FAO SPECIFICATIONS AND EVALUATIONS
FOR PLANT PROTECTION PRODUCTS

QUINCLORAC

3,7-dichloroquinoline-8-carboxylic acid

2002

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
TABLE OF CONTENTS

QUINCLORAC

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCLAIMER</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>PART ONE</td>
<td>5</td>
</tr>
<tr>
<td>SPECIFICATIONS QUINCLORAC</td>
<td></td>
</tr>
<tr>
<td>QUINCLORAC SPECIFICATION</td>
<td>6</td>
</tr>
<tr>
<td>QUINCLORAC TECHNICAL MATERIAL</td>
<td>7</td>
</tr>
<tr>
<td>QUINCLORAC WETTABLE POWDER</td>
<td>8</td>
</tr>
<tr>
<td>QUINCLORAC WATER DISPERSIBLE GRANULES</td>
<td>10</td>
</tr>
<tr>
<td>QUINCLORAC AQUEOUS SUSPENSION CONCENTRATE</td>
<td>12</td>
</tr>
<tr>
<td>PART TWO</td>
<td>15</td>
</tr>
<tr>
<td>2002 EVALUATION REPORT QUINCLORAC</td>
<td>16</td>
</tr>
</tbody>
</table>
Disclaimer

FAO specifications are developed with the basic objective of ensuring that pesticides complying with them are satisfactory for the purpose for which they are intended so that they may serve as an international point of reference. The specifications do not constitute an endorsement or warranty of the use of a particular pesticide for a particular purpose. Neither do they constitute a warranty that pesticides complying with these specifications are suitable for the control of any given pest, or for use in a particular area. Owing to the complexity of the problems involved, the suitability of pesticides for a particular application must be decided at the national or provincial level.

Furthermore, the preparation and use of pesticides complying with these specifications are not exempted from any safety regulation or other legal or administrative provision applicable thereto. FAO shall not be liable for any injury, loss, damage or prejudice of any kind that may be suffered as a result of the preparation, transportation, sale or use of pesticides complying with these specifications. Additionally, FAO wishes to alert users of specifications to the fact that improper field mixing and/or application of pesticides can result in either a lowering or complete loss of efficacy. This holds true even where the pesticide complies with the specification. Accordingly, FAO can accept no responsibility for the consequences of improper field mixing and/or application.

FAO is not responsible for ensuring that any product claimed to comply with FAO specifications actually does so.

1 This disclaimer applies to all specifications published by FAO. Furthermore it does not undertake to insure anyone who utilizes these specifications against liability for infringement of any Letters Patent nor assume any such liability.
INTRODUCTION

FAO establishes and publishes specifications* for technical material and related formulations of plant protection products with the objective that these specifications may be used to provide an international point of reference against which products can be judged either for regulatory purposes or in commercial dealings.

FAO Specifications now only apply to products for which the technical materials have been evaluated. Consequently from the year 2000 onwards the publication of FAO specifications under the New Procedure has changed. Every specification consists now of two parts namely the specifications and the evaluation report(s):

Part One: The Specification of the technical material and the related formulations of the plant protection product in accordance with chapter 4, 5 and 6 of the 5th edition of the "Manual on the development and use of FAO specifications for plant protection products".

Part Two: The Evaluation Report(s) of the plant protection product reflecting the evaluation of the data package carried out by FAO and the Panel of Experts. The data are to be provided by the manufacturer(s) according to the requirements of Appendix A, annex 1 or 2 of the "Manual on the development and use of FAO specifications for plant protection products" and supported by other information sources. The Evaluation Report includes the name(s) of the manufacturer(s) whose technical material has been evaluated. Evaluation reports on specifications developed subsequently to the original set of specifications are added in a chronological order to this report.

FAO Specifications under the New Procedure do not necessarily apply to nominally similar products of other manufacturer(s), nor to those where the active ingredient is produced by other methods of synthesis. FAO has the possibility to extend the scope of the specifications to similar products, but only when the Panel of Experts has been satisfied that the additional products are equivalent to those which formed the basis of the reference specification.

* Footnote: The publications are available on the Internet under (http://www.fao.org/AG/AGP/AGPP/Pesticid/) or as hardcopy from the Plant Protection Information Officer.
PART ONE

SPECIFICATIONS

QUINCLORAC

QUINCLORAC INFORMATION 6
QUINCLORAC TECHNICAL MATERIAL 7
QUINCLORAC WETTABLE POWDER 8
QUINCLORAC WATER DISPERSABLE GRANULES 10
QUINCLORAC AQUEOUS SUSPENSION CONCENTRATE 12
ISO common name
quinclorac (BSI; draft E-ISO, (m) draft F-ISO)

Synonyms
none

Chemical names
IUPAC and CA
3,7-dichloroquinoline-8-carboxylic acid

Structural formula

Molecular formula
C_{10}H_{5}Cl_{2}NO_{2}

Relative molecular mass
242.1

CAS Registry number
84087-01-4

CIPAC number
493

EEC number
402-780-1
QUINCLORAC TECHNICAL MATERIAL

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (493/2002). It should be applicable to relevant products of this manufacturer but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report (493/2002) as PART TWO forms an integral part of this publication.

1 Description

The material shall consist of quinclorac together with related manufacturing impurities and shall be an off-white powder with a characteristic odour, free from visible extraneous matter and added modifying agents.

2 Active ingredient

2.1 Identity tests (493/TC/M/2, CIPAC H, p. 245)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Quinclorac content (493/TC/M/3, CIPAC H, p. 245)

The quinclorac content shall be declared (not less than 960 g/kg) and, when determined, the mean measured content shall not be lower than the declared minimum content.
QUINCLORAC WETTABLE POWDER

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (493/2002). It should be applicable to relevant products of this manufacturer but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report (493/2002) as PART TWO forms an integral part of this publication.

1 Description

The material shall consist of an homogeneous mixture of technical quinclorac, complying with the requirements of FAO specification 493/TC (2002), in the form of a white to grey, nearly odourless solid together with fillers and any other necessary formulants. It shall be in the form of a fine powder free from visible extraneous matter and hard lumps.

2 Active ingredient

2.1 Identity tests (493/WP/M/2, CIPAC H, p. 248)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Quinclorac content (493/WP/M/3, CIPAC H, p. 248)

The quinclorac content shall be declared (g/kg at 20±2°C) and, when determined, the mean measured content shall not differ from that declared by more than the following tolerances:

<table>
<thead>
<tr>
<th>Declared content in g/kg</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>above 250 up to 500</td>
<td>± 5% of the declared content</td>
</tr>
<tr>
<td>above 500</td>
<td>± 25 g/kg</td>
</tr>
</tbody>
</table>

Note in each range the upper limit is included.

3 Physical properties

3.1 pH range: (MT 75.2, CIPAC F, p. 206)

pH range: pH 3 to pH 6

3.2 Wet sieve test (MT 167, CIPAC F, p. 416)

Maximum: 1 % of the formulation shall be retained on a 75 µm test sieve.

3.3 Suspensibility(MT 177, CIPAC F, p. 445) (Notes 1&2)

A minimum of 75 % of the quinclorac content found under 2.2 shall be in suspension after 30 min in CIPAC Standard Water D at 30 ± 2 °C (Notes 3&4).

3.4 Persistent foam (MT 47.2, CIPAC F, p. 152) (Note 5)

Maximum: 30 ml after 1min.

3.5 Wettability: (MT 53.3, CIPAC F, p. 164)

The formulation shall be wetted in 1 min, without swirling.
4. Storage stability

4.1 Stability at elevated temperature (MT 46, CIPAC F, p.148)

After storage at 54 ± 2 °C for 14 days, the determined average active ingredient content must not be lower than 95 % relative to the determined average content found before storage (Note 6) and the formulation shall continue to comply with the clauses for pH range (3.1), wet sieve test (3.2), suspensibility (3.3) and wettability (3.5), as required.

Note 1 The formulation should be tested at the highest and the lowest rates of use recommended by the supplier, provided this does not exceed the conditions given in method MT 177.

Note 2 This test will normally only be carried out after the heat stability test 4.1.

Note 3 Unless other temperature is specified.

Note 4 Chemical assay is the only fully reliable method to measure the mass of active ingredient still in suspension. However, simpler methods such as gravimetric and solvent extraction determination may be used on a routine basis provided that these methods have been shown to give results equal to those of the chemical assay method. In case of dispute, the chemical method shall be the "referee method".

Note 5 The mass of sample to be used in the test should be at the highest application rate of use recommended by the supplier.

Note 6 Samples of the formulation taken before and after the storage stability test should be analyzed concurrently after the test in order to reduce the analytical error.
QUINCLORAC WATER DISPERSIBLE GRANULES

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (493/2002). It should be applicable to relevant products of this manufacturer but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report (493/2002) as PART TWO forms an integral part of this publication.

1. Description

The material shall consist of an homogeneous mixture of technical quinclorac, complying with the requirements of FAO specification 493/TC (2002), in the form of a light beige to brownish solid together with carriers and any other necessary formulants. It shall be in the form of spherical granules for application after disintegration and dispersion in water. The formulation shall be dry, free-flowing, essentially non-dusty, and free from visible extraneous matter and hard lumps.

2. Active ingredient

2.1 Identity tests (493/WG/M/2, CIPAC H, p. 249)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Quinclorac content (493/WG/M/3, CIPAC H, p. 249)

The quinclorac content shall be declared (g/kg at 20±2°C) and, when determined, the mean measured content shall not differ from that declared by more than the following tolerances:

<table>
<thead>
<tr>
<th>Declared content in g/kg</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>above 250 up to 500</td>
<td>± 5 % of the declared content</td>
</tr>
<tr>
<td>above 500</td>
<td>± 25 g/kg</td>
</tr>
</tbody>
</table>

Note: in each range the upper limit is included

3. Physical properties

3.1 pH range (MT 75.2, CIPAC F, p. 206)

pH range: pH 3 to pH 6.

3.2 Wettability (MT 53.3, CIPAC F, p. 164)

The formulation shall be completely wetted in 1 min without swirling.

3.3 Wet sieve test (MT 167, CIPAC F, p. 416)

Maximum: 1 % of the formulation shall be retained on a 75 µm test sieve.

3.4 Degree of dispersion (MT 174, CIPAC F; p. 435)

Dispersibility: minimum 70 % after 1 minute of stirring.
3.5 \textbf{Suspensibility} (MT 168, CIPAC F, p. 417) (Notes 1 & 2)

A minimum of 70 \% of the quinclorac content found under 2.2 shall be in the suspension after 30 min in CIPAC Standard Water D at 30 \(\pm \) 2 \(^\circ \)C (Note 3).

3.6 \textbf{Persistent foam} (MT 47.2, CIPAC F, p. 152) (Note 4)

Maximum: 30 ml after 1min.

3.7 \textbf{Dustiness} (MT 171, CIPAC F, p. 425, gravimetric) (Note 5)

Essentially non-dusty.

3.8 \textbf{Flowability} (MT 172, CIPAC F, p. 430)

At least 99.9 \% of the formulation shall pass through a 5 mm test sieve after 20 liftings of the sieve.

4. \textbf{Storage stability}

4.1 \textbf{Stability at elevated temperature} (MT 46, CIPAC F, p.148)

After storage at 54 \(\pm \) 2 \(^\circ \)C for 14 days (Note 6), the determined average active ingredient content must not be lower than 95 \% relative to the determined average content found before storage (Note 7) and the formulation shall continue to comply with the clauses for pH range (3.1), wet sieve test (3.3), degree of dispersion (3.4), suspensibility (3.5), dustiness (3.7) and flowability (3.8), as required.

\section{Notes}

\begin{itemize}
 \item \textbf{Note 1} The formulation should be tested at the highest and lowest rates of use recommended by the supplier, provided it does not exceed the conditions given in method MT 168.
 \item \textbf{Note 2} Chemical assay is the only fully reliable method to measure the mass of active ingredient still in suspension. However, simpler gravimetric method, MT 168, may be used on a routine basis provided that these methods have been shown to give results equal to those of chemical assay. In case of dispute, the chemical method shall be the "referee method".
 \item \textbf{Note 3} Unless other temperature is specified.
 \item \textbf{Note 4} The mass of sample to be used in the test should be specified at the highest rate recommended by the supplier.
 \item \textbf{Note 5} Measurements of dustiness must be carried out on the sample "as received" and, where practicable, the sample should be taken from a newly opened container, because changes in the water content of samples may influence dustiness significantly. The optical method, MT 171, usually shows good correlation with the gravimetric method and can, therefore, be used as an alternative where equipment is available. Where the correlation is in doubt, it must be checked with the formulation to be tested. In case of dispute the gravimetric method shall be used.
 \item \textbf{Note 6} Unless other temperatures and/or times are specified.
 \item \textbf{Note 7} Analysis of the formulation, before and after the storage stability test, should be carried out concurrently (i.e. after storage) to reduce the analytical error.
\end{itemize}
QUINCLORAC AQUEOUS SUSPENSION CONCENTRATE

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (493/2002). It should be applicable to relevant products of this manufacturer but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report as PART TWO forms an integral part of this publication.

1. Description
The material shall consist of a suspension of fine particles of technical quinclorac, complying with the requirements of FAO specification 493/TC (2002), in the form of a white, aromatic smelling aqueous liquid, together with suitable formulants. After gentle agitation, the material shall be homogeneous (Note 1) and suitable for further dilution in water.

2. Active ingredient
2.1 Identity tests (493/SC/M/2, CIPAC H, p. 249)
The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Quinclorac content (493/SC/M/3, CIPAC H, p. 249)
The quinclorac content shall be declared (g/kg or g/l at 20 ± 2°C, Note 2) and, when determined, the mean measured content shall not differ from that declared by more than the following tolerances:

<table>
<thead>
<tr>
<th>Declared content in g/kg or g/l at 20 ± 2°C</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>above 25 up to 100</td>
<td>± 10% of the declared content</td>
</tr>
<tr>
<td>above 100 up to 250</td>
<td>± 6% of the declared content</td>
</tr>
<tr>
<td>above 250 up to 500</td>
<td>± 5% of the declared content</td>
</tr>
</tbody>
</table>

Note: in each range the upper limit is included

3. Physical properties
3.1 pH range (MT 75.2, CIPAC F, p. 206)
pH range: pH 2.5 to pH 5.5

3.2 Pourability (MT 148, CIPAC F, p. 348)
Maximum "residue": 6 %

3.3 Spontaneity of dispersion (MT 160, CIPAC F, p. 391) (Note 3)
A minimum of 75 % of the quinclorac content found under 2.2 shall be in the suspension after 5 min in CIPAC Standard Water D at 30 ± 2 °C (Note 4).
3.4 **Suspensibility** (MT 161, CIPAC F, p. 394) (Note 3)

A minimum of 70 % of the quinclorac content found under 2.2 shall be in the suspension after 30 min in CIPAC Standard Water D at 30 ± 2 °C (Note 4).

3.5 **Wet sieve test** (MT 167, CIPAC F, p. 416) (Note 5)

Maximum: 0.2 % of the formulation shall be retained on a 75 µm test sieve.

3.6 **Persistent foam** (MT 47.2, CIPAC F, p. 152) (Note 6)

Maximum: 30 ml after 1 min.

4. **Storage stability**

4.1 **Stability at 0°C** (MT 39.2, CIPAC F, p. 128)

After storage at 0 ± 2 °C for 7 days, the formulation shall continue to comply with the clauses for suspensibility (3.5) and wet sieve test (3.6), as required.

4.2 **Stability at elevated temperature** (MT 46, CIPAC F, p. 148)

After storage at 54 ± 2 °C for 14 days (Note 4), the determined average active ingredient content must not be lower than 95 % relative to the determined average content found before storage (Note 7) and the product shall continue to comply with the clauses for pH range (3.1), pourability (3.2), spontaneity of dispersion (3.3), suspensibility (3.4) and wet sieve test (3.5), as required.

Note 1 Before sampling to verify the formulation quality, inspect the commercial container carefully. On standing, suspension concentrates usually develop a concentration gradient from the top to the bottom of the container. This may even result in the appearance of a clear liquid on the top and/or of sediment on the bottom. Therefore, before sampling, homogenize the formulation according to the instructions given by the manufacturer or, in the absence of such instructions, by gentle shaking of the commercial container (for example by inverting the closed container several times). Large containers must be opened and stirred adequately. After this procedure, the container should not contain a sticky layer of non-dispersed matter at the bottom. A suitable and simple method of checking for a non-dispersed sticky layer "cake" is by probing with a glass rod or similar device adapted to the size and shape of the container. All the physical and chemical tests must be carried out on a laboratory sample taken after the recommended homogenization procedure.

Note 2 Unless homogenization is carried out carefully, it is possible for the sample to become aerated. This can lead to errors in the determination of the mass per millilitre and in the calculation of the active ingredient content (in g/l) if methods other than MT 3.3 are used. If the buyer requires both g/kg and g/l at 20 °C, then in case of dispute the analytical results shall be calculated as g/kg.

Note 3 Chemical assay is the only fully reliable method to measure the mass of active ingredient still in suspension. However, simpler methods such as gravimetric and solvent extraction determination may be used on a routine basis provided that these methods have been shown to give results equal to those of the chemical assay method. In case of dispute, the chemical method shall be the referee method.

Note 4 Unless other temperatures and/or times are specified.
Note 5 This test detects coarse particles (e.g. caused by crystal growth) or agglomerates (crust formation) or extraneous materials which could cause blockage of spray nozzles or filters in the spray tank.

Note 6 The mass of sample to be used in the test should be at the application rate of use recommended by the supplier.

Note 7 Samples of the formulation taken before and after the storage stability test should be analyzed concurrently after the test in order to reduce the analytical error.
PART TWO

EVALUATION REPORT(S)

QUINCLORAC

2002 Evaluation report based on submission of data from BASF AG. (TC, WP,WG,SC)
Explanation
The data for quinclorac were evaluated in support of new FAO specifications.

Quinclorac is under patent in many countries until 2002. In Canada and Bolivia it is patented until 2003.
Quinclorac is registered and sold in USA, Canada and many countries in Central- and South-America, Asia and Europe.
Quinclorac was reviewed by the US EPA in 1999 for tolerance approval.
The draft specification and the supporting data were provided by BASF AG in 2002.

Uses
Quinclorac, a herbicide showing auxin activity similar to that of indolylacetic acid, belongs to the auxin-type class of herbicides that includes the phenoxy-acids, benzoic acids and pyridine compounds. It acts as an inhibitor of cell wall biosynthesis. Quinclorac is mainly adsorbed via the root system and partly through foliage, mainly for the pre- and post-emergence control of *Echinochloa* spp. but also other weeds like *Aeschynomene* spp., *Sesbania* spp., and *Ipomoea* spp., occurring in direct-seeded and transplanted rice.

Identity of the active ingredient

ISO common name
quinclorac (BSI, draft E-iso, (m) draft F-iso)

Chemical name(s)
IUPAC and CA
3,7-dichloroquinoline-8-carboxylic acid

Synonyms
None
Structural formula

\[\begin{array}{c}
\text{C1} \\
\text{N} \\
\text{Cl} \\
\text{Cl} \\
\text{HO} \\
\text{O} \\
\text{C1}
\end{array} \]

Molecular formula

\[\text{C}_{10}\text{H}_5\text{Cl}_2\text{NO}_2 \]

Relative molecular mass

242.1

CAS Registry number

84087-01-4

CIPAC number

493

EEC number

402-780-1

Identity tests

The test relies on the HPLC method for quinclorac analysis. The retention time of quinclorac in the sample solution should not deviate by more than 10 s from that of authentic quinclorac in the calibration solution [CIPAC Handbook H, p. 245]. IR and TLC form additional identity tests.
Physico-chemical properties of pure quinclorac (Table 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value(s) and conditions</th>
<th>Purity %</th>
<th>Method reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour pressure</td>
<td>1 x 10^{-12} Pa at 20 °C (extrapolated)</td>
<td>99.8</td>
<td>OECD 104, by extrapolation</td>
</tr>
<tr>
<td></td>
<td>4 x 10^{-12} Pa at 25 °C (extrapolated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting point, boiling point and/or temperature of decomposition</td>
<td>Melting point: 272.4 - 274.9 °C Decomposition temperature: ca. 272 °C (colour change to brown, with gas evolution beginning)</td>
<td>99.8</td>
<td>OECD 102</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>0.072 g/l at 20 °C at pH 5.5 (deionized water)</td>
<td>99.8</td>
<td>EEC A6</td>
</tr>
<tr>
<td></td>
<td>75.9 g/l at 20 °C at pH 10.3 (NaOH, 0.1 Mol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octanol/water partition coefficient</td>
<td>log P_{OW} = 1.76 at 20 °C at pH 4</td>
<td>99.8</td>
<td>EEC A8, by extrapolation</td>
</tr>
<tr>
<td></td>
<td>log P_{OW} = -0.74 at 20 °C at pH 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>log P_{OW} = -3.74 at 20 °C at pH 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half life = ca. 43 days (sensitized, sterile solution, calculated for continuous illumination)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental setup: solution in water (sterile), pH 7, 25°C, simulated sunlight at 805 w/m², for 660 h over 35 d (15 h light, 9 h dark, illuminated at weekends). Result: Half life > 30 days (dark control solution, non-sensitized, sterile, see hydrolysis) The results were used to extrapolate the half life values above.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissociation characteristics</td>
<td>pKa = 4.34 at 20 °C</td>
<td>99.4</td>
<td>OECD 112, titration method</td>
</tr>
<tr>
<td></td>
<td>pKa = 4.35 at 25 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chemical composition and properties of quinclorac technical material (TC)
(Table 2)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing process, maximum limits for impurities ≥ 1 g/kg, 5 batch analysis data</td>
<td>Confidential information was supplied and is held on file by FAO. Mass balances were 99.2 – 100.0 % and percentages of unknowns were < 0.1.% each.</td>
</tr>
<tr>
<td>Declared minimum quinclorac content</td>
<td>960 g/kg</td>
</tr>
<tr>
<td>Relevant impurities ≥ 1 g/kg and maximum limits for them</td>
<td>None.</td>
</tr>
<tr>
<td>Relevant impurities < 1 g/kg and maximum limits for them:</td>
<td>None.</td>
</tr>
<tr>
<td>Stabilizers or other additives and maximum limits for them:</td>
<td>None.</td>
</tr>
<tr>
<td>Melting temperature range of the TC</td>
<td>272.4 - 274.9 °C</td>
</tr>
</tbody>
</table>
Hazard summary

Notes.

(i) The proposer confirmed that the toxicological and ecotoxicological data included in the summary below were derived from quinclorac having impurity profiles similar to those referred to in the table above.

(ii) The conclusions expressed in the summary below are those of the proposer, unless otherwise specified.

Table 3. Toxicology profile of the quinclorac technical material, based on acute toxicity, irritation and sensitization.

<table>
<thead>
<tr>
<th>Species</th>
<th>Test</th>
<th>Purity</th>
<th>Duration and conditions or guideline adopted</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat (m, f)</td>
<td>Oral</td>
<td>93.6</td>
<td>OECD (401), single application</td>
<td>LD$_{50} = 2 610$ mg/kg bw</td>
</tr>
<tr>
<td>Mouse (m, f)</td>
<td>Oral</td>
<td>97.4</td>
<td>OECD, EPA (FIFRA) Subdiv. F, Section 81-1</td>
<td>LD$_{50} > 5 000$ mg/kg bw</td>
</tr>
<tr>
<td>Rat (m, f)</td>
<td>Dermal</td>
<td>93.6</td>
<td>OECD (402), 24 h percutaneous exposure</td>
<td>LD$_{50} > 2000$ mg/kg bw</td>
</tr>
<tr>
<td>Rat (m, f)</td>
<td>Inhalation</td>
<td>93.6</td>
<td>OECD (403), 4 h</td>
<td>LC$_{50} = > 5 200$ mg/m3</td>
</tr>
<tr>
<td>White rabbit (m, f)</td>
<td>Skin irritation</td>
<td>93.6</td>
<td>Fed.Reg.38, No.187, Sec.1500.41, p 27019 (1973)</td>
<td>Non-irritant</td>
</tr>
<tr>
<td>White rabbit (m, f)</td>
<td>Eye irritation</td>
<td>93.6</td>
<td>Fed.Reg.38, No.187, Sec.1500.42, p 27019 (1973)</td>
<td>Non-irritant</td>
</tr>
<tr>
<td>Rat (m, f)</td>
<td>Acute intraperitoneal toxicity</td>
<td>93.6</td>
<td>Single injection into the abdominal cavity, 14 days observation</td>
<td>LD$_{50} = 681$ mg/kg bw</td>
</tr>
</tbody>
</table>

Quinclorac is characterised by a low acute oral, dermal and inhalation toxicity. The technical active ingredient caused only slight reversible, irritant effects, mainly on the eyes. A possible skin sensitizing potential was indicated in the maximization test.
Table 4. Toxicology profile of the technical material based on repeated administration (sub-acute to chronic)

<table>
<thead>
<tr>
<th>Species</th>
<th>Test</th>
<th>Purity (%)</th>
<th>Duration and conditions or guideline adopted</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit (m, f)</td>
<td>Dermal</td>
<td>96.5</td>
<td>21 d, EPA Subdiv. F § 82-2, OECD (410), EEC B.9, Japan MAFF</td>
<td>NOEL > 1000 mg/kg bw/d</td>
</tr>
<tr>
<td>Dog (m, f)</td>
<td>Oral, subacute</td>
<td>93.6</td>
<td>28 d</td>
<td>NOAEL = 100 mg/kg bw/d LOEL = 300 mg/kg bw/d</td>
</tr>
<tr>
<td>Mouse (m, f)</td>
<td>Oral, subacute</td>
<td>96.5</td>
<td>28 d, OECD (407)</td>
<td>NOAEL = 1800 mg/kg bw/d LOEL = 3600 mg/kg bw/d</td>
</tr>
<tr>
<td>Rat (m, f)</td>
<td>Oral, subacute</td>
<td>93.6</td>
<td>28 d, OECD (407)</td>
<td>NOAEL = 630 mg/kg bw/d LOEL = 1250 mg/kg bw/d</td>
</tr>
<tr>
<td>Rat (m, f)</td>
<td>Oral, subchronic</td>
<td>96.5</td>
<td>3 mo, OECD (408)</td>
<td>NOAEL = 300 mg/kg bw/d LOEL = 900 mg/kg bw/d</td>
</tr>
<tr>
<td>Mouse (m, f)</td>
<td>Oral, subchronic</td>
<td>97.4</td>
<td>3 mo, OECD (408), EPA FIFRA Subdiv. F § 82-1, Japan MAFF(1985)</td>
<td>NOAEL = 85 mg/kg bw/d LOEL = 680 mg/kg bw/d</td>
</tr>
<tr>
<td>Dog (m, f)</td>
<td>Oral</td>
<td>96.5</td>
<td>12 mo, OECD(452), EPA FIFRA Subdiv. F § 83-1, Japan MAFF(1985)</td>
<td>NOAEL = 34 mg/kg bw/d LOEL = 136 mg/kg bw/d</td>
</tr>
<tr>
<td>Rat (m, f)</td>
<td>Feeding, chronic toxicity/carcinogenicity</td>
<td>97.4</td>
<td>24 mo, OECD (453), EPA FIFRA Subdiv. F § 83-5, Japan MAFF (1985)</td>
<td>NOAEL = 533 mg/kg bw/d not carcinogenic</td>
</tr>
<tr>
<td>Mouse (m, f)</td>
<td>Feeding, chronic toxicity/carcinogenicity</td>
<td>97.4</td>
<td>18 mo OECD (451), EPA FIFRA Subdiv. F § 83-2, Japan MAFF (1985)</td>
<td>NOAEL = 30 mg/kg bw/d not carcinogenic</td>
</tr>
<tr>
<td>Rat (m, f)</td>
<td>Feeding, 2 generation reproduction</td>
<td>97.4</td>
<td>OECD (416), EPA FIFRA Subdiv. F § 83-4, Japan MAFF (1985)</td>
<td>Not teratogenic NOAEL >1155 mg/kg bw/d (reproduction) NOAEL = 381 mg/kg bw/d (maternal and fetotoxicity)</td>
</tr>
<tr>
<td>Rat (f)</td>
<td>Teratogenicity and developmental toxicity</td>
<td>96.5</td>
<td>OECD (414), EPA FIFRA Subdiv. F § 83-3, Japan MAFF(1985)</td>
<td>Not teratogenic NOAEL = 146 mg/kg bw/d maternal toxicity. NOAEL > 438 mg/kg bw/d embryo/fetotoxicity</td>
</tr>
<tr>
<td>Rabbit (f) (Himalayan)</td>
<td>Teratogenicity and developmental toxicity</td>
<td>97.4</td>
<td>OECD (414), EPA FIFRA Subdiv. F § 83-3, Japan MAFF (1985)</td>
<td>Not teratogenic NOAEL = 70 mg/kg bw/d maternal toxicity. NOAEL = 200 mg/kg bw/d embryo/fetotoxicity</td>
</tr>
</tbody>
</table>

The toxicity of quinclorac both after oral and dermal administration is relatively low. Repeated oral administration of high doses targeted the liver, kidneys, and red blood cell counts. Quinclorac was not carcinogenic in long-term studies in rats and mice after administration via the diet. Quinclorac did not lead to any malformations in rats and rabbits. The substance showed developmental toxicity only at doses that were toxic to the dams of rabbits. These effects were not observed in rats. There were no indications of any impairment of fertility in animal studies.
Table 5. **Mutagenicity profile of the technical material based on in vitro and in vivo tests**

<table>
<thead>
<tr>
<th>Species</th>
<th>Test</th>
<th>Purity %</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salm Salmonella typhiurium</td>
<td>Point mutation, Ames test</td>
<td>96.5</td>
<td>Dose range: 20 - 5000μg/plate with (S-9 from S.D. rats) and without metabolic activation in TA 98, TA 100, TA 1535, TA 1537 strain</td>
<td>Not mutagenic</td>
</tr>
<tr>
<td>Chinese hamster ovary (CHO) cell line</td>
<td>Point mutation, CHO/HGPRT test</td>
<td>96.5</td>
<td>Dose range: 0.0464 - 2.15 mg/ml with (S-9 from S.D. rats) and without metabolic activation</td>
<td>Not mutagenic</td>
</tr>
<tr>
<td>Human lymphocytes</td>
<td>Chromosome aberration, cytogenic investigation, in vitro</td>
<td>96.5</td>
<td>Dose range: 250 - 1000 μg/ml without metabolic activation Dose range: 500 - 2000 μg/ml with metabolic activation (S9-mix from Sprague Dawley rats)</td>
<td>Mutagenic both with and without S-9 mix at dose levels showing clear cytotoxicity</td>
</tr>
<tr>
<td>Bone marrow cells (NMRI mice)</td>
<td>Chromosome aberration, micronucleus test, in vivo</td>
<td>96.5</td>
<td>Oral administration, dose range: 500 - 2000 mg/kg bw</td>
<td>Not mutagenic</td>
</tr>
<tr>
<td>Bone marrow cells (Chinese hamster)</td>
<td>Chromosome aberration, cytogenic investigation, in vivo</td>
<td>98.3</td>
<td>Oral administration, dose range: 2000 - 8000 mg/kg bw</td>
<td>Not mutagenic</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>DNA damage and repair, Rec assay (H 17 (REC^+) and M 45 (REC^-))</td>
<td>97.4</td>
<td>Dose range: 1 - 10000 μg/plate without metabolic activation with metabolic activation (S9-mix from Sprague Dawley rats)</td>
<td>Not mutagenic</td>
</tr>
<tr>
<td>Primary hepatocytes (Fisher rats)</td>
<td>DNA damage and repair, Unscheduled DNA synthesis, in vitro</td>
<td>96.5</td>
<td>Dose range: 101 - 2020 μg/ml</td>
<td>Not mutagenic</td>
</tr>
<tr>
<td>Rat hepatocytes</td>
<td>DNA damage and repair, Unscheduled DNA synthesis, in vivo/in vitro</td>
<td>97.4</td>
<td>Oral administration: Dose: 1000 mg/kg bw (4 h) Doses 1000 mg/kg bw (16h) ³HTdR treatment of primary hepatocytes</td>
<td>Not mutagenic</td>
</tr>
</tbody>
</table>

The genotoxic potential of quinclorac was tested covering the endpoints gene mutation, chromosome damage as well as DNA damage and repair.

When tested in an *in vitro* system at biologically unachievable and cytotoxic concentrations in human lymphocytes, chromosome-damaging properties were found. However, *in vivo* studies performed with NMRI mice, and Chinese hamsters gave no indication of chromosome aberration. No DNA damage and repair were observed in the studies. Quinclorac was thus found to be devoid of mutagenic activity on the basis of the studies performed.
Table 6. Ecotoxicology profile of the technical material

<table>
<thead>
<tr>
<th>Species</th>
<th>Test</th>
<th>Purity %</th>
<th>Duration and conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphnia magna (water flea)</td>
<td>Acute toxicity</td>
<td>98.6</td>
<td>48 h, static water, OECD (202), US-EPA OPPTS 850.1010, 1996</td>
<td>EC50 > 100 mg/l NOEC > 100 mg/l</td>
</tr>
<tr>
<td>Daphnia magna (water flea)</td>
<td>Chronic toxicity</td>
<td>96.6</td>
<td>21 d, flow-through EPA, Subdiv. E § 72-4</td>
<td>EC50 > 110 mg/l NOEC = 110 mg/l</td>
</tr>
<tr>
<td>Salmo gairdneri (rainbow trout)</td>
<td>Acute toxicity</td>
<td>98.6</td>
<td>96 h, static water, OECD (203), EPA Subdiv. E § 72-1, p 66, 1982</td>
<td>NOEC = 100 mg/l</td>
</tr>
<tr>
<td>Lepomis macrochirus (bluegill sunfish)</td>
<td>Acute toxicity</td>
<td>98.6</td>
<td>96 h, static water, OECD (203), EPA Subdiv. E § 72-1, p 66, 1982</td>
<td>NOEC = 100 mg/l</td>
</tr>
<tr>
<td>Pimephales promelas (fathead minnow)</td>
<td>Chronic toxicity Early life stage</td>
<td>96.6</td>
<td>38 d, flow-through EPA, Subdiv. E § 72-4(a)</td>
<td>NOEC = 31 mg/l LOEC = 62 mg/l</td>
</tr>
<tr>
<td>Pseudokirchneriella subcapitata (green alga)</td>
<td>Acute toxicity</td>
<td>99.2</td>
<td>72 h, static water, OECD (201)</td>
<td>EC50 > 100 mg/l (growth rate) EC50 > 100 mg/l (biomass)</td>
</tr>
<tr>
<td>Anabaena flos-aquae (blue-green alga)</td>
<td>Acute toxicity</td>
<td>99.2</td>
<td>96 h, static water, ASTM (E 1218-90), OECD (201), EPA (OPPTS 850.100, 1996)</td>
<td>EC50 > 100 mg/l (growth rate) EC50 = 69.4 mg/l (biomass)</td>
</tr>
<tr>
<td>Lemna gibba (A duckweed)</td>
<td>Acute toxicity</td>
<td>99.2</td>
<td>7 d, static water, ASTM (E 1415-91), EPA (OPPTS 850.4400, 1996)</td>
<td>EC50 > 100 mg/l (growth rate) EC50 > 100 mg/l (biomass)</td>
</tr>
<tr>
<td>Apis mellifera (Honey bee)</td>
<td>Acute oral and contact toxicity</td>
<td>99.8</td>
<td>48 h, OECD (213 and 214, 1998)</td>
<td>LD50 > 102.3 mg/l (oral) LD50 > 100 mg/l (contact)</td>
</tr>
<tr>
<td>Colinus virginianus (Bobwhite quail)</td>
<td>Dietary toxicity</td>
<td>96.5</td>
<td>5 d, EPA (E § 71-2, p 37, 1982)</td>
<td>LC50 > 5000 mg/kg food</td>
</tr>
<tr>
<td>Anas platyrhynchos (Mallard duck)</td>
<td>Dietary toxicity</td>
<td>96.5</td>
<td>5 d, EPA (E § 71-2, p 37, 1982)</td>
<td>LC50 > 5000 mg/kg food</td>
</tr>
<tr>
<td>Anas platyrhynchos (Mallard duck)</td>
<td>Reproductive toxicity</td>
<td>99.2</td>
<td>21 weeks, EPA/FIFRA Subdiv. E § 71-4</td>
<td>NOEL = 1000 mg/kg food</td>
</tr>
</tbody>
</table>
The ecotoxicological effects of quinclorac were investigated using various organisms from major biological groups. The results demonstrated that quinclorac is of low toxicity to aquatic and terrestrial organisms including fish, aquatic invertebrates, algae, birds and terrestrial invertebrates.

Although Quinclorac has not been evaluated by the FAO/WHO JMPR, it has been classified by the WHO IPCS as a “Technical grade active ingredient unlikely to present an acute hazard in normal use” (WHO/PCS/01.5/Rev.1)

It was characterized by the US EPA in 1999 with the signal word ‘caution’ (EPA review). In the European Union it is additionally described as ‘sensitizing’ (R 43).

Formulations and co-formulated active ingredients

The main formulation types available are water dispersible granules (WG), wettable powder (WP) and aqueous suspension concentrates (SC). Quinclorac is currently not co-formulated with other pesticides.

These formulations are registered and sold in many countries throughout the world.

Methods of analysis and testing

The analytical method for the active ingredient (including identity tests) is a full CIPAC method (CIPAC Handbook H, pages 244-247). Quinclorac is determined by reversed phase HPLC (C18, tetrahydrofuran/ water/ sulfuric acid (0.5 M)) using UV detection at 238 nm and external standardization.

There are no relevant impurities and therefore no methods are necessary.

Test methods for determination of physico-chemical properties of the technical active ingredient were OECD, EU or US-EPA, while those for the formulations were CIPAC (pH range, MT 75; accelerated storage stability, MT 46; storage stability at 0°C, MT 39; degree of dispersion, MT 174; persistent foam, MT 47; susptentibility, MT 161, 168 and 177; spontaneity of dispersion, MT 160; wet sieve test, MT 167; wettability, MT 53; dustiness, MT 171; flowability, MT 172; pourability, MT 148), as indicated in the specifications.
Physical properties
The physical properties, the methods for testing them and the limits proposed for the WP, WG and SC formulations, comply with the requirements of the FAO Manual (5th edition).

Containers and packaging
No special requirements for containers and packaging have been identified.

Expression of the active ingredient
The active ingredient is expressed as quinclorac in g/kg or g/l.

Appraisal
The data for quinclorac were submitted by the proposer in accordance with the requirements of the FAO Manual (5th edition), evaluated in support of the new FAO specifications. The proposer stated that the confidential data sets evaluated by the FAO and the EPA were identical. However, this could not be confirmed by the Meeting, due to circumstances beyond the control of the proposer, FAO and the JMPS.

The production of quinclorac is under patent in many countries until 2002, and in Canada and Bolivia it is patented until 2003. It was reviewed by the US EPA in 1999 for tolerance approval.

Quinclorac is an off-white powder with a characteristic odour. It melts in the range 272 - 275°C and is of low water solubility (0.072 g/l, pH 5.5), although this increases considerably at higher pH (75.9 g/l, pH 10.3). It is formulated as a wettable powder (WP); as water dispersible granules (WG); and as an aqueous suspension concentrate (SC). Quinclorac is stable in water (at pH values 5, 7, and 9) and to photodegradation.

The proposer provided the meeting with commercially confidential information on the manufacturing process and batch analysis data. Impurities were identified at or above 1 g/kg and manufacturing limits were specified for them. The meeting considered none of them to be relevant. The meeting did however question the possible presence of a relevant impurity which could have been derived from a starting material. The company provided a clear case to show that this chemical is too reactive to survive the subsequent stages of manufacture and thus will not be detectable in the TC.

Quinclorac is characterized by a low acute oral, dermal and inhalation toxicity. The technical active ingredient caused only slight reversible, irritant effects, mainly on the eyes. A possible sensitizing potential was indicated in the maximization test.

The toxicity of quinclorac both after oral and dermal administration is relatively low. Repeated oral administration of high doses targeted the liver, kidneys, and red blood cell counts.
Quinclorac was not carcinogenic in long-term studies in rats and mice after administration via the diet. Quinclorac did not lead to any malformations in rats and rabbits, and showed developmental toxicity only at doses that were toxic to the dams of rabbits. These effects were not observed in rats. There were no indications of any impairment of fertility in animal studies.

Quinclorac was found to be devoid of mutagenic activity on the basis of the studies presented.

Quinclorac is of low toxicity to aquatic and terrestrial organisms including fish, aquatic invertebrates, algae, birds and terrestrial invertebrates.

Although quinclorac has not been evaluated by the FAO/WHO JMPR, it has been classified by the WHO IPCS as a "Technical grade active ingredient unlikely to present an acute hazard in normal use" (WHO/PCS/01.5/Rev.1)

The proposer declared that quinclorac produced and commercialised by BASF AG complies with the FAO specifications (2002).

Recommendation

The meeting recommended that the specifications for quinclorac TC, WP, WG, and SC, presented by BASF AG, should be adopted as FAO specifications.

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>