

Soil Spectroscopy: the present and future of Soil Monitoring FAO, Rome, 4-6 December 2013

Optimization of VNIRS for field determination of topsoil chemical properties

Jean-Philippe Gras ^{1,2}, <u>Bernard G. Barthès</u> ¹, Brigitte Mahaut ², Séverine Trupin ²

- ¹ IRD, UMR Eco&Sols, Montpellier, France.
- ² ARVALIS Institut du végétal, Boigneville, France.

Context of the study 1/2

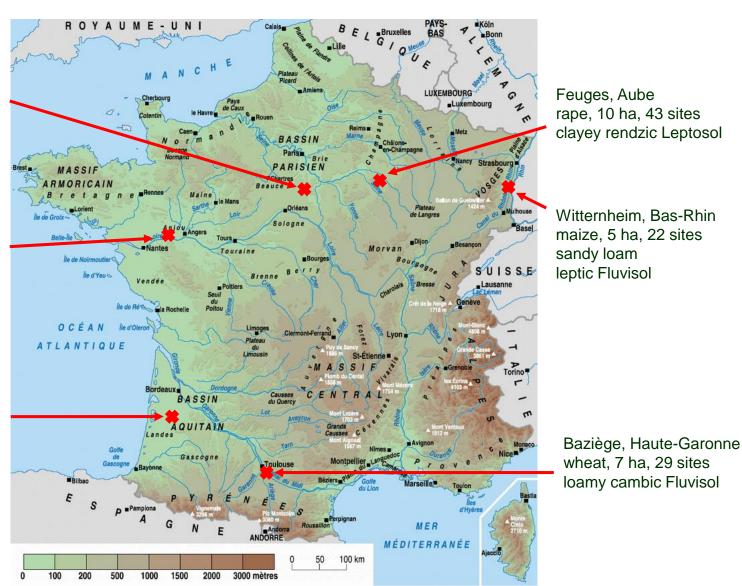
- Eco&Sols: French joint research unit "Functional ecology & biogeochemistry of soils & agroecosystems"
 - Montpellier SupAgro: international centre for higher education in agricultural sciences
 - Cirad: research institute dedicated to agricultural issues in the South
 - Inra: research institute dedicated to agricultural issues in France
 - IRD: research institute dedicated to Man and its environment in the South
 - Permanent staff > 60
 PhD students & postdocs > 40
 - Some experience in NIR application to soils

Context of the study 2/2

Arvalis

- French technical agricultural institute on cereals and forages
- Financed and managed by farmers
- Strong expertise in NIR for grain characterization
- Proposes/sells conventional soil analyses to its members (farmers)
- Wants to develop soil characterization by NIR, especially in the field

Objectives of the study

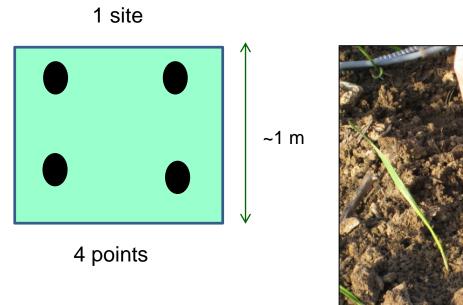

- Test the interest of field NIR for soil characterization
- Identify the best procedure for scanning soils in the field

Sample origin

Boigneville, Essonne wheat, 6 ha, 33 sites silty cambic Calcisol

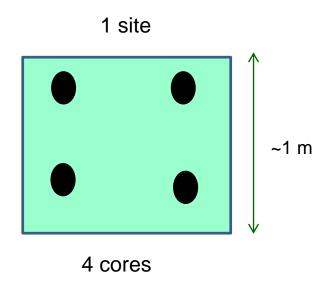
La Jaillière, Loire-Atlantique rape, 5 ha, 23 sites clayey sandy loam gleyic Cambisol

Saint-Symphorien, Landes maize, 12 ha, 51 sites Podzol


All sampled fields were cropped

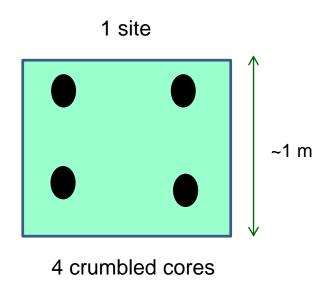
Sampling

- 201 sites (1 m²)
- Soil depth: 0-20 cm
- Sampling in winter (Nov 2011-Jan 2012), rather wet conditions
- ASD LabSpec spectrophotometer with contact probe


Spectral acquisition procedures 1/5

SURFACE: 4 spectra directly on the soil surface (planed down using a knife, after possible residues had been removed)

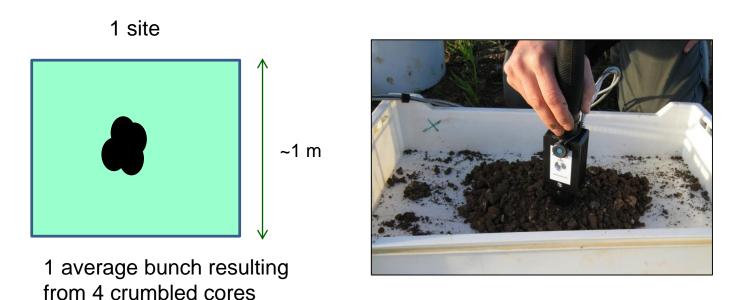
Spectral acquisition procedures 2/5


COREraw (raw auger core):

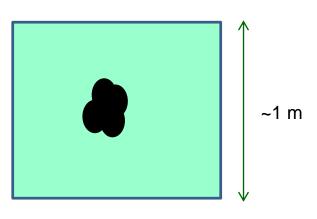
4 cores x 3 spectra/core (3-, 10- & 17-cm depth) = 12 spectra

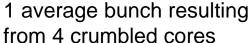
COREcut (cut auger core, with smooth surface):

4 cores x 3 spectra/core (3-, 10- & 17-cm depth) = 12 spectra


Spectral acquisition procedures 3/5

CLODraw (clods resulting from core crumbling): 4 bunches of small clods x 3 spectra/bunch = **12 spectra**


Spectral acquisition procedures 4/5

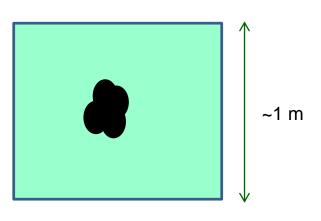


CLODav (mixing of clods from the 4 cores): 4 spectra

Spectral acquisition procedures 4/5

1 site

CLODav (mixing of clods from the 4 cores): **4 spectra**


CLODav+0.5 (bagged, scan after a half-day): 4 spectra

CLODav+1 (bagged, scan the next morning): 4 spectra

could spectrum acquisition wait a few hours, or the next morning? (e.g. spectrometer left at the field edge or in a shed, respectively)


Spectral acquisition procedures 4/5

1 site

1 average bunch resulting from 4 crumbled cores

CLODav (mixing of clods from the 4 cores): 4 spectra

CLODav+0.5 (bagged, scan after a half-day): 4 spectra

CLODav+1 (bagged, scan the next morning): 4 spectra

CLODav_dry (same but air dried): 4 spectra ←

lab conditions

CLODav_siev (air dried and 2 mm sieved): 2 spectra

Spectral acquisition procedures 5/5

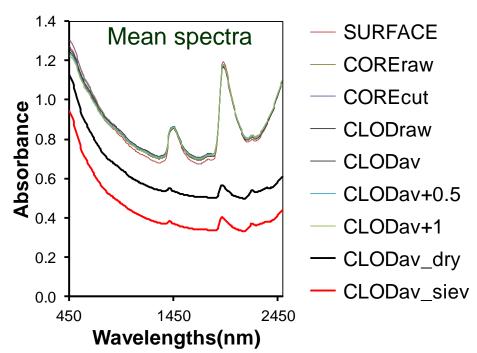
SURFACE 4 spectra

COREraw 12 spectra

COREcut 12 spectra

CLODraw 12 spectra

CLODav 4 spectra


CLODav+0.5 4 spectra

CLODav+1 4 spectra

CLODav_dry 4 spectra

CLODav_siev 2 spectra

For each combination of 1-m² site and procedure, all spectra were averaged for spectral analysis

Spectral acquisition procedures 5/5

SURFACE 4 spectra

• COREraw 12 spectra

COREcut 12 spectra

CLODraw 12 spectra

→ CLODav 4 spectra

CLODav+0.5 4 spectra

CLODav+1 4 spectra

CLODav_dry 4 spectra

CLODav_siev 2 spectra

For each combination of 1-m² site and procedure, all spectra were averaged for spectral analysis

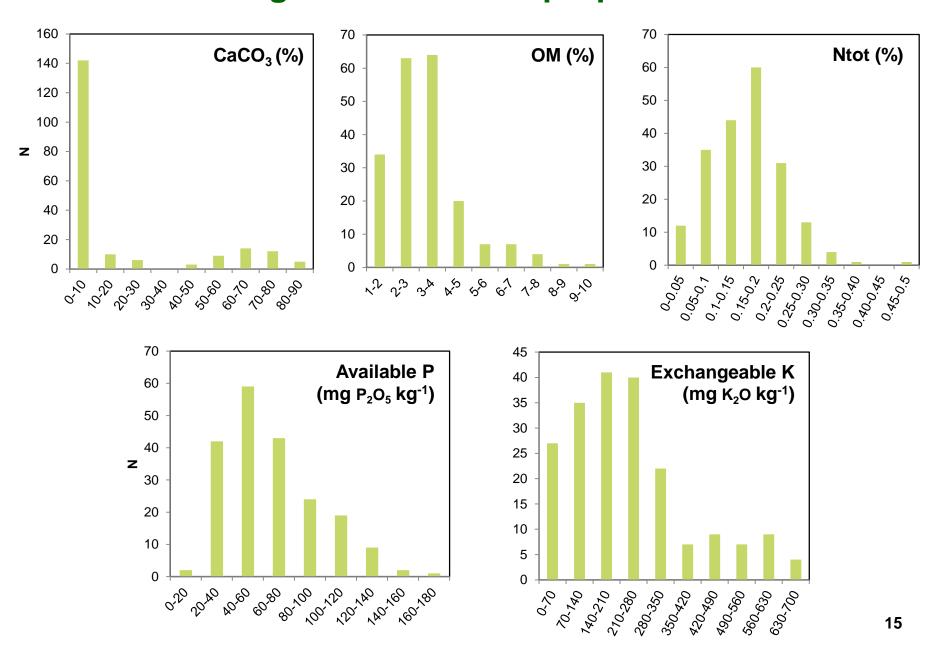
Reference analyses on CLODav samples

CaCO₃ volumetric method

organic matter sulfochromic oxidation

total N dry combustion

available P Olsen method


exchangeable K NH₄ extraction + ICP measurement

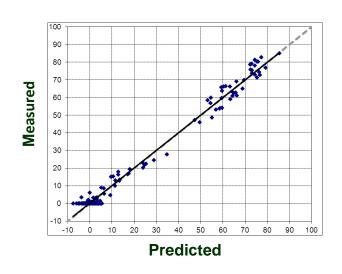
Ranges of measured properties 1/2

Sites	N	CaCO ₃ (%)	OM (%)	N _{total} (%)	Avail. P (mg P ₂ O ₅ kg ⁻¹)	Exch. K (mg K ₂ O kg ⁻¹)
Boigneville (Paris region)	33	0 – 28	2.3 – 3.4	0.14 – 0.22	22 – 69	263 – 513
Feuges (center-east)	43	46 – 85	2.4 - 8.0	0.13 – 0.34	31 – 114	52 – 476
Witternheim (east)	22	0 – 5	2.3 – 3.9	0.13 – 0.22	18 – 178	371 – 684
La Jaillière (west)	23	0	2.0 – 4.7	0.12 – 0.33	31 – 130	151 – 260
Saint-Symphorien (south-west)	51	0	1.6 – 9.2	0.04 - 0.46	18 – 139	31 – 273
Baziège (south)	29	0 – 9	1.1 – 1.8	0.07 – 0.13	21 – 116	133 – 306
Total	201	0 – 85	1.1 – 9.2	0.04 - 0.46	18 – 178	31 – 684

Ranges of measured properties 2/2

Development of predictive models

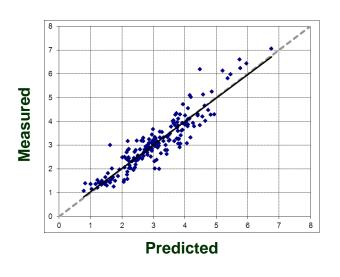
- Spectral range
 - noisy range removed (350-450 nm)
 - detector change ranges suppressed (996-1004 &1824-1834 nm)
 - every other 8 points kept (i.e. every 8 nm)
- Data analysis
 - WinISI (Infrasoft International)
 - mPLS
 - four-group cross validation


Objective: optimizing the scanning procedure, not building robust model

- 42 pretreatments tested (SNV, MSC, etc.)
- Statistical parameters
 - SECV
 - bias and slope
 - R²cv
 - RPDcv

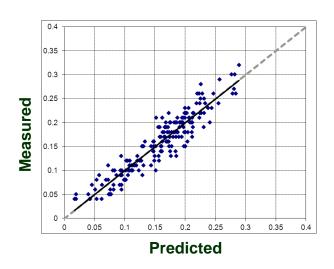
Comparison of predictive models: calcium carbonate (%)

Procedure (reps)	SECV	Bias	Slope	R²	RPD	F-test
SURFACE (4)	3.60	-0.06	1.00	0.98	7.4	В
COREraw (12)	3.01	0.07	1.00	0.99	9.1	Α
COREcut (12)	3.20	0.01	0.99	0.99	8.5	A
CLODraw (12)	3.34	0.02	1.00	0.98	8.1	A
CLODav (4)	3.90	-0.09	1.00	0.98	7.1	В
CLODav+0.5 (4)	3.74	-0.09	0.99	0.98	7.3	В
CLODav+1 (4)	4.01	-0.03	1.00	0.98	6.9	В
CLODav_dry (4)	3.25	0.03	0.99	0.99	8.4	A
CLODav_siev (2)	3.16	-0.06	1.00	0.99	8.6	A

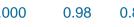

- \triangle RPD = 2.2 => wide range
- All procedures with RPD >>> 2
- F-test: CORE (and CLODraw) better

Comparison of predictive models: organic matter (%)

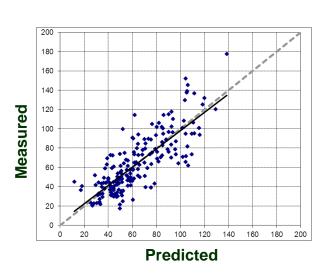
Procedure (reps)	SECV	Bias	Slope	R²	RPD	F-test
SURFACE (4)	0.48	-0.020	0.98	0.82	2.4	В
COREraw (12)	0.42	-0.002	0.99	0.86	2.8	A
COREcut (12)	0.42	-0.002	0.97	0.86	2.7	A
CLODraw (12)	0.45	-0.015	0.96	0.83	2.4	A
CLODav (4)	0.54	0.002	0.96	0.78	2.2	В
CLODav+0.5 (4)	0.55	0.012	0.96	0.77	2.1	В
CLODav+1 (4)	0.53	-0.002	0.94	0.80	2.2	В
CLODav_dry (4)	0.48	0.010	0.96	0.81	2.3	В
CLODav_siev (2)	0.51	0.013	0.98	0.80	2.3	В


- $\Delta RPD = 0.7$
- All procedures with RPD > 2
- F-test: CORE and CLODraw
 better than others, including lab

Comparison of predictive models: total N (%)


Procedure (reps)	SECV	Bias	Slope	R²	RPD	F-test
SURFACE (4)	0.024	0.000	0.99	0.85	2.6	Α
COREraw (12)	0.023	-0.001	0.98	0.87	2.7	Α
COREcut (12)	0.022	0.001	1.00	0.88	2.9	A
CLODraw (12)	0.024	0.004	0.98	0.86	2.7	Α
CLODav (4)	0.024	-0.001	0.97	0.86	2.6	A
CLODav+0.5 (4)	0.025	0.000	0.99	0.84	2.5	В
CLODav+1 (4)	0.025	0.000	0.98	0.85	2.6	В
CLODav_dry (4)	0.022	0.001	0.98	0.88	2.9	A
CLODav_siev (2)	0.022	0.000	0.98	0.89	3.0	A

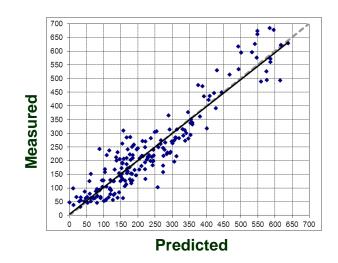
- $\Delta RPD = 0.5$
- All procedures with RPD > 2
- F-test: delayed scans worst



Comparison of predictive models: available P (mg P₂O₅ kg⁻¹)

Procedure (reps)	SECV	Bias	Slope	R²	RPD	F-test
SURFACE (4)	18.3	-0.2	0.94	0.59	1.6	В
COREraw (12)	17.5	-0.1	0.95	0.65	1.7	A
COREcut (12)	18.3	-0.2	0.97	0.59	1.6	В
CLODraw (12)	17.8	-0.1	0.94	0.62	1.6	A
CLODav (4)	17.9	0.1	0.95	0.61	1.6	A
CLODav+0.5 (4)	17.8	0.1	0.93	0.62	1.6	A
CLODav+1 (4)	17.3	-0.1	0.94	0.63	1.7	Α
CLODav_dry (4)	17.0	-0.0	0.89	0.64	1.7	A
CLODav_siev (2)	16.1	0.0	0.97	0.70	1.8	Α

- $\Delta RPD = 0.2$
- RPD ≈ 1.6-1.8
- F-test: all equivalent except
 SURFACE and COREcut



Comparison of predictive models: exchangeable K (mg K₂O kg⁻¹)

Procedure (reps)	SECV	Bias	Slope	R²	RPD	F-test
SURFACE (4)	53.8	0.8	1.00	0.88	2.9	A
COREraw (12)	53.1	0.6	0.98	0.88	2.9	A
COREcut (12)	53.0	0.5	0.98	0.88	2.9	A
CLODraw (12)	51.2	0.9	0.98	0.89	3.0	A
CLODav (4)	55.1	1.8	1.00	0.88	2.8	A
CLODav+0.5 (4)	55.6	1.1	1.00	0.85	2.7	В
CLODav+1 (4)	53.6	-0.4	0.97	0.88	2.9	A
CLODav_dry (4)	50.1	-0.6	0.97	0.90	3.1	A
CLODav_siev (2)	49.1	0.7	0.98	0.90	3.2	A

- \triangle RPD = 0.4
- RPD≈3
- F-test: all equivalent except CLODav+0.5

Uncertainty of NIRS vs. reference methods

Parameter	Uncertainty range of reference methods	Uncertainty range of NIRS (=2 SECV; raw core)		
CaCO ₃ (%)	1 – 5	6		
OM (%)	0.2 – 1.0	0.8		
N _{total} (%)	0.01 – 0.03	0.04		
Available P (mg P ₂ O ₅ kg ⁻¹)	3 – 9	35		
Exch. K (mg K ₂ O kg ⁻¹)	5 – 27	106		

Discussion

- Good results with raw cores (except for P, always bad)
- Equivalent to lab conditions (< 2 mm)
 and significantly better for SOM (RPD = 2.8 vs. 2.3)

- Counterintuitive (moisture, temperature, coarse particles) but:
 - more replicates (different approaches rather than artifact)
 - sample cohesion
 (higher reflectance => closer link composition-absorbance)

Discussion

- Good results with raw cores (except for P, always bad)
- Equivalent to lab conditions (< 2 mm)
 and significantly better for SOM (RPD = 2.8 vs. 2.3)

- more replicates (different approaches rather than artifact)
- sample cohesion
 (higher reflectance => closer link composition-absorbance)
- Not useful or not appropriate:
 - Smoothing/cuting the core
 - Core crumbling
 - Delayed scanning (+ requires bagging)
 - Surface scanning

Conclusion and perspectives

- Good results in the field, with cores (except P)
- Here 201 samples
 Calibration set completed up to 1000 samples (raw core)
 representing more variability (soil type, moisture)
- (only cropped soils; no pasture, no forest)
- Analyses completed with texture and pH
- Develop robust calibrations

The CaSA network

Carbone des Sols pour une agriculture durable en Afrique

Soil Carbon for Sustainable Agriculture in Africa

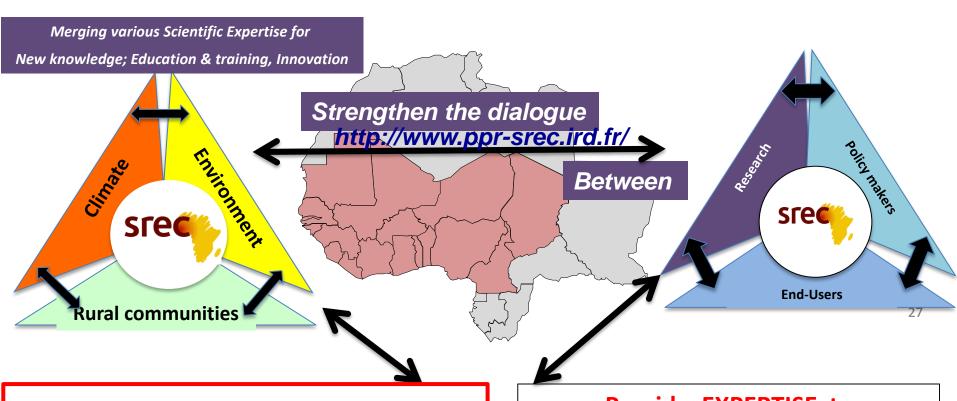

Coord.: Pr. T. Razafimbelo

Univ. Antananarivo, Madagascar

21 teams from 11 African countries and France

Activities

- Axis 1: Harmonize methodologies for characterizing soil C
- Axis 2: Optimize the analysis of available C data
- Axis 3: Training, especially on NIR and mid-IR spectroscopy
 Communication (http://reseau-carbone-sol-afrique.org/en)



The Regional Multidisciplinary Platform

"Rural communities, Environment and Climate in West Africa"

Food security & the preservation of natural resources In the face of climate change

Set up with partners in West Africa

Innovations for the resilience of rural communities and natural resources in West Africa, and for promoting adaptations to climate change

Provide EXPERTISE to decision-makers and end users

27

French-speaking society for near infrared spectroscopy

- Created in 2003, in Montpellier
- Largest cluster in the world for NIR research in agriculture & environment
- Promoting NIR and structuring a NIR community in France and French-speaking countries
- > 200 members

Thank you for your kind attention