System of Rice Intensification (SRI)

Ramasamy Selvaraju

Climate, Energy and Tenure Division (NRC), FAO

Contents

- What is SRI?
- Main concepts of SRI and the practices
- Reported benefits of SRI
- Adoption World-wide
- Relevance to adaptation to climate change
- Relevance to mitigation of climate change
- Key considerations for scaling-up

System of Rice Intensification

- An agro-ecological methodology for increasing the productivity of irrigated rice by changing the management of plants, soil, water and nutrients
- Promote the growth of root systems
- Increase the abundance and diversity of soil organisms
- More outputs from less inputs

The main concepts, ideas and principles of SRI

Stimulating plant growth by....

- Transplant young seedlings to preserve growth potential
- Avoid disturbance to the roots transplant quickly and shallow, not inverting root tips
- Provide plants wider spacing one plant per hill and in square pattern

The main concepts, ideas and principles of SRI

Enhance the growth and health of roots and of soil Biota by...

- Keeping soil moist but not flooded soil should be mostly aerobic, not continuously saturated
- Aerating the soil frequently
- Enhancing the soil organic matter content

Conventional and SRI practices

Conventional Rice Management

- Transplant older seedlings,
 20-30 days old, or even 40 days old
- Transplant seedlings in clumps of plants and fairly densely, 50 – 150 plants m2
- Maintain paddy soil continuously flooded, with standing water throughout the growth cycle
- Use water to control weeds, supplemented by hand weeding or use herbicides
- Use chemical fertilizers to enhance soil nutrients

SRI – management

- Transplant young seedlings, 8 12 days old, and certainly less than 15 days old to preserve subsequent growth potential
- Transplant **seedlings singly**, one per hill, and in a square pattern 25x25 cm, or wider if or when the soil is more fertile
 - Transplant quickly (15 30 minutes after removal from nursery)
 - Shallow (1-2 cm deep) and vertical planting
- Keep paddy soil moist, but not continuously saturated, so that mostly aerobic soil conditions prevail
- Control weeds with frequent weeding by a mechanical hand weeder (rotating hoe or cono weeder) that also aerates the soil
- Apply as much organic matter to the soil as possible; can use chemical fertilizer, but best results from compost, mulch etc.,

Reported Benefits of SRI

- Increase in yield/ha 52% (21 to 105%)
- Increased net income/ha 128% (59 412%)
- Reduction in cost of production 24% (7 56%)
- Reduction in water requirement 44% (24 60%)
- Shorter time to maturity (1-3 weeks less)
- Protection against biotic stresses pests/diseases (Sheath blight, leaf folder, brown plant hopper) – 70% reduction in incidence
- Tolerant to abiotic stresses drought, storm damage, extreme temperatures
- Higher milling outturn (by ~ 15%) lower chalkiness

Adoption World wide

- Assembled in Madagascar and promoted internationally since 2000
- Validation of SRI benefits have been reported from more than 50 countries of Asia, Africa, and Latin America
- Increase in area under SRI China, Indonesia,
 Vietnam, Cambodia

Adaptation to Climate Change

- Shorter duration and suitability to fit into changes in water availability periods
- Water saving at the farm level mainly due to controlled irrigation and alternate wetting and drying (water scarce areas)
- Tolerance to abiotic (drought, heat waves, cold snaps, winds) and biotic (pest and diseases) stresses
- Increase in productivity

Mitigation of Climate Change

- Methane emission from rice fields are determined mainly by water regime and organic inputs
- Flooding causes methane emission organic inputs stimulate methane emissions as long as fields remain flooded
- Mid-season drainage and intermittent irrigation can reduce methane emission by 40% (IFPRI 2009)
- Keeping soil nearly saturated conditions may promote N2O release
- 15 to 20% of the benefit gained by decreasing methane emission was offset by the increase of N2O emission
- Soil organic carbon declines after a shift from flooded system to non-flooded system

Key considerations for scaling-up

- Water availability patterns to match with irrigation schedule
- Controlled irrigation and provision of adequate drainage facilities
- Labour-intensive practices? (transplanting single and 8-14 days old seedlings, mechanical weeding etc.,)
- Availability of organic manure at farm level
- Capacity of agricultural support services (Knowledge intensive) suitable varieties, preparation of seedlings, irrigation and nutrient management)
- Mapping areas and eco-systems suitable for up-scaling
 - Climatic factors on-set and duration of rainy season and water availability (flooding during initial stages)
 - Rice growing environments lowland/uplands, irrigated/rainfed, dry/semi-dry, deep/shallow water
 - Soil types (clay soils maintaining saturated conditions, loamy soils may need frequent irrigation)
 - Cost benefit of conventional and SRI systems

Thank You