

TCCT

International Workshop

"Soil Spectroscopy: the present and future of Soil Monitoring" FAO HQ, Rome, Italy, 4-6 December 2013

Spectral data fusion for quantitative assessment of soils from Brazil

Dr. Fabrício da Silva Terra

Dr. José Alexandre Melo Demattê

Dr. Raphael Viscarra Rossel

Introduction:

Brazil has territorial area 8,514,887 km²

> Brief overview of Brazilian soil mapping:

Mapping at:

1:750,000 to 1:2,500,000 **75.6 %**

1:100,000 to 1:750,000 **17.1** %

 \geq 1:100,000 and \geq 1:20,000 only 0.25% (semi-detailed and detailed)

Santos and Santos (2007)

Introduction:

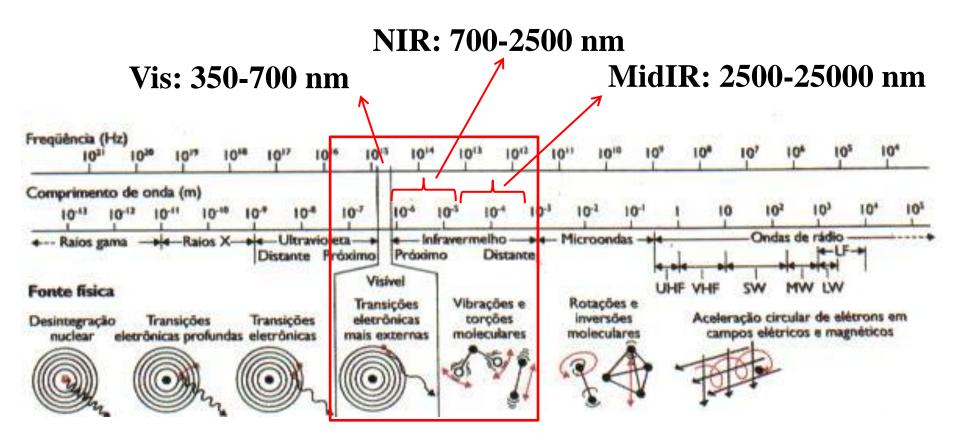
Expansion and intensification of agriculture, and the growing environmental concern ...

➤ Necessity of **soil monitoring**

> For this...

Soil maps with scales suitable for our purposes.

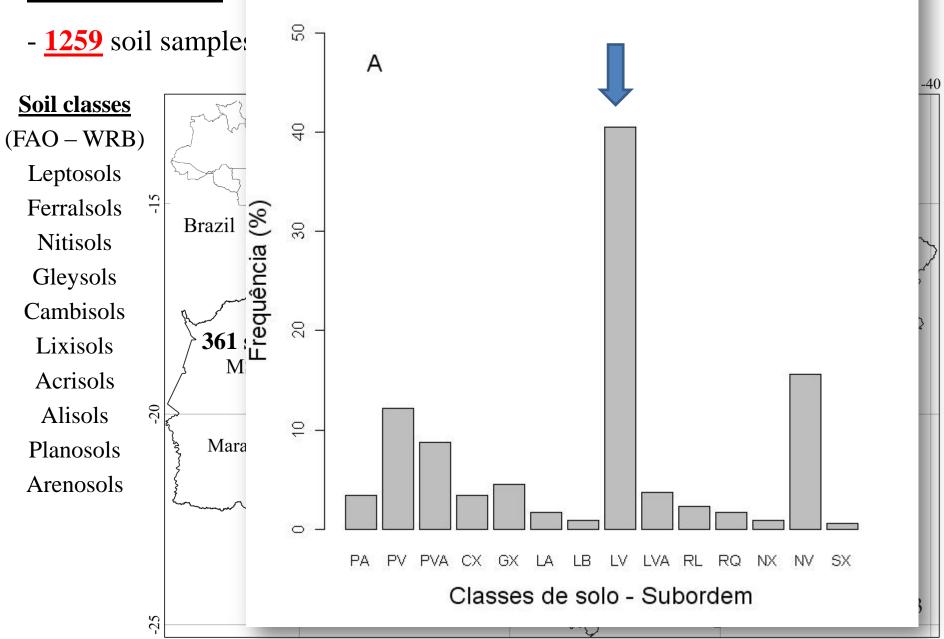
... in other words:


We need to expand those **0.25** % (semi and detailed soil mapping)

And to do this ...

- Lots of <u>field work</u>, soil <u>surveys</u>, soil <u>sampling</u> and <u>analyses</u> are needed: <u>expensive</u>, <u>time consuming</u> and <u>wasteful</u>

Introduction:


- ➤ In this sense... Soil Reflectance Spectroscopy): efficient alternative in evaluating soils and their attributes.
- ➤ What is the **most appropriate** spectral range in quantitative assessment?
- > Can **spectral fusion** increase predictive efficiency?

Aims:

- To <u>compare</u> the predictions of clay content (CC), soil organic carbon (SOC) and sum of bases (SB = $Ca^{2+} + Mg^{2+} + K^+$) based on <u>individual</u> and <u>combined</u> spectral ranges from visible to near-infrared (VisNIR: 350 to 2500 nm) e from mid-infrared (MIR: 4000 to 400 cm⁻¹)

Soil database

Reflectance Spectroscopy

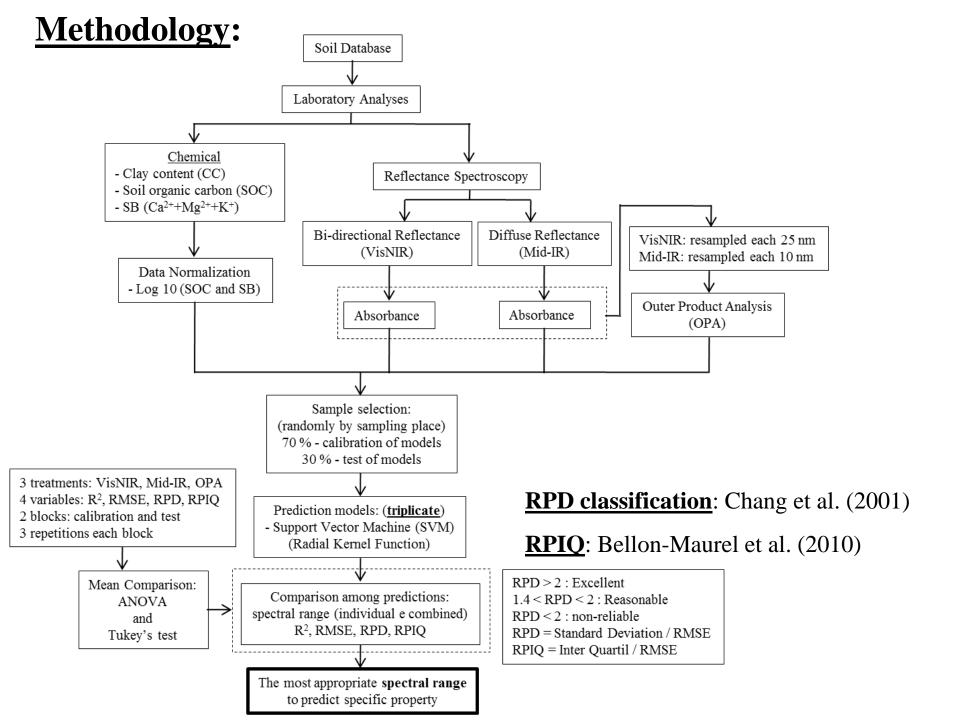
Mid-IR (4000 to 400 cm⁻¹): soil $< 200 \mu m$

- Equipment: Thermo Nicolet 6700 FTIR

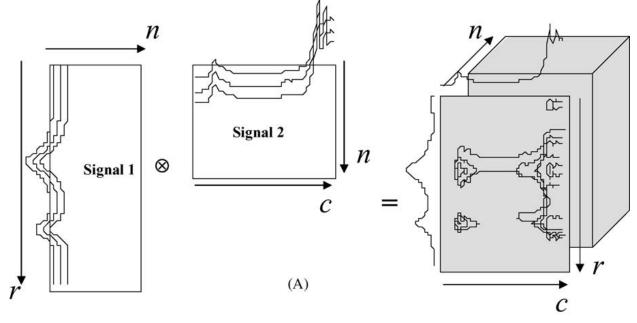
- Accessory: Smart Diffuse Reflectance

- Acquiring: resolution of 1.2 nm average of 64 scans/min

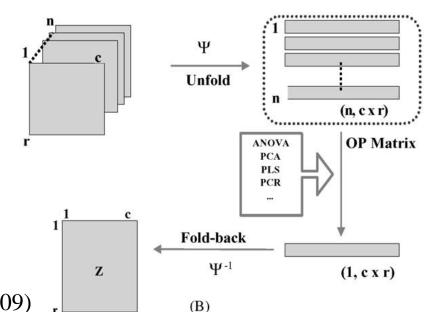
- Calibration: diffuse gold plate every 1 sample


VisNIR (350 to 2500 nm): soil < 2 mm

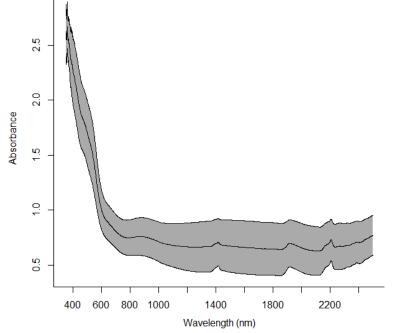
- Equipment: FieldSpec Pro

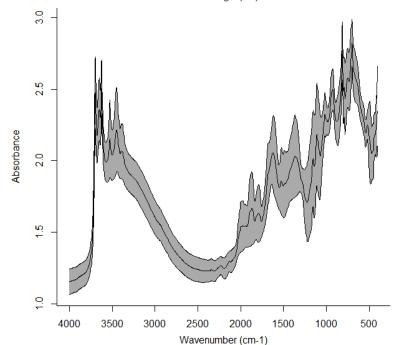

- Acquiring: resolution of 1 nm average of 100 scans

- Calibration: barium sulfate plate every 20 samples



Methodology: Outer Product Analysis (OPA): 'data fusion'




- To emphasise <u>co-evolutions</u> of <u>different spectral</u> regions in the <u>same domain</u>;

Adapted from Jaillais et al. (2009)

Soil spectral behaviour (Absorption)

488 and 903 nm:

- Fe oxide and hydroxide (hematite and goethite)

1414 nm:

- Clay minerals (1:1 / 2:1) (kaollinite, montmorilonite, illite)
- Hydroxyl (water molecules)

1917 nm: - Hydroxyl (water molecules)

2205 nm:

- Clay minerals (1:1 / 2:1) (kaollinite, montmorilonite, illite)

2251 nm: - Al hydroxide (gibbsite)

2314 nm: - Carbonates and organic compound (methyl)

2355 and 2448 nm: 2:1 clay mineral (illite)

2382 nm: Carbohydrates

3605 to 3394 cm⁻¹:

- Clay minerals (1:1 / 2:1) (kaolinite, montmorilonite, illite)
- Al hydroxide (gibbsite)

2233 to 1975 cm⁻¹:

Organic compounds (alkyne groups)

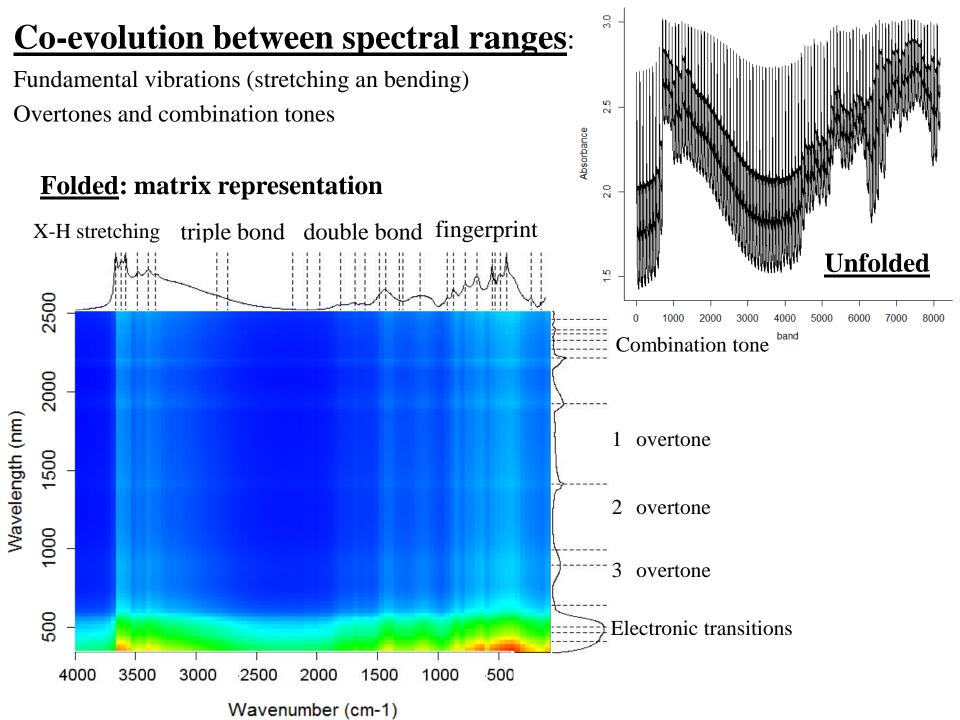
Quartzo

1867 to 1362 cm⁻¹:

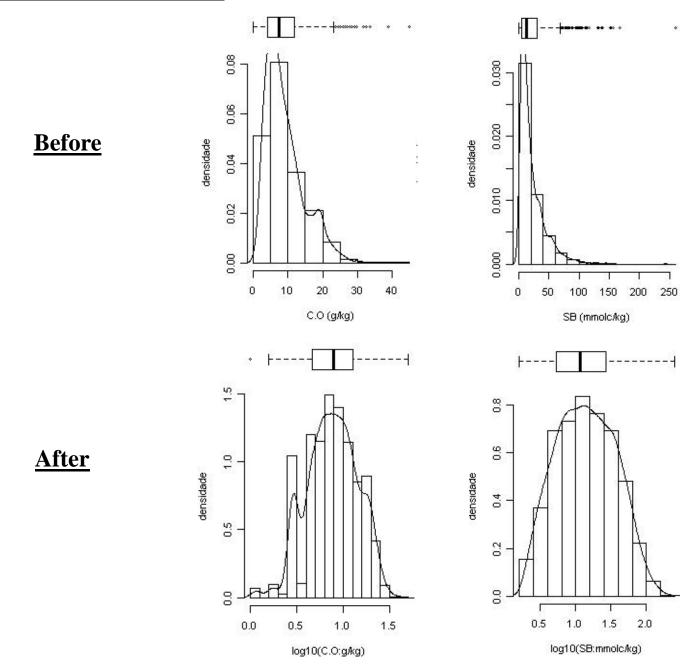
- Ouartzo
- Clay minerals (1:1 / 2:1)

(kaolinite, montmorilonite, ilite, vermiculite)

- Fe oxide and hydroxide (hematite and goethite)
- Organic compounds

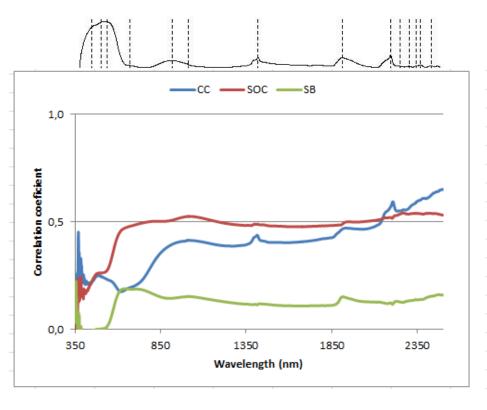

(amide, aromatic, alyphatic, phenolic)

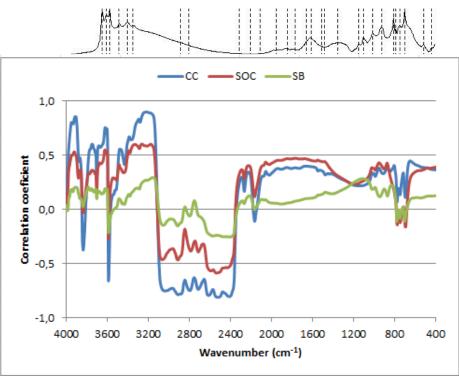
1157 to 926 cm⁻¹:


- Organic compounds (alyphatic, polysaccharide)
- Quartzo
- Fe oxide (hematite)
- Al hydroxide (gibbsite)
- Clay minerals (1:1 / 2:1)

814 to 436 cm⁻¹:

- Quartzo
- Fe oxide and hydroxide (hematite and goethite)
- Al hydroxide (gibbsite)




Soil property normalization

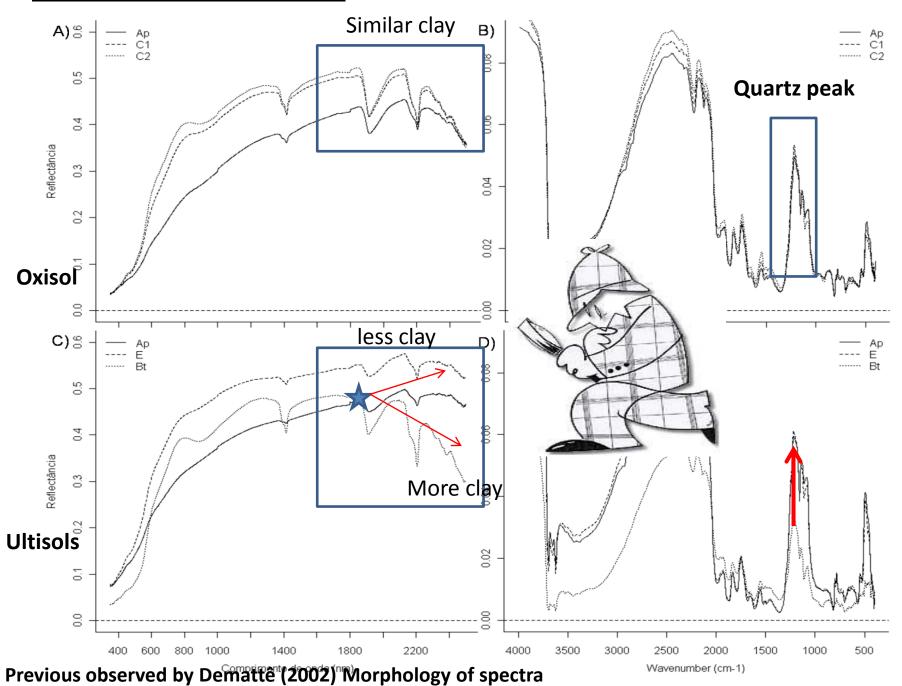
Correlation: Interactions - attributes vs spectral behavior

- MIR generally higher

Prediction performances: Mean comparison

CC varied from 10 g kg⁻¹ to 930 g kg⁻¹

SOC from 1.2 g kg⁻¹ to 41 g kg⁻¹


SB from 2.1 mmol_c kg⁻¹ to 290.5 mmol_c kg⁻¹.

Clay content (CC)											
Range	Features	DP	1Q	3Q	\mathbb{R}^2	RMSE	RPD	RPIQ			
OPA	8178	250.06	220.00	710.00	0.91a	75.70a	3.30a	6.43a			
Mid-IR	934	251.80	220.00	710.00	0.90a	78.70a	3.20a	6.23a			
VisNIR	2151	251.28	220.00	720.00	0.84a	102.00b	2.46b	4.90b			
Soil organic carbon (SOC): Log10 (normalization)											
Range	Features	DP	1Q	3Q	\mathbb{R}^2	RMSE	RPD	RPIQ			
OPA	8178	0.27 (1.86)	0.67 (4.68)	1.06 (11.48)	0.70a	0.15a (1.41)	1.80a	2.60a			
Mid-IR	934	0.27 (1.86)	0.67 (4.68)	1.08 (12.02)	0.69b	0.15a (1.41)	1.80a	2.73a			
VisNIR	2151	0.27 (1.86)	0.67 (4.68)	1.06 (11.48)	0.64c	0.16b (1.44)	1.69b	2.44b			
Sum of bases (SB): Log10 (normalization)											
Range	Features	DP	1Q	3Q	\mathbb{R}^2	RMSE	RPD	RPIQ			
OPA	8178	0.41 (2.57)	0.83 (6.76)	1.48 (30.20)	0.54b	0.28b (1.90)	1.46b	2.32b			
Mid-IR	934	0.41 (2.57)	0.83 (6.76)	1.48 (30.20)	0.60a	0.26a (1.82)	1.58a	2.50a			
VisNIR	2151	0.42 (2.63)	0.78 (6.02)	1.47 (29.51)	0.39c	0.33c (2.14)	1.27c	2.09c			

MIR validation set 395 samples

Atributte	Normalização	Algoritmo	R ²	RMSE	RPD	RPIQ
Р	Logaritmo / base 10	SVM (Linear)	0,36	0,35	1,26	1,71
K	Logaritmo / base 10	SVM (Radial)	0,21	0,45	1,13	1,33
Ca	Logaritmo / base 10	SVM (Linear)	0,71	0,25	1,84	2,80
Mg	Logaritmo / base 10	SVM (Radial)	0,54	0,28	1,46	1,93
Al	Raiz quadrada	SVM (Linear)	0,81	0,75	2,28	3,77
H+AI	Raiz quadrada	SVM (Linear)	0,80	0,81	2,23	2,88
V%	Raiz quadrada	SVM (Linear)	0,76	0,99	2,05	3,24
m%	Raiz quadrada	SVM (Radial)	0,66	1,93	1,72	3,56
Ativ. Arg.	Raiz quadrada	SVM (Linear)	0,66	2,14	1,71	1,79
Cu	Raiz quadrada	SVM (Radial)	0,53	0,69	1,46	2,32
Fe	Raiz quadrada	SVM (Radial)	0,29	1,84	1,20	1,39

IN practice for soil classification

Conclusions:

- ➤ Predictions by <u>OPA</u> were better for CC and SOC but the fusion <u>did not</u> <u>bring</u> a considerable increase in the predictive efficiency (despite coevolutions and a large number of spectral features)
- > OPA may not be the best way to combine spectra of the same type
- Other types of data fusion need to be tested
- ➤ <u>Mid-IR</u> spectra are still <u>the best option</u> to quantitative assessment of soil properties even for <u>tropical soils</u>
- **Both, Mid-IR and Vis-Nir can be used for assistence on soil classification approachbo**

Acknowledgments

- ➤ University of São Paulo (USP), "Luiz de Queiroz" College of Agriculture (ESALQ), Department of Soil Science (LSO)
- Australian Commonwealth Scientific and Industrial Research Organization (CSIRO)
- National Council for Scientific and Technological Development (CNPq)
- Coordination for the Improvement of Higher Education Personnel (CAPES)

