Pesticide residues in food 2009

Joint FAO/WHO Meeting on Pesticide Residues

FAO PLANT PRODUCTION AND PROTECTION PAPER

196

Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Geneva, Switzerland, 16–25 September 2009

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

ISBN 978-92-5-106452-8

All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to:

Chief

Electronic Publishing Policy and Support Branch Communication Division

Communicati

Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to:

copyright@fao.org

CONTENTS

List	of part	icipants	iii		
Abbı	reviati	ons	vii		
Use	of JMF	PR reports and evaluations by registration authorities	xi		
REP	ORT (OF THE 2009 JOINT FAO/WHO MEETING OF EXPERTS	1		
1.	Intro	duction	1		
2.	1.1 Gene	1.1 Declaration of interests			
	2.1	Transparency in THE Maximum residue level estimation process: further consideration	ons3		
	2.2	The OECD guidance document on livestock feeding	5		
	2.3	Guidance for data submission for estimation of residue levels in/on spices	7		
3. (CCI	_	Update of the fao manual on the submission and evaluation of Data on pesticide resid for the estimation of maximum residue levels in food and feed	8		
	3.1	Boscalid (221)			
	3.2	Carbofuran (096)			
	3.3	Chlorantraniliprole (230)			
	3.4	Cyfluthrin (157)/beta-cyfluthrin (228) – alternative GAP			
	3.5	Fenthion (39)			
	3.6	Methomyl (094)	18		
	3.7	Phorate (112)	19		
	3.8	Procymidone (136)	22		
	3.9	Spirotetramat (234)	24		
4.	3.10 Dieta	Triadimefon (133) and Triadimenol (168)ry risk assessment			
5. maxi		nation of data for acceptable daily intake and acute dietary intake for humans, residue levels and supervised trial median residue values	31		
	5.1	Benalaxyl (155) (R) **	31		
	5.2	Bifenthrin (178) (T) **	41		
	5.3	Boscalid (221) (R)	49		
	5.4	Buprofezin (173) (R)	69		
	5.5	Cadusafos (174) (T)**	77		
	5.6	Carbofuran (096) (R)	83		
	5.7	Chlorothalonil (081) (T)**	89		
	5.8	Chlornyrifos-methyl (090) (R) **	99		

5.9	9 Cycloxydim (179) (T) **	125		
5.	0 Cypermethrin (118) (R)	131		
5.	1 Fenbuconazole (197) (R)	135		
5.	2 Fluopicolide (235) (T, R)*	141		
5.	3 Haloxyfop (194) and haloxyfop-P (R)**	165		
5.	4 Hexythiazox (176) (R)**	193		
5.	5 Indoxacarb (216) (R)	209		
5.	6 Metaflumizone (236) (T, R)*	217		
5.	7 Methoxyfenozide (209) (R)	239		
5.	8 Paraquat (057) (R)	247		
5.	9 Prochloraz (142) (R)	249		
5.2	20 Prothioconazole (232) (R)	251		
5.2	21 Spirodiclofen (237) (T, R)*	261		
Future v	vork			
	ended maximum residue limits and supervised trials median residue values record			
Annex 2	: Index of reports and evaluations of pesticides by the JMPR	307		
Annex 3	: International estimated daily intakes of pesticide residues	319		
Annex 4	International estimates of short-term dietary intakes of pesticide residues365			
	5.12 Fluopicolide (235) (T, R)*			
Groups Annex 6				
	·			
COLLIGE	ida – Coffections to the Kepoft of the 2008 Meeting	4 <i>4</i> 7		

D, dietary risk assessment; R, residue and analytical aspects; T, toxicological evaluation.

^{*} New compound

^{**} Evaluated within the periodic review programme of the Code Committee on Pesticide Residues

LIST OF PARTICIPANTS

2009 JOINT FAO/WHO MEETING ON PESTICIDE RESIDUES

GENEVA, 16–25 SEPTEMBER 2009

FAO Members

- Dr Ursula Banasiak, Federal Institute for Risk Assessment, Thielallee 88-92, D-14195 Berlin, Germany
- Professor Eloisa Dutra Caldas, University of Brasilia, College of Health Sciences, Pharmaceutical Sciences Department, Campus Universitário Darci Ribeiro, 70919-970 Brasília/DF, Brazil
- Mr Stephen Funk, Health Effects Division (7509P), United States Environmental Protection Agency, 1200 Pennsylvania Avenue NW, Washington DC 20460, USA
- Mr Denis J. Hamilton, Principal Scientific Officer Biosecurity, Department of Primary Industries and Fisheries, PO Box 46, Brisbane, QLD 4001, Australia
- Mr David Lunn, Senior Programme Manager (Residues–Plants), Export Standards Group, New Zealand Food Safety Authority, PO Box 2835, Wellington, New Zealand (FAO Rapporteur)
- Dr Dougal MacLachlan, Australian Quarantine and Inspection Service, Australian Government Department of Agriculture, Fisheries and Forestry, GPO Box 858, Canberra, ACT 2601, Australia
- Dr Bernadette Ossendorp, Centre for Substances and Integrated Risk Assessment, National Institute of Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, Netherlands (FAO Chairman)
- Dr Yukiko Yamada, Deputy Director-General, Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8950, Japan

WHO Members

Professor Alan R. Boobis, Experimental Medicine & Toxicology, Division of Investigative Science, Faculty of Medicine, Imperial College London, Hammersmith Campus, Ducane Road, London W12 0NN, England

- Dr Vicki L. Dellarco, Office of Pesticide Programs (7501P), United States Environmental Protection Agency, 1200 Pennsylvania Avenue NW, Washington, DC 20460, USA (WHO Rapporteur)
- Dr Helen Hakansson, Institute of Environmental Medicine, Karolinska Institutet, Unit of Environmental Health Risk Assessment, Box 210, Nobelsväg 13, S-171 77 Stockholm, Sweden
- Professor Angelo Moretto, Department of Environmental and Occupational Health, University of Milan, International Centre for Pesticides and Health Risk Prevention, Luigi Sacco Hospital, Via Stephenson 94, 20157 Milan, Italy (WHO Chairman)
- Dr Roland Solecki, Chemical Safety Division, Steering of Procedures and Overall Assessment, Federal Institute for Risk Assessment, Thielallee 88-92, D-14195 Berlin, Germany
- Dr Maria Tasheva, Consultant, National Service for Plant Protection, Ministry of Agriculture and Food, 17 Hristo Botev Bul. 1040 Sofia, Bulgaria

Secretariat

- Dr habil. Árpád Ambrus, Hungarian Food Safety Office, Gyali ut 2-6, 1097 Budapest, Hungary (FAO Temporary Adviser)
- Mr Kevin Bodnaruk, 26/12 Phillip Mall, West Pymble, NSW 2073, Australia (FAO Editor)
- Dr Katie Calp, Pest Management Regulatory Agency, Health Canada, 2720 Riverside Drive, AL 6605E Ottawa, Canada (WHO Temporary Adviser)
- Ms Gracia Brisco, Food Standards Officer, Joint FAO/WHO Food Standards Programme, Nutrition and Consumer Protection Division, Food and Agriculture Organization of the United Nations, Viale delle terme di Caracalla, 00153 Rome, Italy (Codex Secretariat)
- Dr Ian Dewhurst, Chemicals Regulation Directorate, Mallard House, King's Pool, 3 Peasholme Green, York YO1 7PX, England (WHO Temporary Adviser)
- Dr William Donovan, United States Environmental Protection Agency, MC 7509C, Washington, DC 20460, USA (FAO Temporary Adviser)
- Mr Makoto Irie, Plant Product Safety Division, Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8950, Japan (FAO Temporary Adviser)

- Dr Debabrata Kanungo, Additional DG, Directorate General of Health Services, Ministry of Health and Family Welfare, West, Block No. 1, R.K. Puram, New Delhi, India (WHO Temporary Adviser)
- Dr Katerina Mastovska, Eastern Regional Research Center (ERRC), Agricultural Research Service (ARS), United States Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA (FAO Temporary Adviser)
- Dr Jeronimas Maskeliunas, Food Standards Officer, Joint FAO/WHO Food Standards Programme, Nutrition and Consumer Protection Division, Food and Agriculture Organization of the United Nations, Viale delle terme di Caracalla, 00153 Rome, Italy (Codex Secretariat)
- Dr Heidi Mattock, 21 bis rue du Mont Ouest, 38230 Tignieu-Jameyzieu, France (WHO Editor)
- Dr Douglas B. McGregor, Toxicity Evaluation Consultants, 38 Shore Road, Aberdour KY3 0TU, Scotland (WHO Temporary Adviser)
- Dr Rudolf Pfeil, Toxicology of Pesticides and Biocides, Federal Institute for Risk Assessment, Thielallee 88-92, D-14195 Berlin, Germany (WHO Temporary Adviser)
- Dr Xiongwu Qiao, Shanxi Academy of Agricultural Sciences, 2 Changfeng Street, Taiyuan, Shanxi 030006, China (FAO Temporary Adviser)
- Ms Jeannie Richards, 15 bis rue Georges Musy, 71100 Saint Remy, France (FAO Temprary Advisor)
- Dr Prakashchandra V. Shah, United States Environmental Protection Agency, Mail Stop: 7505P, 1200 Pennsylvania Avenue NW, Washington DC 20460, USA (WHO Temporary Adviser)
- Mr Christian Sieke, Federal Institute for Risk Assessment, Thielallee 88-92, D-14195 Berlin, Germany (FAO Temporary Adviser)
- Dr Angelika Tritscher, Food Safety and Zoonoses (FOS), International Programme on Chemical Safety, World Health Organization, 1211 Geneva 27, Switzerland (WHO Joint Secretary)
- Ms Trijntje van der Velde, National Institute of Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, Netherlands (FAO Temporary Adviser)
- Dr Gerrit Wolterink, Centre for Substances & Integrated Risk Assessment, National Institute of Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, Netherlands (WHO Temporary Adviser)

- Ms Yong Zhen Yang, Plant Protection Service (AGPP), Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy (FAO Joint Secretary)
- Dr Midori Yoshida, Section Chief, Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, Ministry of Health, Labor and Welfare, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan (WHO Temporary Adviser)
- Dr Jürg Zarn, Swiss Federal Office of Public Health, Nutritional and Toxicological Risks Section, Stauffacherstrasse 101, CH-8004 Zurich, Switzerland (WHO Temporary Adviser)

ABBREVIATIONS

ADI acceptable daily intake

ai active ingredient

ALP alkaline phosphatase

ALT alanine aminotransferase

ARfD acute reference dose

AST aspartate aminotransferase

AUC area under the curve for concentration—time

BMDL₁₀ benchmark-dose lower 95% confidence level

BROD benzyloxyresorufin *O*-de-ethylase

bw body weight

CAR constitutive androstane receptor

CAS Chemical Abstracts Service

CCFAC Codex Committee on Food Additives and Contaminants

CCN Codex classification number (for compounds or commodities)

CCPR Codex Committee on Pesticide Residues

C_{max} maximum concentration

CXL Codex MRL

 DT_{50} time taken for 50% of the concentration to dissipate

 EC_{50} the concentration of agonist that elicits a response that is 50% of the possible

maximum

EROD ethoxyresorufin *O*-deethylase

 F_0 parental generation F_1 first filial generation

F₂ second filial generation

FAO Food and Agricultural Organization of the United Nations

FOB functional observational battery

GAP good agricultural practice

GC gas chromatography

GC-FPD gas chromatography with flame photometric detection

GGT gamma-glutamyltransferase

GEMS/Food Global Environment Monitoring System–Food Contamination Monitoring and

Assessment Programme

HR highest residue in the edible portion of a commodity found in trials used to

estimate a maximum residue level in the commodity

HR-P highest residue in a processed commodity calculated by multiplying the HR of the

raw commodity by the corresponding processing factor

IC₅₀ concentration required to inhibit activity by 50%

IEDI international estimated daily intake

IESTI international estimate of short-term dietary intake
ISO International Organization for Standardization

IUPAC International Union of Pure and Applied Chemistry

JECFA Joint Expert Committee on Food Additives

JMPR Joint Meeting on Pesticide Residues

JMPS Joint FAO/WHO Meeting on Pesticide Specifications

LC liquid chromatography

LC₅₀ median lethal concentration

LD₅₀ median lethal dose

LOAEL lowest-observed-adverse-effect level

LOAEC lowest-observed-adverse-effect concentration

LOD limit of detection

LOQ limit of quantification

MCH mean corpuscular haemoglobin

MCV mean corpuscular volume

MEQ methylethoxyquin

MLE maximum likelihood estimation

MRL maximum residue limit
MS mass spectrometry

MS/MS tandem mass spectrometry

NOAEL no-observed-adverse-effect level

NTE neuropathy target esterase

OECD Organization for Economic Co-operation and Development

PPARα peroxisome proliferator-induced receptor alpha

PHI pre-harvest interval ppm parts per million

PROD pentylresorufin *O*-dealkylase STMR supervised trials median residue

STMR-P supervised trials median residue in a processed commodity calculated by

multiplying the STMR of the raw commodity by the corresponding processing

factor

T3 triiodothyronine

T4 thyroxine

TRR total radiolabelled residue

TSH thyroid stimulating hormone

TMDI theoretical maximum daily intake

UCL upper confidence limit

WHO World Health Organization

USE OF JMPR REPORTS AND EVALUATIONS BY REGISTRATION AUTHORITIES

Most of the summaries and evaluations contained in this report are based on unpublished proprietary data submitted for use by JMPR in making its assessments. A registration authority should not grant a registration on the basis of an evaluation unless it has first received authorization for such use from the owner of the data submitted for the JMPR review or has received the data on which the summaries are based, either from the owner of the data or from a second party that has obtained permission from the owner of the data for this purpose.

Introduction

PESTICIDE RESIDUES IN FOOD

REPORT OF THE 2009 JOINT FAO/WHO MEETING OF EXPERTS

1. INTRODUCTION

A Joint FAO/WHO Meeting on Pesticide Residues (JMPR) was held at the headquarters of the World Health Organization (WHO), Geneva, Switzerland, from 16 to 25 September 2009. The Meeting brought together the Food and Agriculture Organization (FAO) Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group.

The meeting was opened by Dr Bruce Aylward, Director, WHO, on behalf of the Directors-General of WHO and FAO.

Dr Aylward acknowledged the impressive and successful work performed by this programme for over 45 years, and the important role played by the Meeting in the establishment of international food safety standards, thereby contributing to the improvement of public health. The provision of independent scientific advice as a basis for public-health decision-making lies at the core of work carried out by WHO and the experts participating in the Meeting are thus contributing directly to the goals of the organization. The process of furnishing independent scientific advice and a rapid coordinated response to incidents involving food safety is of increasing importance in the current global environment. The new International Health Regulations (IHR) will play an important role in facilitating this process. Previously concerning only some communicable diseases, the IHR have been expanded to include events of non-communicable origin. Reorganization has taken place at WHO to reflect this change and the formation of the new cluster on Health Security and the Environment (HSE) will allow closer collaboration in this area. In closing, Dr Aylward noted the challenging tasks to be accomplished by the present Meeting and gratefully acknowledged the invaluable contribution made by the participating experts, including the tremendous efforts put into preparation of the Meeting.

The Meeting was held in pursuance of recommendations made by previous Meetings and accepted by the governing bodies of FAO and WHO that studies should be undertaken jointly by experts to evaluate possible hazards to humans arising from the occurrence of residues of pesticides in foods. The reports of previous Meetings (see Annex 5) contain information on acceptable daily intakes (ADIs), acute reference doses (ARfDs), maximum residue levels (MRLs), and the general principles that have been used for evaluating pesticides. The supporting documents (residue and toxicological evaluations) contain detailed monographs on these pesticides and include evaluations of analytical methods.

During the Meeting, the FAO Panel of Experts was responsible for reviewing residue and analytical aspects of the pesticides under consideration, including data on their metabolism, fate in the environment, and use patterns, and for estimating the maximum levels of residues that might occur as a result of use of the pesticides according to good agricultural practice. The estimation of MRLs and supervised trials median residues (STMR) values for commodities of animal origin was elaborated. The WHO Core Assessment Group was responsible for reviewing toxicological and related data in order to establish ADIs, and ARfDs, where necessary and possible.

The Meeting evaluated 25 pesticides, including three new compounds and eight compounds that were re-evaluated within the Code Committee on Pesticide Residues (CCPR) periodic review programme for toxicity or residues, or both. The Meeting established ADIs and ARfDs, estimated MRLs and recommended them for use by the Codex Committee on Pesticide Residues (CCPR), and estimated STMR and highest residue (HR) levels as a basis for estimating dietary intakes.

The Meeting also estimated the dietary intakes (both short-term and long-term) of the pesticides reviewed and, on this basis, performed a dietary risk assessment in relation to their ADIs or

2 Introduction

ARfDs. Cases in which ADIs or ARfDs may be exceeded were clearly indicated in order to facilitate the decision-making process by the CCPR. The rationale for methodologies for long-term and short-term dietary risk assessment are described in detail in the reports of the 1997 JMPR (Annex 5, reference 80, section 2.3) and 1999 JMPR (Annex 5, reference 86, section 2.2). Additional considerations are described in the report of the 2000 JMPR (Annex 5, reference 89, sections 2.1–2.3).

The Meeting considered a number of general issues addressing current issues related to the risk assessment of chemicals, the evaluation of pesticide residues and the procedures used to recommend maximum residue levels.

1.1 DECLARATION OF INTERESTS

The Secretariat informed the Committee that all experts participating in the 2009 JMPR had completed declaration-of-interest forms, and that no conflicts had been identified. Professor Alan Boobis and Dr Douglas McGregor had undertaken minor consultancies, but these were not related to compounds on the agenda. Experts were then asked to inform the meeting of any new potential interests that had arisen since submitting the forms and no interests were declared.

2. GENERAL CONSIDERATIONS

2.1 TRANSPARENCY IN THE MAXIMUM RESIDUE LEVEL ESTIMATION PROCESS: FURTHER CONSIDERATIONS

The Forty-first Session of the CCPR discussed transparency in the process by which maximum residue levels are estimated by the JMPR, as a response to General consideration 2.7 in the JMPR 2008 report. The Meeting in 2008 had, in addition to its usual procedure, used the North American Free Trade Agreement (NAFTA) MRL calculator to estimate maximum residue levels and had produced a summary table in which it was explained when JMPR estimates differed from estimates derived by the NAFTA calculator.

The CCPR recommended that "for the 2009 JMPR meeting the OECD statistical calculation method would be used, if available, and if not available the NAFTA calculator method would continue to be used and reported and, to the extent possible, brief explanations of derivation of the maximum residue levels would be provided when the calculator was not used". The present Meeting decided that, instead of producing a summary table for these cases, it would provide additional explanation on how the value was derived for each pesticide × commodity maximum residue level recommendation.

The present Meeting noted that a MRL is the maximum residue anticipated in a commodity produced in accordance with good agricultural practice (GAP). The process of estimating a value for use as a MRL involves selection of residue trials conducted according to a critical GAP. It is generally the highest observed residue value that has the greatest influence on the estimated MRL. Small datasets (those with less than 15 data points), represent a particular challenge when undertaking an estimation. The JMPR has previously noted that 95th or 99th percentiles estimated on the basis of statistical methods are increasingly inaccurate for datasets of less than 15 points and such estimates should not be automatically used. The Meeting agreed that the estimates provided using statistical methods are generally acceptable for larger datasets. Data available to the JMPR generally have additional limitations that can compromise the use of statistical approaches, including whether the trials represent a random sample. Some of these limitations have been elaborated in previous reports of the JMPR, principally in 2008.

The JMPR employs expert judgement informed by the available tools, such as statistical approaches to estimate maximum residue levels. Additional factors are taken into account by the JMPR as part of the application of expert judgement, as discussed below.

Experience leads to an understanding of the uncertainties in the parameters involved in the estimation of maximum residue levels. From the information considered, the most appropriate value must be identified in a decision that makes the best use of all the available evidence. The initial deposit of a pesticide on a crop is the best indicator of the proper application of a pesticide when the edible part of the crop is present and well-developed at the time of application. For example, the analysis of available data on pesticides has enabled estimates to be made for the upper limits and ranges of initial deposits for many crops. Various factors beyond those used in statistical calculation, such as the examples listed below, may be taken into account in the estimation of maximum residue levels.

¹ Codex Alimentarius Commission (2009) Report of the Forty-first Session of the Codex Committee on Pesticide Residues, Beijing, China, 20–25 April 2009 (ALINORM 09/32/24), paras 30–45.

² Bates JAR (1990) The prediction of pesticide residues in crops by the optimum use of existing data. Pure & Applied Chemistry 62: 337–350.

Table 1 Factors to be taken into account when estimating maximum residue levels

Issue or factor

Accumulated data on the distribution of residues from supervised trials for residues of pesticides on a crop provide a reliable basis for the likely spread of residues within a dataset. Such data complement the limited information that can be obtained from the small datasets usually available.

Some latitude is allowed regarding how closely trials comply with GAP in selecting the dataset for maximum residue estimation (typically, a change in parameters leading to a ±25% change in residues), if the majority of trials have been conducted at the lower or higher ends of the range used to select data, this should be taken into account when recommending a maximum residue level

Residues resulting from rates of application that are higher or lower than GAP, as well as studies of metabolism are taken into account in the context of the use to predict a pattern of likely residue concentrations, but are not used directly in the set of numbers that support a maximum residue level estimation or in the risk assessment.

Noting the effect of crop-growth stage where this aspect is particularly important. Examples of this are the herbicides haloxyfop and glyphosate, for which data selection concentrated on the growth stages that might occur before PHI rather than the time before harvest itself.

Should greater weight be given to different data within a dataset to account for differences between commercial practice and available trial conditions, e.g., varieties or cultivars grown, crops grown under protected cover versus field grown crops?

Whether or not the trial data are representative of differences in cultural practices, e.g., orchard and vine crop-production techniques, planting density, hedging versus spindle versus vase in tree architecture.

Whether or not the trial data are representative of differences in application equipment

Data from trials on one crop are sometimes extrapolated to other members of a crop group or used to recommend a maximum residue level for the entire group.

For post-harvest use of grain protectants, the application rates of the active ingredient provide a precise estimate of expected residue levels at the time of application. Additionally, the Meeting generally gives more weight to commercial-size trials than to laboratory-scale trials

Action or comment

The Meeting regularly considers the typical distribution of residues between trials, including initial deposits, and where limited trial data are available for a particular pesticide crop combination, adjusts the estimated maximum residue level appropriately.

The Meeting makes an allowance to account for how close the majority of selected residue trials match the critical GAP.

These values may provide information on situations where no residues are expected or provide information as to whether residues scale with application rate.

This example underlines the importance of expert judgement in selecting the suitable residue data for estimation of residue levels.

The JMPR may take into account the varieties and cultivars used in the available residue dataset. Allowances may need to be made in maximum residue level estimates, depending on the range of varieties used in the trials. For example, if no trials have been provided on small tomato varieties, a higher maximum residue level might be recommended.

The JMPR may make an allowance for unavoidable bias associated with differences in the cultural practices observed in the residue trials available.

The JMPR may make allowance for unavoidable bias associated with differences in the application equipment used in the residue trials available

The JMPR may need to make allowances for differences in crops when making recommendations based on extrapolation or for crop group MRLs

The JMPR may recommend maximum residue levels at the application rate as residues higher than the amount added are not expected

Issue or factor	Action or comment
Foliar application of a non-systemic pesticide to certain crops (root and tuber, cotton, tree nuts) may result in occasional residues on the harvested commodity owing to the commodity sometimes being exposed to direct spray (e.g., open cotton bolls).	The Meeting may recognize this in estimating maximum residues.
Commercial shelling of nuts may give rise to low levels of residues in nutmeat that need to be taken into account	The Meeting may recognize this when estimating maximum residues for tree nuts.

GAP, good agricultureal practice; PHI, pre-harvest interval.

It is possible that innovation will lead to new methods (such as predictive models for residues on crops and derived commodities) that might allow improved estimation of maximum residue levels.

Conclusion

The above examples of how the JMPR uses expert judgement indicate that evaluation of residue data is a complex task that requires the consideration of factors and parameters additional to the numerical residue values. Consequently, MRL estimates cannot be based solely on automatic calculation using any currently available "statistical" methods.

2.2 THE OECD GUIDANCE DOCUMENT ON LIVESTOCK FEEDING

The Meeting was informed that the Organisation for Economic Co-operation and Development (OECD) Guidance Document on Livestock Feeding is being written and will go through the OECD approval process in 2010. Meanwhile, many essential items on livestock feeding have been included in the OECD Overview Guidance³. Included in the Overview is an updated version of the OECD Table on feedstuffs derived from field crops. The original version was previously adopted by the JMPR in 2007.⁴ The table presents information on the consumption of various feed commodities by livestock in various regions of the world. The original version has been expanded by OECD to include several additional commodities and notably to include information on consumption by livestock in Japan.

The OECD Overview Guidance is currently intended to calculate the dietary burdens for livestock within OECD countries for the purpose of selecting appropriate doses for livestock feeding studies. However, the feedtables may also be used to construct livestock dietary burdens for the purpose of interpreting the results of feeding studies. The consumption information is combined with estimates of residues on the feed items (STMR or MRL values, as appropriate) to arrive at estimates of the total dietary burden of beef cattle, dairy cattle, sheep, pigs, and poultry for the pesticide under consideration. These values are then compared to the results of feeding studies to arrive at estimates of the levels of pesticides in milk, eggs, meat, fat, and edible offal. Results for cattle and poultry will be extrapolated to all relevant livestock.

The new method for calculating livestock dietary burden used by the NAFTA countries was noted. Commodities are classified by nutrition type (roughage, carbohydrate, protein) and maximum percentages of the total diet are set for each category for the various livestock. For example, the beef cattle diet is set at 15% roughage, 80% carbohydrate concentrate, and 5% protein concentrate. The aim of taking into account the animals' nutritional requirements is to arrive at a more realistic, less

³ OECD Environment, Health and Safety Publications. Guidance Document on overview of residue chemistry studies. Series on Testing and Assessment No. 64 and Series on Pesticides No. 32. Revised February 2009, Environment Directorate, Paris.

⁴ Food and Agriculture Organization (2007) General consideration 2.10: OECD livestock feed tables. In: Pesticide residues in food – 2007, FAO Plant Production and Protection Paper 191.

extreme diet. This reflects the situation in Canada and the United States of America (USA), but may not be applicable to other regions. OECD guidance continues to recommend the calculation of livestock dietary burden for regions other than Canada and the USA in a manner similar to that used by JMPR.

The Meeting considered that the NAFTA procedure was not applicable at the international level. This procedure relies upon intensive feeding, such as exists in very controlled situations in feed lots, and does not represent the situation in other parts of the world. The JMPR procedure maximizes livestock dietary-intake burdens of the pesticide by taking into account the feed items from different Codex classes (forage, grain, byproducts, etc.) and emphasizes the use of diverse feed items with maximum pesticide residues. This calculation is performed for every region for which there is information on livestock burden is available, the intention being to arrive at estimates that are inclusive of livestock burdens worldwide.

The JMPR procedure, as detailed in the FAO Manual⁵, will be continued. The present Meeting agreed to use the latest available version of the OECD feed table and to include it in the FAO Manual, Second Edition. The revised table will be used by the Meeting in 2010. The Meeting also decided that some modification to the OECD feed table would be needed for the version placed in the FAO Manual. The OECD had grouped feed items into four broad categories: forages; roots and tubers; cereal grains/crop seeds; byproducts of processing. The category "forages" as used by OECD includes virtually all plant commodities other than grains and roots and tubers (forage, fodder, silage, hay, straw, leaves and tops, and grasses), and thus encompasses a much wider selection of commodities than the narrower Codex definition.

The feed table will be modified to indicate the Codex crop group of each commodity (see Figure 1). This is important because in performing the calculation of livestock dietary burden, the total burden for the group is considered as well as the burden from each individual commodity. For example, if residues occurred in clover, alfalfa fodder, and bean fodder (the group of legume animal feeds), they should be considered in sequence, beginning with the calculated highest residue in the dry-weight feed. The detailed procedure is described in the FAO Manual.

In 2005, the JMPR expressed the opinion that fresh forages for animals were not an item of international trade requiring Codex MRLs and decided not to recommend further forage MRLs (Annex 5, reference 104). The Meeting stated that data on forage residues would continue to be evaluated and used in the estimation of farm-animal dietary burden. There may be situations in which fresh forages should be evaluated as being consumed only locally. i.e., being added to livestock dietary burden only in regions where relevant GAP produces residues in the fresh forage.

-

⁵ Food and Agriculture Organization. 2002. Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed.

⁶ Food and Agriculture Organization (2005) General consideration 2.1: JMPR recommendations for animal forage. In: Pesticide residues in food – 2005. FAO Plant Production and Protection Paper, 183:32.

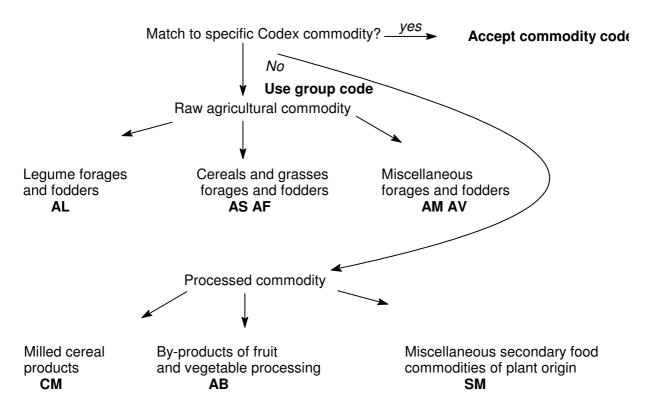


Figure 1 Determination of Codex commodity codes for the OECD category "forages"

2.3 GUIDANCE FOR DATA SUBMISSION FOR ESTIMATION OF RESIDUE LEVELS IN/ON SPICES

In response to the request of the CCPR at its Thirty-fourth Session, the 2002 JMPR considered the options for estimating maximum residue levels for spices based on monitoring data (Annex 5, reference 95, section 2.7) and provided guidance on the format for reporting such data. As the CCPR at its Thirty-fifth Session had decided to elaborate MRLs based on monitoring data (Annex 5, reference 95, section 2.7), the 2003 JMPR gave further consideration to possible options for estimating maximum residue levels where sufficient monitoring data were not available and prepared guidelines for conducting selective surveys to generate pesticide residue data reflecting the field and post-harvest application of pesticides (Annex 5, reference 95, section 2.5).

The 2004 JMPR considered the nature of monitoring results and defined the basic principles for the evaluation of monitoring data to estimate maximum residue levels (Annex 5, reference 95, section 2.6). The Meeting at that time recommended maximum residue levels that encompass at least 95% of the residues with 95% probability (in 95% of cases). To satisfy this requirement, a minimum of 59 residue datapoints for each spice commodity × pesticide residue combination is required.

The Meeting at that time further recommended that monitoring results should not be used for estimating maximum residue levels that reflect post-harvest use, which results in much higher residue values than foliar application or exposure to spray drift.

The present Meeting noted that the guidance given by the JMPR in previous reports might have been misinterpreted and, as a consequence, the residue data submitted were insufficient for evaluation.

In order to assist collection and submission of the appropriate information, the Meeting reemphasized that:

- The minimum number of datapoints required for each pesticide × spice commodity combination is 59;
- Where residue data are available for several spice commodities belonging to one group of spices, the JMPR will evaluate the residue data and if the residue distributions can be considered similar, then the JMPR may recommend a MRL for the commodity group;
- The JMPR cannot make any recommendations for pesticide classes such as organophosphates, carbamates, pyrethroids. If it is claimed, for instance, that no organophosphorous compounds were detected in 20 samples of a spice commodity, then it must be specified which compounds have been looked for and what were the respective LOQ and recovery values. The method performance parameters indicated must be supported with appropriate data on method validation.

In addition, the supporting information should be provided as specified in the JMPR reports on actual agricultural, storage and processing practice, the need for post-harvest protection, etc.

Comprehensive information on data requirements is also available in the second edition of the FAO Manual (section 3.6).

2.4 UPDATE OF THE FAO MANUAL ON THE SUBMISSION AND EVALUATION OF DATA ON PESTICIDE RESIDUES FOR THE ESTIMATION OF MAXIMUM RESIDUE LEVELS IN FOOD AND FEED

The first version of this manual, published in 1997, presented the principles applied by the JMPR. As the evaluation process is continually evolving, the first version of the manual was revised in 2002 and published as the first official edition. It incorporated additional information from the JMPR reports of 1997–2001. The last eight years have seen many changes in residue evaluations. The JMPR has elaborated some new principles, as well as revised many existing principles used for the evaluation of pesticide residues, which have been reproduced in the reports of its meetings.

The OECD Working Group on Pesticide has also elaborated several guidelines and guidance documents that are directly related to the design of supporting studies used in the evaluation of pesticide residues. The activities of the JMPR FAO Panel and the OECD Working Group were complementary, as several experts contributed to both activities. The OECD Working Group considered the principles applied by the JMPR, and the JMPR incorporated a number of the OECD guidelines in its evaluations. The 2006 JMPR (Annex 5, reference 107, section 2.1) decided that the OECD guidelines and guidance documents would be used in the preparation of future versions of the FAO Manual with the aims of maximum harmonization and future opportunities for work share.

The present second edition of the FAO Manual describes the basic principles currently applied by the FAO Panel in the evaluation of pesticide residues for recommending maximum residue levels. Some elements of the OECD documents have been incorporated in the manual without specific attribution. These guidelines and guidance documents have been cited in the references. In cases where more detailed information relating to a specific subject was considered to be particularly useful for the reader, the reference to the relevant guideline is given.

In addition to general updating of the text, the second edition contains new information on:

- Metabolism studies;
- Requirements regarding on environmental fate;
- Performance characteristics of analytical methods;
- Planning and implementing supervised residue trials;

- Use of residue monitoring data for estimation of maximum residue levels for spices;
- Statistical evaluation of residue data;
- Calculation of burden in animals, based on expanded feed consumption tables;
- Estimation of dietary intake of residues.

In order to improve the ease with which the subject of interest can be located in the manual, the sections are numbered. The chapter number is indicated in bold type, and the appendices are referenced with Roman numbers.

The second edition of the manual will be published by FAO and will be placed on the FAO website.

3. RESPONSES TO SPECIFIC CONCERNS RAISED BY THE CODEX COMMITTEE ON PESTICIDE RESIDUES (CCPR)

The Meeting noted that the information supplied on some of the concern forms submitted by CCPR Members was insufficient to allow the JMPR to clearly identify the critical issues underlying the indicated concerns. Consequently, the Meeting had great difficulty in determining the issues involved, raising the possibility that the response provided by the Meeting might not actually address the true concern. The Meeting requested that any future concerns submitted to JMPR should be accompanied by comprehensive and transparent supporting information. If such information is not provided, the Meeting might be forced to conclude that it is not able to provide a meaningful response.

3.1 BOSCALID (221)

Background

Boscalid is a systemic fungicide that was first evaluated by JMPR in 2006 for residues and toxicology as a new active substance. The Meeting established an ADI for boscalid of 0–0.04 mg/kg bw and considered that an ARfD was unnecessary. Owing to the incomplete data submission for residues in follow-up crops, the Meeting decided that a risk assessment of residues in rotational crops could not be finalised at that time. The 2008 JMPR reviewed residue data for additional uses involving banana and kiwifruit.

In response to the request of the CCPR at its Forty-first Session, ⁷ the present Meeting reconsidered all the available data for a finalization of the dietary risk assessment for boscalid. New data were submitted regarding the metabolism and degradation of boscalid in soil, uptake in follow-up crops and livestock feeding to the 2009 JMPR. Further studies, GAP information and supervised residue trials referred to in the present report are described in the evaluation of boscalid as a new active substance by the 2006 JMPR.

Overview on the evaluation procedure for boscalid in rotational crops as applied by JMPR

The Meeting followed the general procedure outlined under point 2.9 in the JMPR report of 2008. In the first step, field-decline studies were used to estimate the half-life of boscalid in soil under the assumption of first-order kinetics. The Meeting identified DT_{50} values of 208, 365 and 746 days as values representing the total range of possible half-lives of boscalid in soil.

After the estimation of half-lives, the highest plateau-level concentrations of boscalid in soil after annual application according to GAPs reported in 2006 were estimated. The calculation indicated that all uses reported globally, except those involving 4.5 kg ai/ha per year, resulted in boscalid plateau-level residues in soil equivalent to an application rate of 2.1 kg ai/ha or less.

In the next step, field rotational-crop studies on various commodities conducted at rates of 2.1 kg ai/ha per year were reviewed to estimate mean, median and highest residues expected following uptake of boscalid via plant roots. These additional residues were compared to boscalid levels found in the corresponding commodities after direct treatment according to GAPs described in the 2006 JMPR report. In case of a significant contribution of residues, arising after crop rotation, to residues following direct treatment, both pathways were taken into account simultaneously for an overall estimation of maximum residue levels as well as for STMR and highest residue values.

⁷ Codex Alimentarius Commission (2009) Report of the Forty-first Session of the Codex Committee on Pesticide Residues, Beijing, China, 20–25 April 2009 (ALINORM 09/32/24), para 124.

Whenever appropriate, the Meeting decided to extrapolate its recommendations to whole commodity groups to include as many minor crops as possible that are likely to be exposed to boscalid via crop rotation as well as direct application.

Example 1: Root and tuber vegetables

Based on the use of boscalid on carrots, boscalid residues in the roots following direct treatment were: < 0.05, 0.06, 0.12, 0.17, 0.18, 0.19, 0.28, 0.34 mg/kg.

For carrot roots, residues were found with mean, median and highest residues of 0.13 mg/kg, 0.065 mg/kg and 0.37 mg/kg, respectively. The Meeting concluded that root and tuber vegetables may be influenced significantly by an additional uptake of boscalid via the roots. The Meeting decided to add the mean residue of 0.13 mg/kg found in field studies on carrots roots to the median residue of 0.175 mg/kg obtained from supervised field trials on carrot roots for an overall STMR for boscalid in carrot roots of 0.305 mg/kg. In addition, the Meeting recommended a maximum residue level of 2 mg/kg for the group of root and tuber vegetables, based on the use of boscalid on carrot roots.

Example 2: Oilseeds

Based on the use of boscalid on sunflowers, boscalid residues in the seeds following direct treatment were: < 0.05, 0.08, 0.09, 0.13, 0.16, 0.16, 0.23, 0.45 mg/kg.

In field studies on succeeding crops, the mean, median and highest residues in alfalfa, soya bean and cotton seeds were 0.05 mg/kg, 0.05 mg/kg and 0.06 mg/kg, respectively, with most of the values below the LOQ of 0.05 mg/kg. The Meeting concluded that residues in oilseeds caused by an additional uptake of boscalid via the roots are insignificant in comparison to residue levels following direct treatment. The Meeting estimated a maximum residue level and an STMR value for boscalid in oilseeds of 1 mg/kg and 0.145 mg/kg, respectively, based on sunflower seeds.

Owing to the large number of commodities that are subject to crop rotation and new studies submitted to JMPR 2009, a detailed report, a long-term dietary risk assessment and a recommendation table are presented in Annex 1 of the present report.

3.2 CARBOFURAN (096)

Background

At the Forty-first Session of the CCPR,⁸ the Delegation of the European Community (EC) raised concerns regarding the ADI and ARfD for carbofuran that had been established by the JMPR in 2008, both these values being higher than those established by the EC.

Evaluation of carbofuran by the JMPR

In 2008, the Meeting established an ARfD of 0.001 mg/kg bw based on the "overall NOAEL" identified by the 2004 JMPR (Annex 5, reference 101, p. 9) of 0.03 mg/kg bw per day identified on the basis of inhibition of brain acetylcholinesterase activity in rat pups aged 11 days. This NOAEL was supported by the BMD₁₀ (benchmark dose at the 10% effect level) of 0.04 mg/kg bw and the BMDL₁₀ (lower 95% confidence limit for the BMD₁₀) of 0.03 mg/kg bw extrapolated by the United States EPA⁹ from data on the inhibition of brain acetylcholinesterase activity in pups aged 11 days

⁸ Codex Alimentarius Commission (2009) Report of the Forty-first Session of the Codex Committee on Pesticide Residues, Beijing, China, 20–25 April 2009 (ALINORM 09/32/24), para 85.

⁹ US EPA (2008a) Carbofuran: HED revised risk assessment for the Notice of Intent to Cancel (NOIC). Memorandum from Drew D, Morton TG, Lowit A, & Reaves E. to Andreasen J. Dated 3 January 2008; US EPA (2008b) Carbofuran: proposed

from three studies (Tyl *et al.*, 2005; Moser *et al.*, 2007; and Hoberman, 2007a). A safety factor of 25 was considered to be appropriate because the acute toxic effects of carbofuran are dependent on C_{max} rather than the area under the curve of concentration–time (AUC) and data indicated that the sensitivity of acetylcholinesterase activity to inhibition by carbofuran was similar in humans and laboratory animals (rats, dogs) (Annex 5, reference *113*, p.7). The ARfD was considered to be adequately protective of infants and children since it was based on the NOAEL identified in studies in pups aged 11 days.

The 2008 JMPR noted that this ARfD was lower than the ADI of 0–0.002 mg/kg bw. This is plausible in view of the toxicological characteristics of inhibition of acetylcholinesterase activity by carbofuran, which shows very rapid recovery; long-term exposure can thus be likened to a series of acute exposures. The 2008 JMPR therefore concluded that the ADI and ARfD for carbofuran should be based on the same NOAEL and revised the ADI to 0–0.001 mg/kg bw based on the overall NOAEL of 0.03 mg/kg bw from the new studies of acute toxicity in rats and using a safety factor of 25.

Evaluation of carbofuran by the EC

The EC also considered the studies of acute toxicity in rats, except for the study by Moser *et al.* (2007), as key studies for establishing reference doses. However, the EC emphasized that they did not consider either the ARfD of 0.001 mg/kg bw or the ADI of 0–0.001 mg/kg bw to be sufficiently protective for neurotoxicity in children. On the basis of the information provided by the EC, the concerns raised by the EC centred on the following issues:

- In the study of Hoberman (2007a), the lowest dose of 0.03mg/kg bw was considered to be a lowest-observed-adverse effect level (LOAEL) rather than a NOAEL, since brain acetylcholinesterase activity in female pups aged 11 days was inhibited by 20% (p < 0.01).
- On the basis of the studies from Tyl (2005) and Hoberman (2007a), the EC calculated a BMD₁₀ of 0.014–0.016 mg/kg bw. This BMD₁₀ was considered to be supportive of an extra two-fold safety factor to extrapolate the LOAEL for pups (0.03 mg/kg bw) to a NOAEL (0.015 mg/kg bw).
- The EC noted that a safety factor of 100 should be maintained to derive the ADI and ARfD for carbofuran. EC considered it insufficiently proven that a lower safety factor should be applied based upon the assumption that N-methyl carbamate toxicity, which is dependent on a C_{max} rather than an AUC effect, would exhibit lower inter- or intraspecies variability.

In conclusion, the EC concluded that an ADI of 0–0.00015 mg/kg bw and an ARfD of 0.00015 mg/kg bw should be established, based on an extrapolated NOAEL of 0.015 mg/kg bw and a safety factor of 100.

tolerance revocations. Federal Register 73(148):44863-44892.

¹⁰ Hoberman AM (2007a) Cholinesterase depression in juvenile (day 11) and adult rats following acute oral (gavage) dose of carbofuran technical. Unpublished report No. A2006-6137 dated 31 May 2007 from Charles River Laboratories Preclinical Services, Horsham, PA, USA. Submitted to WHO by FMC Corporation, Agricultural Products Group, Philadelphia, PA, USA.

Moser VC, McDaniel KL, Phillips PM (2007) Report on cholinesterase comparative sensitivity study of carbofuran: adult and PND11. Unpublished report dated 14 November 2007 from Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711. Submitted to WHO by Office of Pesticide Programs, US EPA, Washington, DC, USA.

Tyl RW, Marr M, Myers CB (2005) Acute dose-response study of carbofuran technical administered by gavage to adult and postnatal day 11 male and female CD (Sprague-Dawley) rats. Unpublished report No. A2005-5981 dated 7 November 2005 from RTI International, Center for Life Sciences and Toxicology, Research Triangle Park, NC, USA. Submitted to WHO by FMC Corporation, Agricultural Products Group, Philadelphia, PA, USA.

Comments by the JMPR

After consideration of the EC concerns and after reviewing the conclusions of the 2008 JMPR, the present Meeting highlighted the following points:

- In one study (Hoberman, 2007a), inhibition of brain acetylcholinesterase activity was 20% in female pups at a dose of 0.03 mg/kg bw. In male pups, however, inhibition was only 13% and data indicated no evidence for a sex-specific difference in sensitivity to inhibition of brain acetylcholinesterase activity by carbofuran. Also, in the corresponding dose range-finding study (Hoberman, 2007b), 11 inhibition of brain acetylcholinesterase activity at a dose of 0.03 mg/kg bw was only 10% or 11% in male and female pups, respectively. Thus, based on data from both studies and for both sexes, the present Meeting considered the dose of 0.03 mg/kg bw to be an overall NOAEL for pups aged 11 days, since inhibition of brain acetylcholinesterase activity was clearly less than 20%.
- The overall NOAEL of 0.03 mg/kg bw is supported by the benchmark-dose analysis of data on brain acetylcholinesterase activity from the three studies in rat pups aged 11 days (Tyl et al., 2005; Hoberman, 2007a; Moser *et al.*, 2007). The estimated BMD₁₀ for brain acetylcholinesterase activity was 0.04 mg/kg bw, while the BMDL₁₀ was 0.03 mg/kg bw. The Meeting considered that the BMD₁₀ used by the JMPR was more reliable than that calculated by the EC as it used data from three studies (Moser *et al.*, 2007; Tyl *et al.*, 2005; Hoberman, 2007a) rather than two (Tyl *et al.*, 2005c; Hoberman, 2007a).
- For carbofuran, the acute toxic effects are dependent on C_{max} rather than AUC and data indicated that the sensitivity of humans and laboratory animals (rats, dogs) to inhibition of acetylcholinesterase activity was similar. Thus the Meeting considered that a safety factor of 25 was appropriate. A detailed rationale for this position is included in the report of the 2008 JMPR (Annex 5, reference 113, p.7: Safety factors for acute C_{max}-dependent effects: specific considerations with respect to carbamates such as carbofuran).

Therefore, the Meeting reaffirmed both the ARfD of 0.001 mg/kg bw and the ADI of 0-0.001 mg/kg bw based on an overall NOAEL of 0.03 mg/kg bw for inhibition of brain acetylcholinesterase activity in rat pups aged 11 days and with a safety factor of 25. Also, the Meeting confirmed that both the ADI and the ARfD are adequately protective of infants and children.

3.3 CHLORANTRANILIPROLE (230)

Background

At the Forty-first Session of the CCPR, the Delegation of the USA raised concerns regarding the reasoning for the maximum residue levels for chlorantraniliprole in grapes and leafy vegetables (spinach) differing from estimates made using the NAFTA calculator. A concern form was submitted.

The Meeting noted there were many approaches to estimating MRLs, including experience, modelling and the use of statistics to evaluate sets of numbers. Experience takes into account the crop varieties used in residue trials and their potential for residues, the number of trials, distribution of trial locations, size of trial plots, timing of spray applications, spray volumes, use of spray additives

¹¹ Hoberman AM (2007b) Acute oral (gavage) dose range-finding study of cholinesterase depression from carbofuran technical in juvenile (day 11) rats. Unpublished report No. A2006-6135 dated 31 May 2007 from Charles River Laboratories Preclinical Services, Horsham, PA, USA. Submitted to WHO by FMC Corporation, Agricultural Products Group, Philadelphia, PA, USA.

¹² Codex Alimentarius Commission (2009) Report of the Forty-first Session of the Codex Committee on Pesticide Residues, Beijing, China, 20–25 April 2009 (ALINORM 09/32/24), para 126.

such as adjuvants, range of half-times for residue decline and the large database of residue of data for other pesticides on the same or similar crops. These factors cannot be taken into account by the NAFTA calculator (see General consideration 2.1).

Statistical methods use well-established mathematical approaches to estimate a number. The NAFTA calculator used by the JMPR uses a decision-tree approach to estimate one of the following:

- The upper 95% confidence limit for the 95th percentile residue
- The point estimate of the 99th percentile residue
- The mean plus three-times the standard deviation.

The JMPR has previously suggested in the report of its meeting in 2008 that more than 15 datapoints are required for application of the statistical approaches described above, although the NAFTA White Paper¹³ acknowledges that the accuracy of NAFTA estimates for smaller datasets diminishes as sample size decreases. The JMPR considered a combination of experience of historical data and statistical methods to arrive at the MRL recommendations.

Grapes

Data from seventeen residue trials matching GAP were available with a highest residue of 0.52 mg/kg. The estimate derived from use of the NAFTA calculator was 1.4 mg/kg; however, the Meeting noted that the data in the Q-Q plot depart from the trend line at the high end of the plot, where extrapolation to provide the NAFTA calculator derived estimate occurred. The Meeting could not conclude that the data follow a lognormal distribution. The range of estimates provided by the different options in the NAFTA calculator, before rounding, were:

- Assuming the data follow a normal distribution:
 - o 95% upper confidence level for the 95th percentile 0.61 mg/kg
 - o 99th percentile (point estimate) 0.59 mg/kg
- Assuming the data follow a lognormal distribution:
 - o 95% upper confidence level for the 95th percentile 1.64 mg/kg
 - o 99th percentile (point estimate) 1.39 mg/kg
 - Upper prediction level for the 95th percentile assuming a coefficient of variation of 1 0.77 mg/kg
- Non-parametric methods
 - o Mean plus 3 times the standard deviation 0.70 mg/kg
 - EU method II 0.66 mg/kg.

The 2008 JMPR took into account experience of likely high residues at the day of the last spray and use of decline half-lives obtained from the reported residue decline trials (assuming a DT_{50} of 34 days). Noting the above and the complete range of estimates derived from the NAFTA calculator, the Meeting recommended a value of 1 mg/kg for grapes.

The Meeting confirmed its previous recommendation of 1 mg/kg for grapes.

¹³ Statistical Basis of the NAFTA method for calculating pesticide maximum residue limits from field trial data. http://www.regulations.gov/search/Regs/home.html#documentDetail?R=090000648026e8d0

Leafy vegetables (spinach)

The 2008 JMPR estimated a maximum residue level for leafy vegetables based on a dataset of seven residue trials for spinach with a highest observed residue of 8.9 mg/kg. The NAFTA calculator estimated 15 mg/kg. Visual inspection of the Q-Q plot in the NAFTA calculator did not enable the Meeting to conclude the data follow a log-normal distribution. The range of estimates provided by the different options in the NAFTA calculator, before rounding, were:

- Assuming the data follow a normal distribution:
 - o 95% upper confidence level for the 95th percentile 13.1 mg/kg
 - o 99th percentile (point estimate) 11.31 mg/kg
- Assuming the data follow a lognormal distribution:
 - o 95% upper confidence level for the 95th percentile 19.98 mg/kg
 - o 99th percentile (point estimate) 14.5 mg/kg
 - Upper prediction level for the 95th percentile assuming a coefficient of variation of 1 64 mg/kg
- Non-parametric methods:
 - o Mean plus three-times the standard deviation 12.7 mg/kg
 - o EU method II 16.6 mg/kg.

As with grapes, the 2008 JMPR took into account experience of likely high residues at the day of the last spray the decline half-lives obtained from the reported residue decline trials (DT $_{50}$ time of 14 days). Noting the range of estimates available from use of the NAFTA calculator, the small dataset and the results based on an estimate from the day of the last spray, the 2008 JMPR estimated a maximum residue level of 20 mg/kg.

The Meeting confirmed its previous recommendation of 20 mg/kg for leafy vegetables.

The present Meeting also reiterated the statement of the 2008 JMPR that, for small datasets, the NAFTA White Paper and reviews of the performance of the calculator suggest a large uncertainty in such estimates of high percentiles. Use of other tools and experience is needed to ensure that the maximum residue level estimates are realistic.

3.4 CYFLUTHRIN (157)/BETA-CYFLUTHRIN (228) – ALTERNATIVE GAP

Cyfluthrin and beta-cyfluthrin were evaluated for toxicology by the 2006 JMPR and for residues by the 2007 JMPR under the CCPR periodic review programme, and maximum residue levels for cyfluthrin, arising from the use of either cyfluthrin or beta-cyfluthrin on a number of commodities, were recommended.

The 2007 JMPR estimated short-term intakes for children that exceeded the ARfD of 0.04 mg/kg bw for broccoli and head cabbage and noted that there were insufficient data to support an estimation of lower maximum residue levels based on alternative GAPs for these commodities.

At the Forty-first Session of the CCPR in 2009, the Committee agreed that if no data were available to support lower MRLs for broccoli and head cabbage (based on alternative GAP), the draft MRLs would be considered for withdrawal at the 2010 session.¹⁴

¹⁴ Codex Alimentarius Commission (2009) Report of the Forty-first Session of the Codex Committee on Pesticide Residues, Beijing, China, 20–25 April 2009 (ALINORM 09/32/24), paras 106–107.

Information on current GAP and new supervised trials data from Indonesia were provided to the 2009 JMPR for cabbages, but no new residue data or information were available for broccoli.

Results of supervised trials on crops

Based on US GAP and residue data for cyfluthrin, the 2007 JMPR estimated a maximum residue level of 4 mg/kg, an STMR of 0.25 mg/kg and an HR of 2.1 mg/kg for cyfluthrin in cabbage (head) but estimated that the short-term intake for children was 240% of the ARfD (0.04 mg/kg bw).

Cabbages, Head – beta-cyfluthrin

Residue trials conducted in Germany matching the GAP of Sweden and Poland (10 g ai/ha; PHI of 7 days) and evaluated by the 2007 JMPR, reported residues of < 0.01, < 0.01, 0.06 and 0.08 mg/kg.

New trials with beta-cyfluthrin reported to the Meeting from Indonesia (GAP, 15 g ai/ha; PHI of 7 days) reported residues of < 0.01, 0.02 and 0.05 mg/kg.

The Meeting agreed that the data were insufficient to estimate a maximum residue level to support an alternative GAP for beta-cyfluthrin on cabbage (head).

Cabbages, Head – cyfluthrin

Residue trials with cyfluthrin conducted in Portugal and Spain, matching the GAP of Italy (25 g ai/ha; PHI of 3 days) reported residues of 0.01 and 0.09 mg/kg.

Trials conducted in Germany, matching the GAP of Belgium (maximum of 2 applications, 25 g ai/ha, PHI of 14 days) reported residues of < 0.01, 0.02 and 0.06 mg/kg.

The Meeting agreed that the data were insufficient to estimate a maximum residue level to support an alternative GAP for cyfluthrin on cabbage (head).

Alternative GAP was considered by the present Meeting, but the previous HR recommendation was confirmed because of insufficient residue data. Hence, a refinement of the international estimate of short-term dietary intake (IESTI) was not possible with the current data. The Meeting established a group ARfD for cyfluthrin and beta-cyfluthrin in 2006 on the basis of acute neurotoxicity observed in a 4-week study in rats and a safety factor of 25, and it is unlikely that it could be refined.

3.5 FENTHION (39)

Background

Fenthion is an insecticide that has been used since 1957 for the control of a wide range of insect pests on fruit, vines, olives, vegetables, cotton, tea, sugar-cane, sugar-beet, and rice. The use pattern also includes the postharvest disinfestation of fruit, the control of insect pests (e.g., mosquitoes, fleas) for public health purposes and animal houses and for the control of animal ectoparasites.

Evaluation of fenthion by the JMPR

Fenthion was first evaluated by the JMPR in 1971 and has been reviewed several times since, most recently in 1995 within the periodic review programme of the CCPR. An ADI of 0–0.007 mg/kg bw was established.

The 2000 JMPR could not evaluate studies of residues in peaches, cherries and olives, since the trials were performed in EU Member States and the related GAP in those countries was pending.

Consideration of fenthion by CCPR and by the EC

The CCPR at its Thirty-fourth Session in 2003 noted that the current Codex MRLs are mainly based on EU uses, and that fenthion was under evaluation in the EU. 15

In 2004, the EU decided not to include fenthion in Annex I of Directive EC/ 91/414, implying that all uses of fenthion within the EU would stop. Since the current Codex MRLs are based on European use labels and European supervised field trials, CCPR considered revoking all existing Codex MRLs.

The CCPR at its Fortieth Session in 2008 noted that GAP information for cherries, citrus fruit and olives would be provided by Australia and decided to maintain the Codex MRLs for cherries, citrus fruits, olives and olive oil, virgin, for 4 years under the periodic review programme. The Committee also decided to delete the proposed MRLs for olive oil, virgin, mandarins and orange, sweet, sour, since they were based on European uses. ¹⁶

Comments by JMPR

The present Meeting did not receive any data to evaluate, and noted that fenthion was not scheduled for periodic re-evaluation until 2017.

3.6 METHOMYL (094)

Background

The CCPR at its Forty-first Session¹⁷ noted the concerns expressed by the EC and Norway regarding acute dietary intake for grape and tomato, based on the ARfD established by the EC. The delegation of the EC informed the Committee that they would submit a concern form for apple.

Evaluation of methomyl by the JMPR

Methomyl is a carbamate insecticide that is registered throughout the world for foliar application on numerous agricultural crops. JMPR has evaluated the compound several times since 1978. In 1989, an ADI of 0–0.03 mg/kg bw was established and in 2001, the Meeting was requested to establish an ARfD. The Meeting at that time established an ARfD of 0.02 mg/kg bw based on the results of a study in human volunteers. The Meeting noted that this ARfD was lower than the ADI, and concluded that the ADI and ARfD should be based on the same NOAEL. The ADI was accordingly revised to 0–0.02 mg/kg bw.

Methomyl was evaluated for residues under the periodic review programme of the CCPR in 2001. Maximum residue levels for methomyl, arising from the use of either methomyl or thiodicarb, were recommended for a number of crops. The 2001 JMPR estimated short-term intakes that exceeded the ARfD of 0.02 mg/kg bw for apples, broccoli, Brussels sprouts, head cabbage, cauliflower, celery, water melon, grapes, kale, head lettuce, leaf lettuce, spinach, sweet corn and tomato.

¹⁵ Codex Alimentarius Commission (2003) Report of the Thirty-fourth Session of the Codex Committee on Pesticide Residues, The Hague, The Netherlands 13–18 May 2002 (ALINORM 03/24), paras 80–81.

¹⁶ Codex Alimentarius Commission (2008) Report of the Fortieth Session of the Codex Committee on Pesticide Residues, Hangzhou, China, 14–19 April 2008 (ALINORM 08/31/24), paras 50–51.

¹⁷ Codex Alimentarius Commission (2009) Report of the Forty-first Session of the Codex Committee on Pesticide Residues, Beijing, China, 20–25 April 2009 (ALINORM 09/32/24), para 78.

The CCPR at its Thirty-eighth Session¹⁸ requested JMPR to consider using alternative GAPs to recommend lower MRLs for apples, brassica vegetables, celery, fruiting vegetables, cucurbits, grapes, leafy vegetables and pears. The 2008 JMPR was able to recommend maximum residue levels for apple, pear, cucurbits (cucumbers, courgettes and melons), grapes, lettuce and tomatoes. Most of the recommendations were based on European data. No new residue data or information was available for brassica vegetables and celery and the 2008 JMPR withdrew its previous recommendations for those commodities.

The international estimated daily intakes (IEDI) in the 13 GEMS/Food Consumption Cluster Diets, based on the STMRs estimated by the 2008 JMPR were in the range of 0% to 3% of the maximum ADI of 0.02 mg/kg bw. The IESTI varied from 0% to 50% of the ARfD (0.02 mg/kg bw) for the general population. The IESTI varied from 0% to 100% of the ARfD for children aged 6 years and younger. The highest percentages (50% of the ARfD for the general population, 100% of the ARfD for children) were found for tomatoes. The Meeting concluded that neither the long-term nor the short-term intake of residues of thiodicarb and methomyl from uses that had been considered by the JMPR was unlikely to present a public health concern.

Evaluation of methomyl by the EC

The present Meeting received the EC concern form, together with the results of the EU dietary-intake calculation. The following information was presented: "Using EC endpoints (ARfD 0.0025 mg/kg bw/day) and risk assessment methodologies (EFSA model PRIMo rev2), apples are 666% of the ARfD¹⁹, using an HR value of 0.17 mg/kg (15 trials). It is acknowledged that a higher ARfD of 0.01 mg/kg bw/day is accepted by JMPR, based on a human volunteer study. Even using the JMPR ARfD with EC risk assessment methodologies, apples are 167% of the ARfD."

Comments by JMPR

The present Meeting noted that the ARfD established by JMPR is 0.02 mg/kg bw, not 0.01 mg/kg bw, as was incorrectly reported in the EC concern form. Furthermore, the Meeting noted that using the JMPR ARfD with the EC risk-assessment methodologies, the short-term intake (children, large portion for UK infant, 180 g/person) for apples was 83% when using a variability factor of 7, while it was 61% of the ARfD when using a variability factor of 5. The Meeting, using a variability factor of 3, calculated a short-term intake of 60% of the ARfD for children, based on a children's large portion from the USA of 680 g/person.

The Meeting confirmed that the short-term intake of residues of thiodicarb and methomyl from uses on apple is unlikely to present a public health concern.

3.7 PHORATE (112)

Phorate is a systemic organophosphate contact insecticide and acaricide that inhibits acetylcholinesterase activity. Residue and analytical aspects of phorate were evaluated by the JMPR in 1977, 1984, 1990, 1991, 1992, and 2005. The evaluation in 2005 was a periodic review. The toxicological periodic review was conducted in 2004, when an ADI of 0–0.0007 mg/kg bw and an ARfD of 0–0.003 mg/kg bw were established.

The residue definition for phorate, both for enforcement and for risk assessment for animal and plant commodities, is: the sum of the parent, its oxygen analogue, and their sulfoxides and

¹⁸ Codex Alimentarius Commission (2006) Report of the Thirty-eighth Session of the Codex Committee on Pesticide Residues, Fortaleza, Brazil, 3–8 April 2006 (ALINORM 06/29/24), paras 80–81.

¹⁹ For children.

sulfones, expressed as phorate. The analytical methodology available relies on the oxidation of all phorate-related residues to the common moiety metabolite, phoratoxon sulfone.

The 2005 JMPR noted that the acute dietary intake of potato by children aged up to 6 years amounted to 120% of the ARfD. The value of 120% represents the IESTI for potato, microwaved with peel. The CCPR in 2006 therefore decided not to advance the maximum residue level in the Codex step system. The CCPR in 2007 was informed that the manufacturers would provide additional data for processed potato in 2008 for evaluation by the 2009 JMPR.

The present Meeting received a new study of processing in potatoes to facilitate a refinement of the risk assessment.

Methods of analysis

Total phorate-related residues (oxidizable to phoratoxon sulfone) were determined by gas chromatography with flame photometric detection (GC-FPD), following method M-1620 (see 2005 JMPR). The reported LOQ was 0.049 mg/kg eq, the LOD was 0.003 mg/kg eq. Method verification recoveries at 0.049, 0.25 and 2.0 mg/kg eq were for each fortification level above 90% (n=3, RSD, < 4%).

Fate of residues in storage and during processing

The Meeting received new information on the fate of incurred residues of phorate during washing and microwave cooking of potatoes. The samples from the field studies were analysed twice, owing to the variable results of the first experiment. The reason for this was considered to be as follows. The application of phorate in this study was as an in-furrow granule. As a result, it is possible that potatoes formed directly in the furrow accumulated more phorate, both on the surface, including adhered soil, and internally, than potatoes formed outside the treated furrow. In order to get a representative field sample, the potatoes were sampled from directly in the row (in the furrow where the insecticide was applied) as well as from the sides of the row. Each collected treated sample contained randomly selected potatoes from both areas, with potentially great variability in residue content between potatoes used in each processing step. The Meeting considered this to be a plausible explanation for the variable results.

The second experiment was modified to reduce this potential variability between potatoes used in each processing step, by direct pairing of potatoes/potato parts across the unwashed versus washed and cooked samples. For the second processing set, the frozen whole potato retained samples held by the processing facility were used for processing.

Mean weight loss for the potatoes during cooking in processing experiment 2 (66%, mean of treated samples) was significantly higher than the weight loss in processing experiment 1 (15%). For microwaving, 15–20% is the commercial norm. Projected residues at 15% weight loss to correct for excess weight loss due to frozen storage of potatoes before processing were reported by the study director.

The Meeting decided that the experiment in which frozen potatoes with peel were microwaved does not reflect common practices. The Meeting could not confirm that the extensive weight loss did not result in an unusual loss of phorate residues. The Meeting decided not to use the results of the new processing study, and confirmed its previous recommendations.

Using the HR for potato (0.27 mg/kg,) the 2005 JMPR estimated highest residues for the processed commodities (HR-Ps) as listed below. Furthermore, using the STMR for potato (0.05 mg/kg), the Meeting estimated STMR-Ps for these commodities.

Commodity	Processing factor (median or best	STMR-P	HR-P (mg/kg)
	estimate)	(mg/kg)	
Potatoes boiled with peel	0.13	0.0065	0.0351
Potatoes boiled without peel	0.11	0.0055	0.0287
Potatoes baked with peel	0.28	0.014	0.0756
Potatoes baked without peel	0.27	0.0135	0.0729
French fries	0.38	0.019	0.1026
Potatoes microwaved with	0.36	0.018	0.0972
peel			

Table 2 Estimation of highest concentrations of phorate residues in processed potato commodities

HR-P, highest residue in a processed commodity calculated by multiplying the HR of the raw commodity by the corresponding processing factor; supervised trials median residue in a processed commodity calculated by multiplying the STMR of the raw commodity by the corresponding processing factor

The 2005 JMPR decided to use the HR-P and STMR-P for potatoes, microwaved with peel, in the calculations of dietary intake for potatoes since this represented the worst-case situation. The present Meeting noted that the dietary intake of French fries would also be critical.

DIETARY RISK ASSESSMENT

Long-term intake

Conclusion of the 2005 JMPR:

The IEDIs of phorate, based on the STMRs estimated for 18 commodities, for the five GEMS/Food regional diets were in the range of 9% to 20% of the maximum ADI (0–0.0007 mg/kg bw/d). The Meeting concluded that the long-term intake of residues of phorate resulting from uses that have been considered by the JMPR was unlikely to present a public health concern.

Short-term intake

The IESTI for phorate was calculated for potatoes, both by using the HR for potatoes, microwaved with peel, and for French fries, the latter based on new consumption data. The results of which can be found in Annex 4.

The IESTI represented 70% of the ARfD (0.003 mg/kg bw) for the general population (both for potatoes, microwaved with peel, and for French fries) and 170% and 180% of the ARfD for children, from consumption of potatoes, microwaved with peel, and French fries, respectively. The information provided to the JMPR precludes an estimate that the dietary intake of potatoes by children aged 6 years and younger would be below the ARfD.

The Meeting noted that the dietary intake estimation was already based on residues in processed potatoes, leaving little room for refinement. Furthermore, the ARfD was based on a single-dose study and it was unlikely that it could be refined.

3.8 PROCYMIDONE (136)

Background

At the Fortieth Session of the CCPR, the Delegation of the EC raised concerns regarding the ADI and ARfD for procymidone established by the JMPR in 2007, which were higher than those established by the EC.²⁰

Evaluation of procymidone by the JMPR

In 2007, the Meeting established an ADI of 0–0.1 mg/kg bw for procymidone based on the overall NOAEL of 12.5 mg/kg bw per day identified on the basis of hypospadias and alterations in testes, prostate and epididymis weights in two studies of reproductive toxicity in rats and a study of developmental toxicity in rats, with a safety factor of 100. The ADI was supported by NOAELs of 14 mg/kg bw per day in a long-term study in rats and 17 mg/kg bw per day in a long-term study in mice. An ARfD of 0.1 mg/kg bw was established based on the NOAEL of 12.5 mg/kg bw per day identified on the basis of hypospadias in a study of developmental toxicity in rats, with a safety factor of 100. The 2007 JMPR concluded that the effects on organ weights seen in studies of reproductive toxicity were largely a consequence of postnatal exposure over a period of time and therefore not appropriate for the establishment of an ARfD.

Evaluation of procymidone by the EC

The concern raised by the EC, as stated on the concern form, was that procymidone and its metabolite (PCM-CH₂OH) bind to the human androgen receptor in vitro, indicating that procymidone has antiandrogenic activity in humans. Since data on toxicokinetics in humans still do not exist, it was concluded that it cannot be excluded that human exposure to procymidone would not lead to teratogenic effects. The EC also noted that procymidone is classified as "Repr. Cat. 2 R61" in the EC.

The documentation submitted by the EC cited two sets of reference doses for procymidone. The first set of reference doses was agreed following an expert toxicology meeting and are the agreed values cited in the "Review Report" supporting the authorization of procymidone. These values comprise an ADI of 0.025 mg/kg bw based on a NOAEL of 2.5 mg/kg bw per day from a study of reproductive toxicity in rats, with a safety factor of 100, and an ARfD of 0.035 mg/kg bw based on the NOAEL of 3.5 mg/kg bw from a study of developmental toxicity in rats, with a safety factor of 100.

The second set of reference doses was proposed in an addendum produced by the rapporteur member state (France) in 2007, which had not been discussed by EC toxicologists at any peer review meetings. The ADI of 0.0028 mg/kg bw was based on a LOAEL of 2.5 mg/kg bw per day from a study of reproductive toxicity in rats, with a safety factor of 900 (3 for moving from a LOAEL to a NOAEL; 3 for interspecies variability; 10 for intraspecies variability and 10 for severity of effect). The ARfD of 0.012 mg/kg bw based on the NOAEL of 3.5 mg/kg bw from a study of developmental toxicity in rats, with a safety factor of 300 (3 for interspecies variability; 10 for intraspecies variability and 10 for severity of effect).

²⁰ Codex Alimentarius Commission (2008) Report of the Fortieth Session of the Codex Committee on Pesticide Residues, Hangzhou, China, 14–19 April 2008 (ALINORM 08/31/24), para 73.

²¹ May cause harm to the unborn child. Toxic to reproduction, Category 2, i.e.,likely to be relevant to humans.

²² European Commission (2006) Review report for the active substance procymidone. Finalized in the Standing Committee on the Food Chain and Animal Health at its meeting on 27 January 2006 in view of the inclusion of procymidone in Annex 1 of Directive 91/414/EEC. SANCO/4064/2001 rev 1, dated 19 January 2006. European Commission Health and Consumer Protection Directorate-General. Draft working document.

The available information provided by the EC gave no detailed rationale for:

- The effects seen at the LOAELs used in the first evaluation;
- Changing from a NOAEL to a LOAEL in the study of reproductive toxicity;
- The reduction of the default interspecies safety factor;
- The additional safety factor for severity.

Comments by the JMPR

In order to respond as thoroughly as possible to the concerns raised, the 2009 JMPR went to considerable lengths to obtain more detailed information on the basis for the EC concerns, as these were not clearly described or justified on the concern form or submitted documents. The Meeting requested that any future concerns submitted to JMPR are accompanied by comprehensive and transparent supporting information.

The 2007 JMPR and 2007 EC appear to have had access to the same supporting databases. The 2007 JMPR discussed the reproductive effects of procymidone in great depth (performing its own benchmark-dose calculations for some end-points) and concluded that procymidone was a reproductive toxicant and could bind to the human androgen receptor in vitro. The 2007 JMPR also considered in depth the data on the toxicity of procymidone metabolites and the data on toxicokinetics in rats, rabbits and monkeys and their relevance to human exposures.

The main differences between the evaluations made by the 2007 JMPR and the EC were the NOAELs identified, and in the 2007 EC proposals, the safety factors chosen. The present Meeting reviewed tabulated data on a number of end-points, including all those identified in additional EC documents as being the basis for identifying the NOAELs used to set the EC reference doses. These end-points included anogenital distances, testes, prostate, epididymis and seminal vesicle weights, hypospadias, undescended testes and histopathology of testes, epididymides, coagulating glands, prostate and seminal vesicles. The present Meeting also reviewed the publications describing the 2007 JMPR decisions.

The present Meeting noted that the monograph produced by the 2007 JMPR described some effects at the intermediate dietary concentration of 250 ppm (17 mg/kg bw per day), which would give a NOAEL of 3.0 mg/kg bw per day (50 ppm) identified in the first study of reproductive toxicity. However, these findings were not evident at the NOAEL of 14 mg/kg bw per day in the long-term study in rats, for the parental effects, nor at the NOAEL of 12.5 mg/kg bw per day in the subsequent study of reproductive toxicity, for the pup effects. The present Meeting confirmed that the overall NOAEL from the studies of reproductive toxicity in rats was 12.5 mg/kg bw per day based on the NOAELs that were between the LOAEL and NOAEL for the first study of reproductive toxicity. The present Meeting noted that most of the findings mentioned in EC documents were not seen below doses of 37 mg/kg bw per day.

In the study of developmental toxicity in rats, the only finding at 12.5 mg/kg bw per day was a statistically significant (but < 10%) change in anogenital distance in male fetuses removed by caesarean section. However, in the part of this study where dams were allowed to deliver naturally, there were no significant effects on anogenital distance at postnatal days 1 or 21 in the group at 12.5 mg/kg bw per day. The present Meeting confirmed that the findings at 12.5 mg/kg bw per day were not adverse and identified this dose as the NOAEL.

The EC addendum gave no explanation for the choice of the non-default safety factors for interspecies (3) and severity (10). The 2007 JMPR discussed the use of a data-derived safety factor when deriving the ARfD for procymidone, but concluded that the uncertainties were such that this was not justifiable. The 2007 JMPR considered that the findings at the LOAELs were such that no additional safety factors were needed to derive the ARfD and ADI. The present Meeting confirmed that a safety factor of 100 was appropriate for deriving both the ADI and the ARfD for procymidone.

The present Meeting reaffirmed the ADI for procymidone of 0–0.1 mg/kg bw based on the overall NOAEL of 12.5 mg/kg bw per day from two studies of reproductive toxicity in rats and an ARfD for procymidone of 0.1 mg/kg bw based on the NOAEL of 12.5 mg/kg bw per day in a study of developmental toxicity in rats, both with a safety factor of 100.

3.9 SPIROTETRAMAT (234)

Background

At the Forty-first Session of the CCPR, the Delegation of the USA expressed concern over the maximum residue level estimation of 0.5 mg/kg made by the 2008 JMPR and submitted a concern form. The USA noted that there were 11 trials in the USA and that use of the NAFTA calculator produced an estimate of 0.3 mg/kg in the USA, from the same dataset. An explanation of the derivation of the JMPR estimate was requested and a request was made to consider 0.3 mg/kg as a revised estimate.

Consideration and response

The supervised field trial data were from USA trials conducted on almonds and pecans. The results in ranked order were: 0.020 (3), 0.031, 0.048, 0.054, 0.082, 0.089, 0.094, 0.13, 0.25 mg/kg (Annex 5, reference 113, p.333).

The HR is 0.25 mg/kg, and thus the MRL would be somewhat greater than 0.25 mg/kg. The median was 0.05 mg/kg. All values exceed the limit of quantitation.

The Meeting noted that only 11 sample values were available for combined almond and pecan field trial sample results. The value of 0.5 mg/kg was based upon the consideration of a relatively small number of trials, meaning that one or more high residue values may have been missed in the limited crop field trials conducted, and on the need to cover possible residues from nut varieties of the tree nut group that were not included in the limited trials on pecans and almonds only.

The Meeting considered the results of the NAFTA statistical calculation spreadsheet. It provided estimates in the range of 0.3–0.6 mg/kg, depending on the distribution selected. The spreadsheet selected UPL median 95th value (0.3 mg/kg). This reflects the spreadsheet decision that the distribution is log-normal, but due to the small number of datapoints a diversion from the log normal 99 estimate (0.4 mg/kg) and the log-normal 95/95 value (0.6 mg/kg) is made.

The Meeting also noted that while the JMPR used the same dataset as the USA, there are differences in the treatment of that data that could lead to different estimates from the NAFTA calculator. The USA would have 22 residue values because of the procedure of using two datapoints per trial location. This inclusion of duplicate points would no doubt result in the use of the lognormal 99 or log-normal 95/95 value. The Meeting has rejected this approach, as it believes that samples from the same plot at the same site are not independent, and uses the highest residue from each trial site.

Furthermore, the Meeting decided that statistical methods may not be appropriate for datasets of fewer than 15 values (Annex 5, reference 113, General consideration 2.8, p. 40). Examples show the uncertainty of the estimation based on a small number of residue datapoints, and this uncertainty and likelihood of underestimating the maximum residue level is clearly explained in the Canada/US White Paper for the NAFTA calculator²³.

²³ Statistical Basis of the NAFTA method for calculating pesticide maximum residue limits from field trial data. http://www.regulations.gov/search/Regs/home.html#documentDetail?R=090000648026e8d0

The Meeting considered that given the small dataset with HR of 0.25 mg/kg and the need to extrapolate pecan and almond data to all nuts, the maximum residue level should be estimated at 0.5 mg/kg. The lowest possible estimate could not be 0.3 mg/kg, as this was seen as too restrictive based on the few trial results available and the extrapolation to nut varieties with no trial data.

The Meeting confirmed its previous recommendation of 0.5 mg/kg for spirotetramat on tree nuts.

3.10 TRIADIMEFON (133) AND TRIADIMENOL (168)

Background

Triadimefon and triadimenol have been evaluated by the JMPR several times between 1978 and 2007. These compounds were re-evaluated as part of the periodic review programme of CCPR in 2007 for residues and in 2004 for toxicology. The Meeting recommended a number of maximum residue levels and established an ADI of 0–0.03 mg/kg bw and an ARfD of 0.08 mg/kg bw for both compounds. In 2008, the Fortieth Session of the CCPR, due to dietary intake concerns, requested JMPR to consider the alternative GAP approach to assess whether a lower maximum residue level recommendation for grapes was possible.

Information on current GAPs submitted to the 2009 JMPR included a company's statement that the GAP from Taiwan, China, is no longer supported.

Results of supervised residue trials on crops

For triadimefon and triadimenol, GAP information on grapes submitted to the present Meeting was similar to the GAPs on which the re-evaluation for periodic review in 2007 was based. Although the GAP from Taiwan, China, no longer supported by the company was available in 2007, the evaluation of supervised residue trial data was based on uses reported from Belarus, Croatia, Kazakhstan, Russia, South Africa, the former Yugoslav Republic of Macedonia, and the USA (triadimefon) as well as Australia, Bulgaria, Cyprus, France, Georgia, Italy, Moldavia, New Zealand, South Africa and the Ukraine (triadimenol). None of these GAPs have been revised to allow a re-evaluation in view of an alternative GAP approach.

The 2007 JMPR considered all supervised field trials available for grapes and decided to combine all residue data, since due to the high variability within the crop field trial, data could not be attributed to one specific GAP. Residue data selected in 2007 were: <0.02(3), 0.03, <0.04, <0.04, 0.04(3), <0.05(5), 0.05, 0.05, 0.06, 0.06, 0.07(4), 0.08, 0.08, 0.09(3), 0.1, 0.1, 0.11, 0.11, 0.15(4), 0.16, 0.17, 0.18, 0.21, 0.25, 0.27, 0.27, 0.28, 0.3, 0.32, 0.33, 0.36, 0.37, 0.43, 0.46, 0.54, 0.58, 0.59, 0.6, 0.6, 0.69, 0.78, 0.78, 0.8, 1.4, 1.7, 1.9 and 3.2 mg/kg (sum of triadimefon and triadimenol).

The HR of 3.2 mg/kg was based on one supervised field trial conducted with triadimefon according to the GAPs reported for Croatia and the former Yugoslav Republic of Macedonia using an application rate of 0.0025 kg ai/hL with a PHI of 35 days. This GAP represents the lowest application rate in combination with the highest PHI reported for all uses of triadimefon and triadimenol on grapes.

The second highest residue of 1.9 mg/kg found in grapes followed the use of triadimenol according to GAP reported from South Africa using 0.12 kg ai/ha (0.0075 kg ai/hL) with a PHI of 14 days.

The third highest residue of 1.7 mg/kg is based on a supervised field trial conducted with triadimefon according to the GAP reported from Belarus and Kazakhstan (0.0075 kg ai/hL; PHI, 30 days).

In view of this consideration, the 2007 JMPR concluded that an alternative GAP approach was not applicable to uses of triadimefon and triadimenol on grapes. Based on the uses of both

triadimefon and triadimenol, the Meeting confirmed its previous recommendation and estimated an STMR value of 0.15 mg/kg, an HR value of 3.2 mg/kg and a maximum residue level of 5 mg/kg for the sum of triadimefon and triadimenol in grapes.

Comment by the JMPR

The present Meeting concluded that an alternative GAP approach for the use of triadimefon and triadimenol on grapes was not possible since high residues would arise from all available GAPs, and confirmed the dietary risk assessment already presented in the re-evaluation in 2007.

The Meeting noted that the IESTI calculation for grapes at the HR level of 3.2 mg/kg, as well as the consumption of grapes at a level of 1.9 mg/kg and 1.7 mg/kg would lead to an exceedance of the ARfD.

The Meeting noted that although the ARfD is based on a study of acute neurotoxicity in rats given triadimefon and a safety factor of 25, the large dose spacing between the NOAEL and the LOAEL suggests the possibility that the ARfD may be refined (e.g., by benchmark-dose calculations).

4. DIETARY RISK ASSESSMENT

Assessment of risk from long-term dietary intake

At the present Meeting, compounds with recommended maximum residue levels and estimated STMRs were assessed for risks associated with long-term dietary intake. International estimated daily intakes (IEDIs) were calculated by multiplying the concentrations of residues (STMRs and STMR-Ps) by the average estimated daily per capita consumption for each commodity on the basis of the 13 GEMS/Food Consumption Cluster Diets.²⁴ IEDIs are expressed as a percentage of the ADI for a 55 kg or 60 kg person, depending on the cluster diet.

The percentages are rounded up to one whole number up to nine and to the nearest 10 above that. Percentages above 100 should not necessarily be interpreted as giving rise to a health concern because of the conservative assumptions used in the assessments.

Bifenthrin, cadusafos, chlorothalonil and cycloxydim were evaluated for toxicology at the current Meeting under the Periodic Re-evaluation Programme and ADIs were allocated. The long-term dietary risk assessment for these compounds will be considered during the periodic review for residues at subsequent Meetings.

The outcome of the evaluations of carbofuran, chlorantraniliprole, cyfluthrin/beta-cyfluthrin, fenthion, methomyl, paraquat, phorate, prochloraz, procymidone, triadimefon/triadimenol and spirotetramat performed at this Meeting was such that the long-term dietary intake assessment were considered unnecessary.

A summary of the long-term dietary risk assessments conducted by the present meeting is shown on Table 3. The detailed calculations of long-term dietary intakes are given in Annex 3. Calculations of dietary intake can be further refined at the national level by taking into account more detailed information, as described in the Guidelines for predicting intake of pesticide residues²⁵.

Table 3 Sur	nmary of long-term	dietary of risk	accessments conducte	ed by the 2009 JMPR
Table 3 Sul	iiiiai v oi tong-teiti	i uiciai v oi iisk	assessincing conducti	EU 177 HIE ZWYS JWIEK

CCPR code	Compound	ADI (mg/kg bw)	Range of IEDI, as % of
	Name		maximum ADI
155	Benalaxyl	0-0.07	0-1
221	Boscalid	0-0.04	9-30
173	Buprofezin	0-0.009	1-50
090	Chlorpyrifos-methyl	0-0.01	20-140
118	Cypermethrin (includes alpha and zeta	0-0.02	7-30
	cypermethrin)		
197	Fenbuconazole	0-0.03	0-2
235	Fluopicolide	0-0.08	1-10
	2,6-dichlorobenzamide (M-01)	0-0.02	0-1
194	Haloxyfop and haloxyfop P	0-0.0007	20-80
176	Hexythiazox	0-0.03	0-2
216	Indoxacarb	0-0.01	1-30
236	Metaflumizone	0-0.1	0-1
209	Methoxyfenozide	0-0.1	0-8

²⁴ http://www.who.int/foodsafety/chem/gems/en/index1.html

²⁵ WHO (1997) Guidelines for predicting dietary intake of pesticide residues. 2nd Revised Edition, GEMS/Food Document WHO/FSF/FOS/97.7, Geneva

CCPR code	Compound	ADI (mg/kg bw)	Range of IEDI, as % of
	Name		maximum ADI
232	Prothioconazole ^a		
	Prothioconazole-desthio	0-0.01	0-2
237	Spirodiclofen	0-0.01	0-9
227	Zoxamide	0-0.5	0-0.3

^a based on prothioconazole-desthio

Possible risk assessment refinement when IEDI exceeds the ADI

Chorpyrifos-methyl

The IEDI exceeded the ADI for the Cluster diets C (110% of ADI) and H (140% of ADI). The intake coming from the consumption of maize represented 42.7 and 72.8% of the total intake, respectively. The estimation of a STMR made by the Meeting considered the alternative GAP approach. A way of refining the long-term intake of chlorpyrifos-methyl is to have information on the expected residues in maize processed commodities, such as maize flour and cooked maize. The ADI for chlorpyrifos-methyl was established by the present Meeting on the basis of a NOAEL of 1 mg/kg bw/d from a 2-year study in rats and a safety factor of 100. However, two other studies had LOAELs of 3 mg/kg bw/d, therefore it is considered unlikely that the ADI could be refined.

Assessment of risk from short-term dietary intake

Available consumption data was used at the present Meeting to assess the risks associated with short term dietary intake for compounds with STMR and HR estimated values and established acute reference doses (ARfDs). The procedures for calculating the short-term intake were defined primarily in 1997 at an FAO/WHO Geneva Consultation²⁶ refined at the International Conference on Pesticide Residues Variability and Acute Dietary Risk Assessment sponsored by the Pesticide Safety Directorate and at subsequent JMPR Meetings.

Data on the consumption of large portions were provided to GEMS/Food by the governments of Australia, France, The Netherlands, Japan, South Africa, Thailand, the UK and the USA. Data on unit weights and per cent edible portions were provided to GEMS/Food by the governments of Belgium, France, Japan, Sweden, the UK and the USA. The body weights of adults and children aged ≤ 6 years were provided to GEMS/Food by the governments of Australia, France, the Netherlands, South Africa, Thailand, the UK and the USA. The consumption, unit weight and body weight data used for the short-term intake calculation were compiled by GEMS/Food²⁷. The documents are dated April, 2008 (large portions and body weights) and May, 2003 (unit weights). The procedures used for calculating the International estimated short-term intake (IESTI) are described in detail in Chapter 3 of the 2003 JMPR report. Detailed guidance on setting ARfD is described in Section 2.1 of the 2004 JMPR report²⁸.

On the basis of data received by the present or previous Meetings, JMPR considered the establishment of an ARfD to be unnecessary for boscalid, chlorantraniliprole, hexythiazox, metaflumizone, spirodiclofen and zoxamide. Therefore, it was not necessary to estimate the short-term intakes for these compounds.

²⁶ WHO (1997) Food consumption and exposure assessment of chemicals. Report of a FAO/WHO Consultation. Geneva, Switzerland, 10–14 February 1997, Geneva

²⁷ http://www.who.int/foodsafety/chem/acute_data/en/

²⁸ Pesticide Residues in Food–2004. Report of the JMPR 2004, FAO Plant Production and Protection Paper 178. Rome, Italy, 20–29 September 2004

Bifenthrin, cadusafos, chlorothalonil and cycloxydim were evaluated for toxicology at this Meeting under the Periodic Re-evaluation Programme and ARfDs were allocated. The short-term dietary risk assessment for these compounds will be considered during the periodic review for residues at subsequent Meetings.

The outcome of the evaluation of fenthion, methomyl, prochloraz, procymidone and spirotetramat performed at this Meeting was such that it was not necessary to undertake short-term dietary intake assessments.

The short-term intake of fenbuconazole was estimated by the present Meeting, however the need of an ARfD has yet not been considered by the JMPR. Therefore, the risk assessment for this compound was not finalised.

The short-term intakes as percentages of the ARfDs for the general population and for children are summarized in Table 4. The detailed calculations of short-term dietary intakes are given in Annex 4.

Table 4 Summary of short-term dietary risk assessments conducted by the 2009 JMPR

				Percentage o	f ARfD
CCPR		ARfD		General	Children aged ≤
code	Compound Name	(mg/kg bw)	Commodity	population	6 years
155	Benalaxyl	0.1 ^a	all	0-4 a	NR
173	Buprofezin	0.5	all	0-30	0-50
096	Carbofuran	0.001	Banana	80	150
			Mandarin	20	40
			Orange	30	60
090	Chorpyrifos-methyl	0.1	all	0-10	0-30
157/228	Cyfluthrin/beta-cyfluthrin**	0.04	Cabbages, Head	100	240
118	Cypermethrin (includes	0.04	all	0-20	0-40
	alpha and zeta cypermethrin)				
194	Haloxyfop & Haloxyfop-P	0.08	all	0-10	0-10
216	Indoxacarb	0.1	Lettuce, Leaf	60	150
			Others	0-10	0-20
235	Fluopicolide	0.6 a	All	0-70 ^a	NR
	2,6-dichlorobenzamide (M-	0.6	all	0-1	0-2
	01)				
209	Methoxyfenozide	0.9	all	0-2	0-6
057	Paraquat	0.006	rice	0	0
142	Prochloraz	0.1	Mushrooms	7	10
112	Phorate	0.003	Potatoes	80	190
232	Prothioconazole	1	all	0-0.2	0-0.2
	Prothioconazole- desthio	0.01 ^a	all	$0-20^{a}$	NR
133/168	Triadimefon/triadimenol**	0.08	Grapes	80	220

^a For women of childbearing age;

NR: not required

Possible risk assessment refinement when IESTI exceeds the ARfD

Carbofuran in banana

The Meeting noted that the short-term dietary risk assessment of bananas could be refined if a metabolism study on bananas or residue trials employing a very sensitive analytical method were

^{**} from previous meeting

available. The ARfD was reviewed by the present Meeting due to a request by the CCPR (Chapter 3.2). The ARfD of 0.001 mg/kg bw was confirmed and it is unlikely that it could be refined

Cyfluthrin/beta-cyfluthrin in head cabbages

Alternative GAP was considered by the present Meeting, but the previous HR recommendation was confirmed due to insufficient residue data. Hence, a refinement of the IESTI was not possible with the current data. The Meeting established a group ARfD for cyfluthrin and beta-cyfluthrin in 2006 based on acute neurotoxicity observed in a 4 week study in rats and a safety factor of 25 and it is unlikely that this could be refined.

Indoxacarb in leaf lettuce

The Meeting noted that leaf lettuce is consumed as a raw commodity and there is no alternative GAP available for this crop. Hence, a refinement of the IESTI is not possible with the current data. Furthermore, the ARfD was set based on a single-dose study by the JMPR in 2005 and it is unlikely that it could be refined.

Phorate in potato

The Meeting noted that the intake estimation is already based on residues in processed potatoes, leaving little room for refinement. Furthermore, the ARfD established by the 2004 Meeting was based on a single-dose study in rats and therefore it is unlikely that it could be refined.

Triadimefon/triadimenol in grapes

Alternative GAP was reconsidered by the present Meeting, with the previous HR recommendation confirmed. As a consequence, a refinement of the IESTI assessment was not possible with the current data. The Meeting noted that although the ARfD is based on a study of acute neurotoxicity in rats given triadimefon and a safety factor of 25, the large dose spacing between the NOAEL and the LOAEL suggests possibility of a refinement of the ARfD (e.g., by benchmark dose calculations).

RECOMMENDATIONS

- 1. In order to assist collection and submission of the appropriate information for estimation of residue levels in/on spices, the Meeting re-emphasized that:
- The minimum number of datapoints required for each pesticide–spice commodity combination is 59;
- Where residue data are available for several spice commodities belonging to one group of spices, the JMPR will evaluate the residue data and if the residue distributions can be considered similar, then the JMPR may recommend a MRL for the commodity group;
- The JMPR cannot make any recommendations for pesticide classes such as organophosphates, carbamates, pyrethroids. If it is claimed, for instance, that no organophosphorous compounds were detected in 20 samples of a spice commodity, then it must be specified which compounds have been looked for and what were the respective LOQ and recovery values. The method performance parameters indicated must be supported with appropriate data on method validation.

In addition, the supporting information should be provided as specified in the JMPR reports on actual agricultural, storage and processing practice, the need for post-harvest protection, etc.

Comprehensive information on data requirements is also available in the second edition of the FAO Manual (section 3.6) published at the FAO website

http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmpr/jmpr-docs/en/

- 2. The Meeting noted that the information supplied on some of the concern forms submitted by CCPR Members was inadequate to permit JMPR to clearly identify the critical issues underlying the concerns. Consequently, the Meeting had great difficulty in determining the issues involved, raising the possibility that the response provided by the Meeting might not actually address the true concern. The Meeting requested that any future concerns submitted to JMPR should be accompanied by comprehensive and transparent supporting information.
- 3. The present Meeting reiterated the statement of the 2008 JMPR that, for small datasets, the NAFTA White Paper and reviews of the performance of the calculator suggest a large uncertainty in such estimates of high percentiles of dietary intake. Use of other tools and experience is needed to ensure that MRL estimates are realistic.

Future work 291

FUTURE WORK

The items listed below are tentatively scheduled to be considered by the Meeting in 2011 and 2012. The compounds listed include those recommended as priorities by the CCPR at its Forty-first and earlier sessions and compounds scheduled for re-evaluation within the CCPR periodic review programme.

Updated calls for data are available at least ten months before each JMPR meeting from the web pages of the Joint Secretariat:

http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmpr/jmpr-meet/en/

http://www.who.int/ipcs/food/en/

2011 JMPR

TOXICOLOGICAL EVALUATIONS	RESIDUE EVALUATIONS
NEW COMPOUNDS	NEW COMPOUNDS
MCPA [Nufarm] - USA	MCPA -
emamectin-benzoate	emamectin-benzoate
clopyralid	clopyralid
ethaboxam	ethaboxam
dinotefuran	dinotefuran
PERIODIC RE-EVALUATIONS	PERIODIC RE-EVALUATIONS
diquat (031)	diquat (031)
etofenprox (184)	etofenprox (184)
dicofol (026)	dicofol (026)
dichlorvos (025)	dithianon (028)
fenpropathrin (185)	cycloxydim (179)
fenbutatin oxide (109)	tebuconazole (189)
EVALUATIONS	EVALUATIONS
	cyfluthrin (157)
	cypermethrin (118)
	acephate (95)
	profenofos (171)
_	spinosad (203)

2012 JMPR

TOXICOLOGICAL EVALUATIONS	RESIDUE EVALUATIONS
NEW COMPOUNDS	NEW COMPOUNDS
Sulfoxaflor	Sulfoxaflor
PERIODIC RE-EVALUATIONS	PERIODIC RE-EVALUATIONS
amitraz (122)	amitraz (122)
bentazone (172) (BASF)	bentazone (172)
disulfoton (74) – [Bayer CropScience] support from	disulfoton (74)
USA	
fenvalerate (119)	fenvalerate (119)
glufosinate-ammonium (175)	glufosinate-ammonium (175)
tecnazene (115)	tecnazene (115)
aldicarb (117)	fenpropathrin (185)
	dichlorvos (025)
	fenbutatin oxide (109)

292 Future work

TOXICOLOGICAL EVALUATIONS	RESIDUE EVALUATIONS
EVALUATIONS	EVALUATIONS
	oxamyl (126)
	methoxyfenozide
	Spinetoram

Annex 1 293

ANNEX 1: ACCEPTABLE DAILY INTAKES, SHORT-TERM DIETARY INTAKES, ACUTE REFERENCE DOSES, RECOMMENDED MAXIMUM RESIDUE LIMITS AND SUPERVISED TRIALS MEDIAN RESIDUE VALUES RECORDED BY THE 2009 MEETING

Established ADI and ARfD values and recommended MRL, STMR and HR values

New Previous mg/kg	Pesticide (Codex reference number)	CCN	Commodity	Recommen	Recommended MRL mg/kg		HR or HR-P mg/kg
ADI: 0-0.07 mg/kg bw FB 0269 Grapes 0.3 0.2 0.12 0.17				New	Previous	mg/kg	
ADI: 0-0.07 mg/kg bw FB 0269 Grapes 0.3 0.2 0.12 0.17	Panalayyl (155)**	VC 0424	Cuaumhar	W	0.05		
ARID: 0.1 mg/kg bw (women of childbearing age) VL 0482						0.12	0.17
(women of childbearing age) VL 0482 valenteelon Lettuce, Head 1 0.07 0.43 age) ARID: Unnecessary (general population) VA 0385 valenteelon 0.002 valenteelon 0.02 valenteelon 0.005 valenteelon 0.005 valenteelon 0.02 valenteelon 0.00 valenteelon 0.005 valenteelon 0.00 valenteelon			-			0.12	0.17
ARfD: Unnecessary VC 0046 Melons, except 0.3 0.1 0.02 0.05					0.2	0.07	0.42
ARfD: Unnecessary VA 0385 Onion, Bulb 0.02 * 0.2 0 0 0 (general population) HS 0444 Peppers Chilli, dried W 0.5 VO 0445 Peppers, Sweet (including pimento or pimiento) VR 0589 Potato 0.02 * 0.02 * 0.0 0 0 VO 0448 Tomato 0.2 0.5 0.03 0.03 0.05 VC 0432 Watermelon 0.1 0.02 0.02 0.02 0.05 UF 0.048 Tomato 0.2 0.5 0.035 0.05 VC 0432 Watermelon 0.1 0.02 0.02 0.02 0.005 Tomato preserve 0.006 Tomato preserve 0.006 Tomato preserve 0.006 VC 0.012 Wine 0.035 Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities; benalaxyl. Bifenthrin (178)*** ADI: 0-0.01 mg/kg bw ARfD: 0.01 mg/kg bw ARfD: 0.01 mg/kg bw FP 0226 Apple 2 2 2 0.365 ARfD: Unnecessary FI 0327 Banana 0.6 0.2 0.05 0.075 FB 0018 Berries and other small 10 10 2.53 fruits (except strawberries and grapes) VB 0040 Brassica (cole or cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0050 ontered on the cabbage) vegetables 5 1.02 GC 0080 Cereal grains (except barley, oats, rye and wheat)	· -						
MS 0444 Peppers Chilli, dried W 0.5 Peppers, Sweet W 0.05 WO 0445 Peppers, Sweet W 0.05 WO 0445 Peppers, Sweet W 0.05 WO 0448 Pomato WO 0.2 WO 0.2 WO 0.2 Wo 0.02 Wo 0.02 Wo 0.02 Wo 0.035 0.05 WO 0.448 Tomato 0.2 0.5 0.035 0.05 WO 0.448 Tomato 0.2 0.5 0.035 0.05 Wo 0.448 Tomato juice Wo 0.018 Tomato purce 0.006 Tomato purce 0.005 Tomato purce Wo 0.005 Wo 0.035 Wo 0		VC 0046	•	0.3	0.1	0.02	
VO 0445	ARfD: Unnecessary	VA 0385	Onion, Bulb	0.02 *	0.2	0	0
VO 0445	(general population)	HS 0444	Peppers Chilli, dried	W	0.5		
VO 0448		VO 0445	Peppers, Sweet (including pimento or	W	0.05		
VC 0432 Watermelon 0.1 0.02 0.02 JF 0269 Grape juice 0.005 JF 0448 Tomato juice 0.005 Tomato preserve 0.006 Tomato pureé 0.012 Wine 0.035 Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: benalaxyl. Bifenthrin (178)** ADI: 0-0.01 mg/kg bw ADI: 0-0.01 mg/kg bw ARID: 0.01 mg/kg bw ARID: 0.01 mg/kg bw FP 0226 Apple 2 2 0.365 ARID: Unnecessary FI 0327 Banana 0.6 0.2 0.05 GC 0640 Barley 0.5 0.075 FB 0018 Berries and other small 10 10 2.53 FB 018 Berries and grapes VB 0400 Brassica (cole or cabbage) vegetables, Head cabbages, Flowerhead brassicas Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except barley, oats, rye and wheat) Cereal grains (except barley, oats, rye and wheat)		VR 0589	Potato	0.02 *	0.02 *	0	0
JF 0269 Grape juice 0.018 1		VO 0448	Tomato	0.2		0.035	0.05
JF 0269 Grape juice 0.018 10.005 10.00		VC 0432	Watermelon	0.1		0.02	0.02
JF 0448 Tomato juice 0.005 Tomato preserve 0.006 Tomato pureé 0.012 Wine 0.035							
Tomato preserve						0.005	
Tomato pureé Wine 0.012 Wine 0.035 Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: benalaxyl. Bifenthrin (178)** ADI: 0–0.01 mg/kg bw ARfD: 0.01 mg/kg bw Boscalid (221) AM 0660 Almond hulls 15 15 4.1 13 ADI: 0–0.04 mg/kg bw FP 0226 Apple 2 2 0.365 ARfD: Unnecessary FI 0327 Banana 0.6 0.2 0.05 GC 0640 Barley 0.5 0.075 FB 0018 Berries and other small 10 10 2.53 fruits (except strawberries and grapes) VB 0040 Brassica (cole or 5 1.52 2.7 cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)						0.006	
Wine 0.035			-			0.012	
Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: benalaxyl. Bifenthrin (178)** ADI: 0–0.01 mg/kg bw ARfD: 0.01 mg/kg bw ARfD: 0.01 mg/kg bw FP 0226 Apple 2 2 2 0.365 ARfD: Unnecessary FI 0327 Banana 0.6 0.2 0.05 GC 0640 Barley 0.5 0.075 FB 0018 Berries and other small 10 10 2.53 fruits (except strawberries and grapes) VB 0040 Brassica (cole or 5 1.52 2.7 cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)			-				
ADI: 0-0.04 mg/kg bw FP 0226 Apple 2 2 0.365 ARfD: Unnecessary FI 0327 Banana 0.6 0.2 0.05 GC 0640 Barley 0.5 0.075 FB 0018 Berries and other small 10 10 2.53 fruits (except strawberries and grapes) VB 0040 Brassica (cole or 5 1.52 2.7 cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)	commodities: benalaxyl. Bifenthrin (178)** ADI: 0–0.01 mg/kg bw			_			
ADI: 0-0.04 mg/kg bw FP 0226 Apple 2 2 0.365 ARfD: Unnecessary FI 0327 Banana 0.6 0.2 0.05 GC 0640 Barley 0.5 0.075 FB 0018 Berries and other small 10 10 2.53 fruits (except strawberries and grapes) VB 0040 Brassica (cole or 5 1.52 2.7 cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)	Boscalid (221)	AM 0660	Almond hulls	15	15	4.1	13
ARfD: Unnecessary FI 0327 Banana 0.6 0.2 0.05 GC 0640 Barley 0.5 0.075 FB 0018 Berries and other small 10 10 2.53 fruits (except strawberries and grapes) VB 0040 Brassica (cole or 5 1.52 2.7 cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)							
GC 0640 Barley 0.5 0.075 FB 0018 Berries and other small 10 10 2.53 fruits (except strawberries and grapes) VB 0040 Brassica (cole or 5 1.52 2.7 cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)							
FB 0018 Berries and other small 10 10 2.53 fruits (except strawberries and grapes) VB 0040 Brassica (cole or 5 1.52 2.7 cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)							
VB 0040 Brassica (cole or 5 1.52 2.7 cabbage) vegetables, Head cabbages, Flowerhead brassicas VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)			Berries and other small fruits (except		10		
VA 0035 Bulb vegetables 5 1.02 GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)		VB 0040	Brassica (cole or cabbage) vegetables, Head cabbages,	5		1.52	2.7
GC 0080 Cereal grains (except 0.1 0.05 barley, oats, rye and wheat)		VA 0035		5		1.02	
·			Cereal grains (except barley, oats, rye and				
		CD 0716	· ·	0.05 *	0.05 *	0.05	
DF 0269 Dried grapes (= currants, 10 10 2.6		SB 0716	Coffee beans	0.05 *	0.05 *	0.05	

Pesticide (Codex reference number)	CCN Co	Commodity	Recommended MRL mg/kg		STMR or STMR-P	HR or HR-P mg/kg
·			New	Previous	mg/kg	
		Raisins and Sultanas)		<u> </u>	<u>-</u>	
	MO 0105	Edible offal	0.2		0.16	
		(Mammalian)				
	PE 0112	Eggs	0.02		0.02	
	VC 0045	Fruiting vegetables,	3		0.565	
		Cucurbits				
	VO 0050	Fruiting vegetables, other than Cucurbits	3		0.565	
		(except fungi, mushroom and				
		sweet corn)				
	FB 0269	Grapes	5	5	1.09	
	FI 0341	Kiwifruit	5	5	0.073	
	VL 0053	Leafy vegetables	30		2.95	
	VP 0060	Legume vegetables	3		0.5	
	MM 0095	Meat (from mammals other than marine mammals)	0.7 (fat)		0.18 (fat) 0.035 (muscle)	
	FM 0183	Milk fats	2		0.64	
	ML 0106	Milks	0.1		0.04	
	GC 0647	Oats	0.1		0.000	
	SO 0088	Oilseed	1		0.145	
	HS 0444	Peppers Chilli, dried	10		1.4	
	TN 0675	Pistachio nut	1	1	0.27	
	PO 0111	Poultry, Edible offal of	0.02		0.02	
	PF 0111	Poultry fats	0.02		0.02	
	PM 0110	Poultry meat	0.02		0.02	
	DF 0014	Prunes ^c	10		3.39	
	VD 0070	Pulses	3		0.12	
	VR 0075	Root and tuber vegetables	2		0.305	0.71
	GC 0650	Rye	0.5		0.075	
	FS 0012	Stone fruits	3	3.0	1.21	
	AS 0081	Straw and fodder (dry) of cereal grains (except straw and fodder of barley, oats, rye and wheat)	5 ^b		1.25 ^b	3.2 ^{a, b}
	AS 0640	Barley straw and fodder, dry	50 ^b		9 ^b	30.7 ^{a, b}
	AS 0647	Oats straw and fodder, dry	50 ^b		9 ^b	30.7 ^{a, b}
	AS 0650	Rye straw and fodder, dry	50 ^b		9 ^b	30.7 ^{a, b}
	AS 0654	Wheat straw and fodder, dry	50 ^b		9 ^b	30.7 ^{a, b}
	FB 0275	Strawberry	3		0.555	
	TN 0085	Tree nuts (except pistachio)	0.05 *	0.05 *	0.05	
	GC 0654	Wheat	0.5		0.075	
	JF 0269	Grape juice			0.46	
		Pot barley			0.026	
	OR 0541	Soya bean oil, refined			0.061	
	JF 0048	Tomato juice			0.085	
	VW 0448	Tomato paste			0.413	
		Tomato puree			0.136	

Annex 1 295

Pesticide (Codex reference number)	CCN	Commodity	Recommen	nded MRL mg/kg	STMR or STMR-P	HR or HR-P mg/kg
			New	Previous	mg/kg	
	CF 0654	Wheat bran, processed	· · ·	·	0.32	
	CF 1210	Wheat germ			0.1	
	CF 1211	Wheat, flour			0.026	
	CF 1212	Wheat wholemeal			0.092	
		Wine			0.38	

Definition of the residue (for compliance with the MRL for plant and animal commodities and for estimation of dietary intake for plant commodities): boscalid.

Definition of the residue (for estimation of dietary intake for animal commodities): sum of boscalid, 2-chloro-N-(4'-chloro-5-hydroxybiphenyl-2-yl)nicotinamide including its conjugate, expressed as boscalid.

The residue is fat-soluble.

^a Highest residue.		^b Calculated on a dry weight basis.			^c The dried fruit.	
Buprofezin (173)	AM 0660	Almond hulls	2		0.23	1.76
ADI: 0-0.009 mg/kg bw	TN 0660	Almonds	0.05 *		0.05	0.05
ARfD: 0.5 mg/kg bw	FP 0226	Apple	3		0.28	0.99
	FS 0013	Cherries	2		0.73	1.32
	VC 0424	Cucumber	W ^b	0.2		
	MO 0105	Edible offal (Mammalian)	0.05 *	0.05 *	0	0
	VC 0045	Fruiting vegetables, Cucurbits	0.7		0.19	0.41
	FB 0269	Grapes	1		0.17	0.74
	DF 0269	Dried grapes (= currants, Raisins and Sultanas)	2		0.37	1.63
	MM 0095	Meat (from mammals other than marine mammals)	0.05 *	0.05 *	0	0
	ML 0106	Milks	0.01 *	0.01 *	0	0
	FS 0245	Nectarine	9		1.355	8.13
	FT 0305	Olives	5		1.125	1.66
	FS 0247	Peach	9		1.355	8.13
	FP 0230	Pear	6		1.09	3.64
	VO 0051	Peppers	2		0.33	1.1
	HS 0444	Peppers chilli, dried	10		2.31	7.7
	FS 0014	Plums (including Prunes)	2		0.155	0.55
	FB 0275	Strawberry	3		0.44	1.24
	JF 0226	Apple juice			0.16	
	JF 0269	Grape juice			0.098	
		Olive oil			3.49	
	DF 0014	Prunes ^c			0.465	1.65
		White wine			0.15	
		Red wine			0.1	

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: buprofezin.

Cadusafos (174)** ADI: 0-0.0005 mg/kg

bw

ARfD: 0.001 mg/kg bw

^a Dry weight basis ^bReplaced by a new maximum residue level for fruiting vegetables, Cucurbits. ^c The dried fruit.

Pesticide (Codex reference number)	CCN	Commodity	Recommend	ed MRL mg/kg	STMR or STMR-P	HR or HR-P mg/kg
			New	Previous	mg/kg	
Carbofuran (096)						
ADI: 0-0.001 mg/kg bw	•	Banana			0.02	
ARfD: 0.001 mg/kg bw		Citrus				0.01
Definition of the residue	(for compliance	e with the MRL and for est	imation of die	etary intake) for	plant and ar	nimal
commodities: sum of ca	rbofuran, 3-hyd	lroxycarbofuran and conjug	gated 3-hydrox	kycarbofuran, ex	epressed as c	earbofuran.
Chlorothalonil (081)**						
ADI: 0-0.02 mg/kg bw						
ARfD: 0.6 mg/kg bw						
4-Hydroxy-2,5,6-						
trichloroisophthalonitril						
e a						
ADI: 0-0.008 mg/kg bw	,					
ARfD: 0.03 mg/kg bw						
a.cccc	701					
^a Company Code SDS-3	5/01	.			•	
Chlamay::f (1 1	ED 0226	Amula	w a	0.5		
Chlorpyrifos-methyl (090)**	FP 0226	Apple	W ^a	0.5		
` ′	AD 0226	Amala namasa day	2		0.22	
ADI: 0-0.01 mg/kg bw	AB 0226	Apple pomace, dry	2	0.1	0.22	
ARfD: 0.1 mg/kg bw	VS 0620	Artichoke, Globe	W 2 D-	0.1	2.1	2.2
	GC 0640	Barley	3 Po	0.1	2.1	2.2
	VB 0041	Cabbages, Head	W	0.1		
	MF 0812	Cattle fat	W ^a	0.05		
	MM 0812	Cattle meat	W a	0.05		
	MO 0812	Cattle, Edible offal of	W a	0.05		
	PF 0840	Chicken fat	\mathbf{W}^{a}	0.05		
	PM 0840	Chicken meat	W^{a}	0.05		
	PO 0840	Chicken, Edible offal of	\mathbf{W}^{a}	0.05		
	VL 0467	Chinese cabbage (type	W	0.1		
		Pe-tsai)				
	FC 0001	Citrus fruits	2		0.01	0.01
	VP 0526	Common bean (pods	W	0.1		
		and/or immature seeds)				
	FT 0295	Date	W	0.05		
	MO 0105	Edible offal	0.01		0	0
	110 0440	(Mammalian)		0.1	0.06	0.72
	VO 0440	Egg plant	1	0.1	0.06	0.72
	PE 0112	Eggs	0.01 *	0.05	0	0
	FB 0269	Grapes	1	0.2	0.02	0.53
	AB 0269	Grape pomace, dry	5	0.4	0.075	
	VL 0482	Lettuce, Head	W	0.1	2.1	2.2
	GC 0645	Maize	3 Po		2.1	2.2
	MM 0095	Meat (from mammals	0.1 (f-4)		0.03 (fat)	0.055 (fat)
		other than marine	0.1 (fat)			0 (muscle)
	MI 0104	mammals)	0.01 *	0.01	0.0006	
	ML 0106	Milks Milk foto				
	FM 0183	Milk fats	0.01*	0.01	0.0006	
	VO 0450	Mushrooms	W W ^a	0.01 *		
	FC 0004	Oranges, Sweet, Sour	VV	0.5		
		(including Orange-like hybrids): several				
		cultivars				
	JF 0004	Orange juice			0	
<u> </u>	J1 000 1	Grange June			<u> </u>	

Annex 1 297

Pesticide (Codex reference number)	CCN Commodity		Recommended MRL mg/kg		STMR or STMR-P	HR or HR-P mg/kg	
			New	Previous	mg/kg		
	FS 0247	Peach	W	0.5	-		
	VO 0051	Peppers	1	0.5	0.06	0.72	
	HS 0444	Peppers Chilli, dried	10	5	0.6		
	FP 0009	Pome fruits	1		0.06	0.56	
	VR 0589	Potato	0.01 *		0	0	
	PO 0111	Poultry, Edible offal of	0.01 *		0	0	
	PO 0110	Poultry meat	0.01 (fat)		0.004 (fat)		
	VR 0494	Radish	W	0.1	o (masere)	o (masere)	
	GC 0649	Rice	W	0.1			
	GC 0651	Sorghum	W	10 Po			
		_		10 FO	0.02	0.26	
	FS 0012	Stone fruits	0.5		0.02	0.26	
	FB 0275	Strawberry	0.06	0.4	0.01	0.04	
	DT 1114	Tea, Green, Black (black, fermented and dried)	W	0.1			
	VO 0448	Tomato	1	0.5	0.06	0.92	
	GC 0654	Wheat	3 Po	10 Po	2.1	2.2	
	CM 0654	Wheat bran, unprocessed	6PoP	20 PoP	5.14	5.39	
	CF 1211	Wheat flour	W	2 PoP	0.525	0.55	
	CP 1211	White bread	W	0.5 PoP	0.105	0.11	
	CF 1210	Wheat germ	5 PoP		3.99	4.18	
	CF 1212	Wheat wholemeal	3 1 01		3	4.7	
	CP 1212	Wholemeal bread	W	2 PoP	1.01	1.06	
	CI 1212		VV	2101		1.00	
		Beer			0.002		
	DF 5263	Raisins			0.001	0.001	
	JF 448	Tomato juice			0.002		
		Tomato puree			0.016		
		Wine			0.002		
Definition of the residue commodities: chlorpyrif The residue is fat-soluble A Replaced by commodit Cycloxydim (179) **	fos-methyl. e.	ce with the MRL and for est	imation of die	tary intake) for	plant and an	iimal	
ADI: 0–0.07 mg/kg bw							
ARfD: 2 mg/kg bw for							
women of childbearing							
age							
unnecessary for general population							
Cypermethrins (118)	GC 0640	Barley	2 e Po C f		1.38	1.5	
Group	GC 0040 GC 0080	Cereal grains (except	W	0.3 ^g	1.00		
ADI: 0–0.02 mg/kg bw	30 0000	rice)	**	0.5			
Group	GC 0080	Cereal grains (except	0.3 e Acz		0.035		
ARfD: 0.04 mg/kg bw	30 0000	rice, barley, oats, rye and wheat)	J.J TICE		0.033		
	PE 0112	Eggs	0.01 *	0.01 *	0.0042	0.0060	
			2 ^e Po C	0.01			
	GC 0647	Oats		0.05 %	1.38	1.5	
	PM 0110	Poultry meat	0.1 (fat)	0.05 *	0.002 (muscle) 0.034 (fat)	0.007 (muscl 0.048 (fat)	
	GC 0650	Rve	2 e Po. C		1 38	1.5	

2 e Po C

1.38

1.5

GC 0650

Rye

Pesticide (Codex reference number)	CCN	Commodity	Recommend	ed MRL mg/kg	STMR or STMR-P	HR or HR-P mg/kg
			New	Previous	mg/kg	
	GC 0654	Wheat	2 e Po C		1.38	1.5
	CM 0654	Wheat bran, unprocessed	5 PoP C		3.45	3.75
		Beer			0.04	
	CF 1211	Wheat flour			0.48 C	0.53

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: cypermethrin (sum of isomers).

The residue is fat-soluble.

^f Source of data supporting the proposed MRL: a: alpha-cypermethrin. c: cypermethrin. z: zeta-cypermethrin. Capital letters show the source of data responsible for the MRL estimate. Small letters show the sources of other data for that commodity ^g Replaced by Cereal grains, except rice, barley, oats, rye and wheat.

Fenbuconazole (197)	AM 0660	Almond hulls	3		0.45	
ADI: 0-0.03 mg/kg bw	AB 0226	Apple pomace, dry	1		0.3	
	FB 0020	Blueberries	0.5		0.06	0.2
	MF 0812	Cattle fat	\mathbf{W}^{a}	0.05 *		
	MO 1280	Cattle, Kidney	\mathbf{W}^{a}	0.05 *		
	MO 1281	Cattle, Liver	\mathbf{W}^{a}	0.05		
	MM 0812	Cattle meat	\mathbf{W}^{a}	0.05 *		
	ML 0812	Cattle milk	\mathbf{W}^{a}	0.05 *		
	FB 0265	Cranberry	1		0.13	0.45
	MO 0105	Edible offal	0.1		0.02	0.09
		(Mammalian)				
	PE 0112	Eggs	0.01 *	0.05 *	0	0
	MM 0095	Meat (from mammals	0.01		0.003	0.01
		other than marine				
		mammals)				
	ML 0106	Milks	0.01 *		0	
	SO 0697	Peanut	0.1		0.03	0.05
	AL 0697	Peanut fodder	15		2.3	7.1
	TN 0672	Pecan	W	0.05 *		
	VO 0051	Peppers	0.6		0.15	0.21
	HS 0444	Peppers Chilli, dried	2		1.5	2.0
	FS 0014	Plums (including Prunes)	0.3		0.08	0.17
	FP 0009	Pome fruits	0.5	0.1	0.12	0.28
	PF 0111	Poultry fats	W	0.05 *		
	PM 0110	Poultry meat	0.01 *	0.05 *	0	0
	PO 0111	Poultry, Edible offal of	0.01 *	0.05 *	0	0
	TN 0085	Tree nuts	0.01 *		0	0
	JF 0226	Apple juice			0.01	
	OR 0697	Peanut oil, edible			0.04	

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: fenbuconazole.

The residue is fat-soluble.

^a Replaced by commodity group MRL.

Fluopicolide (235)*	VB 0402	Brussels sprouts	0.2	0.04 (0.01) a	0.13 (0.01)
ADI: 0-0.08 mg/kg bw	VB 0041	Cabbages, Head	7	1.2 (0.01) ^a	4 (0.02)
ARfD: 0.6 mg/kg bw	VS 0624	Celery	20	1.4 (0.01) a	14 (0.04)
(women of childbearing	HS 0444	Peppers Chilli, dried	7	0.91 (0.01)	7 (0.01)
age)					
	PE 0112	Eggs	0.01 *	0 (0)	0 (0)

^e Replacing previous MRL for Cereal grains, except rice.

Pesticide (Codex reference number)	CCN	Commodity	Recommende	d MRL mg/k	g STMR or STMR-P	HR or HR-P mg/kg
			New	Previous	mg/kg	
2,6-dichlorobenzamide	VB 0042	Flowerhead brassicas (includes Broccoli: Broccoli, Chinese and Cauliflower)	2		0.385 (0.01) ^a	
ADI: 0-0.02 mg/kg bw	VC 0045	Fruiting vegetables, Cucurbits	0.5		0.07 (0.01) ^{a,} 0.01 (0.01) ^{a, c}	$0.3(0.01)^{b}$ $0.01(0.01)^{c}$
ARfD: 0.6 mg/kg bw (general population)	VO 0050	Fruiting vegetables, other than Cucurbits (except mushrooms and sweet corn)	1		0.16 (0.01) ^a	0.58 (0.01)
	FB 0269	Grapes	2		0.38 (0.01) ^a	1.2 (0.04)
	DF 0269	Dried grapes (= currants, Raisins and Sultanas)	10		2.47 (0.045) a	
	AB 0269	Grape pomace, dry	7			
	VL 0053	Leafy vegetables	30		8.6 (0.07) ^a	17 (0.19)
	MO 0105	Edible offal (Mammalian)	0.01 *		0 (0) ^a	0 (0)
	ML 0106	Milks	0.02		0 (0) ^a	
	MM 0095	Meat (from mammals other than marine mammals)	0.01 *(fat)		0 (0) ^a	0 (0)
	VA 0385	Onion, Bulb	1		0.07 (0.01) a	0.58 (0.01)
	VA 0387	Onion, Welsh	10		2.1 (0.01) ^a	4.5 (0.01)
	PM 0110	Poultry meat	0.01 *		0 (0) a	0 (0)
	PO 0111	Poultry, Edible offal of	0.01 *		0 (0) a	0 (0)
	AS 0081	Straw and fodder (dry) of cereal grains	0.2			
	JF 0448	Tomato juice Tomato puree			0.048 (0.01) ^a 0.288 (0.01) ^a	
	VW 0448	Tomato paste			0.352 (0.01) a	
	* * * * * * * * * * * * * * * * * * * *	White wine			$0.16 (0.01)^{a}$	
		Red wine			0.12 (0.01) ^a	
Definition of the residue dichlorobenzamide mea The residue is fat-solub	e (for estimation usured separately le. for residues of 2	2,6-dichlorobenzamide.	and animal co	mmodities: f		
Haloxyfop (194)**	AL 1021	Alfalfa forage (green)	\mathbf{W}^{a}	5 ³⁶		
ADI: 0–0.0007 mg/kg	FI 0327	Banana	0.02 *	0.05 *	0	0
ARfD: 0.08 mg/kg bw	VD 0071 VP 0061	Beans (dry) Beans, except broad bean and soya bean	3 0.5		0.335 0.085	0.26
	MO 1280	Cattle, kidney	W^b	1		
	MO 1281	Cattle, liver	W^{b}	0.5		
	MM 0812	Cattle meat	\mathbf{W}^{b}	0.05		
	ML 0812	Cattle milk	W^{b}	0.3		

³⁶ Fresh weight basis.

Pesticide (Codex reference number)	CCN Commodity R		Recommended MRL mg/kg		STMR-P	HR or HR-P mg/kg
			New	Previous	mg/kg	
	PM 0840	Chicken meat	W ^c	0.01 * 37		
	PO 0840	Chicken, Edible offal of	W ^c	0.05		
	VD 0524	Chick-pea (dry)	0.05		0.02	
	FC 0001	Citrus fruits	0.02 *	0.05 *	0	0
	SB 0716	Coffee beans	0.02 *		0	0
	SO 0691	Cotton seed	0.7	0.2	0.1	
	OC 0691	Cotton seed oil, crude	W	0.5		
	MO 0105	Edible offal	2		0.27	1.42
		(Mammalian)				
	PE 0112	Eggs	0.1		0.022	0.05
	AM 1051	Fodder beet	0.4	0.3	0.02	0.30
	AV 1051	Fodder beet leaves or tops	\mathbf{W}^{a}	0.3^{38}		
	FB 0269	Grapes	0.02 *	0.05 *	0	0
	MM 0095	Meat (from mammals	0.52 (fat)	0.05	0.035 (fat)	
	141141 0055	other than marine mammals)	0.5 (141)		0.006 (muscle)	0.041 (muscle)
	FM 0183	Milk fats	7		0.87	
	ML 0106	Milks	0.3		0.033	
	VA 0385	Onion, Bulb	0.2		0.035	0.12
	SO 0697	Peanut	W	0.05	0.055	0.12
	AL 0697	Peanut fodder	5	0.05	2.1	3.0
	VD 0072	Peas (dry)	0.2		0.04	3.0
	VP 0063	Peas (pods and succulent = immature seeds)		0.2	0.11	0.53
	VP 0064	Peas, shelled (succulent seeds)	1		0.08	0.75
	FP 0009	Pome fruits	0.02 *	0.05 *	0	0
	VR 0589	Potato	W	0.1		
	PM 0110	Poultry meat	0.7 (fat)		0.13 (fat) 0.032 (muscle)	0.52 (fat) 0.11 (muscle)
	PO 0111	Poultry, Edible offal of	0.7		0.21	0.61
	VD 0070	Pulses	\mathbf{W}^{d}	0.2		
	SO 0495	Rape seed	3	2	0.07	
	OC 0495	Rape seed oil, crude	W e	5	0.17	
	OR 0495	Rape seed oil, edible	W e	5	0.16	
	CM 1206	Rice bran, unprocessed	W	0.02 *		
	CM 0649	Rice, husked	W	0.02 *		
	CM 1205	Rice, polished	W	0.02 *		
	VD 0541	Soya bean (dry)	2		0.055	
	OC 0541	Soya bean oil, crude	\mathbf{W}^{f}	0.2	0.044	
	OR 0541	Soya bean oil, refined	\mathbf{W}^{f}	0.2	0.041	
	FS 0012	Stone fruits	0.02 *		0	0
	VR 0596	Sugar beet	0.4	0.3	0.02	0.30
	AV 0596	Sugar beet leaves or tops	W a	0.3		
	A V UJJU					

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: sum of haloxyfop (including haloxyfop-P), its esters and its conjugates expressed as haloxyfop.

^a The current policy is not to recommend maximum residue levels for fresh animal forages, but to use the data in livestock

³⁷ With adhering skin.

³⁸ Fresh weight basis.

Annex 1 301

Pesticide (Codex	CCN	Commodity	Recommen	ded MRL mg/kg		
reference number)					STMR-P	mg/kg
			New	Previous	mg/kg	

dietary burden calculations.

^f The recommendations for maximum residue levels for Soya bean oils are withdrawn, because they are covered by the recommendation for soya bean (dry).

Hexythiazox (176)**	FP 0226	Apple	W^{a}	0.5	
ADI: 0-0.03 mg/kg bw	FS 0013	Cherries	\mathbf{W}^{a}	1	
ARfD: Unnecessary	FC 0001	Citrus fruits	0.5	0.5	0.074 (pulp)
	VP 0526	Common bean (pods and/or immature seeds)	W	0.5	
	VC 0424	Cucumber	W	0.1	
	FB 0279	Currant, Red, White	W	0.2	
	FT 0295	Date	2		0.26
	DF 0269	Dried grapes (= currants, Raisins and Sultanas)	1		0.32
	MO 0105	Edible offal (Mammalian)	0.05		0.01
	VO 0440	Egg plant	0.1		0.05
	PE 0112	Eggs	0.05		0.002
	VC 0045	Fruiting vegetables, Cucurbits (except watermelon)	0.05		0.05
	AB 0269	Grape pomace, dry	15 (dry)		
	FB 0269	Grapes	1	1	0.2
	DH 1100	Hops, dry	W	2	
	MF 0100	Mammalian fats (except milk fats)	0.05		0.01
	MM 0095	Meat (from mammals other than marine mammals)	0.05		0.01 (fat) 0 (muscle)
	FM 0183	Milk fats	0.05		0.01
	ML 0106	Milks	0.05		0.01
	FS 0247	Peach	\mathbf{W}^{a}	1	
	FP 0230	Pear	\mathbf{W}^{a}	0.5	
	FS 0014	Plums (including Prunes)	\mathbf{W}^{a}	0.2	
	FP 0009	Pome fruits	0.4		0.11
	PM 0110	Poultry meat	0.05 * (fat)		0.002 (fat) 0 (muscle)
	PO 0111	Poultry, Edible offal of	0.05		0.01
	DF 0014	Prunes b	1		0.41
	FS 0012	Stone fruits	0.3		0.09
	FB 0275	Strawberry	W	0.5	
	VO 0448	Tomato	0.1	0.1	0.05
	TN 0085	Tree nuts	0.05 *		0
	JF 0269	Grape juice			0.084
	JF 0004	Orange juice			0.024
		Wine			0.01

Definition of the residue (for compliance with the MRL) for plant commodities: hexythiazox.

Definition of the residue (for estimation of dietary intake) for plant commodities: sum of hexythiazox and all metabolites

^b Recommendations for Cattle kidney and Cattle liver are withdrawn, to be replaced by a recommendation for mammalian edible offal. Recommendations for Cattle meat and Cattle milk are withdrawn and replaced by recommendations for mammalian meat and milks.

^c Recommendations for Chicken eggs, meat and edible offal are withdrawn, to be replaced by recommendations for poultry commodities.

^d The recommendation for Pulses is withdrawn to be replaced by recommendations for individual commodities.

^e The recommendations for maximum residue levels for rape seed oils are withdrawn, because they are covered by the recommendation for Rape seed.

Pesticide (Codex reference number)	CCN	Commodity	Recommend	ed MRL mg/kg	STMR or STMR-P	HR or HR-P mg/kg
,			New	Previous	mg/kg	8 8
Definition of the residue	e (for complianc abolites contain x. e.	-4-methyl-2-oxothiazolic e with the MRL and for ing the trans-5-(4-chloro	line-moiety (PT-estimation of die	tary intake) for	animal com	modities: sum of
Indoxacarb (216) ADI: 0–0.01 mg/kg bw	VD 0527 FB 0265	Cowpea, dry Cranberry	0.1 1	0.2	0.02 0.15	0.69
ARfD: 0.1 mg/kg bw	VC 0424 MO 0105	Cucumber Edible offal (Mammalian)	W ^a 0.05	0.2 0.05	0.014	0.030
	PE 0112 VC 0045	Eggs Fruiting vegetables, Cucurbits	0.02 0.5	0.01 *	0.01 0.06 ^b (0.02 ^c)	0.02 0.39 ^b (0.02 ^c)
	MM 0095	Meat (from mammals other than marine mammals)	2 (fat)	1 (fat)	0.01 (muscle) 0.38 (fat)	0.039 (muscle) 1.07 (fat)
	VC 0046	Melons, except watermelons	\mathbf{W}^{a}	0.1	, ,	
	FM 0183	Milk fats	2	2	0.78	
	ML 0106	Milks	0.1	0.1	0.037	
	HH 0738	Mints	15		3.5	6.8
	FS 0247	Peach	\mathbf{W}^{a}	0.3		
	PM 0110	Poultry meat	0.01 * (fat)	0.01 * (fat)	0 (muscle) 0.025 (fat)	0 (muscle) 0.05 (fat)
	PO 0111	Poultry, Edible offal of	f 0.01 *	0.01 *	0	0
	DF 0014	Prunes d	3		0.68	2.6
	FS 0012	Stone fruits	1		0.17	0.64
		Mint oil			0.05	
		Plum jam			0.17	
		Plum juice			0.06 0.14	
		Plum pomace, wet Plum puree			0.14	
		Plums, canned			0.11	
commodities: sum of ind Definition of the residue methyl 7-chloro-2,5-dih carboxylate, expressed a The residue is fat-solubl a Replaced by commodit	doxacarb and its for estimation ydro-2-[[[4-(trif is indoxacarb. e. ty group MRL.	of dietary intake for animalization of dietary intake for animaliz	nal commodities mino]carbonyl]i MR and HR valu	: sum of indoxa ndeno[1,2-e][1	carb, its R en	nantiomer and
^c STMR and HR values	in edible portion	n (pulp). d Th	e dried fruit.			
Metaflumizone (236)*	VB 0402	Brussels sprouts	0.8		0.125	
ADI: 0-0.1 mg/kg bw	VL 0467	Chinese cabbage, (type Pe-tsai)			0.49	
ARfD: Unnecessary	MO 0105	Edible offal (Mammalian)	0.02 *		0.013	
	VO 0440	Egg plant	0.6		0.18	
	VL 0482	Lettuce, Head	7		2.0	
	MM 0095	Meat (from mammals other than marine	0.02 * (fat)		0.013 (muscle)	
	MI 0106	mammals)	0.01 *		0.013 (fat)	
	ML 0106	Milks	0.01 *		0.007	

Annex 1 303

Pesticide (Codex reference number)	CCN	Commodity	Recommende	d MRL mg/kg	STMR or STMR-P	HR or HR-P mg/kg
			New	Previous	mg/kg	
	FM 0183	Milk fats	0.02		0.013	 _
	VO 0051	Peppers	0.6		0.18	
	HS 0444	Peppers Chilli, dried	6		1.8	
	VR 0589	Potato	0.02 *		0	
	VO 0448	Tomato	0.6		0.12	
	zone, sum of	nce with the MRL and for est metaflumizone E-isomer and			plant and an	iimal
Methoxyfenozide (209)	FI 0326	Avocado	0.7		0.13	0.41
	VP 0526	Common bean (pods and/or immature seeds)	2		0.065	0.99
ADI: 0-0.1 mg/kg bw	VP 0062	Beans, shelled	0.3		0.05	0.18
ARfD: 0.9 mg/kg bw	VD 0071	Beans, dry	0.5		0.05	
	FB 0020	Blueberries	4		1.25	2
	VR 0577	Carrot	0.5		0.13	0.31
	FC 0001	Citrus fruits	0.7		0.05	0.05
	VD 0527	Cowpea (dry)	5		0.56	
	FB 0265	Cranberry	0.7	0.7	0.1	0.39
	MO 0105	Edible offal (Mammalian)	0.1	0.02	0.051	0.057
	MF 0100	Mammalian fats (except milk fats)	0.2		0.094	0.162
	MM 0095	Meat (from mammals other than marine mammals)	0.2 (fat)	0.05	0.094 (fat) 0.019 (muscle)	0.162 (fat) 0.025 (muscle)
	ML 0106	Milks	0.05		0.030	
	FI 0350	Papaya	1		0.31	0.33
	SO 0697	Peanut	0.03		0.01	0.016
	AL 0697	Peanut fodder	80		13.5	51
	OR 0697	Peanut oil, edible	0.1		0.029	
	VP 0064	Peas, shelled (succulent seeds)	0.3		0.05	0.18
	VR 0494	Radish	0.4		0.08	0.1
	VL 0494	Radish leaves (including Radish tops)	7		0.75	4.0
	FB 0275	Strawberry	2		0.24	1.2
	VR 0596	Sugar beet	0.3		0.11	0.18
	VR 0508	Sweet potato	0.02		0.01	0.012
	JF 0001	Citrus juice			0.011	
	DM 0596	Sugar beet molasses			0.126	
commodities: methoxyfe	DM 0596 (for complian	-		•	0.126 plant and an	iimal
Paraquat (057)	GC 0649	Rice	0.05	W	0	0
ADI: 0–0.005 mg/kg bw		Rice Rice straw and fodder, dry	0.05	<u> </u>	0.01	0.04
ARfD: 0.006 mg/kg bw		<i>j</i>				
Definition of the residue commodities: paraquat ca		ce with the MRL and for est	imation of dieta	ary intake) for	plant and an	imal

Pesticide (Codex reference number)	CCN	Commodity	Recommend	led MRL mg/kg	STMR or STMR-P	HR or HR-P mg/kg
			New	Previous	mg/kg	
Prochloraz (142) ADI: 0–0.01 mg/kg bw ARfD: 0.1 mg/kg bw	VO 0450	Mushrooms	3	40	0.71	1.4
	chloraz and it	s metabolites containing the				
Prothioconazole (232) ADI: 0–0.05mg/kg bw	GC 0640	Barley Barley forage (fresh)	0.2	0.05	0.035 1.2	5.4
ARfD: 0.8 mg/kg bw women of childbearing age)	AS 0640	Barley straw and fodder, dry	W ^a	2	1.2	J. 4
ARfD: Unnecessary general population)	MO 0105	Edible offal (Mammalian)	0.5	0.02	0.05 (liver) 0.025 (kidney)	0.23 (liver) 0.15 (kidney)
	AS 0164	Fodder (dry) of cereal grains	5		1.5	4.8
	MF 0100	Mammalian fats (except milk fats)	W	0.01	0.01	0.02
	MM 0095	Meat (from mammals other than marine mammals)	0.01	0.01	0.01	0.01
Prothioconazole-desthio	ML 0106	Milks	0.004*	0.004*	0.004	
ADI: 0-0.01 mg/kg bw	AS 0647	Oat straw, and fodder, dry	\mathbf{W}^{a}	2		
	VD 0070	Pulses (except Soya bean, dry)	1		0.05	
ARfD: 0.01 mg/kg bw	SO 0495	Rape seed	0.1	0.05	0.02	
women of childbearing ge)	AS 0650	Rye straw and fodder, dry	\mathbf{W}^{a}	2		
ARfD: 1 mg/kg bw	VR 0596	Sugar beet	0.3		0.05	
general population)	AS 0081	Straw and fodder (dry) of cereal grains	4		0.65	1.9
	OS 0653	Triticale straw	\mathbf{W}^{a}	2		
	GC 0654	Wheat	0.1	0.05	0.02	
	CF 1211	Wheat flour	W	0.05	0.008	
	OS 0654	Wheat straw	\mathbf{W}^{a}	2	0.65	1.9
	OR 0495	Rape seed oil, edible			0.014	
	CM 0654	Wheat bran, unprocessed			0.048	
	CF 1210	Wheat germ			0.04	
orothioconazole-desthio. Definition of the residue Definition of the residue	(for complian (for the estim -3-hydroxy, pr	ice with MRL and estimation are with MRL) for animal contation of dietary intake) for an othioconazole-desthio-4-hydronic	nmodities: pr	rothioconazole-o	desthio.	nazole-desthio
		., ,,	1.5		2.5	
Spirodiclofen (237)*	AM 0660	Almond hulls	15		3.5	
ADI: 0-0.01 mg/kg bw	AB 0226	Apple pomace, dry	4 ^a		3.4	
ARfD: Unnecessary	FC 0001	Citrus fruits	0.4		0.13 b	
					0.02 ^c	
	SB 0716	Coffee beans	0.03 *		0.03	

Annex 1 305

Pesticide (Codex reference number)	CCN	Commodity	Recommended MRL mg/kg		STMR or STMR-P	HR or HR-P mg/kg
			New	Previous	mg/kg	
	VC 0424	Cucumber	0.07		0.03	
	FB 0021	Currants, Black, Red, White	1		0.040	
	DF 0269	Dried grapes (= Currants, Raisins and Sultanas)	0.3 ^a		0.13	
	MO 0105	Edible offal (Mammalian)	0.05 *		0	
	FB 0269	Grapes	0.2		0.059	
	VC 0425	Gherkin	0.07		0.03	
	DH 1100	Hops, dry	40		11	
	ML 0106	Milks	0.004 *		0	
	MM 0095	Meat (from mammals other than marine mammals)	0.01 * (fat)		0	
	FI 0350	Papaya	0.03 *		0.03	
	VO 0445	Peppers, Sweet (including pimento or pimiento)	0.2		0.08	
	FP 0009	Pome fruits	0.8		0.20	
	FS 0012	Stone fruits	2		0.315	
	FB 0275	Strawberry	2		0.0615	
	VO 0448	Tomato	0.5		0.08	
	TN 0085	Tree nuts	0.05		0.0155	
	JC 0001	Citrus juice			0.0065	
	JF 0226	Apple juice			0.004	
	DF 0226	Apples, dried			0.018	
	JF 0269	Grape juice			0.00051	
	-	Wine			0.018	
		Beer (from hops)			0.011	

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant commodities: spirodiclofen.

Definition of the residue for compliance with the MRL for animal commodities: spirodiclofen.

Definition of the residue for estimation of dietary intake for animal commodities: the sum of spirodiclofen and spirodiclofenenol, expressed as spirodiclofen.

The residue is fat-soluble.

^a Dry weight basis.	^b Whole fruit.			^c Edible portion.		
Zoxamide (227)	VC 0424	Cucumber	W^{a}	1		
ADI: 0–0.5 mg/kg bw	VC 0045	Fruiting vegetables, Cucurbits	2	_	0.225	-
ARfD: Unnecessary						

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: zoxamide.

^a Replaced by commodity group MRL.

Annex 2 307

ANNEX 2: INDEX OF REPORTS AND EVALUATIONS OF PESTICIDES BY THE JMPR

Numbers in parentheses after the names of pesticides are Codex classification numbers. The abbreviations used are:

T, evaluation of toxicology

R, evaluation of residue and analytical aspects

E, evaluation of effects on the environment

Abamectin (177) 1992 (T,R), 1994 (T,R), 1995 (T), 1997 (T,R),

2000 (R)

Acephate (095) 1976 (T, R), 1979 (R), 1981 (R), 1982 (T),

1984 (T,R), 1987 (T), 1988 (T), 1990 (T,R), 1991 (corr. to 1990 R evaluation), 1994 (R), 1996 (R), 2002 (T), 2003 (R), 2004 (corr. to 2003 report),

2005 (T), 2006 (R)

Acrylonitrile 1965 (T, R)

Aldicarb (117) 1979 (T, R), 1982 (T, R), 1985 (R), 1988 (R),

1990 (R), 1991 (corr. to 1990 evaluation), 1992 (T), 1993 (R), 1994 (R), 1996 (R), 2001 (R), 2002 (R),

2006 (R)

Aldrin (001) 1965 (T), 1966 (T,R), 1967 (R), 1974 (R), 1975 (R),

1977 (T), 1990 (R), 1992 (R)

Allethrin 1965 (T,R)

Aminocarb (134) 1978 (T,R), 1979 (T,R)

Aminomethylphosphonic acid (AMPA, 198) 1997 (T,R)

Aminopyralid (220) 2006 (T, R), 2007 (T, R)

Amitraz (122) 1980 (T,R), 1983 (R), 1984 (T,R), 1985 (R),

1986 (R), 1989 (R), 1990 (T,R), 1991 (R & corr. to

1990 R evaluation), 1998 (T)

Amitrole (079) 1974 (T,R), 1977 (T), 1993 (T,R), 1997 (T), 1998 (R)

Anilazine (163) 1989 (T,R), 1992 (R)

Atrazine 2007 (T)

Azinphos-ethyl (068) 1973 (T,R), 1983 (R)

Azinphos-methyl (002) 1965 (T), 1968 (T,R), 1972 (R), 1973 (T), 1974 (R),

1991 (T,R), 1992 (corr. to 1991 report), 1993 (R),

1995 (R), 2007 (T)

Azocyclotin (129) 1979 (R), 1981 (T), 1982 (R),1983 (R), 1985 (R),

1989 (T,R), 1991 (R), 1994 (T), 2005 (T,R)

Azoxystrobin (229) 2008 (T, R)

Benalaxyl (155) 1986 (R), 1987 (T), 1988 (R), 1992 (R), 1993 (R),

2005 (T), 2009 (R)

Bendiocarb (137) 1982 (T,R), 1984 (T,R), 1989 (R), 1990 (R)

Benomyl (069) 1973 (T,R), 1975 (T,R), 1978 (T,R), 1983 (T,R),

1988 (R), 1990 (R), 1994 (R), 1995 (T,E), 1998 (R) 1991 (T,R), 1992 (corr. to 1991 report, Annex I), Bentazone (172) 1994 (R), 1995 (R), 1998 (T,R), 1999 (corr. to 1998 report), 2004(T) BHC (technical-grade) 1965 (T), 1968 (T,R), 1973 (T,R) (see also Lindane) Bifenazate (219) 2006 (T, R) Bifenthrin (178) 1992 (T,R), 1995 (R), 1996 (R), 1997 (R), 2009 (T) 1969 (T,R), 1974 (R), 1982 (T), 1984 (R), Binapacryl (003) 1985 (T,R) 1975 (R), 1976 (T,R), 1991 (T,R) Bioresmethrin (093) **Biphenyl** See Diphenyl Bitertanol (144) 1983 (T), 1984 (R), 1986 (R), 1987 (T), 1988 (R), 1989 (R), 1991 (R), 1998 (T), 1999 (R), 2002 (R) Boscalid (221) 2006 (T, R), 2008 (R), 2009 (R) Bromide ion (047) 1968 (R), 1969 (T,R), 1971 (R), 1979 (R), 1981 (R), 1983 (R), 1988 (T,R), 1989 (R), 1992 (R) Bromomethane (052) 1965 (T,R), 1966 (T,R), 1967 (R), 1968 (T,R), 1971 (R), 1979 (R), 1985 (R), 1992 (R) Bromophos (004) 1972 (T,R), 1975 (R), 1977 (T,R), 1982 (R), 1984 (R), 1985 (R) Bromophos-ethyl (005) 1972 (T,R), 1975 (T,R), 1977 (R) Bromopropylate (070) 1973 (T,R), 1993 (T,R) Butocarboxim (139) 1983 (R), 1984 (T), 1985 (T), 1986 (R) Buprofezin (173) 1991 (T,R), 1995 (R), 1996 (corr. to 1995 report.), 1999 (R), 2008 (T, R), 2009 (R) sec-Butylamine (089) 1975 (T,R), 1977 (R), 1978 (T,R), 1979 (R), 1980 (R), 1981 (T), 1984 (T,R: withdrawal of temporary ADI, but no evaluation) 1991 (T,R), 1992 (R), 1992 (R), 2009 (T) Cadusafos (174) Campheclor (071) 1968 (T,R), 1973 (T,R) 1969 (T,R), 1973 (T,R), 1974 (R), 1976 (R), Captafol (006) 1977 (T,R), 1982 (T), 1985 (T,R), 1986 (corr. to 1985 report), 1990 (R), 1999 (acute Rf D) Captan (007) 1965 (T), 1969 (T,R), 1973 (T), 1974 (R), 1977 (T,R), 1978 (T,R), 1980 (R), 1982 (T), 1984 (T,R), 1986 (R), 1987 (R and corr. to 1986 R evaluation), 1990 (T,R), 1991 (corr. to 1990 R evaluation), 1994 (R), 1995 (T), 1997 (R), 2000 (R), 2004 (T), 2007 (T) 1965 (T), 1966 (T,R), 1967 (T,R), 1968 (R), Carbaryl (008) 1969 (T,R), 1970 (R), 1973 (T,R), 1975 (R), 1976 (R), 1977 (R), 1979 (R), 1984 (R), 1996 (T), 2001 (T), 2002 (R), 2007 (R) Carbendazim (072) 1973 (T,R), 1976 (R), 1977 (T), 1978 (R), 1983 (T,R), 1985 (T,R), 1987 (R), 1988 (R), 1990 (R), 1994 (R), 1995 (T,E), 1998 (T,R), 2003 (R), 2005 (T) 1976 (T,R), 1979 (T,R), 1980 (T), 1982 (T), Carbofuran (096)

Annex 2 309

	1991 (R), 1993 (R), 1996 (T), 1997 (R), 1999 (corr.
	to 1997 report), 2002 (T, R), 2003 (R) (See also carbosulfan), 2004 (R), 2008 (T), 2009 (R)
Carbon disulfide (009)	1965 (T,R), 1967 (R), 1968 (R), 1971 (R), 1985 (R)
Carbon tetrachloride (010)	1965 (T,R), 1967 (R), 1968 (T,R), 1971 (R),
Carbon tetracinorae (010)	1979 (R), 1985 (R)
Carbophenothion (011)	1972 (T,R), 1976 (T,R), 1977 (T,R), 1979 (T,R), 1980 (T,R), 1983 (R)
Carbosulfan (145)	1984 (T,R), 1986 (T), 1991 (R), 1992 (corr. to 1991 report), 1993 (R), 1997 (R), 1999 (R), 2002 (R), 2003 (T, R), 2004 (R, corr. to 2003 report)
Cartap (097)	1976 (T,R), 1978 (T,R), 1995 (T,R)
Chinomethionat (080)	1968 (T,R) (as oxythioquinox), 1974 (T,R), 1977 (T,R), 1981 (T,R), 1983 (R), 1984 (T,R), 1987 (T)
Chlorantraniliprole (230)	2008 (T, R)
Chlorbenside	1965 (T)
Chlordane (012)	1965 (T), 1967 (T,R), 1969 (R), 1970 (T,R), 1972 (R), 1974 (R), 1977 (T,R), 1982 (T), 1984 (T,R), 1986 (T)
Chlordimeform (013)	1971 (T,R), 1975 (T,R), 1977 (T), 1978 (T,R), 1979(T), 1980(T), 1985(T), 1986 (R), 1987 (T)
Chlorfenson	1965 (T)
Chlorfenvinphos (014)	1971 (T,R), 1984 (R), 1994 (T), 1996 (R)
Chlormequat (015)	1970 (T,R), 1972 (T,R), 1976 (R), 1985 (R), 1994 (T,R), 1997 (T), 1999 (acute Rf D), 2000 (R)
Chlorobenzilate (016)	1965 (T), 1968 (T,R), 1972 (R), 1975 (R), 1977 (R), 1980 (T)
Chloropicrin	1965 (T,R)
Chloropropylate	1968 (T,R), 1972 (R)
Chlorothalonil (081)	1974 (T,R), 1977 (T,R), 1978 (R), 1979 (T,R), 1981 (T,R), 1983 (T,R), 1984 (corr. to 1983 report and T evaluation), 1985 (T,R), 1987 (T), 1988 (R), 1990 (T,R), 1991 (corr. to 1990 evaluation), 1992 (T), 1993 (R), 1997 (R), 2009 (T)
Chlorpropham (201)	1965 (T), 2000 (T), 2001 (R), 2005 (T), 2008 (R)
Chlorpyrifos (017)	1972 (T,R), 1974 (R), 1975 (R), 1977 (T,R), 1981 (R), 1982 (T,R), 1983 (R), 1989 (R), 1995 (R), 1999 (T), 2000 (R), 2004 (R), 2006 (R)
Chlorpyrifos-methyl (090)	1975 (T,R), 1976 (R, Annex I only), 1979 (R), 1990, (R), 1991 (T,R), 1992 (T and corr. to 1991 report), 1993 (R), 1994 (R), 2001 (T), 2009 (T,R)
Chlorthion	1965 (T)
Clethodim (187)	1994 (T,R), 1997 (R), 1999 (R), 2002 (R)
Clofentezine (156)	1986 (T,R), 1987 (R), 1989 (R), 1990 (R), 1992 (R), 2005 (T), 2007 (R)
Coumaphos (018)	1968 (T,R), 1972 (R), 1975 (R), 1978 (R), 1980 (T,R), 1983 (R), 1987 (T), 1990 (T,R)

Crufomate (019) 1968 (T,R), 1972 (R) Cyanophenfos (091) 1975 (T,R), 1978 (T: ADI extended, but no evaluation), 1980, (T), 1982 (R), 1983 (T) Cycloxydim (179) 1992 (T,R), 1993 (R), 2009 (T) 1986 (R), 1987 (T and corr. to 1986 report), Cyfluthrin (157) 1989 (R), 1990 (R), 1992 (R), 2006 (T), 2007 (R) Cyhalothrin (146) 1984 (T,R), 1986 (R), 1988 (R), 2007 (T), 2008 (R) 1970 (T, R), 1973 (T,R), 1974 (R), 1975 (R), Cyhexatin (067) 1977 (T), 1978 (T,R), 1980 (T), 1981 (T), 1982 (R), 1983 (R), 1985 (R), 1988 (T), 1989 (T), 1991 (T,R), 1992 (R), 1994 (T), 2005 (T,R) 1979 (T,R), 1981 (T,R), 1982 (R), 1983 (R), Cypermethrin(s) (118) 1984 (R), 1985 (R), 1986 (R), 1987 (corr. to 1986 evaluation), 1988 (R), 1990 (R), 2006 (T), 2008 (R), 2009 (R) Cyprodinil (207) 2003 (T,R), 2004 (corr. to 2003 report) 1990 (T,R), 1991 (corr. to 1990 R evaluation), Cyromazine (169) 1992 (R), 2006 (T), 2007 (R) 1970 (T,R), 1971 (T,R), 1974 (T,R), 1975 (T,R), 2,4-D (020) 1980 (R), 1985, (R), 1986 (R), 1987 (corr. to 1986 report, Annex I), 1996 (T), 1997 (E), 1998 (R), 2001 (R) Daminozide (104) 1977 (T,R), 1983 (T), 1989 (T,R), 1991 (T) DDT (021) 1965 (T), 1966 (T,R), 1967 (T,R),1968 (T,R), 1969 (T,R), 1978 (R), 1979 (T), 1980 (T), 1983 (T), 1984 (T), 1993 (R), 1994 (R), 1996 (R) 1980 (T,R), 1981 (T,R), 1982 (T,R), 1984 (R), Deltamethrin (135) 1985 (R), 1986 (R), 1987 (R), 1988 (R), 1990 (R), 1992 (R), 2000 (T), 2002 (R) Demeton (092) 1965 (T), 1967 (R), 1975 (R), 1982 (T) 1973 (T,R), 1979 (R), 1982 (T), 1984 (T,R), Demeton-S-methyl (073) 1989 (T,R), 1992 (R), 1998 (R) 1973 (T,R), 1982 (T), 1984 (T,R), 1989 (T,R), Demeton-S-methylsulfon (164) 1992 (R) Dialifos (098) 1976 (T,R), 1982 (T), 1985 (R) 1965 (T), 1966 (T), 1967 (R), 1968 (T,R), Diazinon (022) 1970 (T,R), 1975 (R), 1979 (R), 1993 (T,R), 1994 (R), 1996 (R), 1999 (R), 2001 (T), 2006 (T, R) 1,2-Dibromoethane (023) 1965 (T,R), 1966 (T,R), 1967 (R), 1968 (R), 1971 (R), 1979 (R), 1985 (R) Dicloran (083) 2003 (R) Dichlorfluanid (082) 1969 (T,R), 1974 (T,R), 1977 (T,R), 1979 (T,R), 1981 (R),1982 (R), 1983 (T,R), 1985 (R) 1,2-Dichloroethane (024) 1965 (T,R), 1967 (R), 1971 (R), 1979 (R), 1985 (R) Dichlorvos (025) 1965 (T,R), 1966 (T,R), 1967 (T,R), 1969 (R), 1970 (T,R), 1974 (R), 1977 (T), 1993 (T,R) Dicloran (083) 1974 (T,R), 1977 (T,R), 1998 (T,R) 1968 (T,R), 1970 (R), 1974 (R), 1992 (T,R), Dicofol (026)

Annex 2 311

1994 (R) 1965 (T), 1966 (T,R), 1967 (T,R), 1968 (R), Dieldrin (001) 1969 (R), 1970, (T,R), 1974 (R), 1975 (R), 1977 (T), 1990 (R), 1992 (R) Difenoconazole (224) 2007 (T, R) 1981 (T,R), 1983 (R), 1984 (T,R), 1985 (T,R), Diflubenzuron (130) 1988 (R), 2001 (T), 2002 (R) Dimethenamid- P (214) 2005 (T,R) 1985 (T,R), 1987 (T,R), 1988 (T,R), 1999 (T), Dimethipin (151) 2001 (R), 2004 (T) 1965 (T), 1966 (T), 1967 (T,R), 1970 (R), 1973 (R in Dimethoate (027) evaluation of formothion), 1977 (R), 1978 (R), 1983 (R) 1984 (T,R) 1986 (R), 1987 (T,R), 1988 (R), 1990 (R), 1991 (corr. to 1990 evaluation), 1994 (R), 1996 (T), 1998 (R), 2003 (T,R), 2004 (corr. to 2003 report), 2006 (R), 2008 (R) Dimethomorph 2007 (T, R) Dimethrin 1965 (T) Dinocap (087) 1969 (T,R), 1974 (T,R), 1989 (T,R), 1992 (R), 1998 (R), 1999 (R), 2000 (T), 2001 (R) Dioxathion (028) 1968 (T,R), 1972 (R) Diphenyl (029) 1966 (T,R), 1967 (T) Diphenylamine (030) 1969 (T,R), 1976 (T,R), 1979 (R), 1982 (T), 1984 (T,R), 1998 (T), 2001 (R), 2003 (R), 2008 (R) 1970 (T,R), 1972 (T,R), 1976 (R), 1977 (T,R), **Diquat** (031) 1978 (R), 1994 (R) Disulfoton (074) 1973 (T,R), 1975 (T,R), 1979 (R), 1981 (R), 1984 (R), 1991 (T,R), 1992 (corr. to 1991 report, Annex I), 1994 (R), 1996 (T), 1998 (R), 2006 (R) 1992 (T.R), 1995 (R), 1996 (corr. to 1995 report) Dithianon (180) 1965 (T), 1967 (T,R), 1970 (T,R), 1983 (R propineb, Dithiocarbamates (105) thiram), 1984 (R propineb), 1985 (R), 1987 (T thiram), 1988 (R thiram), 1990 (R), 1991 (corr. to 1990 evaluation), 1992 (T thiram), 1993 (T,R), 1995 (R), 1996 (T,R ferbam, ziram;, R thiram), 2004 (R) 4,6-Dinitro-ortho-cresol (DNOC) 1965 (T) **Dodine** (084) 1974 (T,R), 1976 (T,R), 1977 (R), 2000 (T), 2003(R) 2004 (corr. to 2003 report) Edifenphos (099) 1976 (T,R), 1979 (T,R), 1981 (T,R) Endosulfan (032) 1965 (T), 1967 (T,R), 1968 (T,R), 1971 (R), 1974 (R), 1975 (R), 1982 (T), 1985 (T,R), 1989 (T,R), 1993 (R), 1998 (T), 2006 (R) Endrin (033) 1965 (T), 1970 (T,R), 1974 (R), 1975 (R), 1990 (R), 1992 (R) Esfenvalerate (204) 2002 (T, R) Ethephon (106) 1977 (T,R), 1978 (T,R), 1983 (R), 1985 (R), 1993 (T), 1994 (R), 1995 (T), 1997 (T), 2002 (T)

Ethiofencarb (107)	1977 (T,R), 1978 (R), 1981 (R), 1982 (T,R), 1983 (R)
Ethion (034)	1968 (T,R), 1969 (R), 1970 (R), 1972 (T,R), 1975 (R), 1982 (T), 1983 (R), 1985 (T), 1986 (T), 1989 (T), 1990 (T), 1994 (R)
Ethoprophos (149)	1983 (T), 1984 (R), 1987 (T), 1999 (T), 2004 (R)
Ethoxyquin (035)	1969 (T,R), 1998 (T), 1999 (R). 2005 (T), 2008 (R)
Ethylene dibromide	See 1,2-Dibromoethane
Ethylene dichloride	See 1,2-Dichloroethane
Ethylene oxide	1965 (T,R), 1968 (T,R), 1971 (R)
Ethylenethiourea (ETU) (108)	1974 (R), 1977 (T,R), 1986 (T,R), 1987 (R), 1988 (T,R), 1990 (R), 1993 (T,R)
Etofenprox (184)	1993 (T,R)
Etrimfos (123)	1980 (T,R), 1982 (T,R ¹), 1986 (T,R), 1987 (R), 1988 (R), 1989 (R), 1990 (R)
Famoxadone (208)	2003 (T,R)
Fenamiphos (085)	1974 (T,R), 1977 (R), 1978 (R), 1980 (R), 1985 (T), 1987 (T), 1997 (T), 1999 (R), 2002 (T), 2006 (R)
Fenarimol (192)	1995 (T, R, E), 1996 (R and corr. to 1995 report)
Fenbuconazole (197)	1997 (T,R), 2009 (R)
Fenbutatin oxide (109)	1977 (T,R), 1979 (R), 1992 (T), 1993 (R)
Fenchlorfos (036)	1968 (T,R), 1972 (R), 1983 (R)
Fenhexamid (215)	2005 (T,R)
Fenitrothion (037)	1969 (T,R), 1974 (T,R), 1976 (R), 1977 (T,R), 1979(R), 1982, (T) 1983 (R), 1984 (T,R), 1986 (T,R), 1987 (R and corr. to 1986 R evaluation), 1988 (T), 1989 (R), 2000 (T), 2003 (R), 2004 (R, corr. to 2003 report), 2007 (T, R)
Fenpropathrin (185)	1993 (T,R), 2006 (R)
Fenpropimorph (188)	1994 (T), 1995 (R), 1999 (R), 2001 (T), 2004 (T)
Fenpyroximate (193)	1995 (T,R), 1996 (corr. to 1995 report.), 1999 (R), 2004 (T), 2007 (T)
Fensulfothion (038)	1972 (T,R), 1982 (T), 1983 (R)
Fenthion (039)	1971 (T,R), 1975 (T,R), 1977 (R), 1978 (T,R), 1979 (T), 1980 (T), 1983 (R), 1989 (R), 1995 (T,R,E), 1996 (corr. to 1995 report), 1997 (T), 2000 (R)
Fentin compounds (040)	1965 (T), 1970 (T,R), 1972 (R), 1986 (R), 1991 (T,R), 1993 (R), 1994 (R)
Fenvalerate (119)	1979 (T,R), 1981 (T,R), 1982 (T), 1984 (T,R), 1985 (R), 1986 (T,R), 1987 (R and corr. to 1986 report), 1988 (R), 1990 (R), 1991 (corr. to 1990 R evaluation)
Ferbam	See Dithiocarbamates, 1965 (T), 1967 (T,R), 1996 (T,R)
Fipronil (202)	1997 (T), 2000 (T), 2001 (R)

Annex 2 313

Fipronil-desulfinyl	1997 (T)
Flucythrinate (152)	1985 (T, R), 1987 (R), 1988 (R), 1989 (R), 1990 (R),
	1993 (R)
Fludioxonil (211)	2004 (T,R), 2006 (R)
Flumethrin (195)	1996 (T,R)
Fluopicolide (235)	2009 (T,R)
Flusilazole (165)	1989 (T, R), 1990 (R), 1991 (R), 1993 (R), 1995 (T), 2007 (T, R)
Flutolanil (205)	2002 (T, R)
Folpet (041)	1969 (T,R), 1973 (T), 1974 (R), 1982 (T), 1984 (T,R), 1986 (T), 1987 (R), 1990 (T,R), 1991 (corr. to 1990 R evaluation), 1993 (T,R), 1994 (R), 1995 (T), 1997 (R), 1998 (R), 1999(R), 2002 (T), 2004 (T), 2007 (T)
Formothion (042)	1969 (T,R), 1972 (R), 1973 (T,R), 1978 (R), 1998 (R)
Glufosinate-ammonium (175)	1991 (T,R), 1992 (corr. to 1991 report, Annex I), 1994 (R), 1998 (R), 1999 (T,R)
Glyphosate (158)	1986 (T,R), 1987 (R and corr. to 1986 report), 1988 (R), 1994 (R), 1997 (T,R), 2004 (T), 2005 (R)
Guazatine (114)	1978 (T.R), 1980 (R), 1997 (T,R)
Haloxyfop (194)	1995 (T,R), 1996 (R and corr. to 1995 report), 2001 (R), 2006 (T), 2009 (R)
Heptachlor (043)	1965 (T), 1966 (T,R), 1967 (R), 1968 (R), 1969 (R), 1970 (T,R), 1974 (R), 1975 (R), 1977 (R), 1987 (R), 1991 (T,R), 1992 (corr. to 1991 report, Annex I), 1993 (R), 1994 (R)
Hexachlorobenzene (044)	1969 (T,R), 1973 (T,R), 1974 (T,R), 1978(T), 1985 (R)
Hexaconazole (170)	1990 (T,R), 1991 (R and corr. to 1990 R evaluation), 1993 (R)
Hexythiazox (176)	1991 (T,R), 1994 (R), 1998 (R), 2008 (T), 2009 (R)
Hydrogen cyanide (045)	1965 (T,R)
Hydrogen phosphide (046)	1965 (T,R), 1966 (T,R), 1967 (R), 1969 (R), 1971 (R)
Imazalil (110)	1977 (T,R), 1980 (T,R), 1984 (T,R), 1985 (T,R), 1986 (T), 1988 (R), 1989 (R), 1991 (T), 1994 (R), 2000 (T), 2001 (T), 2005 (T)
Imidacloprid (206)	2001 (T), 2002 (R), 2006 (R), 2008 (R)
Indoxacarb (216)	2005 (T,R), 2007 (R), 2009 (R)
Iprodione (111)	1977 (T,R), 1980 (R), 1992 (T), 1994 (R), 1995 (T), 2001 (R)
Isofenphos (131)	1981 (T,R), 1982 (T,R), 1984 (R), 1985 (R), 1986 (T,R), 1988 (R), 1992 (R)
Kresoxim-methyl (199)	1998 (T,R), 2001 (R)
Lead arsenate	1965 (T), 1968 (T,R)
Leptophos (088)	1974 (T,R), 1975 (T,R), 1978 (T,R)

Lindane (048)	1965 (T), 1966 (T,R), 1967 (R), 1968 (R), 1969 (R), 1970 (T,R, published as Annex VI to 1971
	evaluations), 1973 (T,R), 1974 (R), 1975 (R),
	1977 (T,R), 1978 (R), 1979 (R), 1989 (T,R),
	1997 (T), 2002 (T), 2003 (R), 2004 (corr. to 2003 report)
Malathion (049)	1965 (T), 1966 (T,R), 1967 (corr. to 1966
	R evaluation), 1968 (R), 1969 (R), 1970 (R), 1973 (R), 1975 (R), 1977 (R), 1984 (R), 1997 (T), 1999
	(R), 2000 (R), 2003 (T), 2004 (R), 2008 (R)
Maleic hydrazide (102)	1976 (T,R), 1977 (T,R), 1980 (T), 1984 (T,R), 1996 (T), 1998 (R)
Mancozeb (050)	1967 (T,R), 1970 (T,R), 1974 (R), 1977 (R), 1980 (T,R), 1993 (T,R)
Mandipropamid (231)	2008 (T, R)
Maneb	See Dithiocarbamates, 1965 (T), 1967 (T,R), 1987 (T), 1993 (T,R)
Mecarbam (124)	1980 (T,R), 1983 (T,R), 1985 (T,R), 1986 (T,R), 1987 (R)
Metalaxyl (138)	1982 (T,R), 1984 (R), 1985 (R), 1986 (R), 1987 (R), 1989 (R), 1990 (R), 1992 (R), 1995 (R)
Metalaxyl –M (212)	2002 (T), 2004 (R)
Metaflumizone (236)	2009 (T,R)
Methacrifos (125)	1980 (T,R), 1982 (T), 1986 (T), 1988 (T), 1990 (T,R), 1992 (R)
Methamidophos (100)	1976 (T,R), 1979 (R), 1981 (R), 1982 (T,R),
	1984 (R), 1985 (T), 1989 (R), 1990 (T,R), 1994 (R), 1996 (R), 1997 (R), 2002 (T), 2003 (R), 2004 (R,
	corr. to 2003 report)
Methidathion (051)	1972 (T,R), 1975 (T,R), 1979 (R), 1992 (T,R), 1994 (R), 1997 (T)
Methiocarb (132)	1994 (R), 1997 (T) 1981 (T,R), 1983 (T,R), 1984 (T), 1985 (T),
Medifoculo (132)	1986 (R), 1987 (T,R), 1988 (R), 1998 (T), 1999 (R),
	2005 (R)
Methomyl (094)	1975 (R), 1976 (R), 1977 (R), 1978 (R), 1986 (T,R),
	1987 (R), 1988 (R), 1989 (T,R), 1990 (R), 1991 (R), 2001 (T,R), 2004 (R), 2008 (R)
Methoprene (147)	1984 (T,R), 1986 (R), 1987 (T and corr. to 1986 report), 1988 (R), 1989 (R), 2001 (T), 2005 (R)
Methoxychlor	1965 (T), 1977 (T)
Methoxyfenozide (209)	2003 (T, R), 2004 (corr. to 2003 report), 2006 (R),
	2009 (R)
Methyl bromide (052)	See Bromomethane
Metiram (186)	1993 (T), 1995 (R)
Mevinphos (053)	1965 (T), 1972 (T,R), 1996 (T), 1997 (E,R), 2000 (R)
MGK 264	1967 (T,R)
Monocrotophos (054)	1972 (T,R), 1975 (T,R), 1991 (T,R), 1993 (T),

Annex 2 315

	1994 (R)
Myclobutanil (181)	1992 (T,R), 1997 (R), 1998 (R)
Nabam	See Dithiocarbamates, 1965 (T), 1976 (T,R)
Nitrofen (140)	1983 (T,R)
Novaluron (217)	2005 (T,R)
Omethoate (055)	1971 (T,R), 1975 (T,R), 1978 (T,R), 1979 (T), 1981 (T,R), 1984 (R), 1985 (T), 1986 (R), 1987 (R), 1988 (R), 1990 (R), 1998 (R)
Organomercury compounds	1965 (T), 1966 (T,R), 1967 (T,R)
Oxamyl (126)	1980 (T,R), 1983 (R), 1984 (T), 1985 (T,R), 1986 (R), 2002 (T,R)
Oxydemeton-methyl (166)	1965 (T, as demeton-S-methyl sulfoxide), 1967 (T), 1968 (R), 1973 (T,R), 1982 (T), 1984 (T,R), 1989 (T,R), 1992 (R), 1998 (R), 1999 (corr. to 1992 report), 2002 (T), 2004 (R)
Oxythioquinox	See Chinomethionat
Paclobutrazol (161)	1988 (T,R), 1989 (R)
Paraquat (057)	1970 (T,R), 1972 (T,R), 1976 (T,R), 1978 (R), 1981 (R), 1982 (T), 1985 (T), 1986 (T), 2003 (T), 2004 (R), 2009 (R)
Parathion (058)	1965 (T), 1967 (T,R), 1969 (R), 1970 (R), 1984 (R), 1991 (R), 1995 (T,R), 1997 (R), 2000 (R)
Parathion-methyl (059)	1965 (T), 1968 (T,R), 1972 (R), 1975 (T,R), 1978 (T,R), 1979 (T), 1980 (T), 1982 (T), 1984 (T,R), 1991 (R), 1992 (R), 1994 (R), 1995 (T), 2000 (R), 2003 (R)
Penconazole (182)	1992 (T,R), 1995 (R)
Permethrin (120)	1979 (T,R), 1980 (R), 1981 (T,R), 1982 (R), 1983 (R), 1984 (R), 1985 (R), 1986 (T,R), 1987 (T), 1988 (R), 1989 (R), 1991 (R), 1992 (corr. to 1991 report), 1999 (T)
2-Phenylphenol (056)	1969 (T,R), 1975 (R), 1983 (T), 1985 (T,R), 1989 (T), 1990 (T,R), 1999 (T,R), 2002 (R)
Phenothrin (127)	1979 (R), 1980 (T,R), 1982 (T), 1984 (T), 1987 (R), 1988 (T,R)
Phenthoate (128)	1980 (T,R), 1981 (R), 1984 (T)
Phorate (112)	1977 (T,R), 1982 (T), 1983 (T), 1984 (R), 1985 (T), 1990 (R), 1991 (R), 1992 (R), 1993 (T), 1994 (T), 1996 (T), 2004 (T), 2005 (R)
Phosalone (060)	1972 (T,R), 1975 (R), 1976 (R), 1993 (T), 1994 (R), 1997 (T), 1999 (R), 2001 (T)
Phosmet (103)	1976 (R), 1977 (corr. to 1976 R evaluation), 1978 (T,R), 1979 (T,R), 1981 (R), 1984 (R), 1985 (R), 1986 (R), 1987 (R and corr. to 1986 R evaluation), 1988 (R), 1994 (T), 1997 (R), 1998 (T), 2002 (R), 2003 (R), 2007 (R)
Phosphine	See Hydrogen phosphide
Phosphamidon (061)	1965 (T), 1966 (T), 1968 (T,R), 1969 (R), 1972 (R),

	1974 (R), 1982 (T), 1985 (T), 1986 (T)
Phoxim (141)	1982 (T), 1983 (R), 1984 (T,R), 1986 (R), 1987 (R),
Thomm (T11)	1988 (R)
Piperonyl butoxide (062)	1965 (T,R), 1966 (T,R), 1967 (R), 1969 (R), 1972(T,R), 1992 (T,R), 1995 (T), 2001 (R), 2002 (R)
Pirimicarb (101)	1976 (T,R), 1978 (T,R), 1979 (R), 1981 (T,R), 1982 (T), 1985 (R), 2004 (T), 2006 (R)
Pirimiphos-methyl (086)	1974 (T,R), 1976 (T,R), 1977 (R), 1979 (R), 1983 (R), 1985 (R), 1992 (T), 1994 (R), 2003 (R), 2004 (R, corr. to 2003 report), 2006 (T)
Prochloraz (142)	1983 (T,R), 1985 (R), 1987 (R), 1988 (R), 1989 (R), 1990 (R), 1991 (corr. to 1990 report, Annex I, and R evaluation), 1992 (R), 2001 (T), 2004 (R), 2009 (R)
Procymidone(136)	1981 (R), 1982 (T), 1989 (T,R), 1990 (R), 1991 (corr. to 1990 Annex I), 1993 (R), 1998 (R), 2007 (T)
Profenofos (171)	1990 (T,R), 1992 (R), 1994 (R), 1995 (R), 2007 (T), 2008 (R)
Propamocarb (148)	1984 (T,R), 1986 (T,R), 1987 (R), 2005 (T), 2006 (R)
Propargite (113)	1977 (T, R), 1978 (R), 1979 (R), 1980 (T,R), 1982 (T,R), 1999 (T), 2002 (R), 2006 (R)
Propham (183)	1965 (T), 1992 (T, R)
Propiconazole (160)	1987 (T, R), 1991 (R), 1994 (R), 2004 (T), 2007 (R)
Propineb	1977 (T, R), 1980 (T), 1983 (T), 1984 (R), 1985 (T, R), 1993 (T,R), 2004 (R)
Propoxur (075)	1973 (T, R), 1977 (R), 1981 (R), 1983 (R), 1989 (T), 1991 (R), 1996 (R)
Propylenethiourea (PTU, 150)	1993 (T, R), 1994 (R), 1999 (T)
Prothioconazole (232)	2008 (T, R), 2009 (R)
Pyraclostrobin (210)	2003 (T), 2004 (R), 2006 (R)
Pyrazophos (153)	1985 (T, R), 1987 (R), 1992 (T,R), 1993 (R)
Pyrethrins (063)	1965 (T), 1966 (T, R), 1967 (R), 1968 (R), 1969 (R), 1970 (T), 1972 (T,R), 1974 (R), 1999 (T), 2000 (R), 2003 (T,R), 2005 (R)
Pyrimethanil	2007 (T, R)
Pyriproxyfen (200)	1999 (R, T), 2000 (R), 2001 (T)
Quinoxyfen (223)	2006 (T, R)
Quintozene (064)	1969 (T, R) 1973 (T,R), 1974 (R), 1975 (T,R), 1976
	(Annex I, corr. to 1975 R evaluation), 1977 (T,R), 1995 (T,R), 1998 (R)
Spinetoram (233)	2008 (T, R)
Spinosad (203)	2001 (T, R, 2004 (R)
Spirodiclifen (237)	2009 (T,R)
Spirotetramat (234)	2008 (T, R)
Sulfuryl fluoride (218)	2005 (T, R)
2,4,5-T (121)	1970 (T,R), 1979 (T,R), 1981 (T)

Annex 2 317

Tebuconazole (189) 1994 (T.R), 1996 (corr. Annex II of to 1995 report),1997 (R), 2008 (R), 2009 (corr. to 2008 report) Tebufenozide (196) 1996 (T,R), 1997 (R), 1999 (R), 2001 (T,R), 2003(T) Tecnazine (115) 1974 (T,R), 1978 (T,R), 1981 (R), 1983 (T), 1987 (R), 1989 (R), 1994 (T,R) Teflubenzuron (190) 1994 (T), 1996 (R) **Temephos** 2006 (T) Terbufos (167) 1989 (T,R), 1990 (T,R), 2003 (T), 2005 (R) 1970 (T,R), 1971 (R), 1972 (R), 1975 (R), Thiabendazole (065) 1977 (T,R), 1979 (R), 1981 (R), 1997 (R), 2000 (R), 2006 (T, R) Thiacloprid (223) 2006 (T, R) Thiodicarb (154) 1985 (T,R), 1986 (T), 1987 (R), 1988 (R), 2000 (T), 1969 (T,R), 1973 (T,R), 1976 (R), 1979 (T,R), Thiometon (076) 1988 (R) Thiophanate-methyl (077) 1973 (T,R), 1975 (T,R), 1977 (T), 1978 (R), 1988 (R), 2002 (R), 1990 (R), 1994 (R), 1995 (T,E), 1998 (T,R), 2006 (T) Thiram (105) See Dithiocarbamates, 1965 (T), 1967 (T,R), 1970 (T,R), 1974 (T), 1977 (T), 1983 (R), 1984 (R), 1985 (T,R), 1987 (T), 1988 (R), 1989 (R), 1992 (T), 1996 (R) Tolclofos-methyl (191) 1994 (T,R) 1996 (corr. to Annex II of 1995 report) 1988 (T,R), 1990 (R), 1991 (corr. to 1990 report), Tolylfluanid (162) 2002 (T,R), 2003 (R) Toxaphene See Camphechlor Triadimefon (133) 1979 (R), 1981 (T,R), 1983 (T,R), 1984 (R), 1985 (T,R), 1986 (R), 1987 (R and corr. to 1986 R evaluation), 1988 (R), 1989 (R), 1992 (R), 1995 (R), 2004 (T), 2007 (R) Triadimenol (168) 1989 (T, R), 1992 (R), 1995 (R), 2004 (T), 2007 (R) Triazolylalanine 1989 (T, R) Triazophos (143) 1982 (T), 1983 (R), 1984 (corr. to 1983 report, Annex I), 1986 (T, R), 1990 (R), 1991 (T and corr. to 1990 R evaluation), 1992 (R), 1993 (T,R), 2002 (T), 2007 (R) 1971 (T,R), 1975 (T,R), 1978 (T,R), 1987 (R) Trichlorfon (066) Trichloronat 1971 (T,R) Trichloroethylene 1968 (R) Tricyclohexyltin hydroxide See Cyhexatin Trifloxystrobin (213) 2004 (T, R) Triforine (116) 1977 (T), 1978 (T, R), 1997 (T) Triphenyltin compounds See Fentin compounds Vamidothion (078) 1973 (T, R), 1982 (T), 1985 (T,R), 1987 (R),

318 Annex 2

1988 (T), 1990 (R), 1992 (R)

Vinclozolin (159) 1986 (T, R), 1987 (R and corr. to 1986 report and R

evaluation), 1988 (T,R), 1989 (R), 1990 (R),

1992 (R), 1995 (T)

Zineb (105) See Dithiocarbamates, 1965 (T), 1967 (T, R),

1993 (T)

Ziram (105) See Dithiocarbamates, 1965 (T), 1967 (T, R),

1996 (T, R)

Zoxamide (227) 2007 (T, R), 2009 (R)

Annex 3

ANNEX 3: INTERNATIONAL ESTIMATED DAILY INTAKES OF PESTICIDE RESIDUES

BENALAX	YL (155)	International	Estimate	d Daily Int	ake (IEDI)				ADI = 0	- 0.0700 mg	g/kg bw			
		STMR or	Diets:	g/person/da	ay	Intake =	daily intak	e: μg/perso	n					
		STMR-P	Α		В		C		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code														
FB 0269	Grape (incl dried, excl juice, excl wine)	0.12	1.9	0.2	20.8	2.5	25.4	3.1	11.4	1.4	9.2	1.1	6.8	0.8
JF 0269	Grape juice	0.019	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	1.4	0.0	1.0	0.0
VL 0482	Lettuce, head	0.07	0.1	0.0	12.3	0.9	1.3	0.1	0.1	0.0	0.1	0.0	0.0	0.0
VC 0046	Melons, except watermelon	0.02	3.6	0.1	26.7	0.5	22.6	0.5	11.5	0.2	5.6	0.1	2.0	0.0
-	Onion, dry	0	4.3	0.0	45.6	0.0	27.4	0.0	30.2	0.0	22.1	0.0	12.2	0.0
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0	19.1	0.0	160.8	0.0	61.2	0.0	243.6	0.0	230.1	0.0	204.7	0.0
VO 0448	Tomato (excl juice, incl paste, incl peeled)	0.035	5.3	0.2	184.4	6.5	117.5	4.1	58.1	2.0	23.0	0.8	21.9	0.8
JF 0448	Tomato juice	0.0077	5.2	0.0	0.5	0.0	0.4	0.0	2.1	0.0	6.9	0.1	15.2	0.1
VC 0432	Watermelon	0.02	6.1	0.1	43.1	0.9	47.1	0.9	25.8	0.5	4.4	0.1	6.0	0.1
-	Wine	0.023	1.3	0.0	76.8	1.8	1.1	0.0	15.4	0.4	68.8	1.6	25.6	0.6
	Total intake (µg/person)=			0.7		13.0		8.7		4.5		3.8		2.5
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (μ g/person)=			4200		4200		4200		4200		4200		4200
	%ADI=			0.0%		0.3%		0.2%		0.1%		0.1%		0.1%
	Rounded %ADI=			0%		0%		0%		0%		0%		0%

BENALAX	KL (155)	Internationa	l Estima	ted Daily l	Intake (Il	EDI)			ADI = 0	- 0.0700 n	ng/kg bw					
		STMR or	Diets:	g/person/o	lay	Intake =	daily in	take: µg/p	erson							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code																
FB 0269	Grape (incl dried, excl juice, excl wine)	0.12	1.2	0.1	3.4	0.4	0.8	0.1	0.2	0.0	1.2	0.1	5.3	0.6	10.4	1.2
JF 0269	Grape juice	0.019	0.0	0.0	0.1	0.0	1.0	0.0	0.0	0.0	0.6	0.0	0.4	0.0	3.6	0.1
VL 0482	Lettuce, head	0.07	2.4	0.2	7.0	0.5	0.2	0.0	0.6	0.0	2.0	0.1	2.4	0.2	15.7	1.1
VC 0046	Melons, except watermelon	0.02	7.5	0.2	6.1	0.1	0.7	0.0	1.4	0.0	2.5	0.1	6.9	0.1	12.4	0.2
-	Onion, dry	0	16.8	0.0	8.6	0.0	6.9	0.0	12.1	0.0	18.6	0.0	23.8	0.0	28.4	0.0
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0	52.7	0.0	57.1	0.0	50.1	0.0	4.3	0.0	54.7	0.0	41.0	0.0	168.0	0.0
VO 0448	Tomato (excl juice, incl paste, incl peeled)	0.035	23.5	0.8	30.7	1.1	14.9	0.5	7.2	0.3	35.6	1.2	6.9	0.2	46.5	1.6
JF 0448	Tomato juice	0.0077	0.0	0.0	0.8	0.0	0.1	0.0	7.2	0.1	0.0	0.0	2.4	0.0	45.2	0.3

60

4200

0.0%

0%

55

3850

0.0%

0%

60

4200

0.1%

0%

60

4200

0.0%

0%

International Estimated Daily Intake (IEDI) ADI = 0 - 0.0700 mg/kg bwBENALAXL (155) Diets: g/person/day STMR or Intake = daily intake: μg/person STMR-P G Н K L M Codex Commodity mg/kg diet intake diet intake diet intake diet intake diet intake diet diet intake intake Code VC 0432 Watermelon 0.02 39.3 0.8 14.0 0.3 2.5 0.1 13.6 0.3 8.4 0.2 14.5 0.3 13.6 0.3 Wine 0.023 1.0 0.0 0.9 0.0 6.8 0.2 0.1 0.0 3.4 0.1 3.6 0.1 31.0 0.7 Total intake (µg/person)= 2.1 2.4 0.9 0.7 1.8 1.6 5.6

60

4200

0.1%

0%

60

4200

0.0%

0%

BOSCALID (221) International Estimated Daily Intake (IEDI) ADI = 0 - 0.0400 mg/kg bw

55

3850

0.1%

0%

Bodyweight per region (kg bw) =

ADI (µg/person)=

Rounded %ADI=

%ADI=

BOSCALII	J (221)	International	Estimate	a Dany inta	ke (IEDI)				ADI = 0	- 0.0400 mg	g/kg bw			
		STMR or	Diets: g	g/person/day	,	Intake =	daily intal	ke: μg/perso	n					
		STMR-P	A		В		С		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
TN 0660	Almond	0.050	0.0	0.0	1.9	0.1	1.0	0.1	0.0	0.0	1.0	0.1	0.8	0.0
FP 0226	Apple (excl juice)	0.365	0.3	0.1	56.3	20.5	18.4	6.7	38.3	14.0	40.6	14.8	28.3	10.3
JF 0226	Apple juice	0.030	0.0	0.0	2.8	0.1	0.1	0.0	1.1	0.0	6.8	0.2	7.4	0.2
FI 0327	Banana	0.050	38.8	1.9	17.4	0.9	16.0	0.8	6.6	0.3	21.5	1.1	33.8	1.7
GC 0640	Barley (incl pot, incl pearled, excl flour & grits, excl beer)	0.075	40.6	3.0	0.0	0.0	93.9	7.0	0.0	0.0	0.0	0.0	3.8	0.3
-	Barley beer	0.002	18.3	0.0	84.1	0.2	4.1	0.0	66.0	0.1	243.1	0.5	161.3	0.3
-	Barley flour and grits	0.026	0.0	0.0	0.3	0.0	10.8	0.3	0.3	0.0	0.5	0.0	0.9	0.0
-	Berries and other small fruits NES (excl blackberry, boysenberry, dewberry)	2.530	0.0	0.0	0.2	0.5	0.0	0.0	0.2	0.5	0.1	0.3	0.2	0.5
FB 0264	Blackberries	2.530	0.0	0.0	0.1	0.3	0.0	0.0	0.3	0.8	0.1	0.3	0.3	0.8
FB 0020	Blueberries	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	0.3	0.8	0.8	2.0
FB 4079	Boysenberry	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.8	0.0	0.0	0.3	0.8
TN 0662	Brazil nut	0.050	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
GC 0641	Buckwheat (incl flour, incl bran)	0.050	0.0	0.0	0.1	0.0	0.0	0.0	1.7	0.1	1.6	0.1	0.1	0.0
VA 0035	Bulb vegetables	2.200	8.5	18.7	60.3	132.7	37.7	82.9	37.2	81.8	31.8	70.0	16.7	36.7
VB 0041	Cabbage, head	1.520	1.2	1.8	14.4	21.9	2.7	4.1	16.4	24.9	15.4	23.4	18.5	28.1
TN 0295	Cashew nut	0.050	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0
-	Cereal preparations NES	0.050	0.0	0.0	0.5	0.0	0.6	0.0	0.3	0.0	0.7	0.0	1.5	0.1

Annex 3

BOSCALII	0 (221)	Internationa	1 Estimate	d Daily Inta	ke (IEDI)				ADI = 0	- 0.0400 m	g/kg bw			
		STMR or	Diets: g	g/person/day	,	Intake =	daily intal	ke: μg/perso	n		•		ı	
		STMR-P	A		В		C		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code TN 0664	Chestnut	0.050	0.0	0.0	1.7	0.1	0.0	0.0	0.2	0.0	0.3	0.0	0.0	0.0
TN 0665	Coconut (incl oil)	0.050	2.9	0.0	13.5	0.1	2.1	0.0	1.5	0.0	1.8	0.0	8.9	0.0
	` '													
SB 0716	Coffee beans (incl green, incl extracts, incl roasted)	0.050	3.1	0.2	12.6	0.6	2.9	0.1	1.4	0.1	10.1	0.5	18.0	0.9
FB 0265	Cranberries	2.530	0.1		0.0	0.0	0.0	0.0	0.3	0.8	0.0	0.0	0.6	1.5
FB 0021	Currants, red, black, white	2.530	0.0	0.0	0.0	0.0	0.0	0.0	2.2	5.6	3.1	7.8	2.0	5.1
FB 0266	Dewberries, incl boysen- & loganberry	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.8	0.0	0.0	0.3	0.8
MO 0105	Edible offal (mammalian)	0.160	3.9	0.6	14.4	2.3	5.2	0.8	11.8	1.9	11.7	1.9	7.6	1.2
VO 0440	Egg plant (= aubergine)	0.565	1.7	1.0	17.5	9.9	12.3	6.9	1.7	1.0	0.8	0.5	0.4	0.2
PE 0112	Eggs	0.020	2.5	0.1	29.7	0.6	25.1	0.5	24.5	0.5	37.8	0.8	27.4	0.5
FB 0267	Elderberries	2.530	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VC 0045	Fruiting vegetables, cucurbits	0.565	26.6	15.0	107.5	60.7	95.9	54.2	82.2	46.4	25.4	14.4	23.2	13.1
FB 0268	Gooseberries	2.530	0.0	0.0	12.0	30.4	0.0	0.0	0.6	1.5	1.1	2.8	0.2	0.5
FB 0269	Grape (excl dried, excl juice, excl wine)	1.090	1.9	2.0	9.2	10.1	23.8	26.0	9.8	10.7	0.0	0.0	0.0	0.0
JF 0269	Grape juice	0.460	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	1.4	0.6	1.0	0.5
DF 0269	Grape, dried (= currants, raisins and sultanas)	2.600	0.0	0.0	2.9	7.5	0.4	1.0	0.4	1.0	2.3	6.0	1.7	4.4
TN 0666	Hazelnut	0.050	0.0	0.0	2.1	0.1	0.0	0.0	0.1	0.0	1.3	0.1	0.3	0.0
FI 0341	Kiwi fruit	0.073	0.0	0.0	2.9	0.2	0.1	0.0	0.2	0.0	2.7	0.2	1.8	0.1
VL 0053	Leafy vegetables	2.950	5.8	17.1	45.6	134.5	10.9	32.2	26.8	79.1	18.7	55.2	38.9	114.8
VP 0060	Legume vegetables	0.500	6.1	3.1	23.0	11.5	18.0	9.0	12.8	6.4	26.9	13.5	5.3	2.7
TN 0669	Macadamia nut	0.050	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
GC 0645	Maize (incl flour, incl oil, incl beer)	0.050	82.7	4.1	148.4	7.4	135.9	6.8	31.8	1.6	33.3	1.7	7.5	0.4
MF 0100	Mammalian fats (except milk fats)	0.180	0.8	0.1	10.0	1.8	0.9	0.2	6.6	1.2	11.8	2.1	3.7	0.7
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.180	5.5	1.0	23.3	4.2	7.7	1.4	11.0	2.0	18.0	3.2	26.3	4.7
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0.035	22.2	0.8	93.2	3.3	30.8	1.1	44.1	1.5	72.2	2.5	105.0	3.7
ML 0106	Milks (excl processed products)	0.066	68.8	4.5	190.6	12.6	79.4	5.2	302.6	20.0	179.6	11.9	237.9	15.7
GC 0646	Millet (incl flour, incl beer)	0.050	15.8	0.8	0.1	0.0	0.8	0.0	5.6	0.3	0.2	0.0	0.1	0.0
GC 0647	Oats (incl rolled)	0.050	1.4	0.1	0.6	0.0	0.2	0.0	4.2	0.2	5.7	0.3	8.9	0.4
SO 0088	Oilseed	0.145	22.3	3.2	65.2	9.5	35.4	5.1	52.0	7.5	62.1	9.0	39.4	5.7
VO 0442	Okra	0.565	3.9	2.2	1.0	0.6	5.3	3.0	0.1	0.1	0.0	0.0	0.0	0.0
TN 0672	Pecan	0.050	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
VO 0051	Peppers	0.565	1.4	0.8	29.9	16.9	13.0	7.3	6.3	3.6	6.2	3.5	4.0	2.3

BOSCALID	0 (221)	International	Estimated	l Daily Inta	ke (IEDI)				ADI = 0	- 0.0400 mg	g/kg bw			
		STMR or	Diets: g	/person/day	7	Intake =	daily intak	e: μg/perso	n					
		STMR-P	A		В		С		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code	1	T		1		1		T		Т		1		
TN 0673	Pine nut	0.050	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
TN 0675	Pistachio nut	0.270	0.0	0.0	0.7	0.2	0.5	0.1	0.9	0.2	0.3	0.1	0.0	0.0
DF 0014	Plum, dried (prunes)	3.390	0.0	0.0	0.2	0.7	0.0	0.0	0.1	0.3	0.5	1.7	0.6	2.0
GC 0656	Popcorn	0.050	0.1	0.0	0.2	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0
PM 0110	Poultry meat	0.020	7.1	0.1	58.5	1.2	31.9	0.6	24.0	0.5	61.0	1.2	27.3	0.5
PO 0111	Poultry, edible offal of	0.020	0.4	0.0	0.4	0.0	1.7	0.0	0.1	0.0	0.6	0.0	0.2	0.0
PF 0111	Poultry, fats	0.020	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.4	0.0	0.1	0.0
VD 0070	Pulses	0.120	54.5	6.5	62.9	7.5	51.4	6.2	36.8	4.4	49.4	5.9	47.9	5.7
FB 0272	Raspberries, red, black	2.530	0.0	0.0	0.0	0.0	0.0	0.0	1.8	4.6	0.9	2.3	0.2	0.5
GC 0649	Rice (incl husked, incl polished)	0.050	91.0	4.6	31.6	1.6	94.6	4.7	33.2	1.7	12.7	0.6	12.7	0.6
VR0075	Root and tuber vegetables	0.305	528.2	161.1	352.8	107.6	78.5	23.9	270.3	82.4	324.1	98.9	261.3	79.7
FB 0273	Rose hips	2.530	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
GC 0650	Rye (excl flour)	0.075	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
CF 1250	Rye flour	0.026	0.0	0.0	2.8	0.1	0.2	0.0	18.7	0.5	19.8	0.5	35.2	0.9
CF 1251	Rye wholemeal	0.092	0.1	0.0	3.7	0.3	0.3	0.0	24.3	2.2	25.8	2.4	45.8	4.2
GC 0651	Sorghum (incl flour, incl beer)	0.050	36.9	1.8	0.0	0.0	10.2	0.5	0.0	0.0	0.0	0.0	0.0	0.0
FS 0012	Stone fruit (excl dried plums, incl dried apricots)	1.210	0.7	0.8	44.1	53.4	14.1	17.1	26.6	32.2	26.3	31.8	8.3	10.0
FB 0275	Strawberry	0.555	0.0	0.0	5.0	2.8	2.0	1.1	1.7	0.9	5.2	2.9	4.1	2.3
VO 0448	Tomato (excl juice, excl paste, incl peeled)	0.565	3.3	1.9	179.2	101.2	103.5	58.5	54.1	30.6	7.8	4.4	3.9	2.2
JF 0448	Tomato juice	0.085	5.2	0.4	0.5	0.0	0.4	0.0	2.1	0.2	6.9	0.6	15.2	1.3
-d	Tomato paste	0.413	0.5	0.2	1.3	0.5	3.5	1.4	1.0	0.4	3.8	1.6	4.5	1.9
TN 0085	Tree nuts	0.050	4.2	0.2	21.5	1.1	3.9	0.2	3.0	0.2	5.5	0.3	10.2	0.5
-	Tree nuts NES (excl pecan nuts)	0.050	1.3	0.1	0.2	0.0	0.3	0.0	0.2	0.0	0.0	0.0	0.1	0.0
GC 0653	Triticale (excl flour)	0.075	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	Triticale flour	0.026	0.0	0.0	89.1	2.3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
FB 0019	Vaccinium berries (incl. bearberry)	2.530	0.1	0.3	0.0	0.0	0.0	0.0	0.5	1.3	0.3	0.8	1.4	3.5
TN 0678	Walnut	0.050	0.0	0.0	1.3	0.1	0.0	0.0	0.1	0.0	0.3	0.0	0.1	0.0
GC 0654	Wheat (excl bulgur wholemeal, excl flour)	0.075	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
CM 0654	Wheat bran, unprocessed	0.320	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
-d	Wheat bulgur wholemeal	0.092	5.5	0.5	10.2	0.9	0.7	0.1	0.2	0.0	0.1	0.0	0.0	0.0
CF 1211	Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.026	63.4	1.6	296.3	7.7	327.5	8.5	300.0	7.8	181.6	4.7	166.2	4.3
CF 1210	Wheat germ	0.100	0.0	0.0	1.3	0.1	0.0	0.0	1.3	0.1	0.9	0.1	1.2	0.1

Annex 3

BOSCALII	0 (221)	International	Estimated	d Daily Inta	ke (IEDI)				ADI = 0	- 0.0400 mg	g/kg bw			
		STMR or	Diets: g	/person/day	,	Intake =	daily intal	ke: μg/perso	n					
		STMR-P	A		В		C		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code														_
CF 1212	Wheat wholemeal	0.092	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
CP 1211	White bread	0.026	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.0	1.0	0.0
CP 1212	Wholemeal bread	0.092	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.0	1.0	0.1
-	Wine	0.380	1.3	0.5	76.8	29.2	1.1	0.4	15.4	5.9	68.8	26.1	25.6	9.7
	Total intake (μg/person)=			263.5		821.2		386.6		494.0		436.7		392.4
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (µg/person)=			2400		2400		2400		2400		2400		2400
	%ADI=			11.0%		34.2%		16.1%		20.6%		18.2%		16.4%
	Rounded %ADI=			10%		30%		20%		20%		20%		20%

BOSCALI	D (221)	Internation	al Estima	ted Daily I	ntake (IE	DI)			ADI = 0	- 0.0400 r	ng/kg bw					
		STMR or	Diets: §	g/person/da	ay	Intake =	daily inta	ake: µg/pe	rson							
Codex Code	Commodity	STMR-P mg/kg	G diet	intake	H diet	intake	I diet	intake	J diet	intake	K diet	intake	L diet	intake	M diet	intake
TN 0660	Almond	0.050	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.3	0.0
FP 0226	Apple (excl juice)	0.365	14.3	5.2	9.4	3.4	2.1	0.7	0.0	0.0	8.8	3.2	16.6	6.0	27.8	10.1
JF 0226	Apple juice	0.030	0.1	0.0	0.5	0.0	0.1	0.0	0.0	0.0	0.7	0.0	0.9	0.0	5.7	0.2
FI 0327	Banana	0.050	21.4	1.1	36.6	1.8	11.4	0.6	9.2	0.5	70.2	3.5	40.5	2.0	32.6	1.6
GC 0640	Barley (incl pot, incl pearled, excl flour & grits, excl beer)	0.075	1.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0
-	Barley beer	0.002	21.9	0.0	102.7	0.2	29.5	0.1	12.6	0.0	100.9	0.2	82.2	0.2	218.8	0.4
-	Barley flour and grits	0.026	0.4	0.0	0.0	0.0	0.1	0.0	0.0	0.0	1.0	0.0	0.8	0.0	0.0	0.0
-	Berries and other small fruits NES (excl blackberry, boysenberry, dewberry)	2.530	0.2	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FB 0264	Blackberries	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.3	0.8
FB 0020	Blueberries	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	3.3
FB 4079	Boysenberry	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.0	0.0
TN 0662	Brazil nut	0.050	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0
GC 0641	Buckwheat (incl flour, incl bran)	0.050	1.0	0.1	0.0	0.0	0.2	0.0	0.1	0.0	0.5	0.0	2.0	0.1	0.1	0.0
VA 0035	Bulb vegetables	2.200	31.6	69.5	29.6	65.1	9.7	21.3	19.6	43.1	25.7	56.5	47.2	103.8	33.1	72.8

BOSCALID (221) International Estimated Daily Intake (IEDI) ADI = 0 - 0.0400 mg/kg bw

DODCHEI	D (221)	mternationa	ai Estimat	ed Daily I	ntake (IEI)I)			ADI = 0) - 0.0400 r	ng/kg bw					
		STMR or	Diets: g	g/person/da	ıy	Intake =	daily inta	ike: μg/pe	rson							
		STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
VB 0041	Cabbage, head	1.520	10.0	15.2	1.0	1.5	7.2	10.9	1.0	1.5	1.4	2.1	23.9	36.3	17.0	25.8
TN 0295	Cashew nut	0.050	0.2	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.6	0.0
-	Cereal preparations NES	0.050	0.4	0.0	2.8	0.1	1.2	0.1	0.2	0.0	0.2	0.0	0.3	0.0	0.3	0.0
TN 0664	Chestnut	0.050	0.5	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.1	0.0	0.0
TN 0665	Coconut (incl oil)	0.050	15.3	0.8	13.4	0.7	9.3	0.5	1.6	0.1	18.9	0.9	26.7	1.3	3.4	0.2
SB 0716	Coffee beans (incl green, incl extracts, incl roasted)	0.050	0.2	0.0	7.0	0.4	0.5	0.0	0.2	0.0	5.3	0.3	5.7	0.3	12.4	0.6
FB 0265	Cranberries	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	6.3
FB 0021	Currants, red, black, white	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FB 0266	Dewberries, incl boysen- & loganberry	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.1	0.3
MO 0105	Edible offal (mammalian)	0.160	4.8	0.8	10.7	1.7	4.0	0.6	4.0	0.6	6.5	1.0	6.6	1.1	5.6	0.9
VO 0440	Egg plant (= aubergine)	0.565	20.1	11.4	0.1	0.1	0.6	0.3	6.3	3.6	0.5	0.3	6.3	3.6	0.7	0.4
PE 0112	Eggs	0.020	22.1	0.4	71.5	1.4	16.6	0.3	5.1	0.1	17.6	0.4	35.2	0.7	57.4	1.1
FB 0267	Elderberries	2.530	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VC 0045	Fruiting vegetables, cucurbits	0.565	69.7	39.4	25.9	14.6	14.9	8.4	18.0	10.2	18.7	10.6	39.1	22.1	44.2	25.0
FB 0268	Gooseberries	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	2.5	0.0	0.0	0.0	0.0
FB 0269	Grape (excl dried, excl juice, excl wine)	1.090	1.2	1.3	2.6	2.8	0.0	0.0	0.2	0.2	0.0	0.0	3.7	4.0	0.0	0.0
JF 0269	Grape juice	0.460	0.0	0.0	0.1	0.0	1.0	0.5	0.0	0.0	0.6	0.3	0.4	0.2	3.6	1.7
DF 0269	Grape, dried (= currants, raisins and sultanas)	2.600	0.0	0.0	0.2	0.5	0.2	0.5	0.0	0.0	0.3	0.8	0.4	1.0	2.6	6.8
TN 0666	Hazelnut	0.050	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
FI 0341	Kiwi fruit	0.073	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.0	1.6	0.1	1.0	0.1
VL 0053	Leafy vegetables	2.950	40.8	120.4	12.0	35.4	12.5	36.9	9.5	28.0	5.4	15.9	50.0	147.5	39.9	117.7
VP 0060	Legume vegetables	0.500	19.6	9.8	6.2	3.1	6.9	3.5	6.0	3.0	1.7	0.9	29.5	14.8	26.3	13.2
TN 0669	Macadamia nut	0.050	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
GC 0645	Maize (incl flour, incl oil, incl beer)	0.050	35.2	1.8	298.6	14.9	248.1	12.4	57.4	2.9	63.1	3.2	58.6	2.9	85.5	4.3
MF 0100	Mammalian fats (except milk fats)	0.180	2.2	0.4	18.6	3.3	0.5	0.1	0.8	0.1	5.7	1.0	4.5	0.8	18.2	3.3
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.180	11.0	2.0	17.9	3.2	6.1	1.1	5.7	1.0	16.4	3.0	12.2	2.2	31.7	5.7
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0.035	43.8	1.5	71.5	2.5	24.5	0.9	22.9	0.8	65.7	2.3	48.9	1.7	126.6	4.4
ML 0106	Milks (excl processed products)	0.066	66.0	4.4	121.1	8.0	81.6	5.4	102.4	6.8	207.7	13.7	57.0	3.8	287.9	19.0
GC 0646	Millet (incl flour, incl beer)	0.050	13.0	0.7	0.0	0.0	8.3	0.4	96.9	4.8	0.0	0.0	0.4	0.0	0.0	0.0
GC 0647	Oats (incl rolled)	0.050	0.2	0.0	2.0	0.1	0.8	0.0	0.0	0.0	3.5	0.2	0.7	0.0	7.6	0.4
SO 0088	Oilseed	0.145	26.2	3.8	19.8	2.9	24.9	3.6	39.9	5.8	7.4	1.1	62.7	9.1	29.9	4.3

Annex 3

BOSCALID (221) International Estimated Daily Intake (IEDI) ADI = 0 - 0.0400 mg/kg bw

BOSCALII	D (221)	internationa	ai Estiiliai	led Daily II	make (IEI) - 0.0400 I	iig/kg bw					
		STMR or	Diets: g	g/person/da		Intake =	daily inta	ıke: μg/peı	rson		T				1	
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code VO 0442	Okra	0.565	4.1	2.3	1.0	0.6	7.0	4.0	15.9	9.0	1.1	0.6	3.9	2.2	0.2	0.1
TN 0672	Pecan	0.050	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
VO 0051	Peppers	0.565	8.7	4.9	22.4	12.7	8.4	4.7	9.4	5.3	3.3	1.9	5.3	3.0	8.9	5.0
TN 0673	Pine nut	0.050	ND	-	ND	12.7	ND	4.7	ND	5.5	ND	1.9	ND	3.0	ND	3.0
TN 0675	Pistachio nut	0.030	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.1
DF 0014	Plum, dried (prunes)	3.390	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	2.0
	-	0.050			0.2		0.0			0.0	0.2			0.7	1.4	
GC 0656 PM 0110	Popcorn Poultry meat	0.030	0.1 17.6	0.0	131.3	0.0 2.6	25.1	0.0	0.1 4.7	0.0	145.9	0.0 2.9	0.1 27.7	0.6	115.1	0.1
PO 0111	-	0.020			1.0		1.9			0.1	0.7	0.0	1.0	0.0	0.3	0.0
	Poultry, edible offal of		0.4	0.0	8.2	0.0		0.0	0.0		0.7			0.0	4.2	
PF 0111	Poultry, fats	0.020	0.1	0.0		0.2	0.0	0.0	0.1	0.0		0.0	0.1			0.1
VD 0070	Pulses	0.120	41.9	5.0	91.8	11.0	35.9	4.3	45.2	5.4	160.0	19.2	59.5	7.1	140.1	16.8
FB 0272	Raspberries, red, black	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	0.0	0.0	0.5	1.3
GC 0649	Rice (incl husked, incl polished)	0.050	376.9	18.8	64.3	3.2	38.0	1.9	74.3	3.7	238.4	11.9	381.3	19.1	34.6	1.7
VR0075	Root and tuber vegetables	0.305	139.1	42.4	109.8	33.5	409.6	124.9	444.6	135.6	145.3	44.3	127.0	38.7	225.6	68.8
FB 0273	Rose hips	2.530	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
GC 0650	Rye (excl flour)	0.075	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.9	0.1	0.0	0.0
CF 1250	Rye flour	0.026	0.3	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.6	0.0
CF 1251	Rye wholemeal	0.092	0.4	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.1	0.0	0.9	0.1	0.8	0.1
GC 0651	Sorghum (incl flour, incl beer)	0.050	9.8	0.5	19.9	1.0	18.6	0.9	112.3	5.6	0.1	0.0	3.3	0.2	3.0	0.2
FS 0012	Stone fruit (excl dried plums, incl dried apricots)	1.210	6.7	8.1	4.3	5.2	1.4	1.7	0.1	0.1	4.9	6.0	4.9	6.0	17.7	21.4
FB 0275	Strawberry	0.555	0.0	0.0	1.8	1.0	0.1	0.1	0.0	0.0	0.3	0.2	6.2	3.4	5.9	3.3
VO 0448	Tomato (excl juice, excl paste, incl peeled)	0.565	23.1	13.1	22.3	12.6	12.5	7.0	5.6	3.2	33.2	18.8	1.3	0.7	41.7	23.6
JF 0448	Tomato juice	0.085	0.0	0.0	0.8	0.1	0.1	0.0	7.2	0.6	0.0	0.0	2.4	0.2	45.2	3.8
-d	Tomato paste	0.413	0.1	0.0	2.1	0.9	0.6	0.2	0.4	0.2	0.6	0.2	1.4	0.6	1.2	0.5
TN 0085	Tree nuts	0.050	16.3	0.8	15.7	0.8	9.7	0.5	1.9	0.1	19.1	1.0	29.0	1.5	5.6	0.3
-	Tree nuts NES (excl pecan nuts)	0.050	0.1	0.0	1.4	0.1	0.2	0.0	0.3	0.0	0.0	0.0	0.3	0.0	0.4	0.0
GC 0653	Triticale (excl flour)	0.075	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	Triticale flour	0.026	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FB 0019	Vaccinium berries (incl. bearberry)	2.530	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	9.6
TN 0678	Walnut	0.050	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.4	0.0
GC 0654	Wheat (excl bulgur wholemeal, excl flour)	0.075	0.0	0.0	0.9	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0
CM 0654	Wheat bran, unprocessed	0.320	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-

BOSCALI	D (221)	Internationa	al Estimat	ed Daily I	ntake (IE	DI)			ADI = () - 0.0400 r	ng/kg bw					
		STMR or	Diets: g	/person/da	ıy	Intake =	daily int	ake: μg/pe	rson							
	- ·	STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
-d	Wheat bulgur wholemeal	0.092	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CF 1211	Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.026	133.0	3.5	60.1	1.6	52.4	1.4	32.2	0.8	87.7	2.3	79.6	2.1	180.1	4.7
CF 1210	Wheat germ	0.100	0.1	0.0	48.1	4.8	1.8	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.1
CF 1212	Wheat wholemeal	0.092	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
CP 1211	White bread	0.026	0.0	0.0	2.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CP 1212	Wholemeal bread	0.092	0.0	0.0	2.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	Wine	0.380	1.0	0.4	0.9	0.3	6.8	2.6	0.1	0.0	3.4	1.3	3.6	1.4	31.0	11.8
	Total intake (μg/person)=			391.1		261.1		264.2		283.0		236.4		453.4		508.2
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
	ADI (μg/person)=			2200		2400		2400		2400		2400		2200		2400
	%ADI=			17.8%		10.9%		11.0%		11.8%		9.8%		20.6%		21.2%

10%

10%

10%

10%

20%

20%

20%

Rounded %ADI=

BUPROFE	ZIN (173)	International E	Estimated D	aily Intake	(IEDI)				ADI = 0	- 0.0090 m	g/kg bw			
		STMR or	Diets: g/	person/day		Intake =	daily intak	e: μg/person	1					
		STMR-P	A		В		С		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code														
TN 0660	Almond	0.05	0.0	0.0	1.9	0.1	1.0	0.1	0.0	0.0	1.0	0.1	0.8	0.0
FP 0226	Apple (excl juice)	0.28	0.3	0.1	56.3	15.8	18.4	5.1	38.3	10.7	40.6	11.4	28.3	7.9
JF 0226	Apple juice	0.16	0.0	0.0	2.8	0.4	0.1	0.0	1.1	0.2	6.8	1.1	7.4	1.2
FS 0013	Cherries	0.73	0.0	0.0	6.8	5.0	0.9	0.7	6.2	4.5	3.6	2.6	0.4	0.3
FC 0001	Citrus fruit (excl lemon juice, excl mandarin juice,	0.04	15.7	0.6	86.5	3.5	52.6	2.1	24.2	1.0	16.2	0.6	12.0	0.5
	excl orange juice, excl grapefruit juice, excl NES													
	juice)													
-	Citrus juice NES	0.13	0.0	0.0	1.7	0.2	0.1	0.0	0.0	0.0	1.1	0.1	0.3	0.0
VC 0045	Fruiting vegetables, cucurbits	0.195	26.6	5.1	107.5	20.4	95.9	18.2	82.2	15.6	25.4	4.8	23.2	4.4
FB 0269	Grape (excl dried, excl juice, excl wine)	0.17	1.9	0.3	9.2	1.6	23.8	4.0	9.8	1.7	0.0	0.0	0.0	0.0
JF 0269	Grape juice	0.098	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	1.4	0.1	1.0	0.1
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.37	0.0	0.0	2.9	1.1	0.4	0.1	0.4	0.1	2.3	0.9	1.7	0.6

Annex 3

BUPROFE	ZIN (173)	International	Estimated	Daily Intake	(IEDI)				ADI = 0	- 0.0090 m	g/kg bw			
		STMR or	Diets: g	g/person/day		Intake =	daily intak	e: μg/persoi	ı					
		STMR-P	A		В		C		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
JF 0203	Grapefruit juice	0.13	0.0	0.0	0.2	0.0	0.1	0.0	0.1	0.0	1.1	0.1	0.2	0.0
-d	Lemon juice	0.13	0.0	0.0	0.9	0.1	0.1	0.0	0.0	0.0	0.2	0.0	0.4	0.1
-	Mandarin + mandarin-like hybrid juice	0.13	0.0	0.0	1.4	0.2	0.9	0.1	0.4	0.1	0.7	0.1	0.9	0.1
FI 0345	Mango (incl juice, incl pulp)	0.01	6.3	0.1	1.0	0.0	4.6	0.0	0.2	0.0	0.7	0.0	0.3	0.0
FS 0245	Nectarine	1.355	0.0	0.0	0.5	0.7	3.3	4.5	1.8	2.4	2.8	3.8	1.6	2.2
FT 0305	Olive (table olives, only)	1.125	0.0	0.0	4.8	5.4	0.8	0.9	0.4	0.5	1.0	1.1	0.8	0.9
OR 0305	Olive oil, refined	3.49	0.0	0.0	14.3	49.9	3.9	13.6	0.0	0.0	1.5	5.2	0.8	2.8
JF 0004	Orange juice	0.13	0.0	0.0	2.1	0.3	4.4	0.6	1.4	0.2	16.2	2.1	22.6	2.9
FS 0247	Peach	1.355	0.2	0.3	24.8	33.6	3.3	4.5	1.8	2.4	5.4	7.3	1.6	2.2
FP 0230	Pear	1.09	0.1	0.1	22.3	24.3	2.8	3.1	4.8	5.2	10.7	11.7	6.8	7.4
VO 0051	Peppers	0.33	1.4	0.5	29.9	9.9	13.0	4.3	6.3	2.1	6.2	2.0	4.0	1.3
FS 0014	Plum (excl dried)	0.155	0.1	0.0	5.3	0.8	2.5	0.4	7.0	1.1	5.5	0.8	0.9	0.1
DF 0014	Plum, dried (prunes)	0.465	0.0	0.0	0.2	0.1	0.0	0.0	0.1	0.0	0.5	0.2	0.6	0.3
FB 0275	Strawberry	0.44	0.0	0.0	5.0	2.2	2.0	0.9	1.7	0.7	5.2	2.3	4.1	1.8
VO 0448	Tomato (excl juice, excl paste, excl peeled)	0.24	1.3	0.3	178.4	42.8	102.8	24.7	53.4	12.8	1.6	0.4	0.0	0.0
JF 0448	Tomato juice	0.053	5.2	0.3	0.5	0.0	0.4	0.0	2.1	0.1	6.9	0.4	15.2	0.8
-d	Tomato paste	0.22	0.5	0.1	1.3	0.3	3.5	0.8	1.0	0.2	3.8	0.8	4.5	1.0
-d	Tomato, peeled	0.041	0.1	0.0	0.4	0.0	0.5	0.0	0.4	0.0	4.9	0.2	3.2	0.1
-	Wine	0.15	1.3	0.2	76.8	11.5	1.1	0.2	15.4	2.3	68.8	10.3	25.6	3.8
	Total intake (μg/person)=			7.8		256.9		97.1		63.3		70.6		43.3
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (µg/person)=			540		540		540		540		540		540
	%ADI=			1.5%		47.6%		18.0%		11.7%		13.1%		8.0%
	Rounded %ADI=			1%		50%		20%		10%		10%		8%

BUPROFI	EZIN (173)	International	Estimated	l Daily Inta	ake (IEDI)				ADI = (0.0090	mg/kg bw					
		STMR or	Diets: g	/person/da	ıy	Intake =	daily inta	ake: μg/per	son							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code		T = ==		T										T		T
TN 0660	Almond	0.05	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.3	0.0
FP 0226	Apple (excl juice)	0.28	14.3	4.0	9.4	2.6	2.1	0.6	0.0	0.0	8.8	2.5	16.6	4.6	27.8	7.8
JF 0226	Apple juice	0.16	0.1	0.0	0.5	0.1	0.1	0.0	0.0	0.0	0.7	0.1	0.9	0.1	5.7	0.9
FS 0013	Cherries	0.73	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.2	2.5	1.8
FC 0001	Citrus fruit (excl lemon juice, excl mandarin juice, excl orange juice, excl grapefruit juice, excl NES juice)	0.04	15.1	0.6	153.9	6.2	3.4	0.1	41.7	1.7	218.9	8.8	23.1	0.9	18.0	0.7
-	Citrus juice NES	0.13	0.0	0.0	0.0	0.0	0.5	0.1	0.0	0.0	0.0	0.0	0.3	0.0	0.1	0.0
VC 0045	Fruiting vegetables, cucurbits	0.195	69.7	13.2	25.9	4.9	14.9	2.8	18.0	3.4	18.7	3.6	39.1	7.4	44.2	8.4
FB 0269	Grape (excl dried, excl juice, excl wine)	0.17	1.2	0.2	2.6	0.4	0.0	0.0	0.2	0.0	0.0	0.0	3.7	0.6	0.0	0.0
JF 0269	Grape juice	0.098	0.0	0.0	0.1	0.0	1.0	0.1	0.0	0.0	0.6	0.1	0.4	0.0	3.6	0.4
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.37	0.0	0.0	0.2	0.1	0.2	0.1	0.0	0.0	0.3	0.1	0.4	0.1	2.6	1.0
JF 0203	Grapefruit juice	0.13	0.0	0.0	0.0	0.0	0.5	0.1	0.0	0.0	0.0	0.0	0.3	0.0	2.4	0.3
-d	Lemon juice	0.13	0.3	0.0	0.0	0.0	1.0	0.1	0.3	0.0	0.0	0.0	0.5	0.1	2.6	0.3
-	Mandarin + mandarin-like hybrid juice	0.13	0.5	0.1	0.5	0.1	0.1	0.0	0.0	0.0	0.7	0.1	1.4	0.2	0.0	0.0
FI 0345	Mango (incl juice, incl pulp)	0.01	12.7	0.1	26.2	0.3	6.1	0.1	12.7	0.1	9.2	0.1	8.0	0.1	1.9	0.0
FS 0245	Nectarine	1.355	1.7	2.3	1.7	2.3	0.0	0.0	0.0	0.0	1.0	1.4	1.7	2.3	1.4	1.9
FT 0305	Olive (table olives, only)	1.125	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.6	0.7	0.0	0.0	1.0	1.1
OR 0305	Olive oil, refined	3.49	0.0	0.0	0.1	0.3	0.0	0.0	0.0	0.0	0.3	1.0	0.3	1.0	1.6	5.6
JF 0004	Orange juice	0.13	0.2	0.0	1.0	0.1	3.5	0.5	0.0	0.0	1.3	0.2	6.4	0.8	56.8	7.4
FS 0247	Peach	1.355	1.7	2.3	1.7	2.3	1.1	1.5	0.1	0.1	1.0	1.4	1.7	2.3	10.2	13.8
FP 0230	Pear	1.09	6.4	7.0	1.9	2.1	1.2	1.3	0.0	0.0	1.8	2.0	6.9	7.5	7.8	8.5
VO 0051	Peppers	0.33	8.7	2.9	22.4	7.4	8.4	2.8	9.4	3.1	3.3	1.1	5.3	1.7	8.9	2.9
FS 0014	Plum (excl dried)	0.155	3.0	0.5	0.8	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.9	0.1	0.5	0.1
DF 0014	Plum, dried (prunes)	0.465	0.1	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.2	0.1	0.2	0.1	0.6	0.3
FB 0275	Strawberry	0.44	0.0	0.0	1.8	0.8	0.1	0.0	0.0	0.0	0.3	0.1	6.2	2.7	5.9	2.6
VO 0448	Tomato (excl juice, excl paste, excl peeled)	0.24	22.8	5.5	4.1	1.0	12.3	3.0	1.8	0.4	32.8	7.9	0.4	0.1	27.3	6.6
JF 0448	Tomato juice	0.053	0.0	0.0	0.8	0.0	0.1	0.0	7.2	0.4	0.0	0.0	2.4	0.1	45.2	2.4
-d	Tomato paste	0.22	0.1	0.0	2.1	0.5	0.6	0.1	0.4	0.1	0.6	0.1	1.4	0.3	1.2	0.3
-d	Tomato, peeled	0.041	0.2	0.0	14.5	0.6	0.2	0.0	0.0	0.0	0.3	0.0	0.8	0.0	1.2	0.0
-	Wine	0.15	1.0	0.2	0.9	0.1	6.8	1.0	0.1	0.0	3.4	0.5	3.6	0.5	31.0	4.7
•	Total intake (µg/person)=		•	38.9	•	32.7	•	13.9	•	9.4	•	32.1	•	34.8	•	81.3
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60

Annex 3

BUPROFEZIN (173)	International I	Estimate	d Daily Inta	ke (IEDI)			ADI =	0 - 0.0090 1	ng/kg by	V			
	STMR or	Diets:	g/person/da	y	Intake =	daily int	ake: µg/per	son						
	STMR-P	G		Н		I		J		K		L		Ī
Codex Commodity	mø/kø	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	l

Code

ADI (μg/person)= 495 540 540 540 540 495 540 %ADI= 7.9% 6.0% 2.6% 1.7% 5.9% 7.0% 15.1% Rounded %ADI= 6% 3% 2% 6% 7% 20% 8%

CHLOPRY	RIFOS METHYL (090)	Internation	nal Estimat	ed Daily Inta	ike (IEDI)					ADI = () - 0.0100 mg	/kg bw		
		STMR or	Diets: g/p	erson/day				Intake = da	ily intake: μ	g/person				
Codex		STMR-P	A		В		C		D		Е		F	
Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
JF 0226	Apple juice	0.005	0.0	0.0	2.8	0.0	0.1	0.0	1.1	0.0	6.8	0.0	7.4	0.0
GC 0640	Barley (incl pot, incl pearled, incl flour & grits, excl beer)	2.1	40.6	85.3	0.0	0.0	93.9	197.2	0.0	0.0	0.0	0.0	3.8	8.1
-	Barley beer	0.002	18.3	0.0	84.1	0.2	4.1	0.0	66.0	0.1	243.1	0.5	161.3	0.3
FC 0001	Citrus fruit (incl lemon juice, incl mandarin juice, incl orange juice, incl grapefruit juice, incl NES juice)	0.01	15.7	0.2	100.5	1.0	63.2	0.6	27.8	0.3	52.6	0.5	56.9	0.6
MO 0105	Edible offal (mammalian)	0	3.9	0.0	14.4	0.0	5.2	0.0	11.8	0.0	11.7	0.0	7.6	0.0
VO 0440	Egg plant (= aubergine)	0.06	1.7	0.1	17.5	1.1	12.3	0.7	1.7	0.1	0.8	0.0	0.4	0.0
PE 0112	Eggs	0	2.5	0.0	29.7	0.0	25.1	0.0	24.5	0.0	37.8	0.0	27.4	0.0
FB 0269	Grape (excl dried, incl juice, excl wine)	0.02	1.9	0.0	9.4	0.2	24.0	0.5	9.9	0.2	2.0	0.0	1.4	0.0
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.001	0.0	0.0	2.9	0.0	0.4	0.0	0.4	0.0	2.3	0.0	1.7	0.0
GC 0645	Maize (incl flour, incl oil, incl beer)	2.1	82.7	173.7	148.4	311.6	135.9	285.4	31.8	66.8	33.3	69.9	7.5	15.8
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.03	5.5	0.2	23.3	0.7	7.7	0.2	11.0	0.3	18.0	0.5	26.3	0.8
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0	22.2	0.0	93.2	0.0	30.8	0.0	44.1	0.0	72.2	0.0	105.0	0.0
ML 0106	Milks (excl processed products)	0.0006	68.8	0.0	190.6	0.1	79.4	0.0	302.6	0.2	179.6	0.1	237.9	0.1
VO 0051	Peppers	0.06	1.4	0.1	29.9	1.8	13.0	0.8	6.3	0.4	6.2	0.4	4.0	0.2
FP 0009	Pome fruit (excl apple juice)	0.06	0.5	0.0	79.9	4.8	21.8	1.3	43.6	2.6	51.5	3.1	35.1	2.1
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0	19.1	0.0	160.8	0.0	61.2	0.0	243.6	0.0	230.1	0.0	204.7	0.0
PM 0110	Poultry meat: 10% as fat	0.004	0.7	0.0	5.9	0.0	3.2	0.0	2.4	0.0	6.1	0.0	2.7	0.0
PM 0110	Poultry meat: 90% as muscle	0	6.4	0.0	52.7	0.0	28.7	0.0	21.6	0.0	54.9	0.0	24.6	0.0

diet

intake

CHLOPRYRIFOS METHYL (090) International Estimated Daily Intake (IEDI) ADI = 0 - 0.0100 mg/kg bw

50%

Rounded %ADI=

CHECK	TKH OS METHTE (050)	minerman	ш шоши	acceu Dui	1) 11114411	(IBDI)			1121	0.0100	mg, ng o n					
		STMR or	Diets:	g/person	/day	Intake =	daily in	take: µg/j	person							
Codex		STMR-P	G		Н		I		J		K		L		M	
Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
JF 0226	Apple juice	0.005	0.1	0.0	0.5	0.0	0.1	0.0	0.0	0.0	0.7	0.0	0.9	0.0	5.7	0.0
GC 0640	Barley (incl pot, incl pearled, incl flour & grits, excl beer)	2.1	1.5	3.2	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.8	0.0	0.1
-	Barley beer	0.002	21.9	0.0	102.7	0.2	29.5	0.1	12.6	0.0	100.9	0.2	82.2	0.2	218.8	0.4
FC 0001	Citrus fruit (incl lemon juice, incl mandarin juice, incl orange juice, incl grapefruit juice, incl NES juice)	0.01	17.3	0.2	156.8	1.6	14.9	0.1	42.5	0.4	222.8	2.2	40.4	0.4	132.3	1.3
MO 0105	Edible offal (mammalian)	0	4.8	0.0	10.7	0.0	4.0	0.0	4.0	0.0	6.5	0.0	6.6	0.0	5.6	0.0
VO 0440	Egg plant (= aubergine)	0.06	20.1	1.2	0.1	0.0	0.6	0.0	6.3	0.4	0.5	0.0	6.3	0.4	0.7	0.0

90%

110%

40%

30%

20%

Annex 3

CHLOPR	YRIFOS METHYL (090)	Internation	al Estim	ated Dai	ly Intak	e (IEDI)			ADI = (0.0100	mg/kg by	V				
		STMR or	Diets:	g/person	/day	Intake =	daily ir	ıtake: μg/	person							
Codex		STMR-P	G		Н		I		J		K		L		M	
Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
PE 0112	Eggs	0	22.1	0.0	71.5	0.0	16.6	0.0	5.1	0.0	17.6	0.0	35.2	0.0	57.4	0.0
FB 0269	Grape (excl dried, incl juice, excl wine)	0.02	1.2	0.0	2.7	0.1	1.4	0.0	0.2	0.0	0.8	0.0	4.3	0.1	5.0	0.1
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.001	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.3	0.0	0.4	0.0	2.6	0.0
GC 0645	Maize (incl flour, incl oil, incl beer)	2.1	35.2	73.9	298.6	627.1	248.1	521.0	57.4	120.5	63.1	132.5	58.6	123.1	85.5	179.6
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.03	11.0	0.3	17.9	0.5	6.1	0.2	5.7	0.2	16.4	0.5	12.2	0.4	31.7	0.9
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0	43.8	0.0	71.5	0.0	24.5	0.0	22.9	0.0	65.7	0.0	48.9	0.0	126.6	0.0
ML 0106	Milks (excl processed products)	0.0006	66.0	0.0	121.1	0.1	81.6	0.0	102.4	0.1	207.7	0.1	57.0	0.0	287.9	0.2
VO 0051	Peppers	0.06	8.7	0.5	22.4	1.3	8.4	0.5	9.4	0.6	3.3	0.2	5.3	0.3	8.9	0.5
FP 0009	Pome fruit (excl apple juice)	0.06	20.8	1.2	11.6	0.7	3.3	0.2	0.1	0.0	10.7	0.6	23.6	1.4	36.9	2.2
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0	52.7	0.0	57.1	0.0	50.1	0.0	4.3	0.0	54.7	0.0	41.0	0.0	168.0	0.0
PM 0110	Poultry meat: 10% as fat	0.004	1.8	0.0	13.1	0.1	2.5	0.0	0.5	0.0	14.6	0.1	2.8	0.0	11.5	0.0
PM 0110	Poultry meat: 90% as muscle	0	15.8	0.0	118.2	0.0	22.6	0.0	4.2	0.0	131.3	0.0	24.9	0.0	103.6	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	1.0	0.0	1.9	0.0	0.0	0.0	0.7	0.0	1.0	0.0	0.3	0.0
FS 0012	Stone fruit (incl dried plums, incl dried apricots)	0.02	7.0	0.1	4.9	0.1	1.4	0.0	0.1	0.0	5.5	0.1	5.5	0.1	19.4	0.4
FB 0275	Strawberry	0.01	0.0	0.0	1.8	0.0	0.1	0.0	0.0	0.0	0.3	0.0	6.2	0.1	5.9	0.1
VO 0448	Tomato (excl juice, incl paste, incl peeled)	0.06	23.5	1.4	30.7	1.8	14.9	0.9	7.2	0.4	35.6	2.1	6.9	0.4	46.5	2.8
JF 0448	Tomato juice	0.002	0.0	0.0	0.8	0.0	0.1	0.0	7.2	0.0	0.0	0.0	2.4	0.0	45.2	0.1
GC 0654	Wheat (incl bulgur wholemeal, excl flour)	2.1	0.0	0.0	0.9	1.8	0.0	0.0	0.0	0.1	0.1	0.2	0.0	0.0	0.1	0.1
CM 0654	Wheat bran, unprocessed	5.14	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
CF 1211	Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.525	133.0	69.8	60.1	31.6	52.4	27.5	32.2	16.9	87.7	46.0	79.6	41.8	180.1	94.6
CF 1210	Wheat germ	3.99	0.1	0.4	48.1	191.9	1.8	7.2	0.0	0.0	0.0	0.0	0.0	0.0	0.6	2.4
CF 1212	Wheat wholemeal	2.1	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
CP 1211	White bread	0.105	0.0	0.0	2.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CP 1212	Wholemeal bread	1.06	0.0	0.0	2.2	2.3	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	Wine	0.002	1.0	0.0	0.9	0.0	6.8	0.0	0.1	0.0	3.4	0.0	3.6	0.0	31.0	0.1
Total intak	e (μg/person)=			152.5		861.3		558.0		139.6		185.0		169.4		286.0
Bodyweigh	nt per region (kg bw) =			55		60		60		60		60		55		60
ADI (μg/pa	erson)=			550		600		600		600		600		550		600
				27.7		143.6										
%ADI=	(AD)			%		%		93.0%		23.3%		30.8%		30.8%		47.7%
Rounded 9	DADI=			30%		140%		90%		20%		30%		30%		50%

CYPERME	ETHRIN (119)	Internationa	ıl Estimate	ed Daily Intal	ke (IEDI)				ADI = 0	- 0.0200 m	g/kg bw			
		STMR or	Diets: g/	person/day		Intake =	daily intake	: μg/person						
		STMR-P	A		В		C		D		E		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intak
VS 0620	Artichoke globe	0.023	0.0	0.0	10.0	0.2	2.1	0.0	0.1	0.0	0.8	0.0	0.1	0.0
VS 0621	Asparagus	0.01	0.0	0.0	1.1	0.0	0.6	0.0	0.2	0.0	1.2	0.0	0.1	0.0
GC 0640	Barley (incl pot, incl pearled, incl flour & grits, excl beer)	1.38	40.6	56.0	0.0	0.0	93.9	129.6	0.0	0.0	0.0	0.0	3.8	5.3
-	Barley beer	0.04	18.3	0.7	84.1	3.4	4.1	0.2	66.0	2.6	243.1	9.7	161.3	6.5
VB 0400	Broccoli	0.02	0.0	0.0	0.7	0.0	1.2	0.0	0.1	0.0	4.2	0.1	4.0	0.1
VB 0402	Brussels sprouts	0.02	0.0	0.0	0.1	0.0	2.8	0.1	5.5	0.1	1.5	0.0	1.9	0.0
VB 0041	Cabbage, head	0.02	1.2	0.0	14.4	0.3	2.7	0.1	16.4	0.3	15.4	0.3	18.5	0.4
FT 0289	Carambola	0.02	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VB 0404	Cauliflower	0.02	0.1	0.0	5.2	0.1	1.2	0.0	0.1	0.0	1.7	0.0	0.1	0.0
-	Cereal grains (excl rice)	0.035	117.1	4.1	197.6	6.9	143.4	5.0	0.0	0.0	0.0	0.0	0.0	0.0
SB 0716	Coffee beans (incl green, incl extracts, incl roasted)	0.05	3.1	0.2	12.6	0.6	2.9	0.1	1.4	0.1	10.1	0.5	18.0	0.9
MO 0105	Edible offal (mammalian)	0.014	3.9	0.1	14.4	0.2	5.2	0.1	11.8	0.2	11.7	0.2	7.6	0.1
VO 0440	Egg plant (= aubergine)	0.01	1.7	0.0	17.5	0.2	12.3	0.1	1.7	0.0	0.8	0.0	0.4	0.0
PE 0112	Eggs	0.0042	2.5	0.0	29.7	0.1	25.1	0.1	24.5	0.1	37.8	0.2	27.4	0.1
VC 0045	Fruiting vegetables, cucurbits	0.01	26.6	0.3	107.5	1.1	95.9	1.0	82.2	0.8	25.4	0.3	23.2	0.2
FB 0269	Grape (excl dried, incl juice, excl wine)	0.01	1.9	0.0	9.4	0.1	24.0	0.2	9.9	0.1	2.0	0.0	1.4	0.0
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.033	0.0	0.0	2.9	0.1	0.4	0.0	0.4	0.0	2.3	0.1	1.7	0.1
VL 0053	Leafy vegetables	0.07	5.8	0.4	45.6	3.2	10.9	0.8	26.8	1.9	18.7	1.3	38.9	2.7
VA 0384	Leek	0.01	0.3	0.0	5.3	0.1	0.0	0.0	0.2	0.0	4.6	0.0	1.5	0.0
VP 0060	Legume vegetables	0.22	6.1	1.3	23.0	5.1	18.0	4.0	12.8	2.8	26.9	5.9	5.3	1.2
FI 0345	Mango (incl juice, incl pulp)	0.19	6.3	1.2	1.0	0.2	4.6	0.9	0.2	0.0	0.7	0.1	0.3	0.1
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.15	5.5	0.8	23.3	3.5	7.7	1.2	11.0	1.7	18.0	2.7	26.3	3.9
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0.014	22.2	0.3	93.2	1.3	30.8	0.4	44.1	0.6	72.2	1.0	105.0	1.5
ML 0106	Milks (excl processed products)	0.011	68.8	0.8	190.6	2.1	79.4	0.9	302.6	3.3	179.6	2.0	237.9	2.6
GC 0647	Oats (incl rolled)	1.38	1.4	1.9	0.6	0.8	0.2	0.3	4.2	5.8	5.7	7.9	8.9	12.3
SO 0088	Oilseed	0.05	22.3	1.1	65.2	3.3	35.4	1.8	52.0	2.6	62.1	3.1	39.4	2.0
VO 0442	Okra	0.08	3.9	0.3	1.0	0.1	5.3	0.4	0.1	0.0	0.0	0.0	0.0	0.0

Annex 3

CYPERME	ΓHRIN (119)	Internationa	al Estimate	d Daily Intal	ke (IEDI)				ADI = 0	- 0.0200 m	g/kg bw			
		STMR or	Diets: g/j	person/day		Intake =	daily intake	: μg/person						
		STMR-P	A		В		C		D		E		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intak
Code	Test and the	la a z		la a		1		1		la a		la .		
FT 0305	Olive (incl oil)	0.05	0.0	0.0	76.3	3.8	20.3	1.0	0.4	0.0	8.5	0.4	4.8	0.2
VA 0385	Onion, bulb (= dry + green onion)	0.01	5.5	0.1	49.5	0.5	33.0	0.3	31.3	0.3	23.2	0.2	14.6	0.1
FI 0350	Papaya	0.135	5.1	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
VO 0444	Peppers, chilli	0.495	0.7	0.3	14.9	7.4	4.1	2.0	3.2	1.6	3.1	1.5	2.0	1.0
VO 0445	Peppers, sweet (incl. pim(i)ento)	0.05	0.7	0.0	14.9	0.7	8.8	0.4	3.2	0.2	3.1	0.2	2.0	0.1
DF 0014	Plum, dried (prunes)	1.9	0.0	0.0	0.2	0.4	0.0	0.0	0.1	0.2	0.5	1.0	0.6	1.1
FP 0009	Pome fruit (incl apple juice)	0.205	0.5	0.1	84.1	17.2	21.9	4.5	45.2	9.3	61.7	12.6	46.2	9.5
PM 0110	Poultry meat: 10% as fat	0.034	0.7	0.0	5.9	0.2	3.2	0.1	2.4	0.1	6.1	0.2	2.7	0.1
PM 0110	Poultry meat: 90% as muscle	0.002	6.4	0.0	52.7	0.1	28.7	0.1	21.6	0.0	54.9	0.1	24.6	0.0
PO 0111	Poultry, edible offal of	0.003	0.4	0.0	0.4	0.0	1.7	0.0	0.1	0.0	0.6	0.0	0.2	0.0
VD 0070	Pulses	0.05	54.5	2.7	62.9	3.1	51.4	2.6	36.8	1.8	49.4	2.5	47.9	2.4
GC 0649	Rice (incl husked, incl polished)	0.57	91.0	51.9	31.6	18.0	94.6	53.9	33.2	18.9	12.7	7.2	12.7	7.2
VR0075	Root and tuber vegetables	0.01	528.2	5.3	352.8	3.5	78.5	0.8	270.3	2.7	324.1	3.2	261.3	2.6
GC 0650	Rye (incl flour)	1.38	0.1	0.1	3.7	5.1	0.3	0.4	24.3	33.5	25.8	35.6	45.8	63.2
FS 0012	Stone fruit (excl dried plums, incl dried apricots)	0.59	0.7	0.4	44.1	26.0	14.1	8.3	26.6	15.7	26.3	15.5	8.3	4.9
FB 0275	Strawberry	0.01	0.0	0.0	5.0	0.1	2.0	0.0	1.7	0.0	5.2	0.1	4.1	0.0
GS 0659	Sugar cane	0.05	30.9	1.5	43.1	2.2	51.3	2.6	0.1	0.0	5.5	0.3	0.0	0.0
VO 0447	Sweet corn (corn-on-the-cob)	0	7.3	0.0	1.0	0.0	0.1	0.0	0.5	0.0	3.3	0.0	3.6	0.0
VO 0448	Tomato (excl juice, incl paste, excl peeled)	0.05	5.2	0.3	183.9	9.2	116.9	5.8	57.6	2.9	16.9	0.8	17.9	0.9
JF 0448	Tomato juice	0.015	5.2	0.1	0.5	0.0	0.4	0.0	2.1	0.0	6.9	0.1	15.2	0.2
-d	Tomato, peeled	0.006	0.1	0.0	0.4	0.0	0.5	0.0	0.4	0.0	4.9	0.0	3.2	0.0
GC 0654	Wheat (incl bulgur wholemeal, excl flour)	1.38	6.0	8.3	11.1	15.3	0.8	1.0	0.2	0.3	0.2	0.3	0.0	0.0
CM 0654	Wheat bran, unprocessed	3.45	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
CF 1211	Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.48	63.4	30.4	296.3	142.2	327.5	157.2	300.0	144.0	181.6	87.2	166.2	79.8
-	Wine	0.001	1.3	0.0	76.8	0.1	1.1	0.0	15.4	0.0	68.8	0.1	25.6	0.0
	Total intake (μg/person)=		•	171.9		288.1	•	388.3	•	254.7	•	204.6		213.4
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (μg/person)=			1200		1200		1200		1200		1200		1200 17.8
	%ADI=			14.3%		24.0%		32.4%		21.2%		17.0%		%
	Rounded %ADI=			10%		20%		30%		20%		20%		20%

CYPERME	ΓHRIN (119)	International	Estimat	ed Daily I	ntake (II	EDI)			ADI = 0	- 0.0200 m	ng/kg bw					
		STMR or	Diets: g	g/person/d	ay	Intake =	daily in	take: µg/p	erson							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code	T	l		10.0		To a		10.0		10.0		10.0				To 0
VS 0620	Artichoke globe	0.023	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
VS 0621	Asparagus	0.01	3.7	0.0	0.3	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.5	0.0	1.1	0.0
GC 0640	Barley (incl pot, incl pearled, incl flour & grits, excl beer)	1.38	1.5	2.1	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.5	0.0	0.1
-	Barley beer	0.04	21.9	0.9	102.7	4.1	29.5	1.2	12.6	0.5	100.9	4.0	82.2	3.3	218.8	8.8
VB 0400	Broccoli	0.02	3.2	0.1	7.8	0.2	0.0	0.0	0.0	0.0	0.3	0.0	0.4	0.0	6.6	0.1
VB 0402	Brussels sprouts	0.02	3.4	0.1	0.4	0.0	0.0	0.0	0.0	0.0	0.5	0.0	7.9	0.2	0.3	0.0
VB 0041	Cabbage, head	0.02	10.0	0.2	1.0	0.0	7.2	0.1	1.0	0.0	1.4	0.0	23.9	0.5	17.0	0.3
FT 0289	Carambola	0.02	ND	-	ND	-	ND	-	ND	-	ND	-	ND	_	ND	-
VB 0404	Cauliflower	0.02	3.2	0.1	0.1	0.0	0.3	0.0	0.1	0.0	0.6	0.0	0.4	0.0	1.4	0.0
-	Cereal grains (excl rice)	0.035	43.2	1.5	239.1	8.4	252.8	8.8	256.8	9.0	0.0	0.0	0.0	0.0	0.0	0.0
SB 0716	Coffee beans (incl green, incl extracts, incl roasted)	0.05	0.2	0.0	7.0	0.4	0.5	0.0	0.2	0.0	5.3	0.3	5.7	0.3	12.4	0.6
MO 0105	Edible offal (mammalian)	0.014	4.8	0.1	10.7	0.1	4.0	0.1	4.0	0.1	6.5	0.1	6.6	0.1	5.6	0.1
VO 0440	Egg plant (= aubergine)	0.01	20.1	0.2	0.1	0.0	0.6	0.0	6.3	0.1	0.5	0.0	6.3	0.1	0.7	0.0
PE 0112	Eggs	0.0042	22.1	0.1	71.5	0.3	16.6	0.1	5.1	0.0	17.6	0.1	35.2	0.1	57.4	0.2
VC 0045	Fruiting vegetables, cucurbits	0.01	69.7	0.7	25.9	0.3	14.9	0.1	18.0	0.2	18.7	0.2	39.1	0.4	44.2	0.4
FB 0269	Grape (excl dried, incl juice, excl wine)	0.01	1.2	0.0	2.7	0.0	1.4	0.0	0.2	0.0	0.8	0.0	4.3	0.0	5.0	0.1
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.033	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.3	0.0	0.4	0.0	2.6	0.1
VL 0053	Leafy vegetables	0.07	40.8	2.9	12.0	0.8	12.5	0.9	9.5	0.7	5.4	0.4	50.0	3.5	39.9	2.8
VA 0384	Leek	0.01	0.8	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.1	0.0
VP 0060	Legume vegetables	0.22	19.6	4.3	6.2	1.4	6.9	1.5	6.0	1.3	1.7	0.4	29.5	6.5	26.3	5.8
FI 0345	Mango (incl juice, incl pulp)	0.19	12.7	2.4	26.2	5.0	6.1	1.2	12.7	2.4	9.2	1.7	8.0	1.5	1.9	0.4
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.15	11.0	1.6	17.9	2.7	6.1	0.9	5.7	0.9	16.4	2.5	12.2	1.8	31.7	4.7
MM 0095		0.014	43.8	0.6	71.5	1.0	24.5	0.3	22.9	0.3	65.7	0.9	48.9	0.7	126.6	1.8
ML 0106	Milks (excl processed products)	0.011	66.0	0.7	121.1	1.3	81.6	0.9	102.4	1.1	207.7	2.3	57.0	0.6	287.9	3.2
GC 0647	Oats (incl rolled)	1.38	0.2	0.3	2.0	2.8	0.8	1.1	0.0	0.0	3.5	4.8	0.7	1.0	7.6	10.5
SO 0088	Oilseed	0.05	26.2	1.3	19.8	1.0	24.9	1.2	39.9	2.0	7.4	0.4	62.7	3.1	29.9	1.5
VO 0442	Okra	0.08	4.1	0.3	1.0	0.1	7.0	0.6	15.9	1.3	1.1	0.1	3.9	0.3	0.2	0.0
FT 0305	Olive (incl oil)	0.05	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	2.1	0.1	1.5	0.1	9.0	0.5

Annex 3

CYPERME	CTHRIN (119)	International	Estimat	ed Daily	Intake (I	EDI)			ADI = 0	- 0.0200 n	ng/kg bw					
		STMR or	Diets: g	g/person/c	lay	Intake =	daily in	take: µg/¡	person							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code		1		1		1		1		_				•		
VA 0385	Onion, bulb (= dry + green onion)	0.01	17.4	0.2	27.9	0.3	7.3	0.1	16.0	0.2	22.8	0.2	34.5	0.3	30.1	0.3
FI 0350	Papaya	0.135	1.3	0.2	11.5	1.6	1.6	0.2	13.7	1.8	14.5	2.0	1.0	0.1	0.6	0.1
VO 0444	Peppers, chilli	0.495	8.7	4.3	13.0	6.4	4.2	2.1	4.7	2.3	1.7	0.8	2.6	1.3	4.4	2.2
VO 0445	Peppers, sweet (incl. pim(i)ento)	0.05	0.0	0.0	9.4	0.5	4.2	0.2	4.7	0.2	1.7	0.1	2.6	0.1	4.4	0.2
DF 0014	Plum, dried (prunes)	1.9	0.1	0.2	0.2	0.4	0.0	0.0	0.0	0.0	0.2	0.4	0.2	0.4	0.6	1.1
FP 0009	Pome fruit (incl apple juice)	0.205	20.9	4.3	12.3	2.5	3.4	0.7	0.1	0.0	11.7	2.4	24.9	5.1	45.4	9.3
PM 0110	Poultry meat: 10% as fat	0.034	1.8	0.1	13.1	0.4	2.5	0.1	0.5	0.0	14.6	0.5	2.8	0.1	11.5	0.4
PM 0110	Poultry meat: 90% as muscle	0.002	15.8	0.0	118.2	0.2	22.6	0.0	4.2	0.0	131.3	0.3	24.9	0.0	103.6	0.2
PO 0111	Poultry, edible offal of	0.003	0.4	0.0	1.0	0.0	1.9	0.0	0.0	0.0	0.7	0.0	1.0	0.0	0.3	0.0
VD 0070	Pulses	0.05	41.9	2.1	91.8	4.6	35.9	1.8	45.2	2.3	160.0	8.0	59.5	3.0	140.1	7.0
GC 0649	Rice (incl husked, incl polished)	0.57	376.9	214.8	64.3	36.7	38.0	21.7	74.3	42.4	238.4	135.9	381.3	217.3	34.6	19.7
VR0075	Root and tuber vegetables	0.01	139.1	1.4	109.8	1.1	409.6	4.1	444.6	4.4	145.3	1.5	127.0	1.3	225.6	2.3
GC 0650	Rye (incl flour)	1.38	0.4	0.6	0.0	0.0	0.2	0.3	0.1	0.1	0.1	0.1	0.9	1.2	0.8	1.1
FS 0012	Stone fruit (excl dried plums, incl dried apricots)	0.59	6.7	4.0	4.3	2.5	1.4	0.8	0.1	0.1	4.9	2.9	4.9	2.9	17.7	10.4
FB 0275	Strawberry	0.01	0.0	0.0	1.8	0.0	0.1	0.0	0.0	0.0	0.3	0.0	6.2	0.1	5.9	0.1
GS 0659	Sugar cane	0.05	26.2	1.3	1.5	0.1	33.8	1.7	5.5	0.3	18.6	0.9	3.0	0.2	20.2	1.0
VO 0447	Sweet corn (corn-on-the-cob)	0	0.2	0.0	2.4	0.0	2.2	0.0	3.3	0.0	1.7	0.0	2.8	0.0	11.2	0.0
VO 0448	Tomato (excl juice, incl paste, excl peeled)	0.05	23.3	1.2	12.6	0.6	14.6	0.7	7.2	0.4	35.2	1.8	5.9	0.3	45.0	2.3
JF 0448	Tomato juice	0.015	0.0	0.0	0.8	0.0	0.1	0.0	7.2	0.1	0.0	0.0	2.4	0.0	45.2	0.7
-d	Tomato, peeled	0.006	0.2	0.0	14.5	0.1	0.2	0.0	0.0	0.0	0.3	0.0	0.8	0.0	1.2	0.0
GC 0654	Wheat (incl bulgur wholemeal, excl flour)	1.38	0.0	0.0	0.9	1.2	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.1	0.1
CM 0654	Wheat bran, unprocessed	3.45	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
CF 1211	Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.48	133.0	63.8	60.1	28.8	52.4	25.2	32.2	15.5	87.7	42.1	79.6	38.2	180.1	86.4
-	Wine	0.001	1.0	0.0	0.9	0.0	6.8	0.0	0.1	0.0	3.4	0.0	3.6	0.0	31.0	0.0
	Total intake (µg/person)=	•	•	318.9		117.8	•	78.8	•	89.9	•	218.3	•	296.6	•	186.9
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
	ADI (μg/person)=			1100		1200		1200		1200		1200		1100		1200
	%ADI=			29.0%		9.8%		6.6%		7.5%		18.2%		27.0%		15.6%
	Rounded %ADI=			30%		10%		7%		7%		20%		30%		20%

FENBUCONAZOLE (197) International Estimated Daily Intake (IEDI) ADI = 0 - 0.0300 mg/kg bw

	FENBUCONAZOLE (197)	International	Estimate	d Daily Inta	ake (IEDI)				ADI = 0	- 0.0300 mg	g/kg bw			
		STMR or	Diets:	g/person/da	ıy	Intake =	daily intal	ke: μg/perso	on					
		STMR-P	A		В		C		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
JF 0226	Apple juice	0.01	0.0	0.0	2.8	0.0	0.1	0.0	1.1	0.0	6.8	0.1	7.4	0.1
DF 0226	Apple, dried	0.3	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
FS 0240	Apricot (incl dried)	0.25	0.3	0.1	6.2	1.6	3.9	1.0	3.2	0.8	2.0	0.5	0.8	0.2
FI 0327	Banana	0.01	38.8	0.4	17.4	0.2	16.0	0.2	6.6	0.1	21.5	0.2	33.8	0.3
GC 0640	Barley (incl pot, incl pearled, incl flour & grits, incl beer)	0.03	40.6	1.2	16.8	0.5	93.9	2.8	13.2	0.4	48.6	1.5	36.1	1.1
FB 0020	Blueberries	0.06	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.3	0.0	0.8	0.0
FS 0013	Cherries	0.36	0.0	0.0	6.8	2.4	0.9	0.3	6.2	2.2	3.6	1.3	0.4	0.1
FB 0265	Cranberries	0.13	0.1	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.6	0.1
VC 0424	Cucumber	0.025	0.3	0.0	12.7	0.3	5.9	0.1	11.5	0.3	6.1	0.2	7.1	0.2
MO 0105	Edible offal (mammalian)	0.02	3.9	0.1	14.4	0.3	5.2	0.1	11.8	0.2	11.7	0.2	7.6	0.2
PE 0112	Eggs	0	2.5	0.0	29.7	0.0	25.1	0.0	24.5	0.0	37.8	0.0	27.4	0.0
FB 0269	Grape (incl dried, excl juice, excl wine)	0.3	1.9	0.6	20.8	6.3	25.4	7.6	11.4	3.4	9.2	2.8	6.8	2.0
JF 0269	Grape juice	0.03	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	1.4	0.0	1.0	0.0
MM 0095	Meat from mammals other than marine mammals	0.003	27.7	0.1	116.5	0.3	38.5	0.1	55.1	0.2	90.2	0.3	131.3	0.4
VC 0046	Melons, except watermelon	0.025	3.6	0.1	26.7	0.7	22.6	0.6	11.5	0.3	5.6	0.1	2.0	0.1
ML 0106	Milks (excl processed products)	0	68.8	0.0	190.6	0.0	79.4	0.0	302.6	0.0	179.6	0.0	237.9	0.0
FS 0247	Peach	0.25	0.2	0.1	24.8	6.2	3.3	0.8	1.8	0.5	5.4	1.4	1.6	0.4
OR 0697	Peanut oil, edible	0.04	1.7	0.1	0.8	0.0	0.5	0.0	0.1	0.0	1.4	0.1	0.4	0.0
SO 0697	Peanut, shelled (excl oil)	0.03	1.5	0.0	1.3	0.0	1.0	0.0	0.5	0.0	0.8	0.0	0.5	0.0
VO 0051	Peppers	0.15	1.4	0.2	29.9	4.5	13.0	2.0	6.3	0.9	6.2	0.9	4.0	0.6
FS 0014	Plum (incl dried)	0.08	0.1	0.0	5.9	0.5	2.5	0.2	7.3	0.6	6.9	0.6	2.6	0.2
FP 0009	Pome fruit (excl apple juice)	0.12	0.5	0.1	79.9	9.6	21.8	2.6	43.6	5.2	51.5	6.2	35.1	4.2
PM 0110	Poultry meat	0	7.1	0.0	58.5	0.0	31.9	0.0	24.0	0.0	61.0	0.0	27.3	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	0.4	0.0	1.7	0.0	0.1	0.0	0.6	0.0	0.2	0.0
SO 0495	Rape seed (incl oil)	0.05	0.9	0.0	1.8	0.1	2.5	0.1	1.9	0.1	35.7	1.8	26.1	1.3
GC 0650	Rye (incl flour)	0.02	0.1	0.0	3.7	0.1	0.3	0.0	24.3	0.5	25.8	0.5	45.8	0.9
VC 0431	Squash, summer (= courgette, zuchini)	0.02	0.0	0.0	8.3	0.2	11.4	0.2	7.3	0.1	3.2	0.1	0.3	0.0
SO 0702	Sunflower seed (incl oil)	0.02	0.7	0.0	44.5	0.9	20.5	0.4	29.6	0.6	21.2	0.4	5.4	0.1
TN 0085	Tree nuts	0	4.2	0.0	21.5	0.0	3.9	0.0	3.0	0.0	5.5	0.0	10.2	0.0
GC 0654	Wheat (incl bulgur wholemeal, excl flour)	0.02	6.0	0.1	11.1	0.2	0.8	0.0	0.2	0.0	0.2	0.0	0.0	0.0
CM 0654	Wheat bran, unprocessed	0.26	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-

Annex 3

FENBUCONAZOLE (197)	International Estimated Daily Intake (IEDI)	ADI = 0 - 0.0300 mg/kg bw

		STMR or	Diets:	g/person/da	ıy	Intake =	daily intal	ce: μg/perso	on					
		STMR-P	A		В		C		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
CF 1211	Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.025	63.4	1.6	296.3	7.4	327.5	8.2	300.0	7.5	181.6	4.5	166.2	4.2
CP 1212	Wholemeal bread	0.046	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.0	1.0	0.0
-	Wine	0.018	1.3	0.0	76.8	1.4	1.1	0.0	15.4	0.3	68.8	1.2	25.6	0.5
	Total intake (μg/person)=			4.7		43.6		27.5		24.3		24.8		17.2
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (µg/person)=			1800		1800		1800		1800		1800		1800
	%ADI=			0.3%		2.4%		1.5%		1.3%		1.4%		1.0%
	Rounded %ADI=			0%		2%		2%		1%		1%		1%

FENBUCONAZOLE (197)	International Estimated Daily Intake (IEDI)	ADI = 0 - 0.0300 mg/kg bw
---------------------	---	----------------------------

		STMR or	Diets: g	g/person/da	ay	Intake =	daily in	ıtake: μg/p	erson							
		STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
JF 0226	Apple juice	0.01	0.1	0.0	0.5	0.0	0.1	0.0	0.0	0.0	0.7	0.0	0.9	0.0	5.7	0.1
DF 0226	Apple, dried	0.3	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
FS 0240	Apricot (incl dried)	0.25	0.2	0.1	0.1	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.1	0.0	1.1	0.3
FI 0327	Banana	0.01	21.4	0.2	36.6	0.4	11.4	0.1	9.2	0.1	70.2	0.7	40.5	0.4	32.6	0.3
GC 0640	Barley (incl pot, incl pearled, incl flour & grits, incl beer)	0.03	5.9	0.2	20.5	0.6	5.9	0.2	2.5	0.1	20.2	0.6	16.8	0.5	43.8	1.3
FB 0020	Blueberries	0.06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.1
FS 0013	Cherries	0.36	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.1	2.5	0.9
FB 0265	Cranberries	0.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	0.3
VC 0424	Cucumber	0.025	7.9	0.2	0.6	0.0	0.2	0.0	0.0	0.0	0.4	0.0	5.5	0.1	5.3	0.1
MO 0105	Edible offal (mammalian)	0.02	4.8	0.1	10.7	0.2	4.0	0.1	4.0	0.1	6.5	0.1	6.6	0.1	5.6	0.1
PE 0112	Eggs	0	22.1	0.0	71.5	0.0	16.6	0.0	5.1	0.0	17.6	0.0	35.2	0.0	57.4	0.0
FB 0269	Grape (incl dried, excl juice, excl wine)	0.3	1.2	0.4	3.4	1.0	0.8	0.2	0.2	0.0	1.2	0.4	5.3	1.6	10.4	3.1
JF 0269	Grape juice	0.03	0.0	0.0	0.1	0.0	1.0	0.0	0.0	0.0	0.6	0.0	0.4	0.0	3.6	0.1

FENBUCO	ONAZOLE (197)	Internation	al Estimat	ed Daily I	ntake (IE	DI)			ADI = 0	0.0300 1	mg/kg bw					
		STMR or	Diets: g	g/person/d	ay	Intake =	daily ir	ıtake: μg/μ	erson							
		STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
MM 0095	Meat from mammals other than marine mammals	0.003	54.8	0.2	89.4	0.3	30.6	0.1	28.6	0.1	82.1	0.2	61.1	0.2	158.3	0.5
VC 0046	Melons, except watermelon	0.025	7.5	0.2	6.1	0.2	0.7	0.0	1.4	0.0	2.5	0.1	6.9	0.2	12.4	0.3
ML 0106	Milks (excl processed products)	0	66.0	0.0	121.1	0.0	81.6	0.0	102.4	0.0	207.7	0.0	57.0	0.0	287.9	0.0
FS 0247	Peach	0.25	1.7	0.4	1.7	0.4	1.1	0.3	0.1	0.0	1.0	0.3	1.7	0.4	10.2	2.6
OR 0697	Peanut oil, edible	0.04	3.0	0.1	0.3	0.0	1.5	0.1	7.9	0.3	0.3	0.0	0.0	0.0	0.4	0.0
SO 0697	Peanut, shelled (excl oil)	0.03	0.7	0.0	1.4	0.0	1.3	0.0	3.6	0.1	0.2	0.0	0.7	0.0	6.0	0.2
VO 0051	Peppers	0.15	8.7	1.3	22.4	3.4	8.4	1.3	9.4	1.4	3.3	0.5	5.3	0.8	8.9	1.3
FS 0014	Plum (incl dried)	0.08	3.3	0.3	1.4	0.1	0.1	0.0	0.0	0.0	0.6	0.0	1.5	0.1	2.2	0.2
FP 0009	Pome fruit (excl apple juice)	0.12	20.8	2.5	11.6	1.4	3.3	0.4	0.1	0.0	10.7	1.3	23.6	2.8	36.9	4.4
PM 0110	Poultry meat	0	17.6	0.0	131.3	0.0	25.1	0.0	4.7	0.0	145.9	0.0	27.7	0.0	115.1	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	1.0	0.0	1.9	0.0	0.0	0.0	0.7	0.0	1.0	0.0	0.3	0.0
SO 0495	Rape seed (incl oil)	0.05	9.9	0.5	5.9	0.3	0.3	0.0	1.0	0.1	0.0	0.0	15.5	0.8	9.9	0.5
GC 0650	Rye (incl flour)	0.02	0.4	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.1	0.0	0.9	0.0	0.8	0.0
VC 0431	Squash, summer (= courgette, zuchini)	0.02	2.4	0.0	1.5	0.0	0.0	0.0	0.0	0.0	3.8	0.1	2.2	0.0	2.5	0.1
SO 0702	Sunflower seed (incl oil)	0.02	2.7	0.1	8.8	0.2	13.5	0.3	0.2	0.0	3.6	0.1	0.6	0.0	10.4	0.2
TN 0085	Tree nuts	0	16.3	0.0	15.7	0.0	9.7	0.0	1.9	0.0	19.1	0.0	29.0	0.0	5.6	0.0
GC 0654	Wheat (incl bulgur wholemeal, excl flour)	0.02	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0
CM 0654	Wheat bran, unprocessed	0.26	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
CF 1211	Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.025	133.0	3.3	60.1	1.5	52.4	1.3	32.2	0.8	87.7	2.2	79.6	2.0	180.1	4.5
CP 1212	Wholemeal bread	0.046	0.0	0.0	2.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	Wine	0.018	1.0	0.0	0.9	0.0	6.8	0.1	0.1	0.0	3.4	0.1	3.6	0.1	31.0	0.6
	Total intake (μg/person)=			10.0		10.2		4.6		3.2		6.6		10.4		22.0
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
	ADI (µg/person)=			1650		1800		1800		1800		1800		1650		1800
	%ADI=			0.6%		0.6%		0.3%		0.2%		0.4%		0.6%		1.2%
	Rounded %ADI=			1%		1%		0%		0%		0%		1%		1%

Annex 3

FLUOPICOLIDE (235) International Estimated Daily Intake (IEDI) ADI = 0-0.0800 mg/kg bw

FLUOPIC	OLIDE (235)	Internation	al Estimat	ed Daily Intal	ke (IEDI)					ADI =	: 0–0.0800 n	ıg/kg bw		
		STMR or	Diets: g/	person/day				Intake = da	ily intake: μ	g/person				
		STMR-P	A		В		C		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
VB 0402	Brussels sprouts	0.04	0.0	0.0	0.1	0.0	2.8	0.1	5.5	0.2	1.5	0.1	1.9	0.1
VB 0041	Cabbage, head	1.2	1.2	1.4	14.4	17.3	2.7	3.2	16.4	19.7	15.4	18.5	18.5	22.2
VS 0624	Celery	1.4	0.0	0.0	0.9	1.3	0.0	0.0	2.0	2.8	1.5	2.1	0.0	0.0
VC 0423	Chayote	0.07	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VC 0424	Cucumber	0.07	0.3	0.0	12.7	0.9	5.9	0.4	11.5	0.8	6.1	0.4	7.1	0.5
MO 0105	Edible offal (mammalian)	0	3.9	0.0	14.4	0.0	5.2	0.0	11.8	0.0	11.7	0.0	7.6	0.0
VO 0440	Egg plant (= aubergine)	0.13	1.7	0.2	17.5	2.3	12.3	1.6	1.7	0.2	0.8	0.1	0.4	0.1
PE 0112	Eggs	0	2.5	0.0	29.7	0.0	25.1	0.0	24.5	0.0	37.8	0.0	27.4	0.0
VB 0042	Flowerhead brassicas	0.385	0.2	0.1	11.1	4.3	3.6	1.4	0.4	0.2	7.7	3.0	4.1	1.6
VC 0425	Gherkin	0.01	0.3	0.0	12.7	0.1	5.9	0.1	11.5	0.1	6.1	0.1	7.1	0.1
FB 0269	Grape (incl dried, incl juice, incl wine)	0.38	3.7	1.4	128.5	48.8	27.1	10.3	33.1	12.6	107.5	40.9	44.0	16.7
DF 0269	Grape, dried (= currants, raisins and sultanas)	1.4	0.0	0.0	2.9	4.1	0.4	0.6	0.4	0.6	2.3	3.2	1.7	2.4
VL 0053	Leafy vegetables	8.6	5.8	49.9	45.6	392.2	10.9	93.7	26.8	230.5	18.7	160.8	38.9	334.5
MM 0095	Meat from mammals other than marine mammals	0	27.7	0.0	116.5	0.0	38.5	0.0	55.1	0.0	90.2	0.0	131.3	0.0
VC 0046	Melons, except watermelon	0.01	3.6	0.0	26.7	0.3	22.6	0.2	11.5	0.1	5.6	0.1	2.0	0.0
ML 0106	Milks (excl processed products)	0	68.8	0.0	190.6	0.0	79.4	0.0	302.6	0.0	179.6	0.0	237.9	0.0
VO 0442	Okra	0.13	3.9	0.5	1.0	0.1	5.3	0.7	0.1	0.0	0.0	0.0	0.0	0.0
_	Onion, dry	0.07	4.3	0.3	45.6	3.2	27.4	1.9	30.2	2.1	22.1	1.5	12.2	0.9
VA 0387	Onion, Welsh	2.1	0.3	0.6	1.0	2.1	1.4	2.9	0.3	0.6	0.3	0.6	0.6	1.3
VO 0051	Peppers	0.13	1.4	0.2	29.9	3.9	13.0	1.7	6.3	0.8	6.2	0.8	4.0	0.5
PM 0110	Poultry meat	0	7.1	0.0	58.5	0.0	31.9	0.0	24.0	0.0	61.0	0.0	27.3	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	0.4	0.0	1.7	0.0	0.1	0.0	0.6	0.0	0.2	0.0
VC 0431	Squash, summer (= courgette, zucchini)	0.07	0.0	0.0	8.3	0.6	11.4	0.8	7.3	0.5	3.2	0.2	0.3	0.0
-d	Squashes & pumpkins & gourds	0.01	16.3	0.2	12.3	0.1	14.4	0.1	21.9	0.2	3.2	0.0	1.0	0.0
VO 0448	Tomato (incl juice, incl paste, incl peeled)	0.13	11.8	1.5	185.0	24.1	118.0	15.3	60.7	7.9	31.6	4.1	40.9	5.3
VC 0432	Watermelon	0.01	6.1	0.1	43.1	0.4	47.1	0.5	25.8	0.3	4.4	0.0	6.0	0.1
VC 0433	Winter squash (= pumpkin)	0.01	0.0	0.0	0.5	0.0	1.5	0.0	7.3	0.1	0.0	0.0	0.3	0.0
	Total intake (μg/person) =			56.5		505.9		135.6		280.3		236.5		386.2
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (μ g/person) =			4800		4800		4800		4800		4800		4800

Annex 3

FLUOPICOLIDE (235) International Estimated Daily Intake (IEDI) ADI = 0-0.0800 mg/kg bw

												9 0		
		STMR or	Diets: g/pe	erson/day				Intake = dail	y intake: μg/	person				
		STMR-P	A		В		C		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
	%ADI =			1.2%		10.5%		2.8%		5.8%		4.9%		8.0%
	Rounded %ADI =			1%		10%		3%		6%		5%		8%

FLUOPICOLIDE (235) International Estimated Daily Intake (IEDI) ADI = 0-0.0800 mg/kg bwSTMR or Diets: g/person/day Intake = daily intake: µg/person K STMR-P G Η M diet diet diet diet diet diet Codex Commodity mg/kg intake intake intake diet intake intake intake intake Code VB 0402 Brussels sprouts 0.04 3.4 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.5 0.0 7.9 0.3 0.3 0.0 VB 0041 Cabbage, head 1.2 10.0 12.0 1.0 1.2 7.2 8.6 1.0 1.2 1.4 1.7 23.9 28.7 17.0 20.4 VS 0624 Celery 1.4 0.0 0.0 0.3 0.4 0.0 0.0 0.0 0.0 1.0 1.4 0.0 0.0 4.2 5.9 VC 0423 0.07 ND ND ND ND ND ND ND Chayote VC 0424 0.07 7.9 0.6 0.6 0.0 0.0 5.5 0.4 5.3 0.4 Cucumber 0.0 0.2 0.0 0.4 0.0 MO 0105 Edible offal (mammalian) 0 4.8 0.0 10.7 0.0 4.0 0.0 4.0 0.0 6.5 0.0 6.6 0.0 5.6 0.0 VO 0440 0.13 20.1 2.6 0.1 0.0 0.6 0.1 6.3 0.8 0.5 0.1 6.3 0.8 0.7 0.1 Egg plant (= aubergine) PE 0112 22.1 0.0 71.5 0.0 16.6 0.0 5.1 0.0 17.6 0.0 35.2 0.0 57.4 0.0 Eggs Flowerhead brassicas 9.6 3.7 7.9 0.2 0.2 0.3 1.1 0.4 8.0 3.1 VB 0042 0.385 3.0 0.6 0.1 0.9 5.5 VC 0425 7.9 0.1 0.2 0.0 0.0 0.0 0.1 5.3 0.1 Gherkin 0.01 0.6 0.0 0.4 0.0 FB 0269 Grape (incl dried, incl juice, incl wine) 0.38 2.6 1.0 4.8 1.8 11.7 4.4 0.3 0.1 6.8 2.6 10.9 4.1 58.8 22.3 DF 0269 Grape, dried (= currants, raisins and 1.4 0.0 0.0 0.2 0.3 0.2 0.3 0.0 0.0 0.3 0.4 0.4 0.6 2.6 3.6 sultanas) Leafy vegetables 107.5 9.5 5.4 50.0 430.0 VL 0053 8.6 40.8 350.9 12.0 103.2 12.5 81.7 46.4 39.9 343.1 MM Meat from mammals other than marine 54.8 0.0 89.4 0.0 30.6 82.1 0.0 61.1 0.0 158.3 0.0 0.0 28.6 0.0 0095 mammals VC 0046 0.01 2.5 Melons, except watermelon 7.5 0.1 6.1 0.1 0.7 0.0 1.4 0.0 0.0 6.9 0.1 12.4 0.1 ML 0106 Milks (excl processed products) 66.0 0.0 121.1 0.0 81.6 0.0 102.4 0.0 207.7 0.0 57.0 0.0 287.9 0.0 VO 0442 0.13 4.1 0.5 0.1 7.0 0.9 15.9 1.1 0.1 3.9 0.5 0.2 0.0 Okra 1.0 2.1 0.07 16.8 1.2 8.6 0.6 6.9 0.5 12.1 0.8 18.6 23.8 1.7 28.4 2.0 Onion, dry 1.3 2.1 0.1 0.2 0.2 2.1 2.1 2.7 5.7 VA 0387 Onion, Welsh 4.8 10.1 0.1 1.0 1.0 0.6 1.3

Annex 3

FLUOPICOLIDE (235) International Estimated Daily Intake (IEDI) ADI = 0-0.0800 mg/kg bw

TECOTIC	OLIDE (255)	memanona	ii Dottiiia	ted Daily II	make (IDD)	.,			1101 - 0	0.0000 111	5/ R5 0 W					
		STMR or	Diets:	g/person/da	ıy	Intake =	daily inta	ike: μg/per	son							
		STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
VO 0051	Peppers	0.13	8.7	1.1	22.4	2.9	8.4	1.1	9.4	1.2	3.3	0.4	5.3	0.7	8.9	1.2
PM 0110	Poultry meat	0	17.6	0.0	131.3	0.0	25.1	0.0	4.7	0.0	145.9	0.0	27.7	0.0	115.1	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	1.0	0.0	1.9	0.0	0.0	0.0	0.7	0.0	1.0	0.0	0.3	0.0
VC 0431	Squash, summer (= courgette, zucchini)	0.07	2.4	0.2	1.5	0.1	0.0	0.0	0.0	0.0	3.8	0.3	2.2	0.2	2.5	0.2
-d	Squashes & pumpkins & gourds	0.01	7.1	0.1	4.6	0.0	11.3	0.1	3.0	0.0	7.0	0.1	6.7	0.1	7.6	0.1
VO 0448	Tomato (incl juice, incl paste, incl peeled)	0.13	23.5	3.1	31.7	4.1	15.0	2.0	16.2	2.1	35.6	4.6	9.9	1.3	103.0	13.4
VC 0432	Watermelon	0.01	39.3	0.4	14.0	0.1	2.5	0.0	13.6	0.1	8.4	0.1	14.5	0.1	13.6	0.1
VC 0433	Winter squash (= pumpkin)	0.01	2.4	0.0	1.5	0.0	0.0	0.0	0.0	0.0	1.6	0.0	2.2	0.0	0.7	0.0
	Total intake (µg/person) =			377.8		128.3		126.0		92.4		62.1		475.7		417.4
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
	ADI (μg/person) =			4400		4800		4800		4800		4800		4400		4800
	%ADI =			8.6%		2.7%		2.6%		1.9%		1.3%		10.8%		8.7%
	Rounded %ADI =			9%		3%		3%		2%		1%		10%		9%

2,6-DICHLOROBENZAMIDE International Estimated Daily Intake (IEDI) ADI = 0–0.0200 mg/kg bw

Intake = c	daily intake	: μg/person	•				<u>.</u>	
	-							
	C		D		Е		F	
intake	diet	intake	diet	intake	diet	intake	diet	intake
0.0	2.8	0.0	5.5	0.1	1.5	0.0	1.9	0.0
0.1	2.7	0.0	16.4	0.2	15.4	0.2	18.5	0.2
0.0	0.0	0.0	2.0	0.0	1.5	0.0	0.0	0.0
_	ND	_	ND	-	ND	-	ND	-
0.1	5.9	0.1	11.5	0.1	6.1	0.1	7.1	0.1
0.0	5.2	0.0	11.8	0.0	11.7	0.0	7.6	0.0
0.2	12.3	0.1	1.7	0.0	0.8	0.0	0.4	0.0
0.0	25.1	0.0	24.5	0.0	37.8	0.0	27.4	0.0
0.1	3.6	0.0	0.4	0.0	7.7	0.1	4.1	0.0
0.1	5.9	0.1	11.5	0.1	6.1	0.1	7.1	0.1
	0.0 0.1 0.0 - 0.1 0.0 0.2 0.0 0.1	0.0 2.8 0.1 2.7 0.0 0.0 - ND 0.1 5.9 0.0 5.2 0.2 12.3 0.0 25.1 0.1 3.6	0.0 2.8 0.0 0.1 2.7 0.0 0.0 0.0 0.0 - ND - 0.1 5.9 0.1 0.0 5.2 0.0 0.2 12.3 0.1 0.0 25.1 0.0 0.1 3.6 0.0	0.0 2.8 0.0 5.5 0.1 2.7 0.0 16.4 0.0 0.0 0.0 2.0 - ND - ND 0.1 5.9 0.1 11.5 0.0 5.2 0.0 11.8 0.2 12.3 0.1 1.7 0.0 25.1 0.0 24.5 0.1 3.6 0.0 0.4	0.0 2.8 0.0 5.5 0.1 0.1 2.7 0.0 16.4 0.2 0.0 0.0 0.0 2.0 0.0 - ND - ND - 0.1 5.9 0.1 11.5 0.1 0.0 5.2 0.0 11.8 0.0 0.2 12.3 0.1 1.7 0.0 0.0 25.1 0.0 24.5 0.0 0.1 3.6 0.0 0.4 0.0	intake diet intake diet intake diet 0.0 2.8 0.0 5.5 0.1 1.5 0.1 2.7 0.0 16.4 0.2 15.4 0.0 0.0 0.0 2.0 0.0 1.5 - ND - ND - ND 0.1 5.9 0.1 11.5 0.1 6.1 0.0 5.2 0.0 11.8 0.0 11.7 0.2 12.3 0.1 1.7 0.0 0.8 0.0 25.1 0.0 24.5 0.0 37.8 0.1 3.6 0.0 0.4 0.0 7.7	intake diet intake diet intake diet intake 0.0 2.8 0.0 5.5 0.1 1.5 0.0 0.1 2.7 0.0 16.4 0.2 15.4 0.2 0.0 0.0 0.0 2.0 0.0 1.5 0.0 - ND - ND - ND - 0.1 5.9 0.1 11.5 0.1 6.1 0.1 0.0 5.2 0.0 11.8 0.0 11.7 0.0 0.2 12.3 0.1 1.7 0.0 0.8 0.0 0.0 25.1 0.0 24.5 0.0 37.8 0.0 0.1 3.6 0.0 0.4 0.0 7.7 0.1	intake diet intake diet intake diet intake diet 0.0 2.8 0.0 5.5 0.1 1.5 0.0 1.9 0.1 2.7 0.0 16.4 0.2 15.4 0.2 18.5 0.0 0.0 0.0 2.0 0.0 1.5 0.0 0.0 - ND - ND - ND - ND 0.1 5.9 0.1 11.5 0.1 6.1 0.1 7.1 0.0 5.2 0.0 11.8 0.0 11.7 0.0 7.6 0.2 12.3 0.1 1.7 0.0 0.8 0.0 0.4 0.0 25.1 0.0 24.5 0.0 37.8 0.0 27.4 0.1 3.6 0.0 0.4 0.0 7.7 0.1 4.1

Annex 3 42

2,6-DICHLOROBENZAMIDE International Estimated Daily Intake (IEDI) ADI = 0–0.0200 mg/kg bw

2,0-DICIII.	COROBENZAMIDE	michiationai	Loumate	Dany mar	tc (ILDI)				7101 - 0	-0.0200 mg/	Kg UW			
		STMR or	Diets: g	g/person/day	1	Intake = c	laily intake	: μg/person						
		STMR-P	A		В		C		D		Е		F	
FB 0269	Grape (incl dried, incl juice, incl wine)	0.01	3.7	0.0	128.5	1.3	27.1	0.3	33.1	0.3	107.5	1.1	44.0	0.4
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.048	0.0	0.0	2.9	0.1	0.4	0.0	0.4	0.0	2.3	0.1	1.7	0.1
VL 0482	Lettuce, head	0.01	0.1	0.0	12.3	0.1	1.3	0.0	0.1	0.0	0.1	0.0	0.0	0.0
VL 0483	Lettuce, leaf	0.01	0.0	0.0	9.2	0.1	1.0	0.0	0.1	0.0	5.4	0.1	18.0	0.2
MM 0095	Meat from mammals other than marine mammals	0	27.7	0.0	116.5	0.0	38.5	0.0	55.1	0.0	90.2	0.0	131.3	0.0
VC 0046	Melons, except watermelon	0.01	3.6	0.0	26.7	0.3	22.6	0.2	11.5	0.1	5.6	0.1	2.0	0.0
ML 0106	Milks (excl processed products)	0	68.8	0.0	190.6	0.0	79.4	0.0	302.6	0.0	179.6	0.0	237.9	0.0
VO 0442	Okra	0.01	3.9	0.0	1.0	0.0	5.3	0.1	0.1	0.0	0.0	0.0	0.0	0.0
-	Onion, dry	0.01	4.3	0.0	45.6	0.5	27.4	0.3	30.2	0.3	22.1	0.2	12.2	0.1
VA 0387	Onion, Welsh	0.01	0.3	0.0	1.0	0.0	1.4	0.0	0.3	0.0	0.3	0.0	0.6	0.0
VO 0051	Peppers	0.01	1.4	0.0	29.9	0.3	13.0	0.1	6.3	0.1	6.2	0.1	4.0	0.0
PM 0110	Poultry meat	0	7.1	0.0	58.5	0.0	31.9	0.0	24.0	0.0	61.0	0.0	27.3	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	0.4	0.0	1.7	0.0	0.1	0.0	0.6	0.0	0.2	0.0
VC 0431	Squash, summer (= courgette, zucchini)	0.01	0.0	0.0	8.3	0.1	11.4	0.1	7.3	0.1	3.2	0.0	0.3	0.0
-d	Squashes & pumpkins & gourds	0.01	16.3	0.2	12.3	0.1	14.4	0.1	21.9	0.2	3.2	0.0	1.0	0.0
VO 0448	Tomato (incl juice, incl paste, incl peeled)	0.01	11.8	0.1	185.0	1.9	118.0	1.2	60.7	0.6	31.6	0.3	40.9	0.4
VC 0432	Watermelon	0.01	6.1	0.1	43.1	0.4	47.1	0.5	25.8	0.3	4.4	0.0	6.0	0.1
VC 0433	Winter squash (= pumpkin)	0.01	0.0	0.0	0.5	0.0	1.5	0.0	7.3	0.1	0.0	0.0	0.3	0.0
	Total intake (μg/person) =			0.6		5.9		3.3		2.6		2.4		1.8
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (μg/person) =			1200		1200		1200		1200		1200		1200
	%ADI =			0.0%		0.5%		0.3%		0.2%		0.2%		0.1%
	Rounded %ADI =			0%		0%		0%		0%		0%		0%

2,6-DICHLOROBENZAMIDE International Estimated Daily Intake (IEDI) ADI = 0–0.0200 mg/kg bw

		STMR or	Diets: g	g/person/da	ıy	Intake =	daily inta	ke: μg/pers	son							
		STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
VB 0402	Brussels sprouts	0.01	3.4	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.5	0.0	7.9	0.1	0.3	0.0
VB 0041	Cabbage, head	0.01	10.0	0.1	1.0	0.0	7.2	0.1	1.0	0.0	1.4	0.0	23.9	0.2	17.0	0.2

Annex 3

ADI = 0 - 0.0200 mg/kg bwInternational Estimated Daily Intake (IEDI) 2.6-DICHLOROBENZAMIDE STMR or Diets: g/person/day Intake = daily intake: µg/person G Н K M STMR-P L Codex Commodity diet intake mg/kg Code VS 0624 Celerv 0.01 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 4.2 0.0 VC 0423 0.01 ND ND ND ND ND ND Chayote ND VC 0424 0.01 7.9 0.1 0.6 0.0 0.2 0.0 0.0 0.4 0.0 5.5 0.1 5.3 0.1 Cucumber 0.0 5.6 MO 0105 Edible offal (mammalian) 0 4.8 0.0 10.7 0.0 4.0 0.0 4.0 0.0 6.5 0.0 6.6 0.0 0.0 VO 0440 Egg plant (= aubergine) 0.01 20.1 0.2 0.1 0.0 0.6 0.0 6.3 0.1 0.5 0.0 6.3 0.1 0.7 0.0 PE 0112 0 22.1 71.5 16.6 0.0 5.1 0.0 35.2 0.0 57.4 0.0 Eggs 0.0 0.0 0.0 17.6 8.0 VB 0042 Flowerhead brassicas 0.01 9.6 0.1 7.9 0.1 0.6 0.0 0.2 0.0 0.9 0.0 1.1 0.0 0.1 VC 0425 Gherkin 0.01 7.9 0.1 0.6 0.0 0.2 0.0 0.0 0.0 0.4 0.0 5.5 0.1 5.3 0.1 FB 0269 Grape (incl dried, incl juice, incl wine) 0.01 2.6 0.0 4.8 0.0 11.7 0.1 0.3 0.0 6.8 0.1 10.9 0.1 58.8 0.6 DF 0269 Grape, dried (= currants, raisins and 0.048 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.4 0.0 2.6 0.1 sultanas) Lettuce, head VL 0482 0.01 0.0 0.0 0.2 2.4 0.0 7.0 0.1 0.2 0.6 0.0 2.0 2.4 0.0 15.7 0.0 0.0 0.0 2.5 0.0 VL 0483 Lettuce, leaf 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MM Meat from mammals other than marine 0 54.8 0.0 89.4 0.0 30.6 0.0 28.6 0.0 82.1 0.0 61.1 0.0 158.3 0.0 0095 mammals VC 0046 Melons, except watermelon 0.01 7.5 0.1 6.1 0.1 0.7 0.0 1.4 0.0 2.5 0.0 6.9 0.1 12.4 0.1 0.0 0.0 0.0 ML 0106 Milks (excl processed products) 0 66.0 0.0 121.1 81.6 0.0 102.4 0.0 207.7 57.0 0.0 287.9 VO 0442 0.01 4.1 1.0 7.0 15.9 3.9 0.2 0.0 Okra 0.0 0.0 0.1 0.2 1.1 0.0 0.0 Onion, dry 0.01 16.8 0.2 8.6 0.1 6.9 0.1 12.1 0.1 18.6 0.2 23.8 0.2 28.4 0.3 Onion, Welsh 0.01 4.8 0.0 1.0 0.0 2.7 0.0 0.6 0.0 VA 0387 0.1 0.0 0.0 0.1 1.0 0.0 VO 0051 8.7 22.4 8.4 9.4 3.3 0.0 5.3 8.9 0.1 Peppers 0.01 0.1 0.2 0.1 0.1 0.1 PM 0110 Poultry meat 0 17.6 0.0 131.3 0.0 25.1 0.0 4.7 0.0 145.9 0.0 27.7 0.0 115.1 0.0 PO 0111 Poultry, edible offal of 0 0.4 0.0 1.0 0.0 1.9 0.0 0.0 0.0 0.7 0.0 1.0 0.0 0.3 0.0 2.2 2.5 VC 0431 Squash, summer (= courgette, zucchini) 0.01 2.4 0.0 1.5 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 Squashes & pumpkins & gourds 0.01 7.1 4.6 0.0 11.3 3.0 7.0 0.1 6.7 0.1 7.6 0.1 0.1 0.1 0.0 VO 0448 Tomato (incl juice, incl paste, incl peeled) 0.01 23.5 0.2 31.7 0.3 15.0 0.2 16.2 0.2 35.6 0.4 9.9 0.1 103.0 1.0 VC 0432 0.01 39.3 14.0 0.1 2.5 0.0 13.6 0.1 8.4 0.1 14.5 0.1 13.6 0.1 Watermelon 0.4 VC 0433 Winter squash (= pumpkin) 0.01 2.4 1.5 0.0 0.0 0.0 0.0 2.2 0.0 0.7 0.0 0.0 0.0 0.0 1.6 3.1 Total intake (µg/person) = 1.8 1.2 0.7 0.8 1.0 1.4 55 60 60 60 55 60 Bodyweight per region (kg bw) = 60

1200

0.1%

0%

1200

0.1%

0%

1200

0.1%

0%

1200

0.1%

0%

1100

0.1%

0%

1100

0.2%

0%

ADI ($\mu g/person$) =

Rounded %ADI =

%ADI =

1200

0.3%

0%

	HALOXYFOP (194)	Internatio	nal Estin	nated Daily	Intake (1	EDI)			ADI = 0	- 0.0007 mg	g/kg bw			
	,	STMR or	Diets: 9	z/person/da	V	Intake =	daily inta	ake: µg/per	son	,				
		STMR-P	Α		В		C	, , ,	D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code														
FI 0327	Banana	0	38.8	0.0	17.4	0.0	16.0	0.0	6.6	0.0	21.5	0.0	33.8	0.0
VD 0071	Beans (dry)	0.335	15.8	5.3	6.1	2.0	1.7	0.6	6.3	2.1	1.8	0.6	5.0	1.7
VP 0061	Beans except broad bean & soya bean (green pods & immature seeds)	0.085	1.0	0.1	17.4	1.5	7.5	0.6	0.9	0.1	16.4	1.4	0.1	0.0
VD 0524	Chick-pea (dry)	0.02	3.3	0.1	5.8	0.1	3.2	0.1	3.1	0.1	0.2	0.0	0.1	0.0
FC 0001	Citrus fruit (incl lemon juice, incl mandarin juice, incl orange juice, incl grapefruit juice, incl NES juice)	0	15.7	0.0	100.5	0.0	63.2	0.0	27.8	0.0	52.6	0.0	56.9	0.0
SB 0716	Coffee beans (incl green, incl extracts, incl roasted)	0	3.1	0.0	12.6	0.0	2.9	0.0	1.4	0.0	10.1	0.0	18.0	0.0
SO 0691	Cotton seed (for oil processing only)	0.1	5.6	0.6	30.6	3.1	10.6	1.1	41.3	4.1	0.0	0.0	1.9	0.2
MO 0105	Edible offal (mammalian)	0.27	3.9	1.1	14.4	3.9	5.2	1.4	11.8	3.2	11.7	3.2	7.6	2.1
PE 0112	Eggs	0.022	2.5	0.1	29.7	0.7	25.1	0.6	24.5	0.5	37.8	0.8	27.4	0.6
FB 0269	Grape (excl dried, excl juice, excl wine)	0	1.9	0.0	9.2	0.0	23.8	0.0	9.8	0.0	0.0	0.0	0.0	0.0
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.04	5.5	0.2	23.3	0.8	7.7	0.3	11.0	0.4	18.0	0.6	26.3	0.9
MM 0095	Meat from mammals other than marine mammals: 80% as	0.006	22.2	0.1	93.2	0.6	30.8	0.2	44.1	0.3	72.2	0.4	105.0	0.6
	muscle													
ML 0106	Milks (excl processed products)	0.033	68.8	2.3	190.6	6.3	79.4	2.6	302.6	10.0	179.6	5.9	237.9	7.9
VA 0385	Onion, bulb (= dry + green onion)	0.035	5.5	0.2	49.5	1.7	33.0	1.2	31.3	1.1	23.2	0.8	14.6	0.5
VD 0072	Peas (dry) (= field pea + cowpea)	0.04	6.8	0.3	1.3	0.1	1.0	0.0	2.3	0.1	4.6	0.2	3.4	0.1
VP 0063	Peas (green pods and/or immature seeds)	0.11	0.1	0.0	2.9	0.3	6.0	0.7	0.6	0.1	9.7	1.1	5.2	0.6
VP 0064	Peas, shelled (immature seeds only)	0.08	0.0	0.0	0.9	0.1	6.0	0.5	0.6	0.0	9.7	0.8	3.2	0.3
FP 0009	Pome fruit (incl apple juice)	0	0.5	0.0	84.1	0.0	21.9	0.0	45.2	0.0	61.7	0.0	46.2	0.0
PM 0110	Poultry meat: 10% as fat	0.13	0.7	0.1	5.9	0.8	3.2	0.4	2.4	0.3	6.1	0.8	2.7	0.4
PM 0110	Poultry meat: 90% as muscle	0.032	6.4	0.2	52.7	1.7	28.7	0.9	21.6	0.7	54.9	1.8	24.6	0.8
PO 0111	Poultry, edible offal of	0.21	0.4	0.1	0.4	0.1	1.7	0.4	0.1	0.0	0.6	0.1	0.2	0.0
SO 0495	Rape seed (excl oil)	0.11	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0
OR 0495	Rape seed oil, edible	0.16	0.3	0.0	0.7	0.1	1.0	0.2	0.7	0.1	13.7	2.2	10.0	1.6
VD 0541	Soya bean (dry, excl oil)	0.055	0.9	0.1	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OR 0541	Soya bean oil, refined	0.041	1.6	0.1	6.5	0.3	6.0	0.2	4.0	0.2	6.3	0.3	7.0	0.3
FS 0012	Stone fruit (incl dried plums, incl dried apricots)	0	0.7	0.0	44.7	0.0	14.1	0.0	26.9	0.0	27.7	0.0	10.0	0.0
VR 0596	Sugar beet	0.02	0.0	0.0	40.7	0.8	0.0	0.0	0.1	0.0	6.0	0.1	0.1	0.0
SO 0702	Sunflower seed (incl oil)	0.05	0.7	0.0	44.5	2.2	20.5	1.0	29.6	1.5	21.2	1.1	5.4	0.3
	Total intake (µg/person)=			10.8		27.0		12.9		24.8		22.1		18.8
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (μ g/person)=			42		42		42		42		42		42
	%ADI=			25.7%		64.4%		30.6%		59.1%		52.7%		44.7%
	Rounded %ADI=			30%		60%		30%		60%		50%		40%

HALOXYF	OP (194)	International	l Estimat	ted Daily	Intake (II	EDI)			ADI = 0	- 0.0007 n	ng/kg bw					
		STMR or	Diets:	g/person/	day	Intake =	daily in	take: µg/p	erson							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code																
FI 0327	Banana	0	21.4	0.0	36.6	0.0	11.4	0.0	9.2	0.0	70.2	0.0	40.5	0.0	32.6	0.0
VD 0071	Beans (dry)	0.335	3.4	1.1	25.5	8.5	7.8	2.6	2.1	0.7	44.7	15.0	5.5	1.8	7.3	2.4
VP 0061	Beans except broad bean & soya bean (green pods & immature seeds)	0.085	2.6	0.2	2.6	0.2	1.0	0.1	0.5	0.0	0.6	0.1	2.8	0.2	9.8	0.8
VD 0524	Chick-pea (dry)	0.02	5.0	0.1	0.5	0.0	0.6	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.6	0.0
FC 0001	Citrus fruit (incl lemon juice, incl mandarin juice, incl orange juice, incl grapefruit juice, incl NES juice)	0	17.3	0.0	156.8	0.0	14.9	0.0	42.5	0.0	222.8	0.0	40.4	0.0	132.3	0.0
SB 0716	Coffee beans (incl green, incl extracts, incl roasted)	0	0.2	0.0	7.0	0.0	0.5	0.0	0.2	0.0	5.3	0.0	5.7	0.0	12.4	0.0
SO 0691	Cotton seed (for oil processing only)	0.1	6.3	0.6	4.4	0.4	6.3	0.6	8.8	0.9	9.4	0.9	34.4	3.4	7.5	0.8
MO 0105	Edible offal (mammalian)	0.27	4.8	1.3	10.7	2.9	4.0	1.1	4.0	1.1	6.5	1.8	6.6	1.8	5.6	1.5
PE 0112	Eggs	0.022	22.1	0.5	71.5	1.6	16.6	0.4	5.1	0.1	17.6	0.4	35.2	0.8	57.4	1.3
FB 0269	Grape (excl dried, excl juice, excl wine)	0	1.2	0.0	2.6	0.0	0.0	0.0	0.2	0.0	0.0	0.0	3.7	0.0	0.0	0.0
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.04	11.0	0.4	17.9	0.6	6.1	0.2	5.7	0.2	16.4	0.6	12.2	0.4	31.7	1.1
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0.006	43.8	0.3	71.5	0.4	24.5	0.1	22.9	0.1	65.7	0.4	48.9	0.3	126.6	0.8
ML 0106	Milks (excl processed products)	0.033	66.0	2.2	121.1	4.0	81.6	2.7	102.4	3.4	207.7	6.9	57.0	1.9	287.9	9.5
VA 0385	Onion, bulb (= dry + green onion)	0.035	17.4	0.6	27.9	1.0	7.3	0.3	16.0	0.6	22.8	0.8	34.5	1.2	30.1	1.1
VD 0072	Peas (dry) (= field pea + cowpea)	0.04	1.8	0.1	2.2	0.1	3.2	0.1	26.7	1.1	1.5	0.1	1.8	0.1	1.8	0.1
VP 0063	Peas (green pods and/or immature seeds)	0.11	3.9	0.4	1.6	0.2	0.4	0.0	0.0	0.0	0.9	0.1	1.0	0.1	8.6	0.9
VP 0064	Peas, shelled (immature seeds only)	0.08	3.9	0.3	1.6	0.1	0.0	0.0	0.0	0.0	0.4	0.0	1.0	0.1	0.8	0.1
FP 0009	Pome fruit (incl apple juice)	0	20.9	0.0	12.3	0.0	3.4	0.0	0.1	0.0	11.7	0.0	24.9	0.0	45.4	0.0
PM 0110	Poultry meat: 10% as fat	0.13	1.8	0.2	13.1	1.7	2.5	0.3	0.5	0.1	14.6	1.9	2.8	0.4	11.5	1.5
PM 0110	Poultry meat: 90% as muscle	0.032	15.8	0.5	118.2	3.8	22.6	0.7	4.2	0.1	131.3	4.2	24.9	0.8	103.6	3.3
PO 0111	Poultry, edible offal of	0.21	0.4	0.1	1.0	0.2	1.9	0.4	0.0	0.0	0.7	0.1	1.0	0.2	0.3	0.1
SO 0495	Rape seed (excl oil)	0.11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OR 0495	Rape seed oil, edible	0.16	3.8	0.6	2.3	0.4	0.1	0.0	0.4	0.1	0.0	0.0	6.0	1.0	3.8	0.6
VD 0541	Soya bean (dry, excl oil)	0.055	1.8	0.1	0.0	0.0	0.0	0.0	3.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0
OR 0541	Soya bean oil, refined	0.041	4.3	0.2	10.6	0.4	2.0	0.1	1.4	0.1	19.5	0.8	9.2	0.4	22.0	0.9
FS 0012	Stone fruit (incl dried plums, incl dried apricots)	0	7.0	0.0	4.9	0.0	1.4	0.0	0.1	0.0	5.5	0.0	5.5	0.0	19.4	0.0
VR 0596	Sugar beet	0.02	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	14.3	0.3
SO 0702	Sunflower seed (incl oil)	0.05	2.7	0.1	8.8	0.4	13.5	0.7	0.2	0.0	3.6	0.2	0.6	0.0	10.4	0.5

HALOXY	(FOP (194)	Internationa	al Estimat	ed Daily	Intake (IEDI)			ADI =	0 - 0.0007 r	ng/kg bw					
		STMR or	Diets:	g/person/o	lay	Intake =	daily in	ntake: µg/p	erson							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	g diet intake diet int				diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code																
	Total intake (µg/person)=			10.0		27.0		10.5		8.7		34.2		14.9		27.5
	Bodyweight per region (kg bw) =	<u> </u>		55		60		60		60		60		55		60
	ADI (µg/person)=			38.5		42		42		42		42		38.5		42
	%ADI=			25.9%		64.4%		25.0%		20.6%		81.3%		38.6%		65.5%
	Rounded %ADI=			30%		60%		20%		20%		80%		40%		70%

HEXYTHIA	AZOX (176)	International l	Estimated I	Daily Intake	(IEDI)				ADI = 0	- 0.0300 m	g/kg bw			
		STMR or	Diets: g/	/person/day		Intake =	daily intak	e: μg/persoi	n					
		STMR-P	A		В		C		D		E		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code		Т						1		1				1
VC 0423	Chayote	0.0500	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
-JF 0001?	Citrus juice NES	0.0240	0.0	0.0	1.7	0.0	0.1	0.0	0.0	0.0	1.1	0.0	0.3	0.0
VC 0424	Cucumber	0.0500	0.3	0.0	12.7	0.6	5.9	0.3	11.5	0.6	6.1	0.3	7.1	0.4
FT 0295	Date	0.2600	0.8	0.2	1.4	0.4	31.5	8.2	5.1	1.3	0.3	0.1	0.2	0.1
MO 0105	Edible offal (mammalian)	0.0100	3.9	0.0	14.4	0.1	5.2	0.1	11.8	0.1	11.7	0.1	7.6	0.1
VO 0440	Egg plant (= aubergine)	0.0500	1.7	0.1	17.5	0.9	12.3	0.6	1.7	0.1	0.8	0.0	0.4	0.0
PE 0112	Eggs	0.0020	2.5	0.0	29.7	0.1	25.1	0.1	24.5	0.0	37.8	0.1	27.4	0.1
VC 0425	Gherkin	0.0500	0.3	0.0	12.7	0.6	5.9	0.3	11.5	0.6	6.1	0.3	7.1	0.4
FB 0269	Grape (excl dried, excl juice, excl wine)	0.2000	1.9	0.4	9.2	1.8	23.8	4.8	9.8	2.0	0.0	0.0	0.0	0.0
JF 0269	Grape juice	0.0840	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	1.4	0.1	1.0	0.1
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.3200	0.0	0.0	2.9	0.9	0.4	0.1	0.4	0.1	2.3	0.7	1.7	0.5
JF 0203	Grapefruit juice	0.0240	0.0	0.0	0.2	0.0	0.1	0.0	0.1	0.0	1.1	0.0	0.2	0.0
FC 0002	Lemon + lime + citrus fruit NES (excl lemon juice, excl NES juice)	0.0770	10.4	0.8	11.4	0.9	11.5	0.9	7.4	0.6	0.8	0.1	0.8	0.1
-d	Lemon juice	0.0240	0.0	0.0	0.9	0.0	0.1	0.0	0.0	0.0	0.2	0.0	0.4	0.0
MF 0100	Mammalian fats (except milk fats)	0.0100	0.8	0.0	10.0	0.1	0.9	0.0	6.6	0.1	11.8	0.1	3.7	0.0
FC 0003	Mandarin + mandarin-like hybrid (excl juice)	0.0770	0.6	0.0	16.0	1.2	10.3	0.8	4.6	0.4	8.4	0.6	9.7	0.7
-	Mandarin + mandarin-like hybrid juice	0.0240	0.0	0.0	1.4	0.0	0.9	0.0	0.4	0.0	0.7	0.0	0.9	0.0
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.0100	5.5	0.1	23.3	0.2	7.7	0.1	11.0	0.1	18.0	0.2	26.3	0.3
MM 0095	Meat from mammals other than marine mammals:	0.0000	22.2	0.0	93.2	0.0	30.8	0.0	44.1	0.0	72.2	0.0	105.0	0.0

Annex 3

HEXYTHL	AZOX (176)	International	Estimated l	Daily Intake	(IEDI)				ADI = 0	- 0.0300 m	ıg/kg bw			
		STMR or	Diets: g	/person/day		Intake =	daily intak	e: μg/persor	1					
		STMR-P	A		В		C		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code	Tana							1		1		1		
	80% as muscle													
VC 0046	Melons, except watermelon	0.0500	3.6	0.2	26.7	1.3	22.6	1.1	11.5	0.6	5.6	0.3	2.0	0.1
ML 0106	Milks (excl processed products)	0.0100	68.8	0.7	190.6	1.9	79.4	0.8	302.6	3.0	179.6	1.8	237.9	2.4
JF 0004	Orange juice	0.0240	0.0	0.0	2.1	0.1	4.4	0.1	1.4	0.0	16.2	0.4	22.6	0.5
FC 0004	Orange, sweet, sour + orange-like hybrid (excl juice)	0.0770	4.2	0.3	54.1	4.2	30.1	2.3	11.9	0.9	0.2	0.0	0.5	0.0
VO 0051	Peppers	0.0500	1.4	0.1	29.9	1.5	13.0	0.7	6.3	0.3	6.2	0.3	4.0	0.2
DF 0014	Plum, dried (prunes)	0.4100	0.0	0.0	0.2	0.1	0.0	0.0	0.1	0.0	0.5	0.2	0.6	0.2
FP 0009	Pome fruit (incl apple juice)	0.1100	0.5	0.1	84.1	9.3	21.9	2.4	45.2	5.0	61.7	6.8	46.2	5.1
PM 0110	Poultry meat: 10% as fat	0.0020	0.7	0.0	5.9	0.0	3.2	0.0	2.4	0.0	6.1	0.0	2.7	0.0
PM 0110	Poultry meat: 90% as muscle	0.0000	6.4	0.0	52.7	0.0	28.7	0.0	21.6	0.0	54.9	0.0	24.6	0.0
PO 0111	Poultry, edible offal of	0.0100	0.4	0.0	0.4	0.0	1.7	0.0	0.1	0.0	0.6	0.0	0.2	0.0
PF 0111	Poultry, fats	0.0020	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.4	0.0	0.1	0.0
FC 0005	Shaddock or pomelo + shaddock-like hybrid (excl juice)	0.0770	0.5	0.0	4.9	0.4	0.7	0.1	0.3	0.0	6.8	0.5	1.0	0.1
-d	Squashes & pumpkins & gourds	0.0500	16.3	0.8	12.3	0.6	14.4	0.7	21.9	1.1	3.2	0.2	1.0	0.1
FS 0012	Stone fruit (excl dried plums, incl dried apricots)	0.0900	0.7	0.1	44.1	4.0	14.1	1.3	26.6	2.4	26.3	2.4	8.3	0.7
FC 4031	Tangelo	0.0770	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VO 0448	Tomato (incl juice, incl paste, incl peeled)	0.0500	11.8	0.6	185.0	9.3	118.0	5.9	60.7	3.0	31.6	1.6	40.9	2.0
TN 0085	Tree nuts	0.0000	4.2	0.0	21.5	0.0	3.9	0.0	3.0	0.0	5.5	0.0	10.2	0.0
-	Wine	0.0100	1.3	0.0	76.8	0.8	1.1	0.0	15.4	0.2	68.8	0.7	25.6	0.3
	Total intake (µg/person)=			4.5		41.3		31.6		22.5		18.0		14.5
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (µg/person)=			1800		1800		1800		1800		1800		1800
	%ADI=			0.2%		2.3%		1.8%		1.3%		1.0%		0.8%
	Rounded %ADI=			0%		2%		2%		1%		1%		1%

INDOXACARB (216) International Estimated Daily Intake (IEDI) ADI = 0 - 0.0100 mg/kg bw

INDUANCE	ARB (216)	International E	Estimated L	Daily Intake	(IEDI)				ADI = 0	- 0.0100 m	g/kg bw			
		STMR or	Diets: g/	person/day		Intake =	daily intak	e: μg/persor	1					
		STMR-P	A		В		C		D		E		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code	A ==1= (-==1 :=:-=)	0.21	0.3	0.1	56.2	11.0	10.4	3.9	38.3	0.0	40.6	8.5	20.2	5.0
FP 0226	Apple (excl juice)				56.3	11.8	18.4			8.0			28.3	5.9
JF 0226	Apple juice	0.011	0.0	0.0	2.8	0.0	0.1	0.0	1.1	0.0	6.8	0.1	7.4	0.1
VB 0400	Broccoli	0.055	0.0	0.0	0.7	0.0	1.2	0.1	0.1	0.0	4.2	0.2	4.0	0.2
VB 0041	Cabbage, head	0.435	1.2	0.5	14.4	6.3	2.7	1.2	16.4	7.1	15.4	6.7	18.5	8.0
VB 0404	Cauliflower	0.02	0.1	0.0	5.2	0.1	1.2	0.0	0.1	0.0	1.7	0.0	0.1	0.0
VC 0423	Chayote	0.06	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VD 0524	Chick-pea (dry)	0.02	3.3	0.1	5.8	0.1	3.2	0.1	3.1	0.1	0.2	0.0	0.1	0.0
OR 0691	Cotton seed oil, edible	0.013	0.9	0.0	4.9	0.1	1.7	0.0	6.6	0.1	0.0	0.0	0.3	0.0
VD 0527	Cowpea (dry)	0.02	3.9	0.1	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FB 0265	Cranberries	0.15	0.1	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.6	0.1
VC 0424	Cucumber	0.06	0.3	0.0	12.7	0.8	5.9	0.4	11.5	0.7	6.1	0.4	7.1	0.4
MO 0105	Edible offal (mammalian)	0.014	3.9	0.1	14.4	0.2	5.2	0.1	11.8	0.2	11.7	0.2	7.6	0.1
VO 0440	Egg plant (= aubergine)	0.11	1.7	0.2	17.5	1.9	12.3	1.4	1.7	0.2	0.8	0.1	0.4	0.0
PE 0112	Eggs	0.01	2.5	0.0	29.7	0.3	25.1	0.3	24.5	0.2	37.8	0.4	27.4	0.3
VC 0425	Gherkin	0.06	0.3	0.0	12.7	0.8	5.9	0.4	11.5	0.7	6.1	0.4	7.1	0.4
FB 0269	Grape (excl dried, excl juice, excl wine)	0.3	1.9	0.6	9.2	2.8	23.8	7.1	9.8	2.9	0.0	0.0	0.0	0.0
JF 0269	Grape juice	0.002	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	1.4	0.0	1.0	0.0
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.81	0.0	0.0	2.9	2.3	0.4	0.3	0.4	0.3	2.3	1.9	1.7	1.4
VL 0482	Lettuce, head	2.8	0.1	0.3	12.3	34.4	1.3	3.6	0.1	0.3	0.1	0.3	0.0	0.0
VL 0483	Lettuce, leaf	6.6	0.0	0.0	9.2	60.7	1.0	6.6	0.1	0.7	5.4	35.6	18.0	118.8
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.38	5.5	2.1	23.3	8.9	7.7	2.9	11.0	4.2	18.0	6.9	26.3	10.0
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0.01	22.2	0.2	93.2	0.9	30.8	0.3	44.1	0.4	72.2	0.7	105.0	1.1
VC 0046	Melons, except watermelon	0.02	3.6	0.1	26.7	0.5	22.6	0.5	11.5	0.2	5.6	0.1	2.0	0.0
ML 0106	Milks (excl processed products)	0.037	68.8	2.5	190.6	7.1	79.4	2.9	302.6	11.2	179.6	6.6	237.9	8.8
HH 0738	Mints	3.5	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VD 0536	Mung bean (dry)	0.02	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
OR 0697	Peanut oil, edible	0.003	1.7	0.0	0.8	0.0	0.5	0.0	0.1	0.0	1.4	0.0	0.4	0.0
SO 0697	Peanut, shelled (excl oil)	0.01	1.5	0.0	1.3	0.0	1.0	0.0	0.5	0.0	0.8	0.0	0.5	0.0
FP 0230	Pear	0.051	0.1	0.0	22.3	1.1	2.8	0.1	4.8	0.2	10.7	0.5	6.8	0.3
VO 0051	Peppers	0.038	1.4	0.1	29.9	1.1	13.0	0.5	6.3	0.2	6.2	0.2	4.0	0.2
DF 0014	Plum, dried (prunes)	0.68	0.0	0.0	0.2	0.1	0.0	0.0	0.1	0.1	0.5	0.3	0.6	0.4

Annex 3

INDOXACARB (216)	International Estimated Daily Intake (IEDI)	ADI = 0 - 0.0100 mg/kg bw

		STMR or				Intake =	daily intak	e: μg/persor	ı					
		STMR-P	A		В		C		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code														
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0.01	19.1	0.2	160.8	1.6	61.2	0.6	243.6	2.4	230.1	2.3	204.7	2.0
PM 0110	Poultry meat: 10% as fat	0.025	0.7	0.0	5.9	0.1	3.2	0.1	2.4	0.1	6.1	0.2	2.7	0.1
PM 0110	Poultry meat: 90% as muscle	0	6.4	0.0	52.7	0.0	28.7	0.0	21.6	0.0	54.9	0.0	24.6	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	0.4	0.0	1.7	0.0	0.1	0.0	0.6	0.0	0.2	0.0
VD 0541	Soya bean (dry, excl oil)	0.027	0.9	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OR 0541	Soya bean oil, refined	0.018	1.6	0.0	6.5	0.1	6.0	0.1	4.0	0.1	6.3	0.1	7.0	0.1
VC 0431	Squash, summer (= courgette, zuchini)	0.06	0.0	0.0	8.3	0.5	11.4	0.7	7.3	0.4	3.2	0.2	0.3	0.0
FS 0012	Stone fruit (excl dried plums, incl dried apricots)	0.17	0.7	0.1	44.1	7.5	14.1	2.4	26.6	4.5	26.3	4.5	8.3	1.4
VO 0447	Sweet corn (corn-on-the-cob)	0.01	7.3	0.1	1.0	0.0	0.1	0.0	0.5	0.0	3.3	0.0	3.6	0.0
VO 0448	Tomato (excl juice, excl paste, incl peeled)	0.11	3.3	0.4	179.2	19.7	103.5	11.4	54.1	5.9	7.8	0.9	3.9	0.4
JF 0448	Tomato juice	0.022	5.2	0.1	0.5	0.0	0.4	0.0	2.1	0.0	6.9	0.2	15.2	0.3
-d	Tomato paste	0.21	0.5	0.1	1.3	0.3	3.5	0.7	1.0	0.2	3.8	0.8	4.5	0.9
VC 0432	Watermelon	0.02	6.1	0.1	43.1	0.9	47.1	0.9	25.8	0.5	4.4	0.1	6.0	0.1
-	Wine	0.018	1.3	0.0	76.8	1.4	1.1	0.0	15.4	0.3	68.8	1.2	25.6	0.5
VC 0433	Winter squash (= pumpkin)	0.02	0.0	0.0	0.5	0.0	1.5	0.0	7.3	0.1	0.0	0.0	0.3	0.0
	Total intake (μg/person)=			8.1		174.6		49.6		52.9	-	80.6		162.6
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (µg/person)=			600		600		600		600		600		600
	%ADI=			1.4%		29.1%		8.3%		8.8%		13.4%		27.1%
	Rounded %ADI=			1%		30%		8%		9%		10%		30%

INDOXACARB (216)	International	Estimated Daily	Intake (IEDI)		ADI = 0 - 0.0100 mg/kg bw
	arm rp	- ·			 ,	

		STMR or	Diets: g	/person/da	у	Intake =	daily inta	ke: μg/per	son							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code																
FP 0226	Apple (excl juice)	0.21	14.3	3.0	9.4	2.0	2.1	0.4	0.0	0.0	8.8	1.8	16.6	3.5	27.8	5.8
JF 0226	Apple juice	0.011	0.1	0.0	0.5	0.0	0.1	0.0	0.0	0.0	0.7	0.0	0.9	0.0	5.7	0.1
VB 0400	Broccoli	0.055	3.2	0.2	7.8	0.4	0.0	0.0	0.0	0.0	0.3	0.0	0.4	0.0	6.6	0.4
VB 0041	Cabbage, head	0.435	10.0	4.4	1.0	0.4	7.2	3.1	1.0	0.4	1.4	0.6	23.9	10.4	17.0	7.4

INDOXACARB (216)	International Estimated Daily Intake (IEDI)	ADI = 0 - 0.0100 mg/kg bw

пъолас	ARB (210)	mternationar	I	,					ADI – C	<i>i</i> - 0.0100 i	ing/kg ow					
		STMR or	Diets: g	/person/da		Intake =	daily inta	ike: μg/per	son		T		T		T	
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
VB 0404	Cauliflower	0.02	3.2	0.1	0.1	0.0	0.3	0.0	0.1	0.0	0.6	0.0	0.4	0.0	1.4	0.0
VC 0423	Chayote	0.06	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VD 0524	Chick-pea (dry)	0.02	5.0	0.1	0.5	0.0	0.6	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.6	0.0
OR 0691	Cotton seed oil, edible	0.013	1.0	0.0	0.7	0.0	1.0	0.0	1.4	0.0	1.5	0.0	5.5	0.1	1.2	0.0
VD 0527	Cowpea (dry)	0.02	0.2	0.0	0.8	0.0	2.5	0.1	25.9	0.5	0.2	0.0	1.2	0.0	0.1	0.0
FB 0265	Cranberries	0.15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	0.4
VC 0424	Cucumber	0.06	7.9	0.5	0.6	0.0	0.2	0.0	0.0	0.0	0.4	0.0	5.5	0.3	5.3	0.3
MO 0105	Edible offal (mammalian)	0.014	4.8	0.1	10.7	0.1	4.0	0.1	4.0	0.1	6.5	0.1	6.6	0.1	5.6	0.1
VO 0440	Egg plant (= aubergine)	0.11	20.1	2.2	0.1	0.0	0.6	0.1	6.3	0.7	0.5	0.1	6.3	0.7	0.7	0.1
PE 0112	Eggs	0.01	22.1	0.2	71.5	0.7	16.6	0.2	5.1	0.1	17.6	0.2	35.2	0.4	57.4	0.6
VC 0425	Gherkin	0.06	7.9	0.5	0.6	0.0	0.2	0.0	0.0	0.0	0.4	0.0	5.5	0.3	5.3	0.3
FB 0269	Grape (excl dried, excl juice, excl wine)	0.3	1.2	0.4	2.6	0.8	0.0	0.0	0.2	0.0	0.0	0.0	3.7	1.1	0.0	0.0
JF 0269	Grape juice	0.002	0.0	0.0	0.1	0.0	1.0	0.0	0.0	0.0	0.6	0.0	0.4	0.0	3.6	0.0
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.81	0.0	0.0	0.2	0.2	0.2	0.2	0.0	0.0	0.3	0.2	0.4	0.3	2.6	2.1
VL 0482	Lettuce, head	2.8	2.4	6.7	7.0	19.6	0.2	0.6	0.6	1.7	2.0	5.6	2.4	6.7	15.7	44.0
VL 0483	Lettuce, leaf	6.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	16.5
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.38	11.0	4.2	17.9	6.8	6.1	2.3	5.7	2.2	16.4	6.2	12.2	4.6	31.7	12.0
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0.01	43.8	0.4	71.5	0.7	24.5	0.2	22.9	0.2	65.7	0.7	48.9	0.5	126.6	1.3
VC 0046	Melons, except watermelon	0.02	7.5	0.2	6.1	0.1	0.7	0.0	1.4	0.0	2.5	0.1	6.9	0.1	12.4	0.2
ML 0106	Milks (excl processed products)	0.037	66.0	2.4	121.1	4.5	81.6	3.0	102.4	3.8	207.7	7.7	57.0	2.1	287.9	10.7
HH 0738	Mints	3.5	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
VD 0536	Mung bean (dry)	0.02	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
OR 0697	Peanut oil, edible	0.003	3.0	0.0	0.3	0.0	1.5	0.0	7.9	0.0	0.3	0.0	0.0	0.0	0.4	0.0
SO 0697	Peanut, shelled (excl oil)	0.01	0.7	0.0	1.4	0.0	1.3	0.0	3.6	0.0	0.2	0.0	0.7	0.0	6.0	0.1
FP 0230	Pear	0.051	6.4	0.3	1.9	0.1	1.2	0.1	0.0	0.0	1.8	0.1	6.9	0.4	7.8	0.4
VO 0051	Peppers	0.038	8.7	0.3	22.4	0.9	8.4	0.3	9.4	0.4	3.3	0.1	5.3	0.2	8.9	0.3
DF 0014	Plum, dried (prunes)	0.68	0.1	0.1	0.2	0.1	0.0	0.0	0.0	0.0	0.2	0.1	0.2	0.1	0.6	0.4
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0.01	52.7	0.5	57.1	0.6	50.1	0.5	4.3	0.0	54.7	0.5	41.0	0.4	168.0	1.7
PM 0110	Poultry meat: 10% as fat	0.025	1.8	0.0	13.1	0.3	2.5	0.1	0.5	0.0	14.6	0.4	2.8	0.1	11.5	0.3
PM 0110	Poultry meat: 90% as muscle	0	15.8	0.0	118.2	0.0	22.6	0.0	4.2	0.0	131.3	0.0	24.9	0.0	103.6	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	1.0	0.0	1.9	0.0	0.0	0.0	0.7	0.0	1.0	0.0	0.3	0.0

Annex 3

International Estimated Daily Intake (IEDI) ADI = 0 - 0.0100 mg/kg bwINDOXACARB (216) STMR or Diets: g/person/day Intake = daily intake: µg/person STMR-P G Н K L M Codex Commodity diet diet diet diet intake diet diet diet mg/kg intake intake intake intake intake intake Code 0.027 3.2 VD 0541 Soya bean (dry, excl oil) 1.8 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 1.4 OR 0541 Soya bean oil, refined 0.018 4.3 0.1 10.6 0.2 2.0 0.0 0.0 19.5 0.4 9.2 0.2 22.0 0.4 VC 0431 Squash, summer (= courgette, zuchini) 0.06 2.4 0.1 1.5 0.1 0.0 0.0 0.0 0.0 3.8 0.2 2.2 0.1 2.5 0.2 FS 0012 Stone fruit (excl dried plums, incl dried 0.17 4.3 0.7 1.4 0.2 0.1 0.0 4.9 0.8 3.0 6.7 1.1 0.8 4.9 17.7 apricots) VO 0447 0.01 0.2 0.0 2.4 0.0 2.2 0.0 3.3 0.0 1.7 0.0 2.8 0.0 11.2 0.1 Sweet corn (corn-on-the-cob) VO 0448 Tomato (excl juice, excl paste, incl peeled) 0.11 23.1 2.5 22.3 2.5 12.5 1.4 5.6 0.6 33.2 3.7 0.1 41.7 4.6 1.3 0.0 7.2 1.0 JF 0448 Tomato juice 0.022 0.0 0.0 0.8 0.0 0.1 0.2 0.0 0.0 2.4 0.1 45.2 0.3 -d Tomato paste 0.21 0.1 0.0 2.1 0.4 0.6 0.1 0.4 0.1 0.6 0.1 0.3 1.4 1.2 VC 0432 0.02 2.5 13.6 0.3 0.3 0.3 Watermelon 39.3 0.8 14.0 0.3 0.1 8.4 0.2 14.5 13.6 0.018 6.8 0.1 0.6 Wine 1.0 0.0 0.9 0.0 0.1 0.0 3.4 0.1 3.6 0.1 31.0 0.0 0.0 VC 0433 0.02 2.4 0.0 1.5 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.7 Winter squash (= pumpkin) 2.2 Total intake (µg/person)= 31.6 42.7 13.2 11.5 30.1 34.6 115.7 60 Bodyweight per region (kg bw) = 55 60 60 60 55 60

600

7.1%

7%

600

2.2%

2%

600

1.9%

2%

600

5.0%

5%

550

6.3%

6%

550

5.7%

6%

ADI (µg/person)= %ADI=

Rounded %ADI=

METAFLU	MIZONE (236)	International E	Estimated	Daily Intal	ke (IEDI)				ADI = 0	- 0.1000 m	g/kg bw			
		STMR or	Diets:	g/person/da	ay	Intake =	daily intal	ke: μg/pers	on					
		STMR-P	A		В		C		D		E		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code														
VB 0402	Brussels sprouts	0.125	0.0	0.0	0.1	0.0	2.8	0.4	5.5	0.7	1.5	0.2	1.9	0.2
VL 0466	Chinese cabbage, type pak-choi	0.49	0.3	0.1	2.6	1.3	2.8	1.4	5.5	2.7	0.1	0.0	1.9	0.9
MO 0105	Edible offal (mammalian)	0.013	3.9	0.1	14.4	0.2	5.2	0.1	11.8	0.2	11.7	0.2	7.6	0.1
VO 0440	Egg plant (= aubergine)	0.18	1.7	0.3	17.5	3.2	12.3	2.2	1.7	0.3	0.8	0.1	0.4	0.1
VL 0482	Lettuce, head	2	0.1	0.2	12.3	24.6	1.3	2.6	0.1	0.2	0.1	0.2	0.0	0.0
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.013	5.5	0.1	23.3	0.3	7.7	0.1	11.0	0.1	18.0	0.2	26.3	0.3
MM 0095	Meat from mammals other than marine mammals:	0.013	22.2	0.3	93.2	1.2	30.8	0.4	44.1	0.6	72.2	0.9	105.0	1.4

600

20%

19.3%

METAFLU	MIZONE (236)	International	Estimated	Daily Inta	ke (IEDI)				ADI = 0	- 0.1000 m	g/kg bw			
		STMR or	Diets:	g/person/da	ay	Intake =	daily intal	ke: μg/perso	on					
		STMR-P	A		В		C		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code		•												
	80% as muscle													
ML 0106	Milks	0.007	68.8	0.5	190.6	1.3	79.4	0.6	302.6	2.1	179.6	1.3	237.9	1.7
VO 0444	Peppers, chilli	0.18	0.7	0.1	14.9	2.7	4.1	0.7	3.2	0.6	3.1	0.6	2.0	0.4
VO 0445	Peppers, sweet (incl. pim(i)ento)	0.18	0.7	0.1	14.9	2.7	8.8	1.6	3.2	0.6	3.1	0.6	2.0	0.4
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0	19.1	0.0	160.8	0.0	61.2	0.0	243.6	0.0	230.1	0.0	204.7	0.0
VO 0448	Tomato (excl juice, excl paste, excl peeled)	0.12	1.3	0.2	178.4	21.4	102.8	12.3	53.4	6.4	1.6	0.2	0.0	0.0
JF 0448	Tomato juice	0.02	5.2	0.1	0.5	0.0	0.4	0.0	2.1	0.0	6.9	0.1	15.2	0.3
-d	Tomato paste	0.1	0.5	0.1	1.3	0.1	3.5	0.4	1.0	0.1	3.8	0.4	4.5	0.5
-d	Tomato, peeled	0.02	0.1	0.0	0.4	0.0	0.5	0.0	0.4	0.0	4.9	0.1	3.2	0.1
	Total intake (μg/person)=			2.1		59.0		22.7		14.6		5.1		6.2
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (µg/person)=			6000		6000		6000		6000		6000		6000
	%ADI=			0.0%		1.0%		0.4%		0.2%		0.1%		0.1%
	Rounded %ADI=			0%		1%		0%		0%		0%		0%

METAFLU	UMIZONE (236)	International	Estimate	ed Daily Ir	ntake (IEI	OI)			ADI = 0) - 0.1000 ı	ng/kg bw					
		STMR or	Diets:	g/person/	'day	Intake =	daily ir	ıtake: μg/μ	person							
		STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
VB 0402	Brussels sprouts	0.125	3.4	0.4	0.4	0.1	0.0	0.0	0.0	0.0	0.5	0.1	7.9	1.0	0.3	0.0
VL 0466	Chinese cabbage, type pak-choi	0.49	3.4	1.7	2.8	1.4	2.4	1.2	0.3	0.1	0.5	0.2	7.9	3.9	0.3	0.1
MO 0105	Edible offal (mammalian)	0.013	4.8	0.1	10.7	0.1	4.0	0.1	4.0	0.1	6.5	0.1	6.6	0.1	5.6	0.1
VO 0440	Egg plant (= aubergine)	0.18	20.1	3.6	0.1	0.0	0.6	0.1	6.3	1.1	0.5	0.1	6.3	1.1	0.7	0.1
VL 0482	Lettuce, head	2	2.4	4.8	7.0	14.0	0.2	0.4	0.6	1.2	2.0	4.0	2.4	4.8	15.7	31.4
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.013	11.0	0.1	17.9	0.2	6.1	0.1	5.7	0.1	16.4	0.2	12.2	0.2	31.7	0.4
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0.013	43.8	0.6	71.5	0.9	24.5	0.3	22.9	0.3	65.7	0.9	48.9	0.6	126.6	1.6
ML 0106	Milks	0.007	66.0	0.5	121.1	0.8	81.6	0.6	102.4	0.7	207.7	1.5	57.0	0.4	287.9	2.0
VO 0444	Peppers, chilli	0.18	8.7	1.6	13.0	2.3	4.2	0.8	4.7	0.8	1.7	0.3	2.6	0.5	4.4	0.8

Annex 3

METAFLUMIZONE (236) International Estimated Daily Intake (IEDI) ADI = 0 - 0.1000 mg/kg bw

111111111111111111111111111111111111111	5W11261 (250)	mitermationar)				0110001						
		STMR or	Diets:	g/person/	day	Intake =	daily ir	ıtake: μg/p	erson							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code																
VO 0445	Peppers, sweet (incl. pim(i)ento)	0.18	0.0	0.0	9.4	1.7	4.2	0.8	4.7	0.8	1.7	0.3	2.6	0.5	4.4	0.8
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0	52.7	0.0	57.1	0.0	50.1	0.0	4.3	0.0	54.7	0.0	41.0	0.0	168.0	0.0
VO 0448	Tomato (excl juice, excl paste, excl peeled)	0.12	22.8	2.7	4.1	0.5	12.3	1.5	1.8	0.2	32.8	3.9	0.4	0.0	27.3	3.3
JF 0448	Tomato juice	0.02	0.0	0.0	0.8	0.0	0.1	0.0	7.2	0.1	0.0	0.0	2.4	0.0	45.2	0.9
-d	Tomato paste	0.1	0.1	0.0	2.1	0.2	0.6	0.1	0.4	0.0	0.6	0.1	1.4	0.1	1.2	0.1
-d	Tomato, peeled	0.02	0.2	0.0	14.5	0.3	0.2	0.0	0.0	0.0	0.3	0.0	0.8	0.0	1.2	0.0
	Total intake (µg/person)=			16.1		22.6		5.8		5.7		11.6		13.3		41.8
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
	ADI (µg/person)=			5500		6000		6000		6000		6000		5500		6000
	%ADI=			0.3%		0.4%		0.1%		0.1%		0.2%		0.2%		0.7%
	Rounded %ADI=			0%		0%		0%		0%		0%		0%		1%

METHOX	YFENOZIDE (209)	International I	Estimated	Daily Inta	ke (IEDI)				ADI = 0	- 0.1000 mg	g/kg bw			
		STMR or	Diets:	g/person/da	ay	Intake =	daily intal	ke: μg/perso	n					
		STMR-P	A		В		С		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
JF 0226	Apple juice	0.13	0.0	0.0	2.8	0.4	0.1	0.0	1.1	0.1	6.8	0.9	7.4	1.0
FI 0326	Avocado	0.13	3.7	0.5	1.0	0.1	0.2	0.0	0.0	0.0	0.9	0.1	0.8	0.1
VD 0071	Beans (dry)	0.05	15.8	0.8	6.1	0.3	1.7	0.1	6.3	0.3	1.8	0.1	5.0	0.3
VP 0061	Beans except broad bean & soya bean (green pods & immature seeds)	0.065	1.0	0.1	17.4	1.1	7.5	0.5	0.9	0.1	16.4	1.1	0.1	0.0
VP 0062	Beans, shelled (immature seeds)	0.051	0.5	0.0	12.7	0.6	4.1	0.2	0.9	0.0	13.1	0.7	0.1	0.0
FB 0264	Blackberries	1.25	0.0	0.0	0.1	0.1	0.0	0.0	0.3	0.4	0.1	0.1	0.3	0.4
FB 0020	Blueberries	1.25	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.3	0.4	0.8	1.0
VB 0400	Broccoli	0.94	0.0	0.0	0.7	0.7	1.2	1.1	0.1	0.1	4.2	3.9	4.0	3.8
VB 0041	Cabbage, head	0.93	1.2	1.1	14.4	13.4	2.7	2.5	16.4	15.3	15.4	14.3	18.5	17.2
VR 0577	Carrot	0.13	0.6	0.1	15.1	2.0	8.1	1.1	13.9	1.8	27.1	3.5	28.4	3.7
VS 0624	Celery	3.4	0.0	0.0	0.9	3.1	0.0	0.0	2.0	6.8	1.5	5.1	0.0	0.0
FC 0001	Citrus fruit (excl lemon juice, excl mandarin juice, excl orange juice, excl grapefruit juice, excl NES	0.05	15.7	0.8	86.5	4.3	52.6	2.6	24.2	1.2	16.2	0.8	12.0	0.6

METHOXY	TENOZIDE (209)	International	Estimated	Daily Intal	ke (IEDI)				ADI = 0	- 0.1000 mg	g/kg bw			
		STMR or	Diets:	g/person/da	ıy	Intake =	daily intal	ce: μg/perso	n					
		STMR-P	A		В		C		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code	T · · · ›	1		1				1		1		1		
HE 0001	juice)	0.011	0.0	0.0	1.7	0.0	0.1	0.0	0.0	0.0	1.1	0.0	0.2	
JF 0001	Citrus juice NES	0.011	0.0	0.0	1.7	0.0	0.1	0.0	0.0	0.0	1.1	0.0	0.3	0.0
OR 0691	Cotton seed oil, edible	0.46	0.9	0.4	4.9	2.3	1.7	0.8	6.6	3.0	0.0	0.0	0.3	0.1
VD 0527	Cowpea (dry)	0.56	3.9	2.2	0.0	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0
FB 0265	Cranberries	0.07	0.1	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.6	0.0
MO 0105	Edible offal (mammalian)	0.051	3.9	0.2	14.4	0.7	5.2	0.3	11.8	0.6	11.7	0.6	7.6	0.4
PE 0112	Eggs	0	2.5	0.0	29.7	0.0	25.1	0.0	24.5	0.0	37.8	0.0	27.4	0.0
FB 0269	Grape (excl dried, incl juice, incl wine)	0.1	3.7	0.4	116.9	11.7	25.5	2.6	31.5	3.2	98.3	9.8	37.2	3.7
FB 0269	Grape (incl dried, incl juice, incl wine)	0.1	3.7	0.4	128.5	12.9	27.1	2.7	33.1	3.3	107.5	10.8	44.0	4.4
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.86	0.0	0.0	2.9	2.5	0.4	0.3	0.4	0.3	2.3	2.0	1.7	1.5
JF 0203	Grapefruit juice	0.011	0.0	0.0	0.2	0.0	0.1	0.0	0.1	0.0	1.1	0.0	0.2	0.0
-d	Lemon juice	0.011	0.0	0.0	0.9	0.0	0.1	0.0	0.0	0.0	0.2	0.0	0.4	0.0
VL 0482	Lettuce, head	6.1	0.1	0.6	12.3	75.0	1.3	7.9	0.1	0.6	0.1	0.6	0.0	0.0
VL 0483	Lettuce, leaf	12	0.0	0.0	9.2	110.4	1.0	12.0	0.1	1.2	5.4	64.8	18.0	216.0
MF 0100	Mammalian fats (except milk fats)	0.094	0.8	0.1	10.0	0.9	0.9	0.1	6.6	0.6	11.8	1.1	3.7	0.3
FC 0003	Mandarin + mandarin-like hybrid (incl juice)	0.05	0.6	0.0	19.1	1.0	12.3	0.6	5.5	0.3	9.9	0.5	11.7	0.6
-	Mandarin + mandarin-like hybrid juice	0.011	0.0	0.0	1.4	0.0	0.9	0.0	0.4	0.0	0.7	0.0	0.9	0.0
MM 0095	Meat from mammals other than marine mammals: 20% as fat	0.094	5.5	0.5	23.3	2.2	7.7	0.7	11.0	1.0	18.0	1.7	26.3	2.5
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	0.019	22.2	0.4	93.2	1.8	30.8	0.6	44.1	0.8	72.2	1.4	105.0	2.0
ML 0106	Milks (excl processed products)	0.03	68.8	2.1	190.6	5.7	79.4	2.4	302.6	9.1	179.6	5.4	237.9	7.1
VL 0485	Mustard greens	16	0.3	4.8	0.3	4.8	0.0	0.0	5.5	88.0	0.0	0.0	1.9	30.4
JF 0004	Orange juice	0.011	0.0	0.0	2.1	0.0	4.4	0.0	1.4	0.0	16.2	0.2	22.6	0.2
FI 0350	Papaya	0.31	5.1	1.6	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
OR 0697	Peanut oil, edible	0.029	1.7	0.0	0.8	0.0	0.5	0.0	0.1	0.0	1.4	0.0	0.4	0.0
SO 0697	Peanut, shelled (excl oil)	0.01	1.5	0.0	1.3	0.0	1.0	0.0	0.5	0.0	0.8	0.0	0.5	0.0
VP 0064	Peas, shelled (immature seeds only)	0.051	0.0	0.0	0.9	0.0	6.0	0.3	0.6	0.0	9.7	0.5	3.2	0.2
VO 0051	Peppers	0.16	1.4	0.2	29.9	4.8	13.0	2.1	6.3	1.0	6.2	1.0	4.0	0.6
DF 0014	Plum, dried (prunes)	0.34	0.0	0.0	0.2	0.1	0.0	0.0	0.1	0.0	0.5	0.2	0.6	0.2
FP 0009	Pome fruit (excl apple juice)	1	0.5	0.5	79.9	79.9	21.8	21.8	43.6	43.6	51.5	51.5	35.1	35.1
PM 0110	Poultry meat: 10% as fat	0	0.7	0.0	5.9	0.0	3.2	0.0	2.4	0.0	6.1	0.0	2.7	0.0
PM 0110	Poultry meat: 90% as muscle	0	6.4	0.0	52.7	0.0	28.7	0.0	21.6	0.0	54.9	0.0	24.6	0.0

Annex 3

METHOXY	YFENOZIDE (209)	International	Estimated	l Daily Inta	ke (IEDI)				ADI = 0	- 0.1000 mg	g/kg bw			
		STMR or	Diets:	g/person/da	ay	Intake =	daily intal	ce: μg/perso	n					
		STMR-P	A		В		С		D		Е		F	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code														
PO 0111	Poultry, edible offal of	0	0.4	0.0	0.4	0.0	1.7	0.0	0.1	0.0	0.6	0.0	0.2	0.0
VR 0494	Radish	0.08	0.0	0.0	1.3	0.1	0.6	0.0	2.0	0.2	1.2	0.1	0.0	0.0
VL 0502	Spinach	15	0.0	0.0	5.0	75.0	1.1	16.5	0.1	1.5	2.6	39.0	0.1	1.5
FS 0012	Stone fruit (incl dried plums, incl dried apricots)	0.34	0.7	0.2	44.7	15.2	14.1	4.8	26.9	9.1	27.7	9.4	10.0	3.4
FB 0275	Strawberry	0.24	0.0	0.0	5.0	1.2	2.0	0.5	1.7	0.4	5.2	1.2	4.1	1.0
VO 0447	Sweet corn (corn-on-the-cob)	0	7.3	0.0	1.0	0.0	0.1	0.0	0.5	0.0	3.3	0.0	3.6	0.0
VR 0508	Sweet potato	0.01	60.5	0.6	0.6	0.0	5.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0
VO 0448	Tomato (excl juice, excl paste, excl peeled)	0.2	1.3	0.3	178.4	35.7	102.8	20.6	53.4	10.7	1.6	0.3	0.0	0.0
JF 0448	Tomato juice	0.06	5.2	0.3	0.5	0.0	0.4	0.0	2.1	0.1	6.9	0.4	15.2	0.9
VW 0448	Tomato paste	0.4	0.5	0.2	1.3	0.5	3.5	1.4	1.0	0.4	3.8	1.5	4.5	1.8
-d (?)	Tomato, peeled	0.042	0.1	0.0	0.4	0.0	0.5	0.0	0.4	0.0	4.9	0.2	3.2	0.1
TN 0085	Tree nuts	0.012	4.2	0.1	21.5	0.3	3.9	0.0	3.0	0.0	5.5	0.1	10.2	0.1
	Total intake (μg/person)=		•	19.4		470.9	•	107.4	•	205.6		235.4		342.3
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (μg/person)=			6000		6000		6000		6000		6000		6000
	%ADI=			0.3%		7.8%		1.8%		3.4%		3.9%		5.7%

METHOX	YFENOZIDE (209)	International	l Estimat	ed Daily Ir	ntake (IE	DI)			ADI =	0 - 0.1000 1	ng/kg bw					
		STMR or	Diets:	g/person/	day	Intake =	daily ir	ntake: μg/p	erson							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code																
JF 0226	Apple juice	0.13	0.1	0.0	0.5	0.1	0.1	0.0	0.0	0.0	0.7	0.1	0.9	0.1	5.7	0.7
FI 0326	Avocado	0.13	0.2	0.0	13.9	1.8	1.0	0.1	1.7	0.2	3.4	0.4	0.5	0.1	2.1	0.3
VD 0071	Beans (dry)	0.05	3.4	0.2	25.5	1.3	7.8	0.4	2.1	0.1	44.7	2.2	5.5	0.3	7.3	0.4
VP 0061	Beans except broad bean & soya bean (green	0.065	2.6	0.2	2.6	0.2	1.0	0.1	0.5	0.0	0.6	0.0	2.8	0.2	9.8	0.6
	pods & immature seeds)															
VP 0062	Beans, shelled (immature seeds)	0.051	2.6	0.1	1.9	0.1	1.0	0.1	0.5	0.0	0.3	0.0	1.8	0.1	9.0	0.5
FB 0264	Blackberries	1.25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.3	0.4

0%

8%

2%

3%

4%

Rounded %ADI=

6%

METHOXYFENOZIDE (209) International Estimated Daily Intake (IEDI) ADI = 0 - 0.1000 mg/kg bwSTMR or Diets: g/person/day Intake = daily intake: µg/person STMR-P G K Μ Η L diet diet diet diet diet Codex Commodity diet intake diet intake intake intake mg/kg intake intake intake Code FB 0020 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.6 Blueberries 1.25 0.0 VB 0400 0.94 3.2 3.0 7.8 7.3 0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.4 6.6 6.2 Broccoli VB 0041 Cabbage, head 0.93 10.0 9.3 1.0 0.9 7.2 6.7 1.0 0.9 1.4 1.3 23.9 22.2 17.0 15.8 0.13 7.9 2.5 0.3 3.5 0.5 0.5 8.6 19.4 2.5 VR 0577 Carrot 5.4 0.7 1.0 4.1 1.1 0.3 0.0 3.4 0.0 0.0 4.2 VS 0624 3.4 0.0 0.0 1.0 0.0 0.0 0.0 1.0 14.3 Celery 7.7 0.2 41.7 2.1 10.9 18.0 0.9 FC 0001 Citrus fruit (excl lemon juice, excl mandarin 0.05 15.1 0.8 153.9 3.4 218.9 23.1 1.2 juice, excl orange juice, excl grapefruit juice, excl NES juice) 0.011 0.0 0.0 0.3 0.1 JF 0001 Citrus juice NES 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 5.5 2.5 1.2 OR 0691 Cotton seed oil, edible 0.46 1.0 0.5 0.7 0.3 1.0 0.5 1.4 0.6 1.5 0.7 0.6 1.2 0.1 0.1 VD 0527 Cowpea (dry) 0.56 0.2 0.1 0.8 0.4 2.5 1.4 25.9 14.5 0.2 0.1 0.7 0.07 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.2 FB 0265 Cranberries 0.0 0.0 0.0 0.0 0.0 0.0 MO 0105 Edible offal (mammalian) 0.051 4.8 0.2 10.7 0.5 4.0 0.2 4.0 0.2 6.5 0.3 6.6 0.3 5.6 0.3 PE 0112 0 22.1 0.0 0.0 5.1 0.0 17.6 0.0 35.2 0.0 57.4 0.0 Eggs 71.5 0.0 16.6 0.3 5.6 9.3 0.9 48.4 4.8 FB 0269 Grape (excl dried, incl juice, incl wine) 0.1 2.6 0.3 4.0 0.4 10.9 1.1 0.0 0.6 FB 0269 0.1 2.6 0.5 11.7 1.2 0.3 0.0 0.7 10.9 58.8 5.9 Grape (incl dried, incl juice, incl wine) 0.3 4.8 6.8 1.1 DF 0269 Grape, dried (= currants, raisins and sultanas) 0.86 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.3 0.3 0.4 0.3 2.6 2.2 JF 0203 0.011 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.3 0.0 2.4 0.0 Grapefruit juice 0.0 0.0 0.3 0.5 2.6 0.0 0.011 0.0 0.0 0.0 0.0 0.0 -d (?) Lemon juice 0.3 0.0 0.0 0.0 1.0 VL 0482 2.4 0.6 3.7 12.2 2.4 15.7 95.8 Lettuce, head 6.1 14.6 7.0 42.7 0.2 1.2 2.0 14.6 0.0 0.0 0.0 0.0 0.0 2.5 30.0 VI. 0483 Lettuce, leaf 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 5.7 0.5 4.5 0.4 18.2 MF 0100 Mammalian fats (except milk fats) 0.094 2.2 0.2 18.6 1.7 0.5 0.0 0.1 1.7 FC 0003 Mandarin + mandarin-like hybrid (incl juice) 0.05 7.0 0.4 6.5 0.3 0.8 0.0 0.2 0.0 9.3 0.5 19.1 1.0 6.5 0.3 Mandarin + mandarin-like hybrid juice 0.011 0.5 0.0 0.5 0.0 0.1 0.0 0.0 0.0 0.7 0.0 1.4 0.0 0.0 0.0 MM 0095 Meat from mammals other than marine 0.094 11.0 17.9 1.7 0.6 5.7 0.5 16.4 1.5 12.2 1.1 31.7 3.0 1.0 6.1 mammals: 20% as fat 22.9 MM 0095 Meat from mammals other than marine 0.019 43.8 0.8 71.5 1.4 24.5 0.5 0.4 65.7 1.2 48.9 0.9 126.6 2.4 mammals: 80% as muscle ML 0106 Milks (excl processed products) 0.03 66.0 2.0 121.1 3.6 81.6 2.4 102.4 3.1 207.7 6.2 57.0 1.7 287.9 8.6 VL 0485 Mustard greens 16 3.4 54.4 0.4 6.4 2.4 38.4 0.3 4.8 0.5 8.0 7.9 126.4 0.3 4.8 JF 0004 0.011 0.2 0.0 1.0 0.0 3.5 0.0 0.0 0.0 1.3 0.0 6.4 0.1 56.8 0.6 Orange juice FI 0350 0.31 1.3 0.4 11.5 1.6 0.5 13.7 4.2 14.5 4.5 1.0 0.3 0.6 0.2 Papaya 3.6 OR 0697 Peanut oil, edible 0.029 3.0 0.1 0.3 0.0 1.5 0.0 7.9 0.2 0.3 0.0 0.0 0.0 0.4 0.0 SO 0697 0.01 0.7 0.0 1.4 0.0 1.3 0.0 3.6 0.0 0.2 0.0 0.7 0.0 6.0 0.1 Peanut, shelled (excl oil)

Annex 3

METHOX	YFENOZIDE (209)	International	Estimate	ed Daily Ir	ıtake (IEI	OI)			ADI = 0	o - 0.1000 n	ng/kg bw					
		STMR or	Diets:	g/person/e	lay	Intake =	daily in	take: µg/p	erson							
		STMR-P	G		H		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code										T = -		T = -		T		
VP 0064	Peas, shelled (immature seeds only)	0.051	3.9	0.2	1.6	0.1	0.0	0.0	0.0	0.0	0.4	0.0	1.0	0.1	0.8	0.0
VO 0051	Peppers	0.16	8.7	1.4	22.4	3.6	8.4	1.3	9.4	1.5	3.3	0.5	5.3	0.8	8.9	1.4
DF 0014	Plum, dried (prunes)	0.34	0.1	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.2	0.1	0.2	0.1	0.6	0.2
FP 0009	Pome fruit (excl apple juice)	1	20.8	20.8	11.6	11.6	3.3	3.3	0.1	0.1	10.7	10.7	23.6	23.6	36.9	36.9
PM 0110	Poultry meat: 10% as fat	0	1.8	0.0	13.1	0.0	2.5	0.0	0.5	0.0	14.6	0.0	2.8	0.0	11.5	0.0
PM 0110	Poultry meat: 90% as muscle	0	15.8	0.0	118.2	0.0	22.6	0.0	4.2	0.0	131.3	0.0	24.9	0.0	103.6	0.0
PO 0111	Poultry, edible offal of	0	0.4	0.0	1.0	0.0	1.9	0.0	0.0	0.0	0.7	0.0	1.0	0.0	0.3	0.0
VR 0494	Radish	0.08	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	1.0	0.1	0.0	0.0	0.3	0.0
VL 0502	Spinach	15	9.4	141.0	0.4	6.0	0.0	0.0	0.0	0.0	0.2	3.0	4.3	64.5	2.0	30.0
FS 0012	Stone fruit (incl dried plums, incl dried apricots)	0.34	7.0	2.4	4.9	1.7	1.4	0.5	0.1	0.0	5.5	1.9	5.5	1.9	19.4	6.6
FB 0275	Strawberry	0.24	0.0	0.0	1.8	0.4	0.1	0.0	0.0	0.0	0.3	0.1	6.2	1.5	5.9	1.4
VO 0447	Sweet corn (corn-on-the-cob)	0	0.2	0.0	2.4	0.0	2.2	0.0	3.3	0.0	1.7	0.0	2.8	0.0	11.2	0.0
VR 0508	Sweet potato	0.01	47.4	0.5	7.8	0.1	22.0	0.2	20.9	0.2	5.5	0.1	20.8	0.2	6.1	0.1
VO 0448	Tomato (excl juice, excl paste, excl peeled)	0.2	22.8	4.6	4.1	0.8	12.3	2.5	1.8	0.4	32.8	6.6	0.4	0.1	27.3	5.5
JF 0448	Tomato juice	0.06	0.0	0.0	0.8	0.0	0.1	0.0	7.2	0.4	0.0	0.0	2.4	0.1	45.2	2.7
VW 0448	Tomato paste	0.4	0.1	0.0	2.1	0.8	0.6	0.2	0.4	0.2	0.6	0.2	1.4	0.6	1.2	0.5
-d (?)	Tomato, peeled	0.042	0.2	0.0	14.5	0.6	0.2	0.0	0.0	0.0	0.3	0.0	0.8	0.0	1.2	0.1
TN 0085	Tree nuts	0.012	16.3	0.2	15.7	0.2	9.7	0.1	1.9	0.0	19.1	0.2	29.0	0.3	5.6	0.1
	Total intake (µg/person)=			260.6		111.2		64.3		39.2		80.2		271.9		291.2
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
	ADI (µg/person)=			5500		6000		6000		6000		6000		5500		6000
	%ADI=			4.7%		1.9%		1.1%		0.7%		1.3%		4.9%		4.9%
	Rounded %ADI=			5%		2%		1%		1%		1%		5%		5%

PROTHIOC	ONAZOLE (232)	International	Estimated I	Daily Intake	(IEDI)				ADI = 0	- 0.0100 m	ıg/kg bw			
		STMR or	Diets: g	/person/day		Intake =	daily intak	e: μg/persoi	n					
		STMR-P	A		В		C		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
GC 0640	Barley (incl pot, incl pearled, incl flour & grits, incl beer)	0.035	40.6	1.4	16.8	0.6	93.9	3.3	13.2	0.5	48.6	1.7	36.1	1.3
MO 0105	Edible offal (mammalian)	0.05	3.9	0.2	14.4	0.7	5.2	0.3	11.8	0.6	11.7	0.6	7.6	0.4
MF 0100	Mammalian fats (except milk fats)	0.01	0.8	0.0	10.0	0.1	0.9	0.0	6.6	0.1	11.8	0.1	3.7	0.0
MM 0095	Meat from mammals other than marine mammals	0.01	27.7	0.3	116.5	1.2	38.5	0.4	55.1	0.6	90.2	0.9	131.3	1.3
ML 0106	Milks (excl processed products)	0.004	68.8	0.3	190.6	0.8	79.4	0.3	302.6	1.2	179.6	0.7	237.9	1.0
GC 0647	Oats (incl rolled)	0.01	1.4	0.0	0.6	0.0	0.2	0.0	4.2	0.0	5.7	0.1	8.9	0.1
SO 0697	Peanut, shelled (incl oil)	0.01	5.4	0.1	3.1	0.0	2.1	0.0	0.7	0.0	4.0	0.0	1.4	0.0
-	Pulses (excl soya beans)	0.05	44.6	2.2	26.5	1.3	17.1	0.9	14.4	0.7	14.1	0.7	8.7	0.4
SO 0495	Rape seed (excl oil)	0.02	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0
OR 0495	Rape seed oil, edible	0.014	0.3	0.0	0.7	0.0	1.0	0.0	0.7	0.0	13.7	0.2	10.0	0.1
GC 0650	Rye (incl flour)	0.01	0.1	0.0	3.7	0.0	0.3	0.0	24.3	0.2	25.8	0.3	45.8	0.5
VR 0596	Sugar beet	0.05	0.0	0.0	40.7	2.0	0.0	0.0	0.1	0.0	6.0	0.3	0.1	0.0
GC 0653	Triticale (incl flour)	0.01	0.0	0.0	115.8	1.2	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0
GC 0654	Wheat (incl bulgur wholemeal, excl flour)	0.02	6.0	0.1	11.1	0.2	0.8	0.0	0.2	0.0	0.2	0.0	0.0	0.0
CM 0654	Wheat bran, unprocessed	0.048	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
CF 1211	Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.008	63.4	0.5	296.3	2.4	327.5	2.6	300.0	2.4	181.6	1.5	166.2	1.3
CF 1210	Wheat germ	0.04	0.0	0.0	1.3	0.1	0.0	0.0	1.3	0.1	0.9	0.0	1.2	0.0
	Total intake (µg/person)=			5.1		10.6		7.8		6.4		7.1		6.5
	Bodyweight per region (kg bw) =			60		60		60		60		60		60
	ADI (µg/person)=			600		600		600		600		600		600
	%ADI=			0.9%		1.8%		1.3%		1.1%		1.2%		1.1%
	Rounded %ADI=			1%		2%		1%		1%		1%		1%

Annex 3

CONAZOLE (232)	International E	stimated l	Daily Intak	e (IEDI)				ADI = 0	0.0100 m	g/kg bw					
	STMR or	Diets: g	/person/da	y	Intake =	daily inta	ıke: μg/per	son							
	STMR-P	G		Н		I		J		K		L		M	
Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
			1		To =		1		T		1	1.50	To c		1
incl beer)	0.035	5.9	0.2	20.5		5.9		2.5		20.2		16.8		43.8	1.5
Edible offal (mammalian)	0.05	4.8	0.2	10.7	0.5	4.0	0.2	4.0	0.2	6.5	0.3	6.6	0.3	5.6	0.3
Mammalian fats (except milk fats)	0.01	2.2	0.0	18.6	0.2	0.5	0.0	0.8	0.0	5.7	0.1	4.5	0.0	18.2	0.2
Meat from mammals other than marine mammals	0.01	54.8	0.5	89.4	0.9	30.6	0.3	28.6	0.3	82.1	0.8	61.1	0.6	158.3	1.6
Milks (excl processed products)	0.004	66.0	0.3	121.1	0.5	81.6	0.3	102.4	0.4	207.7	0.8	57.0	0.2	287.9	1.2
Oats (incl rolled)	0.01	0.2	0.0	2.0	0.0	0.8	0.0	0.0	0.0	3.5	0.0	0.7	0.0	7.6	0.1
Peanut, shelled (incl oil)	0.01	7.6	0.1	2.1	0.0	4.7	0.0	21.8	0.2	0.9	0.0	0.7	0.0	6.9	0.1
Pulses (excl soya beans)	0.05	16.0	0.8	32.4	1.6	24.7	1.2	34.2	1.7	50.7	2.5	8.0	0.4	16.9	0.8
Rape seed (excl oil)	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rape seed oil, edible	0.014	3.8	0.1	2.3	0.0	0.1	0.0	0.4	0.0	0.0	0.0	6.0	0.1	3.8	0.1
Rye (incl flour)	0.01	0.4	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.1	0.0	0.9	0.0	0.8	0.0
Sugar beet	0.05	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	14.3	0.7
Triticale (incl flour)	0.01	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wheat (incl bulgur wholemeal, excl flour)	0.02	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0
Wheat bran, unprocessed	0.048	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
Wheat flour (incl macaroni, bread, pastry, starch, gluten)	0.008	133.0	1.1	60.1	0.5	52.4	0.4	32.2	0.3	87.7	0.7	79.6	0.6	180.1	1.4
Wheat germ	0.04	0.1	0.0	48.1	1.9	1.8	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0
Total intake (µg/person)=			3.3		6.9		2.8		3.2		6.0		2.9		8.0
Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
ADI (µg/person)=			550		600		600		600		600		550		600
%ADI=			0.6%		1.2%		0.5%		0.5%		1.0%		0.5%		1.3%
Rounded %ADI=			1%		1%		0%		1%		1%		1%		1%
	Commodity Barley (incl pot, incl pearled, incl flour & grits, incl beer) Edible offal (mammalian) Mammalian fats (except milk fats) Meat from mammals other than marine mammals Milks (excl processed products) Oats (incl rolled) Peanut, shelled (incl oil) Pulses (excl soya beans) Rape seed (excl oil) Rape seed oil, edible Rye (incl flour) Sugar beet Triticale (incl flour) Wheat (incl bulgur wholemeal, excl flour) Wheat flour (incl macaroni, bread, pastry, starch, gluten) Wheat germ Total intake (µg/person)= Bodyweight per region (kg bw) = ADI (µg/person)= %ADI=	Commodity Barley (incl pot, incl pearled, incl flour & grits, incl beer) Edible offal (mammalian) Meat from mammals other than marine mammals Milks (excl processed products) Oats (incl rolled) Peanut, shelled (incl oil) Pulses (excl soya beans) Rape seed (excl oil) Rape seed (excl oil) Rye (incl flour) Sugar beet Triticale (incl flour) Wheat (incl bulgur wholemeal, excl flour) Wheat flour (incl macaroni, bread, pastry, starch, gluten) Wheat germ O.04 Total intake (µg/person)= Bodyweight per region (kg bw) = ADI (µg/person)= %ADI=	STMR or STMR-P mg/kg G diet	STMR or STMR-P mg/kg Giet intake	STMR or STMR-P mg/kg G diet Intake H diet	STMR or STMR-P or Minter Diets: g/person/day Intake STMR-P or Minter G or Minter H or M	STMR or STMR-P mg/kg	STMR or STMR-P mg/kg	STMR or STMR-P mg/kg	STMR or STMR-P (and the state of the state	STMR or STMR-P mg/kg Diets: g/person/day Intake = daily intake: μg/person Barley (incl pot, incl pearled, incl flour & grits, incl beer) 0.035 5.9 0.2 20.5 0.7 5.9 0.2 2.5 0.1 20.2 Edible offal (mammalian) 0.05 4.8 0.2 10.7 0.5 4.0 0.2 4.0 0.2 6.5 Mammalian fats (except milk fats) 0.01 2.2 0.0 18.6 0.2 0.5 0.0 0.8 0.0 5.7 Meat from mammals other than marine mammals 0.01 5.4.8 0.5 89.4 0.9 30.6 0.3 28.6 0.3 82.1 Milks (excl processed products) 0.004 66.0 0.3 121.1 0.5 81.6 0.3 102.4 0.4 207.7 Oats (incl rolled) 0.01 7.6 0.1 2.1 0.5 81.6 0.3 122.4 0.4 207.7 Milks (excl processed products) 0.05 16.0 0.8 32.4 1.6 </td <td> STMR or STMR-P mg/kg Diets: g/person/day Intake = daily intake: μg/person H diet Intake H diet Intake </td> <td> STMR or STMR-P</td> <td> STMR-P G</td> <td> STMR or STMR-P Commodity</td>	STMR or STMR-P mg/kg Diets: g/person/day Intake = daily intake: μg/person H diet Intake H diet Intake	STMR or STMR-P	STMR-P G	STMR or STMR-P Commodity

SPIRODIC	LOFEN (237)	International	Estimated	Daily Intak	e (IEDI)				ADI = 0	–0.0100 mg	g/kg bw			
		STMR or	Diets: g	g/person/day		Intake =	daily intak	e: μg/person	ı					
		STMR-P	A		В		C		D		Е		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
JF 0226	Apple juice	0.004	0.0	0.0	2.8	0.0	0.1	0.0	1.1	0.0	6.8	0.0	7.4	0.0
DF 0226	Apple, dried	0.018	ND	_	ND	_	ND	_	ND	_	ND	_	ND	T -
_	Barley beer	0.011	18.3	0.2	84.1	0.9	4.1	0.0	66.0	0.7	243.1	2.7	161.3	1.8
FC 0001	Citrus fruit (excl lemon juice, excl mandarin juice, excl orange juice, excl grapefruit juice, excl NES juice)	0.02	15.7	0.3	86.5	1.7	52.6	1.1	24.2	0.5	16.2	0.3	12.0	0.2
-	Citrus juice NES	0.0065	0.0	0.0	1.7	0.0	0.1	0.0	0.0	0.0	1.1	0.0	0.3	0.0
SB 0716	Coffee beans (incl green, incl extracts, incl roasted)	0.03	3.1	0.1	12.6	0.4	2.9	0.1	1.4	0.0	10.1	0.3	18.0	0.5
VC 0424	Cucumber	0.03	0.3	0.0	12.7	0.4	5.9	0.2	11.5	0.3	6.1	0.2	7.1	0.2
FB 0021	Currants, red, black, white	0.04	0.0	0.0	0.0	0.0	0.0	0.0	2.2	0.1	3.1	0.1	2.0	0.1
MO 0105	Edible offal (mammalian)	0	3.9	0.0	14.4	0.0	5.2	0.0	11.8	0.0	11.7	0.0	7.6	0.0
VC 0425	Gherkin	0.03	0.3	0.0	12.7	0.4	5.9	0.2	11.5	0.3	6.1	0.2	7.1	0.2
FB 0269	Grape (excl dried, excl juice, excl wine)	0.059	1.9	0.1	9.2	0.5	23.8	1.4	9.8	0.6	0.0	0.0	0.0	0.0
JF 0269	Grape juice	0.00051	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	1.4	0.0	1.0	0.0
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.13	0.0	0.0	2.9	0.4	0.4	0.1	0.4	0.1	2.3	0.3	1.7	0.2
JF 0203	Grapefruit juice	0.0065	0.0	0.0	0.2	0.0	0.1	0.0	0.1	0.0	1.1	0.0	0.2	0.0
-d	Lemon juice	0.0065	0.0	0.0	0.9	0.0	0.1	0.0	0.0	0.0	0.2	0.0	0.4	0.0
_	Mandarin + mandarin-like hybrid juice	0.0065	0.0	0.0	1.4	0.0	0.9	0.0	0.4	0.0	0.7	0.0	0.9	0.0
MM 0095	Meat from mammals other than marine mammals	0	27.7	0.0	116.5	0.0	38.5	0.0	55.1	0.0	90.2	0.0	131.3	0.0
ML 0106	Milks (excl processed products)	0	68.8	0.0	190.6	0.0	79.4	0.0	302.6	0.0	179.6	0.0	237.9	0.0
JF 0004	Orange juice	0.0065	0.0	0.0	2.1	0.0	4.4	0.0	1.4	0.0	16.2	0.1	22.6	0.1
FI 0350	Papaya	0.03	5.1	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
VO 0445	Peppers, sweet (incl. pimiento)	0.08	0.7	0.1	14.9	1.2	8.8	0.7	3.2	0.3	3.1	0.2	2.0	0.2
DF 0014	Plum, dried (prunes)	0.79	0.0	0.0	0.2	0.2	0.0	0.0	0.1	0.1	0.5	0.4	0.6	0.5
FP 0009	Pome fruit (excl apple juice)	0.2	0.5	0.1	79.9	16.0	21.8	4.4	43.6	8.7	51.5	10.3	35.1	7.0
FS 0012	Stone fruit (excl dried plums, incl dried apricots)	0.315	0.7	0.2	44.1	13.9	14.1	4.4	26.6	8.4	26.3	8.3	8.3	2.6
FB 0275	Strawberry	0.0615	0.0	0.0	5.0	0.3	2.0	0.1	1.7	0.1	5.2	0.3	4.1	0.3
VO 0448	Tomato (incl juice, incl paste, incl peeled)	0.08	11.8	0.9	185.0	14.8	118.0	9.4	60.7	4.9	31.6	2.5	40.9	3.3
TN 0085	Tree nuts	0.0155	4.2	0.1	21.5	0.3	3.9	0.1	3.0	0.0	5.5	0.1	10.2	0.2
_	Wine	0.018	1.3	0.0	76.8	1.4	1.1	0.0	15.4	0.3	68.8	1.2	25.6	0.5
	Total intake (µg/person) =	•	•	2.3	•	52.8	•	22.2	•	25.4	•	27.6	•	17.9
	Bodyweight per region (kg bw) =			60		60		60		60		60		60

Annex 3

SPIRODICLOFEN (237) International Estimated Daily Intake (IEDI) ADI = 0-0.0100 mg/kg bw

		STMR or	Diets: g/	person/day		Intake = o	laily intake	: μg/person						
		STMR-P	A		В		C		D		E		F	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
	ADI (µg/person) =			600		600		600		600		600		600
	%ADI =			0.4%		8.8%		3.7%		4.2%		4.6%		3.0%
	Rounded %ADI =			0%		9%		4%		4%		5%		3%

		STIVIN OI	Dicts.	g/pcrson/uc	ı,	make –	dairy iiita	ike. µg/per	3011							
		STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
JF 0226	Apple juice	0.004	0.1	0.0	0.5	0.0	0.1	0.0	0.0	0.0	0.7	0.0	0.9	0.0	5.7	0.0
DF 0226	Apple, dried	0.018	ND	_	ND	_	ND	_	ND	_	ND	_	ND	_	ND	_
_	Barley beer	0.011	21.9	0.2	102.7	1.1	29.5	0.3	12.6	0.1	100.9	1.1	82.2	0.9	218.8	2.4
FC 0001	Citrus fruit (excl lemon juice, excl mandarin juice, excl orange juice, excl grapefruit juice, excl NES juice)	0.02	15.1	0.3	153.9	3.1	3.4	0.1	41.7	0.8	218.9	4.4	23.1	0.5	18.0	0.4
_	Citrus juice NES	0.0065	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.1	0.0
SB 0716	Coffee beans (incl green, incl extracts, incl roasted)	0.03	0.2	0.0	7.0	0.2	0.5	0.0	0.2	0.0	5.3	0.2	5.7	0.2	12.4	0.4
VC 0424	Cucumber	0.03	7.9	0.2	0.6	0.0	0.2	0.0	0.0	0.0	0.4	0.0	5.5	0.2	5.3	0.2
FB 0021	Currants, red, black, white	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MO 0105	Edible offal (mammalian)	0	4.8	0.0	10.7	0.0	4.0	0.0	4.0	0.0	6.5	0.0	6.6	0.0	5.6	0.0
VC 0425	Gherkin	0.03	7.9	0.2	0.6	0.0	0.2	0.0	0.0	0.0	0.4	0.0	5.5	0.2	5.3	0.2
FB 0269	Grape (excl dried, excl juice, excl wine)	0.059	1.2	0.1	2.6	0.2	0.0	0.0	0.2	0.0	0.0	0.0	3.7	0.2	0.0	0.0
JF 0269	Grape juice	0.00051	0.0	0.0	0.1	0.0	1.0	0.0	0.0	0.0	0.6	0.0	0.4	0.0	3.6	0.0
DF 0269	Grape, dried (= currants, raisins and sultanas)	0.13	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.3	0.0	0.4	0.1	2.6	0.3
JF 0203	Grapefruit juice	0.0065	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.3	0.0	2.4	0.0
-d	Lemon juice	0.0065	0.3	0.0	0.0	0.0	1.0	0.0	0.3	0.0	0.0	0.0	0.5	0.0	2.6	0.0
_	Mandarin + mandarin-like hybrid juice	0.0065	0.5	0.0	0.5	0.0	0.1	0.0	0.0	0.0	0.7	0.0	1.4	0.0	0.0	0.0
MM 0095	Meat from mammals other than marine mammals	0	54.8	0.0	89.4	0.0	30.6	0.0	28.6	0.0	82.1	0.0	61.1	0.0	158.3	0.0

SPIRODICLOFEN (237)	International Estimated Daily Intake (IED	ADI = $0-0.0100 \text{ mg/kg bw}$
	STMR or Diets: g/person/day	Intake = daily intake: µg/person

	, ,	STMR or	or Diets: g/person/day In			Intake = daily intake: μg/person										
		STMR-P	G		Н		I		J		K		L		M	
Codex Code	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
ML 0106	Milks (excl processed products)	0	66.0	0.0	121.1	0.0	81.6	0.0	102.4	0.0	207.7	0.0	57.0	0.0	287.9	0.0
JF 0004	Orange juice	0.0065	0.2	0.0	1.0	0.0	3.5	0.0	0.0	0.0	1.3	0.0	6.4	0.0	56.8	0.4
FI 0350	Papaya	0.03	1.3	0.0	11.5	0.3	1.6	0.0	13.7	0.4	14.5	0.4	1.0	0.0	0.6	0.0
VO 0445	Peppers, sweet (incl. pimiento)	0.08	0.0	0.0	9.4	0.8	4.2	0.3	4.7	0.4	1.7	0.1	2.6	0.2	4.4	0.4
DF 0014	Plum, dried (prunes)	0.79	0.1	0.1	0.2	0.2	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.6	0.5
FP 0009	Pome fruit (excl apple juice)	0.2	20.8	4.2	11.6	2.3	3.3	0.7	0.1	0.0	10.7	2.1	23.6	4.7	36.9	7.4
FS 0012	Stone fruit (excl dried plums, incl dried apricots)	0.315	6.7	2.1	4.3	1.4	1.4	0.4	0.1	0.0	4.9	1.5	4.9	1.5	17.7	5.6
FB 0275	Strawberry	0.0615	0.0	0.0	1.8	0.1	0.1	0.0	0.0	0.0	0.3	0.0	6.2	0.4	5.9	0.4
VO 0448	Tomato (incl juice, incl paste, incl peeled)	0.08	23.5	1.9	31.7	2.5	15.0	1.2	16.2	1.3	35.6	2.8	9.9	0.8	103.0	8.2
TN 0085	Tree nuts	0.0155	16.3	0.3	15.7	0.2	9.7	0.2	1.9	0.0	19.1	0.3	29.0	0.4	5.6	0.1
_	Wine	0.018	1.0	0.0	0.9	0.0	6.8	0.1	0.1	0.0	3.4	0.1	3.6	0.1	31.0	0.6
	Total intake (µg/person) =			9.6		12.5		3.4		3.2		13.4		10.5		27.2
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
	ADI ($\mu g/person$) =			550		600		600		600		600		550		600
	%ADI =			1.8%		2.1%		0.6%		0.5%		2.2%		1.9%		4.5%
	Rounded %ADI =			2%		2%		1%		1%		2%		2%		5%

					Intake =	daily intak	ce: μg/perso	n						
Codex Code	Commodity	STMR-P mg/kg	A diet	intake	B diet	intake	C diet	intake	D diet	intake	E diet	intake	F diet	intake
VC 0045	Fruiting vegetables, cucurbits	0.225	26.6	6.0	107.5	24.2	95.9	21.6	82.2	18.5	25.4	5.7	23.2	5.2
FB 0269	Grape (excl dried, excl juice, excl wine)	0.83	1.9	1.6	9.2	7.7	23.8	19.8	9.8	8.1	0.0	0.0	0.0	0.0
JF 0269	Grape juice	0.11	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	1.4	0.2	1.0	0.1
DF 0269	Grape, dried (= currants, raisins and sultanas)	2.4	0.0	0.0	2.9	7.0	0.4	1.0	0.4	1.0	2.3	5.5	1.7	4.1
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0.02	19.1	0.4	160.8	3.2	61.2	1.2	243.6	4.9	230.1	4.6	204.7	4.1
VO 0448	Tomato (incl juice, excl paste, incl peeled)	0.195	9.8	1.9	179.8	35.1	104.0	20.3	56.7	11.1	16.4	3.2	22.9	4.5

Annex 3

ZOXAMII	DE (227)	International l								ADI = 0 - 0.5000 mg/kg bw					
		STMR or	Diets:	g/person/da	ay	Intake =	daily inta	ike: μg/perso	n						
		STMR-P	A		В		C		D		Е		F		
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	
Code															
-d	Tomato paste	0.19	0.5	0.1	1.3	0.2	3.5	0.7	1.0	0.2	3.8	0.7	4.5	0.9	
-	Wine	0.02	1.3	0.0	76.8	1.5	1.1	0.0	15.4	0.3	68.8	1.4	25.6	0.5	
	Total intake (µg/person)=			10.0		78.9		64.5		44.0		21.3		19.3	
	Bodyweight per region (kg bw) =			60		60		60		60		60		60	
	ADI (μ g/person)=			30000		30000		30000		30000		30000		30000	
	%ADI=			0.0%		0.3%		0.2%		0.1%		0.1%		0.1%	

0%

0%

0%

0%

0%

Rounded %ADI=

ZOXAMID	DE (227)	International Estimated Daily Intake (IEDI)								ADI = 0 - 0.5000 mg/kg bw						
		STMR or	Diets:	g/person/	day	Intake =	daily in	take: μg/p	person							
		STMR-P	G		Н		I		J		K		L		M	
Codex	Commodity	mg/kg	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake	diet	intake
Code																
VC 0045	Fruiting vegetables, cucurbits	0.225	69.7	15.7	25.9	5.8	14.9	3.4	18.0	4.1	18.7	4.2	39.1	8.8	44.2	9.9
FB 0269	Grape (excl dried, excl juice, excl wine)	0.83	1.2	1.0	2.6	2.2	0.0	0.0	0.2	0.1	0.0	0.0	3.7	3.1	0.0	0.0
JF 0269	Grape juice	0.11	0.0	0.0	0.1	0.0	1.0	0.1	0.0	0.0	0.6	0.1	0.4	0.0	3.6	0.4
DF 0269	Grape, dried (= currants, raisins and sultanas)	2.4	0.0	0.0	0.2	0.5	0.2	0.5	0.0	0.0	0.3	0.7	0.4	1.0	2.6	6.2
VR 0589	Potato (incl flour, frozen, starch, tapioca)	0.02	52.7	1.1	57.1	1.1	50.1	1.0	4.3	0.1	54.7	1.1	41.0	0.8	168.0	3.4
VO 0448	Tomato (incl juice, excl paste, incl peeled)	0.195	23.1	4.5	23.3	4.5	12.6	2.5	14.6	2.8	33.2	6.5	4.3	0.8	98.2	19.1
-d	Tomato paste	0.19	0.1	0.0	2.1	0.4	0.6	0.1	0.4	0.1	0.6	0.1	1.4	0.3	1.2	0.2
-	Wine	0.02	1.0	0.0	0.9	0.0	6.8	0.1	0.1	0.0	3.4	0.1	3.6	0.1	31.0	0.6
	Total intake (µg/person)=			22.3		14.6		7.6		7.2		12.7		14.9		39.9
	Bodyweight per region (kg bw) =			55		60		60		60		60		55		60
	ADI (µg/person)=			27500		30000		30000		30000		30000		27500		30000
	%ADI=			0.1%		0.0%		0.0%		0.0%		0.0%		0.1%		0.1%
	Rounded %ADI=			0%		0%		0%		0%		0%		0%		0%

0%

ANNEX 4: INTERNATIONAL ESTIMATES OF SHORT-TERM DIETARY INTAKES OF PESTICIDE RESIDUES

Benalaxyl (155) International estimate of short term intake (IESTI) for

GENERAL POPULATION

Acute RfD= 0.100 mg/kg bw (100 μg/kg bw)

Maximum %ARfD: 4%

Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Large porti	on diet Body weight (kg)	Large portion, g/person	Unit weig Unit weight, g	ht Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FB 0269	Grape (excl wine)	-	0.17	AUS	67.0	513	125	FRA	118	3	2a	1.90	2%
JF 0269	Grape juice	-	0.018	FRA	52.2	696	-	-	ND	ND	3	ND	-
DF 0269	Grapes, dried (= currants, raisins and sultanas)	-	0.17	USA	65.0	70	-	-	ND	ND	1	0.18	0%
VL 0482	Lettuce, head	-	0.43	USA	65.0	213	450	JPN	450	3	2b	4.22	4%
VL 0482	Lettuce, head	-	0.43	USA	65.0	213	558	UNK	413	3	2b	4.22	4%
VL 0482	Lettuce, head	-	0.43	USA	65.0	213	539	USA	512	3	2b	4.22	4%
VL 0482	Lettuce, head	-	0.43	USA	65.0	213	450	BEL	360	3	2b	4.22	4%
VC 0046	Melons, except watermelon	-	0.05	FRA	52.2	1044	700	FRA	420	3	2a	1.80	2%
VC 0046	Melons, except watermelon	-	0.05	FRA	52.2	1044	700	JPN	700	3	2a	2.34	2%
VC 0046	Melons, except watermelon	-	0.05	FRA	52.2	1044	1000	USA	630	3	2a	2.21	2%
VC 0046	Melons, except watermelon	-	0.05	FRA	52.2	1044	720	BEL	540	3	2a	2.03	2%
VO 0448	Tomato	-	0.05	FRA	52.2	387	105	FRA	102	3	2a	0.57	1%
VO 0448	Tomato	-	0.05	FRA	52.2	387	150	JPN	150	3	2a	0.66	1%
VO 0448	Tomato	-	0.05	FRA	52.2	387	85	UNK	85	3	2a	0.53	1%
VO 0448	Tomato	-	0.05	FRA	52.2	387	123	USA	123	3	2a	0.61	1%
VO 0448	Tomato	-	0.05	FRA	52.2	387	150	BEL	143	3	2a	0.64	1%
JF 0448	Tomato juice	-	0.005	-	-	ND	-	-	ND	ND	3	ND	-
-	Tomato paste	-	0.05	-	-	ND	-	-	ND	ND	ND	ND	-
-	Tomatoes peeled	-	0.05	-	-	ND	-	-	ND	ND	ND	ND	-
VC 0432	Watermelon	-	0.02	USA	65.0	1939	3000	JPN	3000	3	2b	1.79	2%
VC 0432	Watermelon	-	0.02	USA	65.0	1939	4518	USA	2078	3	2b	1.79	2%
-	Wine	-	0.035	FRA	52.2	1006	-	-	ND	ND	3	ND	-

Annex 4

Benalaxyl (155)

International estimate of short term intake (IESTI) for

CHILDREN UP TO 6 YEARS

Acute RfD= 0.100 mg/kg bw (100 µg/kg bw)

Maximum %ARfD: 9%

				Large porti	on diet		Unit weigh	ht					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FB 0269	Grape (excl wine)	-	0.17	AUS	19.0	342	125	FRA	118	3	2a	5.16	5%
JF 0269	Grape juice	-	0.018	FRA	18.9	500	-	-	ND	ND	3	ND	-
DF 0269	Grapes, dried (= currants, raisins and sultanas)	-	0.17	USA	15.0	59	=	-	ND	ND	1	0.67	1%
VL 0482	Lettuce, head	-	0.43	Thai	17.1	117	450	JPN	450	3	2b	8.81	9%
VL 0482	Lettuce, head	-	0.43	Thai	17.1	117	558	UNK	413	3	2b	8.81	9%
VL 0482	Lettuce, head	-	0.43	Thai	17.1	117	539	USA	512	3	2b	8.81	9%
VL 0482	Lettuce, head	-	0.43	Thai	17.1	117	450	BEL	360	3	2b	8.81	9%
VC 0046	Melons, except watermelon	-	0.05	FRA	18.9	597	700	FRA	420	3	2a	3.80	4%
VC 0046	Melons, except watermelon	-	0.05	FRA	18.9	597	700	JPN	700	3	2b	4.74	5%
VC 0046	Melons, except watermelon	-	0.05	FRA	18.9	597	1000	USA	630	3	2b	4.74	5%
VC 0046	Melons, except watermelon	-	0.05	FRA	18.9	597	720	BEL	540	3	2a	4.44	4%
VO 0448	Tomato	-	0.05	FRA	18.9	215	105	FRA	102	3	2a	1.11	1%
VO 0448	Tomato	-	0.05	FRA	18.9	215	150	JPN	150	3	2a	1.36	1%
VO 0448	Tomato	-	0.05	FRA	18.9	215	85	UNK	85	3	2a	1.02	1%
VO 0448	Tomato	-	0.05	FRA	18.9	215	123	USA	123	3	2a	1.22	1%
VO 0448	Tomato	-	0.05	FRA	18.9	215	150	BEL	143	3	2a	1.32	1%
JF 0448	Tomato juice	-	0.005	-	-	ND	-	-	ND	ND	3	ND	-
-	Tomato paste	-	0.05	-	-	ND	-	-	ND	ND	ND	ND	-
-	Tomatoes peeled	-	0.05	-	-	ND	-	-	ND	ND	ND	ND	-
VC 0432	Watermelon	-	0.02	AUS	19.0	1473	3000	JPN	3000	3	2b	4.65	5%
VC 0432	Watermelon	-	0.02	AUS	19.0	1473	4518	USA	2078	3	2b	4.65	5%
-	Wine	-	0.035	FRA	18.9	89	-	-	ND	ND	3	ND	-

Annex 4

BUPROFEZIN (173)

International estimate of short term intake (IESTI) for

 $ARfD = 0.500 \text{ mg/kg bw } (500 \mu g/kg \text{ bw})$

GENERAL POPULATION Maximum %ARfD: 30% Large portion diet Unit weight Codex Commodity STMR HR or Country Body Unit Country Unit Varia-bility Case IESTI μg/kg % ARfD Large Code HR-P weight portion, weight, weight, factor bw/day rounded STMRmg/kg edible (kg) g/person g P mg/kg portion, TN 0660 Almonds 0.05 JPN 52.6 74 ND ND 0.07 0% FP 0226 0.99 USA 65.0 1348 JPN 3 2a 26.62 5% 200 200 Apple JF 0226 0.18 ND ND ND 3 ND Apple juice FS 0013 Cherries 1.32 FRA 52.2 360 5 JPN 5 9.11 2% VC 0424 0.41 FRA 52.2 348 400 FRA 360 3 2b 8.20 2% Cucumber VC 0425 Gherkin 0.41 NLD 63.0 96 USA 81 3 2a 1.68 0% 116 3 3% FB 0269 0.74 AUS 67.0 513 456 **SWE** 438 2a 15.34 Grape (excl wine) 3 JF 0269 Grape juice 0.056 FRA 52.2 696 ND ND 0.75 0% DF 0269 Grapes, dried (= currants, raisins 0.999 USA 65.0 70 ND ND 1.08 0% and sultanas) VC 0046 Melons, except watermelon 52.2 1044 700 JPN 700 3 2a 19.20 4% 0.41 FRA VC 0046 Melons, except watermelon, stated 0.41 USA 65.0 606 500 JPN 500 3 2a 10.13 2% as canteloupe, VC 4199 FS 0245 Nectarine 8.13 FRA 52.2 604 136 USA 125 3 2a 133.12 30% FT 0305 Olive 1.66 FRA 52.2 116 ND ND ND ND OR 0305 ND ND 3 3.18 Olive oil, refined 3.49 FRA 52.2 48 1% FS 0247 SAF 685 3 2a 143.79 30% Peach 8.13 55.7 150 JPN 150 FP 0230 3 2a Pear 3.65 FRA 52.2 568 180 JPN 180 64.88 10% VO 0444 Peppers, chilli 1.1 USA 65.0 90 45 USA 43 3 2a 2.99 1% VO 0445 Peppers, sweet (incl. pim(i)ento) 1.1 FRA 52.2 90 185 BEL 148 3 2b 5.71 1% FS 0014 Plum (incl dried) 0.55 Thai 53.5 480 66 USA 62 3 2a 6.21 1% DF 0014 5 1.63 USA 303 6 FRA 1 7.60 2% Plum, dried (prunes) 65.0 VC 0431 0.41 FRA 52.2 351 300 FRA 270 3 2a 7.00 1% Squash, summer (= courgette) VC 0432 3 2b Watermelon 0.41 USA 65.0 1939 4518 USA 2078 36.69 7% Wine 0.102 FRA 52.2 1006 ND ND 3 1.97 0% VC 0433 Winter squash (= pumpkin), stated SAF 55.7 JPN 3 2a 22.10 4% 0.41 1003 1000 1000 as pumpkin, VC 0429

Annex 4

BUPROFEZIN (173)

International estimate of short term intake (IESTI) for

ARfD= 0.500 mg/kg bw (500 µg/kg bw)

CHILDREN UP TO 6 YEARS

Maximum %ARfD: 50%

							Unit weigh	ht					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% ARfD rounded
TN 0660	Almonds	-	0.05	USA	15.0	13	-	-	ND	ND	1	0.04	0%
FP 0226	Apple	-	0.99	USA	15.0	679	200	JPN	200	3	2a	71.20	10%
JF 0226	Apple juice	0.18	-	-	-	ND	-	-	ND	ND	3	ND	-
FS 0013	Cherries	-	1.32	AUS	19.0	250	5	FRA	4	1	1	17.37	3%
VC 0424	Cucumber	-	0.41	NLD	17.0	162	400	FRA	360	3	2b	11.72	2%
VC 0425	Gherkin	-	0.41	NLD	17.0	56	116	USA	81	3	2b	4.02	1%
FB 0269	Grape (excl wine)	-	0.74	AUS	19.0	342	456	SWE	438	3	2b	39.96	8%
JF 0269	Grape juice	0.056	-	FRA	18.9	500	-	-	ND	ND	3	1.48	0%
DF 0269	Grapes, dried (= currants, raisins and sultanas)	-	0.999	USA	15.0	59	-	-	ND	ND	1	3.95	1%
VC 0046	Melons, except watermelon	-	0.41	FRA	18.9	597	1000	USA	630	3	2b	38.84	8%
VC 0046	Melons, except watermelon, stated as canteloupe, VC 4199	-	0.41	USA	15.0	270	552	USA	276	3	2b	22.12	4%
FS 0245	Nectarine	-	8.13	AUS	19.0	302	136	USA	125	3	2a	236.34	50%
FS 0245	Nectarine	-	8.13	AUS	19.0	302	110	BEL	94	3	2a	209.28	40%
FT 0305	Olive	-	1.66	FRA	18.9	202	-	-	ND	ND	ND	ND	-
OR 0305	Olive oil, refined	3.49	-	FRA	18.9	25	-	-	ND	ND	3	4.61	1%
FS 0247	Peach	-	8.13	AUS	19.0	315	150	JPN	150	3	2a	263.37	50%
FP 0230	Pear	-	3.65	UNK	14.5	279	180	JPN	180	3	2a	160.85	30%
VO 0444	Peppers, chilli	-	1.1	AUS	19.0	31	45	USA	43	3	2b	5.30	1%
VO 0445	Peppers, sweet (incl. pim(i)ento)	-	1.1	Thai	17.1	71	119	USA	98	3	2b	13.73	3%
FS 0014	Plum (incl dried)	-	0.55	Thai	17.1	377	66	USA	62	3	2a	16.11	3%
DF 0014	Plum, dried (prunes)	-	1.63	AUS	19.0	170	6	FRA	5	1	1	14.59	3%
VC 0431	Squash, summer (= courgette)	-	0.41	AUS	19.0	219	300	FRA	270	3	2b	14.17	3%
VC 0432	Watermelon	-	0.41	AUS	19.0	1473	4518	USA	2078	3	2b	95.33	20%
-	Wine	0.102	-	FRA	18.9	89	-	-	ND	ND	3	0.48	0%
VC 0433	Winter squash (= pumpkin), stated as pumpkin, VC 0429	-	0.41	SAF	14.2	224	1000	JPN	1000	3	2b	19.43	4%

CARBOFURAN (096)

International estimate of short term intake (IESTI) for

ARfD= 0.001 mg/kg bw $(1 \mu g/kg bw)$

GENER Al	POPIII	ATION

Maximum %ARfD:

				Large portion	on diet		Unit weigh	ıt					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FI 0327	Banana	-	0.02	FRA	52.2	714	720	JPN	720	3	2b	0.82	80%
FC 0206	Mandarin	-	0.01	FRA	52.2	639	168	USA	124	3	2a	0.17	20%
FC 0004	Orange, sweet, sour + orange-like hybrid	-	0.01	FRA	52.2	1044	200	JPN	200	3	2a	0.28	30%

CARBOFURAN (096)

International estimate of short term intake (IESTI) for

ARfD= 0.001 mg/kg bw $(1 \mu g/kg bw)$

CHILDREN UP TO 6 YEARS

Maximum %ARfD:

150%

				Large portion diet Uni				Unit weight						
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded	
FI 0327	Banana	-	0.02	FRA	18.9	477	900	FRA	612	3	2b	1.51	150%	
FC 0206	Mandarin	-	0.01	JPN	15.9	353	168	USA	124	3	2a	0.38	40%	
FC 0004	Orange, sweet, sour + orange-like hybrid	-	0.01	UNK	14.5	495	200	JPN	200	3	2a	0.62	60%	

CHORPYRIFOS METHYL (090)

International estimate of short term intake (IESTI) for

ARfD= 0.100 mg/kg bw (100 µg/kg bw)

		GENERAL	POPULA	TION							Maximun	n %ARfD: 109	%
		STMR or	HR or	Large portion	diet		Unit weigh	nt	Unit weight,		_	_	
Codex	Commodity	STMR-P	HR-P	Country	Body	Large	Unit	Country	edible	Varia-	Case	IESTI	% acute
Code		mg/kg	mg/kg		weight	portion,	weight, g		portion, g	bility		μg/kg	RfD
					(kg)	g/person				factor		bw/day	rounded
FP 0226	Apple	-	0.56	USA	65.0	1348	110	FRA	100	3	2a	13.34	10%
JF 0226	Apple juice	0.005	-	-	-	ND	-	-	ND	ND	3	ND	-
FS 0240	Apricot	-	0.26	FRA	52.2	369	40	FRA	37	3	2a	2.21	2%
GC 0640	Barley	-	2.2	NLD	63.0	378	-	-	ND	ND	3	ND	-
-	Barley beer	0.002	-	-	-	ND	-	-	ND	ND	3	ND	-

Annex 4

CHORPYRIFOS METHYL (090)

International estimate of short term intake (IESTI) for

ARfD= 0.100 mg/kg bw (100 µg/kg bw)

Maximum %ARfD: 10%

GENERAL POPULATION

		STMR or	HR or	Large portion	n diet		Unit weig	ht	Unit weight,		1110111110	iii ///AIXID. 1	0 70
Codex	Commodity	STMR-P	HR-P	Country	Body	Large	Unit	Country	edible	Varia-	Case	IESTI	% acute
Code		mg/kg	mg/kg		weight	portion,	weight, g	•	portion, g	bility		μg/kg	RfD
					(kg)	g/person			1	factor		bw/day	rounded
FM 0812	Cattle milk fat	0.01	-	NLD	63.0	79	-	-	ND	ND	3	0.01	0%
FS 0013	Cherries	-	0.26	FRA	52.2	360	5	FRA	4	1	1	1.79	2%
MO 0105	Edible offal (mammalian)	-	0	FRA	52.2	327	-	-	ND	ND	1	0.00	0%
VO 0440	Egg plant	-	0.72	AUS	67.0	487	80	JPN	80	3	2a	6.95	7%
PE 0112	Eggs	-	0	Thai	53.5	195	-	-	ND	ND	1	0.00	0%
FB 0269	Grape (excl wine)	-	0.53	AUS	67.0	513	150	JPN	150	3	2a	6.43	6%
FC 0203	Grapefruit	-	0.01	JPN	52.6	947	400	JPN	400	3	2a	0.33	0%
DF 0269	Grapes, dried (= currants, raisins and sultanas)	-	0.001	USA	65.0	70	-	-	ND	ND	1	0.00	0%
FC 0204	Lemon	-	0.01	FRA	52.2	111	100	FRA	64	3	2a	0.05	0%
FP 0228	Loquat	-	0.56	AUS	67.0	64	-	-	ND	ND	ND	ND	-
GC 0645	Maize	-	2.2	FRA	52.2	212	-	-	ND	ND	3	ND	-
MF 0100	Mammalian fats (except milk fats)	-	0.03	-	-	ND	-	-	ND	ND	1	ND	-
FC 0206	Mandarin	-	0.01	FRA	52.2	639	100	FRA	72	3	2a	0.15	0%
MM 0095	Meat from mammals other than marine mammals: 20% as fat	-	0.055	AUS	67.0	104	-	-	ND	ND	1	0.02	0%
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	-	0	AUS	67.0	417	-	-	ND	ND	1	0.00	0%
ML 0106	Milks	0	-	USA	65.0	2466	-	-	ND	ND	3	0.00	0%
FS 0245	Nectarine	-	0.26	FRA	52.2	604	110	FRA	99	3	2a	4.00	4%
JF 0004	Orange juice	0	-	-	-	ND	-	-	ND	ND	3	ND	-
FC 0004	Orange, sweet, sour + orange-like hybrid	-	0.01	FRA	52.2	1044	190	FRA	137	3	2a	0.25	0%
FS 0247	Peach	-	0.26	SAF	55.7	685	110	FRA	99	3	2a	4.12	4%
FP 0230	Pear	-	0.56	FRA	52.2	568	100	FRA	89	3	2a	8.00	8%
VO 0444	Peppers, chilli	-	0.72	USA	65.0	90	45	USA	43	3	2a	1.96	2%
VO 0445	Peppers, sweet (incl. pim(i)ento)	-	0.72	FRA	52.2	90	172	UNK	160	3	2b	3.74	4%
FS 0014	Plum (incl dried)	-	0.26	Thai	53.5	480	40	JPN	40	3	2a	2.72	3%
VR 0589	Potato	-	0	FRA	52.2	639	200	FRA	160	3	2a	0.00	0%
PM 0110	Poultry meat: 10% as fat	-	0.004	AUS	67.0	43	-	-	ND	ND	1	0.00	0%
PM 0110	Poultry meat: 90% as muscle	-	0	AUS	67.0	388	-	-	ND	ND	1	0.00	0%
PO 0111	Poultry, edible offal of	-	0	USA	65.0	248	-	-	ND	ND	1	0.00	0%
PF 0111	Poultry, fats	-	0.01	USA	65.0	43	-	-	ND	ND	1	0.01	0%
FP 0231	Quince	-	0.56	AUS	67.0	175	92	USA	56	3	2a	2.40	2%

Annex 4

CHORPYRIFOS METHYL (090)

International estimate of short term intake (IESTI) for

ARfD= $0.100 \text{ mg/kg bw} (100 \mu \text{g/kg bw})$

		GENERAL	L POPULA	TION							Maximu	m %ARfD: 10	1%
		STMR or	HR or	Large portion	n diet		Unit weigh	ht	Unit weight,				
Codex	Commodity	STMR-P	HR-P	Country	Body	Large	Unit	Country	edible	Varia-	Case	IESTI	% acute
Code		mg/kg	mg/kg		weight	portion,	weight, g		portion, g	bility		μg/kg	RfD
					(kg)	g/person				factor		bw/day	rounded
FC 0005	Shaddock or pomelo + shaddock-like	-	0.01	Thai	53.5	554	210	FRA	126	3	2a	0.15	0%
	hybrid												
FM 0822	Sheep milk fat	0.01	-	NLD	63.0	28	-	-	ND	ND	3	0.00	0%
FB 0275	Strawberry	-	0.04	FRA	52.2	531	14	FRA	13	1	1	0.41	0%
VO 0448	Tomato	-	0.92	FRA	52.2	387	105	FRA	102	3	2a	10.41	10%
JF 0448	Tomato juice	0.002	-	-	-	ND	-	-	ND	ND	3	ND	-
GC 0654	Wheat	-	2.2	FRA	52.2	703	-	-	ND	ND	ND	ND	-
CM 0654	Wheat bran, unprocessed	-	5.39	USA	65.0	80	-	-	ND	ND	1	6.63	7%
CF 1211	Wheat flour	-	0.55	FRA	52.2	479	-	-	ND	ND	1	5.04	5%
CF 1210	Wheat germ	-	4.18	FRA	52.2	174	-	-	ND	ND	1	13.92	10%
CF 1212	Wheat wholemeal	-	2.2	USA	65.0	155	-	-	ND	ND	1	5.26	5%
CP 1211	White bread	-	0.11	FRA	52.2	474	-	-	ND	ND	1	1.00	1%
CP 1212	Wholemeal bread	-	1.06	SAF	55.7	395	-	-	ND	ND	1	7.53	8%
-	Wine	0.002	-	FRA	52.2	1006	-	-	ND	ND	3	0.04	0%

CHORPYRIFOS METHYL (090)

International estimate of short term intake (IESTI) for

 $ARfD = 0.100 \text{ mg/kg bw } (100 \mu g/kg \text{ bw})$

CHILDREN UP TO 6 YEARS Maximum %ARfD: 30% STMR or Unit weight Unit weight HR or Large portion diet Codex STMR-P HR-P Country Varia-Case IESTI μg/kg % acute RfD Commodity Country Body Unit , edible Large Code mg/kg mg/kg weight portion, weight, portion, g bility bw/day rounded (kg) g/person factor 88 FC 0204 Lemon 0.01 JPN 15.9 100 FRA 64 2a 0.14 0% 679 2a FP 0226 Apple 0.56 USA 15.0 110 FRA 100 32.81 30% JF 0226 0.005 ND ND ND ND Apple juice FS 0240 0.26 AUS 19.0 414 40 FRA 37 2a 6.69 7% Apricot 2.2 14 GC 0640 Barley AUS 19.0 ND ND ND 0.002 ND ND ND ND Barley beer 0.016 NLD 35 ND FM 0812 Cattle milk fat 17.0 ND 0.03 0% 250 FS 0013 Cherries 0.26 AUS 19.0 FRA 4 3.42 3% 86 MO 0105 Edible offal (mammalian) FRA 18.9 ND ND 0.00 0%

CHORPYRIFOS METHYL (090) International estimate of short term intake (IESTI) for

CHILDREN UP TO 6 YEARS

ARfD= 0.100 mg/kg bw (100 µg/kg bw)
Maximum %ARfD: 30%

		CHILDREN UP	TOUTEAL	vo.						1	Maximum %1	ARID. 30 %	
		STMR or	HR or	Large portion			Unit wei		Unit weight		1		
Codex	Commodity	STMR-P	HR-P	Country	Body	Large	Unit	Country	, edible	Varia-	Case	IESTI μg/kg	% acute RfD
Code		mg/kg	mg/kg		weight	portion,	weight,		portion, g	bility		bw/day	rounded
VO 0440	Egg plant		0.72	JPN	(kg) 15.9	g/person 219	g 80	JPN	80	factor 3	2a	17.17	20%
		-		Thai			80	JPN	ND	ND	2a		0%
PE 0112	Eggs	-	0		17.1	109	150	-			1	0.00	
FB 0269	Grape (excl wine)	-	0.53	AUS	19.0	342	150	JPN	150	3	2a	17.91	20%
FC 0203	Grapefruit	-	0.01	FRA	18.9	405	400	JPN	400	3	2a	0.64	1%
DF 0269	Grapes, dried (= currants, raisins and sultanas)	-	0.001	USA	15.0	59	-	-	ND	ND	1	0.00	0%
FP 0228	Loquat	-	0.56	-	-	ND	-	-	ND	ND	ND	ND	-
GC 0645	Maize	-	2.2	FRA	18.9	117	-	-	ND	ND	3	ND	-
FC 0206	Mandarin	-	0.01	JPN	15.9	353	100	FRA	72	3	2a	0.31	0%
MM 0095	Meat from mammals other than marine mammals: 20% as fat	-	0.055	AUS	19.0	52	-	-	ND	ND	1	0.15	0%
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	-	0	AUS	19.0	208	-	-	ND	ND	1	0.00	0%
ML 0106	Milks	0.0006	-	USA	15.0	1286	-	-	ND	ND	3	0.05	0%
FS 0245	Nectarine	-	0.26	AUS	19.0	302	110	FRA	99	3	2a	6.84	7%
JF 0004	Orange juice	0	-	-	-	ND	-	-	ND	ND	3	ND	-
FC 0004	Orange, sweet, sour + orange- like hybrid	-	0.01	UNK	14.5	495	190	FRA	137	3	2a	0.53	1%
FS 0247	Peach	-	0.26	AUS	19.0	315	110	FRA	99	3	2a	7.03	7%
FP 0230	Pear	-	0.56	UNK	14.5	279	100	FRA	89	3	2a	17.65	20%
VO 0444	Peppers, chilli	-	0.72	AUS	19.0	31	45	USA	43	3	2b	3.47	3%
VO 0445	Peppers, sweet (incl. pim(i)ento)	-	0.72	Thai	17.1	71	172	UNK	160	3	2b	8.99	9%
FS 0014	Plum (incl dried)	-	0.26	Thai	17.1	377	40	JPN	40	3	2a	6.95	7%
VR 0589	Potato	-	0	SAF	14.2	300	200	FRA	160	3	2a	0.00	0%
PM 0110	Poultry meat: 10% as fat	-	0.004	AUS	19.0	22	-	-	ND	ND	1	0.00	0%
PM 0110	Poultry meat: 90% as muscle	-	0	AUS	19.0	201	-	-	ND	ND	1	0.00	0%
PO 0111	Poultry, edible offal of	-	0	FRA	18.9	99	-	-	ND	ND	1	0.00	0%
FP 0231	Quince	-	0.56	NLD	17.0	1	92	USA	56	3	2b	0.10	0%
FC 0005	Shaddock or pomelo + shaddock-like hybrid	-	0.01	Thai	17.1	327	210	FRA	126	3	2a	0.34	0%
FM 0822	Sheep milk fat	0.016	-	_	-	ND	-	-	ND	ND	3	ND	_
FM 0822	Sheep milk fat	0.016	-	-	-	ND	-	-	ND	ND	3	ND	-

Annex 4

CHORPYRIFOS METHYL (090)

International estimate of short term intake (IESTI) for

ARfD= 0.100 mg/kg bw (100 μg/kg bw)

		CHILDREN U	JP TO 6 YEA	RS							Maximum %A	ARfD: 30%	
		STMR or	HR or	Large portion	n diet		Unit wei	ght	Unit weight				
Codex	Commodity	STMR-P	HR-P	Country	Body	Large	Unit	Country	, edible	Varia-	Case	IESTI μg/kg	% acute RfD
Code		mg/kg	mg/kg		weight	portion,	weight,		portion, g	bility		bw/day	rounded
					(kg)	g/person	g			factor			
FB 0275	Strawberry	-	0.04	FRA	18.9	354	14	FRA	13	1	1	0.75	1%
VO 0448	Tomato	-	0.92	FRA	18.9	215	105	FRA	102	3	2a	20.40	20%
JF 0448	Tomato juice	0.002	-	-	-	ND	-	-	ND	ND	3	ND	-
GC 0654	Wheat	-	2.2	FRA	18.9	384	-	-	ND	ND	ND	ND	-
CM 0654	Wheat bran, unprocessed	-	5.39	USA	15.0	30	-	-	ND	ND	1	10.67	10%
CF 1211	Wheat flour	-	0.55	FRA	18.9	245	-	-	ND	ND	1	7.12	7%
CF 1210	Wheat germ	-	4.18	USA	15.0	8	-	-	ND	ND	1	2.22	2%
CF 1212	Wheat wholemeal	-	2.2	USA	15.0	74	-	-	ND	ND	1	10.80	10%
CP 1211	White bread	-	0.11	SAF	14.2	270	-	-	ND	ND	1	2.09	2%
CP 1212	Wholemeal bread	-	1.06	SAF	14.2	240	-	-	ND	ND	1	17.91	20%
-	Wine	0.002	-	FRA	18.9	89	-	-	ND	ND	3	0.01	0%

CYPERMETHRIN (118)

International estimate of short term intake (IESTI) for GENERAL POPULATION

ARfD= 0.040 mg/kg bw (40 μg/kg bw)

Maximum %ARfD: 20%

		GENERAL	POPULATIO	111							Maximul	n %AKID:	20%
				Large porti	on diet		Unit weight						
Codex	Commodity	STMR or	HR or HR-P	Country	Body	Large	Unit weight, (Country	Unit weight,	Varia-bility	Case	IESTI μg/kg	% acute RfI
Code		STMR-P	mg/kg		weight (kg)	portion,	g		edible	factor		bw/day	rounded
		mg/kg				g/person			portion, g				
GC 0640	Barley	-	1.5	NLD	63.0	378		-	ND	ND	1	9.00	20%
GC 0640	Barley (beer only)	0.04	_	AUS	67.0	528	- -	-	ND	ND	3	0.32	1%
PE 0112	Eggs	-	0.006	Thai	53.5	195		-	ND	ND	1	0.02	0%
GC 0647	Oats	-	1.5	FRA	62.3	305		_	ND	ND	1	7.35	20%
PM 0110	Poultry meat: 10% as fat	-	0.048	AUS	67.0	43		_	ND	ND	1	0.03	0%
PM 0110	Poultry meat: 90% as muscle	-	0.007	AUS	67.0	388		_	ND	ND	1	0.04	0%
GC 0650	Rye	-	1.5	NLD	63.0	77		-	ND	ND	1	1.83	5%
GC 0654	Wheat	-	1.5	USA	65.0	383		-	ND	ND	1	8.84	20%
CM 0654	Wheat bran, unprocessed	3.45	-	USA	65.0	80		_	ND	ND	3	4.24	10%
CF 1211	Wheat flour	0.48	-	USA	65.0	365		-	ND	ND	3	2.70	7%

CYPERMETHRIN (118)

International estimate of short term intake (IESTI) for CHILDREN UP TO 6 YEARS

ARfD= 0.040 mg/kg bw (40 µg/kg bw) Maximum %ARfD: 40

		CHILDRE	N UP IU 0	LEAKS							Maxilliui	II %AKID:	40%
				Large port	ion diet		Unit weight				_		
Codex	Commodity	STMR or	HR or HR-	Country	Body	Large	Unit weight	, Country	Unit weight,	Varia-bility	Case	IESTI μg/kg	% acute RfD
Code		STMR-P	P mg/kg		weight	portion,	g		edible	factor		bw/day	rounded
		mg/kg			(kg)	g/person			portion, g				
GC 0640	Barley	-	1.5	AUS	19.0	14	-	-	ND	ND	1	1.10	3%
GC 0640	Barley (beer only)	0.04	-	AUS	19.0	12	-	-	ND	ND	3	0.02	0%
PE 0112	Eggs	-	0.006	Thai	17.1	109	-	-	ND	ND	1	0.04	0%
GC 0647	Oats	-	1.5	USA	15.0	62	-	-	ND	ND	1	6.23	20%
PM 0110	Poultry meat: 10% as fat	-	0.048	AUS	19.0	22	-	-	ND	ND	1	0.06	0%
PM 0110	Poultry meat: 90% as muscle	-	0.007	AUS	19.0	201	-	-	ND	ND	1	0.07	0%
GC 0650	Rye	-	1.5	NLD	17.0	37	-	-	ND	ND	1	3.26	8%
GC 0654	Wheat	-	1.5	USA	15.0	151	-	-	ND	ND	1	15.11	40%
CM 0654	Wheat bran, unprocessed	3.45	-	USA	15.0	30	-	-	ND	ND	3	6.83	20%
CF 1211	Wheat flour	0.48	-	AUS	19.0	194	-	-	ND	ND	3	4.91	10%

FLUOPICOLIDE (235)

International estimate of short term intake (IESTI) for

 $ARfD = 0.600 \text{ mg/kg bw } (600 \mu g/kg \text{ bw})$

12001100	32122 (200)				(,							0 (pro	-6,
		GENERAL	POPULAT	ION							Maximu	m %ARfD:	70%
				Large portion	on diet		Unit weigh	t					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FB 0269	Grape (incl wine)	-	1.2	FRA	52.2	1087	125	FRA	118	3	2a	30.40	5%
VB 0400	Broccoli	-	0.69	FRA	52.2	537	608	USA	474	3	2a	19.64	3%
VB 0402	Brussels sprouts	-	0.13	FRA	52.2	351	7	FRA	5	1	1	0.87	0%
VB 0041	Cabbage, head	-	4	SAF	55.7	362	771	UNK	540	3	2b	78.00	10%
VB 0404	Cauliflower (head)	-	0.69	UNK	70.1	579	1500	JPN	1500	3	2b	17.10	3%
VS 0624	Celery (whole)	-	14	FRA	52.2	238	700	BEL	462	3	2b	191.10	30%
VL 0464	Chard	-	17	NLD	63.0	569	-	-	ND	ND	ND	ND	-
VL 0469	Chicory leaves (head)	-	17	USA	65.0	40	53	USA	47	3	2b	31.62	5%
VL 0469	Chicory leaves (head)	-	17	USA	65.0	40	100	BEL	85	3	2b	31.62	5%
VL 0467	Chinese cabbage, type pe-tsai	-	17	AUS	67.0	571	1500	JPN	1500	3	2b	434.52	70%
VL 0470	Corn salad	-	17	FRA	52.2	84	-	_	ND	ND	ND	ND	-

Annex 4

FLUOPICOLIDE (235)

International estimate of short term intake (IESTI) for

 $ARfD = 0.600 \text{ mg/kg bw } (600 \mu g/kg \text{ bw})$

GENERAL POPULATION

Maximum %ARfD: 70%

		OLIVER	TOI OLAI	1011							TVIUZITITE	iii //AKID.	7070
				Large portion	on diet		Unit weigh	nt					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
VL 0510	Cos lettuce	-	17	JPN	52.6	144	-	_	ND	ND	ND	ND	-
VL 0472	Cress, garden	-	17	AUS	67.0	27	-	_	ND	ND	ND	ND	-
VC 0424	Cucumber	-	0.3	FRA	52.2	348	400	FRA	360	3	2b	6.00	1%
MO 0105	Edible offal (mammalian)	-	0	FRA	52.2	327	-	_	ND	ND	1	0.00	0%
VO 0440	Egg plant	-	0.58	AUS	67.0	487	548	USA	444	3	2a	11.90	2%
PE 0112	Eggs	-	0	Thai	53.5	195	-	-	ND	ND	1	0.00	0%
VL 0476	Endive	-	17	FRA	52.2	339	-	-	ND	ND	ND	ND	-
DF 0269	Grapes, dried (= currants, raisins and sultanas)	-	1.4	USA	65.0	70	-	-	ND	ND	1	1.51	0%
VL 0480	Kale	-	17	NLD	63.0	337	-	-	ND	ND	ND	ND	-
VL 0482	Lettuce, head	-	17	USA	65.0	213	450	JPN	450	3	2b	166.77	30%
VL 0483	Lettuce, leaf	-	17	NLD	63.0	152	160	BEL	144	3	2a	118.68	20%
MM 0095	Meat from mammals other than marine mammals: 20% as fat	-	0	AUS	67.0	104	-	-	ND	ND	1	0.00	0%
VC 0046	Melons, except watermelon	-	0.01	FRA	52.2	1044	700	FRA	420	3	2a	0.36	0%
ML 0106	Milks	0.01	_	USA	65.0	2466	-	_	ND	ND	3	0.38	0%
VL 0485	Mustard greens	-	17	USA	65.0	228	-	-	ND	ND	ND	ND	-
VO 0442	Okra	-	0.58	USA	65.0	235	10	JPN	10	1	1	2.10	0%
VA 0385	Onion, bulb	-	0.58	NLD	63.0	172	140	FRA	126	3	2a	3.90	1%
VA 0387	Onion, Welsh	-	4.5	JPN	52.6	99	100	JPN	100	3	2b	25.52	4%
VO 0444	Peppers, chilli	-	0.58	USA	65.0	90	45	USA	43	3	2a	1.58	0%
VO 0445	Peppers, sweet (incl. pimiento)	-	0.58	FRA	52.2	90	172	UNK	160	3	2b	3.01	1%
PM 0110	Poultry meat	-	0	AUS	67.0	431	-	-	ND	ND	1	0.00	0%
PO 0111	Poultry, edible offal of	-	0	USA	65.0	248	-	_	ND	ND	1	0.00	0%
PF 0111	Poultry, fats	-	0	USA	65.0	43	-	_	ND	ND	1	0.00	0%
VL 0492	Purslane	-	17	NLD	63.0	476	-	-	ND	ND	ND	ND	-
VL 0502	Spinach (bunch)	_	17	NLD	63.0	820	300	JPN	300	3	2a	383.07	60%
VC 0431	Squash, summer (= courgette)	_	0.3	FRA	52.2	351	300	FRA	270	3	2a	5.12	1%
-	Squashes & pumpkins & gourds	_	0.01	-	_	ND	-	-	ND	ND	ND	ND	-
VO 0448	Tomato	_	0.58	FRA	52.2	387	105	FRA	102	3	2a	6.56	1%
JF 0448	Tomato juice	0.048	-	-	-	ND	-	-	ND	ND	3	ND	-

FLUOPICOLIDE (235)

International estimate of short term intake (IESTI) for

 $ARfD = 0.600 \text{ mg/kg bw } (600 \mu g/kg \text{ bw})$

ENERAL POPULATION	Maximum %AR:
-------------------	--------------

				Large portio	n diet		Unit weight	t					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
-	Tomato paste	0.352	_	_	_	ND	-	_	ND	ND	ND	ND	_
VL 0506	Turnip greens	-	17	USA	65.0	353	-	-	ND	ND	ND	ND	_
VL 0473	Watercress	-	17	AUS	67.0	86	-	-	ND	ND	ND	ND	-
VC 0432	Watermelon	-	0.01	USA	65.0	1939	4518	USA	2078	3	2b	0.89	0%
VC 0433	Winter squash (= pumpkin)	_	0.01	USA	65.0	729	1000	JPN	1000	3	2b	0.34	0%

2,6-DICHLOROBENZAMIDE

International estimate of short term intake (IESTI)

 $ARfD = 0.600 \text{ mg/kg bw } (600 \mu \text{g/kg bw})$

		GENERAL	POPULA	TION							Maximum	%ARfD:	1%
				Large porti	on diet		Unit weigh	nt					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FB 0269	Grape (incl wine)	_	0.04	FRA	52.2	1087	125	FRA	118	3	2a	1.01	0%
VB 0400	Broccoli	_	0.01	FRA	52.2	537	608	USA	474	3	2a	0.28	0%
VB 0402	Brussels sprouts	_	0.01	FRA	52.2	351	7	FRA	5	1	1	0.07	0%
VB 0041	Cabbage, head	-	0.02	SAF	55.7	362	771	UNK	540	3	2b	0.39	0%
VB 0404	Cauliflower (head)	-	0.01	UNK	70.1	579	1500	JPN	1500	3	2b	0.25	0%
VS 0624	Celery (whole)	-	0.04	FRA	52.2	238	700	BEL	462	3	2b	0.55	0%
VL 0464	Chard	-	0.19	NLD	63.0	569	-	_	ND	ND	ND	ND	-
VL 0469	Chicory leaves (head)	-	0.19	USA	65.0	40	53	USA	47	3	2b	0.35	0%
VL 0469	Chicory leaves (head)	-	0.19	USA	65.0	40	100	BEL	85	3	2b	0.35	0%
VL 0467	Chinese cabbage, type pe-tsai	-	0.19	AUS	67.0	571	1500	JPN	1500	3	2b	4.86	1%
VL 0470	Corn salad	-	0.19	FRA	52.2	84	-	-	ND	ND	ND	ND	-
VL 0510	Cos lettuce	-	0.19	JPN	52.6	144	-	-	ND	ND	ND	ND	-
VL 0472	Cress, garden	_	0.19	AUS	67.0	27	-	-	ND	ND	ND	ND	-
VC 0424	Cucumber	-	0.01	FRA	52.2	348	400	FRA	360	3	2b	0.20	0%
MO 0105	Edible offal (mammalian)	_	0	FRA	52.2	327	-	_	ND	ND	1	0.00	0%

Annex 4

2,6-DICHLOROBENZAMIDE

International estimate of short term intake (IESTI)

 $ARfD = 0.600 \text{ mg/kg bw } (600 \mu \text{g/kg bw})$

GENERAL POPULATION

Maximum %ARfD:

1%

		021 12111										,	
				Large porti	on diet		Unit weigh	nt					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
VO 0440	Egg plant	_	0.01	AUS	67.0	487	548	USA	444	3	2a	0.21	0%
PE 0112	Eggs	-	0	Thai	53.5	195	-	-	ND	ND	1	0.00	0%
VL 0476	Endive	-	0.19	FRA	52.2	339	-	-	ND	ND	ND	ND	-
DF 0269	Grapes, dried (= currants, raisins and sultanas)	-	0.06	USA	65.0	70	-	-	ND	ND	1	0.06	0%
VL 0480	Kale	-	0.19	NLD	63.0	337	-	-	ND	ND	ND	ND	_
VL 0482	Lettuce, head	-	0.19	USA	65.0	213	450	JPN	450	3	2b	1.86	0%
VL 0483	Lettuce, leaf	-	0.19	NLD	63.0	152	160	BEL	144	3	2a	1.33	0%
MM 0095	Meat from mammals other than marine mammals: 20% as fat	-	0	AUS	67.0	104	-	-	ND	ND	1	0.00	0%
VC 0046	Melons, except watermelon	-	0.01	FRA	52.2	1044	700	FRA	420	3	2a	0.36	0%
ML 0106	Milks	0	-	USA	65.0	2466	_	_	ND	ND	3	0.00	0%
VL 0485	Mustard greens	-	0.19	USA	65.0	228	-	-	ND	ND	ND	ND	_
VO 0442	Okra	_	0.01	USA	65.0	235	10	JPN	10	1	1	0.04	0%
VA 0385	Onion, bulb	-	0.01	NLD	63.0	172	140	FRA	126	3	2a	0.07	0%
VA 0387	Onion, Welsh	-	0.01	JPN	52.6	99	100	JPN	100	3	2b	0.06	0%
VO 0444	Peppers, chilli	-	0.01	USA	65.0	90	45	USA	43	3	2a	0.03	0%
VO 0445	Peppers, sweet (incl. pimiento)	-	0.01	FRA	52.2	90	172	UNK	160	3	2b	0.05	0%
PM 0110	Poultry meat	-	0	AUS	67.0	431	-	-	ND	ND	1	0.00	0%
PO 0111	Poultry, edible offal of	-	0	USA	65.0	248	-	-	ND	ND	1	0.00	0%
PF 0111	Poultry, fats	-	0	USA	65.0	43	-	-	ND	ND	1	0.00	0%
VL 0492	Purslane	-	0.19	NLD	63.0	476	-	-	ND	ND	ND	ND	_
VL 0502	Spinach (bunch)	-	0.19	NLD	63.0	820	300	JPN	300	3	2a	4.28	1%
VC 0431	Squash, summer (= courgette)	-	0.01	FRA	52.2	351	300	FRA	270	3	2a	0.17	0%
-	Squashes & pumpkins & gourds	-	0.01	_	-	ND	-	-	ND	ND	ND	ND	_
VO 0448	Tomato	-	0.01	FRA	52.2	387	105	FRA	102	3	2a	0.11	0%
JF 0448	Tomato juice	0.01	_	_	_	ND	_	_	ND	ND	3	ND	_
_	Tomato paste	0.01	_	_	_	ND	_	_	ND	ND	ND	ND	_
VL 0506	Turnip greens	-	0.19	USA	65.0	353	-	-	ND	ND	ND	ND	-
VL 0473	Watercress	-	0.19	AUS	67.0	86	-	_	ND	ND	ND	ND	-
VC 0432	Watermelon	-	0.01	USA	65.0	1939	4518	USA	2078	3	2b	0.89	0%

2,6-DICHLOROBENZAMIDE

International estimate of short term intake (IESTI)

 $ARfD = 0.600 \text{ mg/kg bw } (600 \mu g/kg \text{ bw})$

Maximum %ARfD: 1%

				Large portion	n diet		Unit weigh	ıt					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
VC 0433	Winter squash (= pumpkin)	_	0.01	USA	65.0	729	1000	JPN	1000	3	2b	0.34	0%

2,6-DICHLOROBENZAMIDE

International estimate of short term intake (IESTI)

 $ARfD = 0.600 \text{ mg/kg bw } (600 \mu g/kg \text{ bw})$

CHILDREN UP TO 6 YEARS

Maximum %ARfD: 2%

				Large portion	on diet		Unit weigh	t					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FB 0269	Grape (incl wine)	_	0.04	JPN	15.9	388	125	FRA	118	3	2a	1.57	0%
VB 0400	Broccoli	-	0.01	FRA	18.9	254	608	USA	474	3	2b	0.40	0%
VB 0402	Brussels sprouts	_	0.01	NLD	17.0	213	7	FRA	5	1	1	0.13	0%
VB 0041	Cabbage, head	_	0.02	SAF	14.2	220	771	UNK	540	3	2b	0.93	0%
VB 0404	Cauliflower (head)	_	0.01	NLD	17.0	209	1500	JPN	1500	3	2b	0.37	0%
VS 0624	Celery (whole)	_	0.04	FRA	18.9	157	700	BEL	462	3	2b	1.00	0%
VL 0464	Chard	_	0.19	FRA	18.9	47	-	-	ND	ND	ND	ND	-
VL 0469	Chicory leaves (head)	_	0.19	USA	15.0	19	53	USA	47	3	2b	0.71	0%
VL 0469	Chicory leaves (head)	_	0.19	USA	15.0	19	100	BEL	85	3	2b	0.71	0%
VL 0467	Chinese cabbage, type pe-tsai	_	0.19	JPN	15.9	147	1500	JPN	1500	3	2b	5.26	1%
VL 0470	Corn salad	-	0.19	FRA	18.9	40	-	-	ND	ND	ND	ND	-
VL 0510	Cos lettuce	_	0.19	-	-	ND	-	-	ND	ND	ND	ND	-
VL 0472	Cress, garden	_	0.19	-	-	ND	-	_	ND	ND	ND	ND	-
VC 0424	Cucumber	_	0.01	NLD	17.0	162	400	FRA	360	3	2b	0.29	0%
MO 0105	Edible offal (mammalian)	_	0	FRA	18.9	86	-	_	ND	ND	1	0.00	0%
VO 0440	Egg plant	_	0.01	JPN	15.9	219	548	USA	444	3	2b	0.41	0%
PE 0112	Eggs	-	0	Thai	17.1	109	-	-	ND	ND	1	0.00	0%
VL 0476	Endive	-	0.19	NLD	17.0	212	-		ND	ND	ND	ND	-
DF 0269	Grapes, dried (= currants, raisins and	_	0.06	USA	15.0	59	-	-	ND	ND	1	0.24	0%

Annex 4

2,6-DICHLOROBENZAMIDE

International estimate of short term intake (IESTI)

 $ARfD = 0.600 \text{ mg/kg bw } (600 \mu \text{g/kg bw})$

CHILDREN UP TO 6 YEARS

Maximum %ARfD: 2%

		CITEDICE	N OF TO 0	1 Li HO							Maxim	uiii %AKID.	270
				Large porti	on diet		Unit weigh	t					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
	sultanas)												
VL 0480	Kale	-	0.19	NLD	17.0	149	-	-	ND	ND	ND	ND	-
VL 0482	Lettuce, head	-	0.19	Thai	17.1	117	450	JPN	450	3	2b	3.89	1%
VL 0483	Lettuce, leaf	-	0.19	NLD	17.0	102	160	BEL	144	3	2b	3.42	1%
MM 0095	Meat from mammals other than marine mammals: 20% as fat	_	0	AUS	19.0	52		-	ND	ND	1	0.00	0%
VC 0046	Melons, except watermelon	-	0.01	FRA	18.9	597	700	FRA	420	3	2a	0.76	0%
ML 0106	Milks	0	-	USA	15.0	1286	-	-	ND	ND	3	0.00	0%
VL 0485	Mustard greens	-	0.19	USA	15.0	53	-	-	ND	ND	ND	ND	-
VO 0442	Okra	-	0.01	USA	15.0	203	10	JPN	10	1	1	0.14	0%
VA 0385	Onion, bulb	-	0.01	NLD	17.0	86	140	FRA	126	3	2b	0.15	0%
VA 0387	Onion, Welsh	-	0.01	JPN	15.9	49	100	JPN	100	3	2b	0.09	0%
VO 0444	Peppers, chilli	-	0.01	AUS	19.0	31	45	USA	43	3	2b	0.05	0%
VO 0445	Peppers, sweet (incl. pimiento)	-	0.01	Thai	17.1	71	172	UNK	160	3	2b	0.12	0%
PM 0110	Poultry meat	-	0	AUS	19.0	224	-	-	ND	ND	1	0.00	0%
PO 0111	Poultry, edible offal of	-	0	FRA	18.9	99	-	-	ND	ND	1	0.00	0%
PF 0111	Poultry, fats	_	0	USA	15.0	16	-	-	ND	ND	1	0.00	0%
VL 0492	Purslane	_	0.19	_	-	ND	-	-	ND	ND	ND	ND	_
VL 0502	Spinach (bunch)	_	0.19	SAF	14.2	420	300	JPN	300	3	2a	13.65	2%
VC 0431	Squash, summer (= courgette)	-	0.01	AUS	19.0	219	300	FRA	270	3	2b	0.35	0%
-	Squashes & pumpkins & gourds	_	0.01	-	_	ND	-	-	ND	ND	ND	ND	-
VO 0448	Tomato	-	0.01	FRA	18.9	215	105	FRA	102	3	2a	0.22	0%
JF 0448	Tomato juice	0.01	-	-	-	ND	-	-	ND	ND	3	ND	-
_	Tomato paste	0.01	-	-	-	ND	-	-	ND	ND	ND	ND	-
VL 0506	Turnip greens	-	0.19	USA	15.0	90	-	-	ND	ND	ND	ND	-
VL 0473	Watercress	-	0.19	AUS	19.0	6	-	-	ND	ND	ND	ND	-
VC 0432	Watermelon	_	0.01	AUS	19.0	1473	4518	USA	2078	3	2b	2.33	0%
VC 0433	Winter squash (= pumpkin)	_	0.01	USA	15.0	169	1000	JPN	1000	3	2b	0.34	0%

HALOXYFOP (194)

International estimate of short term intake (IESTI) for GENERAL POPULATION

ARfD= 0.080 mg/kg bw (80 µg/kg bw)

Maximum %ARfD: 10

Large portion diet Unit weight STMR or Codex Commodity HR or HR-P Country Body Large Unit weight, Country Unit weight, Varia-bility Case IESTI μg/kg % acute RfD Code STMR-P mg/kg weight (kg) portion, edible factor bw/day portion, g mg/kg g/person rounded 65.0 100 0% FP 0226 USA 1348 110 FRA 2a 0.00Apple 52.2 900 0.00 0% FI 0327 Banana FRA 714 FRA 612 360 ND 0.335 FRA 52.2 ND 2.31 3% VD 0071 Beans (dry) 261 ND ND 2% 52.2 1.30 VP 0061 Beans except broad bean & soya bean (green pods 0.26 FRA & immature seeds) ML 0812 0.033 52.2 2516 ND ND 1.59 2% Cattle milk FRA FM 0812 0.87 NLD 63.0 79 ND ND 1.10 1% Cattle milk fat PE 0840 Chicken eggs 0.05 FRA 52.2 383 ND ND 0.37 0% ND VD 0524 Chick-pea (dry) 0.02 USA 65.0 205 ND 0.06 0% SB 0716 Coffee beans FRA 52.2 117 ND ND 0.000% SO 0691 Cotton seed 0.1 USA 65.0 ND ND 0.01 0% MO 0105 Edible offal (mammalian) .42 FRA 52.2 327 ND ND 8.90 10% PE 0112 0.05 53.5 195 ND ND 0.18 0% Thai 0.53 244 ND 1.99 VP 0528 Garden pea (green pods & immature seeds) DNA USA 65.0 ND 2% 1087 FB 0269 FRA 52.2 125 118 0.000% Grape (incl wine) FRA MM 0095 Meat from mammals other than marine mammals: 0.33 AUS 67.0 104 ND ND 0.51 1% 20% as fat MM 0095 Meat from mammals other than marine mammals: 0.041 AUS 67.0 417 ND ND 0.26 0% 80% as muscle ML 0106 Milks 0.033 USA 65.0 ND ND 1.25 2% 2466 NLD 63.0 172 0.81 1% VA 0385 Onion, bulb 0.12 140 FRA 126 VA 0385 Onion, bulb 0.12 NLD 63.0 172 115 BEL 106 0.73 1% 52.2 1044 137 FC 0004 Orange, sweet, sour + orange-like hybrid FRA 190 FRA 0.00 0% 55.7 685 110 99 0.00 FS 0247 Peach SAF FRA 0% 0.04 FRA 52.2 356 ND ND 0.27 0% VD 0072 Peas (dry) Peas (green pods & immature seeds) 0.53 JPN 52.6 63 ND ND 0.63 1% VP 0063 VP 0064 Peas, shelled (immature seeds) 0.75 FRA 52.2 435 ND ND 6.25 8% 0.52 67.0 ND PM 0110 Poultry meat: 10% as fat AUS ND 0.33 0% 67.0 388 ND ND 0.64 PM 0110 0.11 AUS 1% Poultry meat: 90% as muscle 65.0 248 ND 2.32 0.61 USA ND 3% PO 0111 Poultry, edible offal of 67.0 65 ND ND 0.16 0% OR 0495 Rape seed oil, edible 0.16 AUS

Annex 4

HALOXYFOP (194)

International estimate of short term intake (IESTI) for

ARfD= 0.080 mg/kg bw ($80 \mu\text{g/kg bw}$)

		GENERAL	POPULATIO	ON							Maximur	n %ARfD:	10%
				Large port	ion diet		Unit weigh	t					
Codex	Commodity	STMR or	HR or HR-P	Country	Body	Large	Unit weight,	Country	Unit weight,	Varia-bility	Case	IESTI μg/kg	% acute
Code		STMR-P	mg/kg		weight (kg)	portion,	g		edible	factor		bw/day	RfD
		mg/kg				g/person			portion, g				rounded
VD 0541	Soya bean (dry)	0.055	_	JPN	52.6	159	_	_	ND	ND	3	0.17	0%
OR 0541	Soya bean oil, refined	0.041	-	USA	65.0	98	_	_	ND	ND	3	0.06	0%
SO 0702	Sunflower seed	0.05	-	USA	65.0	193	-	_	ND	ND	3	0.15	0%

HALOXYFOP (194)

International estimate of short term intake (IESTI) for

ARfD= 0.080 mg/kg bw ($80 \mu \text{g/kg bw}$)

CHILDREN UP TO 6 YEARS Maximum %ARfD: 10% Large portion diet Unit weight STMR or HR or Country Unit Varia-bility factor IESTI µg/kg % acute Codex Commodity Country Body Large Unit Case Code STMR-P HR-P weight (kg) portion, weight, g weight, bw/day RfD edible mg/kg mg/kg rounded g/person portion, g FP 0226 Apple USA 15.0 679 110 FRA 100 2a 0.00 0% FI 0327 Banana FRA 18.9 477 900 FRA 612 2b 0.00 0% VD 0071 0.335 AUS 19.0 222 ND ND 3.91 5% Beans (dry) VP 0061 Beans except broad bean & soya bean 18.9 215 ND ND 2.96 0.26 FRA 4% (green pods & immature seeds) ML 0812 Cattle milk 0.033 AUS 19.0 1450 ND ND 2.52 3% FM 0812 Cattle milk fat 0.87 NLD 17.0 35 ND ND 1.77 2% PE 0840 18.9 201 ND ND 0.53 1% Chicken eggs 0.05 FRA VD 0524 USA 15.0 ND ND 0.05 0% Chick-pea (dry) 0.02 ND SB 0716 18.9 70 ND 0.00 0% Coffee beans FRA SO 0691 ND USA 15.0 ND Cotton seed 0.10.01 0% MO 0105 Edible offal (mammalian) 1.42 FRA 18.9 86 ND ND 6.49 8% PE 0112 0.05 Thai 17.1 109 ND ND 0.32 0% VP 0528 Garden pea (green pods & immature 0.53 USA 15.0 109 ND ND 3.86 5% seeds) FB 0269 JPN 15.9 388 125 118 0.00 0% Grape (incl wine) FRA ND 0.91 MM 0095 Meat from mammals other than marine 0.33 AUS 19.0 52 ND 1% mammals: 20% as fat MM 0095 Meat from mammals other than marine 0.041 AUS 19.0 208 ND ND 0.45 1% mammals: 80% as muscle

HALOXYFOP (194)

International estimate of short term intake (IESTI) for

ARfD= 0.080 mg/kg bw (80 µg/kg bw)

11/11/0/1	11 01 (171)	micornacio	000	or smort ter		011) 101				THE GLOGO INGING	ο (οο με/πε ο)		
		CHILDRE	EN UP TO 6	5 YEARS							Maximum %ARf	D:	10%
				Large po	ortion diet		Unit we	ight					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large) portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia-bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
ML 0106	Milks	0.033	-	USA	15.0	1286	-	-	ND	ND	3	2.83	4%
VA 0385	Onion, bulb	-	0.12	NLD	17.0	86	140	FRA	126	3	2ь	1.81	2%
VA 0385	Onion, bulb	-	0.12	NLD	17.0	86	115	BEL	106	3	2b	1.81	2%
FC 0004	Orange, sweet, sour + orange-like hybrid	-	0	UNK	14.5	495	190	FRA	137	3	2a	0.00	0%
FS 0247	Peach	-	0	AUS	19.0	315	110	FRA	99	3	2a	0.00	0%
VD 0072	Peas (dry)	0.04	-	USA	15.0	86	-	-	ND	ND	3	0.23	0%
VP 0063	Peas (green pods & immature seeds)	-	0.53	JPN	15.9	48	-	-	ND	ND	1	1.59	2%
VP 0064	Peas, shelled (immature seeds)	-	0.75	UNK	14.5	174	-	-	ND	ND	1	9.00	10%
PM 0110	Poultry meat: 10% as fat	-	0.52	AUS	19.0	22	-	-	ND	ND	1	0.61	1%
PM 0110	Poultry meat: 90% as muscle	-	0.11	AUS	19.0	201	-	-	ND	ND	1	1.17	1%
PO 0111	Poultry, edible offal of	-	0.61	FRA	18.9	99	-	-	ND	ND	1	3.21	4%
OR 0495	Rape seed oil, edible	0.16	-	AUS	19.0	18	-	-	ND	ND	3	0.15	0%
VD 0541	Soya bean (dry)	0.055	-	JPN	15.9	88	-	-	ND	ND	3	0.31	0%
OR 0541	Soya bean oil, refined	0.041	-	USA	15.0	35	-	-	ND	ND	3	0.10	0%
SO 0702	Sunflower seed	0.05	-	USA	15.0	24	-	-	ND	ND	3	0.08	0%

INDOXACARB (216)

International estimate of short term intake (IESTI) for GENERAL POPULATION

 $ARfD = 0.100 \text{ mg/kg bw } (100 \mu g/kg \text{ bw})$

											~ ~		*
		GENERAL	POPULATI	ION							Maximur	n %ARfD:	60%
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Large portion Country	on diet Body weight (kg)	Large portion, g/person	Unit weigh Unit weight, g	t Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FS 0240	Apricot	-	0.64	FRA	52.2	369	35	USA	34	3	2a	5.34	5%
FS 0013	Cherries	-	0.64	FRA	52.2	360	5	JPN	5	1	1	4.42	4%
VD 0527	Cowpea (dry)	0.02	-	USA	65.0	205	-	-	ND	ND	3	0.06	0%
FB 0265	Cranberries	-	0.69	USA	65.0	229	-	-	ND	ND	ND	ND	-
VC 0424	Cucumber	-	0.39	FRA	52.2	348	400	FRA	360	3	2b	7.80	8%
MO 0105	Edible offal (mammalian)	-	0.03	FRA	52.2	327	-	-	ND	ND	1	0.19	0%

INDOXACARB (216)

International estimate of short term intake (IESTI) for

ARfD= $0.100 \text{ mg/kg bw} (100 \mu\text{g/kg bw})$

II IDOM ICA	1KD (210)	micriation	ai ostiiiiato (or short term r	mune (ILS)	1) 101				ritib- 0.	100 mg/kg	οιι (100 μβ/Ιζ	5011)
		GENERAI	L POPULAT	ION							Maximu	m %ARfD:	60%
				Large porti	on diet		Unit weigh	nt					
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
PE 0112	Eggs	-	0.02	Thai	53.5	195	-	-	ND	ND	1	0.07	0%
VC 0425	Gherkin	-	0.39	NLD	63.0	96	116	USA	81	3	2a	1.60	2%
VL 0483	Lettuce, leaf	-	8.4	NLD	63.0	152	160	BEL	144	3	2a	58.64	60%
MM 0095	Meat from mammals other than marine mammals: 20% as fat	-	1.07	AUS	67.0	104	Ī -	-	ND	ND	1	1.66	2%
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	-	0.039	AUS	67.0	417	-	-	ND	ND	1	0.24	0%
VC 0046	Melons, except watermelon	-	0.2	FRA	52.2	1044	700	JPN	700	3	2a	9.36	9%
ML 0106	Milks	0.037	-	USA	65.0	2466	-	-	ND	ND	3	1.40	1%
FS 0245	Nectarine	-	0.64	FRA	52.2	604	136	USA	125	3	2a	10.48	10%
FS 0247	Peach	-	0.64	SAF	55.7	685	150	JPN	150	3	2a	11.32	10%
FS 0014	Plum (incl dried)	-	0.64	Thai	53.5	480	66	USA	62	3	2a	7.23	7%
DF 0014	Plum, dried (prunes)	-	2.6	USA	65.0	303	6	FRA	5	1	1	12.12	10%
PM 0110	Poultry meat: 10% as fat	-	0.05	AUS	67.0	43	-	-	ND	ND	1	0.03	0%
PM 0110	Poultry meat: 90% as muscle	-	0	AUS	67.0	388	-	-	ND	ND	1	0.00	0%
PO 0111	Poultry, edible offal of	-	0	USA	65.0	248	-	-	ND	ND	1	0.00	0%
VC 0431	Squash, summer (= courgette)	-	0.39	FRA	52.2	351	300	FRA	270	3	2a	6.66	7%
VC 0432	Watermelon	-	0.02	USA	65.0	1939	4518	USA	2078	3	2b	1.79	2%
VC 0433	Winter squash (= pumpkin)	-	0.02	USA	65.0	729	1000	JPN	1000	3	2b	0.67	1%

INDOXACARB (216)

International estimate of short term intake (IESTI) for

ARfD= 0.100 mg/kg bw (100 µg/kg bw)

		CHILDRE	N UP TO 6 Y	YEARS							Maximur	n %ARfD:	150%
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Large portic Country	n diet Body weight (kg)	Large portion, g/person	Unit weigh Unit weight, g	t Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FS 0240	Apricot	-	0.64	AUS	19.0	414	35	USA	34	3	2a	16.22	20%
VC 0423	Chayote	-	0.39	AUS	19.0	105	-	-	ND	ND	ND	ND	-

INDOXACARB (216)

International estimate of short term intake (IESTI) for

 $ARfD = 0.100 \text{ mg/kg bw } (100 \mu g/kg \text{ bw})$

CHILDREN UP TO 6 YEARS Maximum %ARfD: 150% Large portion diet Unit weight Codex Commodity STMR or HR or Country Body Unit Country Unit Varia-Case IESTI % acute Large Code STMR-P HR-P weight portion, weight, g weight, bility μg/kg RfD (kg) g/person edible bw/day rounded mg/kg mg/kg factor portion, g 0.64 250 5 JPN 5 8% FS 0013 Cherries AUS 19.0 8.42 VD 0527 Cowpea (dry) 0.02 USA 15.0 43 ND ND 3 0.06 0% FB 0265 Cranberries 102 ND ND 0.69 USA 15.0 ND ND VC 0424 0.39 NLD 17.0 162 286 3 2b 10% Cucumber 301 USA 11.15 0.03 MO 0105 Edible offal (mammalian) FRA 18.9 86 ND ND 0.14 0% PE 0112 0.02 ND Eggs Thai 17.1 109 ND 0.13 0% VC 0425 Gherkin 0.39 NLD 17.0 56 116 USA 81 3 2b 3.83 4% VL 0483 Lettuce, leaf 8.4 NLD 17.0 102 160 BEL 144 3 2b 151.20 150% MM 0095 Meat from mammals other than marine 1.07 AUS 19.0 52 ND ND 2.93 3% mammals: 20% as fat MM 0095 Meat from mammals other than marine 0.039 AUS 19.0 208 ND ND 0.43 0% mammals: 80% as muscle VC 0046 Melons, except watermelon 0.2 FRA 18.9 597 1000 USA 630 3 2b 18.95 20% ML 0106 Milks 0.037 USA 15.0 1286 ND ND 3 3.17 3% FS 0245 Nectarine 0.64 AUS 19.0 302 USA 125 3 2a 18.61 20% 136 FS 0247 0.64 AUS 19.0 315 150 JPN 150 3 20% Peach 2a 20.73 0.64 377 66 FS 0014 Plum (incl dried) Thai 17.1 USA 62 3 2a 20% 18.75 DF 0014 2.6 170 5 Plum, dried (prunes) AUS 19.0 6 FRA 23.27 20% PM 0110 Poultry meat: 10% as fat 0.05 AUS 19.0 22 ND ND 0.06 0% 201 ND 0% PM 0110 Poultry meat: 90% as muscle 0 AUS 19.0 ND 0.00 PO 0111 Poultry, edible offal of 18.9 99 ND ND 0% 0 FRA 0.00 VC 0431 0.39 219 270 2b Squash, summer (= courgette) AUS 19.0 300 FRA 13.48 10% VC 0432 Watermelon 0.02 AUS 19.0 1473 4518 USA 2078 3 2b 4.65 5% 0.02 169 0.67 VC 0433 Winter squash (= pumpkin) USA 15.0 1000 JPN 1000 2b 1%

Annex 4

METHOXYFENOZIDE (209)

International estimate of short term intake (IESTI) for

ARfD= 0.900 mg/kg bw (900 µg/kg bw)

GENERAL POPULATION

Maximum %ARfD: 1%

	ODI (DITE	or or or	1011							TTUATITIA	m /ormen	1 /0
			Large porti	on diet		Unit weigh	ht					
Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
Mandarin + mandarin-like hybrid	-	0.05	FRA	52.2	639	-	-	ND ND	ND	ND	ND	-
Avocado	-	0.41	FRA	52.2	435	201	USA	151	3	2a	5.78	1%
Beans (dry)	0.05	-	FRA	52.2	360	-	-	ND	ND	3	0.35	0%
Beans except broad bean & soya bean (green pods & immature seeds)	-	0.99	FRA	52.2	261	-	-	ND	ND	ND	ND	-
Beans, shelled (immature seeds)	-	0.18	FRA	52.2	400	-	-	ND	ND	ND	ND	-
Blueberries	-	2	AUS	67.0	158	-	-	ND	ND	ND	ND	-
Carrot	-	0.31	FRA	52.2	348	100	FRA	89	3	2a	3.12	0%
Cattle fat	-	0.162	USA	65.0	60	-	-	ND	ND	1	0.15	0%
Cowpea (dry), stated as black-eyed pea VD 4467	0.56	-	NLD	63.0	28	-	-	ND	ND	3	0.25	0%
Edible offal (mammalian)	-	0.057	FRA	52.2	327	-	-	ND	ND	1	0.36	0%
Goat fat	-	0.162	USA	65.0	18	-	-	ND	ND	1	0.05	0%
Meat from mammals other than marine mammals	-	0.052	AUS	67.0	521	-	-	ND	ND	1	0.40	0%
Milks	0.03	-	USA	65.0	2466	-	-	ND	ND	3	1.14	0%
Orange, sweet, sour + orange-like hybrid	-	0.05	FRA	52.2	1044	190	FRA	137	3	2a	1.26	0%
Papaya	-	0.33	USA	65.0	567	304	USA	204	3	2a	4.95	1%
Peanut oil, edible	0.029	-	AUS	67.0	54	-	-	ND	ND	3	0.02	0%
Peanut, shelled	-	0.016	FRA	52.2	135	-	-	ND	ND	3	ND	-
Peas, shelled (immature seeds)	-	0.18	FRA	52.2	435	-	-	ND	ND	ND	ND	-
Pig fat	-	0.162	AUS	67.0	144	-	-	ND	ND	1	0.35	0%
Radish	-	0.12	FRA	52.2	192	7	FRA	6	1	1	0.44	0%
Strawberry	-	1.2	FRA	52.2	531	14	FRA	13	1	1	12.22	1%
Sugar beet	-	0.18	-	-	ND	-	-	ND	ND	ND	ND	-
Sweet potato	_	0.012	USA	65.0	536	130	USA	105	3	2a	0.14	0%
	Mandarin + mandarin-like hybrid Avocado Beans (dry) Beans except broad bean & soya bean (green pods & immature seeds) Beans, shelled (immature seeds) Blueberries Carrot Cattle fat Cowpea (dry), stated as black-eyed pea VD 4467 Edible offal (mammalian) Goat fat Meat from mammals other than marine mammals Milks Orange, sweet, sour + orange-like hybrid Papaya Peanut oil, edible Peanut, shelled Peas, shelled (immature seeds) Pig fat Radish Strawberry Sugar beet	Commodity STMR or STMR-P mg/kg Mandarin + mandarin-like hybrid	Commodity STMR or STMR-P mg/kg HR or HR-P mg/kg Mandarin + mandarin-like hybrid - 0.05 Avocado - 0.41 Beans (dry) 0.05 - Beans except broad bean & soya bean (green pods & immature seeds) - 0.99 Beans, shelled (immature seeds) - 0.18 Blueberries - 2 Carrot - 0.31 Cattle fat - 0.162 Cowpea (dry), stated as black-eyed pea VD 4467 0.56 - Edible offal (mammalian) - 0.057 Goat fat - 0.162 Meat from mammals other than marine mammals - 0.052 Milks 0.03 - Orange, sweet, sour + orange-like hybrid - 0.05 Papaya - 0.016 Peanut, shelled - 0.016 Peas, shelled (immature seeds) - 0.18 Pig fat - 0.162 Radish - 0.12 Strawberry	Commodity STMR or STMR-P mg/kg HR or HR-P mg/kg Country Mandarin + mandarin-like hybrid - 0.05 FRA Avocado - 0.41 FRA Beans (dry) 0.05 - FRA Beans except broad bean & soya bean (green pods & immature seeds) - 0.99 FRA Beans, shelled (immature seeds) - 0.18 FRA Blueberries - 2 AUS Carrot - 0.31 FRA Cattle fat - 0.162 USA Cowpea (dry), stated as black-eyed pea VD 4467 - 0.162 USA Goat fat - 0.057 FRA Goat fat - 0.162 USA Meat from mammals other than marine mammals - 0.052 AUS Milks 0.03 - USA Orange, sweet, sour + orange-like hybrid - 0.05 FRA Peanut oil, edible - 0.016 FRA Peas, shelled (immature seeds) - <td> Mandarin + mandarin-like hybrid - 0.05 FRA 52.2 Beans (dry) 0.05 - FRA 52.2 Beans except broad bean & soya bean (green pods & immature seeds) - 0.18 FRA 52.2 Blueberries - 2 AUS 67.0 Carrot - 0.162 USA 65.0 Cowpea (dry), stated as black-eyed pea VD 4467 Edible offal (mammalian) - 0.057 FRA 52.2 Goat fat - 0.162 USA 65.0 Meat from mammals other than marine mammals - 0.052 AUS 67.0 Milks 0.03 - USA 65.0 Peanut oil, edible 0.029 - AUS 67.0 Peanut, shelled (immature seeds) - 0.162 AUS 67.0 Peanut, shelled (immature seeds) - 0.162 AUS 67.0 Radish - 0.12 FRA 52.2 Strawberry - 1.2 FRA 52.2 Strawberry - 1.2 FRA 52.2 Strawberry - 0.18 FRA 52.2 </td> <td> Nandarin + mandarin-like hybrid - </td> <td> Mandarin + mandarin-like hybrid</td> <td> Mandarin + mandarin-like hybrid</td> <td> Commodity</td> <td> Namadarin + mandarin-like hybrid - 0.05 FRA 52.2 639 - ND ND ND </td> <td> Commodity</td> <td> Commodity STMR or STMR-P mg/kg Mandarin + mandarin-like hybrid - 0.05 FRA 52.2 639 - - ND ND ND ND ND ND </td>	Mandarin + mandarin-like hybrid - 0.05 FRA 52.2 Beans (dry) 0.05 - FRA 52.2 Beans except broad bean & soya bean (green pods & immature seeds) - 0.18 FRA 52.2 Blueberries - 2 AUS 67.0 Carrot - 0.162 USA 65.0 Cowpea (dry), stated as black-eyed pea VD 4467 Edible offal (mammalian) - 0.057 FRA 52.2 Goat fat - 0.162 USA 65.0 Meat from mammals other than marine mammals - 0.052 AUS 67.0 Milks 0.03 - USA 65.0 Peanut oil, edible 0.029 - AUS 67.0 Peanut, shelled (immature seeds) - 0.162 AUS 67.0 Peanut, shelled (immature seeds) - 0.162 AUS 67.0 Radish - 0.12 FRA 52.2 Strawberry - 1.2 FRA 52.2 Strawberry - 1.2 FRA 52.2 Strawberry - 0.18 FRA 52.2	Nandarin + mandarin-like hybrid -	Mandarin + mandarin-like hybrid	Mandarin + mandarin-like hybrid	Commodity	Namadarin + mandarin-like hybrid - 0.05 FRA 52.2 639 - ND ND ND	Commodity	Commodity STMR or STMR-P mg/kg Mandarin + mandarin-like hybrid - 0.05 FRA 52.2 639 - - ND ND ND ND ND ND

Annex 4

METHOXYFENOZIDE (209)

International estimate of short term intake (IESTI) for

ARfD= 0.900 mg/kg bw (900 μg/kg bw)

CHILDREN UP TO 6 YEARS

Maximum %ARfD: 2

		CHIEDRE	N OF IO 0	1 Li HO							IVIUAIIII	IIII %AKID.	270
				Large porti	ion diet		Unit weig	ght			•	i	
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
FC 0003	Mandarin + mandarin-like hybrid	-	0.05	FRA	18.9	277	-	-	ND	ND	ND	ND	-
FI 0326	Avocado	-	0.41	FRA	18.9	202	201	USA	151	3	2a	10.93	1%
VD 0071	Beans (dry)	0.05	-	AUS	19.0	222	-	-	ND	ND	3	0.58	0%
VP 0061	Beans except broad bean & soya bean (green pods & immature seeds)	-	0.99	FRA	18.9	215	-	-	ND	ND	ND	ND	-
VP 0062	Beans, shelled (immature seeds)	-	0.18	FRA	18.9	220	-	-	ND	ND	ND	ND	-
FB 0020	Blueberries	-	2	USA	15.0	21	-	-	ND	ND	ND	ND	-
VR 0577	Carrot	-	0.31	FRA	18.9	196	100	FRA	89	3	2a	6.13	1%
MF 0812	Cattle fat	-	0.162	USA	15.0	27	-	-	ND	ND	1	0.29	0%
VD 0527	Cowpea (dry), stated as black-eyed pea VD 4467	0.56	-	NLD	17.0	28	-	-	ND	ND	3	0.92	0%
MO 0105	Edible offal (mammalian)	-	0.057	FRA	18.9	86	-	-	ND	ND	1	0.26	0%
MF 0814	Goat fat	-	0.162	USA	15.0	3	-	-	ND	ND	1	0.03	0%
MM 0095	Meat from mammals other than marine mammals	-	0.052	AUS	19.0	261	-	-	ND	ND	1	0.71	0%
ML 0106	Milks	0.03	-	USA	15.0	1286	-	-	ND	ND	3	2.57	0%
FC 0004	Orange, sweet, sour + orange-like hybrid	-	0.05	UNK	14.5	495	190	FRA	137	3	2a	2.65	0%
FI 0350	Papaya	-	0.33	USA	15.0	240	304	USA	204	3	2a	14.25	2%
OR 0697	Peanut oil, edible	0.029	-	AUS	19.0	9	-	-	ND	ND	3	0.01	0%
SO 0697	Peanut, shelled	-	0.016	USA	15.0	78	-	-	ND	ND	3	ND	-
VP 0064	Peas, shelled (immature seeds)	-	0.18	UNK	14.5	174	-	-	ND	ND	ND	ND	-
MF 0818	Pig fat	-	0.162	FRA	18.9	65	-	-	ND	ND	1	0.56	0%
VR 0494	Radish	-	0.12	FRA	18.9	112	7	FRA	6	1	1	0.71	0%
FB 0275	Strawberry	-	1.2	FRA	18.9	354	14	FRA	13	1	1	22.45	2%
VR 0596	Sugar beet		0.18	-	-	ND	=.	-	ND	ND	ND	ND	-
VR 0508	Sweet potato	-	0.012	USA	15.0	166	130	USA	105	3	2a	0.30	0%

PHORATE (112)

International estimate of short term intake (IESTI) for

ARfD= 0.003 mg/kg bw $(3 \mu g/kg bw)$

		GENERAL	POPULATION	ON							Maximu	m %ARfD:	80%
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Large portion Country	on diet Body weight (kg)	Large portion, g/person	Unit weigh Unit weight, g	t Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
VR 0589	Potato (using HR for French fries)	-	0.1026	FRA	52.2	639	216	UNK	216	3	2a	2.10	70%
VR 0589	Potato (using HR for potatoes, microwaved with peel)	-	0.0972	FRA	52.2	639	216	UNK	216	3	2a	1.99	70%

PHORATE (112)

International estimate of short term intake (IESTI) for

ARfD= 0.003 mg/kg bw $(3 \mu g/kg bw)$

		CHILDREN	N UP TO 6 Y	EARS							Maximu	n %ARfD:	190%
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Large portion	on diet Body weight (kg)	Large portion, g/person	Unit weigh Unit weight, g	t Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
VR 0589	Potato (using HR for French fries)	-	0.1026	SAF	14.2	300	216	UNK	216	3	2a	5.29	180%
VR 0589	Potato (using HR for potatoes, microwaved with peel)	-	0.0972	SAF	14.2	300	216	UNK	216	3	2a	5.01	170%

PROCHLORAZ (142)

International estimate of short term intake (IESTI) for

ARfD= 0.100 mg/kg bw (100 μg/kg bw) Maximum %ARfD: 7%

GENERAL POPULATION

				Large portion diet			Unit weight						
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
VO 0450	Mushrooms	-	1.4	FRA	52.2	243	21	UNK	20	1	1	6.52	7%

PROCHLORAZ (142)

International estimate of short term intake (IESTI) for CHILDREN UP TO 6 YEARS

ARfD= 0.100 mg/kg bw (100 µg/kg bw)

Maximum %ARfD: 10

				Large portion diet			Unit weight					_		
Codex Code	Commodity	STMR or STMR-P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded	
VO 0450	Mushrooms	-	1.4	FRA	18.9	157	21	UNK	20	1	1	11.66	10%	

PROTHIOCONAZOLE (232)

International estimate of short term intake (IESTI) for

ARfD= 1.000 mg/kg bw (1000 µg/kg bw)

	,	GENERAI	POPULAT	ION (EXCEP	T WOMEN	OF CHILD-B	EARING A	GE)			Maximu	ım %ARfD:	0.18%
		Large portion diet Unit weight											
Codex Code	Commodity	STMR or STMR- P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight,	Country	Unit weight, edible portion,	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
VR 0596	Sugar beet	0.05	-	-	-	ND	-	-	ND	ND	ND	ND	-
VD 0520	Bambara groundnut (dry seed)	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
GC 0640	Barley	0.035	-	NLD	63.0	378	-	-	ND	ND	3	0.21	0.02%
VD 0071	Beans (dry)	0.05	-	FRA	52.2	360	-	-	ND	ND	3	0.35	0.03%
VD 0523	Broad bean (dry)	0.05	-	AUS	67.0	139	-	-	ND	ND	3	0.10	0.01%
VD 0524	Chick-pea (dry)	0.05	-	USA	65.0	205	-	-	ND	ND	3	0.16	0.02%
VD 0526	Common bean (dry)	0.05	-	FRA	52.2	360	-	-	ND	ND	3	0.35	0.03%
VD 0526	Common bean (dry), stated as kidney bean VD 4503	0.05	-	Thai	53.5	82	-	-	ND	ND	3	0.08	0.01%
VD 0527	Cowpea (dry)	0.05	-	USA	65.0	205	-	-	ND	ND	3	0.16	0.02%
VD 0527	Cowpea (dry), stated as black-eyed pea VD 4467	0.05	-	NLD	63.0	28	-	-	ND	ND	3	0.02	0.00%
VD 0561	Field pea (dry)	0.05	-	FRA	52.2	356	-	-	ND	ND	3	0.34	0.03%
VD 0561	Field pea (dry), stated as pea (dry), VD 4511	0.05	-	NLD	63.0	252	-	-	ND	ND	3	0.20	0.02%
MO 0098	Kidney of cattle, goats, pigs and sheep	-	0.15	USA	65.0	788	-	-	ND	ND	1	1.82	0.18%
VD 0533	Lentil (dry)	0.05	-	FRA	52.2	614	-	-	ND	ND	3	0.59	0.06%

Annex 4

International estimate of short term intake (IESTI) for

ARfD= 1.000 mg/kg bw (1000 μg/kg bw)

GENERAL POPULATION (EXCEPT WOMEN OF CHILD-BEARING AGE)

Maximum %ARfD: 0.18%

	GERTERA	JI OI CLITI	TOTT (EFFEE)	1 WONE	Of CITED D	Er Henric 71	GE)			IVIUATITIU	m /ermab.	0.16%
			Large porti	on diet		Unit weig	ht					
Commodity	STMR or STMR- P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight,	Country	Unit weight, edible portion,	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
Lima bean (dry)	0.05	-	USA	65.0	202	-	-	ND	ND	3	0.16	0.02%
Liver of cattle, goats, pigs and sheep	-	0.23	USA	65.0	380	-	-	ND	ND	1	1.34	0.13%
Lupin (dry)	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
Meat from mammals other than marine mammals: 20% as fat	-	0.02	AUS	67.0	104	-	-	ND	ND	1	0.03	0.00%
Meat from mammals other than marine mammals: 80% as muscle	-	0.01	AUS	67.0	417	-	-	ND	ND	1	0.06	0.01%
Milks	0.004	-	USA	65.0	2466	-	-	ND	ND	3	0.15	0.02%
Mung bean (dry)	0.05	-	Thai	53.5	80	-	-	ND	ND	3	0.08	0.01%
Oats	0.01	-	USA	65.0	175	-	-	ND	ND	ND	ND	-
Peanut, shelled	0.01	-	FRA	52.2	135	-	-	ND	ND	3	0.03	0.00%
Peas (dry)	0.05	-	FRA	52.2	356	-	-	ND	ND	3	0.34	0.03%
Pigeon pea	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
Rape seed	0.02	-	-	-	ND	-	-	ND	ND	3	ND	-
Rape seed oil, edible	0.014	-	AUS	67.0	65	-	-	ND	ND	3	0.01	0.00%
Rye	0.01	-	FRA	52.2	161	-	-	ND	ND	3	0.03	0.00%
Triticale	0.01	-	-	-	ND	-	-	ND	ND	3	ND	-
Wheat	0.02	-	FRA	52.2	703	-	-	ND	ND	ND	ND	-
Wheat bran, unprocessed	0.048	-	USA	65.0	80	-	-	ND	ND	ND	ND	-
Wheat flour	0.008	-	FRA	52.2	479	-	-	ND	ND	ND	ND	-
Wheat germ	0.04	-	FRA	52.2	174	-	-	ND	ND	3	0.13	0.01%
	Lima bean (dry) Liver of cattle, goats, pigs and sheep Lupin (dry) Meat from mammals other than marine mammals: 20% as fat Meat from mammals other than marine mammals: 80% as muscle Milks Mung bean (dry) Oats Peanut, shelled Peas (dry) Pigeon pea Rape seed Rape seed oil, edible Rye Triticale Wheat Wheat bran, unprocessed Wheat flour	Commodity STMR or STMR-P mg/kg Lima bean (dry) 0.05 Liver of cattle, goats, pigs and sheep - Lupin (dry) 0.05 Meat from mammals other than marine mammals: 20% as fat - Meat from mammals other than marine mammals: 80% as muscle - Milks 0.004 Mung bean (dry) 0.05 Oats 0.01 Peanut, shelled 0.01 Peas (dry) 0.05 Pigeon pea 0.05 Rape seed 0.02 Rape seed oil, edible 0.014 Rye 0.01 Triticale 0.01 Wheat 0.02 Wheat bran, unprocessed 0.048 Wheat flour 0.008	Commodity STMR or STMR-P mg/kg HR or HR-P mg/kg Lima bean (dry) 0.05 - Liver of cattle, goats, pigs and sheep - 0.23 Lupin (dry) 0.05 - Meat from mammals other than marine mammals: 20% as fat - 0.02 Meat from mammals other than marine mammals: 80% as muscle - 0.01 Milks 0.004 - Mung bean (dry) 0.05 - Oats 0.01 - Peanut, shelled 0.01 - Peas (dry) 0.05 - Pigeon pea 0.05 - Rape seed 0.02 - Rape seed oil, edible 0.014 - Rye 0.01 - Triticale 0.01 - Wheat 0.02 - Wheat bran, unprocessed 0.048 - Wheat flour 0.008 -	Lima bean (dry)	Lima bean (dry)	Lima bean (dry) 0.05 - USA 65.0 202	Lima bean (dry)	Lima bean (dry)	Lima bean (dry)	Lima bean (dry)	Lima bean (dry)	Commodity STMR or STMR- HR or STMR- HR or STMR- mg/kg mg/k

International estimate of short term intake (IESTI) for

ARfD= 0.010 mg/kg bw (10μ g/kg bw)

WOMEN OF CHILD-BEARING AGE

Annex 4

Maximum %ARfD: 20%

		WOMEN	or Cirileo b	Littli 10 ile	,						111u/tilliui	ii /0/HCD.	2070
				Large porti	on diet		Unit weigh	nt					
Codex Code	Commodity	STMR or STMR- P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
VR 0596	Sugar beet	0.05	-	-	-	ND	-	-	ND	ND	ND	ND	-
VD 0520	Bambara groundnut (dry seed)	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
GC 0640	Barley	0.035	-	NLD	63.0	378	-	-	ND	ND	3	0.21	2%
VD 0071	Beans (dry)	0.05	-	FRA	52.2	360	-	-	ND	ND	3	0.35	3%
VD 0523	Broad bean (dry)	0.05	-	AUS	67.0	139	-	-	ND	ND	3	0.10	1%
VD 0524	Chick-pea (dry)	0.05	-	USA	65.0	205	-	-	ND	ND	3	0.16	2%
VD 0526	Common bean (dry)	0.05	-	FRA	52.2	360	-	-	ND	ND	3	0.35	3%
VD 0526	Common bean (dry), stated as kidney bean VD 4503	0.05	-	Thai	53.5	82	-	-	ND	ND	3	0.08	1%
VD 0527	Cowpea (dry)	0.05	-	USA	65.0	205	-	-	ND	ND	3	0.16	2%
VD 0527	Cowpea (dry), stated as black-eyed pea VD 4467	0.05	-	NLD	63.0	28	-	-	ND	ND	3	0.02	0%
VD 0561	Field pea (dry)	0.05	-	FRA	52.2	356	-	-	ND	ND	3	0.34	3%
VD 0561	Field pea (dry), stated as pea (dry), VD 4511	0.05	-	NLD	63.0	252	-	-	ND	ND	3	0.20	2%
MO 0098	Kidney of cattle, goats, pigs and sheep	-	0.15	USA	65.0	788	-	-	ND	ND	1	1.82	20%
VD 0533	Lentil (dry)	0.05	-	FRA	52.2	614	-	-	ND	ND	3	0.59	6%
VD 0534	Lima bean (dry)	0.05	-	USA	65.0	202	-	-	ND	ND	3	0.16	2%
MO 0099	Liver of cattle, goats, pigs and sheep	-	0.23	USA	65.0	380	-	-	ND	ND	1	1.34	10%
VD 0545	Lupin (dry)	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
MM 0095	Meat from mammals other than marine mammals: 20% as fat	-	0.02	AUS	67.0	104	-	-	ND	ND	1	0.03	0%
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	-	0.01	AUS	67.0	417	-	-	ND	ND	1	0.06	1%
ML 0106	Milks	0.004	-	USA	65.0	2466	-	-	ND	ND	3	0.15	2%
VD 0536	Mung bean (dry)	0.05	-	Thai	53.5	80	-	-	ND	ND	3	0.08	1%
GC 0647	Oats	0.01	-	USA	65.0	175	-	-	ND	ND	ND	ND	-
SO 0697	Peanut, shelled	0.01	-	FRA	52.2	135	-	-	ND	ND	3	0.03	0%
VD 0072	Peas (dry)	0.05	-	FRA	52.2	356	-	-	ND	ND	3	0.34	3%
VD 0537	Pigeon pea	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
SO 0495	Rape seed	0.02	-	-	-	ND	-	-	ND	ND	3	ND	-
OR 0495	Rape seed oil, edible	0.014	-	AUS	67.0	65	-	-	ND	ND	3	0.01	0%

Annex 4

International estimate of short term intake (IESTI) for

ARfD= 0.010 mg/kg bw (10 µg/kg bw)

WOMEN OF CHILD-BEARING AGE

Maximum %ARfD: 20%

				Large portion	n diet		Unit weigh	t					
Codex Code	Commodity	STMR or STMR-	HR or HR-P	Country	Body weight	Large	Unit weight, g	Country	Unit weight,	Varia- bility	Case	IESTI μg/kg bw/day	% acute RfD
Code		P mg/kg	mg/kg		(kg)	portion, g/person	weight, g		edible	factor		bw/day	rounded
									portion, g				
GC 0650	Rye	0.01	-	FRA	52.2	161	-	-	ND	ND	3	0.03	0%
GC 0653	Triticale	0.01	-	-	-	ND	-	-	ND	ND	3	ND	-
GC 0654	Wheat	0.02	-	FRA	52.2	703	-	-	ND	ND	ND	ND	-
CM 0654	Wheat bran, unprocessed	0.048	-	USA	65.0	80	-	-	ND	ND	ND	ND	-
CF 1211	Wheat flour	0.008	-	FRA	52.2	479	-	-	ND	ND	ND	ND	-
CF 1210	Wheat germ	0.04	-	FRA	52.2	174	-	-	ND	ND	3	0.13	1%

PROTHIOCONAZOLE (232)

International estimate of short term intake (IESTI) for

CHILDREN UP TO 6 YEARS

ARfD= 1.000 mg/kg bw (1000 µg/kg bw)

Maximum %ARfD: 0.2

		CITIEDICE									TTICATITICIT		
				Large portio	on diet		Unit weigh	t					
Codex Code	Commodity	STMR or STMR-	HR or HR-P	Country	Body weight	Large portion,	Unit weight, g	Country	Unit weight,	Varia- bility	Case	IESTI μg/kg bw/day	% acute RfD rounded
		P mg/kg	mg/kg		(kg)	g/person			edible portion, g	factor			
VR 0596	Sugar beet	0.05	-	-	-	ND	-	-	ND	ND	ND	ND	-
VD 0520	Bambara groundnut (dry seed)	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
GC 0640	Barley	0.035	-	AUS	19.0	14	-	-	ND	ND	3	0.03	0.00%
VD 0071	Beans (dry)	0.05	-	AUS	19.0	222	-	-	ND	ND	3	0.58	0.06%
VD 0523	Broad bean (dry)	0.05	-	AUS	19.0	32	-	-	ND	ND	3	0.08	0.01%
VD 0524	Chick-pea (dry)	0.05	-	USA	15.0	34	-	-	ND	ND	3	0.11	0.01%
VD 0526	Common bean (dry)	0.05	-	FRA	18.9	145	-	-	ND	ND	3	0.38	0.04%
VD 0526	Common bean (dry), stated as kidney bean VD 4503	0.05	-	Thai	17.1	45	-	-	ND	ND	3	0.13	0.01%
VD 0527	Cowpea (dry)	0.05	-	USA	15.0	43	-	-	ND	ND	3	0.14	0.01%
VD 0527	Cowpea (dry), stated as black-eyed pea VD 4467	0.05	-	NLD	17.0	28	-	-	ND	ND	3	0.08	0.01%
VD 0561	Field pea (dry)	0.05	-	USA	15.0	11	-	-	ND	ND	3	0.04	0.00%
VD 0561	Field pea (dry), stated as pea (dry), VD 4511	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-

0.2100%

International estimate of short term intake (IESTI) for

ARfD= 1.000 mg/kg bw (1000 μg/kg bw)

Maximum %ARfD: 0.2100%

CHILDREN LIP TO 6 VEARS

		CHILDRE	N UP TO 6	YEARS							Maximu	ım %ARfD:	0.2100%
				Large port	ion diet		Unit weigh	ıt					
Codex Code	Commodity	STMR or STMR- P mg/kg	HR or HR-P mg/kg	Country	Body weight (kg)	Large portion, g/person	Unit weight, g	Country	Unit weight, edible portion, g	Varia- bility factor	Case	IESTI μg/kg bw/day	% acute RfD rounded
MO 0098	Kidney of cattle, goats, pigs and sheep	-	0.15	USA	15.0	187	-	-	ND	ND	1	1.87	0.19%
VD 0533	Lentil (dry)	0.05	-	FRA	18.9	291	-	-	ND	ND	3	0.77	0.08%
VD 0534	Lima bean (dry)	0.05	-	USA	15.0	74	-	-	ND	ND	3	0.25	0.02%
MO 0099	Liver of cattle, goats, pigs and sheep	-	0.23	USA	15.0	136	-	-	ND	ND	1	2.09	0.21%
VD 0545	Lupin (dry)	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
MM 0095	Meat from mammals other than marine mammals: 20% as fat	-	0.02	AUS	19.0	52	-	-	ND	ND	1	0.05	0.01%
MM 0095	Meat from mammals other than marine mammals: 80% as muscle	-	0.01	AUS	19.0	208	-	-	ND	ND	1	0.11	0.01%
ML 0106	Milks	0.004	-	USA	15.0	1286	-	-	ND	ND	3	0.34	0.03%
VD 0536	Mung bean (dry)	0.05	-	Thai	17.1	56	-	-	ND	ND	3	0.17	0.02%
GC 0647	Oats	0.01	-	USA	15.0	62	-	-	ND	ND	ND	ND	-
SO 0697	Peanut, shelled	0.01	-	USA	15.0	78	-	-	ND	ND	3	0.05	0.01%
VD 0072	Peas (dry)	0.05	-	USA	15.0	86	-	-	ND	ND	3	0.29	0.03%
VD 0537	Pigeon pea	0.05	-	-	-	ND	-	-	ND	ND	3	ND	-
SO 0495	Rape seed	0.02	-	-	-	ND	-	-	ND	ND	3	ND	-
OR 0495	Rape seed oil, edible	0.014	-	AUS	19.0	18	-	-	ND	ND	3	0.01	0.00%
GC 0650	Rye	0.01	-	NLD	17.0	37	-	-	ND	ND	3	0.02	0.00%
GC 0653	Triticale	0.01	-	-	-	ND	-	-	ND	ND	3	ND	-
GC 0654	Wheat	0.02	-	FRA	18.9	384	-	-	ND	ND	ND	ND	-
CM 0654	Wheat bran, unprocessed	0.048	-	USA	15.0	30	-		ND	ND	ND	ND	
CF 1211	Wheat flour	0.008	-	FRA	18.9	245	-		ND	ND	ND	ND	
CF 1210	Wheat germ	0.04	-	USA	15.0	8	-	-	ND	ND	3	0.02	0.00%

Annex 5 393

ANNEX 5: REPORTS AND OTHER DOCUMENTS RESULTING FROM PREVIOUS JOINT MEETINGS OF THE FAO PANEL OF EXPERTS ON PESTICIDE RESIDUES IN FOOD AND THE ENVIRONMENT AND THE WHO EXPERT GROUPS ON PESTICIDE RESIDUES

- 1. Principles governing consumer safety in relation to pesticide residues. Report of a meeting of a WHO Expert Committee on Pesticide Residues held jointly with the FAO Panel of Experts on the Use of Pesticides in Agriculture. FAO Plant Production and Protection Division Report, No. PL/1961/11; WHO Technical Report Series, No. 240, 1962.
- 2. Evaluation of the toxicity of pesticide residues in food. Report of a Joint Meeting of the FAO Committee on Pesticides in Agriculture and the WHO Expert Committee on Pesticide Residues. FAO Meeting Report, No. PL/1963/13; WHO/Food Add./23, 1964.
- 3. Evaluation of the toxicity of pesticide residues in food. Report of the Second Joint Meeting of the FAO Committee on Pesticides in Agriculture and the WHO Expert Committee on Pesticide Residues. FAO Meeting Report, No. PL/1965/10; WHO/Food Add./26.65, 1965.
- 4. Evaluation of the toxicity of pesticide residues in food. FAO Meeting Report, No. PL/1965/10/1; WHO/Food Add./27.65, 1965.
- 5. Evaluation of the hazards to consumers resulting from the use of fumigants in the protection of food. FAO Meeting Report, No. PL/1965/10/2; WHO/Food Add./28.65, 1965.
- 6. Pesticide residues in food. Joint report of the FAO Working Party on Pesticide Residues and the WHO Expert Committee on Pesticide Residues. FAO Agricultural Studies, No. 73; WHO Technical Report Series, No. 370, 1967.
- 7. Evaluation of some pesticide residues in food. FAO/PL:CP/15; WHO/Food Add./67.32, 1967.
- 8. Pesticide residues. Report of the 1967 Joint Meeting of the FAO Working Party and the WHO Expert Committee. FAO Meeting Report, No. PL:1967/M/11; WHO Technical Report Series, No. 391, 1968.
- 9. 1967 Evaluations of some pesticide residues in food. FAO/PL:1967/M/11/1; WHO/Food Add./68.30, 1968.
- 10. Pesticide residues in food. Report of the 1968 Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Committee on Pesticide Residues. FAO Agricultural Studies, No. 78; WHO Technical Report Series, No. 417, 1968.
- 11. 1968 Evaluations of some pesticide residues in food. FAO/PL:1968/M/9/1; WHO/Food Add./69.35, 1969.
- 12. Pesticide residues in food. Report of the 1969 Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Group on Pesticide Residues. FAO Agricultural Studies, No. 84; WHO Technical Report Series, No. 458, 1970.
- 13. 1969 Evaluations of some pesticide residues in food. FAO/PL:1969/M/17/1; WHO/Food Add./70.38, 1970.

- 14. Pesticide residues in food. Report of the 1970 Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Committee on Pesticide Residues. FAO Agricultural Studies, No. 87; WHO Technical Report Series, No. 4574, 1971.
- 15. 1970 Evaluations of some pesticide residues in food. AGP:1970/M/12/1; WHO/Food Add./71.42, 1971.
- 16. Pesticide residues in food. Report of the 1971 Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Committee on Pesticide Residues. FAO Agricultural Studies, No. 88; WHO Technical Report Series, No. 502, 1972.
- 17. 1971 Evaluations of some pesticide residues in food. AGP:1971/M/9/1; WHO Pesticide Residue Series, No. 1, 1972.
- 18. Pesticide residues in food. Report of the 1972 Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Committee on Pesticide Residues. FAO Agricultural Studies, No. 90; WHO Technical Report Series, No. 525, 1973.
- 19. 1972 Evaluations of some pesticide residues in food. AGP:1972/M/9/1; WHO Pesticide Residue Series, No. 2, 1973.
- 20. Pesticide residues in food. Report of the 1973 Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Committee on Pesticide Residues. FAO Agricultural Studies, No. 92; WHO Technical Report Series, No. 545, 1974.
- 21. 1973 Evaluations of some pesticide residues in food. FAO/AGP/1973/M/9/1; WHO Pesticide Residue Series, No. 3, 1974.
- 22. Pesticide residues in food. Report of the 1974 Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Committee on Pesticide Residues. FAO Agricultural Studies, No. 97; WHO Technical Report Series, No. 574, 1975.
- 23. 1974 Evaluations of some pesticide residues in food. FAO/AGP/1974/M/11; WHO Pesticide Residue Series, No. 4, 1975.
- 24. Pesticide residues in food. Report of the 1975 Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Committee on Pesticide Residues. FAO Plant Production and Protection Series, No. 1; WHO Technical Report Series, No. 592, 1976.
- 25. 1975 Evaluations of some pesticide residues in food. AGP:1975/M/13; WHO Pesticide Residue Series, No. 5, 1976.
- 26. Pesticide residues in food. Report of the 1976 Joint Meeting of the FAO Panel of Experts on Pesticide Residues and the Environment and the WHO Expert Group on Pesticide Residues. FAO Food and Nutrition Series, No. 9; FAO Plant Production and Protection Series, No. 8; WHO Technical Report Series, No. 612, 1977.
- 27. 1976 Evaluations of some pesticide residues in food. AGP:1976/M/14, 1977.
- 28. Pesticide residues in food—1977. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues and Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 10 Rev, 1978.

Annex 5 395

- 29. Pesticide residues in food: 1977 evaluations. FAO Plant Production and Protection Paper 10 Suppl., 1978.
- 30. Pesticide residues in food—1978. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues and Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 15, 1979.
- 31. Pesticide residues in food: 1978 evaluations. FAO Plant Production and Protection Paper 15 Suppl., 1979.
- 32. Pesticide residues in food—1979. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 20, 1980.
- 33. Pesticide residues in food: 1979 evaluations. FAO Plant Production and Protection Paper 20 Suppl., 1980
- 34. Pesticide residues in food—1980. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 26, 1981.
- 35. Pesticide residues in food: 1980 evaluations. FAO Plant Production and Protection Paper 26 Suppl., 1981.
- 36. Pesticide residues in food—1981. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 37, 1982.
- 37. Pesticide residues in food: 1981 evaluations. FAO Plant Production and Protection Paper 42, 1982.
- 38. Pesticide residues in food—1982. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 46, 1982.
- 39. Pesticide residues in food: 1982 evaluations. FAO Plant Production and Protection Paper 49, 1983.
- 40. Pesticide residues in food—1983. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 56, 1985.
- 41. Pesticide residues in food: 1983 evaluations. FAO Plant Production and Protection Paper 61, 1985.
- 42. Pesticide residues in food—1984. Report of the Joint Meeting on Pesticide Residues. FAO Plant Production and Protection Paper 62, 1985.
- 43. Pesticide residues in food—1984 evaluations. FAO Plant Production and Protection Paper 67, 1985.
- 44. Pesticide residues in food—1985. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 68, 1986.

- 45. Pesticide residues in food—1985 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 72/1, 1986.
- 46. Pesticide residues in food—1985 evaluations. Part II. Toxicology. FAO Plant Production and Protection Paper 72/2, 1986.
- 47. Pesticide residues in food—1986. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 77, 1986.
- 48. Pesticide residues in food—1986 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 78, 1986.
- 49. Pesticide residues in food—1986 evaluations. Part II. Toxicology. FAO Plant Production and Protection Paper 78/2, 1987.
- 50. Pesticide residues in food—1987. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 84, 1987.
- 51. Pesticide residues in food—1987 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 86/1, 1988.
- 52. Pesticide residues in food—1987 evaluations. Part II. Toxicology. FAO Plant Production and Protection Paper 86/2, 1988.
- 53. Pesticide residues in food—1988. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 92, 1988.
- 54. Pesticide residues in food—1988 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 93/1, 1988.
- 55. Pesticide residues in food—1988 evaluations. Part II. Toxicology. FAO Plant Production and Protection Paper 93/2, 1989.
- 56. Pesticide residues in food—1989. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 99, 1989.
- 57. Pesticide residues in food—1989 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 100, 1990.
- 58. Pesticide residues in food—1989 evaluations. Part II. Toxicology. FAO Plant Production and Protection Paper 100/2, 1990.
- 59. Pesticide residues in food—1990. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 102, Rome, 1990.
- 60. Pesticide residues in food—1990 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 103/1, Rome, 1990.
- 61. Pesticide residues in food—1990 evaluations. Part II. Toxicology. World Health Organization, WHO/PCS/91.47, Geneva, 1991.

Annex 5 397

- 62. Pesticide residues in food—1991. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 111, Rome, 1991.
- 63. Pesticide residues in food—1991 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 113/1, Rome, 1991.
- 64. Pesticide residues in food—1991 evaluations. Part II. Toxicology. World Health Organization, WHO/PCS/92.52, Geneva, 1992.
- 65. Pesticide residues in food—1992. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 116, Rome, 1993.
- 66. Pesticide residues in food—1992 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 118, Rome, 1993.
- 67. Pesticide residues in food—1992 evaluations. Part II. Toxicology. World Health Organization, WHO/PCS/93.34, Geneva, 1993.
- 68. Pesticide residues in food—1993. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 122, Rome, 1994.
- 69. Pesticide residues in food—1993 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 124, Rome, 1994.
- 70. Pesticide residues in food—1993 evaluations. Part II. Toxicology. World Health Organization, WHO/PCS/94.4, Geneva, 1994.
- 71. Pesticide residues in food—1994. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 127, Rome, 1995.
- 72. Pesticide residues in food—1994 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 131/1 and 131/2 (2 volumes), Rome, 1995.
- 73. Pesticide residues in food—1994 evaluations. Part II. Toxicology. World Health Organization, WHO/PCS/95.2, Geneva, 1995.
- 74. Pesticide residues in food—1995. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the Core Assessment Group. FAO Plant Production and Protection Paper 133, Rome, 1996.
- 75. Pesticide residues in food—1995 evaluations. Part I. Residues. FAO Plant Production and Protection Paper 137, 1996.
- 76. Pesticide residues in food—1995 evaluations. Part II. Toxicological and Environmental. World Health Organization, WHO/PCS/96.48, Geneva, 1996.
- 77. Pesticide residues in food—1996. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper, 140, 1997.

- 78. Pesticide residues in food—1996 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 142, 1997.
- 79. Pesticide residues in food—1996 evaluations. Part II. Toxicological. World Health Organization, WHO/PCS/97.1, Geneva, 1997.
- 80. Pesticide residues in food—1997. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper, 145, 1998.
- 81. Pesticide residues in food—1997 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 146, 1998.
- 82. Pesticide residues in food—1997 evaluations. Part II. Toxicological and Environmental. World Health Organization, WHO/PCS/98.6, Geneva, 1998.
- 83. Pesticide residues in food—1998. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper, 148, 1999.
- 84. Pesticide residues in food—1998 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 152/1 and 152/2 (two volumes).
- 85. Pesticide residues in food—1998 evaluations. Part II. Toxicological and Environmental. World Health Organization, WHO/PCS/99.18, Geneva, 1999.
- 86. Pesticide residues in food—1999. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper, 153, 1999.
- 87. Pesticide residues in food—1999 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 157, 2000.
- 88. Pesticide residues in food—1999 evaluations. Part II. Toxicological. World Health Organization, WHO/PCS/00.4, Geneva, 2000.
- 89. Pesticide residues in food—2000. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper, 163, 2001.
- 90. Pesticide residues in food—2000 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 165, 2001.
- 91. Pesticide residues in food—2000 evaluations. Part II. Toxicological. World Health Organization, WHO/PCS/01.3, 2001.
- 92. Pesticide residues in food—2001. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper, 167, 2001.
- 93. Pesticide residues in food—2001 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 171, 2002.
- 94. Pesticide residues in food—2001 evaluations. Part II. Toxicological. World Health Organization, WHO/PCS/02.1, 2002.

Annex 5 399

- 95. Pesticide residues in food—2002. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. <u>FAO Plant Production and Protection Paper</u>, 172, 2002.
- 96. Pesticide residues in food—2002 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 175/1 and 175/2 (two volumes).
- 97. Pesticide residues in food—2002 evaluations. Part II. Toxicological. World Health Organization, WHO/PCS, 2003.
- 98. Pesticide residues in food—2003. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. <u>FAO Plant Production and Protection Paper</u>, 176, 2004.
- 99. Pesticide residues in food—2003 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 177, 2004.
- 100. Pesticide residues in food—2003 evaluations. Part II. Toxicological. World Health Organization, WHO/PCS, 2004.
- 101. Pesticide residues in food—2004. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. <u>FAO Plant Production and Protection Paper</u>, 178, 2004.
- 102. Pesticide residues in food—2004 evaluations. Part I. Residues. <u>FAO Plant Production and Protection Paper</u>, 182, 2005.
- 103. Pesticide residues in food—2004 evaluations. Part II. Toxicological. World Health Organization, WHO/PCS, 2006.
- 104. Pesticide residues in food—2005. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. <u>FAO Plant Production and Protection Paper</u>, 183, 2005.
- 105. Pesticide residues in food—2005 evaluations. Part I. Residues. <u>FAO Plant Production and Protection Paper</u>, 184, 2006.
- 106. Pesticide residues in food—2005 evaluations. Part II. Toxicological. World Health Organization, WHO/PCS, 2006.
- 107. Pesticide residues in food—2006. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper, 187, 2007.
- 108. Pesticide residues in food—2006 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 189/1 and 189/2 (two volumes), 2007.
- 109. Pesticide residues in food—2006 evaluations. Part II. Toxicological. World Health Organization. 2008.
- 110. Pesticide residues in food—2007. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper, 191, 2008.

- 111. Pesticide residues in food—2007 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 192, 2008.
- 112. Pesticide residues in food—2007 evaluations. Part II. Toxicological. World Health Organization, 2009.
- 113. Pesticide residues in food—2008. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and WHO the Core Assessment Group. FAO Plant Production and Protection Paper, 193, 2009.
- 114. Pesticide residues in food—2008 evaluations. Part I. Residues. FAO Plant Production and Protection Paper, 194, 2009.

ANNEX 6: LIVESTOCK DIETARY BURDEN

Livestock dietary burden tables

The livestock dietary burdens were estimated by considering the commodities listed in the tables below.

Benalaxyl

Estimated maximum dietary burden of farm animals

Estillated maxima	iii aicu	ary buracii	or rarin am	mais							
BEEF CATTLE										MA	X/MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conter	nt (%)		Residue co	ntribut	ion (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Grape pomace, dry	AB	2.8	STMR-P	100	2.8	0	0	20	0	0	0.56
Total						30	40	25	0	0	0.56

DAIRY CATTLE											MAX/MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conter	nt (%)		Residue co	ntribut	ion (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Grape pomace, dry	AB	2.8	STMR-P	100	2.8	0	0	20	0	0	0.56
Total						10	30	20	0	0	0.56

Boscalid Estimated maximum dietary burden of farm animals

BEEF CATTLE											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residu (ppm)	ie contril	oution
		mg/kg		%	mg/kg	US-CAN	EU	AU	US- CAN	EU	AU
Peanut, hay	AL	29	HR	85	34.12	25		60	8.53		20.47
Vetch, hay	AL	29	HR	85	34.12		25			8.53	
Cowpea, hay	AL	29	HR	86	33.72		10	40		3.37	13.49
Alfalfa, hay	AL	29	HR	89	32.58	35			11.4		
Barley, hay	AS	30.7	HR	100	30.7	25			7.68		
Barley, straw	AS	30.7	HR	100	30.7		30			9.21	
Cabbage, heads and leaves	-	2.7	HR	15	18		20			3.6	
Swede, roots	VR	0.71	HR	10	7.1		15			1.07	
Apple, pomace, wet	AB	2.2	STMR-P	40	5.5	15			0.83		
Total						100	100	100	28.4	25.8	34.0

Boscalid Estimated maximum dietary burden of farm animals

DAIRY CATTLE											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residue (ppm)	contrib	ution
		mg/kg		%	mg/kg	US-CAN	EU	AU	US- CAN	EU	AU
Peanut, hay	AL	29	HR	85	34.12	20		60	6.82		20.47
Vetch, hay	AL	29	HR	85	34.12	20	25		6.82	8.53	
Cowpea, hay	AL	29	HR	86	33.72		10			3.37	
Pea, hay	AL	29	HR	86	33.72			10			3.3
Alfalfa, hay	AL	29	HR	89	32.58		5			1.63	
Barley, hay	AS	30.7	HR	100	30.7	40		30	12.28		9.67
Barley, straw	AS	30.7	HR	100	30.7		30			9.21	
Cabbage, heads and leaves	-	2.7	HR	15	18		20			3.6	

Boscalid Estimated maximum dietary burden of farm animals

DAIRY CATTLE											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	ent (%)		Residue (ppm)	contrib	ution
		mg/kg		%	mg/kg	US-CAN	EU	AU	US- CAN	EU	AU
Swede, roots	VR	0.71	HR	10	7.1		10			0.71	
Apple, pomace, wet	AB	2.2	STMR-P	40	5.5	10			0.55		
Turnip, root	VR	0.71	HR	15	4.73	10			0.47		
Total						100	100	100	27.0	27.1	33.4

Boscalid Estimated maximum dietary burden of farm animals

POULTRY—BROILER											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet co	ntent (%)	Residu (ppm)	e contril	oution
		mg/kg		%	mg/kg	US- CAN	EU	AU	US- CAN	EU	AU
Swede, roots	VR	0.71	HR	10	7.1		10			0.71	
Soybean, hulls	AL	0.25	STMR-P	90	0.28	20	10	5	0.06	0.03	0.01
Bean, seeds	VD	0.12	STMR	88	0.14	20	20	70	0.03	0.03	0.1
Barley, grain	GC	0.075	STMR	88	0.09	55	60	15	0.05	0.05	0.01
Rye, grain	GC	0.075	STMR	89	0.09			10			0.01
Soybean, meal		0.023	STMR-P	92	0.03	5			0.001		
Total						100	100	100	0.13	0.82	0.13

Boscalid
Estimated maximum dietary burden of farm animals
POULTRY—LAYER

POULTRY—LAYER	ay ouru	 01 1 1									MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet co	ontent (9	%)	Residu (ppm)	e contrib	oution
		mg/kg		%	mg/kg	US- CAN	EU	AU	US- CAN	EU	AU
Soybean, hay	AL	29	HR	85	34.12		10			3.42	
Barley, straw	AS	30.7	HR	100	30.7		5			1.54	
Wheat, straw	AS	30.7	HR	100	30.7		5			1.54	
Cabbage, heads and leaves	-	2.7	HR	15	18		5			0.9	
Swede, roots	VR	0.71	HR	10	7.1		10			0.71	
Millet, hay	AS	3.2	HR	100	3.2		5			0.19	
Soybean, hulls	AL	0.25	STMR-P	90	0.28	10	5	5	0.03	0.01	0.01
Bean, seed	VD	0.12	STMR	86	0.14	20	20	70	0.03	0.03	0.1
Barley, grain	GC	0.075	STMR	86	0.09	70	35	15	0.06	0.03	0.01
Rye, grain	GC	0.075	STMR	86	0.09			10			0.01
Total						100	100	100	0.11	8.4	0.13

Buprofezin Estimated maximum dietary burden of farm animals

BEEF CATTLE											MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet content (%)			Residue (ppm)	contrib	ution
		mg/kg		%	mg/kg	US- CAN	EU	AU	US- CAN	EU	AU
Grape, wet pomace	-	2.7	STMR-P	15	18			20			3.6
Soybean, hay	AL	9.0	STMR	85	10.59	30		80	3.18		8.47
Vetch, hay	AL	9.0	STMR	85	10.59		25			2.65	
Cowpea, hay	AL	9.0	STMR	86	10.47		10			1.05	
Cabbage, (heads and leaves)	-	1.52	STMR	15	10.13		20			2.03	

Buprofezin
Estimated maximum dietary burden of farm animals

BEEF CATTLE											MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	. ,			Residue (ppm)	contrib	oution
		mg/kg		%	mg/kg	US-	EU	AU	US-	EU	AU
						CAN			CAN		
Alfalfa, hay	AL	9.0	STMR	89	10.11	30			3.03		
Barley, hay	AS	9.0	STMR	100	9.0	25			2.25		
Barley, straw	AS	9.0	STMR	100	9.0		30			2.7	
Apple, pomace	AB	2.2	STMR-P	40	5.5	15	15		0.83	0.83	
Total						100	100	100	9.3	9.3	12.1

Buprofezin Estimated maximum dietary burden of farm animals

DAIRY CATTLE MEAN CC Commodity Residue Basis DM Residue Diet content (%) Residue contribution dw (ppm) % mg/kg US-EU AU US-EU ΑU mg/kg CAN CAN 2.7 20 Grape, wet pomace 15 18 3.6 STMR-P 85 Peanut, hay 9.0 10.59 60 6.35 ALSTMR Vetch, hay ΑL 9.0 85 10.59 40 25 4.24 2.65 STMR Cowpea, hay AL 9.0 STMR 86 10.47 10 1.05 1.02 Pea, hay ΑL 9.0 STMR 86 10.23 10 2.03 Cabbage, (heads and leaves) 1.52 STMR 15 10.13 20 Kale, leaves 1.52 15 10.13 10 10.1 STMR Alfalfa, hay AL 9.0 89 10.11 5 0.51 STMR Barley, hay AS 9.0 100 9.0 40 3.6 STMR Barley, straw AS 9.0 100 9.0 30 2.7 STMR Apple, pomace wet AB 2.2 40 5.5 10 10 0.55 0.55 STMR-P Almond, hulls AM 4.1 90 4.56 10 0.46 STMR 100 100 100 8.8 9.5 12.0 Total

Buprofezin Estimated maximum dietary burden of farm animals

POULTRY—BROILER											MEAN
Commodity	CC	Residue	Basis	DM	Residue	Diet co	ntent (%)	Resid	ribution	
					dw				(ppm))	
		mg/kg		%	mg/kg	US-	EU	ΑU	US-	EU	AU
						CAN			CAN		
Swede, roots	VR	0.305	STMR	10	3.05		10			0.3	
Soybean, hulls	AL	0.25	STMR-P	90	0.28	20	10	5	0.06	0.03	0.01
Bean, seeds	VD	0.12	STMR	88	0.14	20	20	70	0.03	0.03	0.1
Barley, grain	GC	0.075	STMR	88	0.09	60	60		0.05	0.05	
Rye, grain	GC	0.075	STMR	89	0.09			25			0.2
Total						100	100	100	0.14	0.41	0.13

Buprofezin Estimated maximum dietary burden of farm animals

POULTRY—LAYER										MEAN
Commodity	CC	Residue	Basis	DM	Residue	Diet co	ntent (%	(b)	Residue co	ontribution
					dw				(ppm)	
		mg/kg		%	mg/kg	US-	EU	AU	US- EU	J AU
						CAN			CAN	
Soybean, hay	AL	9	STMR	86	10.47		10		1.0	05
Cabbage, head	-	1.52	STMR	15	10.13		5		0	51

Buprofezin

Estimated maximum dietary burden of farm animals

POULTRY—LAYER											MEAN
Commodity	CC	Residue	Basis	DM	Residue	Diet co	ntent (%))	Residu	ie cont	ribution
					dw				(ppm)		
		mg/kg		%	mg/kg	US-	EU	ΑU	US-	EU	AU
						CAN			CAN		
Wheat, straw	AS	9	STMR	100	9		10			0.9	
Swede, roots	VR	0.305	STMR	10	3.05		10			0.3	
Soybean, hulls	AL	0.25	STMR-P	90	0.28	10		5	0.03		0.01
Bean, seeds	VD	0.12	STMR	88	0.14	20	20	70	0.03	0.03	0.1
Barley, grain	GC	0.075	STMR	88	0.09	70	45		0.06	0.04	
Wheat, grain	GC	0.075	STMR	89	0.09			25			0.02
Total						100	100	100	0.12	2.82	0.13

Chlorpyrifos methyl (090)

Estimated maximum dietary burden of farm animals

BEEF CATTLE											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	ent (%)		Residue c	ontribut	ion (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
corn	GC	2.2	HR	88	2.500	60	70	70	1.50	1.75	1.75
wheat byproducts	CC	5.39	HR P	88	6.125	40	30	40	2.45	1.84	2.45
Total						100	100	110	3.95	3.59	4.20

Chlorpyrifos methyl (090)

Estimated maximum dietary burden of farm animals

DAIRY CATTLE											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	ent (%)		Residue c	ontributi	ion (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
barley	GC	2.2	HR	88	2.500	45	40	40	1.13	1.00	1.00
wheat byproducts	CC	5.39	HR P	88	6.125	40	30	40	2.45	1.84	2.45
Apple pomace, wet	AB	0.445	STMR-P	40	1.113	10	10	10	0.11	0.11	0.11
Total						95	80	90	3.69	2.95	3.56

Chlorpyrifos methyl (090)

Estimated mean dietary burden of farm animals

BEEF CATTLE											MEAN
Commodity	CC	Residue	Basis	DM	Residue	Diet conte	ent (%))	Residue c	ontribu	tion (ppm)
				C.	dw	TIC CAN			TIO CAN		4.77
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
corn	GC	2.1	STMR	88	2.386	60	70	60	1.43	1.67	1.43
wheat byproducts	CC	5.14	STMR-P	88	5.841	40	30	40	2.34	1.75	2.34
Total						100	100	10	3.77	3.42	3.77
								0			

Chlorpyrifos methyl (090)

Estimated mean dietary burden of farm animals

DAIRY CATTLE											MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	ent (%)		Residue c	ontributi	ion (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
barley		2.1	STMR	88	2.386	45	40	40	1.07	0.95	0.95
wheat byproducts	CC	5.14	STMR-P	88	5.841	40	30	40	2.34	1.75	2.34

Chlorpyrifos methyl (090)

AB 0.455 1.138 Apple pomace, wet STMR-P 40 10 10 10 0.11 0.11 0.11 95 80 90 Total 3.52 2.82 3.40

Chlorpyrifos methyl (090)

Estimated maximum dietary burden of farm animals

POULTRY - BROILER										MAX	
Commodity	CC	Residue	Basis	DM	Residue	Diet conte	nt (%)	Residue co	ontribut	ion
					dw				(ppm)		
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
barley grain		2.2	HR	88	2.500	50	70	15	1.25	1.75	0.38
wheat byproducts	CC	5.39	HR P	88	6.125	50	20	20	3.06	1.23	1.23
Total						100	90	35	4.31	2.98	1.60

Chlorpyrifos methyl (090)

Estimated maximum dietary burden of farm animals

POULTRY - LAYER										MAX	
Commodity	CC	Residue	Basis	DM	Residue	Diet conte	nt (%)	Residue c	ontribut	ion
					dw				(ppm)		
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
wheat	GC	2.2	HR	89	2.472	25	30	70	0.62	0.74	1.73
wheat byproducts	CC	5.39	HR P	88	6.125	50	20	20	3.06	1.23	1.23
Total						75	50	90	3.68	1.97	2.96

Chlorpyrifos methyl (090)

Estimated mean dietary burden of farm animals

POULTRY - BROILER										MEAN	<u> </u>
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	ent (%	,	Residue c	ontribut	ion
									(ppm)		
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
barley grain		2.1	STMR	88	2.386	50	70	15	1.19	1.67	0.36
wheat byproducts	CC	5.14	STMR-P	88	5.841	50	20	20	2.92	1.17	1.17
Total						100	90	35	4.11	2.84	1.53

Chlorpyrifos methyl (090)

Estimated mean dietary burden of farm animals

POULTRY - LAYER										MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	ent (%)	Residue contri	bution (ppm)
		mg/kg		%	mg/kg	US-CAN	EU AU	US-CAN	EU	AU
wheat		2.1	STMR	88	2.386	25	30 70	0.60	0.72	1.67
wheat byproducts	CC	5.14	STMR-P	88	5.841	50	20 20	2.92	1.17	1.17
Total						75	50 90	3.52	1.88	2.84

Chlorpyrifos methyl (090)

Estimated maximum dietary burden of farm animals

SWINE breed											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residue co	ntributio	n (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
corn	GC	2.2	HR	88	2.500	30	50	60	0.75	1.25	1.50
wheat byproducts	CC	5.39	HR P	88	6.125	70	50	40	4.29	3.06	2.45
Total						100	100	100	5.04	4.31	3.95

Chlorpyrifos methyl (090)

Estimated mean dietary burden of farm animals

SWINE breed											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residue co	ontributio	n (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
corn	GC	2.1	STMR	88	2.386	30	50	60	0.72	1.19	1.43
wheat byproducts	CC	5.14	STMR-P	88	5.841	70	50	40	4.09	2.92	2.34
Total						100	100	100	4.80	4.11	3.77

Chlorpyrifos methyl (090)

Estimated maximum dietary burden of farm animals

SWINE finish											MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residue co	ntributio	on (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
corn	GC	2.2	HR	88	2.500	50	50	60	1.25	1.25	1.50
wheat byproducts	CC	5.39	HR P	88	6.125	50	50	40	3.06	3.06	2.45
Total						100	100	100	4.31	4.31	3.95

Chlorpyrifos methyl (090)

Estimated mean dietary burden of farm animals

SWINE finish											MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residue co	ontributio	n (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
corn	GC	2.1	STMR	88	2.386	50	50	60	1.19	1.19	1.43
wheat byproducts	CC	5.14	STMR-P	88	5.841	50	50	40	2.92	2.92	2.34
Total						100	100	100	4.11	4.11	3.77

Cypermethrin

Estimated maximum dietary burden of livestock

BEEF CATTLE												
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet conte	ent (%)		Residue co	ntributio	n (ppm)	
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU	
Alfalfa forage	AL	11	high residue	35	31.4	60	70	100	18.9	22.0	31.4	
Sugar beet leaves or tops	AV	8.3	high residue	100	8.30		20			1.66		
Barley straw	AS AF	6.9	high residue	100	6.90	10	10		0.69	0.69		
Maize fodder	AS AF	6.9	high residue	100	6.90	15			1.04			
Barley forage	AS AF	1.4	high residue	30	4.67	5			0.23			
Wheat milled (bran)	CM	3.75	HR-P	88	4.26	10			0.43			
Total						100	100	100	21.2	24.4	31.4	

As well as the commodities shown in the table for beef and dairy cattle, the following were also considered: alfalfa fodder, barley grain, bean forage (green), beans (dry), cabbage heads, leaves, carrot culls, grape pomace, maize, maize forage, oat straw, oats, pea hay or pea fodder (dry), pea vines (green), peas (dry), rice, rice straw and fodder, rye, soya bean (dry), wheat and wheat straw and fodder.

Cypermethrin

Estimated maximum dietary burden of livestock

DAIRY CATTLE											MAX
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet cont	ent (%)		Residue co	ntribution	ı (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Alfalfa forage	AL	11	high residue	35	31.4	40	40	60	12.6	12.6	18.9
Sugar beet leaves or tops	AV	8.3	high residue	100	8.30		30			2.49	
Barley straw	AS AF	6.9	high residue	100	6.90	10	30	20	0.69	2.07	1.38

Cypermethrin

Estimated maximum dietary burden of livestock

DAIRY CATTLE											MAX
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet content (%)			Residue co	ntributio	n (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	I EU	AU	US-CAN	EU	AU
Maize fodder	AS AF	6.9	high residue	100	6.90	5		20	0.35		1.38
Wheat forage	AS AF	1.4	high residue	25	5.60	25			1.40		
Wheat milled (bran)	CM	3.75	HR-P	88	4.26	20			0.85		
Total						100	100	100	15.9	17.1	21.6

Cypermethrin

Estimated maximum dietary burden of livestock

POULTRY - BROILER	.										MAX
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet cont	ent (%)		Residue co	ntributio	n (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Wheat milled, bran	CM	3.75	HR-P	88	4.26	50	20	20	2.131	0.852	0.852
Barley grain	GC	1.5	high residue	88	1.70	50	70	15	0.852	1.193	0.256
Rye grain	GC	1.5	high residue	88	1.70			35			0.597
Wheat grain	GC	1.5	high residue	89	1.69			20			0.337
Carrot culls	VR	0.01	HR	12	0.083		10			0.008	
Bean seed	VD	0.05	STMR	88	0.057			10			0.006
Total						100	100	100	2.98	2.05	2.05

As well as the commodities shown in the table for poultry broilers and layers, the following were also considered: maize forage, maize grain, oat grain, oat straw, pea seed, pea straw, rice grain, wheat forage and wheat straw.

Cypermethrin

Estimated maximum dietary burden of livestock

POULTRY - LAYER											MAX
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet cont	tent (%)	1	Residue co	ntributio	n (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Pea vines	AL	2.1	high residue	25	8.40		10			0.840	
Beet, sugar tops	AV	8.3	high residue	100	8.30		5			0.415	
Barley straw	AS AF	6.9	high residue	100	6.90		5			0.345	
Maize fodder	AS AF	6.9	high residue	100	6.90		5			0.345	
Cabbage heads leaves	VB	0.65	high residue	15	4.33		5			0.217	
Wheat milled, bran	CM	3.75	HR-P	88	4.26	50	20	20	2.131	0.852	0.852
Barley grain	GC	1.5	high residue	88	1.70	50	50	15	0.852	0.852	0.256
Rye grain	GC	1.5	high residue	88	1.70			20			0.341
Wheat grain	GC	1.5	high residue	89	1.69			20			0.337
Bean seed	VD	0.05	STMR	88	0.057			25			0.014
Total						100	100	100	2.98	3.89	1.80

Fenbuconazole

Estimated maximum dietary burden

BEEF CATTLE											MAX
Commodity	Commodity	Residue	Basis	%Dry	Residue dw	Diet conte	nt (%)		Residue co	ontributio	on (ppm)
Commodity	group	mg/kg	Dusis	matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Apple pomace, wet	AB	0.30	STMR-P	40	0.750	20	20		0.15	0.15	0.00
Barley straw	AS	2.4	HR	89	2.697		10		0.00	0.27	0.00
Barley grain	GC	0.03	STMR	88	0.034	35	50		0.01	0.02	0.00
Rye grain	GC	0.02	STMR	88	0.023				0.00	0.00	0.00
Wheat straw	AS	2.5	HR	88	2.841	10	20	40	0.28	0.57	1.14
Wheat grain	GC	0.02	STMR	89	0.022				0.00	0.00	0.00
Almond hulls	AM	0.45	STMR	90	0.500	10			0.05		0.00

Fenbuconazole

Estimated maximum dietary burden

BEEF CATTLE											MAX
Commodity	Commodity	Residue	Basis	%Dry	Residue dw	Diet conte	nt (%)		Residue co	ontributi	on (ppm)
Commodity	group	group mg/kg	Dusis	matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Peanut hay	AL	7.14	HR	85	8.400	25		60	2.10		5.04
Peanut meal	SO	0.015	STMR	85	0.018				0.00	0.00	0.00
Total						100	100	100	2.60	1.00	6.18

Fenbuconazole

Estimated maximum dietary burden

DAIRY CATTLE											MAX
Commodity	Commodity	Residue	Basis	%Dry	Residue dw	Diet conte	nt (%)		Residue co	ontributio	on (ppm)
	group	mg/kg	Dusis	matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Apple pomace, wet	AB	0.3	STMR-P	40	0.750	10	10	10	0.08	0.08	0.08
Barley straw	AS	2.4	HR	89	2.697		10		0.00	0.27	0.00
Barley grain	GC	0.03	STMR	88	0.034	45	40		0.02	0.01	0.00
Rye grain	GC	0.02	STMR	88	0.023				0.00	0.00	
Wheat straw	AS	2.5	HR	88	2.841	10	20	20	0.28	0.57	0.57
Wheat grain	GC	0.02	STMR	89	0.022				0.00	0.00	0.00
Almond hulls	AM	0.45	STMR	90	0.500	10		10	0.05		0.05
Peanut hay	AL	7.14	HR	85	8.400	20		60	1.68		5.04
Peanut meal	SO	0.015	STMR	85	0.018	5	10		0.00	0.00	0.00

100

25

95

90

10

100 65

10

0.00

0.03

2.11

100

0.93

0.00

0.31

0.00

0.02

5.73

Fenbuconazole

Total

Estimated maximum dietary burden

POULTRY - LAYER M													
Commodity	Commod	Residue mg/kg	Basis	%Dry	Residue dw	Diet conte	nt (%)		Residue co (ppm)	ontributio	on		
Barley straw	C 1	1116/116		matter	1115/115	US-CAN	EU	AU	US-CAN	EU	AU		
Barley straw	AS	2.4	HR	89	2.697					0.00			
Barley grain	GC	0.03	STMR	88	0.034	70	80	15	0.02	0.03	0.01		
Rye grain	GC	0.02	STMR	88	0.023			35	0.00	0.00	0.01		
Wheat straw	AS	2.5	HR	88	2.841		10			0.28			
Wheat grain	GC	0.02	STMR	89	0.022			5	0.00	0.00	0.00		

0.018

85

STMR

Fenbuconazole

Peanut meal

Total

Estimated mean dietary burden

SO

0.015

BEEF CATTLE										MEAN	1
Commodity	Commodity	Residue	Basis	%Dry	Residue dw	Diet conte	nt (%)		Residue co	ntributio	on (ppm)
	group	mg/kg	Dusis	matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Apple pomace, wet	AB	0.30	STMR-P	40	0.750	20	20		0.15	0.15	0.00
Barley straw	AS	0.94	STMR	89	1.056	10	30	40	0.11	0.32	0.42
Barley grain	GC	0.03	STMR	88	0.034	35	50		0.01	0.02	0.00
Rye grain	GC	0.02	STMR	88	0.023				0.00	0.00	0.00
Wheat straw	AS	0.79	STMR	88	0.898				0.00	0.00	0.00
Wheat grain	GC	0.02	STMR	89	0.022				0.00	0.00	0.00
Almond hulls	AM	0.45	STMR	90	0.500	10			0.05		0.00
Peanut hay	AL	2.33	STMR	85	2.741	25		60	0.69		1.64

Fenbuconazole

Estimated mean dietary burden

BEEF CATTLE										MEA	N
Commodity	Commodity	Residue	Basis	%Dry	Residue dw	Diet conte	nt (%)		Residue co	ontributio	on (ppm)
	group	mg/kg	Dasis	matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Peanut meal	SO	0.015	STMR	85	0.018				0.00	0.00	0.00
Total						100	100	100	1.00	0.48	2.07

Fenbuconazole

Estimated mean dietary burden

DAIRY CATTLE										MEA	N
Commodity	Commodity	Residue	Basis	%Dry	Residue dw	Diet conte	nt (%)		Residue co	ontributio	on (ppm)
Commounty	group	mg/kg	Dusis	matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Apple pomace, wet	AB	0.3	STMR-P	40	0.750	10	10	10	0.08	0.08	0.08
Barley straw	AS	0.94	STMR	89	1.056	10	30	20	0.11	0.32	0.21
Barley grain	GC	0.03	STMR	88	0.034	45	40		0.02	0.01	0.00
Rye grain	GC	0.02	STMR	88	0.023				0.00	0.00	
Wheat straw	AS	0.79	STMR	88	0.898				0.00	0.00	0.00
Wheat grain	GC	0.02	STMR	89	0.022				0.00	0.00	0.00
Almond hulls	AM	0.45	STMR	90	0.500	10		10	0.05		0.05
Peanut hay	AL	2.33	STMR	85	2.741	20		60	0.55		1.64
Peanut meal	SO	0.015	STMR	85	0.018	5	10		0.00	0.00	0.00
Total						100	90	100	0.80	0.41	1.98

Fenbuconazole

Estimated mean dietary burden

POULTRY - B	ROILER									MAX	/MEAN
Commodity	Commod	Residue mg/kg	Basis	%Dry	Residue dw	Diet conte	ent (%)		Residue co	ontributi	on
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Barley grain	GC	0.03	STMR	88	0.034	75	70	15	0.03	0.02	0.01
Rye grain	GC	0.02	STMR	88	0.023	5		50	0.00	0.00	0.01
Wheat grain	GC	0.02	STMR	89	0.022			5	0.00	0.00	0.00
Peanut meal	SO	0.015	STMR	85	0.018	20	10	10	0.00	0.00	0.00
Total						100	80	80	0.03	0.03	0.02

Fenbuconazole

Estimated mean dietary burden

POULTRY - LAYER MEAN

Commodity	Commod group	Residue mg/kg	Basis	,	Residue dw	Diet conte	ent (%)		Residue co	ntributio	on
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Barley straw	AS	0.94	STMR	89	1.056		5			0.05	
Barley grain	GC	0.03	STMR	88	0.034	70	80	15	0.02	0.03	0.01
Rye grain	GC	0.02	STMR	88	0.023			35	0.00	0.00	0.01
Wheat straw	AS	0.79	STMR	88	0.898		5			0.04	
Wheat grain	GC	0.02	STMR	89	0.022			5	0.00	0.00	0.00
Peanut meal	SO	0.015	STMR	85	0.018	25	10	10	0.00	0.00	0.00
Total						95	100	65	0.03	0.13	0.02

Fluopicolide

Estimated maximum dietary burden of farm animals

BEEF CATTLE											MAX
Commodity	CC	Residue	Basis	D	Residue dw	Diet con	tent (%)		Residue	contribu	tion (ppm)
				M		***			***		
		mg/kg		%	mg/kg	US- CAN	EU	AU	US- CAN	EU	AU
Grape pomace, wet	AB	1.387	STMR-P	15	9.247	CAN		20	CAN		1.85
Cabbage leaves	712	3.800	HR	15	25.333		20	20		5.07	1.00
Barley forage		0.040	HR	30	0.133		20			5.07	
Barley hay		0.120	HR	88	0.136						
Barley straw		0.120	HR	89	0.135						
Barley grain		0.010	STMR	88	0.011	50	60		0.01	0.01	
Oat forage		0.040	HR	30	0.133						
Oat hay		0.120	HR	90	0.133						
Oat straw		0.120	HR	90	0.133						
Oat grain		0.010	STMR	89	0.011						
Soya bean seed		0.010	STMR	89	0.011						
Soya bean hay		0.030	HR	85	0.035						
Wheat forage		0.040	HR	25	0.160	25	20	80	0.04	0.03	0.13
Wheat hay		0.120	HR	88	0.136	25			0.03		
Wheat straw		0.120	HR	88	0.136						
Wheat grain		0.010	STMR	89	0.011						
Total						100	100	100	0.08	5.11	1.98

Fluopicolide
Estimated maximum dietary burden of farm animals
DAIRY CATTLE

DAIRY CATTLE											MAX
Commodity	CC	Residue	Basis	D	Residue	Diet conter	nt (%)		Residue co	ntributio	on (ppm)
				M	dw						
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Grape pomace, wet	AB	1.387	STMR-P	15	9.247			20			1.85
Cabbage leaves		3.800	HR	15	25.333		20			5.07	
Barley forage		0.040	HR	30	0.133						
Barley hay		0.120	HR	88	0.136						
Barley straw		0.120	HR	89	0.135						
Barley grain		0.010	STMR	88	0.011	45			0.01		
Oat forage		0.040	HR	30	0.133						
Oat hay		0.120	HR	90	0.133						
Oat straw		0.120	HR	90	0.133						
Oat grain		0.010	STMR	89	0.011						
Soya bean seed		0.010	STMR	89	0.011						
Soya bean hay		0.030	HR	85	0.035						
Wheat forage		0.040	HR	25	0.160	40	20	60	0.06	0.03	0.10
Wheat hay		0.120	HR	88	0.136	15			0.02		
Wheat straw		0.120	HR	88	0.136		20			0.03	
Wheat grain		0.010	STMR	89	0.011		40	20		0.00	0.00
Total						100	100	100	0.09	5.13	1.95

Fluopicolide Estimated maximum dietary burden of farm animals

Estilliated maximum	dictary b	uruen or ia	ariii aiiiiila	18							
POULTRY - BROIL	ER										MAX
Commodity	CC	Residue	Basis	DM	Residue	Diet conte	nt (%)		Residue co	ntributio	on (ppm)
					dw						
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Cabbage leaves		3.8	HR	15	25.333		5			1.27	
Soya bean seed		0.01	STMR	89	0.011	20	20	15	0.00	0.00	0.00
Barley grain		0.01	STMR	88	0.011		70			0.01	
Oat grain		0.01	STMR	89	0.011			15			0.00

Fluopicolide

Estimated maximum dietary burden of farm animals POLITRY - BROH FR

POULTRY - BRC	ILER										MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	Diet content (%)			ntributio	n (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Wheat grain		0.01	HR	89	0.011	80		70	0.01		0.01
Total						100	95	10	0.011	1.277	0.011
								0			

Fluopicolide

Estimated maximum dietary burden of farm animals

POULTRY - LAYER											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	ent (%)		Residue co	ontributio	n (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Soya bean seed		0.01	STMR	89	0.011	20		15	0.00		0.00
Barley straw		0.12	HR	89	0.135						
Barley grain		0.01	STMR	88	0.011	10	90	15	0.00	0.01	0.00
Oat forage		0.04	HR	30	0.133						
Oat hay		0.12	HR	90	0.133						
Oat grain		0.01	STMR	89	0.011			15			0.00
Wheat forage		0.04	HR	25	0.160		10			0.02	
Wheat hay		0.12	HR	88	0.136						
Wheat straw		0.12	HR	88	0.136						
Wheat grain		0.01	STMR	89	0.011	70		55	0.01		0.01
Total						100	100	100	0.011	0.026	0.011

Fluopicolide

Estimated mean dietary burden of farm animals

Commodity	CC	Residue	Basis	DM	Residue	Diet conte	nt (%)		Residue co	ontributio	on (ppm)
		mg/kg		%	dw mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Grape pomace, wet	AB	1.387	STMR-P	15	9.247	OB CHIV	LC	20	OB CHIV	LO	1.85
Cabbage leaves		0.800	STMR	15	5.333		20			1.07	
Barley forage		0.015	STMR	30	0.050						
Barley hay		0.060	STMR	88	0.068						
Barley straw		0.060	STMR	89	0.067						
Barley grain		0.010	STMR	88	0.011	50	50		0.01	0.01	
Oat forage		0.015	STMR	30	0.050						
Oat hay		0.060	STMR	90	0.067						
Oat straw		0.060	STMR	90	0.067						
Oat grain		0.010	STMR	89	0.011						
Soya bean seed		0.010	STMR	89	0.011	15	10	20	0.00	0.00	0.00
Soya bean hay		0.010	STMR	85	0.012						
Wheat forage		0.015	STMR	25	0.060	10			0.01		
Wheat hay		0.060	STMR	88	0.068	25			0.02		
Wheat straw		0.060	STMR	88	0.068		20			0.01	
Wheat grain		0.010	STMR	89	0.011			60			0.01
Total						100	100	10	0.03	1.09	1.86
								0			

Fluopicolide

Estimated mean dietary burden of farm animals

DAIRY CATTLE MEAN

Commodity	CC	Residue	Basis	DM	Residue dw	Diet content (%)		Residue co	ontributio	on (ppm)	
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Grape pomace, wet	AB	1.387	STMR-P	15	9.247			20			1.85
Cabbage leaves		0.800	STMR	15	5.333		20			1.07	
Barley forage		0.015	STMR	30	0.050						
Barley hay		0.060	STMR	88	0.068						
Barley straw		0.060	STMR	89	0.067						
Barley grain		0.010	STMR	88	0.011						
Oat forage		0.015	STMR	30	0.050						
Oat hay		0.060	STMR	90	0.067						
Oat straw		0.060	STMR	90	0.067						
Oat grain		0.010	STMR	89	0.011						
Soya bean seed		0.010	STMR	89	0.011						
Soya bean hay		0.010	STMR	85	0.012						
Wheat forage		0.015	STMR	25	0.060	40	20	60	0.02	0.01	0.04
Wheat hay		0.060	STMR	88	0.068	40	20	20	0.03	0.01	0.01
Wheat straw		0.060	STMR	88	0.068						
Wheat grain		0.010	STMR	89	0.011	20	40		0.00	0.00	
Total						100	100	10	0.05	1.10	1.90
								0			

Fluopicolide Estimated mean dietary burden of farm animals

POULTRY - BROILE	R										MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residue co	ontributio	n (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Cabbage leaves		0.800	STMR	15	5.333		5			0.27	
Soya bean seed		0.010	STMR	89	0.011	20	20	15	0.00	0.00	0.00
Barley grain		0.010	STMR	88	0.011		5	15		0.00	0.00
Oat grain		0.010	STMR	89	0.011						
Wheat grain		0.010	STMR	89	0.011	80	70	70	0.01	0.01	0.01
Total						100	100	10	0.011	0.277	0.011

Fluopicolide Estimated mean dietary burden of farm animals

POULTRY - LAYER					MEA	N					
Commodity	CC	Residue	Basis	D M	Residue dw	Diet con	tent (%)		Residue co	ontributio	n (ppm)
		mg/kg		%	mg/kg	US- CAN	EU	AU	US-CAN	EU	AU
Soya bean seed		0.010	STMR	89	0.011	20	15	15	0.00	0.00	0.00
Barley straw		0.060	STMR	89	0.067						
Barley grain		0.010	STMR	88	0.011	10		15	0.00		0.00
Oat forage		0.015	STMR	30	0.050						
Oat hay		0.060	STMR	90	0.067						
Oat grain		0.010	STMR	89	0.011			15			0.00
Wheat forage		0.015	STMR	25	0.060		10			0.01	
Wheat hay		0.060	STMR	88	0.068						
Wheat straw		0.060	STMR	88	0.068		10			0.01	
Wheat grain		0.010	STMR	89	0.011	70	65	55	0.01	0.01	0.01
Total						100	100	10	0.011	0.022	0.011
								0			

Haloxyfop – Livestock dietary burdens

Tier 1. Estimated maximum dietary burden of farm animals

BEEF CATTLE MA												
Commodity	Commo	d Residue	Basis	% D1	ry Residue o	lw Diet co	ontent (%)	Residue co	ontributi	ion (ppm)	
	group	mg/kg		matte	er mg/kg	US- CAN	EU	AU	US-CAN	EU	AU	
Rape forage	AV	6.8	high residue	30	22.667	20	10	100	4.53	2.27	22.67	
Alfalfa forage	AL	3.1	high residue	35	8.857	60	70		5.31	6.20		
Beet, mangel fodder	AM	0.30	high residue	15	2.000		20			0.40		
Bean seed	VD	0.335	STMR	88	0.381	15			0.06			
Canola meal	SO	0.10	STMR-P	88	0.114	5			0.01			
Total						100	100	100	9.91	8.87	22.67	

Haloxyfop - Livestock dietary burdens

Tier 1. Estimated maximum dietary burden of farm animals

DAIRY CATTLE MAZ												
Commodity	Commod Residue		idue Basis % Dry Residue dw Diet content (%)			%)	Residue co	ntributi	on (ppm)			
	group	mg/kg		matter	mg/kg	US-CANEU AU		AU	US-CAN	EU	AU	
Rape forage	AV	6.8	high residue	30	22.667	20	10	40	4.53	2.27	9.07	
Alfalfa forage	AL	3.1	high residue	35	8.857	40	40	60	3.54	3.54	5.31	
Beet, mangel fodder	AM	0.30	high residue	15	2.000		25			0.50		
Beet, sugar tops	AV	0.38	high residue	23	1.652		10			0.17		
Bean seed	VD	0.335	STMR	88	0.381	15	15		0.06	0.06		
Canola meal	SO	0.10	STMR-P	88	0.114	15			0.02			
Cotton, undelinted seed	SO	0.10	STMR	88	0.114	10			0.01			
Total						100	100	100	8.16	6.53	14.38	

Haloxyfop – Livestock dietary burdens

Tier 1. Estimated maximum dietary burden of farm animals

POULTRY - BROILER MAX												
Commodity Commod Residue Basis % Dry Residue dw Diet content (%) Residue contribution (p											on (ppm)	
	group	mg/kg		matter	mg/kg	US-C	ANEU	AU	US-CAN	EU	AU	
Bean seed	VD	0.335	STMR	88	0.381	20	20	70	0.076	0.076	0.266	
Canola meal	SO	0.10	STMR-P	88	0.114	15	18	5	0.017	0.020	0.006	
Soya bean meal	SO AB?	0.069	STMR-P	92	0.075	25	22	20	0.019	0.017	0.015	
Total						60	60	95	0.11	0.11	0.29	

Haloxyfop – Livestock dietary burdens

Tier 1. Estimated maximum dietary burden of farm animals

POULTRY - LAYER											MAX
Commodity	Commod Residue Basis % Dry Residue dw Diet content (%))	Residue co	ntributio	n (ppm)
	group	mg/kg		matter	mg/kg	US-CA	NEU	AU	US-CAN	EU	AU
Rape forage	AV	6.8	HR	30	22.667		10			2.267	
Bean seed	VD	0.335	STMR	88	0.381	20	20	70	0.076	0.076	0.266
Soya bean forage	AL	0.18	HR	56	0.321		10			0.032	
Canola meal	SO	0.10	STMR-P	88	0.114	15	10	5	0.017	0.011	0.006
Soya bean meal	SO AB?	0.069	STMR-P	92	0.075	20	15	20	0.015	0.011	0.015
Total						55	65	95	0.11	2.40	0.29

Haloxyfop - Livestock dietary burdens

Tier 1. Estimated mean dietary burden of farm animals

BEEF CATTLE										MEAN
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet conte	ent (%)	Residue co	ntribution	(ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU A	J US-CAN	EU	AU
Rape forage	AV	3.9	STMR	30	13.000	20	10 10	0 2.60	1.30	13.00
Alfalfa forage	AL	1.1	STMR	35	3.143	60	70	1.89	2.20	

Beet, sugar tops	AV	0.11	STMR	23	0.478		10		0.05	
Bean seed	VD	0.335	STMR	88	0.381	15	10	0.06	0.04	
Canola meal	SO	0.10	STMR-P	88	0.114	5		0.01		
Total						100	100 10	0 4.55	3.59	13.00

Haloxyfop - Livestock dietary burdens

Tier 1. Estimated mean dietary burden of farm animals

DAIRY CATTLE MI												
Commodity	Commod Residue Basis			% Dry	Residue dw	Diet conte	nt (%)	Residue con	tribution	(ppm)		
	group	mg/kg		matter	mg/kg	US-CAN	EU A	J US-CAN	EU	AU		
Rape forage	AV	3.9	STMR	30	13.000	20	10 40	2.60	1.30	5.20		
Alfalfa forage (Australia)	AL	1.1	STMR	35	3.143	40	40 60	1.26	1.26	1.89		
Beet, sugar tops	AV	0.11	STMR	23	0.391		10		0.04			
Bean seed	VD	0.335	STMR	88	0.381	15	20	0.06	0.08			
Beet, mangel fodder	AM	0.02	STMR	15	0.133		20		0.03			
Canola meal	SO	0.10	STMR-P	88	0.114	15		0.02				
Cotton, undelinted seed	SO	0.10	STMR	88	0.114	10		0.01				
Total						100	100 10	0 3.94	2.70	7.09		

Haloxyfop - Livestock dietary burdens

Tier 1. Estimated mean dietary burden of farm animals

POULTRY - BROILER											MEAN
Commodity	Residue dw	Diet content (%) Residue contribution (ppm)									
	group	mg/kg		matter	mg/kg	US-CAN	EU	ΑU	US-CAN	EU	AU
Bean seed	VD	0.335	STMR	88	0.381	20	20	70	0.076	0.076	0.266
Canola meal	SO	0.10	STMR-P	88	0.114	15	18	5	0.017	0.020	0.006
Soya bean meal	SO AB?	0.069	STMR-P	92	0.075	25	22	20	0.019	0.017	0.015
Total						60	60	95	0.11	0.11	0.29

Haloxyfop - Livestock dietary burdens

Tier 1. Estimated mean dietary burden of farm animals POULTRY - LAYER

POULTRY - LAYER	- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5										MEAN
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet conte	nt (%	5)	Residue cont	ribution	(ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Rape forage	AV	3.9	STMR	30	13.000		10			1.300	
Bean seed	VD	0.335	STMR	88	0.381	20	20	70	0.076	0.076	0.266
Soya bean forage	AL	0.075	STMR	56	0.125		10			0.013	
Canola meal	SO	0.10	STMR-P	88	0.114	15	10	5	0.017	0.011	0.006
Soya bean meal	SO AB?	0.069	STMR-P	92	0.075	20	15	20	0.015	0.011	0.015
Total						55	65	95	0.11	1.41	0.29

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated maximum dietary burden of farm animals

BEEF CATTLE										MAX
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet conte	ent (%)	Residue cont	ribution	(ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU AU	US-CAN	EU	AU
Rape forage (Europe)	AV	6.8	high residue	30	22.667		10		2.27	
Alfalfa forage (Australia)	AL	3.1	high residue	35	8.857		100			8.86
Peanut hay	AL	3.00	high residue	85	3.529	25		0.88		
Beet, mangel fodder	AM	0.30	high residue	15	2.000		30		0.60	
Beet, sugar tops	AV	0.38	high residue	23	1.652		10		0.17	
Bean seed	VD	0.335	STMR	88	0.381	15	20	0.06	0.08	
Canola meal	SO	0.10	STMR-P	88	0.114	15		0.02		
Cotton, undelinted seed	SO	0.10	STMR	88	0.114	10		0.01		

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated maximum dietary burden of farm animals

BEEF CATTLE										MAX
Commodity	ommodity Commod Residue Basis % Dry R							Residue cont	ribution (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU AU	US-CAN	EU	AU
Beet sugar, molasses	AV DM?	0.063	STMR-P	75	0.084	10		0.01		
Soya bean meal	SO AB?	0.069	STMR-P	92	0.075		20		0.02	
Beet, sugar, dried pulp	AV AB?	0.008	STMR-P	88	0.009	10		0.00		
Total						85	90 100	0.98	3.12	8.86

As well as the commodities shown in the table for beef and dairy cattle, the following were also considered: pea seed, soybean forage, and soya bean seed.

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated maximum dietary burden of farm animals

DAIRY CATTLE										MAX
Commodity	Commod	l Residu	e Basis	% Dr	y Residue dw	Diet co	ontent	(%) Residue co	ntributio	on (ppm)
	group	mg/kg		matte	r mg/kg	US-CA	ANEU	AU US-CAN	EU	AU
Rape forage (Europe)	AV	6.8	high residue	30	22.667		10		2.27	
Alfalfa forage (Australia)	AL	3.1	high residue	35	8.857			60		5.31
Rape forage (Australia)	AV	5.0	high residue	100	5.000			40		2.00
Peanut hay	AL	3.00	high residue	85	3.529	20		0.71		
Beet, mangel fodder	AM	0.30	high residue	15	2.000		25		0.50	
Beet, sugar tops	AV	0.38	high residue	23	1.652		10		0.17	
Bean seed	VD	0.335	STMR	88	0.381	15	20	0.06	0.08	
Canola meal	SO	0.10	STMR-P	88	0.114	15	10	0.02	0.01	
Cotton, undelinted seed	SO	0.10	STMR	88	0.114	10		0.01		
Beet sugar, molasses	AV DM?	0.063	STMR-P	75	0.084	10		0.01		
Soya bean meal	SO AB?	0.069	STMR-P	92	0.075		15		0.01	
Beet, sugar, dried pulp	AV AB?	0.008	STMR-P	88	0.009	10		0.00		
Total						80	90	100 0.80	3.03	7.31

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated maximum dietary burden of farm animals

POULTRY - BROILER											MAX
Commodity	Commod Residue Basis % Dry Residue dw Diet					Diet conte	ent (9	6)	Residue cont	ribution (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	ΑU	US-CAN	EU	AU
Bean seed	VD	0.335	STMR	88	0.381	20	20	70	0.076	0.076	0.266
Canola meal	SO	0.10	STMR-P	88	0.114	15	18	5	0.017	0.020	0.006
Soya bean meal	SO AB?	0.069	STMR-P	92	0.075	25	22	20	0.019	0.017	0.015
Total						60	60	95	0.11	0.11	0.29

As well as the commodities shown in the table for poultry broilers and layers, the following were also considered: sugar beet tops, pea seed and soya bean seed.

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated maximum dietary burden of farm animals

POULTRY - LAYER											MAX
Commodity	ommodity Commod Residue Basis						tent	(%)	Residue con	ntributio	n (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	IEU	ΙAU	US-CAN	EU	AU
Rape forage (Europe)	AV	6.8	HR	30	22.667		10			2.267	
Bean seed	VD	0.335	STMR	88	0.381	20	20	70	0.076	0.076	0.266
Soya bean forage (Europe)	AL	0.18	HR	56	0.321		10			0.032	
Canola meal	SO	0.10	STMR-P	88	0.114	15	10	5	0.017	0.011	0.006
Soya bean meal	SO	0.069	STMR-P	92	0.075	20	15	20	0.015	0.011	0.015

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated maximum dietary burden of farm animals

55 65 95 0.11 2.40 0.29

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated mean dietary burden of farm animals

BEEF CATTLE											MEAN
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet content (%)			Residue co	ntributio	n (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Rape forage (Europe)	AV	3.9	STMR	30	13.000		10			1.30	
Alfalfa forage (Australia)	AL	1.1	STMR	35	3.143			100			3.14
Peanut hay	AL	2.10	STMR	85	2.471	25			0.62		
Beet, sugar tops	AV	0.11	STMR	23	0.391		20			0.08	
Bean seed	VD	0.335	STMR	88	0.381	15	20		0.06	0.08	
Beet, mangel fodder	AM	0.02	STMR	15	0.133		30			0.04	
Canola meal	SO	0.10	STMR-P	88	0.114	15			0.02		
Cotton, undelinted seed	SO	0.10	STMR	88	0.114	10			0.01		
Beet sugar, molasses	AV	0.063	STMR-P	75	0.084	10			0.01		
Soya bean meal	SO	0.069	STMR-P	92	0.075		20			0.02	
Beet, sugar, dried pulp	AV	0.008	STMR-P	88	0.009	10			0.00		
Total						85	100	100	0.71	1.51	3.14

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated mean dietary burden of farm animals

DAIRY CATTLE											MEAN
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet conte	ent (%))	Residue co	ntributio	n (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Rape forage (Europe)	AV	3.9	STMR	30	13.000		10			1.30	
Alfalfa forage (Australia)	AL	1.1	STMR	35	3.143			60			1.89
Peanut hay	AL	2.10	STMR	85	2.471	20			0.49		
Rape forage (Australia)	AV	1.3	STMR	100	1.300			40			0.52
Beet, sugar tops	AV	0.11	STMR	23	0.391		10			0.04	
Bean seed	VD	0.335	STMR	88	0.381	15	20		0.06	0.08	
Beet, mangel fodder	AM	0.02	STMR	15	0.133		25			0.03	
Canola meal	SO	0.10	STMR-P	88	0.114	15	10		0.02	0.01	
Cotton, undelinted seed	SO	0.10	STMR	88	0.114	10			0.01		
Beet sugar, molasses	AV DM?	0.063	STMR-P	75	0.084	10			0.01		
Soya bean meal	SO	0.069	STMR-P	92	0.075		15			0.01	
Beet, sugar, dried pulp	AV AB?	0.008	STMR-P	88	0.009	10			0.00		
Total						80	90	100	0.59	1.47	2.41

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated mean dietary burden of farm animals

POULTRY - BROILER Commodity Commod Residue Basis % Dry Residue dw Diet content (%) Residue contribution (ppm) US-CAN EU US-CAN mg/kg matter mg/kg AU EU ΑU group Bean seed VD 70 0.335 STMR 0.381 20 20 0.076 0.0760.266 Canola meal SO 0.10 STMR-P 88 0.114 15 18 5 0.017 0.0200.006 Soya bean meal SO AB? 0.069 STMR-P 92 0.075 25 22 20 0.019 0.017 0.015

60

60

95

0.11

0.11

Haloxyfop - Livestock dietary burdens

Total

Tier 2. Estimated mean dietary burden of farm animals

POULTRY - LAYER **MEAN**

MEAN

0.29

Haloxyfop - Livestock dietary burdens

Tier 2. Estimated mean dietary burden of farm animals

Commodity	Commod	Residue	Basis	% Dry	Residue dw	` '			Residue contribution (ppm		n (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Rape forage	AV	3.9	STMR	30	13.000		10			1.300	
Bean seed	VD	0.335	STMR	88	0.381	20	20	70	0.076	0.076	0.266
Soybean forage (Europe)	AL	0.075	STMR	56	0.116		10			0.012	
Canola meal	SO	0.10	STMR-P	88	0.114	15	10	5	0.017	0.011	0.006
Soya bean meal	SO AB?	0.069	STMR-P	92	0.075	20	15	20	0.015	0.011	0.015
Total						55	65	95	0.11	1.41	0.29

Hexythiazox

Estimated maximum dietary burden of farm animals

BEEF CATTLE											MAX
Commodity	Residue dy	w Diet conto	ent (%))	Residue co	ntributi	ion (ppm)				
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Citrus, dried pulp	AB	0.25	STMR-P	91	0.27	10	20		0.027	0.054	
Corn (field), forage/silage	AF	1.7	HR	40	4.25	40	80	80	1.7	3.4	3.4
Grape, pomace wet	-	2.0	STMR-P	15	13.3		0	20	0	0	2.66
Total						50	100	100	1.7	3.5	6.1

Hexythiazox

Estimated maximum dietary burden of farm animals

DAIRY CATTLE											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	ent (%))	Residue co	ntributi	on (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Citrus, dried pulp	AB	0.25	STMR-P	91	0.27	10	20		0.027	0.054	
Corn (field), forage/silage	AF	1.7	HR	40	4.25	50	60	80	2.125	2.55	3.4
Grape, pomace wet	-	2.0	STMR-P	15	13.3			20			2.66
Total						60	80	100	2.2	3.0	6.1

Hexythiazox

Estimated maximum dietary burden of farm animals

POULTRY - LAYER									MA	X
Commodity	CC	Residue	Basis	DM	Residue dw	Diet content	(%)	Residue co	ontribution (pp	om)
		mg/kg		%	mg/kg	US-CAN E	J AU	US-CAN	EU AU	
Corn (field), forage/silage	AF	1.7	HR	40	4.25	10			0.425	
Total						0 10	0	0	0.4 0	

Hexythiazox

Estimated mean dietary burden of farm animals

BEEF CATTLE											MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet co	ntent (%	(b)	Residue o	contrib	ution
		mg/kg		%	mg/kg	US- CAN	EU	AU	US-CAN	EU	AU
Citrus, dried pulp	AB	0.25	STMR-P	91	0.27	10	20		0.027	0.054	
Corn (field), forage/silage	AF	0.91	STMR	40	2.275	40	80	80	0.91	1.82	1.82
Grape, pomace wet	-	2.0	STMR-P	15	13.3			20			2.46
Total						50	100	100	0.9	1.9	4.5

	ythiazox	
110Λ	yunazoa	

Estimated mean dietary burden of farm animals

DAIRY CATTLE MEAN

Commodity	CC	Residue	Basis	DM	Residue dw	Diet co	Diet content (%)		Residue (ppm)	contrib	ution
		mg/kg		%	mg/kg	US- CAN	EU	AU	US-CAN	EU	AU
Citrus, dried pulp	AB	0.25	STMR-P	91	0.27	10	20		0.027	0.054	0
Corn (field), forage/silage	AF	0.91	STMR	40	2.275	50	60	80	1.138	1.365	1.82
Grape, pomace wet	-	2.0	STMR-P	15	13.3			20	0	0	2.66
Total						60	80	100	1.2	1.4	4.5

Hexythiazox

Estimated mean dietary burden of farm animals

POULTRY - BROILER										MEAN	
Commodity	CC	Residue Basis	DM	Residue	Diet conte	ent (%)		Residue co	ntribut	ion	_
				dw				(ppm)			
		mg/kg	%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU	
Total					0	0	0	0	0	0	

He xy thiaz ox

Estimated mean dietary burden of farm animals

POULTRY - LAYER											MEAN	
Commodity	CC	Residue	Basis	DM	Residue dw	Diet co	ontent (%	(₀)	Residue (ppm)	contrib	oution	-
		mg/kg		%	mg/kg	US- CAN	EU	AU	US-CAN	EU	AU	
Corn (field), forage/silage	AF	0.91	STMR	40	2.275		10			0.228	3	
Total						0	10	0	0	0.228	3 0	

Indoxacarb

Estimated maximum dietary burden of farm animals

BEEF CATTLE	MA	X									
Commodity	CC	Resid (mg/k	ue Basis g)	DM (%) Residue d (mg/kg)	w Diet co	ontent (%	6)	Residue o (mg/kg)	contribut	ion
						US-C	ANEU	AU	US-CAN	EU	AU
Alfalfa fodder	AL	43	hr	100	43	35		20	15		9
Alfalfa forage	AL	28	hr	100	28		70	20		20	6
Cabbage heads and leaves	VB	2	hr	15	0.3		5			0.02	
Corn stover	AS	15	hr	100	15	25	25		3.8	3.8	
Cotton seed	SO	0.36	STMR	88	0.32	15			0.05		
Peanut fodder	AL	45	hr	100	45	25		60	11		27
Total						100	100	100	30	23	41

Indoxacarb

Estimated maximum dietary burden of farm animals

DAIRY CATTLE	MA	X									
Commodity	CC		Basis	DM (%) Residue d	w Diet c	ontent (%	6)	Residue c	ontribut	ion
		Residu	ie		(mg/kg)				(mg/kg)		
		(mg/k	(g)			US-C	AN EU	AU	US-CAN	EU	AU
Alfalfa fodder	AL	43	hr	100	43	20	40		8.6	17	
Apple pomace, wet	AB	0.55	STMR-P	40	0.22	10	10		0.02	0.02	
Cabbage heads and leaves	VB	2.0	hr	15	0.3		20			0.06	
Corn stover	AS	15	hr	100	15	15	20	40	2.3	3.0	6.0
Cotton seed	SO	0.36	STMR	88	0.32	25	10		0.08	0.03	
Peanut fodder	AL	45	hr	100	45	20		60	9.0		27
Soya bean hulls	AM	0.23	STMR	90	0.21	10			0.02		
Total						100	100	100	20	20	33

Indoxacarb

Estimated maximum dietary burden of farm animals

POULTRY - BROILER MAX

Commodity	CC	Residue	e Basis	DM (9	%) Residue dw	Diet co	ontent (%)		Residue	contributi	on (mg/kg)
		(mg/kg)		(mg/kg)	US-CA	AN EU	AU	US-CAN	EU	AU
Chickpea (dry)	VD	0.02	STMR	90	0.02			5			0.0009
Mungbean (dry)	VD	0.02	STMR	88	0.02			50			0.009
Peanut meal	SO	0.0012	STMR	85	0.001	25	10	5	0.0003	0.0001	0.0001
Potato culls	VR	0.0085	hr	20	0.002		10			0.0002	
Soya bean (dry)	VD	0.027	STMR	89	0.02	20	20	15	0.005	0.005	0.004
Soya bean hulls	AM	0.23	STMR	90	0.21	20	10	5	0.041	0.021	0.010
Soya bean meal	AM	0.0038	STMR	92	0.003	20	30	20	0.001	0.001	0.001
Total						85	80	100	0.047	0.027	0.024

Indoxacarb
Estimated maximum dietary burden of farm animals

POULTRY .	- LAYER	MAX

Commodity	CC	Residue	Basis	DM (%) Residue	Diet co	ontent (%))	Residue c	ontributio	on (mg/kg)
		(mg/kg)			dw (mg/kg)	US-CA	AN EU	AU	US-CAN	EU	AU
Cabbage heads and leaves	VB	2.0	hr	15	0.3		5			0.02	
Chickpea (dry)	VD	0.02	STMR	90	0.02		5	5		0.001	0.001
Corn stover	AS	15	hr	100	15		10			1.5	
Mungbean (dry)	VD	0.02	STMR	88	0.02			50			0.009
Peanut meal	SO	0.0012	STMR	85	0.001	25	10	5	0.0003	0.0001	0.0001
Potato culls	VR	0.0085	hr	20	0.002		10			0.0002	
Soya bean (dry)	VD	0.027	STMR	89	0.02	20	15	15	0.005	0.004	0.004
Soya bean hulls	AM	0.23	STMR	90	0.21	10	5	5	0.021	0.010	0.010
Soya bean meal	AM	0.0038	STMR	92	0.003	25	20	20	0.001	0.001	0.001
Total						80	80	100	0.027	1.5	0.024

Indoxacarb
Estimated median dietary burden of farm animals

BEEF CATTLE	STMR
G 11:	66 5

BBBI CITTIBE	D 110												
Commodity	CC	Residue	Basis	DM (9	%) Residue	Diet co	ontent (%))	Residue c	Residue contribution (mg/kg)			
		(mg/kg)			dw	US-CA	AN EU	AU	US-CAN	EU	AU		
					(mg/kg)								
Alfalfa fodder	AL	16	STMR	100	16	35		20	5.6		3.2		
Alfalfa forage	AL	16	STMR	100	16		70	20		11	3.2		
Apple pomace, wet	AB	0.55	STMR-P	40	0.22		5			0.01			
Corn stover	AS	7.8	STMR	100	7.8	25	25		2.0	2.0			
Cotton seed	SO	0.36	STMR	88	0.32	15			0.05				
Peanut fodder	AL	18	STMR	100	18	25		60	4.5		11		
Total						100	100	100	12	13	17		

Indoxacarb Estimated median dietary burden of farm animals

DAIRY CATTLE STMR

Commodity	CC	Residue	Basis	DM (%)) Residue	Diet c	ontent (%))	Residue o	ontributi	on (mg/kg)
		(mg/kg)			dw (ma/lsa)	US-C	AN EU	AU	US-CAN	EU	AU
					(mg/kg)						
Alfalfa fodder	AL	16	STMR	100	16	20	40		3.2	6.4	
Apple pomace, wet	AB	0.55	STMR-P	40	0.22	10	10		0.02	0.02	
Cabbage heads and leaves	VB	0.44	STMR	15	0.065		10			0.01	
Corn stover	AS	7.8	STMR	100	7.8	15	20	40	1.2	1.6	3.1

Cotton seed	SO	0.36	STMR	88	0.32	25	10		0.08	0.03	
Peanut fodder	AL	18	STMR	100	18	20		60	3.6		11
Soya bean hulls	AM	0.23	STMR	90	0.21	10	10		0.02	0.02	
Total						100	100	100	8.1	8.0	14

Indoxacarb Estimated median dietary burden of farm animals

POULTRY - BROILER											STMR
Commodity	CC	Residue (mg/kg)		DM (%) Residue dw (mg/kg)	Diet co	ontent (%	6)	Residue (mg/kg)	contribution	on
						US-CA	AN EU	AU	US-CAN	EU	AU
Chickpea (dry)	VD	0.02	STMR	90	0.02			5			0.0009
Mungbean (dry)	VD	0.02	STMR	88	0.02			50			0.009
Peanut meal	SO	0.0012	STMR	85	0.001	25	10	5	0.0003	0.0001	0.0001
Potato culls	VR	0.003	STMR-F	20	0.001		10			0.0001	
Soya bean (dry)	VD	0.027	STMR	89	0.02	20	20	15	0.005	0.005	0.004
Soya bean hulls	AM	0.23	STMR	90	0.21	20	10	5	0.041	0.021	0.010
Soya bean meal	AM	0.0038	STMR	92	0.003	20	30	20	0.001	0.001	0.0007
Total						85	80	100	0.047	0.027	0.024

Indoxacarb
Estimated median dietary burden of farm animals
POULTRY - LAYER STMR

Commodity	CC	Residue	Basis	DM (%) Residue	Diet c	ontent (%))	Residue c	ontributio	on (mg/kg)
		(mg/kg)			dw (mg/kg)	US-C	AN EU	AU	US-CAN	EU	AU
Cabbage heads and leaves	VB	0.44	STMR	15	0.065		5			0.00	
Chickpea (dry)	VD	0.02	STMR	90	0.02		5	5		0.001	0.001
Corn stover	AS	7.8	STMR	100	7.8		10			0.78	
Mungbean (dry)	VD	0.02	STMR	88	0.02			50			0.009
Peanut meal	SO	0.0012	STMR	85	0.001	25	10	5	0.0003	0.0001	0.0001
Potato culls	VR	0.003	STMR-P	20	0.001		10			0.0001	
Soya bean (dry)	VD	0.027	STMR	89	0.02	20	15	15	0.005	0.004	0.004
Soya bean hulls	AM	0.23	STMR	90	0.21	10	5	5	0.021	0.010	0.010
Soya bean meal	AM	0.0038	STMR	92	0.003	25	20	20	0.001	0.001	0.001
Total						80	80	100	0.027	0.80	0.024

hr = highest residue

Metaflumizone (236)

Estimated mean dietary burden of farm animals

Estimated mean dieta	ary bur	den of farn	i animals								
BEEF CATTLE											MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residue co	ntributio	n (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Tomato pomace, wet	AB	0.25	STMR-P	20	1.800	0	0	10			0.13
Total						30	50	20	0.00	0.00	0.13
DAIRY CATTLE											MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conte	nt (%)		Residue co	ntributio	n (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Tomato pomace, wet	AB	0.25	STMR-P	20	1.800	0	0	10			0.13
Total						10	50	20	0.00	0.00	0.13

Metaflumizone (236)

Estimated maximum dietary burden of farm animals

BEEF CATTLE											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conter	nt (%)		Residue co	ntributior	ı (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Tomato pomace, wet	AB	0.25	STMR-P	20	1.800	0	0	10			0.13
Total						30	50	20	0.00	0.00	0.13

Metaflumizone (236)

Estimated maximum dietary burden of farm animals

DAIRY CATTLE											MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet conter	nt (%)		Residue co	ntributior	ı (ppm)
		mg/kg		%	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Tomato pomace, wet	AB	0.25	STMR-P	20	1.800	0	0	10			0.13
Total						10	50	10	0.00	0.00	0.13

Methoxyfenozide (209)

Estimated maximum dietary burden of farm animals

BEEF CATTLE								Maximu	n	
Commodity	Basis	Res mg/kg	DM %	Res dw mg/kg	Diet porti	on %		Residue c	ontribution	mg/kg
Commodity	Dasis	Res mg/kg	DIVI //	Kes dw Ilig/kg	US-Can	EU	Au	US-Can	EU	Au
Bean forage	HR	32	35	91	30	*	60	27.4		54.9
Sugar beet, tops	HR	10	23	43	*	0	*		0.0	
Maize forage	HR	22	40	55		80	0	0.0	44.0	0.0
Maize fodder	HR	46	83	55	5	0	0	2.8	0.0	0.0
Peanut fodder	HR	51	85	60	25	*	40	15.0		24.0
Maize	HR	0.02	88	0.023		0	0	0.0	0.0	0.0
Almond hulls	STMR	13	90	14	10	*	0	1.4		0.0
Apple pomace	STMR	1.3	40	3.2	20	20	0	0.7	0.7	0.0
Cotton meal	STMR	0.21	89	0.24	5	0	0	0.0	0.0	0.0
Cotton undelinted seed	STMR	0.46	88	0.52	0	*	0	0.0		0.0
Cotton hulls	STMR	0.06	90	0.071	0	*	0	0.0		0.0
Cotton byproducts	STMR	11	90	12	5	*	*	0.6		
				Sum	100	100	100	47.92	44.65	78.86

Methoxyfenozide (209)

Estimated median dietary burden of farm animals

DAIRY CATTLE								Maximun	n	
Commodity	Basis	Res mg/kg	DM %	Res dw mg/kg	Diet porti	on %		Residue co	ntribution	mg/kg
Commodity	Dasis	Kes mg/kg	DIVI //	Res dw mg/kg	US-Can	EU	Au	US-Can	EU	Au
Bean forage	HR	32	35	91	0	20	70	0.0	18.3	64.0
Sugar beet, tops	HR	10	23	43	*	0	*		0.0	
Maize forage	HR	22	40	55	30	20	0	16.5	11.0	0.0
Maize fodder	HR	46	83	55	0	20	0	0.0	11.1	0.0
Peanut fodder	HR	51	85	60	20	*	30	12.0		18.0
Maize	HR	0.02	88	0.023	0	15	0	0.0	0.0	0.0
Almond hulls	STMR	13	90	14	10	*	0	1.4		0.0
Apple pomace	STMR	1.3	40	3.2	10	10	0	0.3	0.3	0.0
Cotton meal	STMR	0.21	89	0.24	5	5	0	0.0	0.0	0.0
Cotton undelinted seed	STMR	0.46	88	0.52	25	10	0	0.1	0.1	0.0
Cotton hulls	STMR	0.06	90	0.071	0	*	0	0.0		0.0
Cotton byproducts	STMR	11	90	12	*	*	*			
				Sum	100	100	100	30.41	40.76	82.00

Methoxyfenozide (209)

Estimated median dietary burden of farm animals

BEEF CATTLE Median

Commodity	Basis	Res	DM %	Res dw	Diet port	ion %		Residue contribution mg/kg		
		mg/kg		mg/kg	US-Can	EU	Au	US-Can	EU	Au
Forages					60	80	100			
Bean forage	STMR	5.95	35	17	30	*	60	5.1		10.2
Sugar beet, tops	STMR	3.7	23	16	*	20	*		3.2	
Maize forage	STMR	4.5	40	11		60		0.0	6.8	0.0
Maize fodder	STMR	8.2	83	9.9	5	0		0.5	0.0	0.0
Peanut fodder	STMR	13.5	85	16	25	*	40	4.0		6.4
Maize	STMR	0.02	88	0.023		0		0.0	0.0	0.0
Almond hulls	STMR	13	90	14	10	*		1.4		0.0
Apple pomace	STMR	1.3	40	3.2	20	20		0.7	0.7	0.0
Cotton meal	STMR	0.21	89	0.24		0		0.0	0.0	0.0
Cotton undelinted seed	STMR	0.46	88	0.52	5	*		0.0		0.0
Cotton hulls	STMR	0.06	90	0.071		*		0.0		0.0
Cotton byproducts	STMR	11	90	12	5	*	*	0.6		
				Sum	100	100	100	12.30	10.62	16.55

Methoxyfenozide (209)

Estimated median dietary burden of farm animals

DAIRY CATTLE	Median
--------------	--------

Commodity	Basis	Res	DM %	Res dw	Diet porti	on %		Residue co	ontributio	n mg/kg
Commodity	Dasis	mg/kg	DIVI 70	mg/kg	US-Can	EU	Au	US-Can	EU	Au
Forages					50	60	100			
Bean forage	STMR	5.95	35	17	20	20	70	3.4	3.4	11.9
Sugar beet, tops	STMR	3.7	23	16	*	30	*		4.8	
Maize forage	STMR	4.5	40	11	10	10	0	1.1	1.1	0.0
Maize fodder	STMR	8.2	83	9.9	0	0	0	0.0	0.0	0.0
Peanut fodder	STMR	13.5	85	16	20	*	30	3.2		4.8
Maize	STMR	0.02	88	0.023	0	15	0	0.0	0.0	0.0
Almond hulls	STMR	13	90	14	10	*	0	1.4		0.0
Apple pomace	STMR	1.3	40	3.2	10	10	0	0.3	0.3	0.0
Cotton meal	STMR	0.21	89	0.24	5	5	0	0.0	0.0	0.0
Cotton undelinted seed	STMR	0.46	88	0.52	25	10	0	0.1	0.1	0.0
Cotton hulls	STMR	0.06	90	0.071	0	*	0	0.0		0.0
Cotton byproducts	STMR	11	90	12	*	*	*			
				Sum	100	100	100	9.61	9.74	16.66

Prothioconazole (232)

Estimated maximum dietary burden of farm animals REFE CATTI F

BEEF CATTLE											MAX
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet cont	ent (%))	Residue co	ontributi	on (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Barley forage	AF, AS	5.4	high residue	30	18.0	5	5		0.9	0.9	
Barley grain	GC	0.035	STMR	88	0.04	40	55		0.02	0.02	
Beet, sugar -dried pulp		0.05	STMR	88	0.06					0.01	
Wheat asp grain fn		5.0	STMR	85	5.88	5			0.29		
Wheat forage	AF, AS	5.4	high residue	25	21.6	25	20	100	5.4	4.32	21.6
Wheat hay	AF, AS	4.8	high residue	100	4.8	25	20		1.2	0.96	
Total						100	100	100	7.81	6.21	21.6

Prothioconazole (232)

Estimated maximum dietary burden of farm animals

DAIRY CATTLE											MAX
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet cont	ent (%))	Residue co	ontributio	n (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Barley forage	AF, AS	5.4	high residue	30	18.0		10			1.8	
Barley grain	GC	0.035	STMR	88	0.04	20	40	40	0.01	0.02	0.02
Beet, sugar - dried pulp		0.05	STMR	88	0.06		10			0.01	
Wheat - asp grain fract		5.0	STMR	85	5.88						
Wheat forage	AF, AS	5.4	high residue	25	21.6	40	20	60	8.64	4.32	12.96
Wheat hay	AF, AS	4.8	high residue	100	4.8	40	20		1.92	0.96	
Total						100	100	100	10.57	7.1	12.97

As well as the commodities shown in the table for beef and dairy cattle, the following were also considered: hay and straw of other cereal grains, pulses (except soy bean, dry), oat grain and forage, peanut meal, rape seed meal, rye grain and forage, sugar beet tops, triticale grain and forage and wheat grain

Prothioconazole (232)

Estimated mean dietary burden of farm animals

BEEF CATTLE											MEAN
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet con	tent (%)	Residue co	ontributi	on (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	N EU	AU	US-CAN	EU	AU
Barley forage	AF, AS	1.2	STMR	30	4.0	5	10		0.2	0.4	
Barley grain	GC	0.035	STMR	88	0.04	50	50		0.02	0.02	
Beet, sugar - tops	AV	1.5	STMR	23	6.52		20			1.3	
Oat forage	AV	0.96	STMR	30	3.2						
Wheat forage	AF, AS	1.2	STMR	25	4.8	25	20	100	1.2	0.96	4.8
Wheat hay	AF, AS	1.5	STMR	100	1.5	20			0.3	0.32	
Total						100	100	100	1.72	2.68	4.8

Prothioconazole (232)

Estimated mean dietary burden of farm animals

DAIRY CATTLE											MEAN
Commodity	Commod	Residue	Basis	% Dry	Residue dw	Diet cont	ent (%))	Residue co	ontributi	on (ppm)
	group	mg/kg		matter	mg/kg	US-CAN	EU	AU	US-CAN	EU	AU
Barley forage	AF, AS	1.2	STMR	30	4.0		10			0.4	
Barley grain	GC	0.035	STMR	88	0.04	45	40	10	0.02	0.02	
Beet, sugar - tops	AV	1.5	STMR	23	6.52		30			1.96	
Oat forage	AV	0.96	STMR	30	3.2			30			0.96
Wheat forage	AF, AS	1.2	STMR	25	4.8	40	20	60	1.92	0.96	2.88
Wheat hay	AF, AS	1.5	STMR	100	1.5	15			0.23		
Total						100	100	100	2.16	3.33	3.84

Spirodiclofen(237)

Estimated mean dietary burden of farm animals

BEEF CATTLE													MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet	conten	t (%)		Resid	ue contri	bution (ppm)
		mg/kg		%	mg/kg	US	EU	AU	JP	US	EU	AU	JP
Almond hulls	AB	3.5	STMR	90	3.889			10				0.39	
Apple pomace, dry	AB	3.4	STMR-P	92	3.696		20	20			0.74	0.74	
Citrus pulp, dry	AB	0.18	STMR-P	93	0.194	10	5	30		0.02	0.01	0.06	
Grape pomace, dry	AB		STMR-P	15	0.000			20				0.00	
Total						10	25	80	0	0.02	0.75	1.19	0.00

Spirodiclofen(237)

Estimated mean dietary burden of farm animals

Dominated intent die		racii or iai											
DAIRY CATTLE													MEAN
Commodity	CC	Residue	Basis	DM	Residue dw	Diet	conten	t (%)		Resid	ue contri	ibution (ppm)
		mg/kg		%	mg/kg	US	EU	AU	JP	US	EU	AU	JP
Almond hulls	AB	3.5	STMR	90	3.889	10		10		0.39		0.39	
Apple pomace, dry	AB	3.4	STMR-P	92	3.696	10	10	10		0.37	0.37	0.37	
Citrus pulp, dry	AB	0.18	STMR-P	93	0.194	10	20	30		0.02	0.04	0.06	
Grape pomace, dry	AB		STMR-P	15	0.000			20				0.00	
Total						30	30	70	0	0.78	0.41	0.82	0.00

Spirodiclofen(237)

Estimated maximum dietary burden of farm animals

Dournated marring		,											
BEEF CATTLE												MAX	MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet	conten	t (%)		Resid	ue contr	ibution (p	pm)
		mg/kg		%	mg/kg	US	EU	AU	JP	US	EU	AU	JP
Almond hulls	AB	3.5	STMR	90	3.889			10				0.39	
Apple pomace, dry	AB	3.4	STMR-P	92	3.696		20	20			0.74	0.74	
Citrus pulp, dry	AB	0.18	STMR-P	93	0.194	10	5	30		0.02	0.01	0.06	
Grape pomace, dry	AB		STMR-P	15	0.000			20				0.00	
Total						10	25	80	0	0.02	0.75	1.19	0.00

Spirodiclofen(237)

Estimated maximum dietary burden of farm animals

DAIRY CATTLE												MAX	MAX
Commodity	CC	Residue	Basis	DM	Residue dw	Diet	conten	t (%)		Resid	ue contri	bution (p	pm)
		mg/kg		%	mg/kg	US	EU	AU	JP	US	EU	AU	JP
Almond hulls	AB	3.5	STMR	90	3.889	10		10		0.39		0.39	
Apple pomace, dry	AB	3.4	STMR-P	92	3.696	10	10	10		0.37	0.37	0.37	
Citrus pulp, dry	AB	0.18	STMR-P	93	0.194	10	20	30		0.02	0.04	0.06	
Grape pomace, dry	AB		STMR-P	15	0.000			20				0.00	
Total						30	30	70	0	0.78	0.41	0.82	0.00

Corrigenda 427

CORRIGENDA - CORRECTIONS TO THE REPORT OF THE 2008 MEETING

Pesticide residues in food—2008. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. FAO Plant Production and Protection Paper 193, 2009.

Page 270, paragraph 3, line 11 should read:

The NOAEL in <u>a 2-year</u> dietary study in mice was 12.5 ppm, equal to 3.1 mg/kg bw per day, on the basis of microscopic changes in the liver at 50 ppm, equal to 12.8 mg/kg bw per day.

The table on page 272 should read:

Levels relevant to risk assessment for prothioconazole-desthio

Species	Study	Effect	NOAEL	LOAEL
Mouse	Single dose LD ₅₀	Toxicity	100 mg/kg bw	500 mg/kg bw
	Two-year study of toxicity and	Toxicity	12.5 ppm, equal to 3.1 mg/kg bw per day	50 ppm, equal to 12.8 mg/kg bw per day
	carcinogenicity	Carcinogenicity	200 ppm, equal to 51.7 mg/kg bw per day ^b	_

Changes are shown in bold. Only significant factual errors and omissions are listed.

Under General Considerations p. 27replace the following entries

Commodity	No.	Min.	Max	Mean	STMR	No.	Statistical Ca	lculation	JMPR	
	of	Value	Value	(mg/kg)	(mg/kg)	≤LOQ	Distribution	Estimate	MRL	Comment/
	Trials	(mg/kg)	(mg/kg)				Type	(mg/kg)	(mg/kg)	Explanation
TEBUCONA	AZOLE	(189)								
Pome fruit	13	< 0.05	0.47	0.21	0.19	2	LN, 99 th	0.82	1	
Plums	22	< 0.02	0.12	0.055	0.06	5	LN, 99 th	0.2	0.2	
Elderberries	4	0.26	0.7		0.345	0	NA		2	There are
										too few
										datapoints
										to usethe
										NAFTA
										calculation
Leek	12	0.03	0.44	0.21	0.195	0	$\mu \pm 3SD$	0.5	1	There are
										too few
										datapoints
										to usethe
										NAFTA
										calculation
Sweet corn	4	< 0.1			0.1	4	NA		0.1	There are
										too few
										datapoints
										to usethe

426 Corrigenda

Commodity	No.	Min.	Max	Mean	STMR	No.	Statistical Ca	lculation	JMPR	
	of	Value	Value	(mg/kg)	(mg/kg)	≤LOQ	Distribution	Estimate	MRL	Comment/
	Trials	(mg/kg)	(mg/kg)				Type	(mg/kg)	(mg/kg)	Explanation
										NAFTA calculation
Carrot	13	0.07	0.22	0.14	0.11	3	LN, 99 th	0.28	0.5	23% of the values < LOQ
Maize	4	0.01			0.1		NA		0.1	There are too few datapoints to usethe NAFTA calculation
Barley straw	36	0.16	19	3.6	2.4	0	LN, 95 th	22.6	30	

5.23 Tebuconazole

- p.341 para 1, **insert:** peanuts in the listed crops.
- p.342 Elderberries, para 2 changeHR of 0.73 mg/kg to 0.70 mg/kg.
- p. 344 Brassica vegetables, para 4 change STMRof 0.05 mg/kg to 0.07 mg/kg.
- p. 346 Tomato, para 1 change STMR of 0.15 mg/kg to 0.19 mg/kg.
- p. 348 Peanut, para 4 change STMR of 0.03 mg/kg to 0.04 mg/kg.
- p. 348Rape seed, para 5 change STMR of 0.09 mg/kg to 0.085 mg/kg.

Annex 1. Replace with the following entries

Pesticide (Codex reference no.)	CCN	Commodity	Recomme New	nded MRL, mg/k Previous	g STMR or STMR-P, mg/kg	HR or HR-P mg/kg
Tebuconazole (189)	OR 0495	Rape seed	0.5	0.05	0.085	
		Tomato peeles			0.054	

Annex 4. Replace with the following entries

TEBUCONAZOLE (189) International estimate of short term intake (IESTI) for

GENERAL POPULATION

ARfD= not yet considered

		GENER	ALFU	ULATIO	11								
				Large por	rtion diet		Unit we	ight					
Codex	Commodity	STMR	HR or	Country	Body	Large	Unit	Country	Unit	Varia	Case	IESTI	%
Code		or	HR-P		weight	portion,	weight,		weight,	-bility		μg/kg	ARfD
		STMR-			(kg)	g/person	g		edible	factor		bw/day	rounde
		P	mg/k						portion				d
		mg/kg	g						, g				
FB	Elderberries	-	0.7	NLD	63.0	21	-	-	ND	ND	1	0.24	-
0267													
DF	Plum, dried	-	0.36	USA	65.0	303	6	FRA	5	1	3.00	0.84	-
0014	(prunes)												
JF	Tomato juice	0.1	-	-	-	ND	-	-	ND	ND	3	ND	-
0448													
-	Tomato paste	0.16	-	-	-	ND	-	-	ND	ND	3	ND	-

.

FAO TECHNICAL PAPERS

FAO PLANT PRODUCTION AND PROTECTION PAPERS

1	Horticulture: a select bibliography, 1976 (E)	26	Pesticide residues in food 1980 – Report, 1981 (E F S)
2	Cotton specialists and research institutions in selected countries, 1976 (E)	26 Sup.	Pesticide residues in food 1980 – Evaluations, 1981 (E)
3	Food legumes: distribution, adaptability and biology of yield, 1977 (E F S)	27 28	Small-scale cash crop farming in South Asia, 1981 (E) Second expert consultation on environmental
4	Soybean production in the tropics, 1977 (C E F S)		criteria for registration of pesticides, 1981 (E F S)
4 Rev.1	Soybean production in the tropics (first revision),	29	Sesame: status and improvement, 1981 (E)
	1982 (E)	30	Palm tissue culture, 1981 (C E)
5	Les systèmes pastoraux sahéliens, 1977 (F)	31	An eco-climatic classification of intertropical Africa,
6	Pest resistance to pesticides and crop loss assessment – Vol. 1, 1977 (E F S)	32	1981 (E) Woods in transcal graps, colosted abstracts, 1981 (E)
6/2	Pest resistance to pesticides and crop loss assessment	32 Sup.1	Weeds in tropical crops: selected abstracts, 1981 (E) Weeds in tropical crops: review of abstracts, 1982 (E)
0/2	- Vol. 2, 1979 (E F S)	32 3ap.1	Plant collecting and herbarium development,
6/3	Pest resistance to pesticides and crop loss assessment		1981 (E)
	– Vol. 3, 1981 (E F S)	34	Improvement of nutritional quality of food crops,
7	Rodent pest biology and control – Bibliography		1981 (C E)
_	1970-74, 1977 (E)	35	Date production and protection, 1982 (Ar E)
8	Tropical pasture seed production, 1979 (E F** S**)	36	El cultivo y la utilización del tarwi – <i>Lupinus</i>
9	Food legume crops: improvement and production, 1977 (E)	27	mutabilis Sweet, 1982 (S)
10	Pesticide residues in food, 1977 – Report, 1978 (E F S)	37 38	Pesticide residues in food 1981 – Report, 1982 (E F S) Winged bean production in the tropics, 1982 (E)
10 Rev.	Pesticide residues in food 1977 – Report, 1978 (E)	39	Seeds, 1982 (E/F/S)
10 Sup.	Pesticide residues in food 1977 – Evaluations,	40	Rodent control in agriculture, 1982 (Ar C E F S)
	1978 (E)	41	Rice development and rainfed rice production,
11	Pesticide residues in food 1965-78 – Index and		1982 (E)
	summary, 1978 (E F S)	42	Pesticide residues in food 1981 – Evaluations,
12	Crop calendars, 1978 (E/F/S)		1982 (E)
13	The use of FAO specifications for plant protection	43	Manual on mushroom cultivation, 1983 (E F)
4.4	products, 1979 (E F S)	44	Improving weed management, 1984 (E F S)
14	Guidelines for integrated control of rice insect pests,	45	Pocket computers in agrometeorology, 1983 (E)
15	1979 (Ar C E F S) Pesticide residues in food 1978 – Report, 1979 (E F S)	46 47	Pesticide residues in food 1982 – Report, 1983 (E F S) The sago palm, 1983 (E F)
15 Sup.	Pesticide residues in food 1978 – Evaluations,	48	Guidelines for integrated control of cotton pests,
15 5 ap.	1979 (E)	40	1983 (Ar E F S)
16	Rodenticides: analyses, specifications, formulations, 1979 (E F S)	49	Pesticide residues in food 1982 – Evaluations,
17	Agrometeorological crop monitoring and	50	1983 (E) International plant quarantine treatment manual,
1,	forecasting, 1979 (C E F S)	30	1983 (C E)
18	Guidelines for integrated control of maize pests,	51	Handbook on jute, 1983 (E)
	1979 (C E)	52	The palmyrah palm: potential and perspectives,
19	Elements of integrated control of sorghum pests,		1983 (E)
20	1979 (E F S)	53/1	Selected medicinal plants, 1983 (E)
20	Pesticide residues in food 1979 – Report, 1980 (E F S)	54	Manual of fumigation for insect control,
20 Sup.	Pesticide residues in food 1979 – Evaluations, 1980 (E)	55	1984 (C E F S)
21	Recommended methods for measurement of pest	55	Breeding for durable disease and pest resistance, 1984 (C E)
	resistance to pesticides, 1980 (E F)	56	Pesticide residues in food 1983 – Report, 1984 (E F S)
22	China: multiple cropping and related crop	57	Coconut, tree of life, 1984 (E S)
	production technology, 1980 (E)	58	Economic guidelines for crop pest control,
23	China: development of olive production, 1980 (E)		1984 (E F S)
24/1	Improvement and production of maize, sorghum	59	Micropropagation of selected rootcrops, palms,
24/2	and millet – Vol. 1. General principles, 1980 (E F)	60	citrus and ornamental species, 1984 (E)
24/2	Improvement and production of maize, sorghum and millet – Vol. 2. Breeding, agronomy and seed	60	Minimum requirements for receiving and
	production, 1980 (E F)		maintaining tissue culture propagating material, 1985 (E F S)
25	Prosopis tamarugo: fodder tree for arid zones,	61	Pesticide residues in food 1983 – Evaluations,
	1981 (E F S)		1985 (E)

63	D (111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02/4	B ::: :: (4000
62	Pesticide residues in food 1984 – Report, 1985 (E F S)	93/1	Pesticide residues in food 1988 – Evaluations – Part I:
63	Manual of pest control for food security reserve	00/0	Residues, 1988 (E)
	grain stocks, 1985 (C E)	93/2	Pesticide residues in food 1988 – Evaluations – Part II:
64	Contribution à l'écologie des aphides africains,		Toxicology, 1989 (E)
	1985 (F)	94	Utilization of genetic resources: suitable approaches,
65	Amélioration de la culture irriguée du riz des petits		agronomical evaluation and use, 1989 (E)
	fermiers, 1985 (F)	95	Rodent pests and their control in the Near East,
66	Sesame and safflower: status and potentials, 1985 (E)		1989 (E)
67	Pesticide residues in food 1984 – Evaluations,	96	Striga – Improved management in Africa, 1989 (E)
	1985 (E)	97/1	Fodders for the Near East: alfalfa, 1989 (Ar E)
68	Pesticide residus in food 1985 – Report, 1986 (E F S)	97/2	Fodders for the Near East: annual medic pastures,
69	Breeding for horizontal resistance to wheat diseases,		1989 (Ar E F)
	1986 (E)	98	An annotated bibliography on rodent research in
70	Breeding for durable resistance in perennial crops,		Latin America 1960-1985, 1989 (E)
	1986 (E)	99	Pesticide residues in food 1989 – Report, 1989 (E F S)
71	Technical guideline on seed potato	100	Pesticide residues in food 1989 – Evaluations – Part I:
	micropropagation and multiplication, 1986 (E)		Residues, 1990 (E)
72/1	Pesticide residues in food 1985 – Evaluations – Part I:	100/2	Pesticide residues in food 1989 – Evaluations – Part II:
	Residues, 1986 (E)		Toxicology, 1990 (E)
72/2	Pesticide residues in food 1985 – Evaluations – Part II:	101	Soilless culture for horticultural crop production,
	Toxicology, 1986 (E)		1990 (E)
73	Early agrometeorological crop yield assessment,	102	Pesticide residues in food 1990 – Report, 1990 (E F S)
	1986 (E F S)	103/1	Pesticide residues in food 1990 – Evaluations – Part I:
74	Ecology and control of perennial weeds in Latin		Residues, 1990 (E)
	America, 1986 (E S)	104	Major weeds of the Near East, 1991 (E)
75	Technical guidelines for field variety trials,	105	Fundamentos teórico-prácticos del cultivo de tejidos
, ,	1993 (E F S)	103	vegetales, 1990 (S)
76	Guidelines for seed exchange and plant introduction	106	Technical guidelines for mushroom growing in the
, 0	in tropical crops, 1986 (E)	100	tropics, 1990 (E)
77	Pesticide residues in food 1986 – Report, 1986 (E F S)	107	Gynandropsis gynandra (L.) Briq. – a tropical leafy
77 78	Pesticide residues in food 1986 – Evaluations – Part I:	107	vegetable – its cultivation and utilization, 1991 (E)
70	Residues, 1986 (E)	108	Carambola cultivation, 1993 (E S)
78/2	Pesticide residues in food 1986 – Evaluations – Part II:	108	Soil solarization, 1991 (E)
70/2	Toxicology, 1987 (E)	110	Potato production and consumption in developing
79	Tissue culture of selected tropical fruit plants,	110	countries, 1991 (E)
75	1987 (E)	111	Pesticide residues in food 1991 – Report, 1991 (E)
80	Improved weed management in the Near East,	112	Cocoa pest and disease management in Southeast
80	1987 (E)	112	Asia and Australasia, 1992 (E)
01		112/1	
81	Weed science and weed control in Southeast Asia, 1987 (E)	113/1	Pesticide residues in food 1991 – Evaluations – Part I:
02		111	Residues, 1991 (E)
82	Hybrid seed production of selected cereal, oil and	114	Integrated pest management for protected
0.2	vegetable crops, 1987 (E)	445	vegetable cultivation in the Near East, 1992 (E)
83	Litchi cultivation, 1989 (E S)	115	Olive pests and their control in the Near East,
84	Pesticide residues in food 1987 – Report, 1987 (E F S)	446	1992 (E)
85	Manual on the development and use of FAO	116	Pesticide residues in food 1992 – Report, 1993 (E F S)
	specifications for plant protection products,	117	Quality declared seed, 1993 (E F S)
	1987 (E** F S)	118	Pesticide residues in food 1992 – Evaluations –
86/1	Pesticide residues in food 1987 – Evaluations – Part I:		Part I: Residues, 1993 (E)
	Residues, 1988 (E)	119	Quarantine for seed, 1993 (E)
86/2	Pesticide residues in food 1987 – Evaluations – Part II:	120	Weed management for developing countries,
	Toxicology, 1988 (E)		1993 (E S)
87	Root and tuber crops, plantains and bananas in	120/1	Weed management for developing countries,
	developing countries – challenges and opportunities,		Addendum 1, 2004 (E F S)
	1988 (E)	121	Rambutan cultivation, 1993 (E)
88	Jessenia and Oenocarpus: neotropical oil palms	122	Pesticide residues in food 1993 – Report,
	worthy of domestication, 1988 (E S)		1993 (E F S)
89	Vegetable production under arid and semi-arid	123	Rodent pest management in eastern Africa, 1994 (E)
	conditions in tropical Africa, 1988 (E F)	124	Pesticide residues in food 1993 – Evaluations – Part I:
90	Protected cultivation in the Mediterranean climate,		Residues, 1994 (E)
	1990 (E F S)	125	Plant quarantine: theory and practice, 1994 (Ar)
91	Pastures and cattle under coconuts, 1988 (E S)	126	Tropical root and tuber crops – Production,
92	Pesticide residues in food 1988 – Report,		perspectives and future prospects, 1994 (E)
	1988 (E F S)	127	Pesticide residues in food 1994 – Report, 1994 (E)

128	Manual on the development and use of FAO specifications for plant protection products – Fourth	162	Grassland resource assessment for pastoral systems, 2001, (E)
	edition, 1995 (E F S)	163	Pesticide residues in food 2000 – Report, 2001 (E)
129 130	Mangosteen cultivation, 1995 (E) Post-harvest deterioration of cassava –	164	Seed policy and programmes in Latin America and the Caribbean, 2001 (E S)
	A biotechnology perspective, 1995 (E)	165	Pesticide residues in food 2000 – Evaluations –
131/1	Pesticide residues in food 1994 – Evaluations – Part I:		Part I, 2001 (E)
	Residues, Volume 1, 1995 (E)	166	Global report on validated alternatives to the use of
131/2	Pesticide residues in food 1994 – Evaluations – Part I: Residues, Volume 2, 1995 (E)	167	methyl bromide for soil fumigation, 2001 (E) Pesticide residues in food 2001 – Report, 2001 (E)
132	Agro-ecology, cultivation and uses of cactus pear,	168	Seed policy and programmes for the Central and
	1995 (E)	100	Eastern European countries, Commonwealth of
133	Pesticide residues in food 1995 – Report, 1996 (E)		Independent States and other countries in transition,
134	(Number not assigned)	4.60	2001 (E)
135	Citrus pest problems and their control in the Near	169	Cactus (<i>Opuntia</i> spp.) as forage, 2003 (E S)
426	East, 1996 (E)	170	Submission and evaluation of pesticide residues data
136	El pepino dulce y su cultivo, 1996 (S)		for the estimation of maximum residue levels in
137	Pesticide residues in food 1995 – Evaluations – Part I:		food and feed, 2002 (E)
	Residues, 1996 (E)	171	Pesticide residues in food 2001 – Evaluations –
138	Sunn pests and their control in the Near East,		Part I, 2002 (E)
	1996 (E)	172	Pesticide residues in food, 2002 – Report, 2002 (E)
139	Weed management in rice, 1996 (E)	173	Manual on development and use of FAO and WHO
140	Pesticide residues in food 1996 – Report, 1997 (E)		specifications for pesticides, 2002 (E S)
141	Cotton pests and their control in the Near East,	174	Genotype x environment interaction – Challenges
	1997 (E)		and opportunities for plant breeding and cultivar
142	Pesticide residues in food 1996 – Evaluations – Part I		recommendations, 2002 (E)
	Residues, 1997 (E)	175/1	Pesticide residues in food 2002 – Evaluations –
143	Management of the whitefly-virus complex, 1997 (E)		Part 1: Residues – Volume 1 (E)
144	Plant nematode problems and their control in the	175/2	Pesticide residues in food 2002 – Evaluations –
	Near East region, 1997 (E)		Part 1: Residues – Volume 2 (E)
145	Pesticide residues in food 1997 – Report, 1998 (E)	176	Pesticide residues in food 2003 – Report, 2004 (E)
146	Pesticide residues in food 1997 – Evaluations – Part I:	177	Pesticide residues in food 2003 – Evaluations –
	Residues, 1998 (E)		Part 1: Residues, 2004 (E)
147	Soil solarization and integrated management of	178	Pesticide residues in food 2004 – Report, 2004 (E)
	soilborne pests, 1998 (E)	179	Triticale improvement and production, 2004 (E)
148	Pesticide residues in food 1998 – Report, 1999 (E)	180	Seed multiplication by resource-limited farmers
149	Manual on the development and use of FAO		- Proceedings of the Latin American workshop,
	specifications for plant protection products – Fifth		2004 (E)
	edition, including the new procedure, 1999 (E)	181	Towards effective and sustainable seed-relief
150	Restoring farmers' seed systems in disaster		activities, 2004 (E)
	situations, 1999 (E)	182/1	Pesticide residues in food 2004 – Evaluations –
151	Seed policy and programmes for sub-Saharan Africa,		Part 1: Residues, Volume 1 (E)
	1999 (E F)	182/2	Pesticide residues in food 2004 – Evaluations –
152/1	Pesticide residues in food 1998 – Evaluations – Part I:		Part 1: Residues, Volume 2 (E)
	Residues, Volume 1, 1999 (E)	183	Pesticide residues in food 2005 – Report, 2005 (E)
152/2	Pesticide residues in food 1998 – Evaluations –	184/1	Pesticide residues in food 2005 – Evaluations –
	Part I: Residues, Volume 2, 1999 (E)		Part 1: Residues, Volume 1 (E)
153	Pesticide residues in food 1999 – Report, 1999 (E)	184/2	Pesticide residues in food 2005 – Evaluations –
154	Greenhouses and shelter structures for tropical		Part 1: Residues, Volume 2 (E)
	regions, 1999 (E)	185	Quality declared seed system, 2006 (E F S)
155	Vegetable seedling production manual, 1999 (E)	186	Calendario de cultivos – América Latina y el Caribe,
156	Date palm cultivation, 1999 (E)		2006 (S)
	1 Date palm cultivation, 2002 (E)	187	Pesticide residues in food 2006 – Report, 2006 (E)
157	Pesticide residues in food 1999 – Evaluations – Part I: Residues, 2000 (E)	188	Weedy rices – origin, biology, ecology and control, 2006 (E S)\
158	Ornamental plant propagation in the tropics, 2000 (E)	189/1	Pesticide residues in food 2006 – Evaluations – Part 1: Residues, Volume 1 (E)
159	Seed policy and programmes in the Near East and	189/2	Pesticide residues in food 2006 – Evaluations –
	North Africa, 2000		Part 1: Residues, Volume 2 (E)
160	Seed policy and programmes for Asia and the Pacific,	190	Guidance for packing, shipping, holding
	2000 (E)		and release of sterile flies in area-wide
161	Silage making in the tropics with particular emphasis		fruit fly control programmes,
	on smallholders, 2000 (E S)		2007 (E)
	. ,		• •

191	Pesticide residues in food 2007 – Report, 2007 (E)
192	Pesticide residues in food 2007 – Evaluations –
	Part 1: Residues, 2008 (E)
193	Pesticide residues in food 2008 – Report, 2008 (E)
194	Pesticide residues in food 2008 – Evaluations,
	2008 (E)
195	Quality declared planting material – Protocols and
	standards for vegetatively propagated crops, 2009
	(E)
196	Pesticide residues in food 2009 – Report, 2009 (E)

Availability: November 2009

F – FrenchP – PortugueseS – Spanish

The FAO Technical Papers are available through the authorized FAO Sales Agents or directly from Sales and Marketing Group, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.

The annual Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues was held in Geneva, Switzerland, from 16 to 25 September 2009. The FAO Panel of Experts had met in preparatory sessions from 11 to 15 September. The Meeting was held in pursuance of recommendations made by previous Meetings and accepted by the governing bodies of FAO and WHO that studies should be undertaken jointly by experts to evaluate possible hazards to humans arising from the occurrence of pesticide residues in foods. During the meeting the FAO Panel of Experts was responsible for reviewing pesticide use patterns (use of good agricultural practices), data on the chemistry and composition of the pesticides and methods of analysis for pesticide residues and for estimating the maximum residue levels that might occur as a result of the use of the pesticides according to good agricultural practices. The WHO Core Assessment Group was responsible for reviewing toxicological and related data and for estimating, where possible and appropriate, acceptable daily intakes (ADIs) and acute reference doses (ARfDs) of the pesticides for humans. This report contains information on ADIs, ARfDs, maximum residue levels, and general principles for the evaluation of pesticides. The recommendations of the Joint Meeting, including further research and information, are proposed for use by Member governments of the respective agencies and other interested parties.