

Rome 2017

The RPW infestation elicit a control-factor repressive environment

M. Scrascia^{1,a}, C. Pazzani^{1,a}, F. Valentini², M. Oliva¹, V. Russo², P. D'Addabbo¹ G. Stallone³ and F. Porcelli^{2,4}

- I) Department of Biology UNIBA "Aldo Moro", Italy;
- 2) CIHEAM IAMB Bari , Italy
- 3) Volatome Srl
- 4) DISSPA UNIBA "Aldo Moro", Italy

Speaker: Maria Scrascia, Ph.D Department of Biology University of Bari "ALDO MORO"- Bari (Italy) E-mail: maria.scrascia@uniba.it

Rome 2017

Bacteria-insect business...

Secondary symbionts (cultivable and also horizontally transmitted)

Strong influence on hosts' fitness

Bacteria and aphids, psyllids, scale insects, whiteflies, weevils and so on...

Bacteria and R. ferrugineus ????

Insect external compartments

Oliver K.M. et al (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasp; PNAS; Lukasik P. et al (2015) Horizontal transfer of facultative endosymbionts is limited by host relatedness; Evolution; Montagna M. et al (2015) Effects of the diet on the microbiota of the red palm weevil (Coleoptera: Dryophthoridae); PlosOne Tagliavia M. et al (2014) The gut microbiota of larvae of *Rhynchophorus ferrugineus* Oliver (Coleoptera: Curculionidae); BMC Microbiology Butera G. et al (2012) The culturable bacterial community of frass produced by larvae of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) in the Canary island date palm; Lett Appl Microbiol Raio A. et al (2016) Bacteria associated to *Rhynchophorus ferrugienus* (Olivier) (Coleoptera Dryophthoridae) in Italy; Redia

Rome 2017

Red Pigment-Producing Bacteria (RPPB)

Attribuzione - Non commerciale - Non opere derivate CC BY-NC-ND

Rome 2017

Regions from which insects were collected

Attribuzione - Non commerciale - Non opere derivate CC BY-NC-ND

Rome 2017

Sampling

Infested Palm tissue and pupal cases

Controls: un-infested apple peel and pulp from apples; insect surface before dissection

egg-chambers in apple

Rome 2017

Presence of RPPB

Rome 2017

RPPB *vs.* the three red pigment producing Serratia species

Rome 2017

RPPB *vs.* the three red pigment producing Serratia species

Rome 2017

Antimicrobial activity assay

Open Access

MicrobiologyOpen

ORIGINAL RESEARCH

Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus Olivier (Coleoptera: **Curculionidae**)

Maria Scrascia^{1,a}, Carlo Pazzani^{1,a}, Franco Valentini², Marta Oliva¹, Valentina Russo¹, Pietro D'Addabbo¹ & Francesco Porcelli³

Bacillus megaterium	ATCC 14581
Bacillus pumilus	ATCC 7061
Staphilococcus aureus	ATCC 25923
Lysinibacillus spp.	l environmental strain
Paenibacillus spp.	l environmental strain

Gram negative

Acinetobacter baumannii	l clinical strains
Salmonella typhimurium	2 clinical strains
Klebsiella pneumoniae	2 clinical strains
Vibrio cholerae	El Tor 787
Escherichia coli	LE392; ATCC 25922

Attribuzione -Yes! Yes! of commerciale -Yes! Yes! Yes! Non opere deriva NO Yes! Yes! 6 Yes! **BY-NC-ND** NO

Rome 2017

Ethanol

Conclusions

Red pigment producing S. marcescens/nematodiphila as secondary symbiont of RPW

Metabolic features of S. marcescens/nematodiphila are consistent with the higher temperature, levels of Ethanol and other organic compounds detected in infested palms

The combinatory effect of these factors and the antimicrobial activity exhibited by the symbiont, suggest that RPW infestation induces a repressive environment for biological control-factors

• Food and Agriculture Organization

Rome 2017

Open perspectives

Potential protective role played by S. marcescens/nematodiphila against microbial species suggested for biocontrol

The contribution to palm death due to Serratia marcescens/nematodiphila metabolism and the bacterial ability to spread within palm tissue

Could distruption of Serratia/RPW association be a target for the weevil control?

Laboratory of

MICROBIOLOGY

DEPT. OF BIOLOGY

Food and Agriculture Organization of the United Nations

Rome 2017

5

D.I.S.S.P.A. DEPARTMENT _ OF SOIL, PLANT AND FOOD SCIENCES

Carla CALIA

Pietro D'ADDABBO

Marta OLIVA

Carlo PAZZANI

Maria SCRASCIA

Franco VALENTINI

Laura DIANA Francesco PORCELLI

Roberta ROBERTO

Volatome

Volatile Compounds in Biological System

Gaetano STALLONE