

ASSESSMENT OF FMD VACCINES IN MONGOLIA AND THE ROLE OF BACTRIAN CAMELS

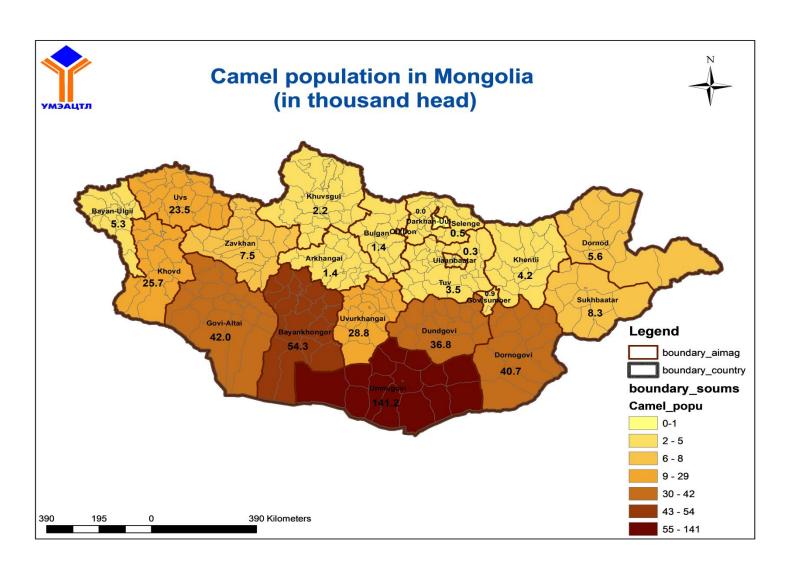
Gerelmaa Ulziibat, Nick Lyons and Anna Ludi

STATE CENTRAL VETERINARY LABORATORY
GENERAL AGENCY FOR VATERINARY SERVICE IN MONGOLIA

29 October 2018 Puglia, Italy

CONTENTS

Section 1:


- 1. Brief introduction about Mongolia and Mongolian Camels
- 2. Previous reports of camels affected by FMD in previous years
- 3. Clinical signs in camel in 2018
- 4. Result of laboratory tests

Section 2:

- 6. Objective of PVM studies
- 7. Results of PVM studies (highlight s for camel)
- 7. Conclusion
- 8. Future studies

DISTRIBUTION OF BACTRIAN CAMELS

HISTORY OF FMD FOR CAMEL IN MONGOLIA

Nº	Year (FMD outbreak)	Affected species	Clinical signs	Diagnosis
1	1963-1974	Cattle, sheep, goat, gazelle and camel	Lesions in mouth and feet	By symptoms
2	2000	Cattle, sheep, goat, gazelle and camel	Lesions in mouth and feet	Serology test
3	2004	Cattle, sheep, goat, gazelle and camel	Lesions in mouth and feet	NSP and Ag ELSIA and RT-PCR
4	2010	Cattle, sheep, goat, gazelle and camel	Lesions in mouth and feet	NSP and Ag ELSIA and RT-PCR
5	2017-2018	Cattle, sheep, goat, gazelle and camel,	Lesions in mouth and feet	NSP, Ag ELISA, RT- PCR and Virus isolation

LESIONS IN MOUTH IN 2018

LAMENEES ON THE FRONT FEET

Lesion in feet and it was easier to detach

FMD CLINICAL SIGNS IN CAMEL IN 2010

The detaching of the soles of the feet

DIAGNOSIS FOR CAMEL IN PREVIOUS YEAR

					Lahorat	ory tosts	•
Year	Origin	Number of herd	Number of camel with clinical signs	NSP ELISA	Ag ELISA	ory tests	Virus isolation
2001-1	Dornod Bayantumen	2	6	3	0	0	0
2004-1	Sukhbaatar Uulbayan	2	8	5	0	0	0
2010-10	Dornod Matad	30	15	3	6	5	0
2010-11	Khentii Bayankhutag	40	5	2	1	1	0
2014-1	Sukhbaatar Erdenetsagaan	18	9	4	0	0	0

All outbreaks were caused by FMD virus serotype O

DIAGNOSIS FOR CAMEL IN 2018

		-	Laboratory tests					
Nº	Origin	Number of camel	NSP	Ag ELISA	RT-PCR	Virus isolation		
1	Dundgovi	13	5	8	13	13		
3	Dornogovi	2	1	2	2	1		
4	Umnugovi	9	5	1	2	1		

It is first time to isolate FMDV from Mongolian Bactrian camel

RESULT OF FMDV FOR BACTRIAN CAMEL

FAO World Reference Laboratory for FMD Genotyping Report

page 3/

Virus sample name: MOG/2/2018

Sender reference: LFBK-34 FMDV Camel No.1 Virus-1

Location of origin: Gurvansaikhan, Dundgovi

Country of origin: Mongolia

Date of collection: 03/01/2018

Host species:

Serotype: O

Topotype: ME-SA

Lineage: Ind-2001

Sublineage:

Sequence length: 633

Ambiguities: 0

Material submitted for sequencing: BTy1

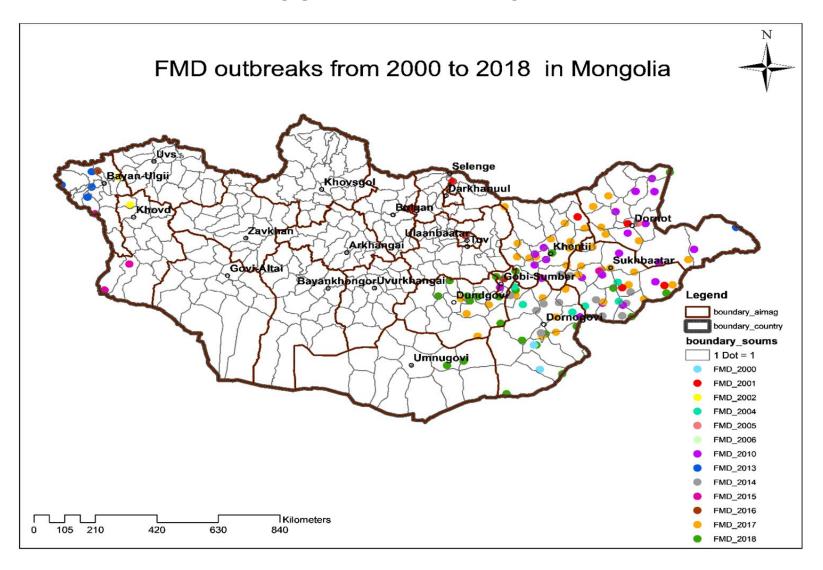
Harvest date of material: 29/08/2018

Primers: O-1C244F/EUR-2B52R; O-1C272F/EUR-2B52R; FMD-3161F/FMD-4

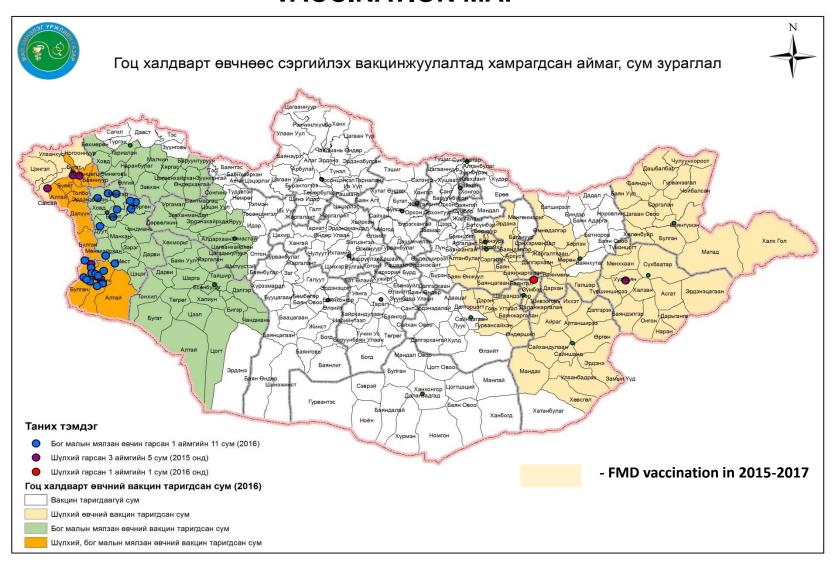
Received for sequencing: 07/09/2018

Activate

SURVEILLANCE FOR CAMEL IN 2018


	Number	Number	Lal	boratory test		
Origin	of herder	of herd	Number of camel	NSP ELISA	Real-Time PCR	Time
						March,2018
Dundgovi	2	265	26	12	5	In outbreak
						zone
						March,2018
Umnugovi	2	245	26	12	6	In outbreak
						zone
						March,2018
Dornogovi	1	60	30	10	3	In outbreak
						zone
						June,2018
Dundgovi	5	385	50	0	0	In suspective
						zone
						June,2018
Umnugovi	10	580	120	0	0	In suspective
						zone
						June,2018
Dornogovi	8	240	38	0	0	In suspective
						zone
		•			-	

SECTION 2: POST-VACCINATION MONITORING (PVM)


FMD OUTBREAK IN RECENTLY

VACCINATION MAP

FMD IMMUNOGENICITY STUDIES

- Objective: The following study is recommended for implementation in Mongolia at the earliest opportunity to establish if currently procured vaccines are likely to be of sufficient quality for FMD control. The focus of these investigations is on cattle, sheep and camel.
- Material and methods: Small-scale immunogenicity studies were useful to indicate if a purchased vaccine meets basic requirements regarding quality and are likely to confer protection to strains recently isolated from Mongolia.
 - -status- animals involved free from FMDV and antibodies, not vaccinated against FMD; -
 - age six to nine months;
 - sex immaterial

VACCINE STRAIN AND FMDV ISOLATES IDENTIFICATION

ID of Vaccine	Adjuvants of vaccine	IGStudy Group	Strains of virus in vaccine	FMD virus isolates used for VNT	FMDV lineage
Vaccine-1	Oil			O/MOG/4/2015	SEA Mya-98
ARRIAH	(Type O and A)	1	O/MESA/PanAsia	O/MOG/13/2017	MESA PanAsia
Vaccine-2	Aqueous	2	A/Asia/Sea-97	O/MOG/14/2017	MESA Ind2001d
ARRIAH	(Type O and A)	2		A/MOG/1/2016	ASIA Sea-97

A following protocol is given in the FAO/OIE Post Vaccination Monitoring Guidelines which is summarised here:

Vaccination protocol:

Species	Dose of vaccine	Number of animals	Number of vaccinated animal	Number of non- vaccinated	Number of boosted animal
Cattle	2ml	12	10	2	5
Sheep	1ml	12	10	2	5
Camel	2ml	6	5	1	3

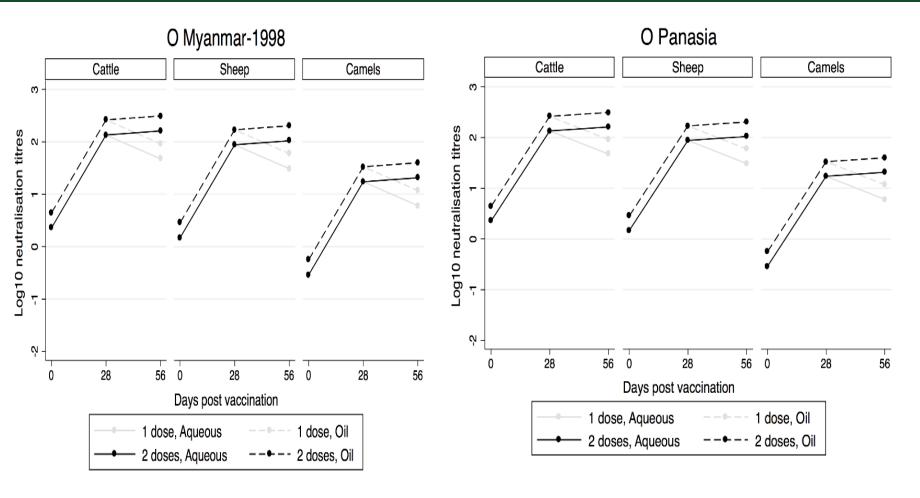
	Day
	0
	14+BD
Blood sampling	28
Blood sampling	56
	112
	180
	270

Blood sample collected after first vaccination 112, 180, 270 days to continue this

LABORATORY TESTING

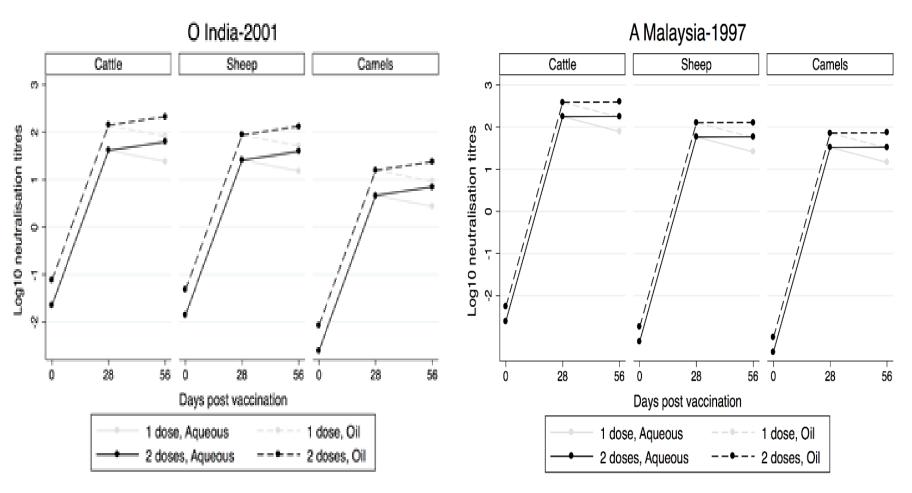
- All samples tested by NSP antibody ELISA (IDVet, France) to provide evidence that exposure did not occur during the study period
- All NSP negative samples tested by VNT (at WRLFMD, Pirbright) to the vaccine strains and a representative strain of the appropriate lineage isolated from the field

SUMMARY OF VNT RESULT


(Oil and aqueous vaccine)

Vaccine	Species	Species DPV -	Serotype				
			01	O2	O3	Α	
Oil		28	0/5	1/5	0/5	4/5	
	Camel	56	0/5	0/5	0/5	2/5	
Aqueous		28	1/5	2/5	0/5	5/5	
		56	0/5	0/5	0/5	2/5	

Vaccine adjuvant	Species	Species DDV		Serotype				
		es DPV	01	02	О3	A		
Oil	Cattle	28	10/10	10/10	9/10	9/10		
Oii		56	9/10	9/10	8/10	9/10		
Aqueous	Cattle	28	9/10	8/10	4/10	7/10		
		56	7/10	8/10	5/10	7/10		


Summary of the number of positive animals by VNT for each vaccine at 28 and 56 days post vaccination

- At day 28, the response to oil based vaccines was significantly higher than aqueous based vaccines for O PanAsia and O India 2001 after adjusting for species. For O Mya-98 and A May-97 there was no difference at day 28.
- At day 56, the response to oil based vaccines was higher for all strains irrespective of species

- At day 28, sheep had significantly lower titres than cattle adjusted for vaccine type used for all strains except O India 2001 although the differences were marginal
- After two doses, there was only a significantly lower titre seen with A Sea-97.

CONCLUSION

- 1. Titres were significantly lower for camels (after adjusting for vaccine type and number of doses given).
- 2. Sheep tended to have lower titres compared to cattle after a single dose, being similar after two doses
- 3. At day 56, the response to oil based vaccines was significantly higher that aqueous based vaccines (adjusted for species and number of doses administered).
- 4. Significantly higher titres were seen at day 56 when a second dose was given at day 28 (adjusted for species and vaccine type)
- 5. Bactrian camel is infecting by FMD in naturally.

FUTURE STUDIES (FOR BACTRIAN CAMEL)

 We need to more work is done to elucidate the role of camels such as through a structured serosurvey in countries that have bactrian camels (epidemiology of FMD).

 Also we need to some work to optimise vaccination dose for camel.

Thank you for your attention

