Quality Fish Seed in Bangladesh: Contribution of BFRI

Bangladesh Fisheries Research Institute
Mymensingh, Bangladesh
For good aquaculture practice (GAP), use of quality seed in fish farm plays vital role for higher production & good return

The demands of fish seeds for aquaculture are met up by Private hatcheries (913) 98.42%, Govt. hatcheries 1.19% & Natural sources 0.40%

Inbreeding & unplanned hybridization is a major problem in seed production in most of the hatcheries of Bangladesh

Rapid expansion & extensive operation of hatcheries resulted poor reproductive performance, retarded growth & diseases of hatchery seeds have been frequently reported
This sorts of stock deterioration is due to **poor brood stock management, inbreeding depression & unplanned hybridization in hatcheries**

To minimize **inbreeding depression & brood stock deterioration**, **genetic improvement through breeding programs** need to be undertaken with the involvement of hatchery owners, farmers & other stakeholders.

Upgradation of broods & dissemination of quality seeds to the stakeholders is a continuous process & which is essential from generation to generation.

To minimize **broodstock deterioration**, **BFRI** is making much effort to generate improved breeds.

In the meantime **BFRI** evolved four improved breeds of carps & **Tilapia** that could be disseminated throughout the country.
The country has 3rd largest fish genetic resources in Asia behind China & India with 296 Fresh & Brackishwater species and also 511 marine species

- Available cultivable endemic species
 - 13 species of carps (both major & minor)
 - 5 species of catfishes & 1 climbing perch

- Endemic fish species used in hatcheries for seed production
 - Total number of species: 14
 - Among them catla, rohu, mrigal, calbasu, bata, shing, magur, pabda, gulsha are predominant

- Other species are being used for seed production either under limited scale or for conservation purpose

- Available cultivable exotic species in Bangladesh
 - 8 species of carps (Chinese carps and silver barb)
 - 2 species of catfishes & 3 species/strains of tilapias
Overview of Carp & Catfish Seed Production in BD (2010-11)

<table>
<thead>
<tr>
<th>Categories of Hatchery</th>
<th>Total No. of Hatcheries</th>
<th>Quantity of spawn produced (kg)</th>
<th>Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private</td>
<td>854</td>
<td>4,59,804</td>
<td>98.81</td>
</tr>
<tr>
<td>Govt.</td>
<td>77</td>
<td>5,550</td>
<td>1.19</td>
</tr>
<tr>
<td>Total =</td>
<td>931</td>
<td>4,65,354</td>
<td>100</td>
</tr>
</tbody>
</table>

Indian Major carps=50% ; Exotic carps=35% & Catfish & others=15%

(Data Sources: FRSS, DoF, Ministry of Fisheries & Livestock, Bangladesh)
Reasons of Stock Deterioration

Endemic Carp
- Absence of good genetic management practice in hatchery stocks
- Mass seed production target is the main objective (Not on quality)
- Brood stock replacement is from leftover fish
- Degradation in genetic quality of seeds
 - due to inbreeding & negative selection
 - due to hybrid introgression in some major carp species
Note: Inbreeding has negative effects on Growth, survival, reproduction etc.

Exotic Carp
- Founder stocks from unknown sources
- Chinese carps originally introduced in Bangladesh were secondary or tertiary transfer from countries other than China
- Small numbers of parent stocks contributing to an introduction of genetic drift
- Lead to poor performance through low genetic variation
- Inter-specific hybridization has recently been reported & experimentally proved (BFRI)
Fish Seed Production Practices in Private Hatcheries

- No planned brood stock replacement guide lines are being followed by private hatcheries for carps, catfishes & tilapias

- For breeding programs, Private hatchery operators never bother to maintain “Effective Population Size (Ne)”

- Family size variation might be the main reason of decreasing the rate of genetic variability & increasing the level of inbreeding depression in a particular stock

- No systematic protocols and guidelines are being strictly followed presently for the maintenance of improved breeds/strains most by the private sector hatcheries

- Mostly Private hatchery operators have limited basic knowledge of simple brood stock management aspects and they don’t usually maintained their stocks separately in different ponds
BFRI for Quality Seed Production
Genetic Stock Improvement Tools used by BFRI

Genetic techniques are being used for stock improvement as follows:

- Cross breeding between wild stocks
 - Rohu, Catla, Silver barb and Koi
- Selective breeding in 4 species
 - Improved strains of Rohu, Silver barb, BFRI GIFT tilapia & Koi
- Planned hybridization/cross breed of desirable species
 - Endemic Vs Exotic catfish, Thai Vs Local Koi

Genetic techniques may be as follows:

- Production of Triploid/Sterile population
 - Rohu, Mrigal & Shing
- Production of Gynogenetic population
 - Monosex female of Rohu, Mrigal & Silver barb
- Production of mono-sex using hormonal sex reversal
 - Monosex all male BFRI GIFT tilapia
Quality Seed Production Protocol (Mass Selection)

1. Wild / Improved Germplasms
2. Improved Nursery Management
3. Selection of 1500-2000 fingerlings based on best growth performance
4. Rearing at grow out ponds
5. Selection of 20% fish as brood stocks through mass selection protocol
6. Rearing at brood pond @ 2500/ha up to maturity level for breeding
7. Use of brood for quality seed production
8. Quality seed will be disseminated to farmers
Quality Seed Production Protocol (Family Selection)

- Pair mating to produce at least 50 families of Improved Stocks
- Separate nursing in 50 hapas
 - Primary: 60 days
 - Secondary: 90 days
 - Tertiary: 120 days
- Tagging of fish (20-40 g): 30-40 fingerlings from 40-50 families; a total of 2000 fish
- Communal growth testing of tagged fish (2000) in earthen ponds
- Recording of Tag, Sex & wt. of fish; Estimation of breeding values V_G
- Further selection using best selected Individuals in terms of breeding values
Significant research achievement

Fish stock improvement through genetic selection

- **BFRI Rajpunti:**
 32-36% higher growth rate than normal breed

- **BFRI GIFT Tilapia:**
 35-40% higher growth rate than normal breed

- **BFRI Rohu:**
 15-20% higher growth rate than normal breed
Significant research achievement

Fish stock improvement through genetic selection

- Monosex male tilapia production
- All-male tilapia production (96-98%) using hormonal sex manipulation technique
- Improved tilapia seed production & grow-out technique
Breeding and mass seed production technique of both endemic & exotic Koi (*Anabas testudineus*) strains

Breeding and mass seed production technique of magur (*Clarias batrachus*) and shingh (*Heteropneustes fossilis*)
BFRI first evolved breeding technology and mass seed production of Thai pangas in 1993.

BFRI succeeded captive breeding of the native species of pangas in 2004.
Recent Stock Details of Pangas

<table>
<thead>
<tr>
<th>Origin</th>
<th>Year of Collection</th>
<th>Special feature</th>
<th>Widely Known</th>
<th>Present Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thailand</td>
<td>Oct.’ 2010</td>
<td>Wild stock from Mekong river (Red meat)</td>
<td>Thai Pangas/Sutchi</td>
<td>Stock improvement program is in progress through rotational group breeding techniques</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Oct’ 2011</td>
<td>Wild stock from Mekong Delta (White meat)</td>
<td>Vietnamese Tra</td>
<td></td>
</tr>
</tbody>
</table>
Brood development, breeding and seed production

- Early (1-2 months) brood maturation and egg development of prawn (*Macrobrachium rosenbergii*) through controlling the winter season’s temperature.

December-February

45%

40%

15%
<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Source</th>
<th>Year of introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctenopharyngodon idellus</td>
<td>Grass carp</td>
<td>China</td>
<td>2010</td>
</tr>
<tr>
<td>Mylopharyngodon piceus</td>
<td>Black carp</td>
<td>China</td>
<td>2010</td>
</tr>
<tr>
<td>Hypophthalmichthyes molitrix</td>
<td>Silver carp</td>
<td>China</td>
<td>2010</td>
</tr>
<tr>
<td>Aristichthys nobilis</td>
<td>Bighead carp</td>
<td>China</td>
<td>2010</td>
</tr>
<tr>
<td>Carassius carassius</td>
<td>Crucian carp</td>
<td>China</td>
<td>2011</td>
</tr>
<tr>
<td>Pangasianodon hypophthalmus</td>
<td>Thai Pangas</td>
<td>Thailand</td>
<td>2010, 2011</td>
</tr>
</tbody>
</table>

Pure line Exotic Carp Introduced in BFRI for Quality seed production & Genetic research
Every year BFRI have been producing quality breeds & distributing to the fish farmers, nursery & hatchery owners.
<table>
<thead>
<tr>
<th>Species</th>
<th>Year</th>
<th>Quantity of Spawn (kg)</th>
<th>Estimated fingerling (million)</th>
<th>Farmer’s Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFRI Rohu, BFRI Rajpunti, Catla (Halda, Jamuna), Mrigal (Halda, Jamuna), Common Carp (Vietnam), Silver & Bighead carp</td>
<td>2009</td>
<td>275</td>
<td>82.50</td>
<td>✓ Higher growth</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>295</td>
<td>88.50</td>
<td>✓ Higher survival</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>320</td>
<td>96.00</td>
<td>✓ Huge demands</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>345</td>
<td>103.5</td>
<td>✓ Need more & more production?</td>
</tr>
<tr>
<td></td>
<td>2013 (Target)</td>
<td>400</td>
<td>112.00</td>
<td></td>
</tr>
</tbody>
</table>
Quality seed production & distribution by BFRI-FS Hatchery (2009-2013)

<table>
<thead>
<tr>
<th>Species</th>
<th>Year</th>
<th>Fry (million)</th>
<th>Farmer’s Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFRI GIFT</td>
<td>2009</td>
<td>0.5</td>
<td>✔ Higher growth</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1.20</td>
<td>✔ Higher survival</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1.50</td>
<td>✔ Huge demands</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>1.95</td>
<td>✔ Need more & more production?</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>2.50</td>
<td></td>
</tr>
</tbody>
</table>

Note: About 150 Tilapia hatcheries maintained BFRI GIFT for quality seed production.
Dissemination Channel of Improved Quality Seeds
A schematic model for dissemination of improved fish breeds in Bangladesh
Dissemination Program for Improved Seeds to the Beneficiaries

BFRI, FS, MYMENSINGH

STATE HATCHERIES

SATELLITE NURSERIES

FISH FARMERS

PRIVATE NURSERIES

PRIVATE /GOVERNMENT HATCHERIES

ADVISORY CENTER (BFRI)
Genetic Research for Quality Seed
Future Genetic Research Plan for Quality Seed Production

- Collection of pure strain from suitable countries & improvement of existing germplasm
- Development of markers assisted selective breeding techniques
- Identification of Quantitative Trait Loci (QTLs) using different molecular markers
- Initiation of genetic stock improvement program using best stock as base population through application of selective breeding and line crossing techniques
- Development of cryogenic gene banking for facilitating the artificial breeding of carp as well as conservation of improved stocks
- Continuation of stock improvement program and dissemination of improved germplasm among private and government hatchery operators
- Establishment of brood bank with pure strain of carp species is of prime importance for Bangladesh
The establishment of centre for conservation & improvement of fish Genetic Resources Bank should be maintained at DoF with the involvement of BFRI & where from improved germplasm will be supplied to selected public & private hatcheries for the quality seeds production & dissemination to the farmers.

Figure 1. Genetic weight gain in consecutive generations through crossbreeding and mass selection of Rofu compared to non-selected control and local stock of Mymensingh.

Figure 2. Genetic weight gain (%) in consecutive generations of selected groups over control groups in silver barb.
Thanks