

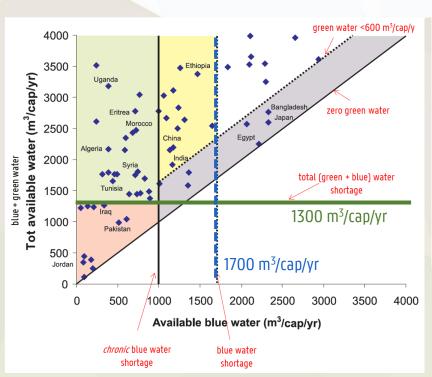
1st Meeting of the International Network of Salt-Affected Soils

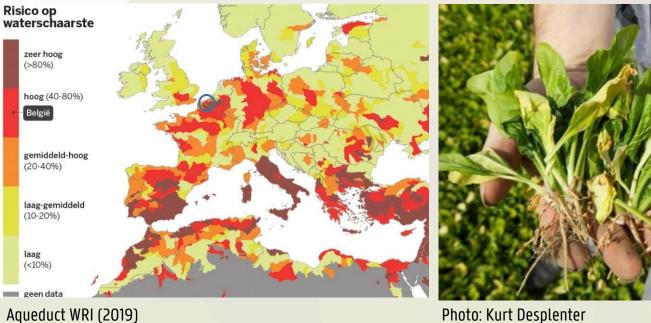
(INSAS)

EFFECTS OF GREY WATER USE ON SALINITY AND SODICITY:

CASE STUDY FROM BELGIUM

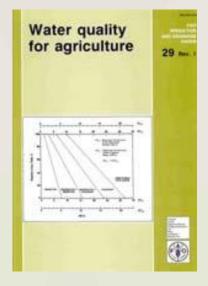
Tim De Cuypere¹, Sabien Pollet¹, Lin Wang², Sarah Garré³, **Wim Cornelis²**


¹INAGRO, ²UGent, ³ILVO

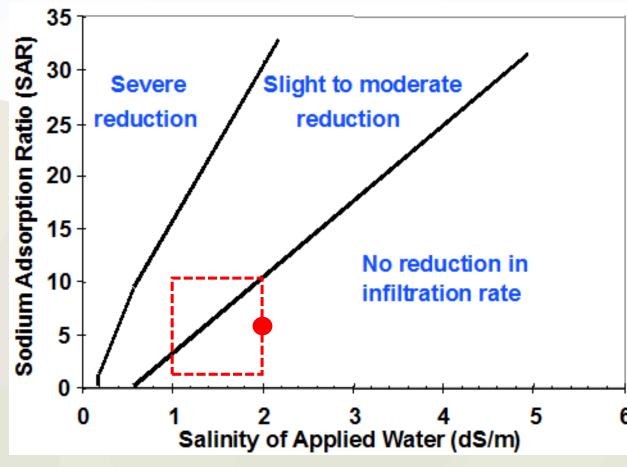

• Belgium faces blue water shortage (<1700 m³/cap/yr) (surface/ground water)

• Climate change \rightarrow blue water shortage not always compensated by green water (soil

moisture from rain)



Rockström et al. (2009, Water Resourc. Res.)



- Large water demand, part. in horticulture (vegetable production)
- Alternative water resources \rightarrow grey water: waste water containing nitrate, phosphate, organic matter, surfactants, heavy metals, pharmaceuticals, oils, pathogens, ... + salts
 - = «reclaimed» water, COM(2018) 337
- Risks: salinity and sodicity (among others) → salt stress, infiltration problems (FAO I&D paper 29, rev. 1 – Ayers and Westcott, 1994)
 - osmotic potential (EC)
 - soil structural degradation: clay swelling, dispersion, aggregate breakdown, ... (SAR + EC)

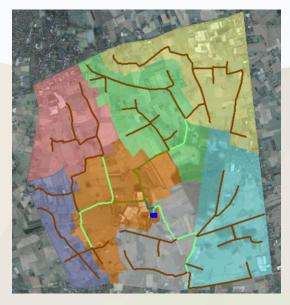
Source: Univ. of California (modified from Ayers & Westcott 1994; adapted from Rhoades 1977; Oster & Schroer 1979)

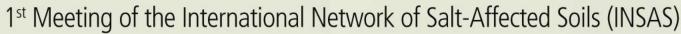
 "Most water quality criteria are based on <u>short-term laboratory experiments</u> with <u>continuous water flow in packed soil</u> <u>columns</u>.

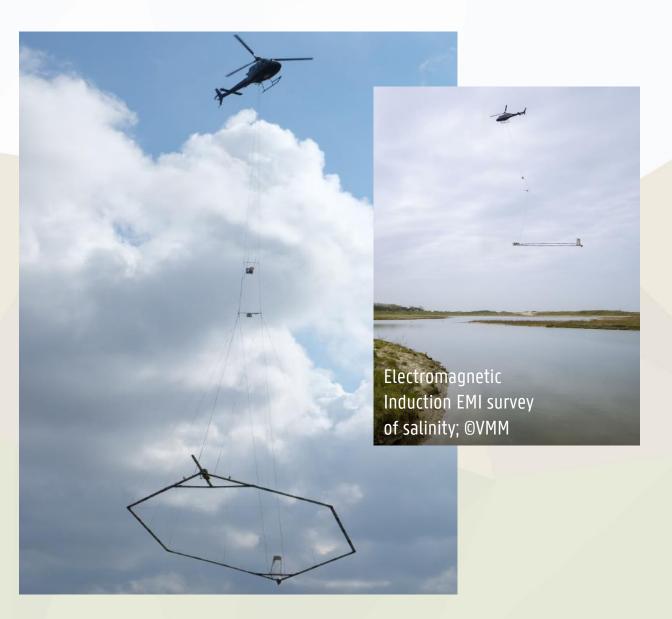
Rain events on a sodic soil cause a reduction in soil EC and hence may have an adverse impact of soil physical properties." (Suarez et al., 2006)

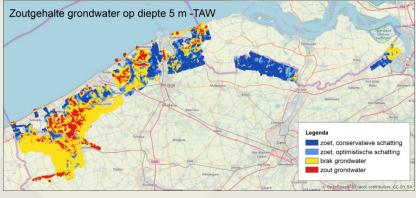
 On loam and clay, adverse impacts on infiltration at EC = 1 and 2 dS/m at SAR = 2, 4, 6, 8, 10 (Suarez et al., 2006)

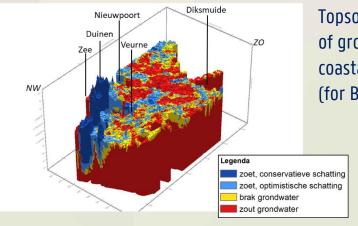
- Overall aim: study salinity and sodicity problems (among others)
 resulting from use of different grey waters in cauliflower, potato and
 spinach (open field) cultivation
- Special attention to soil-water dynamics: effects of alternating rain and irrigation, and drying between irrigations on soil structure degradation











Topsoil project – mapping of groundwater salinity in coastal and polder areas (for Belgium: VMM, UGent)

• Climate: temperate maritime, mild winters and warm summers (P = 831 mm) ₹ 40°C 1.

Soil: Sandy loam

- Five objects (randomized block design, 4 reps), first trial 2019:
 - 1: rainwater + irr. rainwater
 - 2: rainwater + irr. TWW from households (Aquafin)
 - 3: rainwater + irr. TWW vegetable processing industry
 - 4: rainwater + irr. TWW potato processing industry
 - 5: rainfed

Object 1-4: controlled rainwater (rooftops + open reservoir) supply with sprinklers in rainout shelters, Object 5: open air

irr.

spinach

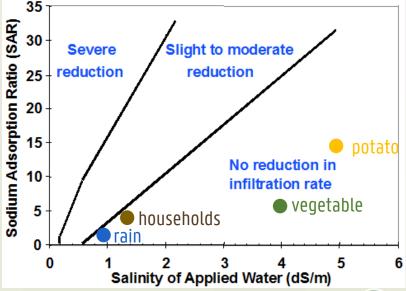
rain

Dec

irr. caulifl.

irr. potato

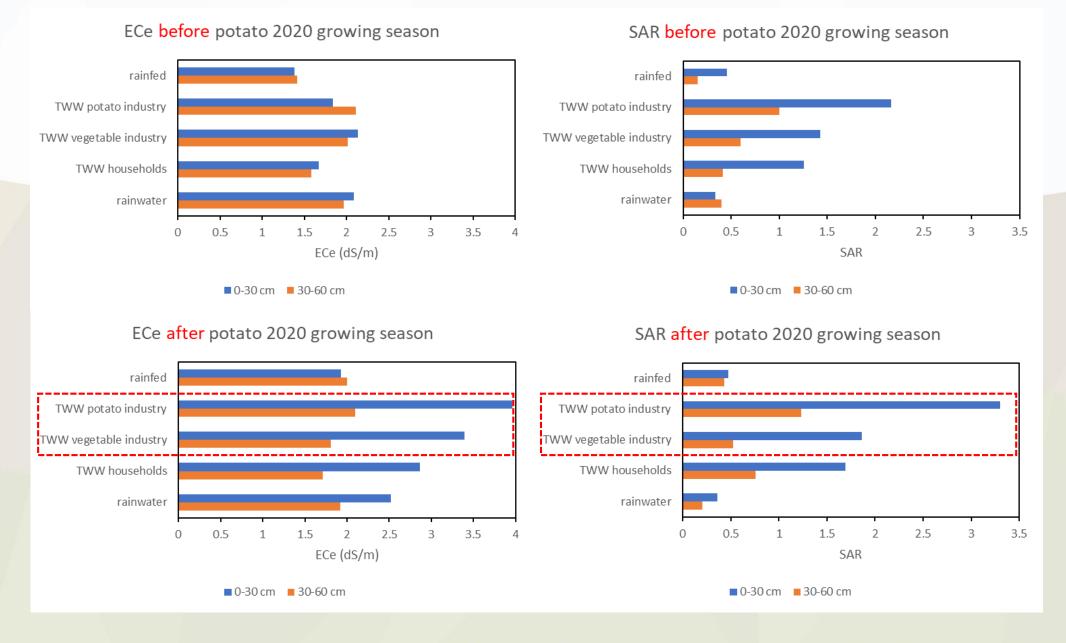
rain



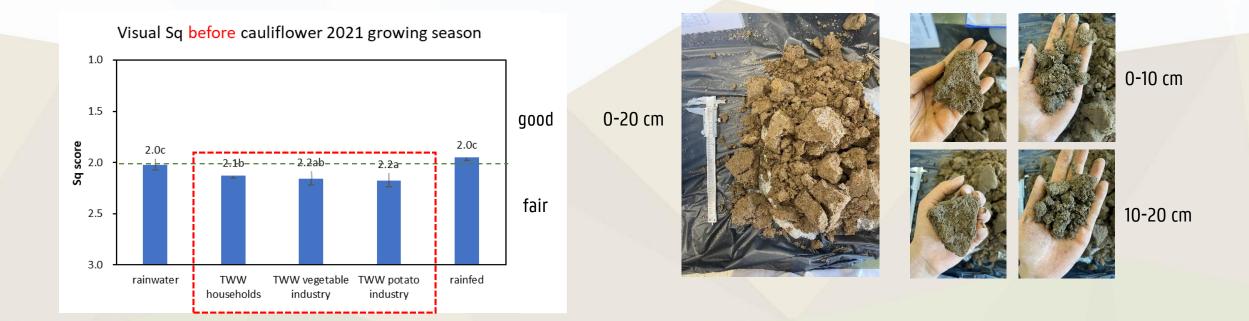
Quality of water used

	рН	EC (dS/m)	SAR
Rainwater	7.0-7.3	0.7-1.3	0.3-0.6
TWW households	7.7-7.9	1.0-1.4	4.3-4.7
TWW vegetable industry	8.0-8.3	3.2-4.9	6.2-6.9
TWW potato industry	8.0-9.1	4.6-5.3	13.7-15.6

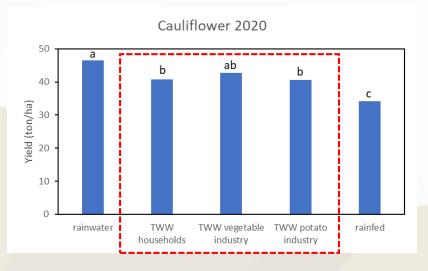
- Wide range of crop (spinach, cauliflower, potato) and soil props.
 - quantitative & qualitative crop parameters
 - chemical, physical, biological soil quality
- Before and after growing season
- Temporal variation in some physical props.

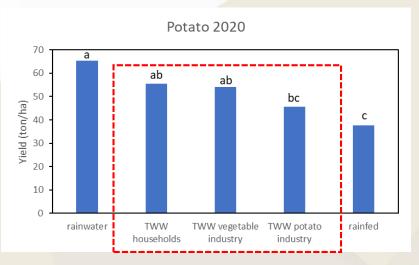

©UMS Germany

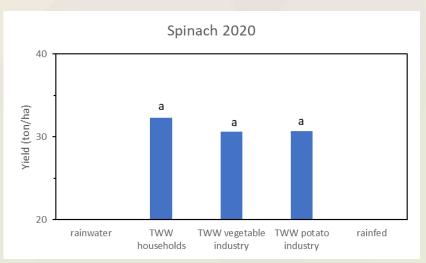
	Structure quality	Size and appearance of aggregates	Visible porosity and Roots	Appearance after break-up: various soils	Appearance after break- up: same soil different tillage	Distinguishing feature	or r	and description of natural educed fragment 1.5 cm diameter	0
good	Sq1 Friable Aggregates readily crumble with fingers	Mostly < 6 mm after crumbling	Highly porous Roots throughout the soil			Fine aggregates	1 cm	The action of breaking the block is enough to reveal them. Large aggregates are composed of smaller ones, held by roots.	3 4 5
fair	Sq2 Intact Aggregates easy to break with one hand	A mixture of porous, rounded aggregates from 2mm - 7 cm. No clods present	Most aggregates are porous Roots throughout the soil			High aggregate porosity	1 cm	Aggregates when obtained are rounded, very fragile, crumble very easily and are highly porous.	-
	sq3 Firm Most aggregates break with one hand	A mixture of porous aggregates from 2mm-10 cm; less than 30% are <1 cm. Some angular, non- porous aggregates (clods) may be present	Macropores and cracks present. Porosity and roots both within aggregates.			Low aggregate porosity	1 cm	Aggregate fragments are fairly easy to obtain. They have few visible pores and are rounded. Roots usually grow through the aggregates.	10-
poor	Sq4 Compact Requires considerable effort to break aggregates with one hand	Mostly large > 10 cm and sub-angular non- porous; horizontal/platy also possible; less than 30% are <7 cm	Few macropores and cracks All roots are clustered in macropores and around aggregates	2	ON.	Distinct macropores	1 cm	Aggregate fragments are easy to obtain when soil is wet, in cube shapes which are very sharp-edged and show cracks internally.	
	Sq5 Very compact Difficult to break up	Mostly large > 10 cm, very few < 7 cm, angular and non- porous	Very low porosity. Macropores may be present. May contain anaerobic zones. Few roots, if any, and restricted to cracks			Grey-blue colour	1cm	Aggregate fragments are easy to obtain when soil is wet, although considerable force may be needed. No pores or cracks are visible usually.	1 -


Visual Evaluation Soil Structure VESS (Ball et al., 2007)

+ attributes related to salinity and sodicity from Zaman et al. (2018): white salt crust, fluffy soil surface, salt stains







So...

- EC and SAR:

 after irrigation with grey water: TWW potato > TWW vegetable > TWW
 municipal > rainwater, primarily in topsoil (0-30 cm)
- Soil structure (very preliminary; first measurements started 3 weeks ago):
 Visual soil quality: TWW potato < TWW vegetable < TWW municipal < rainwater/rainfed
- Yields: cauliflower & potato yield lower under grey water than rainwater use, but higher than rainfed

And... lot of work to do: testing assessment methods, different textures, other water qualities, evaluate management options, ...

1st Meeting of the International Network of Salt-Affected Soils (INSAS)

