Evaluating vaccination strategies to control foot-and-mouth disease: a model comparison study

Roche SE, Garner MG, Sanson RL, Cook C, Birch C, Backer JA, Dube C, Patyk KA, Stevenson MA, Yu ZD, Rawdon T, Gauntlett F

Epidemiology and Infection 2014, July 31:1-20
Introduction

- Vaccination is being recognised as an option for containing and eradicating FMD in previously disease-free countries
- For major exporting countries implications of vaccination, including management of vaccinated animals, will require careful consideration
- Simulation models ideal for situations where data is scarce but country specific context is vital
- Well designed collaborative studies can inform policy development
Study Objectives

• Compare vaccination strategies for FMD outbreak control
• What factors affect impact of vaccination
 – Time of deployment
 – Deployment strategy (outside-in, inside-out, …)
 – Size of vaccination zone
 – Approach to vaccination (Suppressive or Preventative)
• Simulate scenarios in different models and compare results
• Understand and explain the differences occurring between the scenarios
Model Comparison Approach

• Multiple countries and models participating
• Shared problem approach
 – All countries have same starting data
 – Multi-focal hypothetical outbreak
• Transmission parameters harmonised across models
 – Some compromises needed where models incompatible
• Comparison metrics for simulation results
 – Total number of infected premises (IPs)
 – Duration of outbreak (days)
 – Geographical distribution of IPs
Vaccination Strategies Investigated

<table>
<thead>
<tr>
<th>Vaccination Approach</th>
<th>Vaccination zone size (km)</th>
<th>Timing of Vaccine delay (days)</th>
<th>Species vaccinated</th>
<th>Retrospective (R) or Prospective (P)</th>
<th>Order of vaccine deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamping Out</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V1</td>
<td>SV</td>
<td>3</td>
<td>14</td>
<td>All<sup>a</sup></td>
<td>P</td>
</tr>
<tr>
<td>V2</td>
<td>SV</td>
<td>3</td>
<td>14</td>
<td>All</td>
<td>P</td>
</tr>
<tr>
<td>V3</td>
<td>SV</td>
<td>3</td>
<td>14</td>
<td>All</td>
<td>P</td>
</tr>
<tr>
<td>V4</td>
<td>SV</td>
<td>3</td>
<td>7</td>
<td>All</td>
<td>P</td>
</tr>
<tr>
<td>V5</td>
<td>SV</td>
<td>3</td>
<td>28</td>
<td>All</td>
<td>P</td>
</tr>
<tr>
<td>V6</td>
<td>SV</td>
<td>1</td>
<td>14</td>
<td>All</td>
<td>P</td>
</tr>
<tr>
<td>V7</td>
<td>SV</td>
<td>5</td>
<td>14</td>
<td>All</td>
<td>P</td>
</tr>
<tr>
<td>V8</td>
<td>SV</td>
<td>3</td>
<td>14</td>
<td>Cattle only</td>
<td>P</td>
</tr>
<tr>
<td>V9</td>
<td>PV</td>
<td>3-7</td>
<td>14</td>
<td>All</td>
<td>P</td>
</tr>
<tr>
<td>V10</td>
<td>SV</td>
<td>3</td>
<td>14</td>
<td>All</td>
<td>R</td>
</tr>
<tr>
<td>V11</td>
<td>PV</td>
<td>5-10</td>
<td>14</td>
<td>All</td>
<td>P</td>
</tr>
</tbody>
</table>
Results – Epidemic Size (Number of IPs)

Median (5-95) number of IPs

AusSpread
Netherlands
Exodis
InterSpread Plus
NAADSM

1 Km
Cattle Only

0 100 200 300 400 500 600 700

SO V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
Results – Epidemic Duration (Days)

Median (5-95) epidemic duration (days)

Control strategy

- AusSpread
- Netherlands
- Exodus
- InterSpread Plus
- NAADSM

1 Km
Cattle Only
Discussion

• All results are in the context of this specific outbreak
 – All vaccination scenarios result in significantly smaller and shorter outbreaks than stamping out alone
 – Certain vaccination scenarios are robust to substantial differences in models design

• Vaccination use has implications
 – Time to disease freedom declaration

• Implications of vaccinated animals in population
 – Tracking & identification of vaccinated animals
 – Animal products and by-products of vaccinated animals
 – Further economic impact assessment
Acknowledgments and Thanks

- We thank Kim Forde-Folle (US Department of Agriculture), Neil Harvey (University of Guelph), Naya Brangenberg (NZ Ministry for Primary Industries), Tom Smylie (Canadian Food Inspection Agency), and Katie Owen (NZ Ministry for Primary Industries) for providing policy advice and input throughout the project.

- The QUADS Epi-team would also like to acknowledge the government departments involved for continued support of this and other projects.