

GOOD CORRELATION BETWEEN VACCINE MATCH IN POTENCY TESTS AND r_1 -VALUE

A. Dekker, A.B. Ludi

Objective

- How should we interpret r₁-values
- Is the current traffic light reporting adequate?

No we should take vaccine quality into account

South-America

- Old vaccine strains
 - O₁ Campos Br/58
 - A₂₄ Cruzeiro Br/55
- Cross-protection against newly evolved isolates

Duque, H., Naranjo, J., Carrillo, C., Burbano, A., Vargas, J., Pauszek, L., Olesen, I., Sanchez-Vazquez, M. J., Cosivi, O., Allende, R. M. 2016. Protection induced by a commercial bivalent vaccine against Foot-and-Mouth Disease 2010 field virus from Ecuador. Vaccine 34(35); 4140-4144.

Cross-protection against strains from another continent

Galdo Novo, S., Malirat, V., Maradei, E. D., Pedemonte, A. R., Espinoza, A. M., Smitsaart, E., Lee, K. N., Park, J. H., Bergmann, I. E. 2018. Efficacy of a high quality O1/Campos footand-mouth disease vaccine upon challenge with a heterologous Korean O Mya98 lineage virus in pigs. Vaccine 36(12); 1570-1576.

Type A good protection even with low r₁-value

Virus	A 22 Irak	A 24 Cruzeiro	A Iran 96	A Iran 99	
A 22 Irak	>32 PD ₅₀	3 PD ₅₀	r1 = 0.09 6 PD ₅₀	r1 = 0.04 4 PD ₅₀	
A 24 Cruzeiro	n.d.	14 PD ₅₀	n.d.	n.d.	
A Iran 96	r1 = 0.1 2 PD ₅₀ 8 PD ₅₀	n.d.	>32 PD ₅₀	r1 = 0.12 11 PD ₅₀	
A Iran 99	r1 = 0.1 14 PD ₅₀	n.d.	r1 = 0.23 19 PD ₅₀	>32 PD ₅₀	

A22 vaccine – A Egypt 06:

Cross-protection

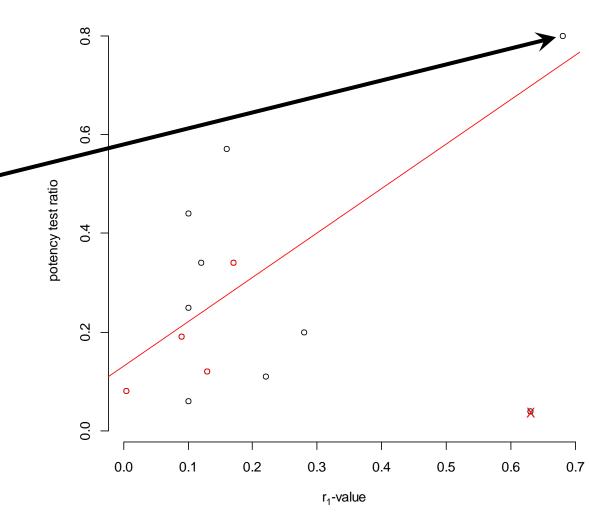
- Good vaccine should provide cross-protection
- Test for cross-protection
 - Potency test with homologous challenge (serology?)
 - Potency test with heterologous challenge

Material and methods

- Literature search on quantitative cross-protection studies
- Calculate potency ratio

• Average and 95% CI of the r_1 -values from same topotype (TPI)

Results


- Scopus search resulted in 53 papers of which 5 were valid
- 3 additional studies found
- Several experiments with homologous potency
 >32 PD₅₀/dose
- One study reported the antigen amount needed for $1\,\mathrm{PD}_{50}$, not the volume (excluded from the regression)
- Not all combinations of vaccine and field strain tested at TPI

Good relation potency ratio r₁-value

- p = 0.01
- Slope 0.9
- R-squared = 0.43
- High leverage

More studies are needed Include strains with r_1 -value = 1?

Serotype	species	Vaccine strain	Challenge strain	Potency ratio	r ₁ -value	95% CI	
А	Pig	A/WH/CHA/09	A/GDMM/CHA/2013	0.8	0.68	NA	NA
0	Cattle	O Manisa	O Campos	0.04	0.63		
Α	Cattle	A ₂₂ IRQ	A Iran 96	<0.19	0.09	0.06	0.15
Α	Cattle	A ₂₂ IRQ	A Egypt 06	<0.34	0.17	0.04	0.70
Α	Cattle	A ₂₂ IRQ	A Iran 99	<0.12	0.13	NA	NA
Α	Cattle	A ₂₂ IRQ	A ₂₄ Cruziero	<0.08	0.004	0.000	0.043
Α	Cattle	A Iran 99	A ₂₂ IRQ	<0.44	0.1	NA	NA
Α	Cattle	A Iran 99	A Iran 96	<0.57	0.16	NA	NA
Α	Cattle	A Iran 96	A ₂₂ IRQ	<0.06	0.1	NA	NA
Α	Cattle	A Iran 96	A ₂₂ IRQ	<0.25	0.1	NA	NA
Α	Cattle	A Iran 96	A Iran 99	<0.34	0.12	NA	NA
О	Cattle	O Manisa	O/ALG/3/2014	0.2	0.28	0.09	0.87
Α	Cattle	A MAY/97	A IRN 22/2015	ND	0.19	0.12	0.30
SAT2	Cattle	SAT2 SAU/00	SAT2 BOT	0.01	ND	NA	NA
SAT2	Cattle	SAT2 SAU/00	SAT2 LIB/40/2012	0.11	0.22	NA	NA

Consequences

- 3 PD₅₀/dose against the outbreak strain is sufficient
- If r_1 -value is 0.1 \rightarrow potency ratio is 0.22

- Vaccine should have a homologous potency of:
 - > 14 PD₅₀/dose

Conclusion

- r₁-values correlate with protection
- Can we reduce variation in r₁-value?

Advise on vaccine strain should take vaccine quality

into account

