e-SOTER
Regional pilot platform as EU contribution to a Global Soil Observing System

Standards and services for Soil and Terrain Data Exchange: SoTerML
Daniel Simms, Stephen Hallett
e-SOTER work package 6 team

Amir Pourabdollah, The University of Nottingham
Andrew Rayner, Cranfield University
Daniel Simms, Cranfield University
Didier Leibovici, The University of Nottingham
Einar Eberhardt, BGR
Hannes I. Reuter, ISRIC
Piet Tempel, ISRIC
Rainer Baritz, BGR
Stephen Hallett, Cranfield University
Vit Penizek, Czech University of Life Sciences / IES JRC
Yusuf Yigini, JRC
Reporting based on our paper:

Introduction

- Development of an exchange format for soil and terrain data
- Based on interoperability principles
- Separate the data from the application
- Use existing interfaces
Introduction

Data → Model → Web → Application → Data

Standard interface
XML

- XML is the language of the web
 - machine and human readable
 - standard interfaces (OGC & ISO) use XML
 - structured and addressable elements
 - Integration

- Schema - describes the data

- Instance document – the data
GML

- Geography Markup Language
- XML grammar for structuring and exchanging geographic data
- Application schemas allow user communities to add their own grammar based around GML
- Interoperability of geographical datasets led by OGC
- OGC Web Feature Services
Related works

- INSPIRE – spatial data infrastructure based on OGC standards
- GEOSS – European ‘system of systems’
- GeoSciML – GML application schema developed by European geological community for query and exchange of data
- SODA – ENVASSO soil database
- ESD and SOMIS services
- ISO – Recording and exchange of soil-related data
- Soil-ML – Conceptional model for global adoption
SoTerML design

- Data model (UML)
- XML schema (XSD)
- Attribute pattern
Attribute pattern design

- Separation of attributes from class hierarchy
Attribute pattern design

- Acceptable value defined in the attribute pattern

AttributeReference.xml
Attribute pattern design

• Fixed
 ...
 \textlt{horizon}\textgt
 \textlt{clayMineralogy}\textgt{CH}\textlt{/clayMineralogy}\textgt
 ...

• Open approach used
 ...
 \textlt{horizon}\textgt
 \textlt{attribute name=“clayMineralogy”}\textgt
 \textlt{value}\textgt{CH}\textlt{/value}\textgt
 ...

Implementation

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- Version beta 5.0, schema developed by Amir Pourabdollah, centre for Geospatial science, The University of Nottingham and e-Soter WIP team.
Data exported by the eSoterParser developed by Andrew Rayner; Stephen Hallett; Daniel Sims, Cranfield University, NS1. -->
<SoTerML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="SoTerML.xsd">
  <!-- Attribute vocabulary for validating the attributes in the XML. The address may need to be changed to a
valid url where the AttributeReference.xml file sits. -->
  <xml:include href="AttributeReference.xml"/>
</SoTerML>

/* Definition of a soter unit, including its geometry, it's Terrain Components and Soil Components */
<soterUnit><soterUnitId>
  <gco:characterString>104</gco:characterString>
</soterUnitId>
  <SourceMapId><gco:characterString>K010</gco:characterString>
</SourceMapId>
  <attribute>
    <name>3GOCountryCode</name>
    <value>valueId</value></value>
</attribute>
  <nameYearOfDataCollection>1983</nameYearOfDataCollection>
</soterUnit>
```
OGC Web Feature Service
Summary

Standard for soil and terrain data, schema and attribute reference

Data available over the internet in a standard format (OGC WFS)

Integration with other services and applications

Merging legacy and new data across domains