OVERVIEW OF FOREST PESTS

GHANA

January 2007
The aim of this document is to give an overview of the forest pest\(^1\) situation in Ghana. It is not intended to be a comprehensive review.

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

© FAO 2007

\(^1\) Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Forest pests</td>
<td>1</td>
</tr>
<tr>
<td>Naturally regenerating forests</td>
<td>1</td>
</tr>
<tr>
<td>Insects</td>
<td>1</td>
</tr>
<tr>
<td>Diseases</td>
<td>3</td>
</tr>
<tr>
<td>Other pests</td>
<td>3</td>
</tr>
<tr>
<td>Diebacks and other conditions</td>
<td>3</td>
</tr>
<tr>
<td>Planted forests</td>
<td>3</td>
</tr>
<tr>
<td>Insects</td>
<td>3</td>
</tr>
<tr>
<td>Diseases</td>
<td>9</td>
</tr>
<tr>
<td>Other pests</td>
<td>9</td>
</tr>
<tr>
<td>Diebacks and other conditions</td>
<td>9</td>
</tr>
<tr>
<td>Capacity for forest health protection</td>
<td>10</td>
</tr>
<tr>
<td>Government level</td>
<td>10</td>
</tr>
<tr>
<td>Monitoring and detection</td>
<td>10</td>
</tr>
<tr>
<td>Data management</td>
<td>10</td>
</tr>
<tr>
<td>Pest management</td>
<td>10</td>
</tr>
<tr>
<td>Private landowners</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>Index</td>
<td>11</td>
</tr>
</tbody>
</table>
Overview of forest pests - Ghana

Background

This paper is one of a series of FAO documents on forest-related health and biosecurity issues. The purpose of these papers is to provide early information on on-going activities and programmes, and to stimulate discussion.

In an attempt to quantify the impacts of the many factors that affect the health and vitality of a forest, the Global Forest Resources Assessment 2005 (FRA 2005) asked countries to report on the area of forest affected by disturbances, including forest fires, insects, diseases and other disturbances such as weather-related damage. However, most countries were not able to provide reliable information because they do not systematically monitor these variables.

In order to obtain a more complete picture of forest health, FAO continues to work on several follow-up studies. A review of forest pests in both naturally regenerating forests and planted forests was carried out in 25 countries representing all regions of the world. This Overview of forest pests represents one paper resulting from this review. Countries in this present series include Argentina, Belize, Brazil, Chile, China, Cyprus, Colombia, Ghana, Honduras, India, Indonesia, Kenya, Kyrgyz Republic, Malawi, Mauritius, Mexico, Moldova, Mongolia, Morocco, South Africa, Sudan, Thailand, Romania, Russian Federation, Uruguay; this list will be continuously updated.

Comments and feedback are welcome. For further information or if you are interested in participating in this process and providing information on insect pests, diseases and mammals affecting forests and the forest sector in your country, please contact:

Gillian Allard
Forestry Officer (Forest Protection and Health)
Forest Resources Development Service
Forest Management Division
Forestry Department
FAO
Viale delle Terme di Caracalla
00153 Rome, Italy
Telephone: +39 06 570 53373
Fax: + 39 06 570 55137
E-mail: gillian.allard@fao.org

All contributions will be fully acknowledged.

Acknowledgements

The information with regards to Ghana was considered by Dr. Paul P. Bosu of the Forestry Research Institute of Ghana; his efforts are acknowledged. The information was compiled by G. Maynard and B. Moore.
INTRODUCTION

Ghana’s forest cover in 2005 was estimated at 5.5 million hectares or 24 percent of the total land cover (FAO, 2006). Principal tree species include *Triplochiton scleroxylon*, *Celtis mildbraedii*, *Piptadeniastrum africanum*, *Ceiba pentandra*, *Terminalia superba*, *Celtis zenkeri*, *Petersianthus macrocarpus*, *Nesogordonia papaverifera*, *Psycanthus angolensis* and *Antiaris toxicaria*.

Ghana’s naturally regenerating forests occur in two ecological zones: the tropical high forest which covers one-third of the country’s total land area and provides the major source of logs for the wood products industry; and the savannah zone, which covers the remaining two-thirds of the country and plays an important role in the supply of building poles, fuelwood and charcoal. Two-thirds of the population and most of the country’s economic activity (cocoa, oil palm, timber and mineral production) is concentrated in the forest zone.

Ghana has a relatively small area of forest plantations. Some are industrial plantations and others are classified as protection forests (FAO, 2006). The most successful plantation species to date is teak (*Tectona grandis*). Other exotic species planted in Ghana include *Azadirachta indica*, *Cassia siamea*, *Eucalyptus* spp., *Gmelina arborea* and *Pinus* spp. (Wagner, Atuahene and Cobbinah, 1991). Since 2000, the area of planted forests has been increasing steadily. In addition to teak, *Cedrela odorata* and *Terminalia superba* are being planted.

FOREST PESTS

NATURALLY REGENERATING FORESTS

INSECTS

INDIGENOUS INSECTS

Analeptes trifasciata (Fabricius, 1775)

Other scientific names:
Coleoptera: Cerambycidae
Common names: stem girdler; trunk borer; longicorn beetle
Host type: broadleaf
Hosts: *Bombax costatum*, *Eucalyptus tereticornis*, *Eucalyptus alba*, *Ceiba pentandra*; *Anacardium occidentale*, *Adansonia digitata*

Analeptes trifasciata is a longicorn beetle that attacks several trees in the family Bombaceae (*Bombax costatum*, *Adansonia digitata*, *Ceiba pentandra*) and is typically an insect of savanna ecosystems. It is also known to attack several species of *Eucalyptus* and causes significant damage to cashew trees. Larvae bore into the stems and large branches and cause stem breakage, deformity and loss of structural integrity of the wood.

http://www.vitalieghianda.it/vitalfranz/foto.asp?id=40
http://www.hort.purdue.edu/newcrop/duke_energy/Eucalyptus.html
Anaphe venata Butler
Other scientific names:
Lepidoptera: Notodontidae
Common names: silk moth; African silkworm
Host type: broadleaf
Hosts: Triplochiton scleroxylon

Anaphe venata is a caterpillar that causes extensive defoliation of *Triplochiton scleroxylon* (wawa or obeche), a timber tree found in natural rainforests, along watercourses and monsoon forests that is used for furniture and veneers. The females lay eggs on leaves of tall *T. scleroxylon* trees. The larvae then feed extensively on the leaves often defoliating the tree. They then descend the trees in a procession and pupate in a communal nest with the urticating hairs protecting the cocoons. Attack by this caterpillar tends to occur on trees of at least 50 years old however the impact on the trees is not known. This insect is a food resource, although it is associated with ataxia in humans; the effects of this caterpillar sometimes reach epidemic proportions.

Lamprosema lateritialis Hampson
Other scientific names:
Lepidoptera: Pyralidae
Common names:
Host type: broadleaf
Hosts: Pericopsis elata

Lamprosema lateritialis is a caterpillar that is considered the most serious pest of Afrormosia (*Pericopsis elata*) in Ghana. Only found in central and West Africa, these caterpillars feed gregariously on the leaves and shoots of *P. elata* (Wagner, Atuahene and Cobbinah, 1991). They live in communal shelters built from several leaves bound together with silk. There are 8-9 generations per year and each female lays eggs in batches of up to 200. Repeated defoliation by these caterpillars reduces growth of the trees hence lowering productivity (Wagner, Atuahene and Cobbinah, 1991).

Trachyostus ghanaensis Scheld
Other scientific names:
Coleoptera: Platypodidae
Common names: ambrosia beetle; wawa borer
Host type: broadleaf
Hosts: Triplochiton scleroxylon

Trachyostus ghanaensis is an important pest of wawa, *Triplochiton scleroxylon*. This pinhole borer or ambrosia beetle attacks and breeds in living trees. The male initiates the attack on the tree and then stridulates to attract females. The female constructs egg laying
Overview of forest pests - Ghana

galleries. The larval stages feed on an ambrosia fungus in individual chambers constructed by the adults. Both the insect damage and the wood staining caused by the ambrosia fungus results in a loss of timber quality (Wagner, Atuahene and Cobbinah, 1991).
http://www.worldagroforestry.org/Sites/TreeDBS/Aft/Print.cfm?SpID=1662

Introduced insects
According to available data, introduced forest insects are of minor consequence in Ghana.

Diseases

Indigenous diseases
No information was available on the status of indigenous diseases in the naturally regenerating forests of Ghana.

Introduced diseases
No information was available on the status of introduced diseases in the naturally regenerating forests of Ghana.

Other pests

Indigenous other pests
No information was available on the status of indigenous other pests (e.g. mites, nematodes, mammals, etc.) in the naturally regenerating forests of Ghana.

Introduced other pests
No information was available on the status of introduced other pests (e.g. mites, nematodes, mammals, etc.) in the naturally regenerating forests of Ghana.

Diebacks and other conditions
No records were available for diebacks and other conditions affecting Ghana’s naturally regenerating forests.

Planted forests

Insects

Indigenous insects

Apate monachus Fabricius, 1775
Other scientific names: *Apate carmelita*; *Apate francisca*; *Apate gibba*; *Apate mendica*; *Apate monacha*; *Apate monachus rufiventris*; *Apate semicostata*; *Apate senii*
Coleoptera: Bostrichidae
Common names: black borer; twig borer; giant black bostrichid; date palm bostrichid
Host type: broadleaf
Overview of forest pests - Ghana

Hosts: Acacia spp.; Azadirachta indica; Citrus spp.; Coffea arabica; Coffea robusta; Eucalyptus polycarpa; Khaya spp.; Melia composita; Pithecellobium dulce; Psidium guajava; Terminalia ivorensis; Theobroma cacao; Triplochiton scleroxylon

Apate monachus is a large black bostrichid beetle that tunnels into its host plants. It is an important pest of both planted and naturally regenerating forests as well as agriculture. Adults bore into branches and twigs of a number of species of plants. Both adults and larvae feed on the host trees which includes a very wide range of plants including *Acacia* spp., coffee, citrus, guava and cocoa. Breeding attacks occur in species different from those used for maturation feeding (Wagner, Atuahene and Cobbinah, 1991).

http://www.cabicompendium.org/NamesLists/FC/Full/APATMO.htm

Apate terebrans Pallas, 1772

Other scientific names:
Coleoptera: Bostrichidae
Common names: shot-hole borer; trunk borer; girdler
Host type: broadleaf
Hosts: Acacia spp.; Anacardium occidentale; Azadirachta indica; Cedrela odorata; Citrus spp.; Coffea arabica; Coffea robusta; Eucalyptus polycarpa; Khaya spp.; Melia composita; Psidium guajava; Tectona grandis; Terminalia ivorensis; Theobroma cacao; Triplochiton scleroxylon

Apate terebrans is a large polyphagous boring beetle that is an important pest of both planted and naturally regenerating forests. Its host range includes *Acacia* spp. coffee, citrus, cotton, guava, cashew and citrus. The larvae tunnel into both living trees and timber creating significant damage and lowering the commercial value of the timber. Adults attack living trees and can cause death of younger trees. Development can take one to three years depending on the moisture content of timber. This species is readily transported in timber unnoticed, over long distances.

Diclidophlebia eastopi Vondracek, 1964

Other scientific names:
Hemiptera: Psyllidae
Common names:
Host type: broadleaf
Hosts: Triplochiton scleroxylon

Diclidophlebia eastopi is a sap-sucking psyllid that is a pest of young *Triplochiton scleroxylon* in Ghana. In nurseries it has been known to kill young plants. In planted forests it causes dieback, stunting, and copious branching which reduces the potential commercial value of timber produced.

Distantiella theobroma (Distant, 1909)
Other scientific names:
Hemiptera: Miridae
Common names: capsid; mirid; cocoa mirid; cocoa capsid; cocoa capsid stem sapper; brown capsid
Host type: broadleaf
Hosts: *Theobroma cacao*

One of the major threats to planted cocoa forests in Ghana is several species of true bugs in the family Miridae. *Distantiella theobroma*, *Helopeltis lalandei* and *Sahlbergella singularis* are the major species of cocoa mirids present in Ghana. These species all have similar action. The bugs are only found on the trees in small numbers (6 per 10 trees). The bugs present a significant problem in the establishment and growing phases of planted forests. The bugs attack only young growth and new pods. Direct damage is caused by the bugs sucking on the new foliage and the necrosis caused by the saliva that the bugs inject into the plant tissue. The saliva causes blackening and collapse of the tissues. Hence the direct consequence of the bug feeding is limited to the growing season. The greatest impacts are those felt by young plants and the delay of fruit bearing by several years. However, the wounds the bugs cause by inserting their mouthparts into the plant tissue provides an entry point for several serious secondary diseases such as *Nectria rigidiuscula* which causes canker and dieback. There are records of 80 percent infection rates of the wounds.

http://www.cabicompendium.org/NamesLists/FC/Full/DISTTH.htm
http://www.oardc.ohio-state.edu/cocoa/capsids.htm

Epicerura pulverulenta Hampson

Other scientific names:
Lepidoptera: Notodontidae
Common names:
Host type: broadleaf
Hosts: *Terminalia ivorensis*

Epicerura pulverulenta is a caterpillar that feeds on the leaves of *Terminalia ivorensis* (shinglewood, black afara). At times it causes extensive damage and has been recorded causing complete defoliation in planted forests of *Terminalia ivorensis*, hence resulting in a significant loss in productivity potentially leading to death of the trees.

http://www.pubs.nrc-cnrc.gc.ca/cgi-bin/rp/rp2_abst_e?cjfr_x00-063_30_ns_nf_cjfr

Helopeltis lalandei Carayon

Other scientific names:
Hemiptera: Miridae
Common names: capsid; mirid
Host type: broadleaf
Hosts: *Theobroma cacao*

One of the major threats to planted cocoa forests in Ghana is several species of true bugs in the family Miridae. *Distantiella theobroma*, *Helopeltis lalandei* and *Sahlbergella*
singularis are the major species of cocoa mirids present in Ghana. These species all have similar action. The bugs are only found on the trees in small numbers (6 per 10 trees). The bugs present a significant problem in the establishment and growing phases of planted forests. The bugs attack only young growth and new pods. Direct damage is caused by the bugs sucking on the new foliage and the necrosis caused by the saliva that the bugs inject into the plant tissue. The saliva causes blackening and collapse of the tissues. Hence the direct consequence of the bug feeding is limited to the growing season. The greatest impacts are those felt by young plants and the delay of fruit bearing by several years. However, the wounds the bugs cause by inserting their mouthparts into the plant tissue provides an entry point for several serious secondary diseases such as *Nectria rigidiuscula* which causes canker and dieback. There are records of 80 percent infection rates of the wounds.

http://www.oardc.ohio-state.edu/cocoa/capsids.htm

Mesoplatys cincta (Olivier, 1790)
Other scientific names: *Chrysomela cincta* Olivier, 1790
Coleoptera: Chrysomelidae
Common names: leaf beetle
Host type: broadleaf
Hosts: Fabaceae; Convolulaceae; Malvaceae; *Elaeis* spp.; *Sesbania grandiflora*

Mesoplatys cincta is a leaf-feeding beetle that causes severe defoliation of host plants. It feeds on a range of plants in the families of Fabaceae, Convolulaceae and Malvaceae. It is considered a serious pest of oil palm (*Elaeis* spp.) and of young stands of *Sesbania grandiflora*.

http://www.cabicompendium.org/NamesLists/CPC/Full/MES2CI.htm

Phytolyma lata Walker (Scott)
Other scientific names:
Hemiptera: Psyllidae
Common names: iroko gall fly; iroko gall bug; milicia gall bug
Host type: broadleaf
Hosts: *Milicia excelsa*; *M. regia*

Milicia spp. (*Milicia excelsa* and *M. regia*) are among the most valuable indigenous timber species in sub-Saharan Africa. Efforts at establishing plantations of *Milicia* spp. have been constrained by the gall-forming psyllid *Phytolyma lata* that causes extensive damage to young plants. The insect attacks the new shoots on young trees, causing heavy gall formation, suppression of the terminal bud and severe stunting of the tree. Seedlings in nurseries are very susceptible to damage, and many succumb to repeated attacks.

Phytolyma fusca Walker, 1852
Other scientific names:
Hemiptera: Psyllidae
Common names: gall-forming psyllid
Host type: broadleaf
Hosts: *Milicia excelsa*

A major pest of planted forests of Iroko tree (*Milicia excelsa*), *Phytolyma fusca* is a gall-forming psyllid that sucks sap from trees. Feeding by this psyllid results in the formation of leaf galls. Mature galls erupt to release the insect and the remnant gall tissue is attacked by a decay fungus which results in dieback of the shoot. The plants that do survive attack by this bug usually have considerably reduced commercial value. The extent of attacks and damage has had a significant detrimental affect on attempts to establish plantations of *Milicia*, preventing the establishment of these trees in some areas. The effect of this insect is particularly severe in pure plantings of Iroko trees but less so in mixed plantings.

http://www.metla.fi/iufro/iufro95abs/d2pap122.htm

Sahlbergella singularis (Haglund, 1895)

Other scientific names:
Hemiptera: Miridae
Common names: capsid; mirid; cocoa mirid
Host type: broadleaf
Hosts: *Theobroma cacao*

One of the major threats to planted cocoa forests in Ghana is several species of true bugs in the family Miridae. *Distantiella theobroma*, *Helopeltis lalandei* and *Sahlbergella singularis* are the major species of cocoa mirids present in Ghana. These species all have similar action. The bugs are only found on the trees in small numbers (6 per 10 trees). The bugs present a significant problem in the establishment and growing phases of planted forests. The bugs attack only young growth and new pods. Direct damage is caused by the bugs sucking on the new foliage and the necrosis caused by the saliva that the bugs inject into the plant tissue. The saliva causes blackening and collapse of the tissues. Hence the direct consequence of the bug feeding is limited to the growing season. The greatest impacts are those felt by young plants and the delay of fruit bearing by several years. However, the wounds the bugs cause by inserting their mouthparts into the plant tissue provides an entry point for several serious secondary diseases such as *Nectria rigidiuscula* which causes canker and dieback. There are records of 80 percent infection rates of the wounds.

http://www.oardc.ohio-state.edu/cocoa/capsids.htm

Strepsicrates rhothia Meyrick

Other scientific names:
Lepidoptera: Tortricidae
Common names: eucalyptus leaf roller; leaf roller
Host type: broadleaf
Hosts: *Eucalyptus tereticornis*; *Eucalyptus alba*; *Eucalyptus cadambae*; *Eucalyptus citriodora*; *Psidium guajava*; *Eugenia* spp.; *Mangifera indica*; *Mansonia altissima*
Strepsicrates rhothia is a caterpillar that defoliates trees. In Ghana, it was first reported as a pest in 1970 and has caused damage in nurseries. It is a major pest of eucalypt plantations, particularly those in shaded areas. Other hosts include guava, Eugenia spp. and Mangifera indica. It has also been reported skeletonizing leaves of Mansonia altissima in both nurseries and planted forests. It has up to 8 generations per year with an average of 44 days for development with each female laying an average of 42 eggs.

http://www.hort.purdue.edu/newcrop/duke_energy/Eucalyptus_saligna.html

Tridesmodes ramiculata Warren, 1899

Other scientific names:
Lepidoptera: Thyrididae
Common names: picture wing moth
Host type: broadleaf
Hosts: Terminalia ivorensis

Tridesmodes ramiculata is a moth that bores into growing shoots and tips. It is a pest of Terminalia ivorensis in nurseries and planted forests. This moth tends to attack 2-3 year old trees. They tunnel in smaller twigs and branches as young larvae, progressing to larger stems as they get older. The life cycle is 1 to 3 months with overlapping generations (Wagner, Atuahene and Cobbinah, 1991).

Introduced insects

Hypsipyla robusta Moore, 1886

Other scientific names: Epicrocis terebrans Oliff, 1890; Magiria robusta Moore, 1886; Hypsipyla scabrusculella Ragonot, 1893; Hypsipyla pagodella Ragonot, 1888
Lepidoptera: Pyralidae
Common names: mahogany shoot borer; cedar tip moth
Host type: broadleaf
Hosts: Khaya spp.; Entandrophragma spp.; Carapa procera; Lovoa trichiliodes

Hypsipyla robusta caterpillars bore into the tips and shoots of several species of high quality timber species including African mahogany (Khaya spp.), Entandrophragma spp., Carapa procera, and Lovoa trichiliodes. The caterpillars destroy the apical shoot causing the tree to form many side branches and frequently a deformed trunk which leads to a decreased value of the timber. This species of moth mainly attacks trees in high light areas, hence the biggest effects are observed in young planted forest areas, particularly those planted with a single species. Young understorey trees in naturally regenerating forests suffer far less damage. Plantings of mahogany have been almost completely abandoned in some areas because of the damage caused by this insect.

http://www.fzi.uni-freiburg.de/InsectPestKey-long%20version/hypsipyl.htm
Diseases

Indigenous diseases
No information was available on the status of indigenous diseases in planted forests of Ghana.

Introduced diseases

Nectria rigidiuscula Berkeley & Broome
Other scientific names: *Calonectria eburnea; Calonectria lichenigena; Calonectria rigidiuscula; Calonectria sulcata; Calonectria tetrasporsa; Fusarium decemcellulare; Fusarium rigidiusculum; Fusarium spicariae-colorantis; Scoleconectria tetrasporsa; Spicaria colorans*
Ascomycota: Nectriaceae
Common names: green point gall; cushion gall disease; witches' broom of mango; dieback of cocoa
Host type: broadleaf
Hosts: *Theobroma cacao; Hevea brasiliensis*

Nectria rigidiuscula is usually a secondary invasive; it often occurs in wounds caused by insect damage or infection by *Phytophthora palmivora*. The wounds created by members of the family Miridae, for example, which insert their mouthparts into the plant tissue provides an entry point for several serious secondary diseases. There are records of 80 percent infection rates of the wounds. This secondary infection causes canker and dieback.

http://www.cabicompendium.org/NamesLists/FC/Full/CALORI.htm
http://www.oardc.ohio-state.edu/cocoa/capsids.htm

Other pests

Indigenous other pests
No information was available on the status of indigenous other pests (e.g. mites, nematodes, mammals, etc.) in planted forests of Ghana.

Introduced other pests
No information was available on the status of introduced other pests (e.g. mites, nematodes, mammals, etc.) in planted forests of Ghana.

Diebacks and other conditions
No records were available for diebacks and other conditions affecting Ghana’s planted forests.
Capacity for forest health protection

Government level
In Ghana there is basically one main type of land ownership, the communal or customary ownership. Lands in Ghana are owned by traditional rulers and held in trust for them by the state. This applies to all land classes including forests. All forest lands are considered in public ownership (FAO, 2006).

The mandate for overall forestry activities in Ghana is vested in the Ministry of Lands and Forestry. This Ministry is responsible for policy formulation and coordination of programmes that lead towards attainment of national goals. These programmes are carried out by a semi-autonomous Forestry Commission which is headed by a Chief Executive and is governed by its own board and chairperson, appointed by the President of Ghana. The Forestry Commission was created outside the civil service to replace the previous Forestry Department. The Forestry Commission of Ghana is responsible for the regulation of utilization of forest and wildlife resources, the conservation and management of those resources and the coordination of policies related to these resources.

Work in forest protection, including forest entomology and forest pathology, is conducted by the Forestry Research Institute of Ghana (FORIG), in Kumasi under the Council of Scientific and Industrial Research (CSIR). For more information please visit the FORIG Web site at: http://www.forig.org/forig/index.html.

Monitoring and detection
Annual forest insect, and presumably forest disease, surveys are not conducted in Ghana. However, a series of annual reports by the Forest Entomology Section of the Forestry Research Institute of Ghana, issued between 1964 and 1986 contain a great deal of qualitative information on forest insect problems observed during those years (Wagner, Atuahene and Cobbinah, 1991).

Data management
Virtually no quantitative data are available on forest insects and diseases in Ghana. In addition to the annual reports mentioned in the preceding section, a comprehensive review of the forest insects of Ghana is documented in Wagner, Atuahene and Cobbinah (1991).

Pest management
Chemical insecticides have been used for the control of forest defoliators such as *Strepsicrates rhothia* in planted forests. On an experimental scale, the microbial insecticide, *Bacillus thuringiensis*, has been effective when applied to manage the defoliating caterpillar *Lamprosema lateritialis*. Establishment of mixed plantations has been evaluated as a means of reducing damage to *Milicia excelsa* by the gall-forming psyllid *Phytolyma lata* (Nichols et al., 1999).
Private landowners

All forest lands are considered in public ownership (FAO, 2006).

References

Index

OSN = Other Scientific Name (other names, synonyms, other combinations, etc. that have been used for this species)

Acacia
- Insects
 - Apate monachus, 4
 - Apate terebrans, 4

Adansonia digitata
- Insects
 - Analeptes trifasciata, 1

Anacardium occidentale
- Insects
 - Analeptes trifasciata, 1
 - Apate terebrans, 4

Analeptes trifasciata
- Hosts
 - Adansonia digitata, 1
 - Anacardium occidentale, 1

Bombax costatum, 1
Ceiba pentandra, 1
Eucalyptus alba, 1
Eucalyptus tereticornis, 1
Anaphe venata
- Hosts
 - Triplochiton scleroxylon, 2

African silkworm, 2
Ambrosia beetle, 2

Apate carmelita OSN, 3
Apate francisca OSN, 3
Apate gibba OSN, 3
Apate mendica OSN, 3
Apate monacha OSN, 3
Apate monachus
- Hosts
 - Acacia, 3
 - Azadirachta indica, 3
 - Citrus, 3
Overview of forest pests - Ghana

Coffea arabica, 3
Coffea robusta, 3
Eucalyptus polycarpa, 3
Khaya, 3
Melia composita, 3
Pinheccelobium dulce, 3
Psidium guajava, 3
Tectona grandis, 3
Terminalia ivorensis, 3
Theobroma cacao, 3
Triplochiton scleroxylon, 3

Apate monachus rufiventris, 3
Apate semicostata, 3
Apate senii, 3
Apate terebrans

Hosts
Acacia, 4
Anacardium occidentale, 4
Azadirachta indica, 4
Cedrela odorata, 4
Citrus, 4
Coffea arabica, 4
Coffea robusta, 4
Eucalyptus polycarpa, 4
Khaya, 4
Melia composita, 4
Psidium guajava, 4
Tectona grandis, 4
Terminalia ivorensis, 4
Theobroma cacao, 4
Triplochiton scleroxylon, 4

Ascomycota, 9
Azadirachta indica
Insects
Apate monachus, 4
Apate terebrans, 4

Black borer, 3
Bombax costatum
Insects
Analeptes trifasciata, 1

Bostrichidae, 3, 4

Broadleaf
Analeptes trifasciata, 1
Anaphe venata, 2
Apate monachus, 3
Apate terebrans, 4

Diclidophlebia eastopi, 4
Distantiella theobroma, 5
Epicerura pulverulenta, 5
Helenpeltis lalandei, 5
Hypsipyla robusta, 8
Lamprosema lateritialis, 2
Mesoplatys cincta, 6
Nectria rigidiuscula, 9
Phytoloma fusca, 7
Phytoloma laita, 6
Sahlbergella singularis, 7
Strepsicrates rhothia, 7
Trachyostus ghanaensis, 2
Tridesmodes ramiculata, 8

Brown capsid, 5
Calonectria eburnea, 9
Calonectria lichenigena, 9
Calonectria rigidiuscula, 9
Calonectria sulcata, 9
Calonectria tetrasporea, 9
Capsid, 5, 7
Carapa procera
Insects
\textit{Hypispyla robusta}, 8

Cedar tip moth, 8
Cedrela odorata
Insects
Apate terebrans, 4
Ceiba pentandra
Insects
Analeptes trifasciata, 1

Cerambycidae, 1
Chrysomela cincta, 6
Chrysomelidae, 6
Citrus
Insects
Apate monachus, 4
Apate terebrans, 4

Cocoa capsid, 5
Cocoa capsids stem sapper, 5
Cocoa mirid, 5, 7
Coffea arabica
Insects
Apate monachus, 4
Apate terebrans, 4
Coffea robusta
Overview of forest pests - Ghana

Insects
- *Apate monachus*, 4
- *Apate terebrans*, 4
Coleoptera, 1, 2, 3, 4, 6
Cushion gall disease, 9
Data management, 10
Date palm bostrichid, 3
Diclidophlebia eastopi
Hosts
- *Triplochiton scleroxylon*, 4
Dieback of cocoa, 9
Diebacks and other conditions, 3, 9
Naturally regenerating forests, 3
Planted forests, 9
Diseases, 3, 9

Calonectria eburnea _OSN_, 9
Calonectria lichenigena _OSN_, 9
Calonectria rigidiuscula _OSN_, 9
Calonectria sulcata _OSN_, 9
Calonectria tetraspora _OSN_, 9
Fusarium decemcellulare _OSN_, 9
Fusarium rigidiusculum _OSN_, 9
Fusarium spicariae-colorantis _OSN_, 9
Naturally regenerating forests, 3
Nectria rigidiuscula, 9
Planted forests, 9
Scoleconectria tetraspora _OSN_, 9
Spicaria colorans _OSN_, 9

Distantiella theobroma
Hosts
- *Theobroma cacao*, 4
Elaeis
Insects
- *Mesoplatys cincta*, 6
Entandrophragma
Insects
- *Hysipyla robusta*, 8
Epicerura pulverulenta
Hosts
- *Terminalia ivorensis*, 5
Epicrocis terebrans _OSN_, 8
Eucalyptus alba
Insects
- *Analeptes trifasciata*, 1
- *Strepsicrates rhodia*, 7
Eucalyptus cadambae
Insects
- *Strepsicrates rhodia*, 7
Eucalyptus citriodora
Insects
- *Strepsicrates rhodia*, 7
Eucalyptus leaf roller, 7
Eucalyptus polycarpa
Insects
- *Apate monachus*, 4
- *Apate terebrans*, 4
Eucalyptus tereticornis
Insects
- *Analeptes trifasciata*, 1
- *Strepsicrates rhodia*, 7
Eugenia
Insects
- *Strepsicrates rhodia*, 7
Fusarium decemcellulare _OSN_, 9
Fusarium rigidiusculum _OSN_, 9
Fusarium spicariae-colorantis _OSN_, 9
Gall forming psyllid, 6
Giant black bostrichid, 3
Girdler, 4
Government level, 10
Green point gall, 9
Helopeltis lalandei
Hosts
- *Theobroma cacao*, 5
Hemiptera, 4, 5, 6, 7
Hevea brasiliensis
Diseases
- *Nectria rigidiuscula*, 9
Host type
- Broadleaf, 1, 2, 3, 4, 5, 6, 7, 8, 9
Hosts
Acacia, 4
Insects
- *Apate monachus*, 4
- *Apate terebrans*, 4
Adansonia digitata, 1
Insects
- *Analeptes trifasciata*, 1
Anacardium occidentale, 1, 4
Insects
- *Analeptes trifasciata*, 1
- *Apate terebrans*, 4
Azadirachta indica, 4
 Insects
 Apate monachus, 4
 Apate terebrans, 4
Bombax costatum, 1
 Insects
 Analeptes trifasciata, 1
Carapa procera, 8
 Insects
 Hysipyla robusta, 8
Cedrela odorata, 4
 Insects
 Apate terebrans, 4
Ceiba pentandra, 1
 Insects
 Analeptes trifasciata, 1
Citrus, 4
 Insects
 Apate monachus, 4
 Apate terebrans, 4
Coffea arabica, 4
 Insects
 Apate monachus, 4
 Apate terebrans, 4
Coffea robusta, 4
 Insects
 Apate monachus, 4
 Apate terebrans, 4
Diclidophlebia eastopi, 4
Elaeis, 6
 Insects
 Mesoplatys cincta, 6
Entandrophragma, 8
 Insects
 Hysipyla robusta, 8
Eucalyptus alba, 1, 7
 Insects
 Analeptes trifasciata, 1
 Strepsicrates rhothia, 7
Eucalyptus cadambae, 7
 Insects
 Strepsicrates rhothia, 7
Eucalyptus citriodora, 7
 Insects
 Strepsicrates rhothia, 7
Eucalyptus polycarpa, 4
 Insects
 Apate monachus, 4
 Apate terebrans, 4
 Eucalyptus tereticornis, 1, 7
 Insects
 Analeptes trifasciata, 1
 Strepsicrates rhothia, 7
Eugenia, 7
 Insects
 Strepsicrates rhothia, 7
Hevea brasiliensis, 9
 Diseases
 Nectria rigidiuscula, 9
Khaya, 4, 8
 Insects
 Hysipyla robusta, 8
 Mangifera indica
 Mangifera indica
 Insects
 Strepsicrates rhothia, 7
 Mansonia altissima, 7
 Insects
 Strepsicrates rhothia, 7
Melia composita, 4
 Insects
 Apate monachus, 4
 Apate terebrans, 4
 Milicia excelsa, 6, 7
 Insects
 Phytolyma fusca, 7
 Phytolyma lata, 6
Milicia regia, 6
 Insects
 Phytolyma lata, 6
Pericopsis elata, 2
 Insects
 Lamprosema lateritia, 2
Psidium guajava, 4, 7
Overview of forest pests - Ghana

Insects

Apate monachus, 4
Apate terebrans, 4
Strepsicrates rhothia, 7
Sesbania grandiflora, 6
Insects

Mesoplatys cincta, 6
Tectona grandis, 4
Insects

Apate monachus, 4
Apate terebrans, 4
Terminalia ivorensis, 4, 5, 8
Insects

Apate monachus, 4
Apate terebrans, 4
Epicerura pulverulenta, 5
Tridesmodes ramiculata, 8
Theobroma cacao, 4, 5, 7, 9
Diseases

Nectria rigidiuscula, 9
Insects

Apate monachus, 4
Apate terebrans, 4
Distantiella theobroma, 5
Helopeltis lalandei, 5
Sahlbergella singularis, 7
Triplochiton scleroxylon, 2, 4
Insects

Anaphe venata, 2
Apate monachus, 4
Apate terebrans, 4
Diclidophlebia eastopi, 4
Trachyostus ghanaensis, 2
Hypsipyla pagodella, 8
Hypsipyla robusta
Hosts

Carapa procera, 8
Entandrophragma, 8
Khaya, 8
Lovoa trichiliodes, 8
Hypsipyla scabruсulella, 8
Indigenous diseases, 3, 9
Indigenous insects, 1, 3
Indigenous other pests, 3, 9
Insects, 1, 3
Analeptes trifasciata, 1
Anaphe venata, 2
Apate carmelita, 3
Apate francisca, 3
Apate gibba, 3
Apate mendica, 3
Apate monachus, 3
Apate monachus rufiventris, 3
Apate semicostata, 3
Apate senti, 3
Apate terebrans, 4
Chrysomela cincta, 6
Diclidophlebia eastopi, 4
Distantiella theobroma, 4
Epicerura pulverulenta, 5
Epicrocis terebrans, 8
Helopeltis lalandei, 5
Hypsipyla pagodella, 8
Hypsipyla robusta, 8
Hypsipyla scabruсulella, 8
Lamprosema lateritialis, 2
Magiria robusta, 8
Mesoplatys cincta, 6
Naturally regenerating forests, 1
Phytolyma fusca, 6
Phytolyma lata, 6
Planted forests, 3
Sahlbergella singularis, 7
Strepsicrates rhothia, 7
Trachyostus ghanaensis, 2
Tridesmodes ramiculata, 8
Introduced diseases, 3, 9
Introduced insects, 3, 8
Introduced other pests, 3, 9
Iroko gall bug, 6
Iroko gall fly, 6
Khaya
Insects

Apate monachus, 4
Apate terebrans, 4
Hypsipyla robusta, 8
Lamprosema lateritialis
Hosts

Pericopsis elata, 2
Leaf beetle, 6
Leaf roller, 7
Lepidoptera, 2, 5, 7, 8
Longicorn beetle, 1
Lovoa trichiliodes
 Insects
 Hysipyla robusta, 8
Magiria robusta OSN, 8
Mahogany shoot borer, 8
Mangifera indica
 Insects
 Strepsicrates rhothia, 7
Mansonia altissima
 Insects
 Strepsicrates rhothia, 7
Melia composita
 Insects
 Apate monachus, 4
 Apate terebrans, 4
Mesoplatys cincta
 Hosts
 Elaeis, 6
 Sesbania grandiflora, 6
Milicia excelsa
 Insects
 Phytolyma fusca, 7
 Phytolyma lata, 6
Milicia gall bug, 6
Milicia regia
 Insects
 Phytolyma lata, 6
Mirid, 5, 7
Miridae, 5, 7
Monitoring and detection, 10
Naturally regenerating forests, 1
 Diebacks and other conditions, 3
 Diseases, 9
 Insects, 1
 Other pests, 3
Nectria rigidiuscula
 Hosts
 Hevea brasiliensis, 9
 Theobroma cacao, 9
Nectriaceae, 9
Notodontidae, 2, 5
Other pests, 3, 9
 Naturally regenerating forests, 3
 Planted forests, 9
Pericopsis elata
 Insects
 Lamprosema lateritialis, 2
Pest management, 10
Phytolyma fusca
 Hosts
 Milicia excelsa, 6
Phytolyma lata
 Hosts
 Milicia excelsa, 6
 Milicia regia, 6
Picture wing moth, 8
Pithecellobium dulce
 Insects
 Apate monachus, 4
Planted forests, 3
 Diebacks and other conditions, 9
 Diseases, 9
 Insects, 3
 Other pests, 9
Platypodidae, 2
Private landowners, 11
Psidium guajava
 Insects
 Apate monachus, 4
 Apate terebrans, 4
 Strepsicrates rhothia, 7
Psyllidae, 4, 6
Pyralidae, 2, 8
Sahlbergella singularis
 Hosts
 Theobroma cacao, 7
Scoleconectria tetraspora OSN, 9
Sesbania grandiflora
 Insects
 Mesoplatys cincta, 6
Shot-hole borer, 4
Silk moth, 2
Spicaria colorans OSN, 9
Stem girdler, 1
Strepsicrates rhothia
 Hosts
 Eucalyptus alba, 7
 Eucalyptus cadambae, 7
 Eucalyptus citriodora, 7
 Eucalyptus tereticornis, 7
Overview of forest pests - Ghana

Eugenia, 7
Mangifera indica, 7
Mansonia altissima, 7
Psidium guajava, 7

Tectona grandis
Insects
Apate monachus, 4
Apate terebrans, 4

Terminalia ivorensis
Insects
Apate monachus, 4
Apate terebrans, 4
Epicerura pulverulenta, 5
Tridesmodes ramiculata, 8

Theobroma cacao
Diseases
Nectria rigidiuscula, 9
Insects
Apate monachus, 4
Apate terebrans, 4
Distantiella theobroma, 5

Helopeltis lalandei, 5
Sahlbergella singularis, 7

Thyrididae, 8
Tortricidae, 7

Trachyostus ghanaensis
Hosts
Triplochiton scleroxylon, 2

Tridesmodes ramiculata
Hosts
Terminalia ivorensis, 8

Triplochiton scleroxylon
Insects
Anaphe venata, 2
Apate monachus, 4
Apate terebrans, 4
Diclidophlebia eastopi, 4
Trachyostus ghanaensis, 2

Trunk borer, 1, 4
Twig borer, 3
Wawa borer, 2
Witches' broom of mango, 9