A Quantitative Approach to Determining Waiting Periods for FMD Freedom

Angus Cameron

AusVet

Conclusions

- Quantitative calculation of appropriate waiting periods is possible
 - Need to change standard used to assess surveillance
 - From surveillance sensitivity to probability of freedom
- Appropriate waiting periods depend on
 - □ Sensitivity of ongoing surveillance activities
 - Probability of introduction of infection
 - Use of vaccination

AusVet

Overview

- Waiting periods
- Surveillance standards
- Calculations
- Implications

AusVet

Waiting periods

- OIE Code for FMD
 - □ Periods of 3, 6, 12, 18, 24 months depending on situation
- What is the purpose?
- How were they determined?
- Are they correct?

AusVet

Purpose of waiting periods

- Allow disease to spread
 - □ Reach a detectable level (design prevalence)
 - □ Non-vaccinated non-immune population
 - Rapid spread, very short period required
 - Vaccinated population
 - Slower spread, may require more time
- Allow disease to be detected by surveillance
 - □ Ongoing surveillance (e.g. passive farmer reporting)
 - More time = more surveillance = more confidence

AusVet

Time and confidence in freedom

- Intuitive principles
 - 1. Old surveillance loses value
 - 2. Confidence accumulates over time
- How to describe these effects quantitatively?

Quantifying effects of time

- Decrease of value of old surveillance Example:
 - □ Serosurvey achieving 95% surveillance sensitivity
 - No positive animals detected
 - Scenario 1:
 - Completed one month ago
 - Are we confident that the population is free now?
 - □ Scenario 2:
 - Same survey conducted 5 years ago
 - Are we confident that the population is free now?

AusVet

Decay in confidence with time

- Due to risk of introduction of disease
- Perfect biosecurity
 - □ No loss in confidence

AusVet

Accumulation in confidence

- Ongoing surveillance activities
 - Passive farmer reporting
 - □ Abattoir surveillance
 - □ Active negative clinical reporting
- Individual observations
 - □ Relatively low sensitivity
- Longer waiting time
 - □ More observations, higher surveillance sensitivity

AusVet

Surveillance standards: Traditional approach

- Surveillance sensitivity
 - □ Pr(S+ | D+)
 - Probability of detecting at least on positive animal given that the population is infected at the design prevalence
 - Only standard used in OIE code
 - □ Sometimes called 'confidence'
 - □ Usually set at 95%

AusVet

Surveillance sensitivity

- Contributing factors
 - □ Sample size
 - Individual test sensitivity
 - Design prevalence
 - $\hfill \square$ Risk-based sampling
 - □ Does not capture effect of time

AusVet

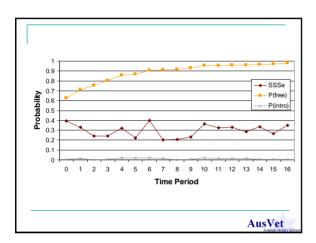
Surveillance standards: Alternative approach

- Probability of freedom
 - □ Pr(D- | S-)
 - Probability that the population is free from disease (at the design prevalence), given that surveillance found no positive animals
 - Calculated using Bayes' Theorem
 - Intuitively easier for regulators to understand

Probability of freedom

- Contributing factors
 - □ Surveillance sensitivity
 - Sample size, design prevalence, test Se, risk-based sampling
 - Multiple surveillance activities
 - e.g. serosurveillance + passive reporting + abattoir
 - □ Accumulation of historical evidence over **time**
 - □ Risk of introduction of disease over **time**

AusVet

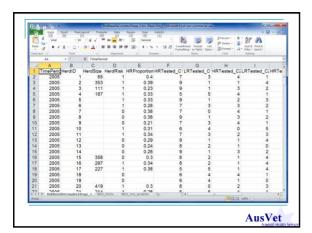

Calculation

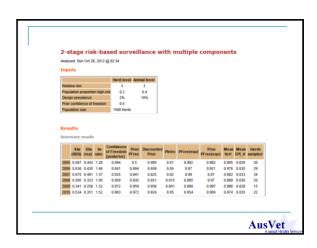
$$Pr(Free)_{t_{n+1}} = \frac{\left(1 - \Pr(Intro)\right) \times \Pr(Free)_{t_n}}{1 - SSe + \left(\Pr(Free)_{t_n} \times SSe\right)}$$

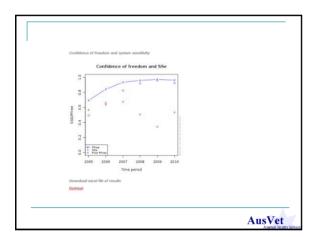
$$SSe = 1 - \prod_{k=1}^{n} (1 - CSe_k)$$

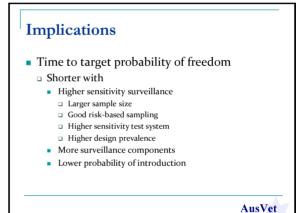
$$CSe = 1 - (1 - P^* \times Se)^n$$

AusVet




Tools for calculation


- Free on-line tool to do calculations
 - □ Multiple surveillance components
 - Multiple time periods
 - □ Herd-level data
 - □ Herd- and animal-level risk based sampling
- http://epitools.ausvet.com.au
 - □ Access currently limited while under development
 - $\hfill \square$ Will be made public on completion of project



Calculating appropriate waiting periods

- Set target probability of freedom
- Identify surveillance components contributing evidence of freedom
- 3. Estimate sensitivity of each component
- 4. Estimate probability of introduction
- Calculate time to achieve target

AusVet

Freedom with vaccination

- Effects of vaccination
 - □ Lower within-herd design prevalence
 - Lower sensitivity of clinical surveillance
- Result
 - □ Lower surveillance sensitivity
 - Longer waiting period required

Conclusions

- Quantitative calculation of appropriate waiting periods is possible
 - □ Need to change standard used to assess surveillance
 - From surveillance sensitivity to probability of freedom
- Appropriate waiting periods depend on
 - □ Sensitivity of ongoing surveillance activities
 - □ Probability of introduction of infection
 - Use of vaccination

AusVet

Acknowledgements

- Tony Martin
- Evan Sergeant
- Tripartite workshop participants
 - Turkey
 - Adil ADIGÜZEL
 Abdulnaci BULUT

 - Bulgaria
 - Pencho KAMENOV
 Tsviatko ALEXANDROV
 - Greece
 - Achilles SACHPATZIDISMaria TOPKARIDO
- EuFMD