

Climate change and forest genetic resources (FGR): state of knowledge, risks and opportunities

Bruno Fady

INRA – URFM, Ecologie des Forêts Méditerranéennes, Avignon

Judy Loo, Ian Dawson, Barbara Vinceti and Giulia Baldinelli

Bioversity International, Rome, Italy

World Agroforestry Centre (ICRAF), Nairobi, Kenya

Climate change is here and now! It has happened and is predicted to continue to do so.

Climate change will modify the location of suitable bioclimates for tree species

Current Distribution
simulated using BIOMOD

- Observation
- Simulation

Project future climate
Climate model - HadCM3
Greenhouse gas emissions model
- A1FI

Future Distribution: 2080
simulated using BIOMOD

- **Loss of habitat**
- **Stable habitat**
- **Gain of habitat**

Opportunities offered by FGR for trees to cope with climate change

Trees (mostly undomesticated, with high genetic diversity) have 3 mechanism for responding to climate change:

- **Phenotypic plasticity / acclimatization** (trees will continue to survive, grow and reproduce locally because their biological requirements are flexible)
- **Adaptation** (selection of the best fitted progeny)
- **Migration** through seed and pollen dispersal (regeneration under friendlier environments after long distance dispersal or hybridization)

Opportunities and risks offered by FGR for trees to cope with climate change: A question of time and space

Time scale for climate change ~ generation time for trees

Phenotypic plasticity: gaps in knowledge and priorities for action

Phenotypic plasticity under increasing temperature: yes...
but up to a certain point !!

The unknowns:

- Geographic distribution of species;
- Underlying genetic basis of phenotypic plasticity (epigenetics).

Priorities for action:

- Inventories (including remote sensing);
- Provenance trials / reciprocal transplants including marginal populations;
- Using larger genotypic portfolios in plantation forests.

Adaptation (genetic): gaps in knowledge and priorities for action

(Lefèvre et al., in prep)

Resistance to
drought

Height growth

Adaptation and gene flow under
strong selection pressure... a
(relatively) fast mechanism

The unknowns:

- Correlation between traits;
- Fragmented landscape effects;
- Genomics of adaptation and reproduction.

Priorities for action:

- Development and analysis of common garden trials / conservation units;
- Science-based conservation strategies in high priority areas;
- Breeding programs with larger genetic basis and traits.

Migration: gaps in knowledge and priorities for action

European oak isochronal pollen map
(www.pierrotin.inra.fr/Fairoak/)

Migration can be fast (500 m / year during the last 12000 years in Europe... **fast enough?**

The unknowns:

- Cryptic refugia;
- Fragmented landscape effects;
- Reproduction and LDD.
- Community effects of migration.

Priorities for action:

- Valuating “conservation” actions;
- Assisted migration and gene flow;
- Maintain and manage marginal populations;
- Germplasm characterization, conservation, multiplication and delivery.

FGR and climate change: risks, opportunities and already some tools for action

Trees can naturally:

- acclimatize through phenotypic plasticity,
- adapt under natural selection,
- migrate to more suitable locations...

... but with some limitations!

FGR under “adaptive” forest management are an asset to alleviate (“option value”) these limitations.

