The use of a hand-held mid-infrared spectrometer for the rapid prediction of total petroleum hydrocarbons in soil

05 December 2013 Infrared workshop, FAO Headquarters (Rome)

1. Background

TPH Background

- \triangleright Complex mixture of aliphatic hydrocarbon chains (C₁₀-C₃₆) derived from crude oil
- ➤ Major environmental pollutant: spills from production, storage and distribution
- Impacts: soil, sediment, water, biology and humans
- > Risk assessment and remediation needs to be quick and is expensive

TPH traditional analysis

- > Traditional approaches
 - Laboratory: Supercritical fluid extraction followed by silica clean-up and gas-chromatography with flame ionization detector (GC-FID)
 - Field: IR method (ATR) which requires extraction prior measurement
- ➤ We need a reliable, quick, cheap and "in situ" technique

DRIFT-PLSR as an alternative

➤ We propose diffuse reflectance mid-infrared spectroscopy together with partial least squares as an alternative for the "in situ" prediction of TPH (C_{10} - C_{36})

➤ Advantages

- ➤ Rapid
- > No sample pretreatment
- ➤ In situ
- ➤ Multiple analytes prediction

Our hand-held spectrometer

- ➤ Full FT-IR Hand-held (Agilent)
- ≥ 6000-650 cm⁻¹
- ≥ 15 s scan and 8 cm⁻¹ resolution

- >~3 kg
- ➤ Blue-tooth PDA with PLS software
- **>** Battery

TPH peaks

➤ Mid-infrared sensitive to C-H bonds

NIR (5000-4000 cm⁻¹) and MIR (4000-1200 cm⁻¹) spectra of liquid diesel, crude oil and n-hexane Forrester et al. 2013 (SSSAJ 77, 450-460)

The PLSR model

- ➤ Selection of optimal spectral range and PLSR development in Forrester et al. 2013 (SSSAJ 77, 450-460)
- \triangleright n = 199 TPH contaminated soils from Australia (0-15,000 mg/kg)
- > Air-dried
- > Partial least squares and trained by cross-validation

4540-4120				3000-2600			
PCs	R^2	RMSE	RPD	PCs	R ²	RMSE	RPD
9	0.84	853	2.4	7	0.92	601	3.4
(4330, 4260)			(296	0, 293	30, 2850), 2730)	

Commercialisation of the technique

- > 2008-2009: collaboration project with Ziltek Pty Ltd (South Australia)
- > 2012: Method patented in Australia
- ➤ 2013: method patented in USA
- ➤ 2013: Ziltek Pty Ltd. releases the technology as REMSCAN
- > 2013: Publication in SSSAJ describing the patented method (Forrester et al., 2013)

Challenges

- > Presence of moisture: leave the sample drying, software cut-off
- ➤ Soil heterogeneity: repeated scans, mixing the sample
- Sample entering into the cone nose: instrument squared to the surface and sample tamped flat

Challenges

- ➤ Soil type (TPH spread in sandy soils vs "shielding" effect in clay soils): site specific or local models. Local models:
 - Spectral library divided in clusters linked to textural classes
 - Unknown spectra allocated to the correspondent model
 - ➤ Within each model, 5 TPH range concentrations models: final model dependent on the TPH value predicted

2. Examples of field uses

Case study 1: Western Australia

- ➤ Diesel leaked from a storage facility and captured in an emergency bund area
- ➤ Site specific calibration to quantify diesel in the bund area and monitor remediation works
- Remediation work completed in 4 days (200 samples/day)
- > 19 'blind' samples sent for analysis

Comparison of RemScan data to lab data for TPH (C₁₀ - C₃₆)

Case study 2: South Australia

- Ageing power transformer removed. Oil contamination in the footings
- > RemScan "guided" the remediation work: pit declared "clean" < 1000 mg/kg

- Samples from from walls and floor sent to reference laboratory
- Reference analysis confirmed TPH predictions

Case study 3: South Australia

Final remarks

- > DRIFT-PLSR using a hand-held spectrometer is suitable technique for the rapid, cheap and accurate prediction of TPH
- RemScan commercialy used
- ➤ On-going work
 - > Inclusion of new soils in the global calibrations
 - > Inclusion of additional contaminants

Acknowledgements

- Government of Valencia (Conselleria de Educación) for a Post-**Doctoral Fellowship**
- University of Adelaide
- Ziltek Pty Ltd.

Thank you

CSIRO Land and Water (Sustainable Agriculture Flagship)

Jose Martin Soriano Disla (PhD)

- t +61883038425
- e jose.sorianodisla@csiro.au
- w www.clw.csiro.au

