.084	0.013	631	3	7–8	2	Whole fruit	0.02	< 0.01	0.02	< 0.01	
								Peel	0.05	< 0.01	0.02	0.02	-
								Pulp	< 0.03	< 0.01		0.02	1
							3	Whole	0.02	< 0.01	1	0.01	
								fruit					4
								Peel	0.04	0.01		0.03	-
							7	Pulp Whole	0.01	< 0.01		0.01	-
								fruit					
Pyrenees	WG	0.049-	0.008	592-	3	7	0	Peel	0.03	Not	0.17	0.09	S-11-

Location, year	Applic	cation						Commodit	Residue	s (mg/kg)			Ref.
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT , days		Flonica mid	TFNA- AM	TFNA	TFNG	
Slovenia GAP	WG	0.05	0.005	1000	3	7	1						
Orientales,		0.050		610				Pulp	< 0.01	analysed	0.04	0.02	0260
France, 2011 (Stellio)								Whole fruit	0.02		0.09	0.05	0
(Peel	< 0.01	1	0.14	0.08	
								Pulp	< 0.01	1		0.01	
							1	Whole		1			
								fruit	< 0.01		0.07	0.04	
								Peel	0.03	1	0.16	0.14	
							2	Pulp	0.01	1	0.08	0.04	
							3	Whole	0.02		0.11	0.08	1
								fruit					
								Peel	0.02	1		0.02	_
							0	Pulp	< 0.01	1	0.02	< 0.01	_
								Whole	< 0.01		0.05	0.01	
E '11'								fruit Peel		1		0.03	-
Emilia		0.047-		700					0.03	NI-4	0.08		-
Romagna, Italy, 2011	WG	0.047-	0.006	780– 805	3	7	1	Pulp Whole	< 0.01	Not analysed	0.03	< 0.01	-
(Bacir)		0.047		803				fruit	0.01	anaryscu	0.05	0.02	
Dacii)								Peel	0.01	1	0.11	0.04	-
								Pulp	< 0.01	1	0.03	< 0.01	1
							3	Whole		1			1
								fruit	< 0.01		0.06	0.02	
								Peel	0.13		0.11	0.10	
							0	Pulp	< 0.01		< 0.0	< 0.01	
								Whole	0.07	1	0.06	0.05	1
								fruit	0.07				
Castellon,		0.048-		760–				Peel	0.08	Not		0.14	
Spain, 2011	WG	0.050	0.006	805	3	7	1	Pulp	< 0.01	analysed	0.01	< 0.01	_
(Sancho)								Whole	0.04		0.07	0.08	
								fruit		1			-
								Peel	0.05 < 0.01	-	0.13	0.14 0.01	-
							3	Pulp Whole	< 0.01	-	0.02	0.01	-
								fruit	0.02		0.07	0.07	
						+		Peel	0.01		0.09	0.03	┪
								Pulp	< 0.01	1	0.02	< 0.01	1
							0	Whole		1			1
								fruit	0.04		0.05	0.02	
A 11 4 -								Peel	0.10		0.02	0.05	1
Albacete, Spain, 2011	WG	0.050	0.006	798–	3	7	1	Pulp	< 0.01	Not	0.14	< 0.01	
(Piel de Sapo)	""	0.030	0.000	806	3	'	1	Whole	0.04	analysed	0.07	0.02	
(= 101 00 Sup 0)								fruit		4			4
								Peel	0.02	4		0.05	4
							3	Pulp	< 0.01	4	0.02	< 0.01	4
								Whole	< 0.01		0.07	0.03	
		1						fruit					

The experimental weight percentage ratio between peel and pulp was reported to be:

 $^{^{\}rm a}$ 38.1% for peel and 61.9% for pulp

 $^{^{\}rm b}$ 50.5% for peel and 49.5% for pulp

 $^{^{\}rm c}$ 31.1 % for peel and 68.9% for pulpl

 $^{^{\}text{d}}$ 38.9 % for peel and 61.7% for pulp

 $^{^{\}rm e}$ 41.6% for peel and 58.4% for pulp

Squash

Five independent trials were conducted on summer <u>squash</u> in the US during the 2001 growing season. In all trials, three foliar spray applications of a WG formulation were made with a re-treatment interval of 6–7 days. Squash was harvested 0 DALT.

The analytical method P-3561M was used to analyse all samples. The LOQ was determined to be $0.01 \, \text{mg/kg/analyte}$.

Three independent trials were also conducted on <u>pumpkin</u> in Australia during the 2010 and 2012 growing seasons. In all trials, three foliar spray applications of a WG formulation were made at 0.10 kg ai/ha or 0.20 kg ai/ha with a re-treatment interval of 7 days. Pumpkins were harvested 0, 1, 3 and 7 DALT.

The analytical method AATM-R-165 was used to analyse all samples. The LOQ was determined to be 0.01~mg/kg/analyte.

The Meeting also received four independent trials conducted on <u>pumpkin</u> in Hungary during the 2012 growing season. In all trials, two foliar spray applications of a WG formulation were made at 0.08 kg ai/ha with a re-treatment interval of 7 days. Pumpkins were harvested 0, 1, 3 and 7 DALT.

The analytical method SOP R 700 FEJ2 was used to analyse all samples. The LOQ was determined to be $0.01 \, \text{mg/kg/analyte}$.

The maximum period of sample storage at -20 °C for all trials was up to 351 days (12 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 55.

Table 55 Residues of Flonicamid in Summer Squash Following Foliar Spray with Flonicamid 50 WG Formulation from North American Regions, Australia and Hungary

Location, year	Applica	ation					DALT	Residue	s (mg/kg))		
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	, days	Flonica mid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG	0.07- 0.10	0.07-0.10	100	3	7	0					71512 9
North Rose NY, 2001 (Zucchini Select)	WG	0.10	0.04	234	3	7	0	< 0.01 (< 0.01, < 0.01)				
Rose Hill NC, 2001 (Early Prolific Straight- neck)	WG	0.10	0.05	187	3	7	0	0.031 (0.031, 0.031)	< 0.01 (< 0.01, < 0.01)	0.053 (0.050, 0.055)	0.035 (0.033, 0.036)	
Hobe Sound FL, 2001 (Rogers Hybrid)	WG	0.10	0.05	187– 196	3	6–7	0	0.032 (0.032, 0.031)	< 0.01 (< 0.01, < 0.01)	0.063 (0.064, 0.062)	0.039 (0.038, 0.039)	
							0	0.042 (0.040, 0.043)	< 0.01 (< 0.01, < 0.01)	0.073 (0.081, 0.065)	0.039 (0.043, 0.035)	IB- 2001- MDG-
Arkansaw WI,	WG	0.10	0.05	187–	3	6–7	1	0.025 (0.024, 0.026)	< 0.01 (< 0.01, < 0.01)	0.080 (0.075, 0.084)	0.031 (0.028, 0.033)	007- 00-01
2001 (Hybrid Monet)	WG	0.10	0.03	196	3	0-7	3	0.026 (0.023, 0.028)	< 0.01 (< 0.01, < 0.01)	0.083 (0.075, 0.091)	0.034 (0.030, 0.037)	
							7	0.016 (0.015, 0.017)	< 0.01 (< 0.01, < 0.01)	0.087 (0.081, 0.092)	0.027 (0.026, 0.028)	
Madera CA, USA, 2001 (Sundance)	WG	0.10	0.04	281	3	7	0	0.031 (0.033, 0.029)	< 0.01 (< 0.01, < 0.01)	0.065 (0.076, 0.053)	0.036 (0.042, 0.030)	1
AUS GAP	WG	0.05- 0.10	NS	NS	3		1					

I agation year	Applica	ition					DALT	Residue	s (mg/kg))		
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	, days	Flonica mid	TFNA- AM	TFNA	TFNG	Ref
					Î		0	0.12	< 0.01	0.039	0.033	
		0.10	0.015	667	3	7	1	0.079	< 0.01	0.057	0.05	1
Ballandean,		0.10	0.013	007	3	/	3	0.07	< 0.01	0.059	0.05	
South	WG						7	0.029	< 0.01	0.04	0.047	UPL-
Queensland, 2010	WG						0	0.27	< 0.01	0.082	0.069	1003
(Butternut Large)		0.20	0.03	667	3	7	1	0.1	< 0.01	0.084	0.097	
		0.20	0.03	007	3	'	3	0.086	< 0.01	0.074	0.093	
							7	0.054	< 0.01	0.12	< 0.01	
							0	0.01	< 0.01	< 0.01	< 0.01	
		0.10	0.02	638	3	7	1	< 0.01	< 0.01	< 0.01	< 0.01	
Bowen, Queensla		0.10	0.02	030	3		3	< 0.01	< 0.01	< 0.01	< 0.01	
nd, 2012 (Ken's	WG						7	< 0.01	< 0.01	< 0.01	< 0.01	
Special)	"" "						0	0.039	< 0.01	< 0.01	< 0.01	
Specialy		0.20	0.03	638	3	7	1	< 0.01	< 0.01	< 0.01	< 0.01	
		0.20	0.03	030	3		3	< 0.01	< 0.01	< 0.01	< 0.01	
							7	0.013	< 0.01	< 0.01	< 0.01	UPL-
							0	0.026	< 0.01	< 0.01	0.017	1107
		0.10	0.025	401	3	7	1	0.013	< 0.01	0.013	0.021	
Rowen		0.10	0.023	701	3		3	0.042	< 0.01	0.012	0.021	
Bowen, Queensland, 2012 V (Sunset QHI)	WG						7	0.017	< 0.01	0.023	0.031	
	"" "						0	0.068	< 0.01	0.032	0.057	
(Bunset QIII)		0.20	0.05	401	3	7	1	0.11	< 0.01	0.023	0.03	
		0.20	0.03	101	3	['	3	0.063	< 0.01	0.022	0.031]
						<u> </u>	7	0.043	< 0.01	0.02	0.043	

I continu von	Applica	ation					PHI,	Residues (m	ıg/kg)		
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonicamid	TFNA	TFNG	Ref
Slovenia GAP	WG	0.05	0.005- 0.012	400– 1000	3	7	1				
Vanalnaanvála							0	< 0.01	< 0.01	< 0.01	
Kapolnasnyék, Hungary, 2012							1	< 0.01	< 0.01	< 0.01	
(NS)	WG	0.08	NS		2	7	3	< 0.01	< 0.01	< 0.01	
(145)							7	< 0.01	< 0.01	< 0.01	
							0	< 0.01	< 0.01	< 0.01	
Füle, Hungary,	WG	0.08			2	7	1	< 0.01	< 0.01	< 0.01	12
2012 (NS)	WG	0.08	NS		2	/	3	< 0.01	< 0.01	< 0.01	ISK
							7	< 0.01	< 0.01	< 0.01	AA
							0	< 0.01	< 0.01	< 0.01	0701
Vereb, Hungary,	WG	0.08			2	7	1	< 0.01	< 0.01	< 0.01	
2012 (NS)	wG	0.08	NS		2	/	3	< 0.01	< 0.01	< 0.01	
							7	< 0.01	< 0.01	< 0.01	
6 4 614							0	< 0.01	< 0.01	< 0.01	
Székesfehérvar-	WG	0.00			2	7	1	< 0.01	< 0.01	< 0.01	
Csala, Hungary, 2012 (NS)	WG	0.08	NS		2	/	3	< 0.01	< 0.01	< 0.01	
2012 (113)							7	< 0.01	< 0.01	< 0.01	

Fruiting vegetables, other than cucurbits

Tomatoes

Twenty-six independent trials were conducted on <u>field tomatoes</u> in the US between 2001 and 2010. For 12 of the trials, three foliar spray applications of a WG formulation were made at 0.10 kg ai/ha with re-treatment intervals of 6–12 days. Fourteen additional independent trials on field tomatoes were conducted in the US between 2010 and 2011 where two foliar spray applications of a SG formulation were made at 0.15 kg ai/ha with 6–8 day retreatment intervals. Three independent trials were conducted on greenhouse tomatoes in Canada and the US between 2010 and 2011 where two

foliar sprays of a SG formulation were made at 0.15 kg ai/ha with 6–7 day retreatment intervals, In all trials, tomatoes were harvested 0 DALT.

The analytical method P-3561M was used to analyse all samples. The LOQ was determined to be $0.01\ mg/kg/analyte$.

The maximum period of sample storage at -20 °C was up to 382 days (19 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 56.

Table 56 Residues of Flonicamid in Field Tomatoes Following Foliar Spray with Flonicamid 50 WG and Beleaf 50SG and in Greenhouse Tomatoes Following Foliar Spray with Beleaf 50 SG in North American Regions

	Applicati	ion						Residues (mg/kg)			
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no	RTI, days	DALT , days	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
Field tomatoes										_		
US GAP	WG/SG	0.10	0.10	100	2	7	0					
							0	0.022 (0.024, 0.019)	(< 0.01	< 0.01 (< 0.01 , < 0.01)	(< 0.01	
North Rose NY, 2001	WG	0.10	0.04	224	2	7	1	0.013 (0.035, 0.027)	< 0.01 (< 0.01	< 0.01 (< 0.01 , < 0.01)	< 0.01 (< 0.01	
(Floradade)	wG	0.10	0.04	234	3	7	3	0.033 (0.034, 0.032)	,	(< 0.01	0.013 (0.011, 0.014)	
							7	0.021 (0.023, 0.018)	(< 0.01	< 0.01 (< 0.01 , < 0.01)	(< 0.01	
Tifton GA, 2001 (5037)	WG	0.10	0.05	187	3	7	0	0.069 (0.057, 0.081)	< 0.01 (< 0.01 , < 0.01)	(0.013,		
Hobe Sound FL, 2001 (Florida 47)	WG	0.10	0.02	496–514	3	7	0	0.048 (0.047, 0.045)	< 0.01 (< 0.01 , < 0.01)	(< 0.01)		IB- 2001- MDG -006-
Winter Garden FL, 2001 (Better Boy)	WG	0.10	0.04	271	3	6–7	0	0.093 (0.08, 0.105)	(< 0.01	< 0.01 (< 0.01 , < 0.01)	(< 0.01	00-1
Northwood ND, 2001 (Sheyenne)	WG	0.10	0.10	187	3	7–12	0	0.056 (0.053, 0.058)	< 0.01 (< 0.01 , < 0.01)	(< 0.01	0.013 (0.012, 0.014)	
Vacaville CA, 2001 (3155)	WG	0.10	0.04	234	3	7	0	0.077 (0.088, 0.066)	, < 0.01)	(< 0.01 , < 0.01)	, < 0.01)	
Davis CA ^a , 2001 (Brigade)	WG	0.10	0.04	234	3	6–8	0	0.082 (0.079, 0.085)	(< 0.01	< 0.01 (< 0.01 , < 0.01)	(< 0.01	
Davis CA ^a , 2001 (Brigade)	WG	0.10	0.04	224–243	3	6–8	0	0.086 (0.086, 0.086)	(< 0.01	< 0.01 (< 0.01 , < 0.01)	(< 0.01	
Chowchilla CA,	WG	0.10	0.04	281	3	7	0	0.143	< 0.01		< 0.01	

	Applicat	ion						Residues (
Location, year	Form	kg ai/ha	kg ai/hL	Water, L/ha	no	RTI, days	l l	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
(variety) 2001 (US 99)				L/IIa		uays	, days	(0.154,		(0.012,	(< 0.01	
								0.131)	, < 0.01)	0.013)	, < 0.01)	
								0.217	< 0.01	0.011	< 0.01	1
Mader ^a CA, 2001 (Celebrity)	WG	0.10	0.04	271–281	3	7	0	(0.196,	(< 0.01	(< 0.01	(< 0.01	
(0.238)		0.011)		
Fresno CA b, 2001	W.C	0.10	0.02	107 106	2		0	0.088		< 0.01 (< 0.01	I .	
(Super Roma)	WG	0.10	0.02	187–196	3	7	0	(0.091, 0.084)	,	,	,	
								0.232	< 0.01)	< 0.01) < 0.01	0.011	
Fresno CA ^b , 2001 (Shady Lady)	WG	0.10	0.02	701–711	3	6–8	0	(0.272,		(< 0.01	(0.012,	
(Shady Lady)								0.191)	, < 0.01)	, < 0.01)	0.010)	
								<u>0.15</u>	< 0.01	< 0.01 (< 0.01	< 0.01	
							0	(0.15, 0.14)	,	,	,	
								· ·		< 0.01)		
							1	0.09 (0.08,		(< 0.01		
	WG							0.09)	, < 0.01)	, < 0.01)	, < 0.01)	
	WG							0.06	< 0.01	< 0.01 (< 0.01	< 0.01	
							3	(0.06, 0.05)	,	,	,	
								0.03)	< 0.01)	< 0.01)	< 0.01)	-
							7	0.03 (0.03,		(< 0.01	0.02 (0.02,	
								0.03)	, < 0.01)	, < 0.01)	0.02)	
		-						0.13	< 0.01	< 0.01	< 0.01	-
							0	(0.12,	(< 0.01	(< 0.01	(< 0.01	
								0.014)		< 0.01)		-
							1	0.09 (0.11,		< 0.01 (< 0.01		
Jennings FL, 2003	SG w/o	0.10	0.10	94–95	3	7	1	0.11,	, < 0.01)	, < 0.01)	, < 0.01)	P-
(Florida 47)	surfactan t	0.10	0.10	74-73				0.06	< 0.01	< 0.01	< 0.01	
							3	(0.08,	(< 0.01	(< 0.01	(< 0.01	
								0.04)		< 0.01)	< 0.01)	
							7	0.04	< 0.01 (< 0.01	< 0.01 (< 0.01	0.02	
							7	(0.04, 0.04)	,	, < 0.01)	(0.02, 0.02)	
		-						0.12	< 0.01	< 0.01	< 0.01	
							0	(0.10,	(< 0.01	(< 0.01	(< 0.01	
								0.13)		, < 0.01)		
								0.09		< 0.01 (< 0.01		
	SG with						1	(0.08, 0.09)	,	,	,	
	surfactan t	L								< 0.01)		
							3	0.08 (0.09,		(< 0.01		
								0.06)	, < 0.01)	, < 0.01)	, < 0.01)	
							7	0.05 (0.04,	< 0.01		0.03	
								0.04,	,	,	0.03)	

	Applicat	ion						Residues (mg/kg)			
Location, year (variety)	Form		kg ai/hL	Water, L/ha	no	RTI, days		Flonicami d		TFNA	TFNG	Ref
						,				< 0.01)		
Maricopa AZ, 2010 (Round Red)	SG	0.16	0.05	290–299	2	7	0	0.063 (0.037, 0.088)	,	< 0.01 (< 0.01 , < 0.01)	0.01 (0.01, 0.01)	
Davis CA c, 2010 (Sun 6366)	SG	0.15	0.05	299	2	8	0	0.118 (0.120, 0.115)	,	(< 0.01	< 0.01 (< 0.01 , < 0.01)	
Davis CA ^c , 2010 (Shady Lady)	SG	0.15	0.05	299	2	7	0	0.083 (0.078, 0.087)	< 0.01 (< 0.01	< 0.01 (< 0.01	< 0.01 (< 0.01 , < 0.01)	
Parlier CA ^d , 2010 (H3155)	SG	0.16	0.04- 0.08	196–206	2	7	0	0.066 (0.065, 0.067)	< 0.01 (< 0.01		0.011	
Parlier CA ^d , 2010 (Cherry Grande)	SG	0.15- 0.16	0.04	383–393	2	7	0	0.103 (0.103, 0.103)	< 0.01	< 0.01 (< 0.01	0.017 (0.017, 0.017)	
Riverside ^e CA, 2010 (Sun 6788)	SG	0.15- 0.16	0.04	374–383	2	7	0	0.191 (0.187, 0.194)	,	< 0.01 (< 0.01 , < 0.01)	0.014 (0.014, 0.014)	
Riverside ^e CA, 2010 (Celebrity)	SG	0.15- 0.16	0.04	468–477	2	7	0	0.056 (0.057, 0.055)	,	(< 0.01	< 0.01 (< 0.01 , < 0.01)	
Holtville CA, 2010 (Shady Lady)	SG	0.15	0.05	299–309	2	6	0	0.117 (0.116, 0.118)	,	(< 0.01 , < 0.01)	0.014,	PR No.
Holtville CA, 2011 (Hypeel 4S)	SG	0.15	0.04	337–346	2	8	0	0.110 (0.110, 0.109)	,	(< 0.01	< 0.01 (< 0.01 , < 0.01)	
Citra FL, 2010 (BHN 602)	SG	0.16	0.04	383	2	8		0.048 (0.049, 0.047)	(< 0.01	,	< 0.01 (< 0.01 , < 0.01)	
Tifton GA, 2010 (Sun Gold F1)	SG	0.15	0.04	393–402	2	6	0	0.102 (0.100, 0.103)	,	< 0.01 (< 0.01 , < 0.01)	0.019 (0.019, 0.019)	
Salisbury MD, 2010 (Sunbrite)	SG	0.15	0.05	309	2	6	0	0.131 (0.131, 0.130)	,	(< 0.01	< 0.01 (< 0.01 , < 0.01)	
Clonton NC, 2010 (Supersweet 100)	SG	0.15	0.04	412	2	7	0	0.147 (0.148, 0.145)	,	< 0.01 (< 0.01 , < 0.01)	0.050 (0.050, 0.050)	
Las Cruces ^f NM, 2010 (Roma)	SG	0.15	0.03	468–486	2	6	0	0.078 (0.077, 0.078)	< 0.01 (< 0.01		< 0.01 (< 0.01 < 0.01)	
Las Cruces ^f NM, 2010 (Celebrity)	SG	0.15	0.03	187	2	6	0	0.074 (0.073, 0.074)	,	(< 0.01	< 0.01 (< 0.01 , < 0.01)	
Freeville NY, 2010	SG	0.15-	0.03	552-561	2	7	0	0.050			< 0.01	

	Applicati	on						Residues (
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no	RTI, days		Flonicami d		TFNA	TFNG	Ref
(Marianna)		0.16						(0.049, 0.050)	,	(< 0.01 , < 0.01)	,	
Fremont OH, 2010 (Mountain Pride)	SG	0.15	0.03	421–440	2	7	0	<0.01 (< 0.01, < 0.01)	(< 0.01	< 0.01 (< 0.01 , < 0.01)	(< 0.01	
Arlington OH, 2010 (Better Boy)	SG	0.16	0.08	187	2	7	0	0.070 (0.070, 0.071)	(< 0.01	< 0.01 (< 0.01 , < 0.01)	(< 0.01	
Greenhouse Tomatoes			•							•		
GAP	SG	0.10– 0.15	0.10– 0.15	100	2	7	0					
Parlier CA, 2010 (Trust)	SG	0.15	0.03	458–477	2	7	0	0.058 (0.060,	(< 0.01	< 0.01 (< 0.01 , < 0.01)	(< 0.01	
Citra FL, 2011 (BHN 268)	SG	0.15	0.05	281	2	7		0.037 (0.037,	< 0.01 (< 0.01 , < 0.01)	< 0.01 (< 0.01	0.025 (0.025, 0.025)	
								(0.055,	< 0.01 (< 0.01 , < 0.01)	(< 0.01	0.014 (0.013, 0.014)	
Harrow ON, CA,	S.C.	0.15	0.02	1000–1007		7		0.050 (0.050, 0.050)	< 0.01 (< 0.01 , < 0.01)	(< 0.01	0.023 (0.023, 0.022)	
Harrow ON, CA, 2010 (Macarena)	DG.	0.13	0.02	1000-1007		/		0.040 (0.036,	< 0.01 (< 0.01 , < 0.01)	(< 0.01	0.043 (0.043, 0.043)	
								0.041 (0.039,	< 0.01 (< 0.01 , < 0.01)	(< 0.01	0.069 (0.066, 0.071)	

^a The last applications made at each site were on the same day and the varieties were the same, rendering the trials dependent

Bell peppers

Six independent trials were conducted on field <u>bell peppers</u> in the US in 2001 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–7 days. Bell peppers were harvested 0 DALT.

The analytical method P-3561M was used to analyse all samples. The LOQ was determined to be $0.01\ mg/kg/analyte$.

^b The last applications made at each site were 19 days apart, therefore, trials were considered independent

^c The last applications made at each site were 5 days apart, and varieties were not sufficiently different to render the trials independent

^d The last applications made at each site were 8 days apart, and the tomato variety H3155 could not be identified, therefore, trials were considered dependent

^e The last applications made at each site were 9 days apart, and varieties were not sufficiently different to render the trials independent

^fThe last applications were made on the same day and varieties were not sufficiently different to render the trials independent.

The maximum period of sample storage at -20 °C was up to 382 days (19 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 59.

Table 57 Residues of Flonicamid in Bell Peppers Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applicat	ion						Residues (n	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
TIG CAD	WG/GG	0.10	0.10	100	3	_	0					
US GAP	WG/SG	0.15	0.15	100	2	7	0					
Rose Hill NC, 2001 (Jupiter)	WG	0.10	0.05	187	3	7	0	0.058 (0.056, 0.059)	< 0.01 (< 0.01, < 0.01)	0.070 (0.071, 0.068)	0.030 (0.029, 0.030)	
Hobe Sound FL, 2001 (Wizard)	WG	0.10	0.02	571–589	3	6–7	0	0.057 (0.052, 0.062)	< 0.01 (< 0.01, < 0.01)	0.068 (0.064, 0.072)	0.031 (0.029, 0.032)	
Arkansaw WI, 2001 (Better Bell IMP.)	WG	0.10	0.05	187	3	6–7	0	0.056 (0.061, 0.051)	< 0.01 (< 0.01, < 0.01)	0.070 (0.077, 0.062)	0.031 (0.035, 0.027)	
							0	0.055 (0.056, 0.053)	< 0.01 (< 0.01, < 0.01)	0.034 (0.032, 0.035)	0.049 (0.043, 0.055)	
East Bernard	WG	0.10	0.08-0.09	112 131	3	7	1	0.113 (0.118, 0.108)	< 0.01 (< 0.01, < 0.01)	0.039 (0.040, 0.037)	0.079 (0.083, 0.074)	IB-2001- MDG- 006-00-01
TX, 2001 (Capistrano)		0.10	0.00-0.07	112-131	3		3	0.099 (0.105, 0.093)	< 0.01 (< 0.01, < 0.01)	0.047 (0.050, 0.044)	0.115 (0.122, 0.107)	
							7	0.051 (0.048, 0.054)	< 0.01 (< 0.01, < 0.01)	0.060 (0.054, 0.065)	0.144 (0.135, 0.153)	
Suisun CA, 2001 (variety not available)	WG	0.10	0.04	234	3	7	0	0.104 (0.107, 0.101)	< 0.01 (< 0.01, < 0.01)	0.045 (0.049, 0.041)	0.038 (0.039, 0.037)	
Fresno CA, 2001 (Jupiter)	WG	0.10	0.015	683–701	3	7	0	0.107 (0.105, 0.108)	< 0.01 (< 0.01, < 0.01)	0.037 (0.036, 0.038)	0.038 (0.037, 0.039)	

Non-bell Peppers

Two independent trials were conducted on field <u>non-bell peppers</u> in the US in 2001 where three foliar spray applications of a WG formulation were made with a re-treatment interval of 7 days. Non-bell peppers were harvested 0 DALT.

The analytical method P-3561M was used to analyse all samples. The LOQ was determined to be $0.01\ mg/kg/analyte$.

The maximum period of sample storage at -20 °C was up to 382 days (19 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 58.

Table 58 Residues of Flonicamid in Non-bell Peppers Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applica	ation						Residues (m	ıg/kg)			
year	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
LIC CAD	WG/	0.10	0.10	100	3	7	0					
US GAP	SG	0.15	0.15	100	2	/	0					
East Bernard TX, 2001 (Big Jim)	WG	0.10	0.08	122	3	7	0	0.219 (0.215, 0.223)	, , , ,	(0.029,	0.041 (0.041, 0.040)	IB-
Suisun CA ^a , 2001 (Anaheim)	WG	0.10	0.04	234	3	7–9	0	0.210 (0.204, 0.215)	< 0.01 (< 0.01, < 0.01)	(0.030,	()	2001- MDG- 006-00-
Suisun CA ^a , 2001 (Anaheim)	WG	0.10	0.04	711– 720	3	7	0	0.205 (0.208, 0.202)	< 0.01 (< 0.01, < 0.01)	(0.030,	0.038 (0.036, 0.039)	01

^a The last applications were made on the same day and the varieties were the same, rendering the trials dependent.

Leafy vegetables (including Brassica leafy vegetables)

Head lettuce

Six independent trials were conducted on <u>head lettuce</u> in the US in 2002 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–8 days. Head lettuce was harvested 0 DALT.

Method P-3575, a modified version of analytical method P-3561, was used to analyse all samples. The LOQ was determined to be 0.01 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 147 days (ca. 5 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 59.

Table 59 Residues of Flonicamid in Head Lettuce Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applic	cation							Residues (r	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water , L/ha	no.	RTI, days	, days	Matrix	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/ SG	0.07-0.10	0.07- 0.30	30– 100	3	7	0						
Germansvi lle PA, 2002 (Sun Devil)	WG	0.10	0.11	94	3	6–7	0	w/wrapp er leaves w/out wrapper leaves	0.493 (0.392, 0.593) 0.027 (0.028, 0.025)	(< 0.01, < 0.01) < 0.01 (< 0.01,	0.018)	0.026 (0.026, 0.025) < 0.01 (< 0.01, < 0.01)	
Belle Glade FL, 2002 (Iceberg 35x110)	WG	0.10	0.10	92–98	3	7	0	w/wrapp er leaves w/out wrapper leaves		0.012 (0.013, < 0.01)	0.022 (0.020, 0.023) 0.012	0.025 (0.027, 0.023) < 0.01 (< 0.01, < 0.01)	Buser, J.W. and Chen, A.W., 2003
Lagurta AZ, 2002 (Desert Spring)	WG	0.10	0.11	94–96	3	7	0	w/wrapp er leaves w/out wrapper	0.518 (0.565, 0.471) 0.027 (0.026,	(< 0.01, < 0.01)	0.015)	0.023 (0.023, 0.022) < 0.01 (< 0.01,	

Location,	Applic	ation							Residues (r	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water , L/ha	no.	RTI, days	DALT , days	Matrix	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
								leaves	0.028)	< 0.01)	0.011)	< 0.01)	
							0	w/wrapp er leaves	0.584 (0.723, 0.445)	(< 0.01,		0.028 (0.031, 0.025)	
Visalia							0	w/out wrapper leaves	0.027 (0.028, 0.026)	< 0.01 (< 0.01, < 0.01)	0.014 (0.015, 0.013)	< 0.01 (< 0.01, < 0.01)	
CA, 2002 (Great Lakes 659:	WG	0.10	0.11	94	3	7–8	1		0.013 (0.038, 0.023)	< 0.01 (< 0.01, < 0.01)	0.028 (0.032, 0.024)	0.010 (0.010, < 0.01)	
)							3	w/wrapp er leaves	0.013 (0.012, 0.014)	(< 0.01,	0.014 (0.012, 0.015)	< 0.01 (< 0.01, < 0.01)	
							7		< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.022 (0.021, 0.023)	< 0.01 (< 0.01, < 0.01)	
Bard CA, 2002	WG	0.10	0.11	93–95	2	7	0	w/wrapp er leaves	0.431 (0.509, 0.353)	< 0.01 (< 0.01, < 0.01)		0.026 (0.030, 0.022)	
(Green Lightning)	WG	0.10	0.11	93-93	3	/	0	w/out wrapper leaves	0.033 (0.030, 0.035)	(< 0.01,	0.013 (0.012, 0.014)	< 0.01 (< 0.01, < 0.01)	
Greenfield CA, 2002	WG	0.10	0.11	93–97	3	7	0	w/wrapp er leaves	0.394 (0.386, 0.402)	(< 0.01, < 0.01)	0.020)	0.032 (0.042, 0.021)	
CA, 2002 (Big Ben)								w/out wrapper leaves	0.028 (0.028, 0.027)	< 0.01 (< 0.01, < 0.01)	0.014 (0.013, 0.014)	< 0.01 (< 0.01, < 0.01)	

Leaf lettuce

Six independent trials were conducted on <u>leaf lettuce</u> in the US in 2002 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–7 days. Leaf lettuce was harvested 0 DALT. Side-by-side trials were also conducted in 2003 on Cos lettuce to compare the WG formulation to the SG formulation (with and without surfactant). The same use pattern was applied as that of the six trials.

A modified version of analytical method P-3561M was used to analyse all samples. The LOQ was determined to be 0.01~mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 172 days (ca. 6 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 60.

Table 60 Residues of Flonicamid in Leaf Lettuce Following Foliar Spray with Flonicamid 50 WG or Beleaf 50 SG in North American Regions

Lagation	Application	1		•			DALT.	Residues (n	ng/kg)	•	•	
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	,	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/SG	0.07-0.10	0.07-0.30	30-100	3	7	0					
Germansville PA, 2002 (New Fire)		0.10	0.11	94	3	6	0	(2.741,	(0.017,	(0.014,	0.036 (0.038, 0.034)	
Belle Glade FL, 2002 (Green Leaf Two Star)	WG	0.10	0.10	92–101	3	7	0	$\overline{(3.211)}$	(0.017,	(0.014,	0.042 (0.041, 0.042)	P- 3575
Maricopa	WG	0.10	0.11	94	3	7	0	3.056	0.016	0.014	0.038	

kg ai/ha	kg ai/hL	Water,		DOT	DALT,					
			no.	RTI,	days	Flonicamid	TFNA-	TFNA	TFNG	Ref
	ing ui/iii	L/ha	110.	days	aa, s		AM			4
						(3.051, 3.061)	(0.015, 0.017)	(0.014, 0.014)	(0.037, 0.039)	
			+							
					0					
						2.134)	0.026)	0.032)	0.113)	
						1.821	0.029	0.068	0.115	
					1	(1.764,			(0.134,	
0.10	0.11	94	3	7		+				-
					3					
						0.374	0.013	0.047	0.061	1
					7	(0.348,	(0.013,	(0.053,	(0.067,	
							0.013)	0.040)	0.054)	
0.10	0.44			_			1			
0.10	0.11	92–95	3	17	0		,			
			+					1	0.031)	-
							1		0.040	
0.10	0.11	93–96	3	7	0				,	
						3.078)	0.018)	0.012)	0.040)	
		1		1				1		1
					0	2.59 (2.56,			1	
					0	2.61)				
					1	2.55 (2.50,			1	
0.10	0.10	07	2	7		2.59)	0.06)	0.05)	0.08)	
0.10	0.10	97	3	'		2 22 (1 90	0.04	0.04	0.05	
					3					
						2.00)				_
					7	0.70 (0.71,				
						0.69)		, ,		
						2 22 (2 11				1
					0		(0.02,	(0.04,	(0.04,	
						2.22)	0.02)	0.04)	0.04)	
					1	1.94 (1.92,				
					1	1.95)				P-
0.10	0.10	97	3	7						3695
					3		(0.04,	(0.03,	(0.06,	0000
						2.29)	0.04)	0.05)	0.08)	
						0.38 (0.35	0.04	0.04	0.06	
					7				(0.05,	
			+			,			-	_
					0	<u>2.71</u> (2.80,				
						2.61)				
						1 00 (1 50				
					1		(0.06,	(0.04,	(0.09,	
vith 0.10	0.10	97	3	7		1.04)	0.06)	0.04)	0.09)	
etant) 0.10	0.10	'				1.55 (1.41,	0.05	0.04	0.08	
l l		1	1	1	3	1.68)	(0.05,	(0.03,	(0.08,	1
						1.00)	0.05)	0.04		
							0.05)	0.04)	0.08)	
					7	0.50 (0.47, 0.53)	0.05) 0.05 (0.04,	0.04) 0.05 (0.05,		_
	0.10 0.10 0.10	0.10 0.11 0.10 0.11 0.10 0.10 0.10 0.10	0.10 0.11 92–95 0.10 0.11 93–96 0.10 0.10 97	0.10	0.10	0.10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Spinach

Six independent trials were conducted on <u>spinach</u> in the US in 2001 and 2002 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–9 days. Plants were harvested 0 DALT.

Method P-3575, a modified version of analytical method P-3561M, was used to analyse all samples. The LOQ was determined to be 0.01 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 131 days (ca 4 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 61.

Table 61 Residues of Flonicamid in Spinach Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

	Applio	cation						Residues (m	ıg/kg)			
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/S G	0.07-0.10	0.07-0.30	30–100	3	7	0					
							0	6.967 (7.196, 6.737)	0.139 (0.134, 0.144)	0.402 (0.401, 0.402)	0.251 (0.247, 0.254)	
Baptistown							1	3.062 (3.030, 3.094)	0.051 (0.053, 0.048)	0.218 (0.225, 0.210)	0.015 (0.118, 0.112)	
NJ, 2002 (Tyee)	WG	0.10	0.11	94	3	6–9	3	2.049 (2.116, 1.981)	0.088 (0.089, 0.086)	0.314 (0.323, 0.304)	0.154 (0.159, 0.148)	
							7	0.580 (0.645, 0.514)	0.022 (0.028, 0.015)	0.181 (0.204, 0.158)	0.081 (0.092, 0.070)	
Suffolk VA, 2002 (Tyee)	WG	0.10	0.10	95–100	3	7	0	6.586 (6.073, 7.099)	0.150 (0.143, 0.156)	0.357 (0.353, 0.361)	0.262 (0.248, 0.275)	P-3575
Raymondvill e TX, 2002 (Skookum)	WG	0.10	0.11	94	3	7	0	4.820 (4.160, 5.480)	0.128 (0.116, 0.139)	0.296 (0.277, 0.315)	0.221 (0.204, 0.238)	
Wellington CO, 2002 (Unipack)	WG	0.10	0.11	94	3	7	0	4.855 (5.022, 4.687)	0.052 (0.054, 0.050)	0.132 (0.127, 0.136)	0.167 (0.163, 0.170)	
Yuma AZ, 2001 (RSP 6200)	WG	0.10	0.11	94	3	7	0	5.727 (6.000, 5.454)	0.149 (0.138, 0.160)	0.343 (0.332, 0.354)	0.251 (0.243, 0.259)	
San Ardo CA, 2001 (Bolero)	WG	0.10	0.11	94	3	7	0	5.713 (5.461, 5.965)	0.149 (0.149, 0.149)	0.332 (0.314, 0.350)	0.255 (0.280, 0.230)	

Radish leaves

Five independent trials were conducted on <u>radish leaves</u> in the US in 2003 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–9 days. Leaves were harvested 2 DALT.

The analytical method P-3561M was used to analyse all samples of radish roots and radish tops. The LOQ for radish leaves was determined to be 0.05 mg/kg/analyte.

The maximum period of sample storage at -20 °C was 517 days (ca. 17 months) for radish leaves. Concurrent storage stability data show that the residues are stable for up to 464 days (ca. 15 months). The results are summarized in Table 62.

Table 62 Residues of Flonicamid in Radish Leaves Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applio	cation					DAL T, days	Matrix	Residues (r	ng/kg)			Ref
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days			Flonicami d	TFNA- AM	TFNA	TFNG	
GAP	WG		0.07- 0.10	100	3	7	3						
Salinas CA, 2003 (Altaglob e)	WG	0.10	0.02	533– 542	3	6–7	2	Tops	3.1 (3.2, 2.9)	0.068 (0.070, 0.066)	(0.05,	0.20 (0.20, 0.20)	0875 3
Citra FL a, 2003 (Cabernet F1)	WG	0.10	0.04	281	3	6–7	2	Tops	8.5 (8.8, 8.2)	0.47 (0.46, 0.48)	0.16 (0.14, 0.18)	0.70 (0.71, 0.68)	
Citra FL a, 2003 (Cabernet F1)	WG	0.10	0.04	281– 290	3	7–8	2	Tops	<u>5.7</u> (6.2, 5.2)	0.30 (0.35, 0.25)	0.17 (0.22, 0.12)	0.33 (0.36, 0.29)	
Bridgeto n NJ, 2003 (Rebel)	WG	0.10	0.04	243– 262	3	8–9	2	Tops	<u>5.4</u> (5.2, 5.6)	0.098 (0.096, 0.10)	< 0.05 (< 0.05, < 0.05)	0.12 (0.12, 0.12)	
Willard OH, 2003 (Cabernet)	WG	0.10	0.02- 0.03	402– 430	3	6–8	4	Tops	0.21 (0.23, 0.18)	< 0.05 (< 0.05, < 0.05)	< 0.05 (< 0.05, < 0.05)	0.069 (0.074, 0.063)	

^a The last applications at each trial site were made 21 days apart, rendering the trials independent.

Mustard Greens

Eight trials were conducted on <u>mustard greens</u> in the US in 2003 and 2004 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–7 days. Mustard green leaves were harvested 0 DALT.

A modified version of analytical method P-3561M was used to analyse all samples. The LOQ was determined to be 0.01 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 214 days (7 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 63.

Table 63 Residues of Flonicamid in Mustard Greens Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applicat	ion					DALT,	Residues (m	g/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonicamid	TFNA-AM	TFNA	TFNG	Ref
US GAP	WG/SG	0.07 - 0.10	0.07-0.30	100	3	7	0					
Goochland VA, 2003 (Southern Giant)		0.10	0.10	101–107	3	6–8	0	(6.945,	(0.047,	(0.411,	0.907 (0.911, 0.902)	
Senatobia MS, 2003 (Florida Broadleaf)	WG	0.10	0.10	93–94	3	7	0	(8.097,	(0.064,	0.136 (0.131, 0.141)	1.341 (1.304, 1.378)	P- 3679
Ellendale MN, 2003 (Southern	WG	0.10	0.11	89–93	3	7	0	2.037 (2.147, 1.926)	(< 0.010,	0.044 (0.051, 0.037)	0.163 (0.182, 0.144)	

Location,	Applicat	ion					DALT.	Residues (m	g/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonicamid	TFNA-AM	TFNA	TFNG	Ref
Giant Curled)												
Eakly OK, 2003 (Florida Broadleaf)	WG	0.10	0.10	94–95	3	6–7	0	3.965 (3.669, 4.260)	0.046 (0.043, 0.049)	0.184 (0.160, 0.207)	0.401 (0.361, 0.440)	
							0	2.209 (1.813, 2.605)	0.031 (0.026, 0.035)	0.070 (0.060, 0.080)	0.418 (0.359, 0.477)	
Visalia CA, 2003	WG	0.10	0.11	91–92	3	7	1	1.643 (1.598, 1.688)	0.033 (0.030, 0.035)	0.052 (0.049, 0.055)	0.340 (0.307, 0.373)	-
(Florida Broadleaf)							3	1.136 (0.989, 1.283)	0.040 (0.036, 0.044)	0.057 (0.055, 0.059)	0.417 (0.395, 0.438)	
							7	0.369 (0.388, 0.350)	0.018 (0.027, < 0.010)	0.082 (0.078, 0.086)	0.412 (0.425, 0.398)	
Chula GA, 2004 (Broadleaf)	WG	0.10	0.10	96–102	3	7	0	4.401 (4.468, 4.334)	< 0.010 (< 0.010, < 0.010)	0.041 (0.77, < 0.01)	0.448 (0.460, 0.435)	
Jennings FL, 2004 (Curly Leaf)	WG	0.10	0.10	94–102	3	6–7	0	4.778 (5.123, 4.433)	< 0.010 (< 0.010, < 0.010)	0.069 (0.066, 0.072)	0.416 (0.418, 0.413)	P- 3764
Visalia CA, 2004 (Broadleaf)	WG	0.10	0.10	95	3	7	0	4.909 (5.042, 4.775)	< 0.010 (< 0.010, < 0.010)	0.084 (0.072, 0.096)	0.482 (0.496, 0.467)	

ND = Not detected

Root and tuber vegetables

Potato tubers

Sixteen independent trials were conducted on <u>potatoes</u> in the US in 2001 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–8 days. Potato tubers were harvested 0 DALT.

In Australia, four independent trials were conducted in 2010 and 2012 where two foliar spray applications of a WG formulation were made at 0.08 kg ai/ha or 0.16 kg ai/ha with 7–9 day re-treatment intervals. Potato tubers were harvested 14 DALT.

The analytical method P-3561M was used to analyse all samples collected from the US trials while method AATM-R-165 was used for the Australian trials. For both methods, the LOQ was determined to be 0.01~mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 315 days (ca 11 months). Storage stability data on high starch content commodities show that the residues are stable for at least 23 months. The results are summarized in Tables 64.

Table 64 Residues of Flonicamid in Potato Tubers Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions and with UPI-220 500 WG Formulation in Australia

	Applica	ation						Residues (m	ıg/kg)			
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/ SG	0.07-0.10	0.07-0.30	30–100	3	7	7					
							0	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.014 (0.012, 0.015)	< 0.01 (< 0.01, < 0.01)	
							1	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.017 (0.016, 0.017)	< 0.01 (< 0.01, < 0.01)	
North Rose NY, 2001 (NY-79)	WG	0.12	0.044	234	3	7	3	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.012 (0.012, 0.012)	< 0.01 (< 0.01, < 0.01)	
							7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.033 (0.034, 0.032)	0.059 (0.060, 0.058)	
							14	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.022 (0.019, 0.025)	< 0.01 (< 0.01, < 0.01)	
Germansville PA, 2001 (Andover)	WG	0.10	0.04	281–290	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.035 (0.031, 0.039)	0.068 (0.055, 0.080)	
Suffolk VA, 2001 (Superior)	WG	0.10	0.10-0.11	94–103	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.026 (0.027, 0.025)	< 0.01 (< 0.01, < 0.01)	
Hobe Sound FL, 2001 (Red LaSoda)	WG	0.10	0.03	346–355	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.021 (0.022, 0.019)	0.014 (0.015, 0.013)	·IB-
Northwood ND, 2001 (Dark Red Norland)	WG	0.10	0.05	187	3	6–7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.019 (0.020, 0.017)	0.015 (0.016, 0.013)	2001- MDG- 002- 00-01
Bygland MN, 2001 (Dark Red Norland)	WG	0.10	0.05	187–196	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.021 (0.020, 0.021)	0.014 (0.014, 0.014)	00 01
Arkansaw WI, 2001 (Russet Burbank)	WG	0.10	0.06	187	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.023 (0.024, 0.022)	< 0.01 (< 0.01, < 0.01)	
Theilman MN, 2001 (Russet Norkotah)	WG	0.10	0.05-0.06	187–196	3	7–8	7	0.015 (0.020, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.049 (0.049, 0.049)	0.01 (0.01, < 0.01)	
Centre CO, 2001 (Norkotah)	WG	0.10	0.06	187	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.046 (0.039, 0.053)	0.010 (< 0.01, 0.010)	
Stockton CA, 2001 (Cal White)	WG	0.10	0.04	234	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.028 (0.025, 0.031)	0.016 (0.014, 0.017)	
Ephrata WA, 2001 (Russet Burbank)	WG	0.10-0.11	0.05-0.06	187–196	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.028 (0.028, 0.028)	0.016 (0.015, 0.016)	
Moses Lake WA, 2001 (Russet Burbank)	WG	0.10	0.11	94	3	7	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.035 (0.034, 0.036)	0.020 (0.020, 0.020)	

	Applic	ation						Residues (m	g/kg)			
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
American Falls ID, 2001 (Russet Burbank)	WG	0.10	0.05	196	3	6–7	7	<0.01 (< 0.01, < 0.01)		0.034 (0.033, 0.035)	0.020 (0.020, 0.020)	
							0	< 0.01 (< 0.01, < 0.01)		0.013 (0.013, 0.013)	< 0.01 (< 0.01, < 0.01)	
Minidoka							1	< 0.01 (< 0.01, < 0.01)	< 0.01)	0.019 (0.015, 0.022)	< 0.01 (< 0.01, < 0.01)	
ID, 2001 (Russet Burbank)	WG	0.10	0.06	159–168	3	7	3	< 0.01 (< 0.01, < 0.01)	< 0.01)	0.013 (0.013, 0.013)	< 0.01 (< 0.01, < 0.01)	
Durounk)							7	<0.01 (< 0.01, < 0.01)	< 0.01)	0.023 (0.021, 0.025)	< 0.01 (< 0.01, < 0.01)	
							14	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.019 (0.025, 0.012)	< 0.01 (< 0.01, < 0.01)	
Herminston OR, 2001 (Russet Burbank)	WG	0.10	0.04	281–290	3	7	7	<0.01 (< 0.01, < 0.01)		0.037 (0.038, 0.036)	0.016 (0.016, 0.015)	
Jerome ID, 2001 (Russet Burbank)		0.10	0.06	168–178		6–8	7	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.047 (0.042, 0.052)	0.023 (0.021, 0.025)	
AUS GAP	WG	0.07 - 0.10	NS	NS	2	14	14					
Gembrook, Victoria 2010 (Sebago)	WG	0.08	0.02	503–507	2	7	14	< 0.01	< 0.01	< 0.01	< 0.01	
Gembrook Victoria, 2010 (Sebago)	WG	0.16	0.03	503–507	2	7	14	< 0.01	< 0.01	0.015	< 0.01	
Morgan South Australia, 2011 (Ruby Loo's)	WG	0.08	0.03	301–307	2	7	14	< 0.01	< 0.01	< 0.01	< 0.01	
Morgan South Australia, 2011 (Ruby Loo's)	WG	0.16	0.05	3 01–307	2	7	14	< 0.01	< 0.01	< 0.01	< 0.01	UPL- 1001 and 1109
Charleston South Carolina, 2011 (Coliban)	WG	0.08	0.02	402–407	2	7	14	< 0.01	< 0.01	< 0.01	< 0.01	1109
Charleston South Carolina, 2011 (Coliban)	WG	0.16	0.04	402–407	2	7	14	< 0.01	< 0.01	0.013	< 0.01	
Bundaberg Queensland, 2012 (Sebago)	WG	0.08	0.014	562–581	2	7	14	< 0.01	< 0.01	0.017	0.012	
Bundaberg	WG	0.16-0.17	0.03	581-599	2	7	14	< 0.01	< 0.01	0.026	0.016	1

	Applica	ation						Residues (m	ıg/kg)			
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
Queensland, 2012 (Sebago)												
Boneo Victoria, 2012 (Exton)		0.08	0.01	603–609	2	9	14	< 0.01	< 0.01	< 0.01	< 0.01	
Boneo Victoria, 2012 (Exton)		0.16	0.03	599–618	2	9	14	< 0.01	< 0.01	0.023	< 0.01	

Carrot roots

Eight independent trials were conducted on <u>carrots</u> in the US in 2003 where three foliar spray applications of a WG formulation with re-treatment intervals of 6–8 days. Carrot roots were harvested 6–8 DALT.

The analytical method P-3561M was used to analyse all samples. The LOQ of flonicamid was determined to be 0.02 mg/kg while the LOQ for all metabolites was determined to be 0.05 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 462 days (ca 15 months). Storage stability data on high starch content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 65.

Table 65 Residues of Flonicamid in Carrot Roots Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applicat	tion					DALT.	Residues (n	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	L/ha	no.	RTI, days	days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/SG	0.07 - 0.10	0.07 - 0.30	30-100	3	7	3					
Salinas CA, 2003 (Mokum- Raw)	WG	0.09-0.10	0.020	449–542	3	7–8	7	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	< 0.050 (< 0.050, < 0.050)	0.060 (0.064, 0.056)	
Porterville CA, 2003 (Denver's Half Long 126)	WG	0.10	0.04	224–290	3	6–7	7	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	0.100 (0.122, 0.077)	< 0.050 (< 0.050, < 0.050)	
							1	0.022 (0.024, 0.020)	< 0.050 (< 0.050, < 0.050)	0.054 (0.052, 0.056)	0.050 (0.050, < 0.050)	
Parlier CA, 2003 (Denver's	WG	0.10	0.04	234–243	3	7	3	<0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	0.071 (0.061, 0.080)	0.052 (< 0.050, 0.054)	08754
Half Long 126)	WG	0.10	0.04	234-243	3	,	6	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	0.092 (0.110, 0.074)	0.052 (0.054, < 0.050)	
							13	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	0.106 (0.099, 0.112)	0.070 (0.070, 0.070)	
Holtville CA, 2004 (Caropak)	WG	0.10	0.03	355–374	3	7	6	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	< 0.050 (< 0.050, < 0.050)	< 0.050 (< 0.050, < 0.050)	
Citra FL, 2003 (Triple Play 58	WG	0.10	0.04	281–299	3	7	7	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	0.051 (0.052, < 0.050)	< 0.050 (< 0.050, < 0.050)	

Location,	Applica	tion					DALT	Residues (n	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA-	TFNA	TFNG	Ref
SMS)												I
Willard OH, 2003 (Scarlet Nantes)	WG	0.10	0.02-0.03	374–430	3	7	7	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	0.059 (0.058, 0.060)	< 0.050 (< 0.050, < 0.050)	
							1	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	(< 0.050,	0.086 (0.086, 0.086)	
Weslaco	WC	0.10	0.04.0.05	206 224	2	6.7	3	<0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	(0.059,	0.091 (0.095, 0.086)	
TX, 2003 (Six Pence)	WG	0.10	0.04-0.05	206-224	3	6–7	6	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	(0.050,	0.163 (0.178, 0.148)	
							13	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	(< 0.050,	0.124 (0.116, 0.132)	-
Moxee WA, 2003 (Enterprise)	WG	0.10	0.03	299–327	3	6–7	8	< 0.020 (< 0.020, < 0.020)	< 0.050 (< 0.050, < 0.050)	0.072 (0.066, 0.077)	< 0.050 (< 0.050, < 0.050)	

Radish roots

Five independent trials were conducted on <u>radish roots</u> in the US in 2003 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–9 days. Radish roots were harvested 2 DALT.

The analytical method P-3561M was used to analyse all samples of radish roots. The LOQ for radish roots was determined to be 0.02 mg/kg/analyte.

The maximum period of sample storage at -20 °C was 434 days (ca 14 months) for radish roots. Concurrent storage stability data show that the residues are stable for up to 464 days (ca. 15 months). The results are summarized in Table 66.

Table 66 Residues of Flonicamid in Radish Roots Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applic	ation					DALT		Residues (n	ng/kg)			Ref
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT , days	Matrix	Flonicami d	TFNA- AM	TFNA	TFNG	
US GAP	WG	0.07- 0.10	0.07- 0.10	100	3	7	3						
Salinas CA, 2003 (Altaglobe	WG	0.10	0.02	533– 542	3	6–7	2	Roots	0.13 (0.13, 0.13)	< 0.02 (< 0.02, < 0.02)	,	< 0.02 (< 0.02, < 0.02)	08753
Citra FL, 2003 (Cabernet F1) ^a	WG	0.10	0.04	281	3	6–7	2	Roots	0.21 (0.25, 0.17)	(< 0.02,	(0.067,	0.056 (0.066, 0.046)	
Citra FL, 2003 (Cabernet F1) ^a	WG	0.10	0.04	281– 290	3	7–8	2	Roots	0.075 (0.080, 0.070)	(< 0.02,	0.034 (0.045, 0.022)	< 0.02 (< 0.02, < 0.02)	
Bridgeton NJ, 2003 (Rebel)	WG	0.10	0.04	243– 262	3	8–9	2	Roots	0.099 (0.078, 0.12)	(< 0.02,	0.030 (0.030, 0.030)	< 0.02 (< 0.02, < 0.02)	
Willard OH, 2003 (Cabernet)	WG	0.10	0.02- 0.03	402– 430	3	6–8	4	Roots	<0.02 (< 0.02, < 0.02)	(< 0.02,	0.022 (0.020, 0.024)	< 0.02 (< 0.02, < 0.02)	

^a The last applications at each trial site were made 21 days apart, rendering the trials independent.

Celery

Six independent trials were conducted on <u>celery</u> in the US between 2001 and 2002 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 5–8 days. Celery was harvested 0 DALT. Celery stalks were cut at the soil level using hand clippers. Damaged leaves were removed when necessary.

A modified version of analytical method P-3561M was used to analyse all samples. The LOQ was determined to be 0.01~mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 198 days (ca. 7 months). Storage stability data on water content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 67.

Table 67 Residues of Flonicamid in Celery Following Foliar Spray with Flonicamid 50 WG Formulation in North American Regions

Location,	Applic	cation					DAL	Residues (1	ng/kg)			
year (variety)	For m	kg ai/ha	kg ai/hL	Wat er, L/ha	no.	RTI, days	T, days	Flonicam id	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/ SG	0.07- 0.10	0.07- 0.30	30– 100	3	7	0					
Belle Glade FL, 2001 (Walts Pride)	WG	0.10	0.10- 0.11	93– 97	3	7	0	0.354 (0.391, 0.317)	< 0.01 (< 0.01, < 0.01)	0.013 (0.011 , 0.015)	0.029 (0.019 , 0.039)	
Laingsburg MI, 2002 (XP-266)	WG	0.10	0.10- 0.11	94– 103	3	7	0	0.450 (0.440, 0.459)	< 0.01 (< 0.01, < 0.01)	0.017 (0.015 , 0.018)	0.037 (0.034 , 0.040)	
Yuma AZ, 2001 (CUF 101)	WG	0.10	0.11	94	3	7–8	0	0.429 (0.459, 0.398)	< 0.01 (< 0.01, < 0.01)	< 0.01 (0.014 , < 0.01	0.026 (0.027 , 0.024)	
							0	0.383 (0.435, 0.330)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.0 1, < 0.01	0.021 (0.025 , 0.017)	
Visalia CA, 2002 (Tall	WG	0.10	0.11	94	3	7	1	0.931 (0.919, 0.942)	< 0.01 (< 0.01, < 0.01)	0.010 (< 0.0 1, 0.010)	0.032 (0.024 , 0.039)	P- 3575
Utah 52-70)	wd	0.10	0.11	94	3	,	3	0.920 (0.956, 0.884)	< 0.01 (< 0.01, < 0.01)	0.010 (0.010 , < 0.01	0.034 (0.037 , 0.030)	
							7	0.551 (0.578, 0.524)	< 0.01 (< 0.01, < 0.01)	0.011 (0.011 , 0.010)	0.060 (0.057 , 0.063)	
King City CA, 2002 (G-20)	WG	0.10	0.11	94– 98	3	7	0	0.462 (0.457, 0.466)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.0 1, < 0.01	0.023 (0.025 , 0.021)	
Camarillo CA, 2001 (Sonora)	WG	0.10- 0.11	0.11	94– 100	3	5–7	0	0.444 (0.423, 0.465)	< 0.01 (< 0.01, < 0.01)	0.010 (0.010	0.029 (0.032	

Location	Applic	cation					DAL	Residues (r	ng/kg)			
Location, year (variety)	For m	kg ai/ha	kg ai/hL	Wat er, L/ha	no.	RTI, days	T, days	Flonicam id	TFNA- AM	TFNA	TFNG	Ref
										< 0.01	0.026)	

Cereal grains

Wheat

The Meeting received information on fifteen independent trials on wheat in Northern and Southern EU between 2000 and 2001 with two foliar spray applications of a WG formulation and a re-treatment intervals of 16–28 days. Wheat grain was harvested 21–30 DALT.

The GC-MS analytical method A-22-00-02 was used to analyse all samples. The LOQ was determined to be 0.01 mg/kg/analyte for grain.

The maximum period of sample storage at -20 °C was up to 433 days (ca. 15 months). Storage stability data on high starch content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 68.

Table 68 Residues of Flonicamid in Wheat grain Following Foliar Spray with a 50 WG Formulation of Flonicamid in European Regions

	Applica	ation						Residues (mø/kø)			
Location, year				Water,		RTI,	PHI,	Flonicami	TFNA-			Ref
(variety)	Form	kg ai/ha	kg ai/hL	L/ha	no.	days	days	d	AM	TFNA	TFNG	
Slovenia GAP	WG	0.07	Not speci	ified	2	21	28					
Poggio Renatico, Ferrara, Italy, 2001 (Vayolet)	IBE 3894	0.07	0.018	407– 417	2	22	28	< 0.01	< 0.01	0.07	0.7	
Emilia- Romagna, Italy, 2001 (Mieti)	IBE 3894	0.07	0.024	300	2	22	30	0.06 (0.10, < 0.01)	0.05 (0.09, < 0.01)	0.05 (0.09, < 0.01)	0.16 (0.29, 0.03)	
Italy, 2001 (Winter Wheat)	IBE 3894	0.07	0.022- 0.023	300	2	22	28	< 0.01	< 0.01	0.05	0.43	
Minaya, Albacete, Spain, 2001 (Gazul) ^a	IBE- 3894	0.07	0.02	357– 363	2	21	27	< 0.01	< 0.01	0.02	0.09	
Minaya, Albacete, Spain, 2001 (Farak) ^a	IBE- 3894	0.07	0.02	360– 373	2	21	26	< 0.01	< 0.01	< 0.01	0.07	
Douzonville,	IBE-						21	< 0.01	< 0.01	< 0.01	0.13]
North of France, 2001 (Soisson)	3894	0.07	0.035	205	2	21	28	< 0.01	< 0.01	< 0.01	0.12	
Thignonville, North of France, 2001 (Isengrains)	IBE- 3894	0.07	0.035	198– 200	2	21	28	< 0.01	< 0.01	0.01	0.14	
Rabastens, South of France, 2000 (Gascogne) b	IBE 3880	0.07	201	0.035	2	22	27	< 0.01	< 0.01	0.04	0.30	
Rabastens, South of France,		0.07	203–208	0.035	2	22	27	< 0.01	< 0.01	0.06	0.53	
2000 (Gascogne) ^b	3894						28	< 0.01	< 0.01	0.03	0.55	
Rabastens, South of France, 2001 (Soisson) b	IBE- 3894	0.07	0.035	208– 211	2	16	28	0.02	< 0.01	0.03	0.16	

Location, year	Applica	ation					PHI,	Residues (1	mg/kg)			
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
Puycornet, South of France, 2001 (Soisson)	IBE- 3894	0.07	0.035	207	2	19	21	< 0.01	< 0.01	< 0.01	0.07	
Stanton, Derbyshire, United Kingdom, 2001 (Consort)	IBE- 3894	0.07	0.035	200	2	21	28	< 0.01	< 0.01	< 0.01	0.06	
Meckesheim,Ge rmany, 2001 (Altos) ^c 070-i-d-01	IBE 3894	0.07	0.029	241– 249	2	28	21	0.07 < 0.01	0.07 < 0.01	0.06	0.74	
Meckesheim, Germany, 2001 (Monopol) ^c	IBE - 3880	0.073- 0.075	0.024	310– 316	2	21	28	0.04	< 0.01	0.06	1.10	A-22-01-
Meckesheim,Ge rmany, 2001 (Bandit) ^c	IBE - 3880	0.066– 0.074	278–314	0.024	2	22	28	0.02	< 0.01	0.06	0.28	05
Audeville, North of France, 2000 (Tremie) ^d	IBE- 3880	0.069	197–198	0.035	2	20	28	< 0.01	< 0.01	0.03	0.55	
Audeville, North of France, 2000 (Tremie) ^d	IBE- 3894	0.07	200	0.035	2	20	21	0.01	< 0.01	0.06	0.78	
Puiselet-le- Marais, North of France, 2000 (Altria) ^e	IBE- 3880	0.07	200–203	0.035	2	20	28	< 0.01	< 0.01	0.02	0.20	
Puiselet-le- Marais, North of France, 2000 (Altria) ^e	IBE- 3894	0.07	204–208	0.035	2	20	28	< 0.01	< 0.01	0.05	0.49	
Meauzac, South of France, 2000 (Aztec) ^f	IBE- 3880	0.07	200	0.035	2	20	28	< 0.01	< 0.01	0.07	0.46	
Meauzac, South of France, 2000 (Aztec) ^f	IBE- 3894	0.07	198–200	0.035	2	20	21	< 0.01	< 0.01	0.06	0.51	
Hilgersmissen, Germany, 2000 (Brigadier) ^g	IBE 3880	0.07	196–206	0.035	2	22	28	< 0.01	< 0.01	0.01	0.15	A-22-01-
Hilgersmissen,G ermany, 2000 (Brigadier) ^g	IBE 3880	0.07	198–200	0.035	2	22	21	0.01 <u>0.01</u>	< 0.01 < 0.01	0.01	0.13	10_VP00 -1-9

Note: All trials identified with the same letter were considered dependent as they were conducted at the same location, the last applications were made on the same day at both sites and varieties were not determined to be sufficiently different

Barley

Eight independent trials were conducted on wheat in Germany and Denmark between 2011 and 2012 where a single foliar spray application of a WG formulation was made at 0.07 kg ai/ha. Barley grain was harvested 30–39 DALT.

The LC-MS/MS analytical method AGR/MOA/IKI220-1 was used to analyse all samples. The LOQ was determined to be 0.01~mg/kg/analyte for grain.

The maximum period of sample storage at -20 °C was up to 111 days (ca. 4 months). Storage stability data on high starch content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 69.

Table 69 Residues of Flonicamid in Barley Grain Following Foliar Spray with a 50 WG Formulation of Flonicamid in Denmark and Germany

Location, year	Applicat	ion				PHI.	Residues (n	ng/kg)		
(variety)	Form	kg ai/ha	kg ai/hL	Water , L/ha	no.	days	Flonicami d	TFNA	TFNG	Ref
Middelfart, Fyn, Denmark, 2011 (Tamtam)	IBE 3894	0.069	0.035	198	1	38	< 0.01	0.01	0.13	S11-
Harndrup, Fyn, Denmark, 2011 (Quench)	IBE 3894	0.07	0.035	200	1	30	< 0.01	< 0.01	0.04	01987
Hygindvej, Ejby, Denmark, 2012 (Simba)	IBE 3894	0.067	0.035	192	1	33	0.02	< 0.01	0.07	
Poppenhausen, Baden, Wurttemberg, Germany, 2012 (Grace)	IBE 3894	0.073	0.035	210	1	31	< 0.01	< 0.01	0.12	
Billeshavevej, Middelfart,	IBE 3894	0.073	0.035	210	1	39	< 0.01	0.01	0.13	
Denmark, 2012 (Tamtam)		0.21	0.10	200		39	< 0.01	0.04	0.52	S12-
Tornhoj, Bogense, Denmark, 2012 (Quench)	IBE 3894	0.069	0.035	197	1	38	< 0.01	0.01	0.17	01930
Wiesentheid, Bavaria, Germany, 2012 (Marthe)	IBE 3894	0.071	0.035	203	1	31	0.01	< 0.01	0.08	
Main, Bavaria, Germany, 2012 (Quench)	IBE 3894	0.071	0.035	204	1	31	0.02	0.01	0.12	

Tree Nuts

Almonds

Five independent trials were conducted on <u>almonds</u> in the US between 1996 and 2008 where three foliar spray applications of a SG formulation were made with re-treatment intervals of 6–8 days. Almonds were harvested 39–42 DALT.

A modified version of analytical method P-3822 was used to analyse all almond nutmeat samples. The LOQ was determined to be 0.01 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 196 days (ca. 7 months). Storage stability data on oil content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 70.

Table 70 Residues of Flonicamid in Almond Nutmeats Following Foliar Spray with Beleaf 50 SG Formulation in North American Regions

Logation	Location, Application							Residues (m	g/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Wate r, L/ha	no.	RTI, days	DALT, days	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
US GAP	SG	0.07-	0.01-	100-	3	7	40					IB-

Location,	Applic	ation						Residues (m	g/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Wate r, L/ha	no.	RTI, days	DALT, days	Flonicami d	TFNA- AM	TFNA	TFNG	Ref
		0.10	0.10	500								2011
Chico, CA, 2008 (Non- pareil)	SG	0.10	0.01	1029 - 1038	3	7–8	40	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	0.013 (0.014, 0.011)	< 0.01 (< 0.01 , < 0.01)	- JLW - 014-
							20	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	0.011 (0.011, 0.010)	< 0.01 (< 0.01 , < 0.01)	01- 01
Orland, CA, 2004	SG	0.1	0.01	1169	3	7	30	0.01 (0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	0.013 (0.014, 0.012)	< 0.01 (< 0.01 , < 0.01)	
(Non pareil)	30	0.1	0.01	1109	3	,	40	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	0.022 (0.024, 0.020)	< 0.01 (< 0.01 , < 0.01)	
							50	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	0.014 (0.014, 0.014)	< 0.01 (< 0.01 ,	
Wasco, CA, 1996 (Fritz)	SG	0.10	0.007	1459 - 1543	3	6–8	39	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	< 0.01 (< 0.01 , < 0.01)	< 0.01 (< 0.01 , < 0.01)	
Coalinga, CA, 2006 (Non- pareil)	SG	0.10	0.006 - 0.007	1534 - 1702	3	7	39	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	< 0.01 (< 0.01 , < 0.01)	< 0.01 (< 0.01 , < 0.01)	
Turlock, CA, 2007 (Butte)	SG	0.10	0.006 - 0.007	1487 - 1721	3	7	42	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	0.036 (0.034, 0.037)	< 0.01 (< 0.01 , < 0.01)	

Pecans

Five independent trials were conducted on pecans in the US between 1983 and 2008 where three foliar spray applications of a SG formulation were made with re-treatment intervals of 7–8 days. Pecans were harvested 20–40 DALT.

A modified version of analytical method P-3822 was used to analyse all almond nutmeat and hulls samples. The LOQ was determined to be 0.01 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 196 days (ca. 7 months). Storage stability data on oil content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 71.

Table 71 Residues of Flonicamid in Pecans Following Foliar Spray with Beleaf 50 SG Formulation in North American Regions

Location,	Applica	ation					DA	Residue (mg/kg)	s (mg/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RT I, day s	LT, days	Flonic amid	TFNA -AM	TFNA	TFNG	Ref
US GAP	SG	0.07- 0.10	0.01- 0.10	100- 500	3	7	40					IB- 2011-
Anton, TX, 1995	SG	0.10	0.01	1010- 1038	3	7	40	<0.01 (< 0.0	< 0.01 (< 0.0	< 0.01 (< 0.0	< 0.01 (< 0.0	JLW- 014-01-

Location,	Applica	ation					DA	Residue (mg/kg)	s (mg/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RT I, day s	LT, days	Flonic amid	TFNA -AM	TFNA	TFNG	Ref
(Western Schley)								1, < 0.01	1, < 0.01	1, < 0.01	1, < 0.01	01
Pearsall, TX, 1983 (Cheyenne)	SG	0.10	0.007	1360- 1375	3	7	39	<0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	
Opelousas, LA, 2000 (Native)	SG	0.10	0.009	1113- 1141	3	7	39	<pre>< 0.01 (< 0.0 1, < 0.01)</pre>	< 0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	
Bailey, NC, 1989 (Stuart)	SG	0.10	0.007- 0.010	1048- 1534	3	7	20	< 0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	
Girard, GA, 1998 (Desirables)	SG	0.10	0.009	1150- 1160	3	7-8	39	<pre>< 0.01 (< 0.0 1, < 0.01)</pre>	0.011 (0.011 , 0.011)	< 0.01 (< 0.0 1, < 0.01	< 0.01 (< 0.0 1, < 0.01	

Pistachios

Two independent trials were conducted on <u>pistachios</u> in the US in 2014 where three foliar spray applications of a SG formulation were made with re-treatment intervals of 6–7 days. Pistachios were harvested 40 DALT.

Analytical method P-3822 was used to analyse all samples. The LOQ was determined to be $0.01\ mg/kg/analyte$.

The maximum period of sample storage at -20 °C was up to 24 days. As pistachio samples were analysed within 30 days of sampling, freezer storage stability information was not required. The results are summarized in Table 72.

Table 72 Residues of Flonicamid in Pistachios Following Foliar Spray with Beleaf 50 SG Formulation in North American Regions

Location,	Applic	ation						Residues (r (mg/kg)	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RT I, da ys	DALT , days	Flonicami d	TFNA -AM	TFNA	TFNG	Ref
US GAP	SG	0.07- 0.10	0.01- 0.10	100– 500	3	7	40					
Madera, CA, 2014 (Kerman)	SG	0.10	0.01	1219– 1237	3	7	40	0.042 (0.042, 0.041)	< 0.01 (< 0.0 1, < 0.01	0.064 (0.063 , 0.065)	0.079 (0.080 , 0.078)	IB- 2014- JLW- 015-
Terra Bella, CA, 2014 (Kerman)	SG	0.10	0.01	941– 1393	3	6	40	0.018 (0.018, 0.017)	< 0.01 (< 0.0 1, < 0.01	0.042 (0.043 , 0.040)	0.069 (0.072 , 0.066)	01-01

Rape seed

Eight independent trials were conducted on <u>canola</u> in the US in 2007 where three foliar spray applications of a SG formulation were made with re-treatment intervals of 6–8 days. Canola seeds were harvested 6–8 DALT.

Analytical method P-3561M was used to analyse all samples. The LOQ was determined to be $0.02\ mg/kg/analyte$.

The maximum period of sample storage at $-20\,^{\circ}\text{C}$ was up to 755 days (ca. 25 months). Concurrent storage stability data on canola seed showed that the residues of flonicamid and its associated metabolites are stable for 735 days (ca. 24 months). The results are summarized in Table 73.

Table 73 Residues of Flonicamid in Rape Seed Following Foliar Spray with Beleaf 50 SG Formulation in North American Regions

	App	lication						Residues (1	ng/kg)			
Location, year (variety)	Fo rm	kg ai/h a	kg ai/hL	Water, L/ha	no.	RTI, days	DALT , days	Flonicam id	TFNA -AM	TFNA	TFNG	Ref
US GAP	W G/ SG	0.1	0.1- 0.3	30- 100	3	6–8	7					
Kimberly, ID, 2007 (Sunrise Spring)	SG	0.1	0.07	140	3	6–7	6	0.083 (0.096, 0.070)	< 0.02 (< 0.0 2, < 0.02	0.037 (0.039 , 0.034)	0.084 (0.087 , 0.081)	
Minot, ND, 2007 (5630)	SG	0.1	0.11	94	3	7–8	7	0.333 (0.339, 0.326)	0.033 (0.035 , 0.031)	0.086 (0.087 0.086)	0.338 (0.385 , 0.291)	
Velva, ND, 2007 (5550)	SG	0.1	0.07- 0.08	131– 140	3	7	7	0.021 (0.022, < 0.02)	< 0.02 (< 0.0 2, < 0.02	0.049 (0.052 , 0.045)	0.032 (0.032 , 0.031)	
Bridgeton, NJ, 2007 (Sunrise)	SG	0.1	0.08	122	3	7	7	0.024 (0.025, 0.022)	< 0.02 (< 0.0 2, < 0.02	0.021 (0.021 , 0.020)	0.030 (0.039 , 0.020)	9783
Brookings, SD, 2007 (Crosby)	SG	0.1	0.06	178	3	7–8	7	<0.02 (< 0.02, < 0.02)	< 0.02 (< 0.0 2, < 0.02	0.029 (0.026 , 0.031)	0.042 (0.035 , 0.048)	
Aurora, SD, 2007 (Crosby RR)	SG	0.1	0.06	168	3	6–8	6–7	0.092 (0.135, 0.048)	< 0.02 (< 0.0 2, < 0.02	0.063 (0.050 , 0.077)	0.161 (0.158 , 0.164)	
Brookings, SD, 2008 (Hyclass 601)	SG	0.1	0.10	103	3	6	6	0.169 (0.087, 0.251)	0.068 (0.052 , 0.084)	0.066 (0.049 , 0.082)	0.136 (0.029 , 0.243)	
Prosser, WA, 2007 (Raper)	SG	0.1	0.05- 0.07	131– 187	3	6–7	8	0.022 (0.023, < 0.02)	< 0.02 (< 0.0 2, < 0.02	< 0.02 (< 0.0 2, < 0.02	< 0.02 (< 0.0 2, < 0.02	
Prosser, WA,	SG	0.1	0.08	122	3	6–8	6	0.045	< 0.02	< 0.02	< 0.02	1

	App	lication						Residues (1	ng/kg)			
Location, year (variety)	Fo rm	kg ai/h a	kg ai/hL	Water, L/ha	no.	RTI, days	DALT , days	Flonicam id	TFNA -AM	TFNA	TFNG	Ref
2008 (Raper)		0						(0.034, 0.056)	(< 0.0 2, < 0.02	(< 0.0 2, < 0.02	(< 0.0 2, < 0.02	

Cotton

Twelve independent trials were conducted on <u>cotton</u> in the US in 2001 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–9 days. Seeds were collected 29–32 DALT, dried and cleaned followed by a stick extraction to remove the gin trash. The lint cotton was saw ginned to remove the majority of the lint from the cottonseed.

In Australia, ten independent trials were conducted on cotton in 2012 where one or two foliar spray applications were made at 0.10 kg ai/ha or 0.20 kg ai/ha at re-treatment intervals of 14–15 days. Cotton was picked from bolls 7–43 DALT and ginned to separate the fuzz (undelinted).

Method P-3567, a modified version of analytical method P-3561M was used to analyse all samples collected from the US trials while method AATM-R-165 was used to analyse all samples from the Australian trials. The LOQ was determined to be 0.02 mg/kg/analyte for P-3567. For method AATM-R-165, the LOQ was 0.01 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 470 days (ca. 16 months). Storage stability data on oil content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 74.

Table 74 Residues of Flonicamid in Undelinted Cottonseeds Following Foliar Spray with Flonicamid 50WG Formulation in North American Regions

Location,		A	Applicati	on			DALT,		Residues (mg/kg)		
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/ SG	0.05- 0.10	0.02- 0.05	30–50	3	7	30					
Elko, SC, 2001 (Delta Pine 451 B/RR)	WG	0.10	0.06	168	3	7	29	0.040 (0.042, 0.038)	< 0.02 (< 0.02, < 0.02)	0.050 (0.054, 0.046)	0.024 (0.028, 0.020)	
							0	0.104 (0.105, 0.102)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
							10	0.029 (0.031, 0.026)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
West							21	0.028 (0.028, 0.027)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	IB-2001- MDG-
Memphis, AR, 2001 (Suregrow)	WG	0.10	0.07	150	3	7	30	0.042 (0.039, 0.045)	< 0.02 (< 0.02, < 0.02)	0.055 (0.051, 0.059)	0.024 (0.026, 0.021)	004-00-01
(Suregrow)							40	0.025 (0.026, 0.024)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
							10	0.029 (0.025, 0.032)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
							21	0.027 (0.028, 0.026)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	

Location,			Applicati	ion			DALE		Residues (mg/kg)		
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
							30	0.036 (0.035, 0.036)	< 0.02 (< 0.02, < 0.02)	0.066 (0.063,	0.026 (0.025,	
							40	0.036 (0.022,	< 0.02) < 0.02 (< 0.02,	0.069) < 0.02 (< 0.02,	0.027) < 0.02 (< 0.02,	
Tillar, AR,								0.029)	< 0.02) < 0.02	< 0.02)	< 0.02)	}
2001 (Pay- master)	WG	0.10	0.10	94–103	3	6–9	30	0.031 (0.029, 0.033)	< 0.02 (< 0.02, < 0.02)	0.048 (0.048, 0.048)	0.021 (< 0.02, 0.021)	
Senatobia, MS, 2001 (DPL 451 Bt/RR)	WG	0.10	0.05	187– 196	3	7	29	0.034 (0.032, 0.035)	< 0.02 (< 0.02, < 0.02)	0.049 (0.049, 0.048)	0.023 (0.023, 0.023)	
Eakly, OK, 2001 (PM 2280)	WG	0.10	0.05	187	3	6–8	30	0.035 (0.035, 0.035)	< 0.02 (< 0.02, < 0.02)	0.057 (0.057, 0.056)	0.026 (0.025, 0.027)	
Dill City, OK, 2001 (Pay-master 2326)	WG	0.10	0.05- 0.06	168– 206	3	7	31	0.048 (0.036, 0.059)	< 0.02 (< 0.02, < 0.02)	0.110 (0.113, 0.107)	0.094 (0.080, 0.107)	
Levelland, TX, 2001 (PM 2326 B6/RR)	WG	0.10	0.07	140	3	6–8	29	0.055 (0.050, 0.060)	< 0.02 (< 0.02, < 0.02)	0.117 (0.101, 0.133)	0.105 (0.094, 0.116)	
Uvalde, TX, 2001 (PM 2326 RR)	WG90	0.10	0.05	187– 196	3	7	30	0.046 (0.057, 0.034)	< 0.02 (< 0.02, < 0.02)	0.124 (0.105, 0.143)	0.094 (0.079, 0.109)	
,							0	0.120 (0.143, 0.097)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
							11	0.028 (0.028,	< 0.02 (< 0.02,	< 0.02 (< 0.02,	< 0.02 (< 0.02,	
							20	0.028) 0.028 (0.026, 0.030)	< 0.02) < 0.02 (< 0.02, < 0.02)	< 0.02) < 0.02 (< 0.02, < 0.02)	< 0.02) < 0.02 (< 0.02, < 0.02)	
							32	0.043 (0.050, 0.035)	< 0.02 < 0.02 (< 0.02, < 0.02)	0.120 (0.122, 0.118)	0.070 (0.071, 0.068)	
Edmonson, TX, 2001 (Pay-master	WG	0.10	0.06– 0.07	150– 187	3	7–8	43	0.025 (0.024, 0.026)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
HS 250)							11	0.033 (0.029, 0.037)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
							20	0.038 (0.035, 0.040)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
							32	0.035 (0.041, 0.028)	< 0.02 (< 0.02, < 0.02)	0.261 (0.305, 0.217)	0.149 (0.179, 0.118)	
							43	0.030 (0.032, 0.028)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
Stanfield, AZ, 2001 (DP458 B1RR)	WG	0.10	0.06	187	3	7	29	0.041 (0.041, 0.040)	< 0.02 (< 0.02, < 0.02)	0.125 (0.127, 0.123)	0.073 (0.074, 0.071)	
Mariopa, AZ, 2001 (DP451 B1RR)	WG	0.10	0.05	187	3	7	30	0.085 (0.083, 0.087)	< 0.02 (< 0.02, < 0.02)	0.133 (0.146, 0.119)	0.084 (0.087, 0.080)	

Location,		I	Applicati	ion			DALT		Residues (mg/kg)		
year	Form	kg ai/ha	kg	Water,	no.	RTI,	DALT, days	Flonicamid	TFNA-	TFNA	TFNG	Ref
(variety)			ai/hL	L/ha		days			AM			
Madera, CA, 2001		0.10-		281-				0.085	< 0.02	0.121	0.108	
(Acala Riata	WG	0.10	0.04	290	3	7	29	(0.084,	(< 0.02,	(0.133,	(0.126,	
RR)		0.11						0.086)	< 0.02)	0.109)	0.089)	
AUS GAP	WG	0.07	NS	NS	2	NS	7					
		0.10	0.120	84			7	0.035	< 0.01	< 0.01	< 0.01	
		0.10	0.127	81		14	27	0.012	< 0.01	0.041	0.01	
		0.20	0.248	82		17	7	0.064	< 0.01	0.014	0.013	
		0.20	0.253	80			27	0.016	< 0.01	0.07	0.019	
		0.10	0.105	70		1.5	7	0.01	0.01	0.013	0.01	
Mywybilla,		0.10	0.125	79		15	7	(< 0.01, 0.01)	(< 0.01, 0.01)	(0.015, 0.01)	(< 0.01, 0.01)	
Queensland, (Sicot	WG	0.10	0.118	82	2	14	15	< 0.01)	< 0.01)	0.01)	< 0.01)	
71BRF)		0.10	0.110	77		14	22	< 0.01	< 0.01	0.048	0.016	
, 1211)		0.10	0.123	79		14	29	< 0.01	< 0.01	0.068	< 0.01	
		0.10	0.114	88		14	36	< 0.01	< 0.01	0.13	0.022	
		0.10	0.106	93		14	43	< 0.01	< 0.01	0.17	0.021	
		0.20	0.255	78		15	7	0.014	< 0.01	< 0.01	< 0.01	
		0.20	0.260	78		14	29	< 0.01	< 0.01	0.08	0.017	
Boggabilla,		0.10	0.11	92		14	7	0.13	< 0.01	0.01	0.015	UPL GLP-
New South	W.G	0.10	0.11	92		15	28	0.018	< 0.01	0.038	0.033	10-07
Wales	WG	0.20	0.218	92	2	14	7	0.31	0.018	0.021	0.046	
(Sicot 71BRF)		0.20	0.22	92		15	28	0.045	0.021	0.076	0.091	
Í		0.10	0.112	89		14	7	0.094	< 0.01	< 0.01	< 0.01	
		0.10	0.11	92		15	13	0.074	< 0.01	< 0.01	< 0.01	
Narrabi, New South		0.10	0.109	92		14	21	0.016	< 0.01	0.05	< 0.01	
Wales		0.10	0.111	91	2	13	28	0.024	< 0.01	0.12	0.023	
(Sicot	WG	0.10	0.114	88		14	35	< 0.01	< 0.01	0.1	0.014	
71BRF)		0.10	0.105	07		1.4	4.1	0.012	< 0.01	0.43	0.069	
		0.10	0.105	97		14	41	(0.012, 0.011)	(< 0.01, < 0.01)	(0.47, 0.38)	(0.066, 0.071)	
		0.20	0.228	89		14	7	0.011)	< 0.01)	< 0.01	< 0.01	-
		0.20	0.224	90		13	28	0.041	0.012	0.14	0.04	
		0.10	0.10	105		14	7	0.022	< 0.01	< 0.01	< 0.01	
		0.10	0.10	110		14	28	0.011	< 0.01	< 0.01	0.011	
Chinchilla,		0.10	0.10	101		14	49	< 0.01	< 0.01	0.01	0.015	
Queensland (Sicot	WG	0.10	0.10	102	2	14	63	< 0.01	< 0.01	0.063	0.04	
71BRF)	WO	0.20	0.19	106	2	14	7	0.085	< 0.01	< 0.01	< 0.01	
, 1214)		0.20	0.18	110		14	28	0.025	< 0.01	< 0.01	0.018	
		0.20	0.20	101		14	49	< 0.01	< 0.01	0.021	0.026	
		0.20	0.20	102		14	63	< 0.01	< 0.01	0.09	0.077	ļ
		0.10	0.09	110	2	14	7	< 0.01	< 0.01	< 0.01	< 0.01	IIDI CID
		0.10	0.10	100	2	15 14	20 27	< 0.01 0.012	< 0.01 < 0.01	0.037	< 0.01	UPL GLP 12 01-1
		0.10	0.10	101	1	NA	27	< 0.012	< 0.01	0.036	< 0.014	12 01-1
Condamine		0.10	0.10	103	1	14	35	< 0.01	< 0.01	0.016	< 0.01	
Plains,	WG	0.10	0.10	101		14	41	< 0.01	< 0.01	0.026	0.027	
Queensland		0.10	0.09	106		13	49	< 0.01	< 0.01	0.11	0.014	
(Sicot71BR F)		0.10	0.09	109	2	14	55	< 0.01	< 0.01	0.19	0.06	1
1')		0.20	0.18	111	2	13	7	< 0.01	< 0.01	< 0.01	< 0.01	
		0.20	0.20	102		14	27	0.02	< 0.01	0.056	0.022	
		0.20	0.20	101		14	41	0.014	< 0.01	0.16	0.053	
		0.20	0.18	110	_	14	55	< 0.01	< 0.01	0.34	0.099	
Narrabri,		0.10	0.11	90–92	2	14	8	0.34	0.071	0.025	0.048	
New South	WC	0.10	0.11	89–90	2	14	15	0.067	0.033	0.019	0.054	UPL GLP
Wales (Sicot	WG	0.10	0.11	91–92 89–90	2	14 14	22 29	0.11	0.047	0.043	0.12	12 01-1
71BRF)		0.10	0.11	91	2	14	36	0.13	0.069	0.051	0.16	
,		0.10	0.11	/1		14	50	0.000	0.070	0.073	0.23	<u> </u>

Location,		I	Applicati	on			DALT,		Residues (mg/kg)		
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
		0.10	0.11	88–91	2	14	43	0.032	0.029	0.064	0.12	
		0.10	0.11	90	2	14	50	0.025	0.028	0.098	0.16	
		0.10	0.11- 0.12	84–86	2	14	57	< 0.01	< 0.01	0.1	0.12	
		0.23	0.22	92–93	2	14	8	0.48	0.072	0.026	0.049	
		0.21	0.22	92	2	14	29	0.11	0.082	0.053	0.17	
		0.20	0.22- 0.24	85–92	2	14	43	0.096	0.097	0.13	0.33	
		0.20	0.24	85–86	2	14	57	0.022	0.025	0.12	0.19	Į
		0.10	0.08- 0.09	114– 125	2	14	7	<u>0.16</u> (0.17, 0.14)	< 0.01 (< 0.01)	< 0.01 (< 0.01,	< 0.01 (< 0.01,	
	-	0.10	0.08-	116– 119	2	14	28	0.046	< 0.01)	0.14	0.036	
N		0.10	0.08	123– 124	2	11	42	< 0.01	< 0.01	0.091	0.017	
Narromine, New South Wales	WG	0.10	0.08– 0.09	117– 123	2	15	53	< 0.01	< 0.01	0.11	0.026	
(Sicot 71BRF)	wu	0.20	0.17- 0.18	114– 119	2	14	7	0.09 (0.088, 0.092)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	
	71BRF)	0.21	0.17	122– 124	2	14	28	0.056	0.1	0.13	0.034	
		0.21	0.17	119– 123	2	11	42	0.012	< 0.01	0.17	0.037	
		0.21	0.17- 0.18	118– 123	2	15	53	< 0.01	< 0.01	0.18	0.045	

Mint

Three independent trials were conducted on fresh <u>mint</u> in the US in 2011 where three foliar spray applications of a SG formulation were made with re-treatment intervals of 13–15 days. Mint leaves were harvested 7 DALT.

Analytical method P-3561M was used to analyse all samples. The LOQ was determined to be $0.02\ mg/kg/analyte$.

The maximum period of sample storage at $-20\,^{\circ}\text{C}$ was up to 372 days (ca. 12 months). Concurrent storage stability data on mint tops show that the residues are stable for at least 364 days (ca. 12 months). The results are summarized in Table 75.

Table 75 Residues of Flonicamid in Fresh Mint Tops Following Foliar Spray with Beleaf 50 SG Formulation in North American Regions

	Applic	ation					DA	Residues	(mg/kg)			
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Wate r, L/ha	no.	RTI , day s	LT, day	Flonica mid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/ SG	0.07- 0.10	0.04 - 0.05	100– 200	3	14	7					
Bruneau, ID, 2011 (Black Mitcham Perppermint)	SG	0.10	0.04	271– 281	3	14	7	2.36 (2.31, 2.41)	0.377 (0.376, 0.377)	0.105 (0.086, 0.125)	0.104 (0.146, 0.133)	9358
Prosser, WA, 2011 (Peppermint)	SG	0.10	0.04	243– 262	3	13– 14	7	1.70 (1.67, 1.73)	0.456 (0.451, 0.461)	0.234 (0.214, 0.254)	0.229 (0.222, 0.235)	9338
Endeavour,	SG	0.10	0.02	552-	3	13-	6	1.92	0.036	0.166	0.208	

	Applic	ation					DA	Residues	(mg/kg)			
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Wate r, L/ha	no.	RTI , day s	LT, day	Flonica mid	TFNA- AM	TFNA	TFNG	Ref
WI, 2011 (Scotch				561		15		(1.90, 1.93)	(0.337, 0.356)	(0.167, 0.164)	(0.211, 0.204)	
Spearmint)												

Dried hops

Four independent trials were conducted on <u>hops</u> in the US in 2003 and 2015 where three foliar spray applications of a WG or SG formulation were made with re-treatment intervals of 7–8 days. Green hop cones were sampled 9–11 DALT and dried to 8–10% moisture in a forced hot air dryer. Drying temperature was about 120–140 °F (49–64 °C).

The analytical methods P-3561M (2003 trial) or P-3822 (2015 trial) were used to analyse all samples. The LOQ for dried hop cones was determined to be 0.02 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 329 days (ca 11 months). Concurrent storage stability data on hops show that the residues are stable for at least 299 days (10 months). The results are summarized in Table 76.

Table 76 Residues of Flonicamid in Dried Hop Cones Following Foliar Spray with Flonicamid 50 WG and Beleaf 50SG Formulations in Northern America

Locatio	Applica	tion		_			DAL	Residues (1	ng/kg)			
n, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	n o.	RTI, days	T, days	Flonicam id	TFNA -AM	TFNA	TFNG	Ref
US GAP	WG/S G	0.06- 0.10	0.01- 0.02	500	3	7	10					
Parma ID, 2003 (Nugget	WG	0.10	0.01	907– 917	3	7–8	9	2.82 (2.85, 2.78)	0.717 (0.177 , 0.165)	0.307 (0.312 , 0.302)	0.104 (0.110 , 0.098)	
Hubbar d OR, 2003 (Nugget	WG	0.10	0.01	795– 945	3	7	9	1.15 (1.10, 1.20)	0.146 (0.139 , 0.153)	0.456 (0.470 , 0.442)	0.204 (0.204 , 0.204)	08706
Prosser WA, 2003 (Nugget	WG	0.10	0.01	1272– 1347	3	7–8	11	0.563 (0.561, 0.565)	0.038 (0.038 , 0.038)	0.335 (0.335 , 0.334)	0.162 (0.156 , 0.168)	
Ephrata WA, 2015 Cascad e)	SG	0.10	0.01	945	3	7	10	9.33 (10.6, 8.06)	0.226 (0.269 , 0.184)	0.727 (0.660 , 0.794)	0.074 (0.076 , 0.072)	IB-2014- JLW- 014-01- 01

Tea

Two independent trials were conducted on <u>tea</u> in Japan in 2001 where a single foliar spray application of a WG formulation was made. Leaves were harvested 7 DALT. On the day of harvest, leaves were processed according to standard procedure (steaming, cooling, primary drying and rolling, rolling, secondary drying and rolling, final drying and rolling and drying) prior to analysis

The analytical method P-3561M was used to analyse all samples. The LOQ was determined to be $0.02 \, \text{mg/kg/analyte}$.

The maximum period of sample storage at -20 °C was up to 9 months. Storage stability data on various commodities show that the residues are stable for at least 23 months. The results are summarized in Table 77.

Table 77 Residues of Flonicamid in Tea Following Foliar Spray with Flonicamid 50 WG Formulation in Japan

Location	Applic	ation					DALT,	Residues (m	g/kg)		
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Flonicamid	TFNA	TFNG	Ref
Japan GAP	DF	0.1	0.01	2000-4000	1	NA	7				
Tsukui, Kanagawa, Japan, 2001 (Yabukita)	DF	0.2	0.01	2000	1	NA	7	20.1 (22.7, 21.8, 18.0, 17.8)	0.31 (0.31, 0.26, 0.35, 0.32)	3.03 (3.32, 3.10, 2.85, 2.82)	Report
Uji, Kyoto, Japan, 2001 (Yakibuta)	DF	0.2	0.01	2000	1	NA	7	15.7 (16.9, 16.5, 15.0, 14.5)	0.18 (0.18, 0.16, 0.20, 0.18)	1.82 (1.98, 1.97, 1.67, 1.64)	No 13-79

Animal feeds

Wheat forage and straw

Fifteen independent supervised trials were conducted in EU on wheat in 2000 and 2001, where two foliar spray applications of a WG formulation were made with re-treatment intervals of 16–21 days. Green forage (green plant, rest of plant) was sampled 0–7 DALT, stems and ears 14–21 DALT and straw 21–30 DALT.

The analytical methods A-22-02 was used to analyse all samples. The LOQ for green forage and straw was 0.02~mg/kg/analyte and 0.01~mg/kg/analyte for stems and ears.

The maximum period of sample storage at -20 °C was up to days (ca. 14 months). Storage stability data on starch content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 78.

Table 78 Residues of Flonicamid in Wheat Forage (green plant, rest of plant), Straw, Ears and Stems Following Foliar Spray with 50 WG Formulations in Northern and Southern EU

Logotion voor	Applica	ation					рш	Commo	Residue	s (mg/kg))		
Location, year (variety)	1	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days			Flonica mid	TFNA- AM	TFNA	TFNG	Ref
Slovenia GAP	WG	0.07			2	21	28						
Poggio Renatico, Ferrara, Italy, 2001 (Vayolet)	IBE 3894	0.07	0.018	407– 417	2	22	28	Straw	< 0.02	< 0.02	< 0.02	0.17	
Emilia- Romagna, Italy, 2001 (Mieti)	IBE 3894	0.07	0.024	300	2	22	30	Straw	0.08	< 0.02	0.02	0.41	
Italy, 2001 (Winter Wheat)	IBE 3894	10.07	0.022- 0.023	300	2	22	28	Straw	0.04	< 0.02	0.03	0.36	

T4:	Applic	ation					DIII	C	Residue	s (mg/kg))		
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water,	no.	RTI,		Commo dity	Flonica		TFNA	TFNG	Ref
Minaya,	Oim	ng ui/iiu	Ng ui/in	L/ha	110.	days	aays	arey	mid	AM	111111	11110	-
Albacete, Spain, 2001 (Gazul) ¹	IBE- 3894	0.07	0.02	357– 363	2	21	27	Straw	<u>0.11</u>	< 0.02	< 0.02	0.15	
Minaya, Albacete, Spain, 2001 (Farak) ¹	IBE- 3894	0.07	0.02	360– 373	2	21	26	Straw	0.03	< 0.02	< 0.02	0.14	
							0	Green Plant	0.66	< 0.02	< 0.02	0.14	
Douzonville, North of	IBE-	0.05	0.025	205		2.1	7	Green Plant	0.99	< 0.02	< 0.02	0.21	
France, 2001	3894	0.07	0.035	205	2	21	14	Ears	0.03	< 0.02	< 0.02		
(Soisson)							14	Stem	0.06	< 0.02	< 0.02		
							21 28	Straw	< 0.02 < 0.02	< 0.02	< 0.02	< 0.02	-
Thignonville,							28	Straw	< 0.02	< 0.02	< 0.02	< 0.02	-
North of France, 2001 (Isengrains)	IBE- 3894	0.07	0.035	198– 200	2	21	28	Straw	< 0.02	< 0.02	< 0.02		
Rabastens, South of France, 2000 (Gascogne) ²	IBE 3880	0.07	201	0.035	2	22	27	Straw	0.03	< 0.02	< 0.02	0.06	
Rabastens, South of	IBE	0.07	203–	0.035	2	22	27	Straw	0.02	< 0.02	< 0.02	0.06	
France, 2000 (Gascogne) ²	3894	0.07	208	0.033	_		28	Straw	0.05	< 0.02	< 0.02	0.10	
Rabastens, South of France, 2001 (Soisson)	IBE- 3894	0.07	0.035	208– 211	2	16	28	Straw	0.02	< 0.02	< 0.02	< 0.02	
							0	Green Plant	0.48	< 0.02	< 0.02	0.19	
Puycornet, South of	IBE-	0.07	0.035	207	2	19	7	Green Plant	<u>0.99</u>	< 0.02	< 0.02	0.23	
France, 2001	3894	0.07	0.033	207	2	19	14	Ears	0.04	< 0.02	< 0.02	< 0.02	-
(Soisson)							14	Stem	0.06	< 0.02	< 0.02		-
							21 28	Straw Straw	0.07 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02	-
Stanton, Derbyshire, United Kingdom, 2001 (Consort)	IBE- 3894	0.07	0.035	200	2	21	28	Straw	0.05	< 0.02	< 0.02		
							0	Green Plant	0.32	< 0.02	< 0.02	0.11	
Meckesheim, Germany,	IBE	0.07	0.029	241–	2	28	7	Green Plant	0.15	< 0.02	0.02	0.10	
2001 (Altos) ³	3894	0.07	0.023	249		20	14	Ears	< 0.02	< 0.02	0.04	0.16	
,							14 21	Stem Straw	< 0.02	< 0.02	< 0.02 < 0.02		-
							28	Straw	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02		-
Meckesheim, Germany, 2001 (Monopol) ³	IBE - 3880	0.073- 0.075	0.024	310– 316	2	21	28	Straw	0.23	< 0.02	0.03	0.17	A-22-01-
Meckesheim, Germany,	IBE -	0.066-	278–	0.024	2	22	0	Rest of Plant	0.88	< 0.02	< 0.02	0.16	05
2001 (Bandit) ³	3880	0.074	314	0.024	2	22	7	Rest of Plant	0.47	< 0.02	< 0.02	0.13	

Location, year	Applic	ation					рні	Commo	Residue	s (mg/kg))		
(variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	dity	Flonica mid	TFNA- AM	TFNA	TFNG	Ref
							14	Ears	0.21	< 0.02	< 0.02	0.04	
							14	Stem	0.51	< 0.02	< 0.02	0.04	
							28	Straw	0.39	< 0.02	< 0.02	0.07	
Audeville, North of	IBE-	0.069	197–	0.035	2	20	0	Green Plant	0.53	< 0.02	< 0.02	0.07	
France, 2000 (Tremie) ⁴	3880	0.007	198	0.033		20	28	Straw	0.05	< 0.02	< 0.02	0.10	
							0	Green Plant	0.64	< 0.02	< 0.02	0.12	
Audeville, North of	IBE-	0.07	200	0.035	2	20	7	Green Plant	0.20	< 0.02	0.02	0.37	
France, 2000	3894	0.07	200	0.033	_	20	14	Ears	0.13	< 0.02	0.04	0.53	
(Tremie) ⁴							14	Stem	0.33	< 0.02		0.65	
							21	Straw	0.19	< 0.02		0.33	
							28	Straw	< 0.02	< 0.02	< 0.02	< 0.02	
Puiselet-le- Marais, North of France, 2000 (Altria) ⁵	IBE- 3880	0.07	200– 203	0.035	2	20	28	Straw	0.04	< 0.02	< 0.02	0.05	
Puiselet-le- Marais, North of France, 2000 (Altria) ⁵	IBE- 3894	0.07	204– 208	0.035	2	20	28	Straw	0.03	< 0.02	< 0.02	0.02	
Meauzac, South of	IBE-	0.07	200	0.035	2	20	0	Green Plant	0.55	< 0.02	< 0.02	0.15	
France, 2000 (Aztec) ⁶	3880						28	Straw	< 0.02	< 0.02	< 0.02	0.10	
							0	Green Plant	0.69	< 0.02	< 0.02	0.14	
Meauzac, South of	IBE-	0.07	198–	0.025	2	20	7	Green Plant	0.02	< 0.02	< 0.02	0.13	
France, 2000	3894	0.07	200	0.035	2	20	14	Ears	0.04	< 0.02	0.02	0.18	
(Aztec) ⁶							14	Stem	0.03	< 0.02		0.29	
							21	Straw	< 0.02	< 0.02		0.22	
							28	Straw	< 0.02	< 0.02	< 0.02	0.12	
Hilgersmissen ,Germany, 2000	IBE 3880	0.07	196–	0.035	2	22	0	Rest of Plant	0.83	< 0.02	< 0.02	0.08	
(Brigadier) ⁷	3000		206				28	Straw	0.09	< 0.02	< 0.02	0.02	
							0	Rest of Plant	0.67	< 0.02	< 0.02	0.06	A-22-01- 10_VP00-
Hilgersmissen ,Germany,	IBE	0.07	198–	0.035	2	22	7	Rest of Plant	0.65	< 0.02	< 0.02		1-9
2000	3880	0.07	200	0.033	_		14	Ears	0.79	< 0.02	< 0.02		
(Brigadier) ⁷							14	Stem	1.58	0.03	0.05	0.30	
							21	Straw	0.11	< 0.02		0.03	
							28	Straw	0.07	< 0.02	< 0.02	0.02	

Barley ears

Four independent supervised trials were conducted in Germany and Denmark on <u>barley ears</u> in 2012, where a single foliar spray application of a WG formulation was made at 0.07 kg ai/ha and where ears were sampled 0–22 DALT.

The LC-MS/MS analytical method AGR/MOA/IKI220-1 was used to analyse all samples. The LOQ for green forage and straw was 0.01 mg/kg/analyte for ears.

The maximum period of sample storage at -20 °C was up to 111 days (ca. 4 months). Storage stability data on high starch content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 79.

Table 79 Residues of Flonicamid in Barley Ears Following Foliar Spray with 50 WG Formulations in Denmark and Germany.

Location was	Applicat	ion				PHI,	Residues (n	ng/kg)		
Location, year (variety)	Form	kg ai/ha	kg ai/hL	Water , L/ha	no.	days	Flonicami d	TFNA a	TFNG a	
Billeshavevej,	IBE					0	1.18	< 0.01	0.02]
Middelfart,	3894	0.073	0.035	210	1	7	0.02	< 0.01	0.17	
Denmark, 2012	3074	0.073	0.033	210		14	< 0.01	< 0.01	0.09	
(Tamtam)						21	< 0.01	< 0.01	0.05	
Tornhoj,	IBE					0	0.49	< 0.01	0.02	
Bogense,	3894	0.069	0.035	197	1	6	0.06	0.01	0.18	012
Denmark, 2012	3694	0.009	0.033	197		14	0.01	0.01	0.15	S12- 01930
(Quench)						21	< 0.01	< 0.01	0.09	01930
Wiesentheid,	IDE					0	0.96	< 0.01	< 0.01]
Bavaria,	IBE 3894	0.071	0.035	203	1	7	0.12	0.01	0.15	
Germany, 2012	3694	0.071	0.055	203	1	13	0.06	< 0.01	0.11	
(Marthe)						20	0.07	0.01	0.12	
Main Dannia						0	1.0	< 0.01	0.02]
Main, Bavaria,	IBE	0.071	0.035	204	1	8	0.14	0.01	0.13	
Germany, 2012 (Ouench)	3894	0.071	0.055	204	1	15	0.05	< 0.01	0.11	
(Quencil)						22	0.04	0.01	0.12	

^a Reported in flonicamid equivalents.

Alfalfa forage, seed and hay

Four independent trials were conducted on <u>alfalfa</u> in the US in 2009 where two foliar spray applications of a SG formulation were made with re-treatment intervals of 7–8 days. Because alfalfa is harvested differently in California compared to the Pacific Northwest, sample collection times varied between these two regions. In the Idaho and Washington trials, seed samples were collected 13–14 DALT in the summer, and forage and hay samples were harvested the following year, 265–293 DALT.

Analytical method P-3561M was used to analyse all samples. The LOQ was determined to be 0.02 mg/kg/analyte.

The maximum period of sample storage at $-20\,^{\circ}$ C was 432 days (ca. 14 months) for alfalfa seed, 490 days (ca. 16 months) for forage and 496 days (ca. 16 months) for hay. Concurrent storage stability data show that the residues of flonicamid and its metabolites are stable for 490 days in forage, 518 days in hay and 462 days in seed. The results are summarized in Table 80.

Table 80 Residues of Flonicamid in Alfalfa Following Foliar Spray with Beleaf 50 SG Formulation in North American Regions

Location,	Applicati	ion					DALT,		Residues (m	ıg/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	days	Matrix	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
GAP (West of the US Rockies)	WG/SG	0.10	0.10– 0.50	100–200	2	7	14 14 62	Seed Forage Hay					
					2	7	5		5.97 (5.76,	(0.062,	0.491 (0.479, 0.503)	2.012 (2.029, 1.996)	
Holtville, CA, 2009	SG		0.06– 0.07	299–318	2	7	10	Forage	2.99 (2.57,	(0.035,	0.368 (0.371, 0.365)	1.725 (1.581, 1.868)	9943
CA, 2009 S					2	7	11		0.319 (0.303, 0.335)	(< 0.02,	0.077 (0.071, 0.083)	0.434 (0.417, 0.450)	
(CUF 101)					2	7	19		0.256 (0.265,	< 0.02 (< 0.02,	0.032 (0.039,	0.247 (0.286,	

Location,	Applica	tion					DATE	1	Residues (m	g/kg)			
year (variety)	Form	kg	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Matrix	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
(variety)		ui/iiu	ui/IIL	L/ IIu		days		1	0.247)	< 0.02)	0.026)	0.208)	-
								1	0.323	< 0.02	0.108	0.240	1
					2	7	24		(0.321,	(< 0.02,	(0.130,	(0.258,	
									0.324)	< 0.02)	0.085)	0.221)	
								1	< 0.02	< 0.02	< 0.02	0.02	1
					2	7	62		(< 0.02,	(< 0.02,	(< 0.02,	(< 0.02,	
									< 0.02)	< 0.02)	< 0.02)	0.020)	
									< 0.02	< 0.02	< 0.02	0.021	1
					2	7	62	Hay	(< 0.02,	(< 0.02,	(< 0.02,	(0.022,	
									< 0.02)	< 0.02)	< 0.02)	0.020)	
									0.141	0.03	0.155	0.011	1
					2	7	11	Seed	(0.131,	(< 0.02,	(0.116,	(0.084,	
									0.151)	0.030)	0.194)	0.127)	
									1.30	0.077	0.247	1.495	1
					2	7	14		(0.981,	(0.058,	(0.197,	(1.183,	
								Forage	1.620)	0.096)	0.297)	1.806)	
								rorage	< 0.02	< 0.02	< 0.02	0.035	
Holtville,					2	7	65		(< 0.02,	(< 0.02,	(< 0.02,	(0.039,	
CA, 2009	SG	0.10	0.09	234					< 0.02)	< 0.02)	< 0.02)	0.031)	
(CUF 101)	30	0.10							< 0.02	< 0.02	< 0.02	0.062	
(COI 101)					2	7	65	Hay	(< 0.02,	(< 0.02,	(< 0.02,	(0.062,	
									< 0.02)	< 0.02)	< 0.02)	0.061)	
									<u>0.106</u>	< 0.02	0.050	0.031	
					2	7	14	Seed	(0.103,	(< 0.02,	(0.040,	(0.020,	
									0.108)	< 0.02)	0.060)	0.041)	<u> </u>
									< 0.02	< 0.02	< 0.02	< 0.02	
					2	7	293	Forage	(< 0.02,	(< 0.02,	(< 0.02,	(< 0.02,	
									< 0.02)	< 0.02)	< 0.02)	< 0.02)	4
Jerome, ID,						L			< 0.02	< 0.02	< 0.02	< 0.02	
2009	SG	0.10	0.07	281	2	7	293	Hay	(< 0.02,	(< 0.02,	(< 0.02,	(< 0.02,	
(Rampage)									< 0.02)	< 0.02)	< 0.02)	< 0.02)	_
					_	_	1.0	G 1	0.138	< 0.02	0.355	0.045	
					2	7	13	Seed	(0.134,	(< 0.02,	(0.357,	(0.038,	
		-							0.142)	< 0.02)	0.373)	0.051)	4
					2	_	265	Б	< 0.02	< 0.02	0.022	< 0.02	
T1 /					2	7	265	Forage	(< 0.02,	(< 0.02,	(< 0.02,	(< 0.02,	
Touchet,								-	< 0.02)	< 0.02)	0.023)	< 0.02)	-
WA, 2009 (Forage Senetics	SG	0.10	0.07	271–281	2	7	282	Цох	< 0.02 (< 0.02,	< 0.02	< 0.02	< 0.02	
	30	0.10	0.07	2/1-281	2	/	202	Hay	(< 0.02, < 0.02)	(< 0.02, < 0.02)	(< 0.02, < 0.02)	(< 0.02, < 0.02)	
		1			 			-				1	-
43M120)		1			2	7	14	Seed	$\frac{< 0.02}{(< 0.02)}$	< 0.02 (< 0.02,	< 0.02 (< 0.02,	< 0.02 (< 0.02,	
		1				'	14	seed	(< 0.02, < 0.02)	1		(< 0.02, < 0.02)	
		1		<u> </u>			<u> </u>	1	[< U.U2)	< 0.02)	< 0.02)	< 0.02)	

Almond Hulls

Five independent trials were conducted on <u>almonds</u> in the US between 1996 and 2008 where three foliar spray applications of a SG formulation were made with re-treatment intervals of 6–8 days. Almonds were harvested 39–42 DALT.

A modified version of analytical method P-3822 was used to analyse all almond nutmeat samples. The LOQ was determined to be 0.01~mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 196 days (ca. 7 months). Storage stability data on oil content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 81.

Table 81 Residues of Flonicamid in Almond Hulls Following Foliar Spray with Beleaf 50 SG Formulation in North American Regions

Location,	Applic	ation					DALE	G	Residues (m	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Commo dity ¹	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
US GAP	SG	0.07- 0.10	0.01- 0.10	100– 500	3	7	40						
Chico, CA, 2008 (Non- pareil)	SG	0.10	0.01	1029– 1038	3	7–8	40	Hulls (9.1%) Hulls (dry	4.302 (4.411, 4.193) 4.731 (4.874,	0.053 (0.053, 0.053) 0.058 (0.058,	0.187 (0.199, 0.174) 0.205 (0.219,	0.257 (0.248, 0.265) 0.282 (0.273,	-
							40	weight)	4.588)	0.058)	0.191)	0.290)	
							20		4.107 (4.047, 4.167)	0.051 (0.052, 0.050)	0.133 (0.139, 0.126)	0.406 (0.402, 0.410)	
							30	Hulls (11.1–	0.734 (0.851, 0.616)	< 0.01 (< 0.01, < 0.01)	0.062 (0.067, 0.056)	0.143 (0.165, 0.120)	
							40	75.2%)	0.906 (0.916, 0.896)	0.01 (0.01, 0.01)	0.071 (0.063, 0.078)	0.140 (0.137, 0.143)	
Orland, CA, 2004							50		0.686 (0.613, 0.758)	0.01 (< 0.01, 0.013)	0.069 (0.070, 0.068)	0.120 (0.109, 0.130)	
(Non- pareil)	SG	0.10	0.01	1169	3	7	20		16.58 (15.995, 17.147)	0.206 (0.207, 0.205)	0.535 (0.549, 0.520)	1.639 (1.589, 1.688)	-
							30	Hulls	2.032 (2.618, 1.896)	0.022 (0.025, 0.018)	0.190 (0.206, 0.173)	0.439 (0.508, 0.370)	IB- 2011- JLW-
							40	(dry weight)	1.089 (1.094, 1.083)	0.012 (0.012, 0.012)	0.085 (0.075, 0.094)	0.169 (0.164, 0.173)	014- 01-01
							50		0.771 (0.690, 0.851)	0.013 (0.010, 0.015)	0.078 (0.079, 0.076)	0.134 (0.122, 0.146)	-
Wasco,				1459–			39	Hulls (20.2%)	1.442 (1.807, 1.076)	0.033 (0.034, 0.031)	0.032 (0.034, 0.029)	0.120 (0.133, 0.107)	•
CA, 1996 (Fritz)	SG	0.10	0.007	1543	3	6–8	39	Hulls (dry weight)	1.813 (2.297, 1.329)	0.041 (0.043, 0.039)	0.040 (0.044, 0.036)	0.151 (0.169, 0.133)	
Coalinga, CA, 2006			0.006-	1534_			39		0.700 (0.734, 0.665)	0.014 (0.015, 0.013)	0.079 (0.080, 0.078)	0.113 (0.123, 0.102)	
(Non- pareil)	SG	0.10	0.007	1702	3	7	39	Hulls (dry weight)	0.922 (0.981, 0.863)	0.019 (0.020, 0.017)	0.105 (0.107, 0.102)	0.148 (0.164, 0.132)	-
Turlock,			0.006-	1487_	_		42	Hulls (60.0%)	1.095 (1.159, 1.030)	0.091 (0.093, 0.089)	0.305 (0.302, 0.308)	0.166 (0.167, 0.164)	
CA, 2007 (Butte)	SG	0.10	0.007	1721	3	7	42	Hulls (dry weight)	2.750 (2.912, 2.587)	0.229 (0.233, 0.225)	0.767 (0.759, 0.774)	0.415 (0.419, 0.411)	-

Cotton seed by-products

Twelve independent trials were conducted on <u>cotton</u> in the US in 2001 where three foliar spray applications of a WG formulation were made with re-treatment intervals of 6–9 days. Seeds were collected 29–32 DALT, dried and cleaned followed by a stick extraction to remove the gin trash. The

lint cotton was saw ginned to remove the majority of the lint from the cottonseed while the ginned seed was saw delinted to remove most of the remaining linters.

In Australia, ten independent trials were conducted on cotton in 2012 where one or two foliar spray applications were made at 0.10 kg ai/ha or 0.20 kg ai/ha at re-treatment intervals of 14–15 days. Cotton was picked from bolls 7–43 DALT and ginned to separate the fuzzy seed and lint. The simulated gin trash consisted of ground parts of the cotton plant including bracts, stems, leaves, immature or mummified bolls, flowers and raw cotton.

Method P-3567, a modified version of analytical method P-3561M was used to analyse all samples collected from the US trials while method AATM-R-165 was used to analyse all samples from the Australian trials. The LOQ was determined to be 0.02 mg/kg/analyte for P-3567. For method AATM-R-165, the LOQ was 0.01 mg/kg/analyte.

The maximum period of sample storage at -20 °C was up to 470 days (ca. 16 months). Storage stability data on oil content commodities show that the residues are stable for at least 23 months. The results are summarized in Table 82.

Table 82 Residues of Flonicamid in Delinted Seeds and Gin Trash Following Foliar Spray with Flonicamid 50WG Formulation in North American Regions

Location,	Applic	ation					DALE	G "	Residues (n	ng/kg)			
year (variety)	Form	kg ai/ha	kg ai/hL	Water, L/ha	no.	RTI, days	DALT, days	Commodit y	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
US GAP	WG/ SG	0.05- 0.10	0.02- 0.05	30–50	3	7	30						
Elko, SC, 2001 (Delta Pine 451 B/RR)	WG	0.10	0.06	168	3	7	29	Delinted cottonseed	0.050 (0.054, 0.046)	< 0.02 (< 0.02, < 0.02)	0.063 (0.064, 0.062)	0.030 (0.032, 0.028)	
							0		0.077 (0.063, 0.090)	< 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
West							10		0.029 (0.025, 0.032)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
Memphis, AR, 2001 (Suregrow	WG	0.10	0.07	150	3	7	21	Delinted cottonseed	0.027 (0.028, 0.026)	< 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
)							30		0.036 (0.035, 0.036)	< 0.02 (< 0.02, < 0.02)	0.066 (0.063, 0.069)	0.026 (0.025, 0.027)	
							40		0.026 (0.022, 0.029)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	
Tillar, AR, 2001 (Pay-	WG	0.10	0.10	94–	3	6–9	30	Delinted cottonseed	0.049 (0.047, 0.051)	< 0.02)	0.070 (0.066, 0.074)	0.032 (0.031, 0.032)	
master)	wo	0.10	0.10	103	3	0-7	30	Gin trash	1.200 (1.048, 1.352)	0.343 (0.321, 0.364)	0.478 (0.453, 0.502)	1.258 (1.138, 1.377)	
Senatobia, MS, 2001 (DPL 451 Bt/RR)	WG	0.10	0.05	187– 196	3	7	29	Delinted cottonseed	0.049 (0.050, 0.048)	< 0.02 (< 0.02, < 0.02)	0.059 (0.059, 0.059)	0.027 (0.027, 0.027)	
Eakly, OK, 2001 (PM 2280)	WG	0.10	0.05	187	3	6–8	30	Delinted cottonseed	0.050 (0.044, 0.055)	< 0.02 (< 0.02, < 0.02)	0.077 (0.075, 0.078)	0.031 (0.029, 0.032)	
Dill City, OK, 2001 (Pay-	WG	0.10	0.05-	168–	3	7	31	Delinted cottonseed	0.027 (0.026, 0.027)	< 0.02)	0.213 (0.226, 0.199)	0.125 (0.126, 0.123)	
master 2326)	,,,	0.10	0.06	206	3	,	J1	Gin trash	2.537 (2.550, 2.523)	0.470 (0.468, 0.471)	0.591 (0.620, 0.562)	1.297 (1.363, 1.230)	

Location,	Applic	ation					DALT	G III	Residues (n	ng/kg)			
year	• • •	kg ai/ha	kg	Water,	no.	RTI,	DALT, days	Commodit y	Flonicamid	TFNA-	TFNA	TFNG	Ref
(variety)	1 01111	Kg ai/iia	ai/hL	L/ha	110.	days	days	y		AM			
Levelland,								Delinted	0.026 (0.032,	< 0.02 (< 0.02,	0.252	0.144 (0.138,	
TX 2001								cottonseed	0.032,		0.260)	0.136,	
(PM 2326	WG	0.10	0.07	140	3	6–8	29		1.878	0.231	0.370	0.726	
B6/RR)								Gin trash	(2.093,	(0.275,	(0.446,	(0.881,	
,									1.663)	0.186)	0.293)	0.570)	
Uvalde,									0.024	< 0.02	0.160	0.089	
· ·	WG	0.10	0.05	187–	3	7	30	Delinted	(< 0.02,	< 0.02 (< 0.02,		(0.084,	
(PM 2326		0.10	0.03	196	5	ĺ	30	cottonseed	0.027)		0.174)	0.094)	
RR)												,	
							0		0.114	< 0.02	< 0.02	< 0.02	
							0		(0.112,	(< 0.02,		(< 0.02,	
									0.115)	< 0.02) < 0.02	< 0.02) < 0.02	< 0.02) < 0.02	-
							11		(0.029,		< 0.02 (< 0.02,	< 0.02 (< 0.02,	
							11		0.037)	< 0.02,	< 0.02,	< 0.02,	
									0.037)	< 0.02)	< 0.02)	< 0.02)	1
Edmonson,							20	Delinted	(0.035,		(< 0.02,	(< 0.02,	
TX, 2001	wa	0.10	0.06-	150-	2	7.0		cottonseed	0.040)	< 0.02)	< 0.02)	< 0.02)	
(")	WG	0.10	0.07	187	3	7–8		1	0.035	< 0.02	0.261	0.149	1
master HS 250)							32		(0.041,	(< 0.02,	(0.305,	(0.179,	
<i>430)</i>									0.028)	< 0.02)	0.217)	0.118)	
									0.030	< 0.02	< 0.02	< 0.02	
							43		(0.032,	(< 0.02,		(< 0.02,	
									0.028)	< 0.02)	< 0.02)	< 0.02)	
									2.191	0.327	0.498	1.039	
							32	Gin trash	(2.411,	(0.370,	(0.604,	(1.220,	
G. C. 11									1.970)	0.283)	0.392)	0.857)	
Stanfield,								Delinted	0.038	< 0.02	0.249	0.179	
AZ, 2001 (DP458	WG	0.10	0.06	187	3	7	29	cottonseed	(0.030,	(< 0.02,	(0.265,	(0.212,	
B1RR)								Collonseed	0.045)	< 0.02)	0.232)	0.146)	
D Hdt)									0.072	< 0.02	0.262	0.195	
Mariopa,								Delinted	(0.073,	(< 0.02,	1	(0.204,	
AZ 2001	W.C	0.10	0.05	107	2	_	20	cottonseed	0.070)		0.264)	0.185)	
(DP451	WG	0.10	0.05	187	3	7	30		1.223	0.331	0.464	1.169	1
B1RR)								Gin trash	(1.241,	(0.334,	(0.466,	(1.196,	
									1.204)		0.461)	1.141)	
								Delinted	0.089		0.227	0.149	
Madera,								cottonseed	(0.115,	(< 0.02,		(0.126,	
CA, 2001	WG	0.10-	0.04	281-	3	7	29		0.063)		0.251)	0.171)	
(Acaia	-	0.11		290				C: 4. 1	1.224	0.325	0.461	1.171	
Riata RR)								Gin trash	(1.212, 1.235)	(0.338,	(0.505,	(1.204,	1
AUS GAP	WG	0.07	NS	NS	2	NS	7		1.433)	0.312)	0.416)	1.137)	
AUS UAF	WU	0.07	0.111	91		140	7	Gin trash	2.3	0.2	0.19	0.35	
		0.10	0.111	85	1		27	Gin trash	0.21	< 0.05	0.19	0.43	1
		0.10	0.121	94	1	14	7	Gin trash	8.39	0.46	1.13	2.43	1
		0.20		82	1		27	Gin trash	0.38	0.40	0.83	1.2	1
		0.10	0.134	74	1	15	7	Gin trash	1.33	0.15	0.19	0.33	1
		0.10	0.128	76	1	14	15	Gin trash	0.32	0.069	0.38	0.37	1
Mywybilla		0.10	0.130	76	1	14	22	Gin trash	0.41	0.07	0.35	0.53	1
,	WC			-	2					0.108	0.54	0.83	1
Queenslan d, (Sicot	WG	0.10	0.131	74	2	14	29	Gin trash	0.37 (0.51,	(0.16,	(0.59,	(1.13,	
a, (Sicot 71BRF)		L_	L			L		<u> </u>	0.23)	0.055)	0.49)	0.53)]
(IDIXI')		0.10	0.130	77		14	36	Gin trash	0.15	< 0.01	0.61	0.9]
1		0.10	0.129	77		14	43	Gin trash	0.086	< 0.05	0.47	1.22]
,		0.20	0.265	75]	15	7	Gin trash	1.02	0.059	0.086	0.11]
		0.20	0.203	, ,									I
									0.40 (0.36	0.08	0.35	0.53	
		0.20	0.264	77		14	29	Gin trash	0.40 (0.36, 0.44)	(0.061,	(0.31,	(0.47,	
Boggabilla			0.264		2	14	29 7	Gin trash Gin trash	0.40 (0.36, 0.44) 2.75				

Location,	Applic	ation							Residues (n	ng/kg)			
year	Form	kg ai/ha	kg	Water,	no.	RTI,	DALT, days	Commodit	Flonicamid	TFNA-	TFNA	TFNG	Ref
(variety)	TOITI		ai/hL	L/ha	110.	days	,	<u> </u>		AM			_
, New South		0.10	0.112	90 90		15 14	28 7	Gin trash Gin trash	0.42 5.19	0.089	0.43	0.45	-
Wales (Sicot 71BRF)		0.20	0.224	90		15	28	Gin trash	1.42	0.28	0.7	0.95	
/ IBRI)		0.10	0.111	90		14	7	Gin trash	3.72	0.057	0.086	0.086	1
Narrabi,		0.10	0.113	89		15	13	Gin trash	2.42	0.15	0.18	0.11	
New South		0.10	0.112	89		14	21	Gin trash	0.68	0.12	0.78	0.24	
Wales	WG	0.10	0.11	92	2	13	28	Gin trash	0.56	0.17	1.06	0.61	_
(Sicot 71BRF)		0.10	0.108	93 90		14 14	35 41	Gin trash Gin trash	0.16	< 0.01 0.06	0.94 2.66	0.43	
/ IDICI)		0.10	0.113	92		14	7	Gin trash	8.23	0.19	0.16	0.15	1
		0.20	0.22	92		13	28	Gin trash	0.99	0.27	2.41	1.16	1
		0.10	0.10	98		14	7	Gin trash	3.0	0.13	0.23	0.36	
Chinchilla,		0.10	0.10	103		14	28	Gin trash	0.18	< 0.01	0.75	0.61	
Oueenslan		0.10	0.10	103		14	49	Gin trash	< 0.05	< 0.05	0.7	0.65	_
d (Sicot	WG	0.10	0.10	102 98	2	14 14	63 7	Gin trash Gin trash	0.05 6.8	< 0.05 0.24	0.49	0.89	1
71BRF)		0.20	0.20	99		14	28	Gin trash	0.67	< 0.05	0.38	0.33	1
		0.20	0.20	104		14	49	Gin trash	0.14	< 0.05	1.1	1.4	1
		0.20	0.20	102		14	63	Gin trash	< 0.05	< 0.05	1.4	1.5	1
		0.10	0.10	100		14	7	Gin trash	1.7	0.47	0.23	0.55	
		0.10	0.09	111	2	15	20	Gin trash	1.1	0.29	0.36	0.52	
		0.10	0.10	103		14	27	Gin trash	1.1	0.16	0.29	0.38	
		0.10	0.10	103	1	NA	27	Gin trash	1.7	0.24	0.12	0.22	
Condamin		0.10	0.10	102		14	35	Gin trash	0.35	0.12	0.22	0.33	
e Plains, Queenslan	WG	0.10	0.10	103		14	41	Gin trash	0.27	0.15	0.74	1.2	_
d (Sicot71B RF)		0.05	0.05	103		13	49	Gin trash	0.05	< 0.05	0.4	0.48	TIDI
KI*)		0.10	0.10	102	2	14	55	Gin trash	0.11	< 0.05	0.91	2.2	UPL GLP 12 01-1
		0.20	0.20	100		13	7	Gin trash	1.4	0.25	0.11	0.27	
		0.20	0.19	103		14	27	Gin trash	1.3	0.36	0.57	0.9	-
		0.20	0.20	103		14	41	Gin trash	0.63	0.12	1.1	1.7	-
		0.20	0.20	102		14	55	Gin trash	0.17	0.14	1.3	3.3	
		0.10	0.11	89–91		14	7	Gin trash	1.2	< 0.05	< 0.05	< 0.05	4
		0.10	0.11	91 91–92		14	14 21	Gin trash	1.3	0.08 < 0.05	0.05	0.07	-
		0.10	0.11	91–92		14 14	28	Gin trash Gin trash	0.74	< 0.05	0.19	0.22	1
		0.10	0.11	92	1	14	35	Gin trash	0.71	0.06	1.4	1.2	1
Moree,		0.10	0.11	92–93]	14	42	Gin trash	0.6	< 0.05	0.44	0.97	
New South		0.10	0.11	89–92		14	49	Gin trash	0.33	0.05	0.76	1.8	
Wales (Sicot	WG	0.10	0.11	90–93	2	14	56	Gin trash	0.07	< 0.05	0.28	0.72	_
71BRF)		0.20	0.22-	89–93		14	7	Gin trash	1.7	< 0.05	< 0.05	< 0.05	_
		0.20	0.22	90–91	-	14	28	Gin trash	1.5	0.05	0.21	0.16	_
		0.20	0.22-	90–93		14	42	Gin trash	0.98	0.07	0.75	1.5	-
		0.20	0.22-	90–93		14	56	Gin trash	0.22	< 0.05	1	2.4	

Location,	Applic	orm kg ai/ha ai/hL L/ha no. da				DALT,	Commodit	Residues (n	ng/kg)				
year (variety)	Form	kg ai/ha			no.	RTI, days	days	у	Flonicamid	TFNA- AM	TFNA	TFNG	Ref
		0.10	0.11	90–92	2	14	8	Gin trash	1.6	0.07	0.05	0.07	
		0.10	0.11	89-90	2	14	15	Gin trash	0.82	0.06	0.13	0.13	
		0.10	0.11	91–92	2	14	22	Gin trash	0.89	0.05	0.14	0.23	
		0.10	0.11	89–90	2	14	29	Gin trash	0.66	0.07	0.34	0.57	
Narrabri,		0.10	0.11	91	2	14	36	Gin trash	0.58	0.07	0.54	1.1	
New South		0.10	0.11		2	14	43	Gin trash	0.31	0.05	0.37	0.73	
	WG	0.10	0.11	90	2	14	50	Gin trash	0.36	0.08	0.8	1.7	
(Sicot 71BRF)	,,,	0.10	0.11- 0.12	84–86	2	14	57	Gin trash	0.09	< 0.05	0.67	1.6	
/ IDKI')		0.23	0.22	92–93	2	14	8	Gin trash	2.1	0.2	0.12	0.18	1
		0.21	0.22	92	2	14	29	Gin trash	1.1	0.11	0.48	1	
		0.20	0.22- 0.24	85–92	2	14	43	Gin trash	0.42	0.07	0.96	1.8	
		0.20	0.24	85–86	2	14	57	Gin trash	0.15	< 0.05	0.91	1.9	UPL
		0.10	0.08– 0.09	114– 125	2	14	7	Gin trash	0.66	< 0.05	< 0.05	< 0.05	GLP 12 01-1
		0.10	0.08- 0.09	116– 119	2	14	28	Gin trash	0.15	< 0.05	1.2	0.62	
Narromine		0.10	0.08	123– 124	2	11	42	Gin trash	< 0.05	< 0.05	0.44	0.24	
, New South	WG	0.10	0.08- 0.09	117– 123	2	15	53	Gin trash	< 0.05	< 0.05	1	0.49	
Wales (Sicot	WG	0.20	0.17- 0.18	114– 119	2	14	7	Gin trash	1.6	< 0.05	0.13	0.07	
71BRF)		0.21	0.17	122– 124	2	14	28	Gin trash	1.2	0.14	1.1	1	
		0.21	0.17	119– 123	2	11	42	Gin trash	< 0.05	< 0.05	0.87	0.41	
		0.21	0.17- 0.18	118– 123	2	15	53	Gin trash	< 0.05	< 0.05	0.58	0.27	

FATE OF RESIDUES DURING PROCESSING

In processing-nature of residues

Hydrolysis of flonicamid, radio-labelled in the pyridine ring (specific activity 9.08 MBq/mg), at 1.0 mg ai/L, was investigated in aqueous buffer solutions (0.1 M sodium citrate-citric acid), at 90 °C and pH4 for 20 min (simulating pasteurisation), at 100 °C and pH 5 for 60 min (simulating baking, brewing and boiling), and at 120 °C and pH 6 for 20 min (simulating sterilisation).

Quantitative measurement of the radioactivity was carried out by LSC. Further analysis to quantify and identify the radio-labelled degradation products present in the test solutions was conducted using HPLC and TLC. Flonicamid was identified by HPLC co-chromatography with a certified standard. Selected samples were analysed by TLC to confirm the presence of flonicamid.

Table 83 Degradation of flonicamid under various hydrolysis conditions

Condition	Sampling Regime	Flonicamid [% AR]	Total Others [% AR]	Total Recovery [% AR]
pH 4, 90 °C	Heated	100.28	0.49	100.77
	Control	99.21	0.59	99.80
pH 5, 100 °C	Heated	96.87	0.98	97.85
	Control	97.19	0.57	97.76
рН 6, 120 °C	Heated	96.58	1.72	98.30

Condition	Sampling Regime	Flonicamid [% AR]	Total Others [% AR]	Total Recovery [% AR]
	Control	96.47	0.92	97.39

Overall good recovery of radioactivity was achieved for each of the processing conditions, ranging from 94.6 to 101.1% of the applied radioactivity (AR).

In all cases, flonicamid accounted for at least 96.5% of AR. Therefore, very limited degradation of flonicamid was observed in aqueous buffer solutions under all the conditions tested with no significant degradation product being formed.

In processing-effect on the residue level

The Meeting received information on the fate of flonicamid residues and its metabolites TFNA-AM, TFNA and TFNG during the processing of raw agricultural commodities (RAC) in apples to juice; peaches to canned peaches, juice, jam and puree; plums to dried prunes; tomatoes to paste; potatoes to chips and flakes; rape seed and cotton to refined oil and meal and mint to oil.

Processing of apples

One study was conducted in 2002 in Lyons, New York where <u>apple</u> trees were treated with three foliar spray applications, where the first two treatments were at 0.103 kg ai/ha and the third treatment was at 0.516 kg ai/ha, for a total of 0.722 kg ai/ha. The fruit was harvested 21 days after the last application and transported to the lab for processing into juice and pomace. The results and the calculated processing factors (residue in processed commodity/residue in RAC) for MRL setting and dietary intake purposes are presented in Tables 84 and 93. To make juice and wet pomace, apples were ground in a hammer-mill. The resulting wet mash was loaded in one or more cloth stacks on the hydraulic press. The cloth stacks were pressed for 5 minutes at 2200–3000 psi to remove the apple juice. The wet pomace sample was then taken from the cloth stacks and bagged.

Table 84 Residues of flonicamid in apples (RAC and processed fractions)

RAC/	Residues (mg/	kg)			Processin	ng Factor			Referenc
Processed commodity	Flonicamid	TFNA- AM	TFNA	TFNG	Flonica mid	TFNA- AM	TFNA	TFNG	e
Apple fruit	0.032, 0.036 (0.034)	< 0.01	0.038, 0.041 (0.040)	< 0.01	-	-	-	_	ID 2001
Wet pomace	0.091, 0.101 (0.096)	< 0.01	0.049, 0.053 (0.051)	0.008, 0.008 (0.008)	2.82	NA	1.28	NA	IB-2001- MDG- 003-00- 01
Juice	0.122, 0.127 (0.125)	< 0.01	0.139, 0.139 (0.139)	0.011, 0.011 (0.011)	3.67	NA	3.48	NA	UI

NA = Not applicable

Processing of peaches

Four processing trials were conducted in 2001 in Italy (two), Spain and Southern France where <u>peach</u> trees were treated with two applications of a WG formulation at a rate of 0.07 kg ai/ha/application for a total of 0.140 kg ai/ha. The peaches were harvested 14 days following the last application and processed into canned peaches, juice, jam and puree. The results and the calculated processing factors (residue in processed commodity/residue in RAC) for MRL setting and dietary intake purposes are presented in Tables 85 and 93. The information submitted on processing procedures is summarized as follows.

For each processed commodity, peaches were dipped in boiling water for a few minutes, peeled and stones removed.

Canned peaches

The fruits were cut in halves and placed in glass containers. Peaches were then covered with a 400 g/L sucrose solution. The containers were sealed and sterilized for 15 mins in a boiling water bath. The canned peaches were then cooled.

Juice

The fruits were cut into small pieces and weighed. The pulp was pressed through a sieve of 1 mm mesh size. The mixture was then centrifuged at 7500 rpm and filtered through a filter paper. The final volume of juice and sucrose content was measured and reported. Juice was transferred into a glass container, which was sealed and sterilized for 15 mins at 100 °C.

Jam

The fruits were cut in small pieces and weighed. A syrup solution was prepared by adding 50 mL of water to the same weight of sucrose as the quantity of peaches involved. The solution was cooked until complete dissolution of sucrose. The peaches were added to the syrup and cooked a few minutes before crushing. Pectin and citric acid were added to the mixture, corresponding to 0.5% and 0.6% in weight of sucrose added, respectively. The mixture was pressed through a sieve and the jam was cooked and controlled for sucrose concentration using a refractometer. Cooking was stopped as soon as 61% of sucrose concentration was achieved. The jam was transferred into a glass container, which was sealed and sterilized for 30 mins at 100 °C.

Purée

The fruits were cut into small pieces, weighed and transferred into a glass container. Sucrose was added equivalent to 10% of the weight of the peaches. The container was sealed and heated at $100\,^{\circ}$ C for 30 minutes. The syrup generated was removed and the volume was reported. The peaches were then crushed through a sieve. The weight of the resulting purée was reported and the sugar concentration was measured using a refractometer. The final sugar content was adjusted to 28% using sucrose. The purée was transferred into a glass container, which was sealed and sterilized for 15 min at $100\,^{\circ}$ C

Table 85 Residues of flonicamid in peaches (RAC and processed fractions)

Countr		Residues (mg	g/kg)			Process	ing Facto	r		
y, Year	RAC/Processed Commodity	Flonicamid	TFNA- AM	TFN A	TFNG	Floni camid	TFN A- AM	TFN A	TFN G	Reference
Italy, 2001	Peaches	0.03	< 0.01	< 0.0 1	< 0.01	_	-	_	-	
	Canned peaches	< 0.01	< 0.01	< 0.0 1	< 0.01	0.33	NA	NA	NA	
	Fruit juice	0.03	< 0.01	0.01	0.01	1	NA	NA	NA]
	Jam	0.01	< 0.01	0.02	0.04	0.33	1	2	4	
	Purée	0.02	< 0.01	< 0.0 1	< 0.01	0.67	NA	NA	NA	
	Peel	0.01	< 0.01	< 0.0 1	< 0.01	0.33	NA	NA	NA	
	Waste material out of purée	0.02	< 0.01	< 0.0 1	< 0.01	0.67	NA	NA	NA	P-22-01-02
	Blanching water	0.03	< 0.01	0.01	0.01	1	NA	NA	NA	1
	Waste material out of juice	0.02	< 0.01	< 0.0 1	< 0.01	0.67	NA	NA	NA	
Italy, 2001	Peaches	0.02	< 0.01	< 0.0 1	< 0.01	_	_	_	_	
	Canned peaches	< 0.01	< 0.01	< 0.0 1	< 0.01	0.5	NA	NA	NA	
	Fruit juice	0.02	< 0.01	< 0.0 1	< 0.01	1	NA	NA	NA	
	Jam	0.02	< 0.01	0.01	< 0.01	1	NA	NA	NA	

Countr		Residues (mg/kg)					ing Facto	r		
y, Year	RAC/Processed Commodity	Flonicamid	TFNA- AM	TFN A	TFNG	Floni camid	TFN A- AM	TFN A	TFN G	Reference
	Purée	0.02	< 0.01	< 0.0 1	< 0.01	1	NA	NA	NA	
Spain, 2001	Peaches	0.03	< 0.01	< 0.0 1	< 0.01	_	-	_	_	
	Canned peaches	0.01	< 0.01	< 0.0 1	< 0.01	0.33	NA	NA	NA	
	Fruit juice	0.01	< 0.01	< 0.0 1	< 0.01	0.33	NA	NA	NA	
	Jam	0.03	< 0.01	< 0.0 1	< 0.01	1	NA	NA	NA	
	Purée	0.03	< 0.01	< 0.0 1	< 0.01	1	NA	NA	NA	
South	Peaches	0.06	< 0.01	0.02	0.01	-	_	_	_	
of	Canned peaches	0.10	< 0.01	0.02	0.01	1.67	NA	1	1	
France,	Fruit juice	0.03	< 0.01	0.03	< 0.01	0.5	NA	1.5	NA	
2001	Jam	0.01	< 0.01	0.03	< 0.01	0.17	NA	1.5	NA	
	Purée	0.05	< 0.01	0.03	< 0.01	0.83	NA	1.5	NA	

Processing of plums

One processing trial was conducted in 1992 in Fairfield, California where <u>plum</u> trees were treated with three foliar spray applications where the first two treatments were at 0.103 kg ai/ha and the third treatment was at 0.516 kg ai/ha, for a total of 0.722 kg ai/ha. The fruit was harvested 14 days after the last application and dried. The results and the calculated processing factors (residue in processed commodity/residue in RAC) for MRL setting and dietary intake purposes are presented in Tables 86 and 93. The information submitted on processing procedures is summarized as follows.

Dried prune

The plums were washed for five minutes in a tub of cold water. The washed plums were spread single layer on trays and dehydrated in a tray air dryer at 68–79 °C for 18–36 hours to reduce the moisture content to the desired range (19–29%).

Table 86 Residues of flonicamid in plums (RAC and processed fractions)

RAC/	Residues (mg/k	g)			Processi	ng Factor			
Processed commodity	Flonicamid	TFNA- AM	TFNA	TFNG	Flonic amid	TFNA -AM	TFN A	TFN G	Reference
Plum	0.280 (0.275, 0.284)	0.024 (0.025, 0.023)	0.016, (0.016 0.016)	0.032 (0.033, 0.031)	_	_	_	_	IB-
Dried prune	0.278 (0.264, 0.287)	0.018 (0.017, 0.018)	0.024 (0.026, 0.021)	0.036 (0.038, 0.034)	1	0.75	1.5	1.13	2001_MDG -004-00-01

Processing of tomato

One study was conducted in 2001 in Davis, California where tomato plants were treated with three foliar spray applications where the first two treatments were at 0.102 kg ai/ha and the third treatment was at 0.506 kg ai/ha, for a total of 0.710 kg ai/ha. The fruit was harvested immediately after the last application and transported to the lab for processing into paste. The results and the calculated processing factors (residue in processed commodity/residue in RAC) for MRL setting and dietary intake purposes are presented in Table 93. The information submitted on processing procedures is summarized as follows.

Paste

The tomato fruit were batch rinsed using a high-pressure spray rinse at approximately 70–75 °C for 30 seconds per batch. The fruit was hand fed into the hammermill assembly of the Suntech Fruit Press for crushing. The crushed tomatoes were transferred to the Hubbert Steam Jacketed Kettle and rapidly heated to approximately 80–85 °C and held for 25–30 seconds. The hot break juice was hand fed into the Pulper Finisher for the separation of pomace and juice. The wet pomace recovered was pressed using the Suntech Fruit Press. The pressed wet pomace was discarded and the recovered press juice was returned to the finished juice.

The juice was then transferred to the Groen Vacuum Evaporator. The puree was removed from the evaporator when the desired Brix range was achieved. A portion of the puree was transferred to the 7.5 L Scrape Surface Vacuum Evaporator. The paste was removed from the evaporator when the desired Brix range was achieved. A portion of the paste was removed and 1% salt was added to adjust the Brix to the desired range of 24.0–30.0 °C. The paste was heated to 82–88 °C. The heated paste was packed in 3303 cans and sealed using the Dixie Electric Can Sealer. The sealed cans were then processed using an Open Atmospheric Water Bath Kettle for 15–20 minutes at 96–100 °C and then cooled under running tap water. A representative sample of the cooled canned puree was removed, packaged, labelled and placed in the freezer for the required sample fraction. The excess evaporated puree and paste was discarded.

Table 87 R	tesidues o	f flonicamid	in tomato	(RAC a	nd pro	ocessed f	ractions)

RAC/	Residues (mg	g/kg)			Processing F	actor			
Processed commodity	Flonicamid	TFNA- AM	TFNA	TFNG	Flonicamid	TFNA- AM	TFNA	TFNG	Reference
Tomato	0.031 (0.029, 0.031, 0.033, 0.031)	<0.01 (< 0.01, < 0.01, < 0.01, < 0.01)	<0.01 (<0.01, <0.01, <0.01, <0.01)	< 0.01 (< 0.01, < 0.01, < 0.01, < 0.01)	_	-	_	_	IB-2001- MDG- 006-00-1
Paste	0.499 (0.494, 0.503)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.028, 0.029 (0.029)	16.1	NA	NA	2.8	

Processing of potato

One study was conducted in 2001 in Ephrata, Washington where <u>potato</u> plants were treated with three foliar spray applications where the first two treatments were at 0.10 kg ai/ha and the third treatment was at 1.0 kg ai/ha, for a total of 1.22 kg ai/ha. The fruit was harvested immediately after the last application and transported to the lab for processing into chips and flakes. The results and the calculated processing factors (residue in processed commodity / residue in RAC) for MRL setting and dietary intake purposes are presented in Tables 88 and 93. The information submitted on processing procedures is summarized as follows.

Chips

The potatoes are peeled for 25–35 seconds in batches using an abrasive peeler. A certain amount of peel is left on the tuber to produce a natural appearance to the finished product. The peel collected is weighed and discarded. The peeled potatoes are individually inspected and hand trimmed. The potatoes are cut using a restaurant style food cutter/slicer. The slices are placed in a tub of hot tap water to rinse the free starch from the surfaces of the slices. The slices are deep fried in a restaurant style deep fat fryer at approximately 163–191 °C for 60–90 seconds. Free oil is drained from the chips using a draining tray and salted by hand. The chips are inspected and undesirable chips are removed.

Flakes

Washed potatoes are sorted and scrubbed in batches using a restaurant style peeler fitted with a rubber scrubber for approximately 25-35 seconds. The peel is then hydraulically pressed to increase the solids content. Potatoes are then individually inspected, hand trimmed and cut into slabs using a restaurant style food cutter/slicer with a cutting blade set to approximately 1–1.3 cm. The potato slices are spray washed for approximately 30 seconds in cold water to rinse the free starch from the surface of the slices. The potato slices are precooked at approximately 70–77 °C for 202–22 minutes using a steam jacketed kettle and subsequently cooled down to less than 32 °C using cold running tap water in a 150 L steam jacketed kettle for 20-22 minutes. The cooled slices are steam cooked at 94-100 °C for 40-42 minutes using an atmospherically flowing steam batch style steam cooker and mashed using a restaurant style meat grinder without the grinding attachment. The mashed potatoes are placed in a bakery style mixer where an emulsion containing the additives are poured into the mashed potatoes and mixed for approximately 60 seconds. The potato mash is hand fed onto a laboratory single drum dryer where the potato mash is dried into a thin sheet. The dried potato sheet is broken into flakes. The large flakes are then hand fed into a hammermill for uniform sizing of the finished flakes. If moisture content of the potato flakes exceeds 9%, the flakes are dried on the fluidized bed dryer to less than or equal to 9% moisture.

Table 88 Residues of flonicamid in potatoes (RAC and processed fractions)

RAC/	Residues (mg/	kg)			Processin	ng Factor	,		
Processed commodit y	Flonicamid	TFNA-AM	TFNA	TFNG	Flonica mid	TFN A- AM	TFNA	TFN G	Reference
	0.022	< 0.01	0.041	0.029					
Potatoes	(0.022,	(< 0.01,	(0.040,	(0.030,	_	-	_	_	
	0.022)	< 0.01)	0.041)	0.028)					
	0.011	< 0.01	< 0.01	< 0.01					
Wet Peel	(0.010,	(< 0.01,	(< 0.01,	(< 0.01,	0.50	NA	0.24	0.3	IB-2001-
	0.011)	< 0.01)	< 0.01)	< 0.01)					MDG-
	0.021	< 0.01	0.072	0.051					002-00-01
Chips	(0.021,	(< 0.01,	(0.071,	(0.049,	0.95	NA	1.8	1.8	002-00-01
	0.021)	< 0.01)	0.072)	0.053)					
	0.060	< 0.01	0.122	0.092					
Flakes	(0.059,	(< 0.01,	(0.117,	(0.089,	2.73	NA	2.98	3.17	
	0.060)	< 0.01)	0.126)	0.094)					

The best estimates of the processing factors for parent residues (for MRL setting in case of residue increasing) and for the sum of flonicamid, TFNA-AM, TFNA AND TFNG (for dietary intake) are summarized in Table 93.

Rape seed

One study was conducted in 2007 in Prosser, Washington where <u>rape seed</u> plants were treated with three foliar spray applications of 0.30 kg ai/ha for a total of 0.90 kg ai/ha. The seeds were harvested 8 days following the last application and transported to the lab for processing into refined oil and meal. The results and the calculated processing factors (residue in processed commodity/residue in RAC) for MRL setting and dietary intake purposes are presented in Table 93. The information submitted on processing procedures is summarized as follows.

Refined Oil

<u>Canola seeds</u> were flaked in a flaking roll and flakes were heated to 85–100 °C and held for 10 to 15 minutes in the temperature range. Flakes were pressed (expelled) in an expeller to mechanically remove a portion of the crude oil. Residual crude oil remaining in the solid material (presscake) exiting the expeller was extracted with the hexane. The miscella (crude oil and hexane) was passed through a laboratory recovery unit to separate the crude oil and hexane. Crude oil was heated to 90–96 °C for hexane removal. Crude oil samples recovered from the expeller and solvent extraction were

filtered and combined. Percent free fatty acid (FFA) for the crude oil was determined. Crude canola oil was placed in a water bath and pre-treated with 85% phosphoric acid. Oil was mixed for 29–31 minutes at 40–45 °C. After the pre-treatment, an amount of 12°Baume sodium hydroxide was added to the oil. The samples were mixed for 19–21 minutes at 40–45 °C and then for 9–11 minutes at 65–70 °C. The neutralized oil was then centrifuged to separate the refined oil and soapstock. The refined oil was decanted and filtered. Soapstock was discarded. Resulting fraction of alkali refined oil was collected and frozen.

Meal

Presscake was placed in stainless steel batch extractors and submerged in 50–60 °C solvent (hexane). After 30 minutes, the hexane was drained and fresh hexane added to repeat the cycle two more times. The final two washes were for 15–30 minutes each. After the final draining, the extracted presscake (meal) was desolventized using warm air forced through the extracted presscake. Resulting fraction, canola meal was collected and placed into frozen storage.

Table 89 Residues of flonicamid in rape seed	l (RAC and processed fractions)
--	---------------------------------

RAC/	Residues (mg/kg	Residues (mg/kg)							
Processed commodity	Flonicamid	TFNA- AM	TFNA	TFNG	Flonica mid	TFNA- AM	TFNA	TFN G	Reference
Whole seed	0.232	< 0.02 (< 0.02 , < 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.02 (< 0.02, < 0.02)	_	_	_	_	9783
Meal	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	NA	NA	NA	
Refined oil	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	NA	NA	NA	

Processing of cotton

Study 1: US

One processing trial was conducted in 2001 in Uvalde, Texas, where <u>cotton</u> was treated with three applications of a WG formulation where the first two treatments were made at a rate 0.10 kg ai/ha/application and the third treatment was made at a rate of 1.0 kg ai/ha/application for a total of 1.2 kg ai/ha. The undelinted cottonseed was harvested 30 days following the last application and processed into meal and oil. The results and the calculated processing factors (residue in processed commodity/residue in RAC) for MRL setting and dietary intake purposes are presented in Tables 90 and 93. The information submitted on processing procedures is summarized as follows.

Cottonseed hulls

Cotton seed was dried and cleaned followed stick extraction to remove the gin trash. The lint cotton was saw ginned to remove 85–89% of the lint from the cottonseed. The ginned seed was saw delinted to remove most of the remaining linters. Approximately 3% of the lint remained with the seed. A mill was used to crack the seed and the hulls were removed from the kernels and sampled for analysis.

Cottonseed oil and meal

The kernels were dried to < 12% water, heated to 80–90 °C for 30 minutes, and flaked, followed by passage through an expander extruder to form collets. The collets were submerged in hexane at 50–60 °C for 30 minutes and washed twice with fresh hexane to remove the cottonseed oil. Residual hexane was removed from the meal fractions with warm air and the meal was sampled for analysis. Hexane was removed from the oil with a vacuum extractor, NaOH was added to precipitate the soap stock, the remaining hexane was removed and refined oil was sampled for analysis.

Table 90 Residues of flonicamid in cotton (RAC and processed fractions)—US

RAC/	Residues (mg/kg)	Processing Factor	Reference
11110	residues (mg/mg)	1 To Coopering 1 dector	1101010110

Processed commodity	Flonicamid	TFNA- AM	TFNA	TFNG	Flonicamid	TFNA- AM	TFNA	TFNG	
Seed at processing	0.084 (0.079, 0.088)	< 0.02 (< 0.02, < 0.02)	0.101 (0.092, 0.110)	0.080 (0.070, 0.090)	_	-	_	_	
Hulls	0.071 (0.072, 0.069)	< 0.02 (< 0.02, < 0.02)	0.353 (0.351, 0.354)	0.210 (0.207, 0.212)	0.84	NA	3.5	2.6	IB-2001- MDG-
Meal	0.023 (0.023, 0.023)	< 0.02 (< 0.02, < 0.02)	0.899 (0.894, 0.883)	0.483 (0.489, 0.476)	0.27	NA	8.9	6.0	004-00- 01
Refined oil	< 0.02 (< 0.02, < 0.02)	< 0.24	NA	0.20	0.25				

Study 2—Australia

One processing trial was conducted in 2012 in Narrabri, New South Wales, where <u>cotton</u> was treated with two applications of a WG formulation at a rate 0.10 kg ai/ha/application or 0.20 kg ai/ha/application for a total of 0.2 kg ai/ha or 0.4 kg ai/ha, respectively. The undelinted cottonseed was harvested 8, 15, 22, 29, 36, 43, 50 and 57 DALA and processed into meal and oil. The results and the calculated processing factors (residue in processed commodity/residue in RAC) for MRL setting and dietary intake purposes are presented in Tables 91 and 93. The information submitted on processing procedures is summarized as follows.

Cottonseed hulls

The fuzzy seed was passed through a hand driven mechanical grinder to crack the hulls. The cracked fuzzy seed was sieved to separate the hulls from the unprocessed meal.

Cottonseed meal and oil

The unprocessed meal was placed in a small bolt apparatus which was screwed together to press the meal and extract the oil via pressure. Oil was collected during pressing from the drain hole on the apparatus using a syringe and collected in a plastic vial. The process was repeated until at least 1 m of oil was collected.

Table 91 Residues of flonicamid in cotton (RAC and processed fractions)—Australia

RAC/Processe	DAL	Residues (m	desidues (mg/kg) Proces							Referenc
d Commodity	T	Flonicami	TFNA	TFN	TFN	Flonicami	TFNA	TFN	TFN	e
		d	-AM	A	G	d	-AM	A	G	
Total Application	Total Application Rate of 0.20 kg ai/ha									
Seed at	8	0.034	0.071	0.025	0.048	_	_	_	_	
processing										
Hulls		0.13	< 0.02	< 0.02	< 0.02	3.8	0.3	0.8	0.4	
Meal		0.15	0.03	< 0.02	0.02	4.4	0.4	0.8	0.4	
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.6	0.3	0.8	0.4	
Seed at	15	0.067	0.033	0.019	0.054	_	_	_	-	
processing										
Hulls		0.04	< 0.02	< 0.02	< 0.02	0.6	0.6	1.0	0.4	UPL
Meal		< 0.02	< 0.02	< 0.02	< 0.02	0.3	0.6	1.0	0.4	GLP 12
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.3	0.6	1.0	0.4	01-1
Seed at	22	0.11	0.047	0.043	0.12	_	_	_	_	
processing										
Hulls		0.05	< 0.02	< 0.02	0.02	0.4	0.4	0.5	0.2	
Meal		0.04	0.03	0.03	0.06	0.4	0.6	0.7	0.5	
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.2	0.4	0.5	0.2	
Seed at	29	0.13	0.069	0.051	0.16	_	_	_	-]
processing										
Hulls		0.04	< 0.02	< 0.02	< 0.02	0.3	0.3	0.4	0.1	

RAC/Processe	DAL	Residues (m	g/kg)			Processing F	actor			Referenc
d Commodity	T	Flonicami	TFNA	TFN	TFN	Flonicami	TFNA	TFN	TFN	е
		d	-AM	A	G	d	-AM	A	G	
Meal		0.05	0.05	0.08	0.12	0.4	0.7	1.6	0.8	1
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.2	0.3	0.4	0.1	
Seed at	36	0.088	0.076	0.075	0.23	_	_	_	_	1
processing										
Hulls		0.10	< 0.02	0.04	0.02	1.1	0.3	0.5	0.09	
Meal		0.02	0.02	0.12	0.10	0.2	0.3	1.6	0.4	
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.2	0.3	0.3	0.09	
Seed at	43	0.032	0.029	0.064	0.12	_	_	_	_	
processing										
Hulls		0.04	< 0.02	0.02	< 0.02	1.2	0.7	0.3	0.2	
Meal		< 0.02	0.02	0.06	0.07	0.6	0.7	0.9	0.6	
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.6	0.7	0.3	0.2	1
Seed at	50	0.025	0.028	0.098	0.16	_	_	_	_	1
processing										
Hulls		0.06	< 0.02	0.04	0.02	2.4	0.7	0.4	0.1	
Meal		0.02	0.03	0.15	0.18	0.8	1.1	1.5	1.1	
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.8	0.7	0.2	0.1	
Seed at	57	< 0.02	< 0.02	0.10	0.12	_	_	_	_	1
processing										
Hulls		0.02	< 0.02	0.04	0.02	NA	NA	0.4	0.2	
Meal		< 0.02	< 0.02	0.11	0.09	NA	NA	1.1	0.8	
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	NA	NA	0.2	0.2	1
Total Application	Rate of (1			ļ.		.I.		
Seed at	8	0.48	0.72	0.26	0.049	_	_	_	_	
processing										
Hulls		0.26	< 0.02	< 0.02	< 0.02	0.54	0.03	0.08	0.41	
Meal		0.12	0.03	< 0.02	0.02	0.25	0.04	0.08	0.41	
Refined oil		0.02	< 0.02	< 0.02	< 0.02	0.04	0.03	0.08	0.41	
Seed at	29	0.11	0.082	0.053	0.17	_	_	_	_	
processing										
Hulls		0.08	< 0.02	0.02	< 0.02	0.7	0.2	0.4	0.1	
Meal		0.02	0.02	0.05	0.06	0.2	0.2	0.9	0.4]
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.2	0.2	0.4	0.1	_
Seed at	43	0.096	0.097	0.13	0.33	_	_	_	_	
processing										_
Hulls		0.09	0.02	0.04	0.02	0.9	0.2	0.3	0.1	_
Meal		0.03	0.03	0.13	0.12	0.3	0.3	1.0	0.4]
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.2	0.2	0.2	0.1	
Seed at	57	0.022	0.025	0.12	0.19	_	_	_	_	
processing										
Hulls		0.03	< 0.02	0.05	0.02	1.4	0.8	0.4	0.1	_
Meal		< 0.02	0.03	0.19	0.20	0.9	1.2	1.6	1.1]
Refined oil		< 0.02	< 0.02	< 0.02	< 0.02	0.9	0.8	0.2	0.1	

Mint

Two processing trials were conducted in 2011 in Moxee, Washington and Endeavour and Wisconsin. Mint was treated with three applications of a SG formulation at a rate 0.10 kg ai/ha/application for a total of 0.3 kg ai/ha. The mint tops were harvested 7 days following the last application and processed into oil. The results and the calculated processing factors (residue in processed commodity/residue in RAC) for MRL setting and dietary intake purposes are presented in Tables 92 and 93. No information was submitted on processing procedures.

The maximum storage intervals for mint oil was 368 days. Concurrent storage stability samples were fortified with flonicamid and its metabolites at 0.2 ppm soon after the receipt of the samples by the analytical laboratory. The storage stability samples were held in frozen storage under similar conditions to the field generated samples. After 334 days of freezer storage for mint oil, the storage stability samples were analysed for flonicamid. The recoveries for the mint

oil storage stability samples were in the ranges 43–46% (flonicamid), 42–49% (TFNA), 46–53% (TFNA-AM), and 42–45% (TFNG). Concurrent recoveries for spikes analysed along with these storage stability samples were 95% (flonicamid), 100% (TFNA), 81% (TFNA-AM), and 89% (TFNG). These data indicate that flonicamid and its metabolites undergo about 50% degradation in mint oil under the conditions which the samples were held between harvest and analysis. However, even when correcting for in-storage dissipation, residues of flonicamid and its metabolites do not concentrate in mint oil.

Table 92 Residues of flonicamid in mint (RAC and processed fractions)

RAC/	Residues	s (mg/kg)				Average P	rocessing	Factors			
Proces sed comm odity	Flonic amid	TFNA -AM	TFNA	TFNG	Sum	Flonica mid	TFNA -AM	TFNA	TFNG	Sum	Refer ence
Mint tops	1.57 (1.55, 1.59)	0.339 (0.329, 0.349)	0.171 (0.170, 0.171)	0.193 (0.193, 0.193)	2.273		. 0. 00				
Mint oil	< 0.02	< 0.02	< 0.02	< 0.02	< 0.08	< 0.03 (< 0.01,	< 0.08 (< 0.0 6.	< 0.20 (< 0.12,	< 0.14 (< 0.10,	< 0.07 (< 0.04	9358
Mint tops	0.502 (0.500, 0.504)	0.222 (0.219, 0.225)	0.074 (0.072, 0.075)	0.108 (0.107, 0.108)	0.906	< 0.04)	< 0.09)	< 0.12,	< 0.10,	, <0.09)	9336
Mint oil	< 0.02	< 0.02	< 0.02	< 0.02	< 0.08						

Table 93 Summary of processing factors for flonicamid residues

RAC	Processed Commodity	Calculated processing factors	Best estimate
		Flonicamid	7
Apples	Juice	3.7	3.7
	Pomace	2.82	2.82
Peaches	Canned peaches	0.3, 0.5, 0.3, 1.7	0.7 (median)
	Juice	1.0, 1.0, 0.3, 0.5	0.8 (median)
	Jam	0.3, 1.0, 1.0, 0.2	0.7 (median)
	Puree	0.7, 1.0, 1.0, 0.8	0.9 (median)
Plums	Dried prunes	1.0	1.0
Tomato	Paste	16.1	16.1
Potato	Chips	0.95	0.95
	Flakes	2.7	2.7
Canola	Refined oil	< 0.1	0.1
	Meal	< 0.1	0.1
Cotton	Refined oil	< 0.24 (US); 0.6 and 0.04 (AUS)	0.32 (mean; AUS)
	Hulls	0.8 (US); 3.8, 0.5 (AUS)	2.2 (mean; AUS)
	Meal	0.3 (US); 4.4, 0.2 (AUS)	2.3 (mean; AUS)
Mint	Oil	< 0.03	0.03

Residues in animal commodities

Dairy Cattle

One cattle feeding study was conducted where twelve <u>dairy cows</u> (Red Holstein and Simmentaler Fleckvieh, 4–9 years old, 550–770 kg bw) were divided into three groups. Animals were treated twice daily with a 1/1 mixture of flonicamid/TFNG by means of gelatin capsules and using a balling gun. Treatments were made after the morning and evening milking for 28 consecutive days. One group of three cows served as a control group The actual average doses administered were 0.086, 0.252 and 0.839 mg/kg bw. Based on the actual average daily feed intake of 20.1–25.1 kg/day (or 3.0–4.4 kg/day/100 kg bw) during the acclimation period, the actual dosing levels, constituting a 1/1 mixture of flonicamid/TFNG, were 2.50 mg, 6.89 mg and 23.69 mg/kg feed. All cows were sacrificed after 28 days of dosing, within 24 hours after the last dose.

Milk samples were collected on 15 selected days throughout the administration period. All milk samples were frozen at -20 °C and analysed within 30 days after sampling. Therefore, storage stability data are not necessary. In contrast, all tissue samples were analysed within 12 months of collection. Freezer storage stability studies, conducted concurrently with the feeding studies, demonstrated that flonicamid, TFNA, TFNA-AM, OH-TFNA-AM and TFNG were stable for 374 days in all tissues except fat. For fat, flonicamid and its metabolites were demonstrated to be stable for 315 days.

All samples were analysed for residues of flonicamid, TFNA, TFNA-AM, OH-TFNA-AM and TFNG using validated analytical methods. In general, the samples were homogenised, extracted and the supernatant was purified by means of liquid-liquid partition or gel permeation chromatography. Some of the solid residues were further subjected to acid hydrolysis. The concentration of flonicamid and its metabolites in the purified extracts were determined by HPLC MS/MS. The LOQ for flonicamid and each of its metabolites in milk and fat is 0.01 mg/kg and for muscle the LOQ is 0.025 mg/kg while for liver and kidney the LOQ is dependent on the method used (0.01 or 0.025 mg/kg).

In milk, no quantifiable (< LOQ) residues of flonicamid, TFNG and TFNA were detected in any test group. For TFNA-AM, the average residues increased from < LOQ in the low dose group to 0.02 mg/kg in the mid dose group and to 0.08 mg/kg in the high dose group. OH-TFNA-AM average residues were \leq LOQ in the low and mid-dose groups and increased to 0.015 mg/kg in the high dose group.

Table 94 Residues in whole milk following 28 days oral administration of flonicamid to dairy cows

Low D (2.5 mg	ose g/kg feed)		Mid dose (6.89 mg/kg feed)	High dose (23.69 mg/kg feed)	
Day	TFNA-AM	OH-TFNA-AM	TFNA-AM	OH-TFNA-AM	TFNA-AM	OH-TFNA-
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	AM (mg/kg)
1	< 0.01	< 0.01	< 0.01	<0.01	0.032	< 0.01
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.035, 0.032,	(< 0.01,
	< 0.01)	< 0.01)	< 0.01)	< 0.01)	0.027)	< 0.01, < 0.01)
2	< 0.01	< 0.01	0.018	<0.01	0.080	0.015
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.019, 0.020,	(< 0.01, < 0.01,	(0.091,0.088,	(0.021, 0.011,
	< 0.01)	< 0.01)	0.014)	< 0.01)	0.060)	0.011)
3	< 0.01	< 0.01	0.022	< 0.01	0.086	0.016
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.024, 0.022,	(< 0.01, < 0.01,	(0.111, 0.093,	(0.027, 0.013,
	< 0.01)	< 0.01)	0.018)	< 0.01)	0.074)	0.014)
4	< 0.01	< 0.01	0.023	<0.01	0.093	0.018
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	0.025, 0.026,	(< 0.01, < 0.01,	(0.111, 0.093,	(0.027, 0.013,
	< 0.01)	< 0.01)	0.019)	< 0.01)	0.075)	0.014)
5	< 0.01	< 0.01	0.030	<0.01	0.082	0.017
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.027, 0.042,	(< 0.01, < 0.01,	(0.109, 0.094,	(0.027, 0.016,
	< 0.01)	< 0.01)	0.021)	< 0.01)	0.042)	< 0.01)
6	< 0.01	< 0.01	0.026	0.0101	0.092	0.019
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.024, 0.030,	(0.0102, < 0.01,	(0.105, 0.093,	(0.026, 0.015,
	< 0.01)	< 0.01)	0.022)	< 0.01)	0.078)	0.015)
7	< 0.01	< 0.01	0.024	< 0.01	0.085	0.016
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.026, 0.027,	(< 0.01, < 0.01,	(0.094, 0.081,	(0.021, 0.013,
	< 0.01)	< 0.01)	0.019)	< 0.01)	0.081)	0.014)
8	< 0.01	< 0.01	0.020	< 0.01	0.069	0.013
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.024, 0.022,	(< 0.01, < 0.01,	(0.085, 0.062,	(0.018, < 0.01,
	< 0.01)	< 0.01)	0.012)	< 0.01)	0.0601)	< 0.01)
10	< 0.01	< 0.01	0.018	<0.01	0.049	0.013
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.016, 0.022,	(<0.01, <0.01,	(0.019, 0.069,	(0.016, < 0.01,
	< 0.01)	< 0.01)	0.017)	<0.01)	0.058)	0.012)
14	< 0.01	< 0.01	0.018	<0.01	0.068	0.013
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.018, 0.019,	(< 0.01, < 0.01,	(0.074, 0.075,	(0.018, 0.010,
	< 0.01)	< 0.01)	0.016)	< 0.01)	0.056)	0.011)

	Low Dose (2.5 mg/kg feed)		Mid dose (6.89 mg/kg feed	1)	High dose (23.69 mg/kg feed)		
17	< 0.01	< 0.01	0.017	<0.01	0.079	0.014	
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.017, 0.019,	(< 0.01, < 0.01,	(0.077, 0.090,	(0.019, 0.012,	
	< 0.01)	< 0.01)	0.014)	< 0.01)	0.069)	0.010)	
21	< 0.01	< 0.01	0.019	<0.01	0.076	0.014	
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.019, 0.023,	(< 0.01, < 0.01,	(0.079, 0.092,	(0.020, 0.012,	
	< 0.01)	< 0.01)	0.016)	< 0.01)	0.058)	0.011)	
24	< 0.01	< 0.01	0.023	<0.01	0.089	0.018	
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.024, 0.024,	(< 0.01, < 0.01,	(0.097, 0.099,	(0.023, 0.014,	
	< 0.01)	< 0.01)	0.022)	< 0.01)	0.071)	0.015)	
27	< 0.01	< 0.01	0.022	<0.01	0.077	0.013	
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.022, 0.023,	(< 0.01, < 0.01,	(0.090, 0.088,	(0.018, 0.011,	
	< 0.01)	< 0.01)	0.020)	< 0.01)	0.054)	0.010)	
29	< 0.01	< 0.01	0.021	<0.01	0.086	0.013	
	(< 0.01, < 0.01,	(< 0.01, < 0.01,	(0.020, 0.023,	(< 0.01, < 0.01,	(0.101, 0.088,	(0.018, < 0.01,	
	< 0.01)	< 0.01)	0.021)	< 0.01)	0.068)	< 0.01)	

In liver, TFNA-AM and OH-TFNA-AM were detected in the mid and high dose groups above the LOQ using two different analytical methods (FMC-P-3580 / RCC 844743) with different LOQ (0.025/0.01 mg/kg). TFNA-AM levels increased from less than LOQ in the low dose group to 0.039/0.015 mg/kg in the mid dose group and 0.113/0.053 mg/kg in the high dose group. OH-TFNA-AM levels increased from levels below LOQ (0.025/0.01 mg/kg) in the low dose group to levels slightly above the LOQ (0.025/0.010 mg/kg) in the mid dose group and 0.030/0.037 mg/kg in the high dose group.

In kidney, TFNA and TFNA-AM were detected in the medium and high dose groups above the LOQ using the same analytical methods as those used for kidney. OH-TFNA-AM and TFNG were only detected above the LOQ (0.025/0.01 mg/kg) in the high dose group. TFNA levels increased from levels below LOQ in the low dose group to 0.043/0.038 mg/kg in the mid dose group and 0.142/0.135 mg/kg in the high dose group. TFNA-AM levels increased from levels below LOQ in the low dose group to 0.031/0.023 mg/kg in the mid dose group and 0.105/0.088 mg/kg in the high dose group. OH-TFNA-AM levels increased from levels below LOQ in the low and mid dose group to 0.025/0.027 mg/kg in the high dose group. TFNG levels increased from levels below LOQ in the low and mid dose group to 0.010 mg/kg in the high dose group.

Table 95 Residues in liver and kidney following 28 days oral administration to dairy cows

	Liver	Liver				Kidney							
	Solvent extraction Hydrolysis			Solvent extraction				Hydrolysis					
Dose (mg/kg feed)	TFNA- AM	OH- TFNA- AM	TTENA_	OH- TFNA- AM	TFNA- AM	OH- TFNA- AM	TFNG	TFN A	TFNA- AM	OH- TFNA- AM	TFNG	TFNA	
2.5	< 0.01 (< 0.01, < 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01, < 0.01)	5,	< 0.025 (< 0.025, < 0.025, < 0.025)	< 0.01 (< 0.01, < 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01, < 0.01)	(< 0.01	(0.01 4, 0.019	< 0.025 (< 0.02 5, < 0.025 , < 0.025	(< 0.025, < 0.025,	(< 0.02 5, < 0.025	< 0.025 (< 0.02 5, < 0.025 , < 0.025	
6.89	0.015 (0.010, 0.019, 0.015)	0.010 (< 0.01, < 0.01, 0.011)	0.039 (0.042, 0.040, 0.034)	< 0.025 (< 0.025, < 0.025, < 0.025)	0.023 (0.020, 0.024, 0.025)	< 0.01 (< 0.01, < 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01, < 0.01)	2, 0.041	(0.027, 0.034,	< 0.025 (< 0.025, < 0.025, < 0.025)	(< 0.02	0.043 (0.039, 0.047, 0.045)	

	Liver			Kidney								
	Solvent extraction Hydrolysis		sis	Solvent extraction				Hydrolysis				
23.69	(0.056, 0.052,	0.037 (0.051, 0.034, 0.026)	(0.124,	< 0.025,	(0.112, 0.083,		(0.01, < 0.01, < 0.01)	6,	(0.124, 0.092, 0.099)	` ′	< 0.025 (< 0.02 5, < 0.025 , < 0.025	(0.173, 0.107,

In muscle, only TFNA-AM was found. The level increased from below LOQ (0.025 mg/kg) in the low dose group to 0.027 mg/kg in the mid dose group and 0.088 mg/kg in the high dose group.

Similarly, only TFNA-AM was measurable in fat and only at the high dose level (0.015 mg/kg).

Table 96 TFNA-AM residues in fat and muscle following 28 days oral administration to dairy cows

	TFNA-AM (mg/kg)					
Dose (mg/kg feed)	Fat	Muscle				
2.5	< 0.01	< 0.025				
	(<0.01,<0.01,<0.01)	(< 0.025, < 0.025, < 0.025)				
6.89	< 0.01	0.027				
	(<0.01,<0.01,<0.01)	(< 0.025, 0.027, 0.030)				
23.69	0.015	0.057				
	(0.021, 0.013, 0.011)	(0.010, 0.088, 0.072)				

Poultry

Flonicamid and TFNG were dosed in a 1:1 mixture to 50, 22 week-old, <u>laying hens</u> (white leghorn hybrids) weighing on average 1.54 kg with an egg production of at least 0.8 eggs per day. The hens were randomly assigned to five groups, one of which served as control group. Each group was separated into three subgroups of three to four animals. After the acclimation period, the test substance was orally administered, once daily in the afternoon by means of gelatin capsules (after egg sampling). for 28 days. Based on the actual average daily feed intake of 0.108–0.116 kg/hen during the 4-week acclimation period, the actual dose levels were equivalent to average potential concentrations in the feed of 0.26, 2.51, 7.47 and 25.83 mg flonicamid/TFNG per kg feed.

Eggs were collected once daily and pooled per subgroup of three or four hens, resulting in three unique samples of eggs for each dose level. The egg pools were stored at $-20\,^{\circ}\text{C}$ until analysis. The animals were sacrificed for tissue sampling the day after the last administration, 24 hours after the last dosing. Liver fat (composite of skin fat) and muscle were excised. Tissue samples were rinsed, weighed and labelled. Tissues were pooled per subgroup of three or four hens, homogenised and stored deep-frozen until analysis. Egg and tissue samples were stored for greater than 30 days. Freezer storage stability studies, conducted concurrently with the feeding studies, demonstrated that flonicamid, TFNA, TFNA-AM, OH-TFNA-AM and TFNG were stable for 8–10 months in eggs and tissues.

All samples were analysed for residues of flonicamid, TFNA, TFNA-AM, OH-TFNA-AM and TFNG using a validated analytical method. The samples were homogenised, extracted and the supernatant was purified by means of gel permeation chromatography. The concentration of flonicamid and its metabolites in the purified extracts were determined by MS/MS detection using HPLC for separation.

In eggs, no quantifiable (< LOQ) residues of TFNA, OH-TFNA-AM and TFNG were detected in any test group. For flonicamid, the average residues increased from < LOQ in the very low and low dose groups to 0.02 mg/kg in the mid dose group and to 0.08 mg/kg in the high

dose group. TFNA-AM average residues increased from < LOQ in the very low and low dose groups, to 0.27 mg/kg in the mid dose group and 0.95 mg/kg in the high dose group.

Table 97 Residues in eggs following 28 days oral administration to laying hens

Day	Very Low Dose (0.26 mg/kg feed)		Day	Low Dose (2.51 mg/kg feed)		Day	Mid Dose (7.47 mg/kg feed)		Day	High Dose (25.83 mg/kg feed)	
	Flonicamid	I TFNA-		Flonicamid	TFNA-		Flonicamid	TFNA-	_	Flonicamid	TFNA-AM
	(mg/kg)	AM		(mg/kg)	AM		(mg/kg)	AM		(mg/kg)	(mg/kg)
	(IIIg/Kg)	(mg/kg)		(IIIg/Kg)	(mg/kg)		(IIIg/Kg)	(mg/kg)		(IIIg/Kg)	(IIIg/Kg)
1	< 0.01	< 0.01	1	< 0.01	< 0.01	1	< 0.01	0.014	1	< 0.01	< 0.01
1	(< 0.01,	(< 0.01,	1	(< 0.01,	(< 0.01,	1	(< 0.01,	(0.014)	1	(< 0.01,	(< 0.01,
	< 0.01,	< 0.01,		< 0.01,	< 0.01,		< 0.01,	< 0.01,		< 0.01,	< 0.01,
	< 0.01,	< 0.01,		< 0.01,	< 0.01,		< 0.01,	< 0.01,		< 0.01,	< 0.01,
2	< 0.01)	< 0.01)	2	< 0.01)	0.034	2	0.013	0.136	2	0.052	0.450
2	(< 0.01,	(< 0.01,	2	(< 0.01,	(0.034)	2	(< 0.01,	(0.165,	2	(0.063,	(0.429,
	< 0.01,	< 0.01,		< 0.01,	0.028,		0.013,	0.124,		0.041,	0.430,
	< 0.01,	< 0.01)		< 0.01)	0.038)		0.013,	0.119)		0.051)	0.492)
3	< 0.01	< 0.01	3	< 0.01	0.053	3	0.014	0.190	3	0.056	0.691
	(< 0.01,	(< 0.01,		(< 0.01,	(0.054,		(0.010,	(0.220,		(0.064,	(0.746,
	< 0.01,	< 0.01,		< 0.01,	0.044,		0.016,	0.180,		0.052,	0.564,
	< 0.01)	< 0.01)		< 0.01)	0.061)		0.014)	0.169)		0.055)	0.764)
4	< 0.01	< 0.01	4	< 0.01	0.083	4	0.017	0.260	4	0.067	0.837
	(< 0.01,	(< 0.01,		(< 0.01,	(0.075,		(0.012,	(0.274,		(0.071,	(0.843,
	< 0.01,	< 0.01,		< 0.01,	0.088,		0.024,	0.295,		0.076,	0.776,
	< 0.01)	< 0.01)		< 0.01)	0.087)		0.014)	0.210)		0.055)	0.893)
5	< 0.01	< 0.01	5	< 0.01	0.078	5	0.014	0.263	5	0.056	0.895
	(< 0.01,	(< 0.01,		(< 0.01,	(0.071,		(< 0.01,	(0.281,		(0.062,	(0.950,
	< 0.01,	< 0.01,		< 0.01,	0.077,		0.014,	0.268,		0.064,	0.791,
	< 0.01)	< 0.01)		< 0.01)	0.086)		0.014)	0.240)		0.044)	0.945)
6	< 0.01	< 0.01	6	< 0.01	0.073	6	0.012	0.250	6	0.046	1.007
	(< 0.01,	(< 0.01,		(< 0.01,	(0.070,		(0.011,	(0.254,		(0.050,	(1.052,
	< 0.01,	< 0.01,		< 0.01,	0.058,		0.014,	0.286,		0.047,	0.968,
	< 0.01)	< 0.01)		< 0.01)	0.092)		0.011)	0.211)		0.043)	1.001)
7	< 0.01	0.010	7	< 0.01	0.079	7	0.019	0.271	7	0.058	0.874
	(< 0.01,	(0.011,		(< 0.01,	(0.074,		(0.018,	(0296,		(0.064,	(0.773,
	< 0.01,	< 0.01,		< 0.01,	0.065,		0.019,	0.309,		0.057,	0.982,
	< 0.01)	< 0.01)		< 0.01)	0.099)		0.019)	0.208)		0.054)	0.867)
8	< 0.01	< 0.01	8	< 0.01	0.079	8	0.016	0.244	8	0.068	0.820
	(< 0.01,	(< 0.01,		(< 0.01,	(0.070,		(0.015,	(0.252,		(0.072,	(0.907,
	< 0.01,	< 0.01,		< 0.01,	0.062,		0.015,	0.258,		0.058,	0.718,
1.0	< 0.01)	< 0.01)	0	< 0.01)	0.106)	1.0	0.016)	0.223)	0	0.074)	0.836)
10	< 0.01	0.010	9	< 0.01	0.079	10	0.014	0.254	9	0.062	0.963
	(< 0.01,	(0.011,		(< 0.01,	(0.080,		(0.014,	(0.306,		(0.061, 0.052,	(1.110,
	< 0.01, < 0.01)	< 0.01, < 0.01)		< 0.01, < 0.01)	0.063, 0.093)		0.014, 0.013)	0.264, 0.193)		0.032, 0.073)	0.866, 0.912)
14	< 0.01)	< 0.01)	13	< 0.01)	0.093)	14	0.013)	0.193)	13	0.073)	0.912)
17	(< 0.01,	(< 0.01,	13	(< 0.01,	(0.073,	1+	(0.012,	(0.266,	13	(0.054,	(1.010,
	< 0.01,	< 0.01,		< 0.01,	0.059,		0.012,	0.296,		0.054,	0.831,
	< 0.01,	< 0.01,		< 0.01,	0.039,		0.013,	0.290,		0.034,	1.114)
17	< 0.01)	< 0.01)	16	< 0.01)	0.102)	17	0.011)	0.311	16	0.037)	0.865
1	(< 0.01,	(< 0.01,	1.0	(< 0.01,	(0.073,	1 '	(0.012,	(0.340,	10	(0.054,	(1.010,
	< 0.01,	< 0.01,		< 0.01,	0.059,		0.015,	0.357,		0.054,	0.831,
	< 0.01)	< 0.01)		< 0.01)	0.102)		0.011)	0.236)		0.037)	1.114)
21	< 0.01	< 0.01	20	< 0.01	0.091	21	0.013	0.295	20	0.050	1.023
	(< 0.01,	(< 0.01,		(< 0.01,	(0.067,		(0.012,	(0.312,		(0.048,	(0.956,
	< 0.01,	< 0.01,		< 0.01,	0.087,		0.015,	0.370,		0.051,	0.935,
	< 0.01)	< 0.01)		< 0.01)	0.118)		0.012)	0.202)		0.051)	1.177)
24	< 0.01	0.0115	23	< 0.01	0.087	24	0.014	0.226	23	0.053	1.041
	(< 0.01,	(0.014,		(< 0.01,	(0.096,		(< 0.01,	(0.196,		(0.053,	(1.071,
	< 0.01,	0.010,		< 0.01,	0.076,		0.015,	0.276,		0.062,	0.961,
	< 0.01)	0.010)		< 0.01)	0.088)		0.012)	0.206)		0.045)	1.090)
27	< 0.01	< 0.01	26	< 0.01	0.098	27	0.013	0.310	26	0.052	1.119
	(< 0.01,	(< 0.01,		(< 0.01,	(0.124,		(0.011,	(0.330,		(0.058,	(1.076,
	< 0.01,	< 0.01,	1	< 0.01,	0.082,		0.016,	0.349,		0.054,	1.068,

Day	Very Low D	ose	Day	Low Dose		Day	Mid Dose		Day	High Dose	
	(0.26 mg/kg feed)			(2.51 mg/kg feed)			(7.47 mg/kg feed)			(25.83 mg/kg feed)	
			_								
	Flonicamid	TFNA-		Flonicamid	TFNA-		Flonicamid	TFNA-		Flonicamid	TFNA-AM
	(mg/kg)	AM		(mg/kg)	AM		(mg/kg)	AM		(mg/kg)	(mg/kg)
		(mg/kg)			(mg/kg)			(mg/kg)			
	< 0.01)	< 0.01)		< 0.01)	0.089)		0.012)	0.252)		0.044)	1.214)
20	. 0. 0.1	0.0002	20	. 0. 0.1	0.000	20	0.017	0.221	20	0.074	0.002
28		0.0083	28	< 0.01	0.080	28	0.017	0.321	_	0.074	0.993
	(< 0.01,	(< 0.01,		(< 0.01,	(0.078,		(0.018,	(0.333,		(0.093,	(1.067,
	< 0.01,	< 0.01,		< 0.01,	0.064,		0.018,	0.365,		0.081,	0.891,
	< 0.01)	< 0.01)		< 0.01)	0.099)		0.016)	0.265)		0.048)	1.020)

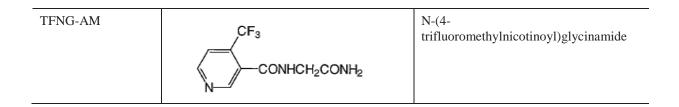
No quantifiable residues (< LOQ) of flonicamid, TFNA and TFNG were found in muscle in any treatment group. No quantifiable residues (< LOQ) of TFNA-AM was measurable in muscle at the very low dose group, but there appeared to be a dose response relationship at all other dose levels; 0.049 mg/kg in the low dose group, 0.168 mg/kg in the mid dose group and 0.654 mg/kg in the high dose group. OH-TFNA-AM was measurable only at the high dose level (0.014 mg/kg).

In liver and fat, no quantifiable residues (< LOQ) of flonicamid, TFNA, OH-TFNA-AM and TFNG were found at any dosing level. For liver, TFNA-AM residues increased from < 0.01~mg/kg (very low) to 0.054~mg/kg (low) to 0.166~mg/kg (mid) and 0.706~mg/kg (high) while for fat, TFNA-AM residues increased from 0.01~mg/kg (very low) to 0.022~mg/kg (low) to 0.062~mg/kg (mid) and 0.286~mg/kg (high).

Table 98 Residues in muscle, liver and fat following 28 days oral administration to laying hens

	Muscle		Liver	Fat		
Dose Level (mg/kg feed)	OH-TFNA-AM	TFNA-AM	TFNA-AM	OH-TFNA- AM	TFNA-AM	TFNA
0.259					< 0.01 (< 0.01,	
0.23)	< 0.01 (< 0.01,	< 0.01 (< 0.01,	< 0.01 (< 0.01,	< 0.01 (< 0.01,	< 0.01,	< 0.01 (< 0.01,
	< 0.01, < 0.01)	< 0.01, < 0.01)	< 0.01, < 0.01)	< 0.01, < 0.01)	< 0.01)	< 0.01, < 0.01)
2.51	< 0.01 (< 0.01,	0.049 (0.050,	0.054 (0.057,	< 0.01 (< 0.01,	0.022 (0.018,	< 0.01 (< 0.01,
	< 0.01, < 0.01)	0.035, 0.062)	0.040, 0.065)	< 0.01, < 0.01)	0.016, 0.031)	< 0.01, < 0.01)
7.47	< 0.01 (< 0.01,	0.168 (0.169,	0.166 (0.178,	< 0.01 (< 0.01,	0.062 (0.061,	< 0.01 (< 0.01,
	< 0.01, < 0.01)	0.187, 0.149)	0.187, 0.134)	< 0.01, < 0.01)	0.080, 0.046)	< 0.01, < 0.01)
29.83	0.014 (0.014,	0.654 (0.654,	0.706 (0.786,	< 0.01 (< 0.01,	0.286 (0.353,	< 0.01 (< 0.01,
	0.013, 0.016)	0.590, 0.718)	0.606, 0.671)	< 0.01, < 0.01)	0.265, 0.242)	< 0.01, < 0.01)

APPRAISAL


Flonicamid is a new insecticide for control of aphids and other sucking insects. It belongs to a new class of chemistry known as pyridinecarboxamide. At the Forty-sixth Session of the CCPR, flonicamid was scheduled for evaluation, for both toxicology and residues, as a new compound by the 2015 JMPR.

The Meeting received information on the metabolism of flonicamid in peaches, bell peppers, potatoes, wheat, lactating goats, laying hens and rotational crops, environmental fate, methods of residue analysis, freezer storage stability, GAP, supervised residue trials on various fruits, vegetables, tree nuts, oil seeds, dried hops, mint and tea, processing studies as well as livestock feeding studies.

In this document, the code names and chemical structures of the metabolites were as follows:

Flonicamid is *N*-cyanomethyl-4-(trifluoromethyl)nicotinamide (IUPAC).

Code Name	Structure	Chemical Name
Flonicamid IKI-220	CF ₃ —CONHCH ₂ CN	N-cyanomethyl-4- (trifluoromethyl)nicotinamide
TFNA	CF ₃ —COOH	4-trifluoromethylnicotinic acid
TFNA-AM	CF ₃ —CONH ₂	4-trifluoromethylnicotinamide
OH-TFNA-AM	CF_3 $CONH_2$	6-hydroxy-4- trifluoromethylnicotinamide
TFNA-OH	но————————————————————————————————————	6-hydroxy-4-trifluoromethylnicotinic acid
TFNG	CF ₃ —CONHCH₂COOH	N-(4-trifluoromethylnicotinoyl)glycine

Environmental fate in soil

The FAO Manual (FAO, 2009) explains the data requirements for studies of environmental fate. The focus should be on those aspects that are most relevant to MRL setting. For flonicamid, supervised residue trials were received for foliar spray on permanent crops and on annual crops. Therefore, according to the FAO manual, only studies on aerobic degradation, photolysis and rotational crops (confined, field) were evaluated.

Degradation

The route of degradation of [14 C]flonicamid in soil under aerobic conditions was investigated in a biologically active loamy sand soil collected from Madison, Ohio, USA and stored in a greenhouse. Flonicamid rapidly declined from 99.3% of the applied radioactivity (AR) at Day 0 to 2.3% by Day 30, resulting in a DT₅₀ of 1 day and a DT₉₀ of 3.4 days. TFNA and TFNA-OH were major components of the residue with TFNG, TFNG-AM and TFNA-AM all identified as minor metabolites.

The rate of aerobic degradation of [14 C]flonicamid, radiolabelled at the 3 position of the pyridine was investigated in three biologically active soils (sandy loam and sand at 10 $^{\circ}$ C and/or 20 $^{\circ}$ C)

For the soils incubated at 20 °C the DT_{50} and DT_{90} values for flonicamid ranged from 0.7 to 1.8 days and 2.3 to 6.0 days, respectively. For the soil incubated at 10 °C, the DT_{50} and DT_{90} values for flonicamid were 2.4 days and 7.9 days, respectively. TFNA, TFNA-OH and TFNG-AM were the major degradates in all soils over the course of the study. Minor degradates TFNG and TFNA-AM were detected at all sampling points over the course of the study. All of the degradates were metabolised and mineralised to carbon dioxide and immobilised as soil-bound residue.

Photolysis

The photochemical degradation of [pyridyl-14C]flonicamid was investigated in a loamy sand under laboratory conditions.

[14 C]Flonicamid decreased to 60% of the applied radioactivity (AR) after 15 days of continuous illumination, resulting in a DT₅₀ of 22 days. Concurrently, the major metabolite TFNG-AM was detected in Day 1 sample extracts and increased by Day 15. TFNA-AM and TFNG were also detected as minor metabolites in the illuminated soils, reaching maximum concentrations of 5% AR (Day 11 and Day 15) and 2% AR (Day 15), respectively.

In summary, based on the results of the environmental fate studies, flonicamid as well as its metabolites are likely to readily degrade and not persist in aerobic soil environments.

Plant metabolism

The metabolism of flonicamid was studied in peaches, bell peppers, potatoes and wheat.

Peach

Flonicamid, radiolabelled at the 3 position of the pyridine ring and formulated as a wettable granule, was applied twice to <u>peach</u> trees grown outdoor, with a 14-day re-treatment interval, at rates of 100 g ai/ha (low rate) or 500 g ai/ha (high rate) per application. Mature fruits and leaves were

harvested 21 days after the last treatment (DALA). Overall total radioactive residues (TRRs) in fruits at the low rate and the high rate were 0.10 mg eq/kg and 0.32 mg eq/kg, respectively, while in the leaves, TRRs followed the same trend, where residues were lower at the lower application rate (6.2 mg eq/kg) compared to those at the higher treatment rate (24 mg eq/kg).

The peaches were subjected to a surface wash using deionised water which removed very little radioactivity (\leq 15% TRRs), evidence of limited penetration. The majority of the TRRs were partitioned into the juice fraction (64–73% of the TRR) and to a lesser extent into the pulp (21% TRRs). While juice was not further extracted with organic solvents, extraction of the pulp with acetonitrile:water:phosphoric acid recovered 92% TRR. At both treatment rates, flonicamid (30–60% TRRs) and TFNA (17–49% TRRs) were the predominant residues in juice and pulp. All other metabolites, TFNG, TFNG-AM and TFNA- AM were \leq 6% TRRs.

Bell pepper

A single application of flonicamid, radiolabelled at the 3 position of the pyridine ring, formulated as a 50% wettable granule formulation, was made to greenhouse grown <u>bell pepper</u> plants at 100 g ai/ha. Fruits and leaves were harvested 7 days and 14 days after treatment (DAT).

The TRRs in fruits decreased insignificantly from 0.17 mg eq/kg (7 DAT) to 0.11 mg eq/kg (14 DAT) while TRRs in leaves decreased from 2.2 mg eq/kg, when harvested 7 days after treatment to 1.4 mg eq/kg at 14 DAT.

The %TRR in the methanol:water surface wash for both leaves and fruits decreased as the corresponding extracted TRRs (61–81% TRRs) and those in the post-extraction solids (PES) increased with increasing DAT. This trend demonstrated the penetration of the radioactivity from the surface into the leaves and fruits.

Flonicamid and TFNG were the predominant residues in leaves (47–74% TRRs and 12–28% TRRs, respectively) while only flonicamid was the predominant residue in fruits (77–91% TRRs) at both harvest intervals. All identified metabolites (TFNA, TFNA-AM and TFNG-AM) were either not detected or were \leq 12% TRRs.

Potato

<u>Potato</u> plants maintained outdoor were treated, either at the lower rate of 100 g ai/ha or the higher rate of 500 g ai/ha, with flonicamid radiolabelled at the 3 position of the pyridine ring and formulated as a 50% wettable powder. Both treatments were repeated at a two-week interval and potato tubers and foliage were harvested 14 days after the last application.

Overall TRRs in tubers at the low rate and the high rate were 0.11 mg eq/kg and 0.20 mg eq/kg, respectively, while those in mature foliage were higher than those in tubers; 1.5 mg eq/kg at the low rate and 7.7 mg eq/kg at the high rate. Considering the applications were made to the foliage of the potato plants, the presence of measurable TRRs in the tubers is evidence of translocation of the radioactivity from the foliage to the tubers. Furthermore, while the TRRs in tubers and foliage increased with increased application, the distribution of TRRs was relatively the same irrespective of the treatment rate.

Extraction of the potato tubers with ACN and ACN:water recovered up to 93% TRRs while extraction of potato foliage with ACN:water:acetic acid recovered up to 90% TRRs. Analysis of each of the extracted fractions of potato tubers and foliage from the low and high rate demonstrated that the major components of the residue, TFNA and TFNG, accounted for a significant portion of the TRRs. Moreover, TFNA accounted for 34% TRRs in tubers and 12–17% TRRs in foliage at both rates while TFNG accounted for 25–39% TRRs in tubers and 28–36% TRRs in leaves at both rates. The parent, flonicamid, accounted for 6–19% TRRs in potato tubers and 10–25% TRRs in foliage. Each of the other identified metabolites (TFNA conjugate, TFNG-AM, TFNA-AM, PM-1a, PM-1b and PM-3a) accounted for < 10% TRRs in tubers and in foliage. Overall, the general metabolic profile in foliage was similar to that in tubers.

Spring wheat

<u>Spring wheat</u> plants grown outdoor were treated with flonicamid, radiolabelled at the 3 position of the pyridine ring and formulated as a wettable powder, at a single application rate of 100 g ai/ha or 2 applications at 100 g ai/ha with a re-treatment interval of 7 days. Forage and hay were harvested 14 days and 42 days, respectively, after the single application. Approximately 95 days after the second treatment (200 g ai/ha/season), mature plants were harvested and separated into straw, chaff and grain.

Overall residues were lower in the wheat grain sample (2.6 mg eq/kg) than the straw (5.6 mg eq/kg) or chaff (6.6 mg eq/kg). The TRRs in the chaff were higher compared to straw potentially because of tissue size differences (higher surface area to weight ratio) assuming a uniform application. Further to this, considering the timing of application of the test material and the measurable TRRs in grain, chaff and straw at maturity, there appears to have been translocation of the radioactivity from the site of application to the mature plant parts.

Only forage and hay were analysed to elucidate the nature of the flonicamid residues. Extraction of these matrices with ACN:water:acetic acid recovered 96% TRRs. The analysis of forage and hay samples demonstrated that the nature and distribution of metabolites were similar in both matrices. The parent compound, flonicamid, and the TFNG metabolite represented the majority of the TRRs in both the forage (flonicamid: 43% TRRs; TFNG: 33% TRRs) and hay (flonicamid: 22% TRRs; TFNG: 53% TRRs). Metabolites TFNG-AM, TFNA and TFNA-AM were present at \leq 13% TRRs.

In a second spring wheat metabolism study, plants grown outdoor were treated with flonicamid, radiolabelled at the 3 position of the pyridine ring and formulated as a wettable granule, at rates equivalent to 100 g ai/ha or 500 g ai/ha. The wheat plants were harvested 21 DAT and separated into straw (leaves and stem), chaff and grain (with hulls attached).

The TRRs in wheat straw, chaff and grain increased with increased application rate with the highest TRRs observed in chaff, followed by straw and grain, irrespective of the application rate. The distribution of TRRs was relatively the same irrespective of the treatment rate.

Similar to the first wheat metabolism study, extraction with ACN:water:acetic acid recovered 80–94% TRRs with flonicamid (24–50% TRRs) and TFNG (17–44% TRRs) representing the predominant residues at both treatment rates. All identified metabolites (TFNA, TFNG-AM, TFNA-AM and N-oxide TFNA AM) were either not detected or were each ≤ 10 % TRR.

In summary, the Meeting determined that the degree of metabolism in all crops tested, following foliar application, was qualitatively similar, with the parent compound as the predominant residue. The major metabolic pathway of flonicamid in plants involved hydrolysis of the cyano group and the amide groups.

Rotational crops

In the <u>confined rotational crop</u> study, flonicamid, radiolabelled at the 3 position of the pyridine ring and formulated as a wettable granule was applied twice to loamy sand soil at a rate equivalent to 100 g ai/ha at an interval of two weeks. After the appropriate plant-back intervals (PBIs) of 30, 120 or 360 days, the rotational crops, representative of the root vegetable (<u>carrot</u>), small grain (<u>wheat</u>), and leafy vegetable (<u>lettuce</u>) crop groups, were planted.

TRRs in all raw agricultural commodities (RACs) declined with prolonged PBIs such that, at the 120-day PBI, no further characterization/identification of the TRRs was performed for immature and mature lettuce and mature carrot roots due to the low total radioactivity. Further to this, at the 360-day PBI, none of the TRRs from any of the crop parts were further subjected to characterization/identification as these were also too low.

Analysis of the harvested crop samples demonstrated very little uptake of 14 C-residues. Of the radioactivity taken up by plants, only limited amounts of flonicamid were detected ($\leq 13\%$ TRRs). TFNG and TFNG-AM were identified at > 10% TRRs in most RACs. In addition to

TFNG, other identified metabolites accounting for > 10% TRRs in wheat matrices and mature carrot root included TFNA-AM and TFNA-OH.

Conversely, in the <u>field accumulation</u> study, no quantifiable residues of flonicamid or its metabolites TFNG, TFNA, and TFNA-AM were detected in wheat (forage, straw and grain) and turnip (tops and roots) planted at either 30 or 60 days after the last application of flonicamid to the primary crop, cotton.

Based on the findings of the field crop rotation studies, the Meeting concluded that the uptake of quantifiable residues of flonicamid or its associated metabolites in secondary crops is unlikely.

Animal metabolism

Metabolism studies in <u>rats</u> reviewed by the 2015 JMPR and conducted using [14C]flonicamid labelled at the 3-nicotinamide position, indicated that flonicamid was rapidly absorbed and quickly excreted. The majority of administered radioactivity was excreted in the urine and within the first 24 hours. There was no evidence of bioaccumulation following repeat doses. Distribution into the tissues was extensive with levels similar to blood concentrations; however, slightly higher concentrations were seen in the liver, kidneys, adrenals, thyroid and ovaries following single or repeat dosing and in the lungs following repeat dosing in males.

The main urinary residue was unchanged parent, followed by TFNA-AM, which was also the predominant metabolite in the faeces and bile. Other metabolites were TFNA in the faeces of low-dose animals, TFNA-AM N-oxide conjugate in the high-dose animals, TFNG-AM in the bile of high-dose animals and TFNG and TFNA-AM in the liver.

Metabolism studies were conducted in <u>lactating goats</u> where they were dosed orally once daily for 5 consecutive days with 3-pyridine-¹⁴C-labelled flonicamid at a dose level equivalent to 10 ppm in feed. The major route of elimination of the radioactivity was via the urine which accounted for 49% of the administered dose (AD), while faeces accounted for up to 21% of the AD and milk accounted for 1% of the AD. Overall, the tissue burden was low, accounting for < 10% of the AD. The TRRs were highest in liver (1.2 mg eq/kg) followed by kidney (0.70 mg eq/kg), muscle (0.30–0.40 mg eq/kg) and fat (0.05–0.14 mg eq/kg).

Extraction of milk, using ethanol and ethanol:water recovered 97% TRRs and extraction of tissues and organs using ACN and ACN:water containing 1% acetic acid recovered greater than 42% TRRs. Flonicamid was rapidly metabolised in lactating goats, representing less than 6% TRRs in tissues and organs. TFNA-AM was the major component of the residue in organs (29% TRRs in liver, 31–41% TRRs in kidney), tissues (74% TRRs in fat, 42–50% TRRs in muscle) and milk (97% TRRs). The minor metabolites TFNA and 6-OH-TFNA-AM each accounted for \leq 7% TRRs in liver, kidney, muscle and milk.

Leghorn laying hens were dosed orally once daily for 5 consecutive days with 3-pyridine
¹⁴C-labelled flonicamid at a dose level equivalent to 10 ppm in feed. Approximately 91% of AD including 6% of AD from the gastrointestinal tract and its contents was recovered. Most of the AD (72%) was excreta-related. TRRs in egg white and egg yolk accounted for about 2.4% of AD (1.8% AD in egg white plus 0.6% AD in yolk). The tissue burden was low (< 6% of the AD) with highest concentrations of ¹⁴C-residues found in kidney (1.4 mg eq/kg) followed by liver (1.2 mg eq/kg), muscle (evenly distributed between breast and thigh muscle; 1.0 mg eq/kg each), skin (0.70 mg eq/kg) and fat (0.15 mg eq/kg).

Extraction of eggs, tissues and organs with ACN and ACN:water containing 1% acetic acid recovered more than 81% TRR. Flonicamid accounted for only a very small percentage of the TRRs in eggs (2–4% TRRs), tissues (< 1% TRRs) and organs (< 0.5% TRRs). TFNA-AM was the predominant component of the residue in egg whites and egg yolks (\leq 96% TRRs), liver (93% TRRs), kidney (76% TRRs) and tissues (97% TRRs in both breast muscle and thigh muscle, 96% TRRs in skin and 95% TRRs in fat). Other metabolites identified in organs and tissues were

OH-TFNA-AM and TFNG-AM, however, neither of these accounted for greater than 5% of TRR.

The Meeting concluded that, in all species investigated, the total administered radioactivity was quickly and almost completely eliminated in excreta. The metabolic profiles differed quantitatively between the species, but qualitatively there were no major differences. The routes and products of metabolism in animals were consistent across the studies resulting from the hydrolysis of the cyano function to the amide function as well as ring hydroxylation. Moreover, TFNA-AM was the major component of the residue in all tissues, organs, milk and eggs of livestock animals.

While the overall metabolism in plants, livestock and rats is similar, the metabolism of flonicamid in animals is more extensive with hydrolysis of flonicamid to the major amide metabolite TFNA-AM.

Methods of analysis

The Meeting received descriptions and validation data for analytical methods for residues of flonicamid and its relevant metabolites TFNA-AM, TFNA and TFNG in plant commodities and for flonicamid, TFNA-AM, TFNA, TFNG and OH-TFNA-AM in animal commodities. Residue analytical methods rely on LC/MS-MS. Typical limits of quantitation (LOQs) achieved for plant commodities fell in the range of 0.01–0.02 mg/kg for each analyte. The LOQs for milk and animal products (liver, kidney, muscle and eggs) were 0.01 mg/kg for each analyte. Methods were successfully subjected to independent laboratory validation.

The acid version (addition of 1% formic acid to the acetonitrile extraction solvent) of the QuEChERS multi residue LC-MS/MS method was used for flonicamid, TFNA, TFNG and TFNA-AM in plant matrices with LOQs of 0.01 mg/kg for each analyte.

The Meeting determined that suitable methods are available for the analysis of flonicamid and its relevant metabolites in plant and animal commodities.

Stability of residues in stored analytical samples

The Meeting received storage stability studies under freezer conditions at -17 °C for flonicamid and its relevant metabolites TFNA-AM, TFNA and TFNG for the duration of the storage of 18 to 23 months in a wide range of raw and processed crop matrices, including high-water, high-starch and high-oil crops. The Meeting concluded that residues of flonicamid, TFNA-AM, TFNA and TFNG are stable for at least 18 months. Freezer storage stability studies were also conducted concurrently with several of the crop field trials, demonstrating similar results.

All milk samples from the feeding studies were frozen at -20 °C and analysed within 30 days after sampling. Therefore, storage stability data are not necessary. In contrast, all tissue samples were analysed within 12 months of collection. Freezer storage stability studies, conducted concurrently with the feeding studies, demonstrated that flonicamid, TFNA, TFNA-AM, OH-TFNA-AM and TFNG were stable for 374 days in all tissues except fat. For fat, flonicamid and its metabolites were demonstrated to be stable for 315 days.

Definition of the residue

In primary crops, the parent compound represented the majority of the residue accounting for up to 61% TRRs in peach fruits, 91%TRRs in bell pepper fruits, 19% TRRs in potato and up to 50% TRRs in wheat forage, hay, straw, chaff and grain. Metabolites TFNA and TFNG were identified as predominant metabolites (> 10%TRRs) in all crop commodities. In the crop field trials, residues of TFNA and TFNG were measurable in all crops, the magnitude of which was crop-dependent. However, both the TFNA and TFNG were seen in the rat metabolism study and considered to be up to 10-fold less toxic than the parent flonicamid based on toxicity studies reviewed by the 2015 WHO.

In the field accumulation study no measurable residues of parent or any of its associated metabolites were observed in secondary crops.

In light of the above, the Meeting decided to define the residue for enforcement/monitoring and for risk assessment for plant commodities as parent only.

In the farm animal metabolism studies, the parent, flonicamid, was rapidly degraded in ruminants and poultry, accounting for $\leq 6\%$ TRRs in all tissues, milk and eggs. Conversely, the metabolite TFNA-AM accounted for the majority of the radioactivity in goat tissues (29–74% TRRs) and milk (92–97% TRRs) and laying hen tissues (76–97% TRRs) and eggs (ca. 95% TRRs).

Similar findings were observed in the livestock feeding studies whereby flonicamid was present at very low levels in all animal commodities with the metabolite TFNA-AM representing the majority of the residues in tissues, milk and eggs. Therefore, TFNA-AM will be included in the residue definition for enforcement as a marker compound. Since the method of analysis is capable of analysing both flonicamid and TFNA-AM, the Meeting agreed to define the residue for enforcement/monitoring as flonicamid and TFNA-AM.

The log K_{ow} for flonicamid is 0.3. In the metabolism studies there was no evidence of the parent compound and TFNA-AM partitioning into fatty matrices (fat, milk and egg yolks) as the total residues were present at comparable concentrations in all livestock matrices. In the dairy cattle and poultry feeding studies, there was no evidence of the total residues of flonicamid and TFNA-AM sequestering into milk, eggs or fat. Therefore, the Meeting did not consider the residue fat soluble.

As TFNA-AM was the major component of the residue in all animal matrices in both the metabolism and feeding studies, the Meeting decided to define the residue for dietary risk assessment for animal commodities as parent and TFNA-AM.

Based on the above, the Meeting recommended that the residue definition for compliance with MRLs and estimation of dietary intake should be as follows:

Definition of the residue for compliance with MRL and estimation of dietary intake for plant commodities: *Flonicamid*

Definition of the residue for compliance with MRL and estimation of dietary intake for animal commodities: Flonicamid and the metabolite TFNA-AM, expressed as parent.

The residue is not fat soluble.

Results of supervised residue trials on crops

Pome fruits

Results from supervised field trials on <u>apples</u> and <u>pears</u> conducted in the US were provided to the Meeting, including apple and pear data from Australia.

A total of 16 independent supervised trials were conducted in the US on apples (12) and pears (4). The GAP in the US for pome fruits allows three applications at a maximum rate of 0.1 kg ai/ha with a PHI of 21 days.

Flonicamid residues from 12 apple trials matching the US GAP were: 0.02, 0.04 (3), $\underline{0.05}$ (4), 0.06, 0.07, 0.10 and 0.11 mg/kg.

Flonicamid residues from four pear trials matching the US GAP were: $\underline{0.01}$ (3) and 0.02 mg/kg.

A total of seven independent supervised trials were also conducted on apples in Australia according to the Australian GAP which allows three applications at a maximum rate of 0.01 kg ai/hL with a PHI of 21 days. Nine supervised trials were conducted on pears in Australia, however, in the absence of an Australian GAP, these trials were not considered.

Flonicamid residues from seven apple trials matching the Australia GAP were 0.09, 0.12 (2), 0.13, 0.15, 0.22 and 0.24 mg/kg.

The Meeting noted that in the US a group GAP for pome fruit exists and decided to explore the possibility of setting a group maximum residue level. As the supervised trials on apples conducted in Australia in accordance with the Australian GAP lead to the higher residues, the Meeting recommended that the group maximum residue level be based on the dataset from Australia.

Based on the Australian residue data for apples, the Meeting estimated a maximum residue level for pome fruits of 0.8 mg/kg and an STMR of 0.13 mg/kg.

Stone fruits

Results from supervised field trials on <u>peaches</u>, <u>cherries</u> and <u>plums</u> conducted in the US were provided to the Meeting.

A total of 19 independent supervised trials were conducted in the US on peaches (8), cherries (6) and plums (5) according to the US GAP on stone fruits which allows three applications at a maximum rate of 0.1 kg ai/ha with a 14-day PHI.

Residues of flonicamid from eight peach trials matching the US GAP for stone fruits were: 0.09(2), 0.10, 0.13, 0.15, 0.22(2) and 0.42 mg/kg.

Residues of flonicamid from six cherry trials matching the US GAP for stone fruits were: 0.26, 0.27 (2), 0.28 (2) and 0.36 mg/kg.

Residues of flonicamid from five plum trials matching the GAP for stone fruits were: 0.01, 0.02, 0.03 and 0.04 (2) mg/kg.

The Meeting noted that in the US a group GAP for stone fruits exists and decided to explore the possibility of setting a group maximum residue level. Since median residues among the representative commodities were not within a 5-fold range (0.14 mg/kg vs. 0.28 mg/kg vs. 0.03 mg/kg), the Meeting decided to estimate maximum residue levels for each subgroup based on the individual dataset for each representative commodity.

The Meeting estimated a maximum residue level of 0.9 mg/kg and an STMR of 0.28 mg/kg for cherries subgroup.

The Meeting estimated a maximum residue level of 0.7 mg/kg and an STMR of 0.14 mg/kg for peaches subgroup.

The Meeting estimated a maximum residue level of 0.1 mg/kg and an STMR of 0.03 mg/kg for plums subgroup.

Strawberries

Results from supervised field trials on <u>strawberries</u> conducted in the US were provided to the Meeting.

A total of eight independent supervised trials were conducted in the US on strawberries according to the US GAP for low growing berries, which allows three applications at a maximum rate of 0.1 kg ai/ha with a 0-day PHI.

Residues of flonicamid matching the US GAP were: 0.13, 0.19, 0.27, $\underline{0.33}$, $\underline{0.41}$, 0.47, 0.54 and 0.59 mg/kg.

The Meeting estimated a maximum residue level of 1.5 mg/kg and an STMR of 0.37 mg/kg for low growing berries.

Brassica (Cole or cabbage) vegetables, Head cabbages, Flowerhead brassicas

Results from supervised field trials on cabbage and broccoli conducted in the US were provided to the Meeting.

A total of 12 independent supervised trials were conducted in the US on broccoli (6) and cabbage (6) according to the US GAP on Brassica (Cole) Leafy Vegetables which allows three applications at a maximum rate of 0.1 kg ai/ha with a 0-day PHI.

Residues of flonicamid from six broccoli trials matching the US GAP for Brassica (Cole) leafy vegetables were: 0.250, 0.428, <u>0.432, 0.462, 0.499</u> and 0.553 <u>mg/kg</u>.

Residues of flonicamid from six trials on cabbage (with wrapper leaves) matching the US GAP for Brassica (Cole) Leafy Vegetables were: $<0.025,\ 0.025,\ 0.062,\ 0.205,\ 0.288$ and $1.262\ mg/kg$.

Residues of flonicamid from six trials on cabbage (without wrapper leaves) matching the US GAP for Brassica (Cole) Leafy Vegetables were: < 0.025 (6) mg/kg.

The Meeting noted that in the US a group GAP for Brassica (Cole) leafy vegetables exists and decided to explore the possibility of setting a group maximum residue level. Since median residues among the representative crops were within a 5-fold range (0.45 mg/kg vs. 0.134 mg/kg) and the Mann-Whitney test indicated that the residues were not statistically different, the Meeting decided to estimate a group maximum residue level based on the following combined residues: < 0.025(7), 0.025, 0.062, 0.205, 0.288 and 1.262 mg/kg.

The Meeting estimated a maximum residue level of 2.0 mg/kg and an STMR of 0.358 mg/kg for Brassica (Cole or cabbage) vegetables, head cabbages and flowerhead Brassicas.

The Meeting estimated an STMR of 0.02 mg/kg for cabbage (without wrapper leaves).

Fruiting vegetables, Cucurbits

Supervised field trials on field- and greenhouse-grown <u>melons</u> conducted in Southern EU and on field-grown <u>pumpkins</u> conducted in Hungary were provided to the Meeting. However, only four trials on melons and four trials on pumpkins matched the critical GAP of Slovenia which allows three foliar spray applications of a WG formulation at 0.05 kg ai/ha with a re-treatment interval of 7 days and a PHI of 1 day. Therefore, in the absence of a sufficient number of trials matching the Slovenia critical GAP, these trials were not considered further.

A total of 17 independent supervised trials, conducted in the US on cucumber (6), melon (6) and summer squash (5) according to the US GAP on cucurbit vegetables, which allows three applications at a maximum rate of 0.1 kg ai/ha with a 0-day PHI, were provided to the Meeting. In addition, the Meeting received four greenhouse cucumber trials conducted in Canada and the US according to the US critical GAP which allows two foliar spray or soil applications at a maximum rate 0.15 kg ai/ha with a re-treatment interval of 6–7 days and a 0-day PHI.

Residues of flonicamid from six field cucumber trials matching the US GAP for cucurbit vegetables were: 0.04, 0.06 (3), 0.07 and 0.12 mg/kg.

Residues of flonicamid from six melon trials matching the US GAP for cucurbit vegetables were: 0.020, 0.03, <u>0.04, 0.05</u>, 0.06 and 0.09 mg/kg.

Residues of flonicamid from five summer squash trials matching the US GAP for cucurbit vegetables were: 0.01, 0.03 (3) and 0.04 mg/kg.

Residues of flonicamid from the greenhouse cucumber trials matching the US GAP for the foliar spray application were: 0.05, 0.06, 0.14 and 0.54 mg/kg.

Residues of flonicamid from the greenhouse cucumber trials where the growth media was treated were: 0.09, 0.13, 0.16 and 0.20 mg/kg.

For greenhouse cucumbers, as there is an insufficient number of supervised trials conducted in accordance with the US critical GAP, the Meeting did not consider these trials further.

In addition to the US trials, the Meeting received 10 independent supervised field trials conducted in Australia on cucumbers (2), melons (5) and summer squash (3) according to the

Australian GAP on cucurbit vegetables which allows three applications at a maximum rate of 0.1 kg ai/ha with a 1-day PHI.

Residues of flonicamid from two field cucumber trials matching the Australian GAP for Cucurbit Vegetables were: 0.03 (2) mg/kg.

Residues of flonicamid from five melon trials matching the Australian GAP for Cucurbit Vegetables were: 0.03, <u>0.05 (2)</u>, 0.09 and 0.17 mg/kg.

Residues of flonicamid from three summer squash trials matching the Australian GAP for Cucurbit Vegetables were: 0.01, 0.04 and 0.08 mg/kg.

Since the use of flonicamid on the cucurbits crop group is registered in Australia, the residue decline trials demonstrated limited dissipation of flonicamid residues with increasing PHI and that there are an insufficient number of Australian trials at the critical GAP, the Meeting compared the US field trials against the Australian GAP and combined them as follows:

Residues of flonicamid in field cucumbers from eight trials were: 0.03 (2), 0.04, 0.06 (3), 0.07 and 0.12 mg/kg.

Residues of flonicamid in melons from 11 trials were: 0.02, 0.03(2), 0.04(2), 0.05(2), 0.06, 0.09(2) and 0.17 mg/kg.

Residues of flonicamid in summer squash from eight trials were: 0.01 (2), 0.03 (3), 0.04 (2) and 0.08 mg/kg.

The median residues among the representative crops were within a 5-fold range (0.06 mg/kg vs. 0.05 vs 0.03 mg/kg) and the Kruskall-Wallis test indicated that the residues were not statistically different, therefore, the Meeting decided to combine the dataset as follows: 0.01 (2), 0.02, 0.03 (7), 0.04 (5), 0.05 (2) 0.06 (4), 0.07, 0.08, 0.09 (2), 0.12 and 0.17 mg/kg.

The Meeting estimated a maximum residue level for fruiting vegetables, cucurbits, of 0.2 mg/kg and an STMR of 0.04 mg/kg.

Fruiting vegetables, other than cucurbits

Results from supervised field trials on <u>tomatoes</u>, <u>bell peppers</u> and <u>non-bell peppers</u> were conducted in the US as well as supervised trials on greenhouse tomatoes conducted in Canada and the US were provided to the Meeting.

A total of 34 independent supervised trials were conducted in the US on field tomatoes (26), bell peppers (6) and non-bell peppers (2) according to the US GAP on fruiting vegetables, which allows three foliar spray applications of a WG formulation at a maximum rate of 0.1 kg ai/ha or two applications of a SG formulation at a maximum rate of 0.15 kg ai/ha. For both formulations, the crops may be harvested at a 0-day PHI.

Three additional trials were conducted in Canada and the US on greenhouse tomatoes where treatments were conducted according to the US GAP which allows two foliar spray applications at a maximum rate of 0.15 kg ai/ha with a 0-day PHI.

Only field tomato trials were conducted with both the WG and SG formulations, however, it was not clear which formulation resulted in the critical GAP:

Residues of flonicamid from 12 field tomato trials where the WG formulation was applied according to the US critical GAP for fruiting vegetables were: 0.03, 0.05, 0.06, 0.07, 0.08, 0.09 (3), 0.14, 0.15, 0.22 and 0.23 mg/kg.

Residues of flonicamid from 14 field tomato trials where the SG formulation was applied according to the US critical GAP for fruiting vegetables were: < 0.01, 0.05(2), 0.06, 0.07, 0.08, 0.10(2), 0.11, 0.12(2), 0.13, 0.15 and 0.19, mg/kg.

As highest residues in tomatoes were observed following treatment with the WG formulation, only these were considered when estimating the maximum residue level.

Residues of flonicamid from six bell pepper trials matching the US critical GAP for fruiting vegetables were: 0.06 (3), 0.10 and 0.11 (2) mg/kg.

Residues of flonicamid from two non-bell pepper trials matching the US critical GAP for fruiting vegetables, other than cucurbits were: 0.21 and 0.22 mg/kg.

As the GAP in the US is for the fruiting vegetables crop group, the median values from the trials conducted in the US on tomatoes, bell peppers and non-bell peppers were within 5-fold (0.09 mg/kg vs 0.08 mg/kg vs 0.21 mg/kg) and the Kruskall-Wallis test indicated that the residues from field trials were not statistically different, the Meeting decided to estimate a group maximum residue level. The residues in tomatoes, bell peppers and non-bell peppers were combined as follows: 0.03, 0.05, 0.06 (4), 0.07, 0.08, 0.09 (3), 0.10, 0.11 (2), 0.14, 0.15, 0.21, 0.22 (2) and 0.23 mg/kg.

The Meeting estimated a maximum residue level of 0.4 mg/kg and an STMR of 0.09 mg/kg for fruiting vegetables, other than cucurbits, excluding mushrooms and sweet corn.

Leafy vegetables

Leafy vegetables (excluding Brassica leafy vegetables)

Results from supervised field trials on <u>head lettuce</u>, <u>leaf lettuce</u>, <u>spinach</u> and <u>radish</u> leaves conducted in the US were provided to the Meeting.

A total of 18 independent supervised trials were conducted in the US on head lettuce (6), leaf lettuce (6) and spinach (6) according to the US GAP on leafy vegetables which allows three applications at a maximum rate of 0.1 kg ai/ha with a 0-day PHI.

A total of five independent supervised trials were conducted in the US on radish leaves according to the US GAP on root and tuber vegetables which allows three applications at a maximum rate of 0.1 kg ai/ha with a 3-day PHI.

Residues of flonicamid from six head lettuce (with wrapper leaves) trials matching the US GAP for leafy vegetables were: 0.39, 0.43, 0.49, 0.52, 0.58 and 0.62 mg/kg.

Residues of flonicamid from six trials on leaf lettuce matching the US GAP for leafy vegetables (except Brassica) were: 1.94, 2.18, 2.52, <u>2.67</u>, 2.71, 3.06 and 3.11 mg/kg.

Side-by-side trials were conducted on cos lettuce comparing the WG formulation with the SG formulation with and without surfactant. These trials were not considered further in the estimation of the maximum residue level.

Residues of flonicamid from six trials on spinach matching the US GAP for leafy vegetables were: 4.82, 4.86, <u>5.71</u>, <u>5.73</u>, 6.59 and 6.97 mg/kg.

Residues of flonicamid from five trials on radish leaves matching the US GAP for root and tuber vegetables were: 0.21, 3.1, 5.4, 5.7 and 8.5 mg/kg.

As the GAP in the US is established for the leafy vegetables crop group, the Meeting decided to explore the possibility of setting a group MRL. The median residues in head lettuce, leaf lettuce and spinach, which are the representative commodities for this subgroup, differed by more than 5-fold (0.51 mg/kg vs 2.67 mg/kg vs 5.72 mg/kg). In addition, as the GAP for radish leaves differs from that of the other leafy vegetables, the Meeting decided to estimate maximum residue levels for each commodity based on the individual datasets without extrapolation to the entire subgroup.

The Meeting estimated a maximum residue level of 1.5 mg/kg and an STMR of 0.51 mg/kg for head lettuce with wrapper leaves.

For leaf lettuce, the Meeting estimated a maximum residue level of 8 mg/kg and an STMR of 2.67 mg/kg

The Meeting estimated a maximum residue level of 20 mg/kg and an STMR of 5.72 mg/kg for spinach.

The Meeting estimated a maximum residue level of 20 mg/kg and an STMR of 8.50 mg/kg for radish leaves.

Brassica leafy vegetables

Results from supervised field trials on <u>mustard greens</u> conducted in the US were provided to the Meeting.

A total of eight independent supervised trials were conducted in the US on mustard greens according to the US GAP on Brassica (Cole) leafy vegetables which allows three applications at a maximum rate of 0.1 kg ai/ha with a 0-day PHI.

Residues of flonicamid from eight trials on mustard greens matching the US GAP for Brassica (Cole) leafy vegetables were: 2.04, 2.21, 3.96, 4.40, 4.78, 4.92, 6.87 and 8.31 mg/kg.

The Meeting estimated a maximum residue level of 15 mg/kg and an STMR of 8.31 mg/kg for the Brassica leafy vegetables subgroup.

Root and tuber vegetables

Results from supervised field trials on <u>potatoes</u>, <u>carrots</u> and <u>radish roots</u> conducted in the US and Australia (potatoes only) were provided to the Meeting.

A total of 23 independent supervised trials were conducted in the US on potatoes (16), carrots (2) and radishes (5) according to the critical GAP in the US which allows three applications at a maximum rate of 0.1 kg ai/ha with a 7-day PHI for potatoes and a 3-day PHI for carrots and radishes.

Residues of flonicamid from 16 potato trials matching the US GAP were: < 0.01 (15) and 0.015 mg/kg.

Residues of flonicamid from two carrot trials matching the US GAP were: 0.02 (2) mg/kg.

Residues of flonicamid from five radish trials matching the US GAP were: 0.02, 0.07, 0.10, 0.13 and 0.21 mg/kg.

The Meeting noted that in the US, group GAPs for root and tuber vegetables and tuberous and corm vegetables exist; however, as these GAPs are different for each crop group and there is an insufficient number of supervised residue trials provided for carrots, the Meeting decided to estimate individual maximum residue levels for potato and radish roots only.

For potatoes, the Meeting estimated a maximum residue level of 0.015 mg/kg and an STMR of 0.01 mg/kg.

The Meeting estimated a maximum residue level of $0.4\,\mathrm{mg/kg}$ and an STMR of $0.10\,\mathrm{mg/kg}$ for radish roots.

Celery

Results from supervised field trials on celery conducted in the US were provided to the Meeting.

A total of six independent supervised trials were conducted in the US on celery according to the US GAP for leafy vegetables, except Brassica vegetables, which includes the leaf petioles subgroup, and allows three applications at a maximum rate of 0.1 kg ai/ha with a 0 PHI.

Residues of flonicamid matching the US GAP were: 0.35, 0.43, 0.44, 0.45, 0.46, 0.93 mg/kg.

The Meeting estimated a maximum residue level of 1.5 mg/kg and an STMR of $0.45 \ \text{mg/kg}$ for celery.

Cereal grains

Results from supervised trials on <u>wheat</u> and <u>barley</u> conducted in Northern and Southern EU were provided to the meeting.

A total of 23 independent supervised trials were conducted in EU on wheat (15) and barley (8). The wheat trials were conducted according to the Slovenia GAP which allows two applications at a maximum rate of 0.07 kg ai/ha with a 28-day PHI.

As there is no GAP for barley, these trials were not considered further.

Residues of flonicamid in wheat grain matching the Slovenia GAP were: < 0.01 (11), 0.01, 0.02, 0.04 and 0.06 mg/kg.

The Meeting estimated a maximum residue level of $0.08\,\mathrm{mg/kg}$ and an STMR of $0.01\,\mathrm{mg/kg}$ for wheat.

Tree nuts

Results from supervised field trials on <u>almonds</u>, <u>pecans</u> and <u>pistachios</u> conducted in the US were provided to the Meeting.

A total of 12 independent supervised trials were conducted in the US on almonds (5), pecans (5) and pistachios (2) according to the US GAP which allows three applications at a maximum rate of 0.1 kg ai/ha with a 40-day PHI.

Residues of flonicamid in almond nutmeats matching the US GAP were: $<\!0.01$ (5) mg/kg.

Residues of flonicamid in pecan nutmeats matching the US GAP were: < 0.01 (5) mg/kg.

Residues of flonicamid in pistachios matching the US GAP were 0.02 and 0.04 mg/kg.

As the Meeting could not conclude that there are no measurable residues in all tree nuts in the tree nut crop group and considering the insufficient number of supervised residue trials for pistachios, the Meeting agreed to estimate individual maximum residue levels for almonds and pecans at 0.01* mg/kg with an STMR of 0.01 mg/kg.

Oilseeds

Rape seed

Results from supervised field trials on <u>rape seed</u> conducted in the US were provided to the Meeting.

A total of nine independent supervised trials were conducted in the US on rape seed according to the US GAP which allows three applications at a maximum rate of 0.1 kg ai/ha with a 7-day PHI.

Residues of flonicamid matching the US GAP were: $<0.02,\,0.02$ (3), $\underline{0.04},\,0.08,\,0.09,\,0.17$ and 0.33 mg/kg.

The Meeting estimated a maximum residue level of 0.5 mg/kg and an STMR of 0.04 mg/kg for rape seed.

Cotton seed

Results from supervised field trials on <u>cotton</u> conducted in the US and Australia were provided to the Meeting.

The GAP in the US is three applications at a maximum rate of 0.1 kg ai/ha with a 30-day PHI while the GAP in Australia is three applications at a maximum rate of 0.07 kg ai/ha with a 7-day PHI.

As the critical GAP is in Australia, only the Australian trials were considered.

Residues of flonicamid in cottonseed from eight independent supervised residue trials matching the Australian critical GAP were: 0.01 (2), 0.02, 0.04, 0.09, 0.13, 0.16 and 0.34 mg/kg.

The Meeting estimated a maximum residue level of 0.6 mg/kg and an STMR of 0.06 mg/kg for cottonseed.

Mint

Results from supervised field trials on fresh <u>mint</u> leaves conducted in the US were provided to the Meeting.

A total of three independent supervised trials were conducted in the US on mint according to the US GAP which allows three applications at a maximum rate of 0.1 kg ai/ha with a 7-day PHI.

Residues of flonicamid matching the US GAP were: 1.70, 1.92 and 2.36 mg/kg.

The Meeting estimated a maximum residue level of 6 mg/kg and an STMR of 1.92 mg/kg for mint.

Dried hops

Results from supervised field trials on <u>dried hops</u> conducted in the US were provided to the Meeting.

A total of four independent supervised trials were conducted in the US on dried hops according to the US GAP which allows three applications at a maximum rate of 0.1 kg ai/ha with a 10-day PHI.

Residues of flonicamid matching the US GAP were: 0.56, 1.15, 2.82 and 9.33 mg/kg.

The Meeting estimated a maximum residue level of 20 mg/kg and an STMR of 1.98 mg/kg for dried hops.

Teas

Results from supervised field trials on tea conducted in Japan were provided to the Meeting.

A total of two independent supervised trials were conducted in Japan on tea according to the Japanese GAP which allows one application at a maximum rate of 0.1 kg ai/ha with a 7-day PHI.

Residues of flonicamid in green tea leaves matching the Japanese GAP were: 15.7 and 20.1 mg/kg.

There is insufficient data for the Meeting to estimate a maximum residue level.

Animal feeds

Straw, fodder and forage of cereal grains and grasses including buckwheat fodder forage

Wheat

Results from supervised trials on wheat and barley conducted in Northern and Southern EU were provided to the meeting.

A total of 23 independent supervised trials were conducted in EU on wheat (15) and barley (8). The wheat trials were conducted according to the Slovenia GAP which allows two applications at a maximum rate of 0.07 kg ai/ha with a 28-day PHI.

As there is no GAP for barley, these trials were not considered further.

Residues of flonicamid in wheat forage matching the Slovenia Gap were: 0.64, 0.69, 0.83, 0.88 and 0.99 (2).

The Meeting estimated a maximum residue level of 3.0 mg/kg and a median of 0.86 mg/kg for wheat forage.

Residues of flonicamid in wheat straw matching the Slovenia GAP were: < 0.02 (5), 0.02, 0.04 (2), 0.05 (3), 0.08, 0.09, 0.11 and 0.23 mg/kg.

The Meeting estimated a maximum residue level of 0.3 mg/kg and a median of 0.04 mg/kg for wheat straw and fodder, dry.

Alfalfa

Results from six independent supervised field trials on <u>alfalfa</u> (4) and <u>clover</u> (2) conducted in the US were provided to the Meeting.

The US GAP for alfalfa grown west of the Rockies allows two applications at a maximum rate of 0.10 kg ai/ha with PHIs of 14 days for seed and forage and 60 days for hay.

Two supervised trials were conducted on clover in the US, however, in the absence of a US GAP, these trials were not considered.

Four trials were conducted on alfalfa in the US, of which only two were conducted according to the US GAP. In the absence of a sufficient number of trials, the Meeting could not estimate a maximum residue level or a median residue for alfalfa seed, forage and hay.

Miscellaneous fodder and forage crops (fodder)

Almond hulls

Results from supervised field trials on <u>almonds</u> conducted in the US were provided to the Meeting.

Five independent trials were conducted on almonds in the US. The GAP in the US allows three applications at a maximum rate of 0.10 kg ai/ha with a PHI of 40 days.

Residues in almond hulls (dry weight) from five trials matching US GAP were: 0.92, 1.09, 1.81, 2.75 and 4.73 mg/kg. The meeting estimated a maximum residue level of 9 mg/kg and a median residue of 1.8 mg/kg.

Cotton gin trash

Results from supervised field trials on <u>cotton</u> conducted in the US and Australia were provided to the Meeting.

The GAP in the US is three applications at a maximum rate of 0.1 kg ai/ha with a 30-day PHI while the GAP in Australia is three applications at a maximum rate of 0.07 kg ai/ha with a 7-day PHI.

As the critical GAP is in Australia, only the Australian trials were considered.

The residues of flonicamid in cotton gin trash from eight independent supervised trials matching the Australian critical GAP were: 0.66, 1.20, 1.33, 1.60, 1.70, 2.30, 2.75, 3.00 and 3.72 mg/kg.

The Meeting estimated a median residue of 1.7 mg/kg.

Fate of residues during processing

High temperature hydrolysis

To simulate the degradation of flonicamid during pasteurization, baking, brewing, boiling and sterilisation, the hydrolysis of radio-labelled flonicamid was investigated in sterile buffered aqueous solutions.

After incubation at 90 °C (pH 4) for 20 minutes, 100 °C (pH 5) for 60 minutes or 120 °C (pH 6) for 20 minutes, no loss of radioactivity occurred. More specifically, flonicamid accounted

for at least 96% of the applied radioactivity. Therefore, very limited degradation of flonicamid was observed in aqueous buffer solutions under all the conditions tested with no significant degradation product being formed.

Processing

The Meeting received information on the fate of flonicamid residues and its metabolites TFNA-AM, TFNA and TFNG during the processing of raw agricultural commodities (RAC) like apples, peaches, plums, tomatoes, potatoes, rape seed, cotton and mint.

Processing factors calculated for the processed commodities of the above raw agricultural commodities are shown in the table below. STMR-Ps were calculated for processed commodities for which maximum residue levels were estimated.

RAC	Processed	Processed Calculated processing		STMR-P
	Commodity	factors		
		Flonicamid		
Peaches	Canned peaches	0.3, 0.5, 0.3, 3.3	0.3 (median)	0.08
	Juice	1.0, 1.0, 0.3, 0.5	0.8 (median)	1.8
	Jam	0.3, 1.0, 1.0, 0.2	0.7 (median)	0.16
	Puree	0.7, 1.0, 1.0, 0.8	0.9 (median)	0.21
Plums	Dried prunes	1.0	1.0	0.04
Tomato	Paste	16.1	16.1	1.45
Potato	Chips	0.95	0.95	0.01
	Flakes	2.7	2.7	0.03
Canola	Refined oil	< 0.1	0.1	0.004
Cotton	Refined oil	< 0.24 (US), 0.6 and 0.04	0.32 (mean; AUS)	0.02
		(AUS)		
Mint	Oil	< 0.03	0.03	0.06

As the residue concentration in both apple juice and apple pomace were higher than in fresh apple which is not physically possible, the Meeting determined that the apple processing study was not reliable and did not calculate a processing factor for juice.

As the residue concentration is higher in tomato paste than in fresh tomato, the Meeting estimated a maximum residue level of 7.0 mg/kg by multiplying the maximum residue level for fruiting vegetables, other than cucurbits, (0.4 mg/kg) by 16.1.

Residues in animal commodities

Farm animal feeding studies

The Meeting received information on the residue levels arising in tissues and milk when three groups of <u>dairy cows</u> were fed with a diet containing 2.50, 6.89 and 23.7 ppm of a 1:1 mixture of flonicamid:TFNG for 28 consecutive days. As demonstrated in the metabolism studies, residues of TFNG present in feed items may be converted to TFNA-AM. Therefore, the Meeting concluded that the test material used in the feeding studies was appropriate.

In milk, no quantifiable (< LOQ) residues of flonicamid were detected in any test group. For TFNA-AM, the average residues increased from < LOQ in the low dose group to 0.02 mg/kg in the mid dose group and to 0.08 mg/kg in the high dose group.

In liver, no quantifiable residues of flonicamid were detected. For TFNA-AM, residues were detected in the mid and high dose groups above the LOQ using two different analytical methods (FMC-P-3580/RCC 844743) with different LOQ (0.025/0.01 mg/kg). TFNA-AM levels increased from less than LOQ in the low dose group to 0.039/0.02 mg/kg in the mid dose group and 0.113/0.05 mg/kg in the high dose group.

In kidney, TFNA-AM was detected in the medium and high dose groups above the LOQ using the same analytical methods as those used for kidney. TFNA-AM levels increased from

levels below LOQ in the low dose group to 0.031/0.02 mg/kg in the mid dose group and 0.105/0.09 mg/kg in the high dose group.

In muscle, only TFNA-AM was found. The level increased from below LOQ (0.025~mg/kg) in the low dose group to 0.027~mg/kg in the mid dose group and 0.088~mg/kg in the high dose group. Similarly, only TFNA-AM was measurable in fat and only at the high dose level (0.015~mg/kg).

The Meeting also received information on the residue levels arising in tissues and eggs when groups of <u>laying hens</u> were fed with a diet containing 0.26, 2.51, 7.47 and 25.83 ppm of a 1:1 mixture of flonicamid:TFNG for 28 consecutive days.

The average flonicamid residues in eggs increased from < LOQ in the very low and low dose groups to 0.02 mg/kg in the mid dose group and to 0.08 mg/kg in the high dose group. Average residues of TFNA-AM increased from < LOQ in the very low and low dose groups to 0.27 mg/kg in the mid dose group and 0.95 mg/kg in the high dose group.

No quantifiable residues (< LOQ) of flonicamid were found in muscle in any treatment group. No quantifiable residues (< LOQ) of TFNA-AM was measurable in muscle at the very low dose group, but there appeared to be a dose response relationship at all other dose levels; 0.049 mg/kg in the low dose group, 0.168 mg/kg in the mid dose group and 0.654 mg/kg in the high dose group.

In liver and fat, no quantifiable residues (< LOQ) of flonicamid were found at any dosing level. For liver, TFNA-AM residues increased from < 0.01 mg/kg (very low) to 0.05 mg/kg (low) to 0.17 mg/kg (mid) and 0.71 mg/kg (high) while for fat, TFNA-AM residues increased from 0.01 mg/kg (very low) to 0.02 mg/kg (low) to 0.06 mg/kg (mid) and 0.29 mg/kg (high).

Estimated dietary burdens of farm animals

Maximum and mean dietary burden calculations for flonicamid are based on the feed items evaluated for cattle and poultry as presented in Annex 6. The calculations were made according to the livestock diets from Australia, the EU, Japan and US-Canada in the OECD feeding table.

The foliar application of flonicamid to apples, cabbage, potato, almonds, rape seed, cotton and wheat resulted in residues of flonicamid in the following feed items: wet apple pomace, head cabbage with wrapper leaves, potato culls, almond hulls, rape seed meal, undelinted cottonseed, cotton seed hulls, cottonseed meal, gin trash, wheat forage, grain and straw. Based on the named feed items, the calculated maximum animal dietary burden for dairy or beef cattle was in Australia (3.96 ppm), followed by EU (1.39 ppm) and US-Canada (0.29 ppm).

	Livestock d	Livestock dietary burden, flonicamid, ppm of dry matter							
	US-Canada	US-Canada		EU		Australia		Japan	
	Max	Mean	Max	Mean	Max	Mean	Max	Mean	
Beef cattle	0.27	0.13	1.39	1.02	3.96 a	3.44 c	0.003	0.003	
Dairy cattle	0.81	0.70	0.82	0.71	2.38 b	2.07 d	0.002	0.002	
Poultry—	0.03	0.03	0.01	0.01	0.02	0.02	0	0	
broiler									
Poultry—layer	0	0	0.40 e	0.34 f	0	0	0	0	

^a Suitable for MRL estimates for mammalian meat, fat and edible offal

^b. Suitable for MRL estimates for milk

^c Suitable for STMR estimates for mammalian meat, edible offal

^d Suitable for STMR estimate for milk

^e Suitable for MRL estimates for eggs, meat, fat and edible offal of poultry

f Suitable for STMR estimates for eggs, meat, fat and edible offal of poultry

Animal commodities maximum residue level estimation

As all dietary burdens were lower than the lowest feeding levels from the dairy cow and laying hen feeding studies and since all residues of flonicamid and TFNA-AM were below the limit of quantitation at the lowest feeding levels, there is no expectation of any measurable transfer of residues from the feed items into the livestock commodities (see tables below).

	Feed level	Total	Feed level for	Flonicamid and	l TFNA-AM Re	sidues	
	(ppm) for milk	flonicamid	tissue residues	Muscle	Liver	Kidney	Fat
	residues	and TFNA-	(ppm)				
		AM residues					
		in milk					
		(mg/kg)					
Maximum resid	due level—beef	or dairy cattle					
Feeding study	2.50	0.043	2.50	< 0.045	< 0.045	< 0.045	< 0.02
			6.89	0.050	0.062	0.054	< 0.02
Dietary	2.38	0.04	3.96	0.047	0.051	0.048	< 0.02
burden and							
residue							
estimate							
STMR—beef of	or dairy cattle						
Feeding study	2.50	0.041	2.50	< 0.045	< 0.045	< 0.045	< 0.02
			6.89	0.047	0.059	0.051	< 0.02
Dietary	2.07	0.04	3.44	0.045	0.048	0.046	< 0.02
burden and							
residue							
estimate							

	Feed level Total flonicamid I		Feed level for	Flonicamid and TFNA-AM Residues		
	(ppm) for egg residues	and TFNA-AM residues in eggs	tissue residues (ppm)	Muscle	Liver	Fat
		(mg/kg)	(41)			
Maximum residue l	evel—poultry bro	iler or layer				
Feeding study	0.26	0.02	0.26	< 0.02	< 0.02	< 0.02
	2.51	0.11	2.51	0.07	0.08	0.04
Dietary burden and residue estimate	0.40	0.03	0.40	0.02	0.02	0.02
STMR—poultry bro	oiler or layer					
Feeding study	0.26 2.51	0.02 0.09	0.26 2.51	< 0.02 0.06	< 0.02 0.06	< 0.02 0.03
Dietary burden and residue estimate	0.34	0.02	0.34	0.02	0.02	0.02

The Meeting estimated maximum residue levels of 0.02* mg/kg for mammalian fats, 0.04 mg/kg for milks and 0.05 mg/kg for meat from mammals other than marine mammals and 0.06 mg/kg for edible offal (mammalian). The STMRs for mammalian fats, milks, meat from mammals other than marine mammals and edible offal (mammalian) are 0.02 mg/kg, 0.04 mg/kg. 0.047 mg/kg and 0.051 mg/kg, respectively.

In addition, the Meeting estimated maximum residue levels of 0.02* mg/kg for poultry meat (including Pigeon meat), poultry fats and edible offal of poultry and 0.03 mg/kg for eggs. The STMRs were 0.02 mg/kg, 0.02 mg/kg, 0.02 mg/kg and 0.02 mg/kg for meat, edible offal, fat and eggs, respectively.

RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed in Annex 1 are suitable for establishing maximum residue limits and for IEDI assessment.

Definition of the residue for compliance with the MRL and for estimation of dietary intake for plant commodities: *Flonicamid*

Definition of the residue for compliance with the MRL and for estimation of dietary intake for animal commodities: Sum of flonicamid, N-cyanomethyl-4-(trifluoromethyl)nicotinamide and the metabolite TFNA-AM, 4-(trifluoromethyl)nicotinamide.

CCN	Commodity	Recommend			HR or	
		Maximum	residue level	STMR-P	HR-P	
		(mg/kg)		mg/kg	mg/kg	
		New	Previous			
TN 0660	Almonds	0.01*		0.01		
VB 0040	Brassica (cole or cabbage) vegetables,	2		0.36		
	Head cabbages, Flowerhead brassicas					
VL 0054	Brassica leafy vegetables	15		8.31		
VS 0624	Celery	1.5		0.45		
FS 0013	Cherries	0.9		0.28		
SO 0691	Cotton seed	0.6		0.06		
MM 032	Edible offal (mammalian)	0.06		0.05		
PE 039	Eggs	0.03		0.02		
VC 0045	Fruiting vegetables, Cucurbits	0.2		0.04		
VO 0050	Fruiting vegetables, other than			0.09		
V O 0030	Cucurbits (except mushrooms and			0.07		
	sweet corn)					
DH 1100	Hops, dry	20		1.98		
VL 0482	Lettuce, Head	1.5		0.51		
VL 0483	Lettuce, Leaf	8		2.67		
FB 2009	Low growing berries	1.5		0.37		
MM 031	Mammalian fats	0.02		0.02		
MM 030	Meat (from mammals other than			0.04		
IVIIVI USU	marine mammals)	0.03		0.04		
MM 033	Milks	0.04		0.04		
HH 0738	Mints	6		1.92		
				1.81		
AM 0660	Miscellaneous fodder and forage crops (fodder)	9		1.81		
FS 2001	Peaches (including Nectarine and	0.7		0.14		
15 2001	Apricot)	0.7		0.14		
TN 0672	Pecan	0.01*		0.01		
FS 0014	Plums (including Prunes)	0.1		0.03		
FP 0009	Pome fruits	0.8		0.13		
VR 0589	Potatoes	0.015		0.01		
PF 037	Poultry fats	0.013		0.02		
	-	0.02		0.02		
PM 036	Poultry meat (including Pigeon meat)			ļ		
PO 038	Poultry, Edible offal of	0.02		0.02		
VR 0494	Radish	0.4		0.1		
VL 0494	Radish leaves	20		8.5		
SO 0495	Rape seed	0.5		0.04		
VL 0502	Spinach	20		5.72		
AF 051	Straw, fodder and forage of cereal			0.86		
	grains and grasses (including					
10051	buckwheat fodder) (forage)	0.2		0.04		
AS 051	Straw, fodder and forage of cereal	0.3		0.04		
	grains and grasses (including buckwheat fodder) (straws and fodders					
	dry)					
VW 0448	Tomato paste	7		1.45		
GC 0654	Wheat	0.08		0.01		
UC 0054	vv iieat	0.00		0.01		
				0.1		
	Canned peaches			0.1		
OC 0691	Cotton seed oil, crude			0.02		

CCN	Commodity	Recommend	led	STMR or	HR or	
		Maximum (mg/kg)		STMR-P mg/kg	HR-P mg/kg	
		New	Previous			
DF 0014	Prunes			0.04		
	Head cabbage without wrapper leaves			0.025		
	Mint oil			0.06		
	Peach Jam			0.16		
	Peach Juice			1.8		
	Peach Puree			0.21		
	Potato chips			0.01		
	Potato flakes			0.03		
OR 0495	Rape seed oil, edible			0.004		
AB 0691	Cotton seed hulls			0.13		
AB 1203	Cotton seed meal			0.14		
	Rape seed meal			0.004		

DIETARY RISK ASSESSMENT

Long-term intake

The International Estimated Dietary Intakes (IEDIs) of flonicamid were calculated for the 17 GEMS/Food cluster diets using STMRs and STMR-Ps estimated by the current Meeting (Annex 3 to the 2015 Report) estimated by the current Meeting (Annex 3). The ADI is 0–0.07 mg/kg bw and the calculated IEDIs were 1–10% of the maximum ADI. The Meeting concluded that the long-term intake of residues of flonicamid resulting from the uses considered by the current JMPR is unlikely to present a public health concern.

Short-term intake

The Meeting decided that an ARfD is unnecessary and concluded that the short-term intake of residues resulting from the use of flonicamid, considered by the present Meeting, is unlikely to present a public health concern.

REFERENCES

Code	Author(s)	Year	Title, Institute, Report reference
P-3570	Arabinick, JR	2004	Storage Stability of IKI-220 (F1785) and its Major Plant Metabolites
			in/on Laboratory-Fortified Matrices From Five Representative Crop
			Groups: Oilseed, Non-Oily Grain, Leafy Vegetable, Root and Tuber
			Vegetable Crop and Fruit or Fruiting Vegetable, and Their Processed
			Parts. FMC, GLP, unpublished
010141-1	Beckwith, RC	1999	IKI-220 PAI (Lot #9803)—Dissociation Constant Ricerca, Inc.; GLP, unpublished
835064	Burri, R	2003	Poultry feeding study: Residue of IKI-220 in eggs and edible tissues of
	,		laying hens. RCC Ltd., Switzerland; January 14, 2003 GLP,
			unpublished
P-3679	Buser, JW	2004	Magnitude of the Residues of Flonicamid and its Significant
			Metabolites in/on Brassica Leafy Vegetables Treated with Flonicamid
			50WG Insecticide FMC Corporation, Agricultural Products Group,
			GLP, unpublished
P-3679	Buser, JW	2004	Magnitude of the Residues of Flonicamid and its Significant
			Metabolites in/on Brassica Leafy Vegetables Treated with Flonicamid
			50WG Insecticide FMC Corporation, Agricultural Products Group,
			GLP, unpublished

Code	Author(s)	Year	Title, Institute, Report reference
P-3575	Buser, JW & Chen, AW	2003	Magnitude of the Residues of F1785 and its Significant Metabolites in/on Leafy Vegetables Treated with F1785 Insecticide FMC
P-3575	Buser, JW & Chen, AW	2003	Corporation, Agricultural Products Group, GLP unpublished Magnitude of the Residues of F1785 and its Significant Metabolites in/on Leafy Vegetables Treated with F1785 Insecticide FMC
P-3581	Chen, AW	2003	Corporation, Agricultural Products Group, GLP unpublished Determination of IKI-220 (F1785), OH-TFNA-AM, TFNA-AM, TFNA and TFNG in Poultry Egg—Independent Laboratory Validation of the method. FMC Corporation, Princeton, USA, January 9, 2003 GLP,
P-3561M	Chen, AW	2002	unpublished Analytical methodology for IKI-220 (F1785) and its major metabolites in/on peach, potato tuber and wheat straw. FMC Corporation, Agricultural Products Group, Princeton, USA; GLP, unpublished
P-3822	Chen, AW	2006	Analytical Methodology for Flonicamid and its Major Metabolites on Various Crop Matrices and their Associated Processed Commodities FMC Corporation, Agricultural Products Group, GLP unpublished
P-3695	Culligan, Jr, JF	2004	Magnitude of the Residues of Flonicamid and Its Significant Metabolites in/on Tomato and Leaf Lettuce Treated with Flonicamid Insecticide FMC Corporation, Agricultural Products Group, Non-GLP P, unpublished
P-3695	Culligan, Jr, JF	2004	Magnitude of the Residues of Flonicamid and Its Significant Metabolites in/on Tomato and Leaf Lettuce Treated with Flonicamid Insecticide FMC Corporation, Agricultural Products Group, P-3695 Non-GLP, unpublished
20334	De Ryckel, B	2002	Relative self-ignition temperature, flammability and surface tension of IKI-220 TGAI Agricultural Research Centre, Phytopharmacy Dep., GLP, unpublished
P-3764	Dow, KD	2005	Magnitude of the Residues of Flonicamid 50WG and its Significant Metabolites in/on Mustard Greens FMC Corporation, Agricultural
011201-1	Dudones, LP	1999a	Products Group, GLP, unpublished IKI-220, TGAI (Lot #9808)—Organic Solvent Solubility Ricerca, Inc.; GLP, unpublished
010252-1	Dudones, LP	1999b	IKI-220, PAI (Lot #9803)—Octanol/Water Partition Coefficient Ricerca, Inc.; GLP, unpublished
011201-1	Dudones, LP	1999a	IKI-220, TGAI (Lot #9808)—Organic Solvent Solubility Ricerca, Inc.; GLP, unpublished
02-0031	Faltynski, KH	2002	Independent Laboratory Validation (ILV) of the method provided in FMC Corporation P-3461M entitled 'Analytical Methodology for IKI-220 (F1785) and its major metabolites in/on peach, potato tuber, and wheat straw" as applied to cottonseed. EN-CAS Analytical Laboratories, Winston-Salem, USA; GLP, unpublished
UPL-1002	Farrell, P	2011	Determination of residues of Flonicamid and its metabolites in pome fruit following three (3) applications of UPI-220 500 WG applied as a foliar spray at various timings before harvest Peracto Pty Ltd, GLP,
UPL-1003	Farrell, P	2012b	unpublished Determination of residues of Flonicamid and its metabolites in cucurbits following three (3) applications of UPI-220 500 WG applied as a foliar spray at various timings before harvest Peracto Pty Ltd, GLP,
UPL-1107	Farrell, P	2012c	unpublished Determination of residues of Flonicamid and its metabolites in cucurbits following three (3) applications of UPI-220 500 WG applied as a foliar spray at various timings before harvest Peracto Pty Ltd, GLP,
UPL-1001	Farrell, P	2012d	unpublished Determination of residues of Flonicamid and its metabolites in potatoes following two (2) applications of UPI-220 500 WG applied as a foliar spray at various timings before harvest Peracto Pty Ltd, GLP,
UPL-1109	Farrell, P	2012e	unpublished Determination of residues of Flonicamid and its metabolites in potatoes following two (2) applications of UPI-220 500 WG applied as a foliar spray at various timings before harvest Peracto Pty Ltd, GLP,
S11-01987	Gemrot, F	2011	unpublished IKI-220 (IBE 3894): Residue study (at harvest) in Spring Barley after one foliar application of IBE 3894 in Denmark in 2011 Eurofins ADME
S12-01930	Gemrot, F	2013	BIOANALYSES, GLP, unpublished Residue study in spring Barley after one foliar application of IBE 3894 in Denmark and Germany in 2012 Eurofins ADME BIOANALYSES,

Code	Author(s)	Year	Title, Institute, Report reference
S12-04426	Gemrot, F	2013b	GLP, unpublished Validation of an analytical method for determination of flonicamid and TFNA-AM in foodstuff of animal origin Eurofins Agroscience Services
FA-22-03-01	Ginzburg, N	2004a	Chem SAS, GLP, unpublished Decline of Residues of IKI-220 and its Metabolites TFNG, TFNA and TFNA-AM in Melon (Protected) after Three Treatments of IKI-220 50% WG (IBE 3894) (South of France—Season 2003) Battelle, GLP,
FA-22-03-02	Ginzburg, N	2004b	unpublished Determination of Residues of IKI-220 and its Metabolites TFNG, TFNA and TFNA-AM in Melon (One Protected and One Open Field) after Three Treatments of IKI-220 50% WG (IBE 3894) (DEC and
FA-22-03-03	Ginzburg, N	2004c	RAH, Spain—Season 2003) Battelle, GLP, unpublished Determination of Residues of IKI-220 and its Metabolites TFNG, TFNA and TFNA-AM in Melon after Three Treatments of IKI-220 50% WG (IBE 3894) (DEC and RAH, Italy—Season 2003) Battelle, GLP, unpublished.
FA-22-04-02	Ginzburg, N	2005a	GLP, unpublished Decline of Residues of IKI-220 and its Metabolites TFNG, TFNA and TFNA-AM in Melon (Open Air Field) after Three Treatments of IKI- 220 50% WG (IBE 3894) (Italy—Season 2004) Battelle, GLP,
FA-22-04-03	Ginzburg, N	2005b	unpublished Residues at Harvest of IKI-220 and its Metabolites TFNG, TFNA and TFNA-AM in Melon (Protected Crop) after Three Treatments of IKI- 220 50% WG (IBE 3894) (Spain—Season 2004) Battelle, GLP, unpublished
FA-22-04-04	Ginzburg, N	2005c	Decline of Residues of IKI-220 and its Metabolites TFNG, TFNA and TFNA-AM in Melon after Three Treatments of IKI-220 50% WG (IBE 3894) (South of France—Season 2004) Battelle, GLP, unpublished
A-22-00-02	Ginzburg, N	2001	Determination of residues of IKI-220 and its metabolites TFNG, TFNA and TFNA-AM in various crops—Validation of the method. Battelle, Geneva, Switzerland; September 28, 2001 GLP, unpublished
A-22-01-10 AF/5174/IB	Ginzburg, N	2002a	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3880 or IBE 3894) (North and South of France and Germany—Season 2000) Batelle, Geneva Research Centres; GLP, unpublished Field part: Anthony, S., 2000: To generate crop specimens for analysis of IKI-220 residues in the RAC winter wheat and processed fractions resulting from a sequential application of IBE 3894 or IBE 3880 in S. France and N. France during 2000 Agrisearch, report no, November 24, 2000 Trial—220/TRAZW 03/F/00
A-22-01-10 AF/5174/IB	Ginzburg, N	2002b	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3880 or IBE 3894) (North and South of France and Germany—Season 2000) Batelle, Geneva Research Centres; GLP, unpublished Field part: Anthony, S, 2000. To generate crop specimens for analysis of IKI-220 residues in the RAC winter wheat and processed fractions resulting from a sequential application of IBE 3894 or IBE 3880 in S. France and N. France during 2000 Agrisearch, report no, November 24, 2000—220/TRAZW 04/F/00
A-22-01-10 VP00-1-9,	Ginzburg, N	2002c	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3880 or IBE 3894) (North and South of France and Germany—Season 2000) Batelle, Geneva Research Centres; GLP, unpublished Field part: Heydkamp, I. 2001: Residues of IKI-220 in winter wheat following two treatments with IBE 3880 and IBE 3894 in Germany 2000 Versuchswesen Pflanzenschutz, January 25, 2001 GLP, unpublished Trial—220/TRAZW 02/D/00
A-22-01-16 AF/5731/IB	Ginzburg, N	2002d	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM in Winter Wheat after two treatments of IKI-220 50% WG (IBE 3894) (Italy, Spain, North and South of France, Germany and United Kingdom—Season 2001) Batelle, Geneva Research Centres; GLP, unpublished Field part: Anthony, S, 2002. To generate crop specimens for analysis of IKI-220 residues in the RAC winter wheat resulting from a sequential application of IBE 3894 in S France. N France and UK during 2001 Agrisearch, report no, August 6, 2002 Trial—220/TRAZW 12/F/01
A-22-01-16	Ginzburg, N	2002e	Determination of Residues of IKI-220 And its Metabolites TFNG,

Code	Author(s)	Year	Title, Institute, Report reference
AF/5731/IB			TFNA and TFNA-AM in Winter Wheat after two treatments of IKI-220 50% WG (IBE 3894) (Italy, Spain, North and South of France, Germany and United Kingdom—Season 2001) Batelle, Geneva Research Centres; GLP, unpublished Field part: Anthony, S, 2002. To
			generate crop specimens for analysis of IKI-220 residues in the RAC winter wheat resulting from a sequential application of IBE 3894 in S France. N France and UK during 2001 Agrisearch, report no, August 6, 2002 Trial—220/TRAZW 13/F/01
A-22-01-16 AF/5731/IB	Ginzburg, N	2002f	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM in Winter Wheat after two treatments of IKI-220 50% WG (IBE 3894) (Italy, Spain, North and South of France, Germany and United Kingdom—Season 2001) Batelle, Geneva Research Centres; GLP, unpublished Field part: Anthony, S, 2002. To generate crop specimens for analysis of IKI-220 residues in the RAC winter wheat resulting from a sequential application of IBE 3894 in S France. N France and UK during 2001 Agrisearch, report no, August 6,
A-22-01-16 VP01-1-20	Ginzburg, N	2002g	2002 Trial—220/TRAZW 16/GB/01 Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3894) (Italy, Spain, North and South of France, Germany and United Kingdom—Season 2001) Batelle, Geneva Research Centres; GLP, unpublished Field part: Heydkamp, I 2002. Residue decline curve of IKI-220 in winter wheat following two treatments with IBE 3894 in Germany 2001 Versuchswesen Pflanzenschutz, January 30, 2001 GLP, unpublished Trial— 220/TRAZW 17/D/01
A-22-01-05 VP99-1-17	Ginzburg, N	2002h	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3880) (Germany—Season 1999) Batelle, Geneva Research Centres; GLP, unpublished Field part: Heydkamp, I 2000. Residues of IKI-220 in winter wheat following two treatments with IBE 3880 in Germany 1999 Versuchswesen Pflanzenschutz, April 1, 2000 GLP, unpublished Trial—220/TRAZW 01/D/99
A-22-01-10 AF/5174/IB	Ginzburg, N	2002i	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3880 or IBE 3894) (North and South of France and Germany—Season 2000) Batelle, Geneva Research Centres; GLP, unpublished Field part: Anthony, S, 2000. To generate crop specimens for analysis of IKI-220 residues in the RAC winter wheat and processed fractions resulting from a sequential application of IBE 3894 or IBE 3880 in S. France and N. France during 2000 Agrisearch, report no, November 24, 2000 GLP, unpublished Trial—220/TRAZW 05/F/00
A-22-01-10 AF/5174/IB	Ginzburg, N	2002j	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3880 or IBE 3894) (North and South of France and Germany—Season 2000) Batelle, Geneva Research Centres; GLP, unpublished Field part: Anthony, S, 2000. To generate crop specimens for analysis of IKI-220 residues in the RAC winter wheat and processed fractions resulting from a sequential application of IBE 3894 or IBE 3880 in S. France and N. France during 2000 Agrisearch, report no, November 24, 2000 GLP, unpublished Trial—220/TRAZW 06/F/00
A-22-01-16 20015002/I1- FPWW,	Ginzburg, N	2002k	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3894) (Italy, Spain, North and South of France, Germany and United Kingdom—Season 2001) Batelle, Geneva Research Centres; GLP, unpublished Field part: Miserocchi, G 2001. Generation of samples for the determination of residues of IKI-220 (code IBE 3894) on winter wheat at 1 site in Italy, 2001 S.P.F. GAB, report no October 22, 2001 GLP, unpublished Trial—220/TRAZW 07/I/01
A-22-01-16 E/789/S/01	Ginzburg, N	20021	Determination of Residues of IKI-220 And its Metabolites TFNG, TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220 50% WG (IBE 3894) (Italy, Spain, North and South of France, Germany and United Kingdom—Season 2001) Batelle, Geneva Research Centres; GLP, unpublished Field part: Valli, F 2001. Production of samples for residue analysis in wheat after 2 foliar

Code	Author(s)	Year	Title, Institute, Report reference
			applications of IKI-220 Agri 2000, December 5, 2001 GLP,
			unpublished Trial—220/TRAZW 08/I/01
A-22-01-16	Ginzburg, N	2002m	Determination of Residues of IKI-220 And its Metabolites TFNG,
E/789/S/01			TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220
			50% WG (IBE 3894) (Italy, Spain, North and South of France, Germany and United Kingdom—Season 2001) Batelle, Geneva
			Research Centres; GLP, unpublished Field part: Valli, F 2001.
			Production of samples for residue analysis in wheat after 2 foliar
			applications of IKI-220 Agri 2000, December 5, 2001 GLP,
			unpublished Trial—220/TRAZW 09/I/01
A-22-01-16	Ginzburg, N	2002n	Determination of Residues of IKI-220 And its Metabolites TFNG,
AF/5731/IB			TFNA and TFNA-AM in Winter Wheat after two treatments of IKI-220
			50% WG (IBE 3894) (Italy, Spain, North and South of France,
			Germany and United Kingdom—Season 2001) Batelle, Geneva
			Research Centres; GLP, unpublished Field part: Anthony, S, 2002. To
			generate crop specimens for analysis of IKI-220 residues in the RAC winter wheat resulting from a sequential application of IBE 3894 in S
			France. N France and UK during 2001 Agrisearch, report no, August 6,
			2002 GLP, unpublished Trial—220/TRAZW 14/F/01
A-22-01-16	Ginzburg, N	2002o	Determination of Residues of IKI-220 And its Metabolites TFNG,
AF/5731/IB	2, 2, 2,		TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220
			50% WG (IBE 3894) (Italy, Spain, North and South of France,
			Germany and United Kingdom—Season 2001) Batelle, Geneva
			Research Centres; GLP, unpublished Field part: Anthony, S, 2002. To
			generate crop specimens for analysis of IKI-220 residues in the RAC
			winter wheat resulting from a sequential application of IBE 3894 in S
			France. N France and UK during 2001 Agrisearch, report no, August 6, 2002 GLP, unpublished Trial—220/TRAZW 15/F/01
A-22-01-16 016-	Ginzburg, N	2002p	Determination of Residues of IKI-220 And its Metabolites TFNG,
01-IK-I/G	GIIIZUUIG, IV	2002p	TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220
			50% WG (IBE 3894) (Italy, Spain, North and South of France,
			Germany and United Kingdom—Season 2001) Batelle, Geneva
			Research Centres; GLP, unpublished Field part: Corts, V. 2001:
			Generation of specimens of wheat RAC following a program of foliar
			sprays of an IBE 3894 WG formulation for the purpose of quantifying
			residues of the ai. Trial to generate a single sampling. Recerca agrícola;
A-22-01-16 043-	Ginzburg, N	2002q	November 22, 2001 GLP, unpublished Trial—220/TRAZW 10/E/01 Determination of Residues of IKI-220 And its Metabolites TFNG,
01-IK-I/G	Gilizourg, IV	2002 q	TFNA and TFNA-AM In Winter Wheat after two treatments of IKI-220
01-1K-1/O			50% WG (IBE 3894) (Italy, Spain, North and South of France,
			Germany and United Kingdom—Season 2001) Batelle, Geneva
			Research Centres; GLP, unpublished Field part: Corts, V. 2001:
			Generation of specimens of wheat RAC following a program of foliar
			sprays of an IBE 3894 WG formulation for the purpose of quantifying
			residues of the ai. Trial to generate a single sampling. Recerca agrícola;
D 22 01 02	Circle N	20021	November 22, 2001 GLP, unpublished Trial—220/TRAZW 11/E/01
P-22-01-02	Ginzburg, N	2003b	Processing study for determination of IKI-220 and its metabolites TFNG, TFNA and TFNA-AM on peaches after two treatments of IKI-
			220 50% WG (IBE 3894) (Southern Europe—Season-2001) Battelle,
			GLP, unpublished
A-22-00-03	Ginzburg, N	2003a	Freezer storage stability of IKI-220 and its metabolites TFNG, TFNA
	6,		and TFNA-AM on various crops. Battelle, Carouge/Geneva,
			Switzerland; GLP, unpublished
010424-1	Gupta, KS	2002	Metabolism of [14C]IKI-220 by potato. Ricerca LLC, Ohio, USA;
	:		Report No, March 5, 2002 GLP, unpublished
011750-1	Gupta, KS &	2002	Metabolism of [14C]IKI-220 in laying hens. Ricerca LLC, Ohio, USA;
	Bassett, J		Report No; May 17, 2002; amendment no. 1 of March 25, 2004 and
010416-1	Gunta VC &	2002	amendment no. 2 of September 27, 2004 GLP, unpublished Metabolism of [14C]IKI-220 by wheat. Ricerca LLC, Ohio, USA;
010410-1	Gupta, KS & Kaman, RA	2002	March 5, 2002 GLP, unpublished
011048-1	Gupta, KS &	2002	Metabolism of [14C]IKI-220 in lactating goats. Ricerca LLC, Ohio,
J.10.0 1	Savides, MC	-002	USA; April 17, 2002; amendment no. 1 of March 25, 2004 GLP,
	, -		unpublished
6933-96-0186-	Hatzenbeler, CJ &	2002	An Aerobic Soil Metabolism Study with [14C]IKI-220. Ricerca, LLC,
EF-001-001	Herczog, KJS		amended GLP, unpublished
12 ISK AA 0701	Kiss, Z	2013	Residue Analysis of the Active Ingredient Flonicamid and its

Code	Author(s)	Year	Title, Institute, Report reference
			Metabolites (TFNA and TFNG) of IBE3894/TEPPEKI (Teppeki 50% Flonicamid WG) Insecticide in Pumpkin According to GLP Quality Control System Pesticide Analytical Laboratory, Velence, GLP, unpublished
I-329	Kiyuna, C, Sakai, A, Tada, Y & Kanza, T	2008	Metabolism of [14C]IKI-220 in bell peppers Ishihara Sangyo Kaisha Ltd., Japan; August 25, 2008 non-GLP, unpublished
842993	Krainz, A	2002	Validation of a residue analytical method for IKI-220 and its metabolites TFNA, TFNA-AM, OH-TFNA-AM and TFNG in milk. RCC Ltd, Itingen, Switzerland, August 22, 2002 GLP, unpublished
844743	Krainz, A	2003	Development and validation of a residue analytical method for IKI-220 and its metabolites OH-TFNA-AM, TFNA-AM, TFNG and TFNA in animal tissue. RCC Ltd, Itingen, Switzerland, January 13, 2003 GLP, unpublished
013066-1	Lentz, NR	2002	Rate of Degradation of [14C]IKI-220 in Soil. Ricerca LLC, GLP, unpublished
UPL/GLP/10/07-	Litzow, D	2013a	Residues of UPI-220 in Cotton Australia, 2011 Agrisearch Services Pty Ltd, GLP, unpublished
UPL/GLP/12/01-	Litzow, D	2013b	Residues of UPI-220 in Cotton Australia, 2012 Agrisearch Services Pty Ltd, GLP, unpublished
UPL/GLP/12/01-	Litzow, D	2013b	Residues of UPI-220 in Cotton Australia, 2012 Agrisearch Services Pty
010250-1	O`Donnell, RT	1999b	Ltd, GLP, unpublished IKI-220, PAI (Lot #9803)—Organic Solvent Solubility Ricerca, Inc.; Report No GLP, unpublished
010250-1	O'Donnell, RT	1999b	IKI-220, PAI (Lot #9803)—Organic Solvent Solubility Ricerca, Inc.; GLP, unpublished
010251-1	O'Donnell, RT	1999a	IKI-220, PAI (Lot #9803)—Water Solubility Ricerca, Inc.; GLP, unpublished
011586-1	Panthani, AM, Baker, MC & Sandacz Herczog, KJ	2002	Metabolism of [14C]IKI-220 in peaches. Ricerca LLC, Ohio, USA; March 5, 2002 GLP, unpublished
014121-1	Panthani, AM, Findak, D & Herczog, KJS	2003	Metabolism of [14C]IKI-220 by wheat forage and hay. Ricerca LLC, Ohio, USA; January 7, 2003 GLP, unpublished
012575-1	Pelton, JA	2000	IKI-220 TGAI—Appearance, pH, and Relative Density Ricerca, Inc.; GLP, unpublished
012575-1	Pelton, JA	2000	IKI-220 TGAI—Appearance, pH, and Relative Density Ricerca, Inc.; GLP, unpublished
ADPEN-2K2- 1126-FMC-ISK	Perez, R	2003	Independent laboratory validation of FMC Corporation for the analysis of IKI-220 and degradates in/on cow muscle, kidney and liver. ADPEN
P 2960 G	Richter, S	2013	Laboratories, Florida, USA, January 14, 2003 GLP, unpublished Independent Laboratory Validation (ILV) of a Residue Analytical Method for the Determination of Floricamid and Its Metabolite TFNA-
ISK/IKI/06001	Royer, A	2008	AM in Foodstuff of Animal Origin PTRL Europe, GLP, unpublished IKI-220 and its major metabolites Validation of an LC-MS/MS analytical method for the active substance IKI-220 and its 3 major metabolites (TFNA-AM, TFNA and TFNG) in lemon, potato, oil-seed rape and wheat grain, plum and prune ADME Bioanalyses France; GLP, unpublished
IR-4 PR No. 09604	Samoil, KS	2010	Flonicamid: Magnitude of the Residue on Strawberry IR-4 Project, GLP, unpublished
IR-4 PR No. 08551	Samoil, KS	2011a	Flonicamid: Magnitude of the Residue on Cucumber (Greenhouse) IR-4 Project, GLP, unpublished
IR-4 PR No. 08556	Samoil, KS	2012a	Flonicamid: Magnitude of the Residue on Tomato (Field and Greenhouse) IR-4 Project, GLP, unpublished
IR-4 PR No. 08754	Samoil, KS	2006a	Flonicamid: Magnitude of the Residue on Carrot IR-4 Project, GLP, unpublished
IR-4 PR No. 08753	Samoil, KS	2006b	Flonicamid: Magnitude of the Residue on Radish IR-4 Project, GLP, unpublished
IR-4 PR No. 09783	Samoil, KS	2011b	Flonicamid: Magnitude of the Residue on Canola IR-4 Project, GLP, unpublished
IR-4 PR No. 09358	Samoil, KS	2012b	Flonicamid: Magnitude of the Residue on Mint IR-4 Project, GLP, unpublished
IR-4 PR No. 09943	Samoil, KS	2012c	Flonicamid: Magnitude of the Residue on Alfalfa and Crimson Clover IR-4 Project, GLP, unpublished

Code	Author(s)	Year	Title, Institute, Report reference
IR-4 PR No.	Samoil, KS	2005	Flonicamid: Magnitude of the Residue on Hops IR-4 Project, GLP,
08706	a 11 770		unpublished
IR-4 PR No. 09783	Samoil, KS	2011b	Flonicamid: Magnitude of the Residue on Canola IR-4 Project, GLP,
1R-4 PR No.	Samoil, KS	2012b	unpublished Flonicamid: Magnitude of the Residue on Mint IR-4 Project, Report No
09358	Samon, KS	20120	GLP, unpublished
IR-4 PR No.	Samoil, KS	2010	Flonicamid: Magnitude of the Residue on Strawberry IR-4 Project,
09604	,		Report No GLP, unpublished
IR-4 PR No.	Samoil, KS	2011a	Flonicamid: Magnitude of the Residue on Cucumber (Greenhouse) IR-4
08551			Project, Report No GLP, unpublished
010341-1	Schetter, JE	1999	IKI-220—Vapor Pressure Ricerca, Inc.; GLP, unpublished
834028	Schmiedel, U	2001	Expert Statement on the Explosive Properties of IKI-220 Technical
DI /11/002	C: 1- D	2011	RCC Ltd, GLP, unpublished
PL/11/002	Simmonds, R	2011	[14C]Flonicamid: Nature of residues in processed commodities—High temperature hydrolysis Battelle UK Ltd., GLP, unpublished
01053-1	Sweetapple, GG	1999	IKI-220 PAI—Melting Point, Relative Density, Physical State, Color,
01033 1	ъ жеспарые, оо	1///	and Odor Ricerca, Inc.; GLP, unpublished
01053-1	Sweetapple, GG	1999	IKI-220 PAI—Melting Point, Relative Density, Physical State, Color,
	11 /		and Odor Ricerca, Inc.; GLP, unpublished
01053-1	Sweetapple, GG	1999	IKI-220 PAI—Melting Point, Relative Density, Physical State, Color,
			and Odor Ricerca, Inc.; GLP, unpublished
S11-02600	Tessier, V	2012	Flonicamid IKI-220 (IBE 3894)—Residue study in melon fruits (pulp
			and peel) after foliar applications of IBE 3894 in Spain, Italy and
			Southern France in 2011 Eurofins ADME Bioanalyses, GLP,
842001	Tognucci, A	2002	unpublished Determination of the boiling point/boiling range of IKI-220 PAI RCC
042001	rognucci, m	2002	Ltd, RCC GLP, unpublished
826154	Van Dijk, A	2003	IKI-220 ruminant feeding study: Residues of IKI-220 in milk and
	J /		edible tissues of cattle. RCC Ltd., Switzerland; January 14, 2003 GLP,
			unpublished
011049-1	Walsh, KJ	2002c	A Confined Rotational Crop Study with [14C]IKI-220. Ricerca, LLC,
011200 1	*** 1.1 ***	20021	GLP, unpublished
011298-1	Walsh, KJ	2002b	Photochemical Degradation of [14C]IKI-220 in Soil. Ricerca LLC,
011050-1	Walsh, KJ	2002a	GLP, unpublished A photolysis study of [14C]IKI-220 in water. Ricerca, LLC; March 6,
011030-1	waisii, KJ	2002a	2002 GLP, unpublished
008076-2	Walsh, KJ &	2000	A Hydrolysis Study of [14C]IKI-220 in Water Ricerca, Inc.; GPL,
0000702	Murray, MD	2000	unpublished
008076-2	Walsh, KJ &	2000	A hydrolysis study of [14C]IKI-220 in water. Ricerca, LLC; Report No
	Murray, MD		GLP, unpublished
011050-1	Walsh, KJ	2002a	A Photolysis Study of [14C]IKI-220 in Water Ricerca, Inc.; GLP,
E A COM A NI	XX 1 II	2010	unpublished
EASSM No. S09-01231	Weber, H	2010	Independent Laboratory Validation of an LC-MS/MS analytical method for the active substance IKI-220 and its 3 major metabolites (TFNA-
309-01231			AM, TFNA and TFNG) in lemon, potato, oil-seed rape, wheat (grain)
			and plum Eurofins Dr. Specht GLP GmbH; GLP, unpublished
IB-2001-MDG-	Wiedman, JL	2002a	Magnitude of Residues of IKI-220 on Pome Fruit—USA in 2001 ISK
003-00-01	,		Biosciences, GLP, unpublished
IB-2001-MDG-	Wiedman, JL	2002b	Magnitude of Residues of IKI-220 on Stone Fruit—USA in 2001 ISK
005-00-01	****	2002	Biosciences, GLP, unpublished
IB-2001-MDG-	Wiedman, JL	2002c	Magnitude of Residues of IKI-220 on Cucurbits—USA in 2001 ISK
007-00-01 IB-2001-MDG-	Wiedman, JL	2003a	Biosciences, GLP, unpublished Magnitude of Residues of IKI-220 on Fruiting Vegetables—USA in
006-00-01	w icuman, JL	2003a	2001 ISK Biosciences, GLP, unpublished
IB-2001-MDG-	Wiedman, JL	2003a	Magnitude of Residues of IKI-220 on Fruiting Vegetables—USA in
006-00-01	, - —		2001 ISK Biosciences, GLP, unpublished
IB-2001-MDG-	Wiedman, JL	2003b	Magnitude of Residues of IKI-220 on Potatoes—USA in 2001 ISK
002-00-01			Biosciences, GLP, unpublished
IB-2011-JLW-	Wiedman, JL	2012	Magnitude of Residues of Flonicamid on Almonds and Pecans—USA
014-01-01	777° 1 77	2002.1	in 2011 ISK Biosciences, Report No GLP, unpublished
IB-2001-MDG- 004-00-01	Wiedman, JL	2002d	Magnitude of Residues of IKI-220 on Cotton—USA in 2001 ISK
IB-2001-MDG-	Wiedman, JL	2002a	Biosciences, GLP, unpublished Magnitude of Residues of IKI-220 on Pome Fruit—USA in 2001 ISK
003-00-01	m reaman, JL	2002a	Biosciences, GLP, unpublished
IB-2001-MDG-	Wiedman, JL	2002b	Magnitude of Residues of IKI-220 on Stone Fruit—USA in 2001 ISK
005-00-01	-		Biosciences, GLP, unpublished

Code	Author(s)	Year	Title, Institute, Report reference
IB-2001-MDG-	Wiedman, JL	2003a	Magnitude of Residues of IKI-220 on Fruiting Vegetables—USA in
006-00-01			2001 ISK Biosciences, GLP, unpublished
IB-2001-MDG-	Wiedman, JL	2003b	Magnitude of Residues of IKI-220 on Potatoes—USA in 2001 ISK
002-00-01			Biosciences, GLP, unpublished
IB-2001-MDG-	Wiedman, JL	2002d	Magnitude of Residues of IKI-220 on Cotton—USA in 2001 ISK
004-00-01			Biosciences, GLP, unpublished
IB-2001-JLW-	Wiedman, JL	2003c	Field Accumulation of IKI-220 (Flonicamid) in Rotational Crops—
001-00-01			USA in 2001 ISK Biosciences Corporation, USA; GLP, unpublished