Molecular epidemiology of foot-and-mouth disease viruses in Southern Africa

Christopher Kasanga1, Jemma Wadsworth2, Nick Knowles2, Misheck Mulumba3, Raphael Sallu4, Mmeta Yongolo4, Philemon Wambura1, Mark Rweyemamu1 and Donald King2

1Sokoine University of Agriculture, Tanzania; 2Pirbright Institute, UK; 3SADC Secretariat, Botswana; 4TVLA, Tanzania
FMD in Southern Africa

• FMD is endemic in nearly all countries of sub-Saharan Africa

• First FMD outbreak reports ~ 1950s (in many Southern African countries)

• Animal affected: Cattle, Pigs, small ruminants, wild animals

• Six (A, O, C, SAT1, SAT2 & SAT3) of seven FMDV serotypes have been reported in the region

• Outbreaks occur in different geographic regions

• Factors associated with outbreaks are not clearly known

• Epidemiology of FMD is complicated by involvement of wildlife
The 7 regional FMD virus pools

- Each pool has specific viral lineages
- Tailored vaccines/diagnostics may be appropriate
Hypotheses and justification

Key research Qn: What factors contribute to FMD endemicity in Southern Africa, and what options exist for its risk management?

Hypotheses:
- Molecular characteristics of FMD virus (FMDV) are determinants of FMD endemicity
- Molecular approaches contribute to better options for FMD control strategies

Justification and importance:
Factors for endemicity, serotype (+ topotype/genotype) distribution & rational control options have not been clearly investigated.
FMD study areas in Southern Africa

Current focus countries:
- Tanzania
- Zambia
- Mozambique
- Malawi

Focus areas in Tanzania

Focus areas in Zambia
Samples and analysis

- Tissue epithelia and probang samples following FMD outbreaks were collected

- Lab analyses for FMDV were conducted by VI, Antigen ELISA, real-time RT-PCR and sequencing of the VP1 gene

- Descriptive statistics for serotype detection, genotype/topotype and distribution

- Phylogenies of VP1 sequences were determined by Neighbor-joining method
<table>
<thead>
<tr>
<th>Serotype</th>
<th>Years detected</th>
<th>Countries in the region</th>
</tr>
</thead>
</table>
Phylogenetic trees

Serotype “A”

Serotype “O”

Kasanga et al., 2015 - TBED
Phylogenetic trees

Serotype “SAT1”

Serotype “SAT2”

Kasanga et al., 2015 - TBED
Phylogenetic tree: serotype SAT 1-3 from buffalo

SAT 1
- SAT1/RV/11/37 kudu (AY593839)
- SAT1/AM/5/66 (AY593846)
- SAT1/ROO/5/66 (AY593846)
- SAT1/MOZ/P13/2010 buffalo B16 (KF219693)
- SAT1/T15/71 (HQ267519)
- SAT1/BEC/1/48 (AY593838)
- SAT1/BOT/1/68 (AY593845)
- SAT1/BOT/1/77 (KF219686)
- SAT1/UGA BUFF/21/70 buffalo (KF219682)
- SAT1/UGA/1/97 buffalo (AY442012)
- SAT1/ETH/3/2007 (FJ798154)
- SAT1/NIG/11/75 (AF431711)
- SAT1/UGA/13/74 (AY442010)
- SAT1/ISR/4/62 (AY593844)
- SAT1/SUD/3/76 (DQ009725)

SAT 2
- SAT2/CAR/8/2005 (JK570616)
- SAT2/SAU/6/2000 (AF367135)
- SAT2/RWA/1/2000 (AF367134)
- SAT2/ZAI/1/74 (DQ009737)
- SAT2/UGA/51/75 (AY343963)
- SAT2/KEN/3/57 (AJ251473)
- SAT2/KEN/2/84 (AF343941)
- SAT2/UGA/19/98 (AY343969)
- SAT2/ZAI/1/82 (AV367100)
- SAT2/GHA/2/90 (AF479415)
- SAT2/GNI/2/75 (AF367139)
- SAT2/ANG/4/74 (AF479417)
- SAT2/ZAM/5/81 (EF134951)
- SAT2/ZAM/7/83 (AF367100)
- SAT2/UGA/19/98 (AY343969)
- SAT2/ZAI/1/82 (AV367100)

SAT 3
- SAT3/SA/57/59 (AY593850)
- SAT3/KNP/10/90 buffalo (AF286347)
- SAT3/BEC/20/61 (AY593851)
- SAT3/BEC/1/65 (AY593853)
- SAT3/ZIM/25/91 UR-5 buffalo (DQ009740)
- SAT3/ZAM/2/96 MUL-4 buffalo (DQ009741)
- SAT3/UGA/27/70 buffalo (KF219685)
- SAT3/UGA/2/97 buffalo (DQ009742)

Note: Novel SAT1-3 genotypes detected from buffalo in Mozambique
Discussion/observations

• Serotypes A, O, SAT1 and SAT2 are the main cause of FMD in cattle in Southern Africa

• Serotypes SAT1, SAT2 and SAT3 are the main cause of FMD in livestock-wildlife interface areas of Tanzania, Zambia and Mozambique

• FMDV SATs recently detected in Tanzania and Zambia are genetically related to lineages and topotypes from East and South Africa, with a newly emerged unassigned type SAT1 topotype in Mozambique

• SAT1 outbreaks occur in waves with varied severity in time and space

• Understanding the transmission dynamics, genetic and antigenic characteristics of circulating FMDV is a pre-requisite for control of FMD in sub-Saharan region
Gaps and prioritized research areas

• In-depth genetic and antigenic characterisation of outbreak viruses is required in livestock-wildlife interface and non-interface areas - WGS
 ✓ vaccination options ~ vaccine matching and selection of candidate strains

• Modelling FMD outbreaks and risk mapping
 ✓ Spatio-temporal distribution of FMDV serotypes
 ✓ Animal movements in relation to FMD outbreaks and spread

• Vaccine suitability- matching, purity and potency

• Transmission dynamics of SATs and non-SAT viruses in livestock-wildlife interface areas
 ✓ role of buffalo (+ other wild animals) in virus transmission

• Rapid, sensitive and field-deployable diagnostic/surveillance systems/methods
On-going and future research

• To use sequence data for designing field-deployable and simple FMDV diagnostic assays

• Whole genome sequencing to investigate FMDV evolutionary characteristics, and clarify molecular determinants for FMDV endemicity in the region

• Modelling of FMD outbreaks in different geographic areas

• Investigation on genetic and antigenic characteristics of circulating FMDV strains in order to define the appropriate control of FMD in the region
Acknowledgements

Research team members:
Norah Ndusilo, Sengiyumva Kandusi, Arafa Rupia, Antipachius Msomi and Albert Manyesela, at Sokoine University of Agriculture
Raphael Sallu and Mathias Mkama at Tanzania Veterinary Laboratory Agency

WRLFMD at The Pirbright Institute:

Financial support: Wellcome Trust through grant WT104017MA to CJK and SACIDS

Institutions:
Asante sana