USE OF SPECIFIC LLAMA ANTIBODIES FOR QUALITY CONTROL TESTING OF FMD VACCINES

Eva Perez-Martin
Cavtat, October 2014
FMDV particles: quantification and monitorization

Neutralizing antibodies

146S ✓
75S ✓
12S ✗

Quantification methods:

- Affinity chromatography, S-E chromatography, UV spectrophotometry, thermo fluor assay, sucrose density gradient:
 - 146S (inactivated vaccines)
 - Final production of a vaccine

- DAS ELISA based on VHH antibodies:
 Quantification of the content of antigen and integrity:
 - 146S (inactivated vaccines)
 - 75S (subunit vaccines)
 - 12S
 - in different steps of production (optimization of expression, storage conditions)
 - detection of antigen expressed at small scale: quick identification of new vaccine candidates
VHH llama Ab (from CVI, Lelystad)

Camel Heavy-Chain antibody

VHH or Nanobody

Conventional antibody

75 KDa

13 KDa

150 KDa
VHH llama Ab (from CVI, Lelystad)

Camel Heavy-Chain antibody

VHH or Nanobody

Conventional antibody

O1 Manisa

M170: 146S/75S
M3:12S
(Harmsen MM et al., 2011)

Asia 1

M332: 146S/75S
M3:12S
M98: 146/75S + 12S

SAT2

M377: 146S/75S
M311: 146/75S + 12S
VHH llama Ab (from CVI, Lelystad)

Camel Heavy-Chain antibody
- VHH or Nanobody
- 75 KDa

VHH or Nanobody
- 13 KDa

Conventional antibody
- Fab 50 KDa
- Fc
- ScFv 25 KDa
- 150 KDa

O1 Manisa
- M170: 146S/75S
- M3: 12S
- Harsen MM et al., 2011

Asia 1
- M332: 146S/75S
- M3: 12S
- M98: 146/75S + 12S

SAT2
- M377: 146S/75S
- M311: 146/75S + 12S

Homologous or heterologous double antibody sandwich elisa
- **Standard**: Sucrose purified antigen with a known quantification (UV260nm)
 - 146S elisa: intact antigen
 - 12S elisa: heat treated at 56°C for complete dissociation to 12S
- **Screening of antigen**: quantification by interpolation
O1 Manisa binders: M170 (146S) and M3 (12S)

Standard: O1Manisa BEI (0.5ng/ml)

Homolog sandwich elisas:
- M170 (146S) antigenic site I (GH-loop), trypsin-sensitive, neutralizing ab (Mateu and Verdaguer, 2004)
- M3 (12S) antigenic site II of VP2? (Mateu and Verdaguer, 2004)

- Signal in M170 (146S) elisa disappears when antigen is dissociated
- Signal in M3 (12S) elisa increases when antigen is dissociated

✓ Quantification of antigen by 146S elisa coincides with quantification by UV absorbance
✓ 50% of antigen is 12S but still, it is a good vaccine antigen (146S)

Batch discarded
Detection of O1Manisa VLPs by VHH:

Thermal stability

- %146S
- M170 (146S/75S)
- M3 (12s)
Detection of O1Manisa VLPs by VHH:

Thermal stability

![Thermal stability graph showing the stability of O1Manisa BEI, O1M mutant VLPs cell lysate, and O1M mutant VLPs sucrose purified at various temperatures and pH values.]

pH stability

![pH stability graph showing the stability of O1Man-BEI and O1Manisa mutant VLPs at different pH levels.]

www.pirbright.ac.uk
Asia1 VHHs binders (M332): 146S and 75S VLPs

qing

M332 146S

- M332 VHHs are subtype specific: 146S
- No cross-reaction with other serotypes

VLPs: cell lysates

- 75S Asia1 Shamir
 - Mut VLPs > wt VLPs
 - T.ni > sf9 insect cells

M3 12S

- 75S Asia1 Shamir
SAT2 VHHs binders (M377)

M377 (146S)

Polyclonal antiSAT2

Thermal stability: SAT2 wt and mutants
SAT2 VHHs binders (M377)

Cell supernatant: Eritrea and ZIM isolates

- 146S (M377F)
- Polyclonal ab

Detection of 146S SAT2 ZIM > Eritrea SAT2

SAT2 Egypt?
Other applications of VHHs

Control (no primary) IB11 Mab M3 VHH (12S) M170 VHH (146S)

Immunofluorescence on epithelial tissue: Cattle infected with O1Manisa FMDV intradermalingually at 3 dpi (Nick Juleff)
(Green: O1 Manisa)
(Blue: DAPI)

Rabbit antiO1Manisa M3 VHH (12S) M23 VHH (12S+146S)

IBRS2 cells IBRS2 cells Goat ZZR cells

IPMA on IB-R2 and goat epithelial ZZ-R cells infected with O1Manisa FMDV at MOI 0.5 for 3.5h
Other applications of VHHs

Immunofluorescence on monolayer

Sf9 cells infected with O1Manisa-His baculovirus at MOI 0.1

Red: O1Manisa
Blue: DAPI
Green: His

M23 VHH (12S+146/75S)

Anti-His Mab
<table>
<thead>
<tr>
<th>Serotype ab binders</th>
<th>Isolates</th>
<th>146S/75S VLPs</th>
<th>12S</th>
<th>Content and integrity of FMDV antigen</th>
</tr>
</thead>
</table>
| O | O1 Manisa
O Turkey
O UKG
O BFS | M170 VHH | M3 VHH | ☐ Inactivated vaccines
☐ Subunit vaccines |
| Asia1 | Asia1 Shamir | M332 VHH | M3 VHH | ☐ Antigen detected during the whole process of production
☐ Antigen detected even when produced at small-scale:
 ▪ Optimization of expression (cells, buffers, time of infection)
 ▪ Test the viability of modifications/mutations of antigen |
| SAT2 | SAT2 Zim
Eritrea SAT2
Egypt? | M377 VHH | - | ☐ Storage conditions |
Acknowledgements

Viral Immunology group
Bryan Charleston
Julian Seago
Nick Juleff
Miriam Windsor
Mohammed Doudo
Ben Jackson
Liz Reid
Marti Cortey
Fuquan Zhang

Pip Hamling
Claudia Doel

Michiel Harmsen
Aldo Dekker

OXFORD University
Division of Structural Biology
Claudine Porta
Dave Stuart
Abhey Kotecha

University of Reading
Ian Jones
Silvia Oliveiros

Supported by wellcome trust