Tools to improve the Evidence of the Importance of Biodiversity for Nutrition

U. Ruth Charrondiere, PhD
Barbara Stadlmayr
Barbara Burlingame, PhD
FAO, Rome
Where we are today (1)

World Population is increasing. Today we have 7 billion people.

Environment is deteriorating. Erosion. Climate change is continuing (in 2010 increase of CO$_2$ emission of 6%) and threatens agriculture.

Food Waste: 30% of the produced food is lost or wasted (1.3 billion tons per year) = waste of inputs and unnecessary increase of CO$_2$

Biodiversity is decreasing: less varieties grown and monoculture of few cultivars.

Food security is threatened in many countries, worsened through increased food prices and financial crisis.

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of varieties grown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Past</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>5,000</td>
</tr>
<tr>
<td>Japan</td>
<td>1,302</td>
</tr>
<tr>
<td>Rep. of Korea</td>
<td>4,227</td>
</tr>
<tr>
<td>Philippines</td>
<td>-</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>2,000</td>
</tr>
<tr>
<td>Taiwan Province of China</td>
<td>1,679</td>
</tr>
<tr>
<td>Thailand</td>
<td>16,185</td>
</tr>
</tbody>
</table>

Source: Paroda, 1999
Where we are today (2)

Double burden of malnutrition. Obesity endemic has reached developing countries. Non-communicable diseases are increasing worldwide. Undernutrition and micronutrient deficiencies are persisting.

Increased consumption of animal products in e.g. China and India and of processed foods.

Simplification of diets and shift towards westernized diets.

Medicalised approach (fortification and supplementation) is favored instead of food-based for nutrition.
Vitamin A deficiency in Micronesia

• Traditionally, vitamin A deficiency was not known
• With shift to westernized diets (e.g. white rice and mutton tails) vitamin A deficiencies arrived
• Nutrition programme developed based on green leafy vegetables did not work as considered ‘pig foods’
• Exploration of traditional diets showed that local varieties of bananas and taro were very rich in carotenoids — current programme re-introduces the traditional diet seems to work. See http://www.islandfood.org
Prevention of micronutrient deficiency

1. Food-based approach -> increased evidence that it works
 - Food biodiversity including wild and underutilized foods
 - Traditional foods revival
 - Nutrition education
 - Change in agriculture production and increased home gardening

2. Medicalised approach: Fortification and/or supplementation -> increase doubts: read the commentary of Michael Latham ‘The Great vitamin A Fiasco’ at http://www.wphna.org/wn_commentary.asp
The Great Vitamin A Fiasco (M. Latham)

• “Vitamin A (capsule) programmes are ineffective. They use up precious human and material resources. Most of all, they impede other approaches to the prevention of vitamin A deficiency [...]. These include breastfeeding, and the protection and development of healthy, affordable and appropriate food systems and supplies. Such approaches also protect against other diseases, are sustainable, enhance well-being, and have social, cultural, economic and environmental benefits.”

• “capsules do not have a significant effect on mortality” but de-worming and measles vaccination are effective

• “exceedingly rich sources of carotene such as palm and other fruits, tend to be overlooked […], one reason being that they often grow wild, and even when cultivated do not feature in international or national food composition tables”
Biodiversity and nutrition

- Dietary energy supply *can* be satisfied without diversity
- Micronutrient supply *cannot* be satisfied without diversity

“The are as many differences in nutrient values among varieties of the same food as among different foods.”

—Zambian delegate to the Conference of Parties, Convention on Biological Diversity, May 1998
Differences in food composition

<table>
<thead>
<tr>
<th></th>
<th>Protein (g)</th>
<th>Fibre (g)</th>
<th>Iron (mg)</th>
<th>Vitamin C (mg)</th>
<th>Beta-Carotenes (mcg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>5.6 - 14.6</td>
<td></td>
<td>0.7 - 6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassava</td>
<td>0.7-6.4</td>
<td>0.9-1.5</td>
<td>0.9-2.5</td>
<td>25-34</td>
<td><5-790</td>
</tr>
<tr>
<td>Potato</td>
<td>1.4-2.9</td>
<td>1-2.23</td>
<td>0.3-2.7</td>
<td>6.4-36.9</td>
<td>1-8</td>
</tr>
<tr>
<td>Sweet potato</td>
<td>1.3-2.1</td>
<td>0.7-3.9</td>
<td>0.6-14</td>
<td>2.4-35</td>
<td>100-23100</td>
</tr>
<tr>
<td>Taro</td>
<td>1.1-3</td>
<td>2.1-3.8</td>
<td>0.6-3.6</td>
<td>0-15</td>
<td>5-2040</td>
</tr>
<tr>
<td>Eggplant</td>
<td>9 - 19</td>
<td></td>
<td></td>
<td>50 - 129</td>
<td></td>
</tr>
<tr>
<td>Mango</td>
<td>0.3 - 1.0</td>
<td>1.3-3.8</td>
<td>0.4-2.8</td>
<td>22-110</td>
<td>20 – 4320</td>
</tr>
<tr>
<td>GAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6180 – 13720</td>
</tr>
<tr>
<td>Apricot</td>
<td>0.8-1.4</td>
<td>1.7-2.5</td>
<td>0.3-0.9</td>
<td>3.5-16.5</td>
<td>200-6940 (beta carotene eq.)</td>
</tr>
<tr>
<td>Banana</td>
<td>0.1-1.6</td>
<td></td>
<td>2.5-17.5</td>
<td></td>
<td><1 – 8500</td>
</tr>
</tbody>
</table>
Impact of food biodiversity on dietary adequacy

<table>
<thead>
<tr>
<th>Protein content</th>
<th>Protein content (g/100 g)</th>
<th>Cassava intake in Congo g/d/p</th>
<th>Part of the RDI for protein covered by cassava intake, in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>3.24</td>
<td>286</td>
<td>20.6</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.95</td>
<td>286</td>
<td>6.0</td>
</tr>
<tr>
<td>Maximum</td>
<td>6.42</td>
<td>286</td>
<td>40.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Banana</th>
<th>β-carotene content in mcg/100 g</th>
<th>Banana intake in Philippines in g/d/p</th>
<th>Vitamin A intake through banana in mcg RE/d/p</th>
<th>RDI for vitamin A covered by banana intake, in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA</td>
<td>26</td>
<td>93</td>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>Lacatan</td>
<td>360</td>
<td>93</td>
<td>56</td>
<td>9.3</td>
</tr>
<tr>
<td>Utin Iap</td>
<td>8508</td>
<td>93</td>
<td>1318.7</td>
<td>219.8</td>
</tr>
</tbody>
</table>
International Network of Food Data Systems (INFOODS)

- Established in 1984
- Under UNU and FAO.
- IUNS Task Force
- Coordination since 1999 in FAO
- **Objective:** to stimulate and coordinate efforts to improve the quality and availability of food analysis data worldwide
Improving the Evidence

FAO / INFOODS Databases

Food Composition Database for Biodiversity
Version 2.0

Expert Consultation
on Nutrition Indicators
for Biodiversity
1. Food composition

Expert Consultation
on Nutrition Indicators
for Biodiversity
2. Food consumption
Food Biodiversity

- Two Nutritional Indicators for Biodiversity in English, French and Spanish:

1. **on food composition** (FAO, 2008) ➔ yearly reporting (in 2008 over 4700 foods reported, in 2011 a total of 12800 mainly from scientific literature)

2. **on food consumption** (2010 and 2011) ➔ reporting every second year (in 2009 over 3000 food reported in food consumption surveys on food biodiversity, in 2011 increase to 4900 foods)
Nutrition indicators for biodiversity

It is a count of the number of foods
– at variety/ cultivar/ breed level for common foods
– species level for wild or underutilized foods
• with at least one value for component or a food reported to be consumed
• reported by at least one participant in a food consumption survey

Interpretation
• show the interest and awareness of importance of biodiversity and the degree of its explored knowledge of food composition and consumption
Schema of taxonomic names

<table>
<thead>
<tr>
<th>Schema</th>
<th>Plant – example</th>
<th>Plant – example</th>
<th>Fish - example</th>
<th>Animal – example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>Rosaceae – Rose family</td>
<td>Poaceae – Grass family</td>
<td>Pleuronectidae</td>
<td>Bovidae Caprinae</td>
</tr>
<tr>
<td>Genus</td>
<td>Prunus L. – plum</td>
<td>Triticum L. – wheat</td>
<td>Pleistichthys</td>
<td>Ovis</td>
</tr>
<tr>
<td>Species</td>
<td>Prunus domestica L. – European plum</td>
<td>Triticum aestivum L. – common wheat</td>
<td>Pleistichthys flesus (Linnaeus, 1758)</td>
<td>Ovis aries – sheep</td>
</tr>
<tr>
<td>Subspecies</td>
<td>Prunus domestica L. subsp. domestica</td>
<td></td>
<td>(rarely used)</td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td>Prunus domestica L. var. domestica – European plum</td>
<td>Triticum aestivum ‘Pioneer 2163’</td>
<td>Platichthys flesus var. marmorata Nordmann, 1840 - European flounder</td>
<td>Suffolk</td>
</tr>
<tr>
<td>Cultivar</td>
<td>Prunus domestica ‘Cacak’s Beauty’</td>
<td>Triticum aestivum ‘Pioneer 2163’</td>
<td>Platichthys flesus var. marmorata Nordmann, 1840 - European flounder</td>
<td>Suffolk</td>
</tr>
<tr>
<td>Breed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of foods reported for Nutrition Indicator for Biodiversity - 1. Food Composition (2008-2011)

Figure 1: Number of foods per continent reported for the Biodiversity Indicator on Food Composition (2008-2011)

Figure 2: Overview of foods derived from different literature sources. Data are presented per continent (2008-2011)
Nutrition Indicator for Biodiversity

1. Food Composition (new in 2011)

Figure 5: Number of components analysed for 1, 2-9, 10-30 and > 30 components
Distribution in reporting of variety/ cultivar/ breed of common foods vs. wild/ indigenous foods in food composition databases

- FAO Latin America
- USA
- South Pacific
- ASEAN
- Mali
- Mexico

Legend:
- wild/indigenous
- < subspecies

Graph showing distribution with bars for each region.

Figure 6. Increase in data availability from 2009 to 2011. Food consumption Indicator
Food Composition Database on Biodiversity

- contains **only analytical** data for 182 components (macronutrients, vitamins, minerals and heavy metals, phytochemicals, FA, AA)
- Launched in December 2010 with 2400 foods: 1514 entries on potatoes (over 700 varieties), 27 on other roots and tubers, 444 on milk (from 14 species with 5 to 54 breeds per species), 316 on fruits, 30 on cereals, 24 on legumes, 30 on nuts and seeds, and 32 on vegetables
- in June 2012 second edition with expected 6000 foods: more on fish, vegetables, fruits, meat, insects
Food Composition Database for Biodiversity - Objective

To provide analytical data on the composition of foods at the level of food biodiversity free-of-charge to any professional in need of such data enabling them to:

– include more food biodiversity data into national and regional FCDB
– study the contribution of food biodiversity to nutrition (e.g. adequacy) and food security
– select foods with an interesting nutrient profile for increased agricultural research and production, and for nutrition education
– provide alternatives for food fortification or supplementation
The **West African Food Composition Table** (FAO, 2012) details the composition of 472 foods from the Western Africa region. The publication includes nutrient data on the various ways foods are prepared (i.e. boiled, grilled, and stewed) and covers food biodiversity of local varieties and cultivars.
Biodiversity & Nutrition – implications (1)

For food composition database compilers:

• Sample and generate nutrient data for wild foods and individual cultivars, also by ecosystem
• Compile these data comprehensively, systematically and centrally, and disseminate widely

For food consumption surveys

• Include biodiversity questions and/or prompts in food consumption surveys
• Report food consumption also by ecosystem and/or ethnic group
• Communicate to food composition database compilers the need for compositional data for these specific foods
• Calculate more precise nutrient intake estimations

For nutrition education

• Investigate traditional foods and varieties
• Promote the most nutritious among them
Biodiversity & Nutrition – implications (2)

For agriculture policies and programmes
- Explore existing biodiversity, including its compositional data
- Nutrient content needs to be among criteria in promoting food biodiversity
- Include criteria on compositional data to develop and produce more nutrient-rich foods on large scale

For nutrition and health policies and programmes
- Explore existing biodiversity, including its compositional data
- Reconsider fortification and supplementation programmes – evaluate them for efficiency and impact on mortality and morbidity
- Promote a food-based approach to combat all form of malnutrition
Training

• Since 1992, about 600 professionals were trained in over 20 courses, most of them did not include biodiversity

Next steps

- Establish guidelines on how to integrate biodiversity into food consumption survey tools
- Populate the FCDB for Biodiversity

=> Please participate in WG and send us data
Conclusions

• Most professionals in nutrition, health, environment and agriculture are not aware of biodiversity facts and do not take the nutritional differences among varieties and species into account in their work. This needs to change.

• Once more high-value nutritional crop varieties of local preference are grown with good yield and pest-resistance, and are marketed at reasonable prices it will become more likely that the population will reach nutritional adequacy through foods themselves which would decrease the need for fortification and supplementation and make the food system more sustainable.

⇒ in-line and a pre-requisite of FAO’s food-based approach to combat malnutrition.

⇒ Improve food supply and assist agriculture to cope with climate change.
Acknowledgement

Inputs to the Food Composition database for Biodiversity
Verena Nowak, Doris Rittenschober, Beatrice Mouille, Elinor Medhammar, Kristy Ebanks, Diedelinde Persijn, Temesgen Olango, Sandra Eisenwagen, Victor N. Enujiugha, Juan Du, IOWA University students, Romaric G. Bayili, Etel G. Fagbohoun

Inputs to the Nutrition indicator reporting
INFOODS members (esp. Prapasri Puwastein, Hettie Schoenfeldt), Lois Englberger, Enouk Musinguzi, Matthias Halwart, Gina Kennedy, Judith Kimiywe
Thank you

- INFOODS website

- ruth.charrondiere@fao.org