Real-time RT-PCR for the detection of FMDV in Milk

Bryony Armson

The Pirbright Institute
Foot-and-mouth disease

- There is a recognized need for rapid diagnostics and surveillance to enable early diagnosis of foot-and-mouth disease in cattle.

- FMDV detection in milk presents unique opportunities for surveillance and early detection both prior to and during an outbreak.

- Screening milk would involve non-invasive sampling, on material that is already collected on a regular basis.

- At present there is a lack of a high-throughput screening tool and bulk tank milk surveillance plan.

Previous studies have shown that:
- Mammary gland = site for FMDV replication.
- FMDV is shed in cows’ milk at high titers (10^4 TCID$_{50}$ per ml).
- Studies have observed various first detection points in milk, both preceding the onset of clinical signs and at the same time.

(Burrows, 1968; Reid et al., 2006, Thurmond and Perez, 2006).
Multi-centre collaboration between:
- Institute for Infectious Animal Diseases (IIAD) (previously FAZD)
- Foreign Animal Disease Diagnostic Laboratory (FADDL)
- The Pirbright Institute

- To evaluate the effectiveness of preclinical indicators of FMDV infection.
- To evaluate a high-throughput screening tool using real-time(r)RT-PCR which could be scaled up for use with bulk tank milk.
- To compare real-time PCR protocols developed in the US with the routine diagnostic assay currently used in the UK.
- Both assays based on the pan-serotypic rRT-PCR targeting 3D.
- To obtain data suitable for the development of a national surveillance plan for screening milk for FMDV.
- Need to be suited to high-throughput screening in the event of, or during recovery from an outbreak.
Experiment Protocol

Dpi -1

Dpi 0

Dpi 5
Samples collected

- Whole milk:
 - skimmed milk
 - cell fraction
 - cream

- Blood (serum and whole blood)
- Mouth and nasal swabs
- Probangs
- Temperature
Sample processing

Two parts:

- Real time diagnostic tests (on the day of collection):
 - Virus Isolation BTY cells (whole and skimmed milk) IB-RS2 cells
 - US rRT-PCR MagMax Express-96 & ABI 7500 Fast Real Time PCR System.

- Quantitative tests:
 - Virus titrations BTY cells
 - Pirbright rRT-PCR MagNa Pure LC Extraction Robot & Stratagene Mx3005.
FMDV Detection Points

867

- Cows mixed
- Pirbright qRT-PCR-Serum
- US RT-PCR-Serum
- Virus Isolation-Serum
- Foot lesions
- PCR-Milk
- Virus Isolation-Milk
BTY Titration Results

Whole Milk

Skimmed Milk
Milk samples collected from field cases from the UK 2007 outbreak were used as a positive cohort to evaluate diagnostic sensitivity.

Positive Cohort

<table>
<thead>
<tr>
<th>Sample</th>
<th>TaqMan EZ</th>
<th>Path-ID</th>
<th>Pirbright 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Ct</td>
<td>Average Ct</td>
<td>Ct</td>
</tr>
<tr>
<td>1 - 200017 (c27)</td>
<td>34.44</td>
<td>28.31</td>
<td>17.22</td>
</tr>
<tr>
<td>2 - 261883 300105</td>
<td>32.04</td>
<td>21.89</td>
<td>18.60</td>
</tr>
<tr>
<td>3 - 261883 700158</td>
<td>NEG</td>
<td>36.78</td>
<td>NEG</td>
</tr>
<tr>
<td>4 - 2616477 00036</td>
<td>32.5*</td>
<td>27.18</td>
<td>22.71</td>
</tr>
<tr>
<td>5 - 20027 261883</td>
<td>33.78</td>
<td>26.00</td>
<td>26.28</td>
</tr>
<tr>
<td>6 - SY003000369</td>
<td>36.23</td>
<td>24.37</td>
<td>21.16</td>
</tr>
<tr>
<td>7 - SY003000341</td>
<td>29.49</td>
<td>25.12</td>
<td>25.37</td>
</tr>
<tr>
<td>8 - 26164750069</td>
<td>25.59</td>
<td>23.93</td>
<td>25.74</td>
</tr>
<tr>
<td>9 - 261647 10030</td>
<td>NEG*</td>
<td>28.85</td>
<td>22.51</td>
</tr>
<tr>
<td>10 - 261883 300161</td>
<td>31.81</td>
<td>28.77</td>
<td>27.81</td>
</tr>
<tr>
<td>11 - 261883 400092</td>
<td>NEG*</td>
<td>34.00</td>
<td>29.22</td>
</tr>
<tr>
<td>12 - SG0704 01241</td>
<td>22.64</td>
<td>19.17</td>
<td>19.02</td>
</tr>
<tr>
<td>13 - 261883 500093</td>
<td>NEG*</td>
<td>23.87</td>
<td>23.99</td>
</tr>
</tbody>
</table>

* Indicates sample testing was repeated
Conclusions

• FMDV can be detected in whole milk, skimmed milk and the cell fraction, by all methods tested.
• FMDV was detected in milk before the onset of characteristic clinical signs.
• The greatest window for virus detection was by rRT-PCR in the milk up to 21 days post contact.
• Both rRT-PCRs detected virus for a longer period than seen in virus isolation.
• Data not included in this talk suggest that rRT-PCR of milk from a bulk tank in a large herd could detect a single infected cow in the early stages of infection.
• Milk could be an excellent sample type for the detection of FMDV and could be used for the development of a national FMD surveillance plan in the event of an outbreak.

Further Work

• Test samples from dairies in endemic countries.
Acknowledgements:

• Collaborators - Mangkey Bounpheng
 - Karissa Lemire
 - Amaresh Das
 - Diane Holder
 - Michael McIntosh

• Valerie Mioulet
• Don King
• Claudia Doel
• Miki Madi
• Satya Parida

• Isolation Unit Staff
• Sheila Wilsden
• Mandy Swan

IIAD, FADDL, DEFRA
Samples with high medium and low titers of FMDV were tested in serial dilutions.

Jersey milk revealing positive Ct at 250 fold to 30,000 fold dilutions

Inconclusive Ct at >1,000 fold dilution for the sample with the lowest titer and >700,000 fold dilution for the sample with the highest titer.

Detection from one study sample also yielded positive Ct up to a 100,000 fold dilution.

Milk production was reduced by no more than 50% on a given day.

Taken together this suggests that early in infection, rRT-PCR may reasonably detect a single infected cow from a herd size of 100 to 1,000 milking into a bulk tank.
qPCR Results

Whole Milk

Skimmed Milk
qPCR Results

Serum

- 825 Serum
- 951
- 108

Probangs

- 108 Probangs
- 867
- 951

- 825 probangs
- 867 Serum