Relation between antibody response and protection in FMD vaccine depends on vaccine quality

Aldo Dekker

Outline

- Correlation between antibody response and protection
 - Purpose
 - History of research
- Current study
 - 447 cattle sera
 - Forward logistic regression analysis
 - Relation between antibody response and protection in FMD vaccine depends on antigen and vaccine dose
- Best vaccine is the vaccine that induces the highest antibody response

Correlation between antibody response and protection

- Use for vaccine release
 - Producers develop own criteria
 - Standard interval vaccination and measuring antibody response
- Use for post vaccination monitoring
 - Variation between producers
 - Different intervals vaccination and sampling

Historical analysis Ab response protection

- Loeffler and Frosch, 1897
 - Passive antibodies can protect against infection
- Van Bekkum et al. 1969
 - 566 cattle
 - 2 weeks post vaccination type C (n=424)
 - 9-49 months post vaccination 3 serotypes (n=142)
- Pay and Hingley, 1987
 - 360 vaccinated and challenged cattle
 - 3 weeks post vaccination
 - 3 serotypes
- Eblé et al. 2009
 - Intradermal vaccination better protection at lower Ab dose

Results van Bekkum et al. 1969

- Relation between Ab and protection
- Protection 2 weeks after vaccination at a lower Ab titre compared to 9 - 49 months after vaccination
- Cattle sampled at 9 - 49 months after last vaccination had been vaccinated 2 - 10 times

Open Session of the EuFMD: 2012, Jerez de la Frontera, Spain
Appendix 26

Results van Bekkum et al. 1969
Frequency distribution Ab titres

- Titres 2 weeks higher then 9 to 49 months post-vaccination
- 2 weeks post vaccination
- 9 to 49 months post vaccination

Intradermal versus intramuscular vaccination

- Pigs
- Difference in relation between Ab titre and protection against virus shedding (mouth swabs)
- Intradermal vaccination (in red) better protection at low Ab dose

Shelf life: Indication for degradation of 146S

Goris et al. 2008 (Vaccine 26: 3432-3437)
- Clear decrease in vaccine efficiency in 10 months
- Experimental vaccine
- No data available from commercial producers

Little decrease in Ab titre

<table>
<thead>
<tr>
<th>Trial</th>
<th>Protection</th>
<th>LPB ELISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>mean titre</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>2.50</td>
</tr>
<tr>
<td>2</td>
<td>93.8</td>
<td>2.66</td>
</tr>
<tr>
<td>3</td>
<td>93.8</td>
<td>2.15</td>
</tr>
<tr>
<td>4</td>
<td>81.3</td>
<td>2.21</td>
</tr>
<tr>
<td>5</td>
<td>87.5</td>
<td>2.38</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Confidence in indirect assessment of foot-and-mouth disease vaccine potency and vaccine matching carried out by liquid phase ELISA and virus neutralization tests.

Robledo, B., La Torre, J., Maradei, E., Perez Beascoechea, C., Perez, A., Saki, C., Smitbaert, E., Fondevila, N., Palma, E., Goris, N., De Clercq, K., Maltton, N.

Lelystad vaccine registration dossier

- 447 cattle used in challenge experiments
- 240 cattle used in potency tests (3 times 5 cattle vaccinated with 1, ¼ and 1/16th dose, challenged 4 weeks after vaccination
- 9 different strains
 - A Iran 87, A TUR/14/98, A=Holland, A=Iraq, A=Cruziero, Asia-1 Shamir, O Algeria, O:BFS, O:Manisa
- VNT titre obtained using primary porcine kidney cells
- Forward logistic regression analysis
 - Titre, log(dose), µg Ag, µg Ag in full dose, strain

Forward logistic regression analysis

- Protection as result variable
- Various explanatory variables
 - Titre, log(dose), µg Ag, µg Ag in full dose, strain
- Selection based on AIC

Univariate analysis
- Antibody titre best predictor of protection
- Logarithm of the dose second best predictor
- Higher dose induces a higher antibody response

Open Session of the EuFMD: 2012, Jerez de la Frontera, Spain
Forward logistic regression analysis

- Multivariate model
 \[\text{Logit(protection)} = \text{Antibody titre} + \text{strain} + \mu g \text{ per full dose} + \log(\text{dose}) + \text{strain:titre} \]
- For each μg of extra antigen in the vaccine the antibody titre that protected 50% of the cattle was reduced 0.04 \((\text{10} \log)\)
- Cattle vaccinated with a 4 fold higher dose need a 0.08 \((\text{10} \log)\) less antibody titre for 50% protection
- When analysing 240 results from potency tests interaction is absent and each batch has a different result

O Manisa antibody titre response curve

Conclusion

- Complete replacement of standard potency tests is not possible
 - Each vaccine producers should establish their own criteria based on protection experiments and use serology for batch release
 - Monitoring antibody response is a good method for post vaccination monitoring
 - Higher antibody titre correlate with higher level of protection
 - Better vaccine induces higher antibody titres and protects already at a lower antibody titre