Food safety and quality
| share
 

OECD Unique Identifier details

MON-941ØØ-2
Commodity: Canola / Oilseed rape / Rape Seed
Traits: Dicamba tolerance
Australia
Name of product applicant: Bayer CropScience
Summary of application:

Health Canada(*) has received an application from Bayer CropScience on behalf of Monsanto Canada ULC to conduct a pre-market safety assessment for food derived from the genetically modified (GM) herbicide-tolerant canola line MON 94100 (hereafter referred to as MON 94100), with the OECD Unique Identifier MON-94100-2. This line has herbicide tolerance to dicamba (3,6-dichloro-2-methoxybenzoic acid). Dicamba is used to control annual and biennial weed species and suppress the growth of perennial broadleaf weeds and woody plant species. Tolerance to dicamba is achieved through expression of a dicamba mono-oxygenase (DMO) protein encoded by a gene from Stenotrophomonas maltophilia. The DMO protein rapidly demethylates dicamba to the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA). It is likely that MON 94100 will be combined with other approved canola lines through traditional breeding methods to create commercial products with tolerance to multiple herbicides, insect protection, or other traits offering broader grower choice, continued weed control durability, crop protection, and increased yield. Canola line MON 94100 was primarily developed for agriculture in North America. At the time of assessment, approval for commercialisation in Australia or New Zealand had not yet been sought. If approved, food derived from this line may enter the Australian and New Zealand food supply as imported food products. A commercial trade name for MON 94100 has not yet been determined.


(*) This was assessed as part of an assessment sharing program between FSANZ and Health Canada. For further details, visit the FSANZ site GM food safety assessment sharing (https://www.foodstandards.gov.au/science/international/Pages/GM--food-safety-assessment-sharing.aspx).

Upload:
Date of authorization: 22/07/2021
Scope of authorization: Food
Links to the information on the same product in other databases maintained by relevant international organizations, as appropriate. (We recommend providing links to only those databases to which your country has officially contributed.): OECD BioTrack database
Summary of the safety assessment (food safety):
Upload:
Where detection method protocols and appropriate reference material (non-viable, or in certain circumstances, viable) suitable for low-level situation may be obtained:
Relevant links to documents and information prepared by the competent authority responsible for the safety assessment: A1216 - GM Food derived from herbicide-tolerant canola line MON94100
GM food safety assessment sharing
Upload:
Authorization expiration date (a blank field means there is no expiration date)
E-mail:
Organization/agency name (Full name):
Food Standards Australia New Zealand
Contact person name:
Website:
Physical full address:
Level 4, 15 Lancaster Place, Majura Park ACT 2609, Australia
Phone number:
+61 2 6271 2222
Fax number:
+61 2 6271 2278
Country introduction:

Food Standards Australia New Zealand (FSANZ) is the regulatory agency responsible for the development of food standards in Australia and New Zealand. The main office (approximately 115 staff) is located in Canberra (in the Australian Capital Territory) and the smaller New Zealand office (approximately 10 staff) is located in Wellington on the North Island.

Useful links
Relevant documents
Stacked events:

FSANZ does not: Separately assess food from stacked event lines where food from the GM parents has already been approved; Mandate notification of stacked events by developers; Notify the public of stacked event ‘approvals’; List food derived from stacked event lines in the Code, unless the stacked event line has been separately assessed as a single line e.g. Application A518: MXB-13 cotton (DAS-21023-5 x DAS-24236-5)

No separate approval or safety assessment is necessary for foods derived from a stacked GM line that is the result of traditional breeding between a number of GM parent lines for which food has already been approved. Food from the parent lines must be listed in the Australia New Zealand Food Standards Code. The parent lines may contain any number of different genes. If food from any of the GM parent lines has not been approved, then a full pre-market safety assessment of food from the stacked line must be undertaken.

No separate approval is required for food derived from a line that is the product of a GM line, for which food has been approved, crossed traditionally with a non-GM line.

Where a single line containing a number of genes has been produced as a result of direct gene technology methods (rather than traditional crossing) then food derived from the line must undergo a full pre-market safety assessment before approval can be given

Contact details of the competent authority(s) responsible for the safety assessment and the product applicant:

Food Standards Australia New Zealand (FSANZ) (http://www.foodstandards.gov.au)

Canada
Name of product applicant: Bayer CropScience Inc.
Summary of application:

Bayer CropScience Inc. has developed a genetically modified Brassica napus L. (canola) variety which exhibits tolerance to the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid).


MON 94100 was developed through the introduction of a dmo gene encoding a dicamba mon-oxygenase (DMO). This gene and its corresponding trait have been previously evaluated by Health Canada in several genetically modified (GM) crop lines including Herbicide Tolerant HT4 Maize - MON 87429 (Health Canada, 2020), Herbicide Tolerant Maize - MON 87419 (Health Canada, 2016), Dicamba and Glufosinate Tolerant Cotton - MON 88701 (Health Canada, 2014), and Dicamba Tolerant Soybean - MON 87708 (Health Canada, 2012).

Upload:
Date of authorization: 23/04/2021
Scope of authorization: Food
Links to the information on the same product in other databases maintained by relevant international organizations, as appropriate. (We recommend providing links to only those databases to which your country has officially contributed.): OECD BioTrack Product Database
Summary of the safety assessment (food safety):
Please see decision document weblink.
Upload:
Where detection method protocols and appropriate reference material (non-viable, or in certain circumstances, viable) suitable for low-level situation may be obtained:
Relevant links to documents and information prepared by the competent authority responsible for the safety assessment: Novel Foods Decision Document
Upload:
Authorization expiration date (a blank field means there is no expiration date)
E-mail:
Organization/agency name (Full name):
Health Canada
Contact person name:
Neil Strand
Website:
Physical full address:
251 Sir Frederick Banting Driveway, Tunney's Pasture, PL 2204A1
Phone number:
613-946-1317
Fax number:
Country introduction:

Federal responsibility for the regulations dealing with foods sold in Canada, including novel foods, is shared by Health Canada and the Canadian Food Inspection Agency (CFIA). Health Canada is responsible for establishing standards and policies governing the safety and nutritional quality of foods and developing labelling policies related to health and nutrition. The CFIA develops standards related to the packaging, labelling and advertising of foods, and handles all inspection and enforcement duties. The CFIA also has responsibility for the regulation of seeds, veterinary biologics, fertilizers and livestock feeds. More specifically, CFIA is responsible for the regulations and guidelines dealing with cultivating plants with novel traits and dealing with livestock feeds and for conducting the respective safety assessments, whereas Health Canada is responsible for the regulations and guidelines pertaining to novel foods and for conducting safety assessments of novel foods.

The mechanism by which Health Canada controls the sale of novel foods in Canada is the mandatory pre-market notification requirement as set out in Division 28 of Part B of the Food and Drug Regulations.

Manufacturers or importers are required under these regulations to submit information to Health Canada regarding the product in question so that a determination can be made with respect to the product's safety prior to sale. The safety criteria for the assessment of novel foods outlined in the current guidance document (i.e. Canadian Guidelines for the Safety Assessment of Novel Foods) were derived from internationally established scientific principles and guidelines developed through the work of the Organization for Economic Cooperation and Development (OECD), Food and Agriculture Organisation (FAO), World Health Organisation (WHO) and the Codex Alimentarius Commission. These guidelines provide for both the rigour and the flexibility required to determine the need for notification and to conduct the safety assessment of the broad range of food products being developed. This flexibility is needed to allow novel foods and food products to be assessed on a case-by-case basis and to take into consideration future scientific advances.

Useful links
Relevant documents
Stacked events:

Food: Consistent with the definition of "novel food" in Division 28 of the Food and Drug Regulations, the progeny derived from the conventional breeding of approved genetically modified plants (one or both parents are genetically modified) would not be classified as a novel food unless some form of novelty was introduced into such progeny as a result of the cross, hence triggering the requirement for pre-market notification under Division 28. For example, notification may be required for modifications observed in the progeny that result in a change of existing characteristics of the plant that places those characteristics outside of the accepted range, or, that introduce new characteristics not previously observed in that plant (e.g. a major change has occurred in the expression levels of traits when stacked). In addition, the use of a wild species (interspecific cross) not having a history of safe use in the food supply in the development of a new plant line may also require notification to Health Canada. However, molecular stacks are considered new events and are considered to be notifiable as per Division 28.

Feed:

Contact details of the competent authority(s) responsible for the safety assessment and the product applicant:

Neil Strand, Section Head of Novel Foods

Japan
Name of product applicant: Bayer CropScience Ltd.
Summary of application:

Oilseed rape tolerant to dicamba

Upload:
Date of authorization: 16/02/2022
Scope of authorization: Food and feed
Links to the information on the same product in other databases maintained by relevant international organizations, as appropriate. (We recommend providing links to only those databases to which your country has officially contributed.):
Summary of the safety assessment (food safety):
the FSCJ concluded that no concern relavant to human health is raised on the MON94100-2 line
Upload:
Where detection method protocols and appropriate reference material (non-viable, or in certain circumstances, viable) suitable for low-level situation may be obtained:
Relevant links to documents and information prepared by the competent authority responsible for the safety assessment:
Upload:
Authorization expiration date (a blank field means there is no expiration date)
E-mail:
Organization/agency name (Full name):
Food Safety Commission Secretariat,Cabinet Office,
Contact person name:
Kojiro Yokonuma
Website:
Physical full address:
Akasaka 5-2-20 Minato Ward,Tokyo,Japan
Phone number:
81 3 6234 1122
Fax number:
81 3 3584 7392
Country introduction:
Safety assessments of GM foods are mandatory under the Food Sanitation Law in Japan. The Ministry of Health, Labour, and Welfare (MHLW) legally imposes safety assessments of GM foods so that those that have not undergone safety assessments would not be distributed in the country. MHLW receives application and requests the Food Safety COmmission of Japan (FSCJ) to evaluate the safety of GM foods in terms of human health. Safety assessments are carried out by FSCJ.
Useful links
Relevant documents
Stacked events:

With regard to stacked events, FSCJ conducts the safety assessment of GM food based on the “Policies Regarding the Safety Assessment of Stacked Varieties of Genetically Modified Plants”.

Even if single events that are stacked have already approved, some products will be considered as new products and some will not.

Please refer to Article 5 and 6 of the MHLW’s notice, which is available at the following URL, for the details.

http://www.mhlw.go.jp/file/06-Seisakujouhou-11130500-Shokuhinanzenbu/0000053519.pdf

Article 6 was modified in 2014, and the modified version is available at the following URL.

http://www.mhlw.go.jp/file/06-Seisakujouhou-11130500-Shokuhinanzenbu/0000049695.pdf

Contact details of the competent authority(s) responsible for the safety assessment and the product applicant:

Food Safety Commission of Japan (http://www.fsc.go.jp/english/index.html), Ministry of Health, Labour and Welfare (http://www.mhlw.go.jp/english/policy/health-medical/food/index.html)

New Zealand
Name of product applicant: Bayer CropScience
Summary of application:

Health Canada(*) has received an application from Bayer CropScience on behalf of Monsanto Canada ULC to conduct a pre-market safety assessment for food derived from the genetically modified (GM) herbicide-tolerant canola line MON 94100 (hereafter referred to as MON 94100), with the OECD Unique Identifier MON-94100-2. This line has herbicide tolerance to dicamba (3,6-dichloro-2-methoxybenzoic acid). Dicamba is used to control annual and biennial weed species and suppress the growth of perennial broadleaf weeds and woody plant species. Tolerance to dicamba is achieved through expression of a dicamba mono-oxygenase (DMO) protein encoded by a gene from Stenotrophomonas maltophilia. The DMO protein rapidly demethylates dicamba to the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA). It is likely that MON 94100 will be combined with other approved canola lines through traditional breeding methods to create commercial products with tolerance to multiple herbicides, insect protection, or other traits offering broader grower choice, continued weed control durability, crop protection, and increased yield. Canola line MON 94100 was primarily developed for agriculture in North America. At the time of assessment, approval for commercialisation in Australia or New Zealand had not yet been sought. If approved, food derived from this line may enter the Australian and New Zealand food supply as imported food products. A commercial trade name for MON 94100 has not yet been determined.


 


(*) This was assessed as part of an assessment sharing program between FSANZ and Health Canada. For further details, visit the FSANZ site GM food safety assessment sharing (https://www.foodstandards.gov.au/science/international/Pages/GM--food-safety-assessment-sharing.aspx).

Upload:
Date of authorization: 22/07/2021
Scope of authorization: Food
Links to the information on the same product in other databases maintained by relevant international organizations, as appropriate. (We recommend providing links to only those databases to which your country has officially contributed.): OECD BioTrack database
Summary of the safety assessment (food safety):
No potential public health and safety concerns have been identified in the assessment of herbicide tolerant canola line MON 94100. On the basis of data provided in accordance with the Health Canada Guidelines for the Safety Assessment of Novel Foods, and other available information, food derived from MON 94100 is considered to be as safe for human consumption as food derived from conventional canola varieties.
Upload:
Where detection method protocols and appropriate reference material (non-viable, or in certain circumstances, viable) suitable for low-level situation may be obtained:
Relevant links to documents and information prepared by the competent authority responsible for the safety assessment: A1216 - GM Food derived from herbicide-tolerant canola line MON94100
GM food safety assessment sharing
Upload:
Authorization expiration date (a blank field means there is no expiration date)
E-mail:
Organization/agency name (Full name):
Ministry for Primary Industries
Contact person name:
john vandenbeuken
Website:
Physical full address:
Pastoral House, 25 The Terrace, Wellington, 6012
Phone number:
0298942581
Fax number:
Country introduction:

New Zealand and Australia share a joint food regulation system for the composition of labelling of most foods. Food Standards Australia New Zealand (FSANZ) is the regulatory agency responsible for the development of the joint food standards in Australia and New Zealand. The main office (approximately 120 staff) is located in Canberra (in the Australian Capital Territory) and the smaller New Zealand office (approximately 15 staff) is located in Wellington on the North Island.

Useful links
Relevant documents
Stacked events:

FSANZ does not: Separately assess food from stacked event lines where food from the GM parents has already been approved; Mandate notification of stacked events by developers; Notify the public of stacked event ‘approvals’; List food derived from stacked event lines in the Code, unless the stacked event line has been separately assessed as a single line e.g. Application A518: MXB-13 cotton (DAS-21023-5 x DAS-24236-5)

Contact details of the competent authority(s) responsible for the safety assessment and the product applicant:

Food Standards Australia New Zealand (FSANZ) (http://www.foodstandards.gov.au)

Philippines
Name of product applicant: Monsanto Philippines, Inc.
Summary of application:

On July 9, 2021, Monsanto Philippines Inc. submitted canola MON 94100 for direct use, as original application under the DOST-DA-DENR-DOH-DILG Joint Department Circular (JDC) No. 1 Series of 2016.


After reviewing the Risk Assessment Report and attachments submitted by the applicant, the Scientific and Technical Review Panel (STRP), Bureau of Animal Industry, and BPI Plant Products Safety Services Division concurred that canola MON 94100 is as safe as its conventional counterpart.

Upload:
Date of authorization: 22/03/2022
Scope of authorization: Food and feed
Links to the information on the same product in other databases maintained by relevant international organizations, as appropriate. (We recommend providing links to only those databases to which your country has officially contributed.):
Summary of the safety assessment (food safety):
Toxicological and Allergenicity Assessment: SDS PAGE and Western blot analysis demonstrated the SGF and Simulated Intestinal Fluid (SIF) for the digestibility study of the DMO protein which indicated that it is readily digested in SGF within 0.5 seconds and in SIF within 5 minutes.[66]. DMO activity assay, as well as SDS-PAGE and Western blot analysis of the DMO protein tested the effects of heat in its activity at varying temperatures (0, 25, 37, 55, 75, and 95 °C) for 15 and 30 minutes. No drastic changes in the hybridization bands of DMO enzyme was observed in SDS-PAGE upon treatment with heat for the same range and exposure.[67]. DMO in MON 94100 has no significant homology to any known toxin as confirmed using bioinformatic analysis (BLASTP and AllergenOnline), structural identity was also confirmed through N-terminal sequence/mass fingerprint and Western blot analysis. No glycosylation was confirmed as per glycosylation analysis, and molecular weight of 39.4 kDa for DMO+27, and 38 kDa for DMO was determined using Western blot analysis.[64][69]. The No Observed Effect Level (NOEL) of DMO protein based on acute oral gavage study is 140 mg/kg body weight and did not yield any treatment related effects on survival, clinical observations, body weight, food consumption and gross necropsy.[70] The source of the test DMO protein is MON 87708 and was confirmed to be equivalent to MON 94100-produced DMO as per structural analysis, Western blot analysis, glycosylation analysis, and functional activity assay.[69] The percent of DMO protein in MON 94100 grain is 0.00023% of the total protein based on the mean level of DMO protein in MON 94100 and the minimum percentage dry weight of total protein in the MON 94100 grains.[3][65]. Nutritional Data: No significant differences were observed between the proximate levels, amino acid, fatty acid, vitamin, mineral, fiber, anti-nutrient, and secondary metabolite of MON 94100 seeds and the conventional canola seeds except for the anti-nutrient sinapine which is higher than the conventional control but is not biologically relevant since the value is still within literature values range.[16]. All mean values for proximate analysis, key nutrients, and antinutrients were within the range of literature values.[16]. No significant differences were observed between the amino acid, fatty acid, vitamin, mineral, and fiber content of MON 94100 seeds and the conventional canola seeds based on compositional analysis.[16]. The effect of processing on the level of anti-nutrient and metabolites in MON 94100 seeds and the conventional control is expected to be similar.[1][16].
Upload:
Where detection method protocols and appropriate reference material (non-viable, or in certain circumstances, viable) suitable for low-level situation may be obtained:
Relevant links to documents and information prepared by the competent authority responsible for the safety assessment:
Upload:
Authorization expiration date (a blank field means there is no expiration date)
E-mail:
Organization/agency name (Full name):
Bureau of Plant Industry
Contact person name:
Geronima P. Eusebio
Website:
Physical full address:
San Andres St., Malate, Manila
Phone number:
632 404 0409 loc 203
Fax number:
Country introduction:

In 1987, scientists from the University of the Philippines Los Banos (UPLB) and the International Rice Research Institute (IRRI), the Quarantine Officer of the Bureau of Plant Industry (BPI), and the Director for Crops of the Philippine Council for Agriculture, Forestry and Natural Resources Research and Development (PCARRD), recognizing the potential harm of the introduction of exotic species and genetic engineering, formed a committee and formulated the biosafety protocols and guidelines for genetic engineering and related research activities for UPLB and IRRI researchers. The committee went on to draft a Philippine biosafety policy, which was submitted to the Office of the President. On October 15, 1990, recognizing the potential for modern biotechnology both in improving the lives of the people and in creating hazards if not handled properly, President Corazon C. Aquino issued Executive Order 430 creating the National Committee on Biosafety of the Philippines (NCBP) that will formulate, review and amend national policy on biosafety and formulate guidelines on the conduct of activities on genetic engineering. The NCBP is comprised of representative of the Departments of Agriculture (DA); Environment and Natural Resources (DENR); Health (DOH); and Science and Technology (DOST), 4 scientists in biology, environmental science, social science and physical science; and 2 respected members of the community. On July 16, 2001, President Gloria Macapagal-Arroyo issued the Policy Statement on Modern Biotechnology, reiterating the government policy on promoting the safe and responsible use of modern biotechnology. On April 3, 2002, Department of Agriculture Administrative Order No. 8, Series of 2002 was issued implementing the guidelines for importation and release into the environment of Plants and Plant Products Derived from the Use of Modern Biotechnology. On March 17, 2006, President Gloria Macapagal-Arroyo issued Executive Order No.514 Establishing the National Biosafety Framework, prescribing guidelines for its implementation, reorganizing the National Committee on Biosafety of the Philippines, and for other purposes. On December 8, 2015, the Philippine Supreme Court declared DA AO8 null and void and any application for contained use, field testing, propagation and commercialization, and importation of GMOs was temporarily enjoined. In response to the nullification of DA AO8, the Technical Working Group composed of representatives from the Departments of Agriculture (DA), Science and Technology (DOST), Environment and Natural Resources (DENR), Health (DOH), and Interior and Local Government (DILG) drafted the Joint Department Circular No. 1, Series of 2016 (JDC No.1, S2016) titled 'Rules and Regulations for the Research and Development, Handling and Use, Transboundary Movement, Release into the Environment, and Management of Genetically-Modified Plant and Plant Products Derived from the Use of Modern Biotechnology'. There were series of meeting and five public consultations conducted before the JDC No.1, S2016 was approved and signed by the Secretaries of the abovementioned agencies on March 7, 2016 and took effect on April 15, 2016. Under this Circular, more government agencies were involved such as the Department of Science and Technology (DOST) to regulate applications for contained use and confined test of regulated articles; Department of Agriculture (DA) to evaluate applications for field trial, commercial propagation and transboundary movement of regulated articles; Department of Environment and Natural Resources (DENR) to evaluate environmental risks and impacts of regulated articles; Department of Health (DOH) to evaluate of environmental health impacts of regulated articles; and Department of the Interior and Local Government (DILG) to supervise public consultation during field trial.

 

Useful links
Relevant documents
Stacked events:

Gene stacking in plants can be conferred either through genetic engineering or conventional breeding A full risk assessment as to food and feed or for processing shall be conducted to plant products carrying stacked genes conferred through genetic engineering or conventional breeding, where the individual traits have no prior approval for direct use as food and feed or processing from the Bureau of Plant Industry (BPI) A desktop or documentary risk assessment on the possible or expected interactions between the genes shall be conducted for stacked gene products with multiple traits conferred through conventional breeding and individual events granted prior approval by the Bureau of Plant Industry.

 

Plant Products Carrying Stacked Genes Conferred Through (a) Genetic Engineering or b) Conventional Breeding, with Individual Traits That Have No Prior Approval:

A full risk assessnent as to  food and feed or processing shall be conducted,consistent with Part V of AO No. 8,"Approval Process For the Importation of Regulated Articles for Direct Use as Food and Feed or For Processing for plant products with multiple traits conferred through:

(a) genetic engineering, or

(b) conventional breeding, where the individual traits have no prior approval from the Bureau of Plant Industry (BPI) for direct use as food and feed or processing.

Plant Products Carrying Stacked Genes Conferred through Conventional Breeding:

For plant products with multiple traits conferred through conventional breeding,with all individual events granted prior approval and included in the Approval Registry, a notlfication shall be submitted by the technology developer to the BPI, which shall conduct an evaluation in accordance with the relevant criteria in Annex I of this Memorandum Circular. The list of data contained in Annex I will not preclude the inclusion of other issues and concerns that will be raised by the BPI and the Scientific and Technical Review Panel (STRP) during the course of the desktop review.

Notificatlon Requirement for Plant Products Carrying Stacked Genes

All technology developers shall submit a notification to the Bureau of Plant Industry of their developed plant products carrying stacked genes and shall be required to comply with the relevant approval process listed above.

The Bureau of Plant Industry shall issue a certiflcate as to the approval of the stacked gene product and shall likewise include the transformation event in the official approval registry of plant products for food and feed or processing.

Contact details of the competent authority(s) responsible for the safety assessment and the product applicant:

Bureau of Plant Industry 692 San Andres St, Malate, Manila 1004

United States of America
Name of product applicant: Bayer CropScience LP
Summary of application:

BNF No. 177
Canola
MON 94100
MON-941ØØ-2



Developer: Bayer CropScience LP
700 Chesterfield Parkway West
Chesterfield, MO 63017


Trait(s): Herbicide tolerance (dicamba)


Submission Date : Jan 23, 2020


Introduced Protein: Dicamba mono-oxygenase (DMO)
(source): Stenotrophomonas maltophilia

Upload:
Date of authorization: 04/10/2022
Scope of authorization: Food and feed
Links to the information on the same product in other databases maintained by relevant international organizations, as appropriate. (We recommend providing links to only those databases to which your country has officially contributed.):
Summary of the safety assessment (food safety):
Please consult the FDA website links below.
Upload:
Where detection method protocols and appropriate reference material (non-viable, or in certain circumstances, viable) suitable for low-level situation may be obtained:
Relevant links to documents and information prepared by the competent authority responsible for the safety assessment: FDA's webpage regarding this variety
Upload:
Authorization expiration date (a blank field means there is no expiration date)
E-mail:
Organization/agency name (Full name):
Food and Drug Administration
Contact person name:
Jason Dietz
Website:
Physical full address:
5100 Paint Branch Parkway, College Park MD 20740
Phone number:
240-402-2282
Fax number:
Country introduction:

The United States is currently in the process of populating this database. The Food and Drug Administration regulates food and feed (food for humans and animals) from genetically engineered crops in conjunction with the Environmental Protection Agency (EPA). EPA regulates pesticides, including those that are plant incorporated protectants genetically engineered into food crops, to make sure that pesticide residues are safe for human and animal consumption and do not pose unreasonable risks of harm to human health or the environment. FDA In the Federal Register of May 29, 1992 (57 FR 22984), FDA published its "Statement of Policy: Foods Derived from New Plant Varieties" (the 1992 policy). The 1992 policy clarified the agency's interpretation of the application of the Federal Food, Drug, and Cosmetic Act with respect to human and animal foods derived from new plant varieties and provided guidance to industry on scientific and regulatory issues related to these foods. The 1992 policy applied to all foods derived from all new plant varieties, including varieties that are developed using genetic engineering (also known as recombinant deoxyribonucleic acid (rDNA) technology). In the 1992 policy, FDA recommended that developers consult with FDA about foods from genetically engineered plants under development and developers have routinely done so. In June 1996, FDA provided additional guidance to industry on procedures for these consultations (the consultation procedures). These procedures describe a process in which a developer who intends to commercialize food from a genetically engineered plant meets with the agency to identify and discuss relevant safety, nutritional, or other regulatory issues regarding the genetically engineered food and then submits to FDA a summary of its scientific and regulatory assessment of the food. FDA evaluates the submission and if FDA has questions about the summary provided, it requests clarification from the developer. At the conclusion of the consultation FDA responds to the developer by letter. The approach to the safety assessment of genetically engineered food recommended by FDA during consultations, including data and information evaluated, is consistent with that described in the Codex Alimentarius Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants. EPA The safe use of pesticidal substances is regulated by EPA. Food from a genetically engineered plant that is the subject of a consultation with FDA may contain an introduced pesticidal substance, also known as a plant-incorporated protectant (PIP), that is subject to food (food for humans and animals) safety and environmental review by EPA. PIPs are pesticidal substances produced by plants and the genetic material necessary for the plant to produce the substance. Both the PIP protein and its genetic material are regulated by EPA. When assessing the potential risks of PIPs, EPA requires studies examining numerous factors, such as risks to human health, non-target organisms and the environment, potential for gene flow, and insect resistance management plans, if needed. In regulating PIPs, decisions are based on scientific standards and input from academia, industry, other Federal agencies, and the public. Before the first PIP product was registered in 1995, EPA required that PIP products be thoroughly tested against human safety standards before they were used on human food and livestock feed crops. EPA scientists assessed a wide variety of potential effects associated with the use of PIPs, including toxicity, and allergenicity. These potential effects were evaluated in light of the public's potential exposures to these pesticides, taking into account all potential combined sources of the exposure (food, drinking water, etc.) to determine the likelihood that a person exposed at these levels would be predisposed to a health risk. Based on its reviews of the scientific studies and often peer reviews by the Federal Insecticide, Fungicide and Rodenticide Scientific Advisory Panel, EPA determined that these genetically engineered PIP products, when used in accordance with approved label directions and use restrictions, would not pose unreasonable risk to human health and the environment during their time-limited registration.

Useful links
Relevant documents
Stacked events:

Stacked events that are each plant incorporated protectants, as defined by the Environmental Protection Agency, must be registered by the Envriornmental Protection Agency before they can be commercialized.  Food/feed safety asssessment of single events are generally sufficient to ensure the safety of food/feed from stacked events.   

Contact details of the competent authority(s) responsible for the safety assessment and the product applicant:

Food and Drug Administration ([email protected]); Environmental Protection Agency