P. Steduto, T.C. Hsiao, D. Raes, and E. Fereres
*AquaCrop*—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles
*Agron J* 2009 101: 426–437

D. Raes, P. Steduto, T.C. Hsiao, and E. Fereres
*AquaCrop*—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description
*Agron J* 2009 101: 438–447

T.C. Hsiao, L.K. Heng, P. Steduto, B. Rojas-Lara, D. Raes, and E. Fereres
*AquaCrop*—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize
*Agron J* 2009 101: 448–459

H.J. Farahani, G. Izzi, and T.Y. Oweis
Parameterization and Evaluation of the AquaCrop Model for Full and Deficit Irrigated Cotton
*Agron J* 2009 101: 469–476

M. García-Vila, E. Fereres, L. Mateos, F. Orgaz, and P. Steduto
Deficit Irrigation Optimization of Cotton with AquaCrop
*Agron J* 2009 101: 477–487

L.K Heng, T.C. Hsiao, S. Evett, T. Howell, and P. Steduto
Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize
*Agron J* 2009 101: 488–498

Simulating Yield Response of Quinoa to Water Availability with AquaCrop
*Agron J* 2009 101: 499–508

M. Todorovic, R. Albrizio, L. Zivotic, M. Abi Saab, C. Stöckle, and P. Steduto
Assessment of AquaCrop, CropSyst, and WOFOST Models in the Simulation of Sunflower Growth under Different Water Regimes
*Agron J* 2009 101: 509–521

E. Vanuytrecht, D. Raes, and P. Willems
Considering sink strength to model crop production under elevated atmospheric CO₂.
*Agric For Meteorol* 2011 151: 1753–1762