# Managing Climate Shocks through Investments in Early Warning Systems



Regional Integrated Multi-Hazard Early Warning System for Africa and Asia

Investing in Agriculture and Natural Resource Management in the context of Climate Change

FAO-World Bank Meeting 14 May 2012 Bangkok

#### Structure of Presentation



- 1. Introduction & Rationale
- 2. Methodology
- 3. Case Study- Climate hazards
- 4. Results of case studies
- 5. Way Forward

## 1. Introduction & Rationale



Increasing Impacts of Climate Hazards on Agriculture

### Natural disasters in Asia, 1900-2012



| Hazard category | Examples                                                | Number of events | Economic damage cost (million USD) |
|-----------------|---------------------------------------------------------|------------------|------------------------------------|
| Climatological  | Drought, extreme temperature, forest fire               | 367              | 69,963                             |
| Meteorological  | Tropical cyclone, storm                                 | 1,428            | 170,618                            |
| Hydrological    | Flood, rain-<br>induced landslide                       | 1,969            | 340,411                            |
| Geophysical     | Earthquake,<br>tsunami, volcanic<br>eruption, landslide | 763              | 535,428                            |



Source: <a href="http://www.emdat.be/">http://www.emdat.be/</a> Accessed 11 May 2012

#### Introduction



#### Basic Services vs. Value-Added Services

NMHSs focused on basic services (life-saving)

 Additional investment to enable value-added services leads to enhanced lead time and saving of lives as well as livelihoods

 Case Studies demonstrate that in most cases the benefits outweigh the investment required

# Case Studies: Hydro-meteorological hazards



- Group 1: very basic services
  - Lao PDR, Myanmar, Cambodia, East Timor, Afghanistan, Comoros, Seychelles, Yemen, Madagascar, Bhutan, Nepal, and Sri Lanka
- Group 2: EWS capabilities not fully operational
  - Bangladesh, Mongolia, Mozambique, Pakistan, the Philippines and Vietnam
- Group 3: Robust, but gaps in location-specific, products, interpretation and translation
  - China, India, Thailand
- Group 4: Demonstrated potential in seasonal forecasting and application
  - Indonesia, Philippines

# Methodology for cost-benefit estimation



#### I. Benefit due to early warning

= A-B-C

#### where

- A Loss due to a disaster without early warning
- B Decreased loss incurred after appropriate measures due to early warning
- C Cost or investment for providing early warning services

#### I. Benefits



- Direct tangible benefits
  - damages avoided by households and sectors due to appropriate response

+

- Indirect tangible benefits
  - Avoidance of production losses, relief/ rehab cost

#### II. Cost of EWS



#### Scientific component costs:

required for technical institutions to generate forecast information

#### Institutional component costs:

 costs of training and capacity development for institutions to be able to use forecast information

#### Community component:

 costs at community level to enable them to adopt forecast information and respond appropriately

## III. Lead time

#### **Application in Agriculture:**

| Forecast product              | Lead<br>time        | Application                                                                                              |
|-------------------------------|---------------------|----------------------------------------------------------------------------------------------------------|
| Weather                       | 1-3 days            | Securing lives                                                                                           |
| Medium range                  | 5-10 days           | Emergency planning, early decisions for flood and drought mitigation, preserving livelihoods             |
| Extended range (sub-seasonal) | 2-3<br>weeks        | Planting/ harvesting decisions, storage of water for irrigation, logistics planning for flood management |
| Seasonal                      | 1 month /<br>beyond | Long-term agriculture and water management, planning for disaster risk management                        |

## Damage reduction due to Lead Time



| Item                | Lead<br>time | Damage reduction (%)                | Actions taken to reduce damages                            |
|---------------------|--------------|-------------------------------------|------------------------------------------------------------|
| Open Sea<br>Fishing | 24 hrs       | 10 Fishing net, boat damage avoided |                                                            |
|                     | 48 hrs       | 15                                  | Fishing nets removed, boat damage avoided                  |
| School or office    | 24 hrs       | 5                                   | Money, some office equipment saved                         |
|                     | 48 hrs       | 10                                  | Money, most office equipment saved                         |
|                     | Up to 7 days | 15                                  | Money, all office equipment, including furniture protected |

#### IV. Probabilistic forecasts

 Short-term (less than 10 day) forecasts as 90% accurate i.e., correct in 9 out of 10 cases

|                                   | EW not heeded –<br>response actions<br>not taken | EW heeded – response actions taken |
|-----------------------------------|--------------------------------------------------|------------------------------------|
| Correct<br>(9 out of 10<br>cases) | ×                                                | <b>√</b> ⁄4 9                      |
| Wrong<br>(1 out of 10<br>cases)   | <b>√</b>                                         | <b>x</b> × 1                       |

 $\sqrt{\mathbf{x}\,\mathbf{8}}$  in 10 cases

### 3. Case studies illustrate



- Economy of Scale
- Benefits of enhancing basic meteorological services
- Benefits of institutional and community involvement
- Benefits of emerging and new technologies

## Cyclone Sidr Case Study



#### Possible early warning:

 NWP with a high performance computing system and trained human resource

 Enhanced lead times of both landfall point and cyclone track beyond 5 days

# Cyclone Sidr Case Study: EWS Costs

| Item                                                                          | Fixed costs<br>(million USD) | Yearly variable<br>costs<br>(million USD) | Other costs<br>(million USD) |  |  |
|-------------------------------------------------------------------------------|------------------------------|-------------------------------------------|------------------------------|--|--|
| Scientific component                                                          |                              |                                           |                              |  |  |
| EWS technology development costs                                              | 1.0                          | 1                                         | -                            |  |  |
| High performance computing system                                             | 1.0                          | 0.10                                      | -                            |  |  |
| Additional training                                                           | 0.1                          | 0.01                                      | -                            |  |  |
| Institutional component                                                       | Institutional component      |                                           |                              |  |  |
| Capacity building of national, district institutions for forecast application | 1                            | 0.20                                      | -                            |  |  |
| Community component                                                           |                              |                                           |                              |  |  |
| Training of Trainers                                                          | -                            | 0.10                                      | -                            |  |  |
| Total (million USD)                                                           | 2.1                          | 0.41                                      | -                            |  |  |

#### Cyclone Sidr Case Study: EWS Costs

#### For 10 years

□ Fixed costs : <u>USD 2.1 million</u>

□ Variable costs @ 0.41 million per year

: USD 4.1 million

□ Total costs for 10 years : <u>USD 6.2 million</u>

Total costs for 10 years (cyclone only, 50%)

(C) : USD 3.1 million

## Cyclone Sidr Case Study: EWS Benefits

| Type of Impact      | Without EWS                                                               | With EWS                                                                                                    | Included in analysis |
|---------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------|
| Natural             | Damage to coastal forests, ecosystems                                     | Damage to coastal forests, ecosystems                                                                       | No                   |
| Physical & Economic | Housing damaged; household possessions lost                               | , , ,                                                                                                       |                      |
|                     | Agriculture: crops damaged; implements and equipment damaged or lost      | Damage to crops avoided, where applicable, by early harvesting; agricultural implements and equipment saved | Yes                  |
|                     | Fishery: fish, shrimps lost; nets and other fishing equipment damaged     | All fish, shrimps, prawns harvested; nets,; equipment saved (70% reduction in damages)                      | Yes                  |
|                     | Livestock: most poultry, farm animals, forages, and straw damaged or lost | All poultry, farm animals, forages, straw safely moved (45% damage reduction)                               | Yes                  |
|                     | Offices and schools: cash lost; equipment and furniture damaged           | Cash saved; equipment and furniture protected (15% reduction in damages)                                    | Yes                  |
| Human               | Several lives lost                                                        | Many lives lost No                                                                                          |                      |
|                     | Several injuries sustained                                                | Many injuries avoided                                                                                       | No                   |
|                     | Several affected people exposed to various illnesses                      | Many illnesses avoided as a result of increased preparedness measures                                       | No                   |
| Social              | Trauma, suffering among affected and their relatives                      | Reduced trauma and suffering due to anticipation and preparedness                                           | No Page 17           |

### Cyclone Sidr Case Study: EWS Benefits

| Impact              | Magnitude without EWS                                                                                                  | Magnitude with EWS                     | Value | Total yearly benefit<br>(avoided cost)      |
|---------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|---------------------------------------------|
| Fishery             | BDT 324.7 million worth of fish, shrimp, fingerlings washed away                                                       | 70% of damages could have been avoided | -     | BDT 227.29 million<br>(USD 3.29 million)    |
|                     | BDT 130.29 million worth of boats (1,855) and fishing nets (1,721) damaged                                             | 15% of damages could have been avoided | -     | BDT 19.54 million<br>(USD 0.28 million)     |
| Livestock           | BDT 1.25 bi of damages<br>due to dead animals (cow,<br>buffalo, sheep, goat),<br>poultry (chicken, ducks),<br>and feed | 45% of damages could have been avoided | -     | BDT 562.5 million<br>(USD 8.14 million)     |
| Schools and offices | BDT 16 mi of stationery,<br>learning materials, etc.<br>damaged                                                        | 15% of damages could have been avoided | -     | BDT 2.4 million<br>(0.03 million USD)       |
| Total               |                                                                                                                        |                                        |       | BDT 5,472.11 million<br>(USD 79.14 million) |

Total benefit considering probabilistic forecasting =  $79.14 \times 0.8$  (b) = USD 63.31 mi

# Cyclone Sidr Case Study: EWS Cost Benefit

#### Over a 10 year period

□Total costs (C) : USD 3.10 mi

■Total benefits, assuming 2 instances over 10 years (bx2): 63.31 x 2

(B) : USD 126.62 mi

$$\frac{\text{Total benefits}}{\text{Total costs}} = \frac{126.62}{3.10} = 40.85$$

For 1 USD invested in this EWS, there is a return of USD 40.85 in benefits.

# Investment in early warning: agriculture sector, Bangladesh

| PIMES Sulus Integral of the Control |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RIMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Hazard  |                                                                                                                                         |                              |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Cyclone | Sidr 2007 damage to agriculture, fishery, and livestock                                                                                 | USD 23.4 million             |
|         | Investment in early warning technology, training over 10-year period                                                                    | USD 3.1 million              |
|         | Total avoidable damage to agriculture using probabilistic forecasts, assuming 2 instances of such damages over 10 years: 23.4 x 0.8 x 2 | USD 37.44 million            |
|         | Total benefit/ total cost: 37.44 / 3.1                                                                                                  | USD 12.08 / USD 1 investment |



# Investment in early warning: Agriculture sector, Bangladesh



| Hazard |                                                                                                                                                              |                               |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Flood  | Jul-Aug 2007 damage to agriculture, forests, fishery, and livestock                                                                                          | USD 206.76 million            |
|        | Investment in early warning technology, training over 10-year period                                                                                         | USD 3.1 million               |
|        | Total avoidable damage to agriculture using probabilistic forecasts, considering severity, return period, event frequency over 10 years: 206.76 x 0.8 x 8.33 | USD 1,377.85 million          |
|        | Total benefit/ total cost: 1,377.85 / 3.1                                                                                                                    | USD 444.47 / USD 1 investment |





#### Results from Case Studies



| Country    | Hazard    | Benefit/ Cost (*) |
|------------|-----------|-------------------|
| Bangladesh | Cyclones  | 40.85             |
| Sri Lanka  | Floods    | 0.742             |
| Bangladesh | Floods    | 447.1             |
| Thailand   | Floods    | 1.76              |
| Vietnam    | Hydro-met | 10.4              |

(\*) For 10 years

## Results from Case Studies-Seasonal Forecasts



| Country                          | Value of Forecast                                                                 |
|----------------------------------|-----------------------------------------------------------------------------------|
| Philippines<br>(2002-03 El Niño) | USD 20 mi (one province in the season)                                            |
| India (2002)                     | USD 80 mi (one state in the season) or USD 480 mi (one state over 30 years);      |
|                                  | USD 1.2 billion (India -2002 – input costs may be saved at farm level)            |
| Indonesia                        | USD 1.5 mi (50 districts, CFA forecast);<br>USD 7.5 mi (250 districts, potential) |
|                                  | Benefit/Cost = 100                                                                |



#### I. At Policy Level

- Perception- 'Acts of God'; othe hard evidence
- Not tangible enough?- Media
- Unwelcome-harbinger? tourismand selection of the learning of the learning

impacted Farmers of Kelompok Tani Makmur got god havest bodry season agen, while free wide, at the selection of the season agent to the season agent to

Damage and loss assessments to blame?

Essential EWS vs. effective EWS? disaster threshold tolerances, e

#### Waryono (Ketua Kelompok Tani Makmur): "Ringan tapi menjengkelkan"

Panyak orang yangmenyebut lelaki kelahiran 1970 itu dengan panggilan Waryono Batak. Apakah ia berasal dari suku Batak? Atau keturunan suku Batak? Bukan di situ letak persoalannya.

Ternyata "Batak" merupakan sebutan atas kebiasaan Waryono yang selalu berbicara lantang atau keras. Konon, orang Batak itu bicaranya keras-keras. Memang, sebagai Ketua Kelompok Tani Makmur yang berlokasi di Desa Karang Mulya Kecamatan Kandanghaur,

orang angkota kelompok tani, terbilang sukses. Usianya yang muda membuat banyak inovasi baru yang bisa dilakukannya secara leluasa.

Pihak Dinas Pertanian dan Perikanan

"Kami berusaha memahami perilaku iklim, membacanya, dan meramalkan-nya demi kepentingan musim tanam," ujar Waryono.

Secara naluriah dan dipadu oleh data curah hujan yang dikumpulkan setiap jam tujuh pagi oleh para anggota SLI, para petani di Karang Mulya sudah bisa menebak apakah hujan akan turun

Berdasarkan kemampuan membaca kecenderungan data, maka Waryono dan kawan-kawan bisa memutuskan untuk menanam atau tidak suatu jenis

kelompok taninya menikmati jerih payah melakukan pencatatan data curah hujan dan tingkat kelembaban udara. Ia dan anak buahnya bisa melakukan panen, justru di saat kelompok tani lain di sebelah desanya

neighboring villages flich net get, low impact hazards affecting anything as they made a wrong



#### II. At political level

- Political disincentives- lack of continuity? (Dumangas, Ilo Ilo)
- Political system? Accountability
- Relief and rehabilitation offers more visibility?
- Accountability- Bird Flu- Thailand; Heat Wave- France
- Poor have no voice?- Jakarta, Shanghai



#### III. At technical institutions

- Uncertainty of science? lack of incentive for identifying, experimenting, and operationalizing technologies
- Bureaucratic psyche towards uncertainty of information?
- Multi-disciplinary?- longer-lead, probabilistic forecast information encompasses multiple sectors, greater coordination
- Lack of accountability?- accuracy as % of forecast vs.observed
- No early warning for surprises!- Tsunami'04, Nargis, Kosi vs. risk knowledge
- Disconnect of early warning with response- Evaluation of early warning is wrt dissemination, not wrt resultant response



#### IV. At community level

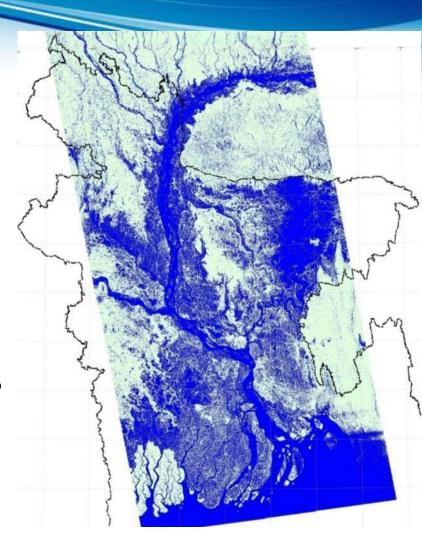
- Responses guided by recent experiences false tsunami alert before Sidr; Simeulue;
- User-friendliness of early warning- personalised; context
- Channel is as important as warning content

#### Incentives for EWS



- Public awareness- with awareness of advances in technologies, many disasters preventable an empowered civil society
- Accountability
- Economic sense- advocacy
- Removal of barriers EWS to incorporate economic and social aspects; pre-impact outlooks/ potential damage assessments
- Financial instruments demonstration through donor support
- Avoidance of free-rider syndrome RIMES

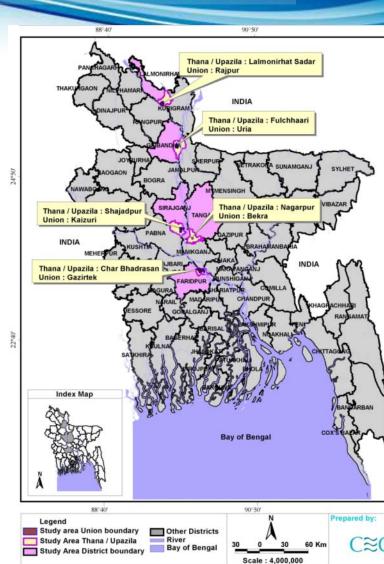
## 6. Way Forward




 Replication of Bangladesh 10-day Flood Forecast Applications

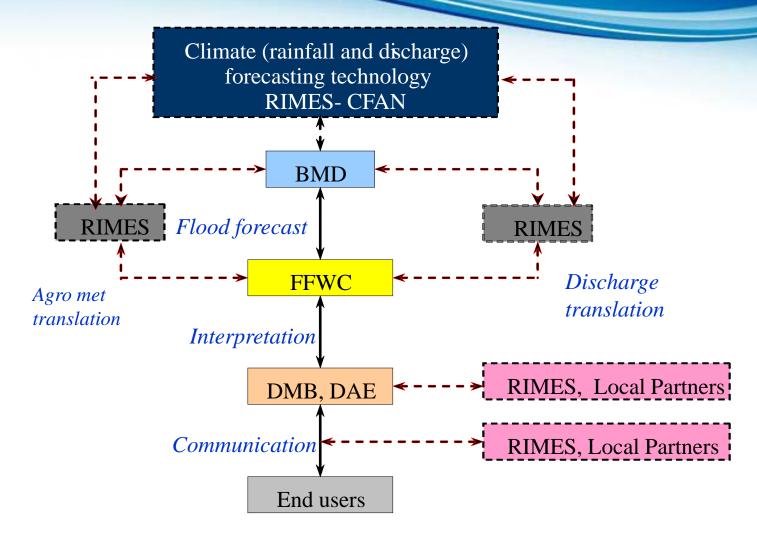
#### **Problem Identification**




- 'Normal' Floods are an annual occurrence
- Severe Floods return 2- 5 years
- 24-48 hrs forecast is insufficient lead time to address community needs
- Optimum lead time requirement -10 days



# Long Lead Floed Forecasting and Applications


RIMES

- Research Project initiated since 2000 and completed in 2007
- GoB requested RIMES to continue to provides support
- RIMES provides 10 days lead time flood forecast to GoB and build capacity



# Institutional Collaboration For Sustainable End-to-end Flood Forecasts System





# Community level Decisions and Lead Time Requirement

| Target groups      | Decisions                                                                | Forecast lead time requirement |
|--------------------|--------------------------------------------------------------------------|--------------------------------|
| Farmers            | Early harvesting of B.Aman, delayed planting of T.Aman                   | 10 days                        |
|                    | Crop systems selection, area of T. Aman and subsequent crops             | Seasonal                       |
|                    | Selling cattle, goats and poultry (extreme)                              | Seasonal                       |
| Household          | Storage of dry food, safe drinking water, food grains, fire wood         | 10 days                        |
|                    | Collecting vegetables, banana                                            | 1 week                         |
|                    | With draw money from micro-financing institutions                        | 1 week                         |
| Fisherman          | Protecting fishing nets                                                  | 1 week                         |
|                    | Harvesting fresh water fish from small ponds                             | 10 days                        |
| DMCs               | Planning evacuation routes and boats                                     | 20 – 25 days                   |
|                    | Arrangements for women and children                                      | 20 – 25 days                   |
|                    | Distribution of water purification tablets                               | 1 week                         |
| Char<br>households | Storage of dry food, drinking water, deciding on temporary accommodation | 1 week                         |

#### USER MATRIX on Disasters, Impacts and Management Plan for Crop, Livestock and Fisheries

Damage seedlings

Delay planting

Soil erosion

Yield loss

Poor quality

Poor quality

damage

Damage yield loss

Total crop damage

Yield loss and crop

Crisis of food and

shelter. Diseases like

T.Aman

crop

Damage early planted

Damage to the matured

**Impacts** 

Time of

**forecast** 

flood

Early

June

Early

June

Mar -

Apr

Early

June

Early

Early

June

July

May end

Season/

month

Kharif II

Jun – Jul

Kharif I

Jun – Jul

June-July

June-July

Kharif -

July-Aug

Kharif II

Aug-Sep

Jun-Sep

**Stages** 

Seedling

Vegetative

Harvesting

and

stage

Near

maturity

**Tillering** 

**Booting** 

Harvesting



**Alternative management** 

plans

Delayed seedling raising,

Gapfilling, skipping early

Pot culture (homestead)

Use resistant variety

Use of late varieties

Mustard or pulses

Early winter vegetables

Food storage, flood shelter,

vaccination de-warming

fertilizer application

Advance harvest

Early harvest

Late varieties Direct seeding

Late planting

Direct seeding

# **Disasters**

Early flood

High flood

Late flood

Flood

(early, high

# Crop

T.Aman

T.Aus

Jute

les

S. Vegetab

T. Aman

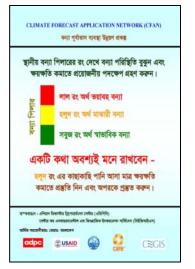
T. Aman

Cattle



## Risk Communication for Flood




#### Forecasts

#### **Mobile phone**

**Sending SMS to Mobile** 







Flag hoisting



#### **Risk Communication**



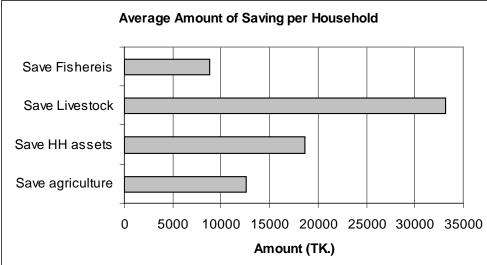
- 1-10 days forecasts shared with the decision makers at national and district level through fax and e-mail
- 1-10 days forecasts information communicated to the pilot communities through SMS and flag network. If danger level probability exceed 85%, 10 days forecast communicate to the pilot areas and appropriate actions take place





# Community responses to flood forecasts






### **Economic- Benefits**



- In 2008 Flood, Economic Benefits on average per household at pilot areas
  - Livestock's = TK. 33,000(\$485) per household
  - HH assets = TK. 18,500(\$270) per household
  - Agriculture = TK 12,500(\$180) per household
  - Fisheries = TK. 8,800(\$120) per households
- Experiment showed that every USD 1 invested, a return of USD 40.85 in benefits over a ten-year period may be realized (WB).



