Assesment of N flows in Livestock Farming Systems:

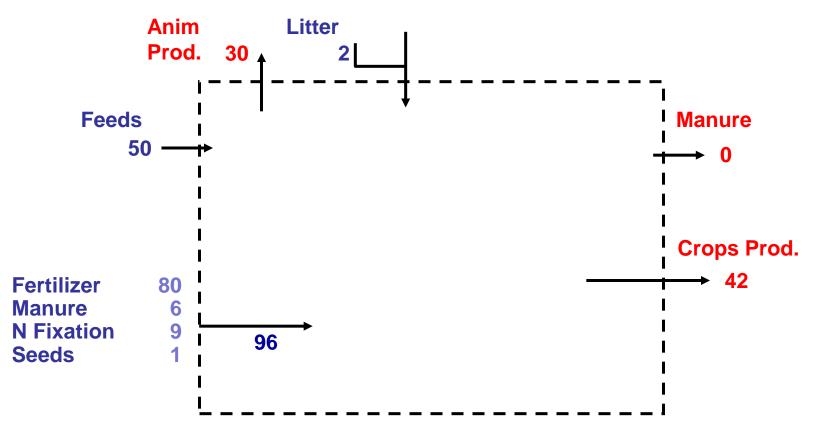
Main issues and proposed options

J.L. Peyraud, P Cellier

FAO - July 4th 2012

A request from Ministry of Agriculture and Ministry of the Environment

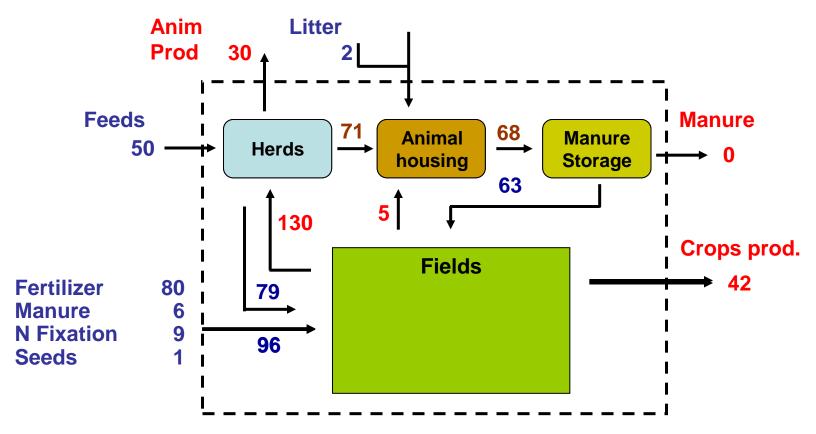
- A synthesis of updated knowledge on N flows in livestock farming systems, from the animal to the regional scale, with a specific focus on farm level
- All forms of N (nitrate, ammonia, nitrous oxide, others) and the link with impact had to be considered
- Identify possible actions to improve livestock farming systems sustainability (e.g. techniques, management, redesign of systems, economic and policy incentives


A collective expert assessment was conducted in 2011

Plan

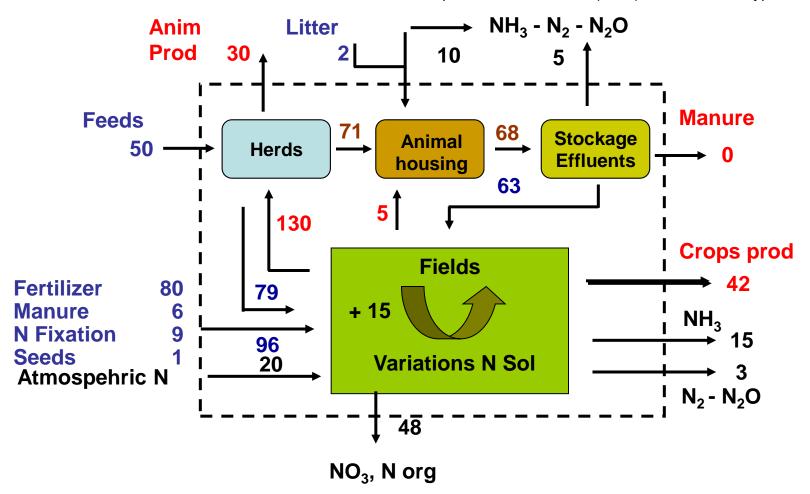
- N flows in livestock farming systems
- Options to improve N efficiency and to reduce environmental impacts
- Indicators
- Conclusions

Numerous and interdependant N flows: A variety of inputs and output to/from the farm


Adapted from Jarvis et al (2011) with data from typical french farms

Dairy and crops 80 ha, 82 LU, 25 ha cereals

Numerous and interdependant N flows: Lots of internal fluxes to consider


Adapted from Jarvis et al (2011) with data from typical french farms

Dairy and crops 80 ha, 82 LU, 25 ha cereals

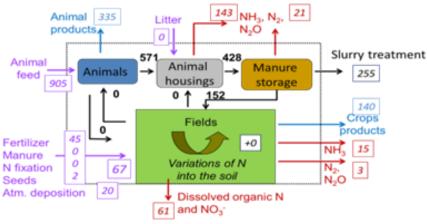
Numerous and interdependant N flows: A variety of N fluxes to the environment

Adapted from Jarvis et al (2011) with data from typical french farms

N efficiency results from complex interactions, one improvement can be cancelled by a bad management at a previous or next stage

Numerous and interdependant N flows: A huge variability depending of the system

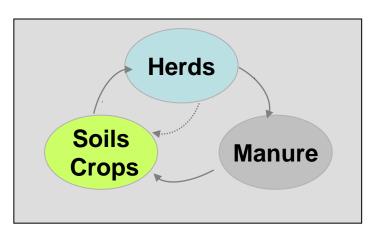
Dairy and cereals


80 ha, 82 LU, 25 ha cereals

10 NH₃, N₂, 5 Animal 30 Litter products. Manure Animal Animal Manure Animals 0 housings storage 130 42 Crops Fields products Fertilizer +15 NH₃ 15 Manure 6 Variations of N N₂, N₂O 3 N fixation 116 into the soil Seeds Atm. deposition 20 Dissolved organic N and NO₃:

Organic dairy

160 ha, 107 LU, 65 ha cereals


Pigs and cereals 84 ha. 400 sows

- N flows in livestock farming systems
- Options to improve N efficiency and to reduce environmental impacts
- Indicators
- Conclusions

Options to increase N efficiency at farm level

Efficiency	Drivers	Knowledge
<10 à 40%	Genetic merit (↑ eff) Feeding practices	++

Margins of progress +/-

Take into account all N flows related to the farm to screen every source of waste and every way to progress

Effect of diet composition and genetic merit on N excretion

Diet composition

- Pig:

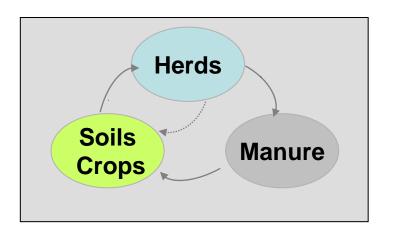
"Multi phases" feeding + AA balance : - 30% N excreted reduced N rejected / feeding cost

- Dairy cows:

Major effect of forage N content (grass > maize silage)

MS+GS 6 months + 6 months grazing = 121 kg N excreted

MS 12 months = 91 kg N excreted /year


Genetic merit

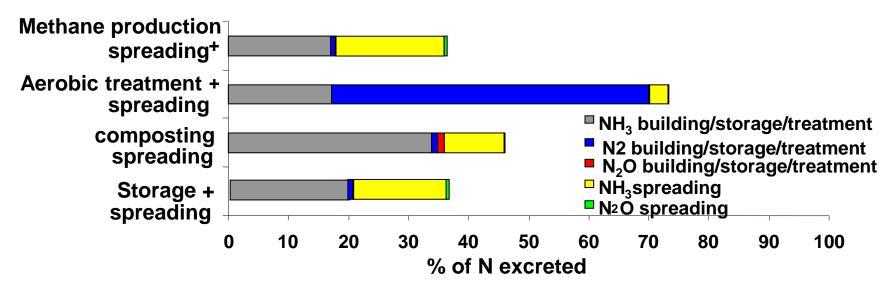
+ 1000 kg/lactation = - 5% N excreted /t milk

Options to increase N efficiency at farm level

Efficiency	Drivers	Knowledge
<10 à 40%	Genetic merit (↑ eff) Feeding practices	++

Margins of progress +/-

Losses	Drivers	Knowledge
20 to 80% NH ₃ 25-55%	Housing > grazing Housing>spreading >storage Treatments	Large uncertainty (emission)


Margins of progress ++

Take into account all N flows related to the farm to screen every source of waste and every way to progress

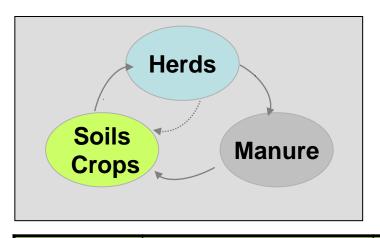
Effect of livestock manure management on N emissions

Large effects of liquid manure management on N losses

Animals x housing engineering x practices

Lower NH3 emission at grazing

< 10% vs 25% for housed ruminants


Risk of pollution swapping

Reduced emission during storage / increase during spreading

Options to increase N efficiency at farm level

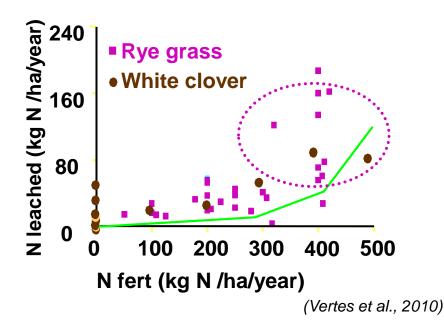
Efficiency	Drivers	Knowledge
<10 à 40%	Genetic merit (↑ eff) Feeding practices	++

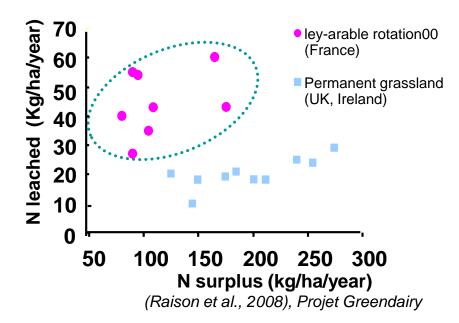
Margins of progress +/-

Losses	Drivers	Knowledge
20 to 80% NH ₃ 25-55%	Housing > grazing Housing>spreading >storage Treatments	Large uncertainty (emission)

Margins of progress ++

Efficiency	Drivers	Knowledge
Medium	High inputs (↓ eff)	+
(> 40%)	Grassland, legumes, crop rotation	


Margins of progress ++


Take into account all N flows related to the farm to screen every source of waste and every way to progress

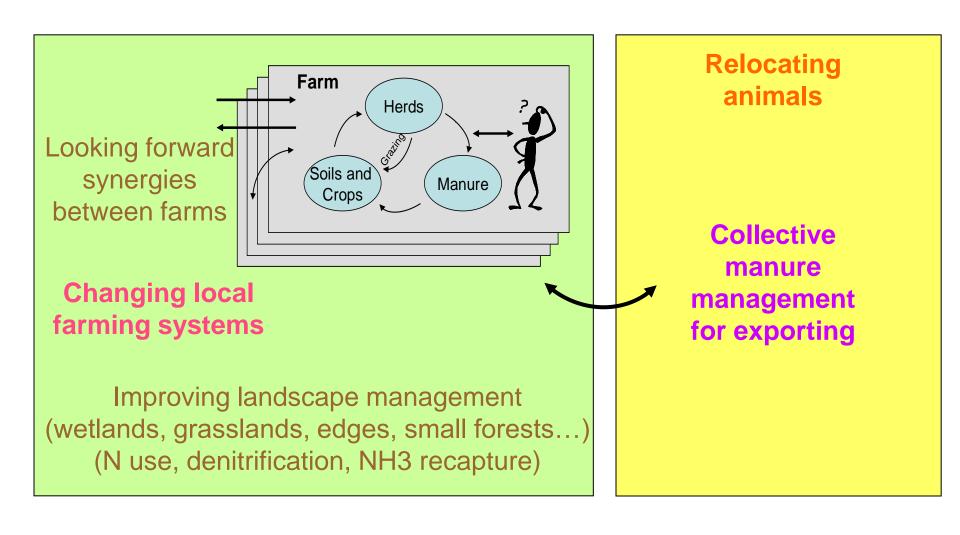
Grassland contributes to regulate N flows ... provided good practices are adopted

Fate of N excreted	Urine	Dung
Volatilisation	10-15	5-10
Leaching	25-30	10-15
$N_2O + N_2$	< 5	-
Plant growth	25-30	60-70
Soil OM	30-35	10-20

Although large amounts of N are excreted, large amounts of N can be recycled under well managed grasslands

Conclusion can be different according to the investigated scale

40 cows, 7500 kg milk per lactation


Maize silage Grazing	12 months	6 months 6 months
N intake (kg)	5.3	6.4
from concentrate (kg)	2.5	1.3
N excreted (kg)	3.7	4.8
spreadable N1 (kg)	2.7	4.2
N in forage (% spreadable N)	99 %	121 %

¹ 0.75 N excreted in barn + N at grazing

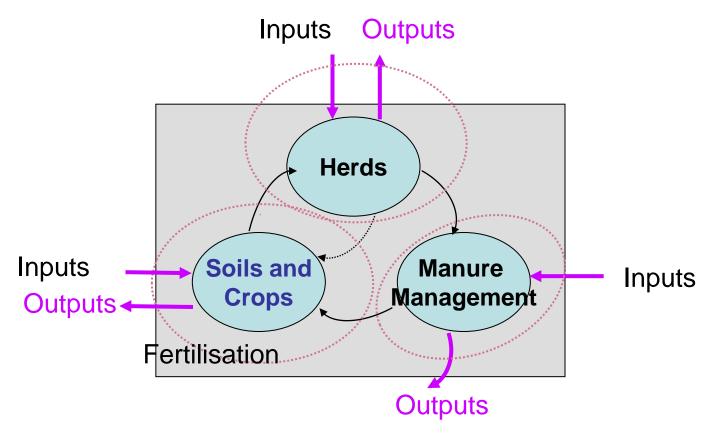
(from Peyraud et al., 1995 and Vérité and Delaby, 2000)

On grassland based systems, N excretion by dairy herd is high but grazing allows to recapture a high proportion of N and to increase protein (and energy) autonomy at farm level

Options to better use N at landscape level

- N flows in livestock farming systems
- Options to improve N efficiency and to reduce environmental impacts
- Indicators
- Conclusions

Indicators for assessment and management


Type of indicators

Practices	Emissions	Status / Impacts
% fertilised area	Soil N conc.	NO ₃ conc/water
Inputs	Emission factors	Particles conc.
N Balances ←	→ Models ✓	LCA
N management Poor predictors of impacts	Effects of the practices	Diagnostic Comparison of systems

Difficulties and uncertainties

- Data availability cost for collecting valuable information
- Difficulties for implementing numerous indicators
- Threshold values, lack of knowledge, scaling up (farm to regional scale)

N Balance to assess environmental performances

Farm gate N balance + N balance of sub systems + simulation of N emissions

"Soil N surplus" and "farm N budget" produce different figures

Pigs + Cereals (84 ha)

Same cereal crops - Same N fertilisation (152 N org + 67 N min)

150 sows + fattening (no manure aerobic treatment)

400 sows + fattening (60% treatment)

	Farm gate
Inputs	386
Outputs*	265
Surplus	121

Soil
199
140
59

Farm gate
952
730
222

^{* 140} crops + 125 carcasses

^{* 140} crops + 335 carcasses + 255 N₂

Associated effects to adopted solution for increasing N efficiency

	Pollution transfer (water/air)	P efficiency	GHG reduction	Energy consumpti on	Income	Produc- tivity (/ha)
Feeding	0 or +					
Manure Management	0 or +	+			+ or -	
Soil and crops	0	+			variable (innovations)	
Landscape designing	+ or -	+	+ or -	0		

- N flows in livestock farming systems
- Options to improve N efficiency and to reduce environmental impacts
- Indicators
- Conclusions

Options were identified

Farm level

Reducing farm N surplus (manure > fields > herds)

- Animal feeding, animal genetics, precision livestock feeding
- Reduce NH₃ losses but interdependant steps, risk of pollutions transfer,
- Cropland and grassland management

Indicators to better manage the system: N balances,....

Landscape level

Need to take better account of local territorial vulnerability but ... this will need strong will from policy makers

Documents on the web

http://www.inra.fr/l institut/expertise/expertises realisees/expertise flux d azote lies_aux_elevages

Summary: 8 pages

Extended summary: 67 pages

• Full report : 528 pages