

The Potato micropropagation

Rolot Jean-Louis www.cra.wallonie.be

Armstatehydromet and Ministry of Agriculture Yerevan, March 2012

Some characteristics of the potato multiplication

Vegetative reproduction:

- ⇒Degeneration by infection of different pests (viruses, bacteria, fungi,...)
- ⇒ The propagation material needs to be regularly replaced: by injection at the top of the chain of very high quality material (free of diseases infections)

•How to replace the propagation material?

- ⇒ traditionally, by applying clonal and genealogical selection with, as departure point, some tubers that have been selected in field and checked in laboratory
- ⇒or, applying genealogical selection assisted by the *in vitro* micropropagation techniques: more easy, rapid, flexible and give more security for the phytosanitary quality.

Example of traditionnal way for the production of seed potato material

Initial material: candidate tuber , indexed or not, sprout node excision and culturing

Advantages given by the genealogical selection assisted by the micropropagation techniques

\Rightarrow multiplication power

Production flexibility, rapid adaptation to the market opportunities

In Vitro multiplication power

The *in vitro* introduction of a potato variety

Potato variety in vitro introduction

Main conditions:

- the candidate tuber: to verify the variety
- to get sprouts
- to cut the sprouts, disinfect them with alcohol and cut them between nodes (=explant to be introduced in *in vitro* culture)
- disinfection of the sprouts nodes = in Na hypochlorite, 5 à 8'
 + and rising them in 3 successive bads of sterile H2O, 5' 10'
 and 5'
- culture media = MS + Sugar (20g/l) + Agar (6g/l), pH 5,9
- culture conditions: 16h/8h , 18 to 22 C, 4000 to 6000 lux

Phytosanitary control scheme

•<u>Phytosanitary control operated when introducing potato explant</u> in *in vitro* collection

- Departure point: one or several tubers , each of them furnishing several sprout nodes: 1 node = 1 clone, then several clones / tuber, each of them having his own code (reference number)
- Each clone (node) is introduced *in vitro* and multiplied separatly. Each clone will be fully tested.
- After being tested, only one clone among the diseases free clones will be choosen and introduced in the *in vitro* collection.
- A system of tracability must be operationnal in the micropropgation lab: each work and each analyse and results on the selected clone must be listed in a appropriate system of documentation.

• <u>Phytosanitary control operated when introducing potato explant</u> <u>in *in vitro* collection</u>

Pathogens to be tested on the vegetal material entering in the *in vitro* collection

BACTERIA

Clavibacter michiganensis subsp sepedonicus Ralstonia solanacearum Dickeya sp and Pectobacterium sp.

VIRUSES

VIROID

Potato virus X Potato virus S Potato virus Y Potato virus A Potato virus M Potato Leaf roll virus Tobacco rattle virus Potato mop top virus Potato virus V Potato virus T Andean potato latent virus Andean potato mottle virus Arracacha virus Potato black ringspot virus Tomato spottled wilt virus

Potato spindle tuber viroid

• Maintenance of the selected clones in the lab

- Medium: MS + 20g/l sucre + 6g/l agar + (max 3% mannitol),pH 5,9
- Temperature: 18-20 C
- Photoperiod: 16h/8h
- Light intensity: 4000-6000 lux
- Maintenance (reniewing): 3 à 4 x/an
- True to type control: 1x/2 ans (au champ)
- System of tracability and documentation operational.

• Fast multiplication in the lab (production).

• Fast multiplication in the lab (production).

- Phytosanitary control on the material selected for the micropropagation:

- viruses (main: PLRV, PVY, PVA, PVS, PVX, PVM)
- bacteria (quarantine: Ralstonia, Clavibacter common ones: Dickeya, Pectbact.)

- Conditions of multiplication:

- ➢Media: MS + 20g/l sugar + 6g/l agar ,pH 5,9
- ► Temperature: 20-22 C
- ➢Photoperiod: 16h/8h
- ≻Light intensity: 4000-6000 lux

- Monthly multiplication factor: 5

Production objective X	X-1	X-2	X-3	X-4
10000	2000	400	80	15
October	September	August	July	June

• Field transfer of the in vitro micropropagated material

- Intermediate steps are necessary

- -3 possible ways:
 - > *in vitro* microtubers production (vitrotubers)
 - minitubers production
 - acclimatization and rooting of the vitroplantlets

Field transfer of the *in vitro* micropropagated material

> Microtubers production:

- in the lab , then in a dark room (6 weeks + 4 months + 1 month)
- first step: in vitro vegetative multiplication,
 - ✓ Medium MS normal
 - ✓ Photoperiod 16h/8h
 - ✓ Temperature: 20-22 C
- second step: microtuberization (6 weeks)
 - ✓ Medium: MS/2 + sugar (80 g/l) + coumarine (50 mg/l) + kinetin (4 mg/l)
 - ✓ Photoperiod: in the dark 24h/24h
 - ✓ Temperature: 20-22 C

Field transfer of the *in vitro* micropropagated material

> Microtubers production:

- production of 1 to 1,5 microtubers size 5/10mm / vitroplant
- manually harvested, rinsing in water, disinfection thiabendazol solution, drying, sorting (<5, 5/7, 7/10mm)
- cold storage (minimum 3 months, 2 to 3 C)
- presprouting (1 month at 18/20 C, 16h/8h photoperiod)
- sowing directly in field or minituber production in greenhouse

• Field transfer of the micropropagated material

> Direct sowing of microtubers in field

• Field transfer of the *in vitro* micropropagated material

Microtubers production:

- advantages:
 - -Easy to produce, no costly (no greenhouse)
 - -No risks of contamination during the production cycle (in the lab)
 - -Easy to sow (mechanically)
 - -Easy to send (by airplane)
- disadvantages:
 - -In field vigour due to the small size: need hot and humid soil,
 - and need to be presprouted
 - before sowing,
 - -long production process
 - (6 weeks + 3 months + 1 month): not flexible!

• Field transfer of the *in vitro* micropropagated material

> Minitubers production:

- in greenhouses or screenhouses (insectproof), by cultivation of the microplantlets or microtubers
- classical way: by transfer of vitroplantlets in peat soil
- other ways: without soil, in hydroponic or aeroponic production method
- lenght of production: 3 to 4 months in green or screenhouses
 + 3 to 6 months of cold storage, + 1 month of pre sprouting
- harvest made by hand, sorting (10 to 50 mm)
- needs to be checked on viruses and bacterias after production and before use

Hydroponic unit for minitubers production

ACID BASE NUTRIENT CONTROL DISINFECTION pH -Conductivity UV – Sand Filter WATER **CLEAN** WASTE **SOLUTION SOLUTION**

CULTURE TABLE

• Field transfer of the in vitro micropropagated material

Minitubers production

• Field transfer of the *in vitro* micropropagated material

Minitubers production

advantages:

-Size near the usual size of the potato seeds

- -Good productivity in field (vigour and multiplication rate)
- disadvantages:
 - -long production process (3-4 months + 3 months + 1 month) flexibility!
 - -expensive (infrastructures greenhouses)
 - -sanitary risks through the contamination of the substrate, or introduction of diseases vectors in the greenhouse

•Field transfer of the micropropagated material

- > Acclimatized and rooted vitroplants production:
 - In greenhouse by transfer of vitroplants in cubes of peat
 - 4 weeks of acclimatization and rooting in greenhouse
 - transfer in open field mechanically or manually
 - virus and bacteria control before the transfer to the open field

• Field transfer of the *in vitro* micropropagated material

Acclimatized and rooted vitroplants

- advantages:
 - flexibility, rapid production (4 weeks of acclimatization)
 - can be directly protected against diseases in field as soon they have been transfered
 - disadvantages:
 - needs rainfall/irrigations for a good recovery in field
 - expensive (greenhouse) but less than minituber
 - risk of infection before being transfered to the field

	Minitubers	Microtubers	Rooted Plantlets	
Size	10/15, 15/20, 20/25 >25 mm	5/7 et 7/10	-	
Soil preparation	normal	Fine Sowing on flatted ridges	Fine Plantation in preformed ridges, c not	
Seeds preparation	Presprouting	Presprouting needed !	-	
Plantation	Mechanically or By hand	Mechanically with pneumatic sowing machine	Mecahnically or by hand	
Plantation date	April-May	April-May	After the last frosts	
Plantation depth.	The height of the ridge needs to be adapted on the tuber size	4-5 cm in the ridge	Rooted plant is transplanted in the soil until its last foliar floor	
Density	Depends on the tuber size 12-15 cm (110.000 à 88.000)	Depends on the microtuber size (10 to 12 cm) (133.000 à 110.000)	20 cm (66.500)	
Herbicide	Before emergence	Before emergence	Before plantation with a light dosis of metribuzine	

•<u>Productivity: comparative study mini, micro, rooted plantlets</u> in Belgian conditions.

Influence of the tuber size on growth and production

i Objects (variety Bintje)

a. Microtubers	7/10	0.12 x 0.75 (110833 /ha)
b. Minitubers	10/15	0.12 x 0.75 (110833 /ha)
c. Minitubers	15/20	0.15 x 0.75 (88666 /ha)
d. Minitubers	20/25	0.20 x 0.75 (66500 /ha)

Productivity: comparative study

Influence of the tuber size on growth and production

ii. Measured variables.

- a. Total emergence (%)
- b. Plants vigour (Development in cm)
- c. Productivity (kg /1,8m of row kg / ha)
- d. Multiplication rate (Tubers number / 1,8m of row Tubers number / ha)

Productivity: comparative study

Effect of the tuber size on growth and productivity

a. Total emergence (in % of the quantity used for plantation).

Productivity: comparative study

Effect of the tuber size on growth and productivity

b. Growth vigour

Productivity: comparative study

Effect of the tuber size on growth and productivity

c. Productivity (Yield)

Size	Plantation Distance	Density plants / ha	Tubers weight For 1,8m row (Kg)	Weight / plant (kg)	Weight / ha (kg)
7/10mm	0.12 x 0.75	110833	4,21	0.281	31144
10/15 mm	0.12 x 0.75	110833	5,38	0,359	39752
15/20 mm	0.15 x 0.75	88666	6,18	0,515	45663
20/25 mm	0.20 x 0.75	66500	8,96	0.995	66204

Productivity: comparative study

Effect of the tuber size on growth and productivity

c. Productivity (Yield)

Productivity: comparative study

Effect of the tuber size on growth and productivity

d. Multiplication rate

Calibre	Ecartement	Nombre de plantes / ha	Nombre total de tubercules / 1,8m	Nombre total de tubercules >28mm / 1,8m	Nombre total de tubercules >28mm /ha
7/10 mm	0.12 x 0.75	110833	115.67	67.33	497434
10/15 mm	0.12 x 0.75	110833	95.67	77.33	571314
15/20 mm	0.15 x 0.75	88666	145.33	100.67	743750
20/25 mm	0.20 x 0.75	66500	124.33	107.33	792954

Productivity: comparative study

Effect of the tuber size on growth and productivity

e. Conclusions.

- Significative effect of the tuber size on the yield (from 31 to 66 to/ha)

-Significative effect of the tuber size on the multiplication rate:

- 7/10mm 10/15mm: 497500 >< 571300 tubers / ha (size > 28mm)
- 15/20mm 20/25mm: 744000 >< 793000 tubers / ha

Productivity: comparative study

Comparison between minitubers 20/25 and rooted plantlets.

Type matériel	Ecartement	Nombre plantes / ha	Taux de réussite	Nombre total tubercules / ligne 1.8m	Nombre total tubercules >28mm / ligne 1.8m	Nombre total tubercules >28mm / 1 ha
Mini 20/25	0.20 x 0.75	66500	100%	124.33	107.33	792954
Plantules	0.20 x 0.75	66500	100%	157.33	101.70	751360