OVERVIEW OF FOREST PESTS

SOUTH AFRICA

January 2007
(Last update: July 2007)
DISCLAIMER

The aim of this document is to give an overview of the forest pest\(^1\) situation in South Africa. It is not intended to be a comprehensive review.

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

© FAO 2007

\(^1\) Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004).
Table of Contents

Introduction ... 1
Forest pests .. 1
Naturally regenerating forests ... 1
 Insects ... 1
 Diseases ... 1
 Other pests .. 4
 Diebacks and other conditions .. 5
Planted forests ... 5
 Insects ... 5
 Diseases ... 13
 Other pests .. 20
 Diebacks and other conditions .. 20
Capacity for forest health protection ... 20
 Government level .. 20
 Monitoring and detection .. 20
 Data management .. 21
 Pest management .. 21
 Private landowners ... 21
References ... 21
Index ... 25
Background

This paper is one of a series of FAO documents on forest-related health and biosecurity issues. The purpose of these papers is to provide early information on on-going activities and programmes, and to stimulate discussion.

In an attempt to quantify the impacts of the many factors that affect the health and vitality of a forest, the Global Forest Resources Assessment 2005 (FRA 2005) asked countries to report on the area of forest affected by disturbances, including forest fires, insects, diseases and other disturbances such as weather-related damage. However, most countries were not able to provide reliable information because they do not systematically monitor these variables.

In order to obtain a more complete picture of forest health, FAO continues to work on several follow-up studies. A review of forest pests in both naturally regenerating forests and planted forests was carried out in 25 countries representing all regions of the world. This Overview of forest pests represents one paper resulting from this review. Countries in this present series include Argentina, Belize, Brazil, Chile, China, Cyprus, Colombia, Ghana, Honduras, India, Indonesia, Kenya, Kyrgyz Republic, Malawi, Mauritius, Mexico, Moldova, Mongolia, Morocco, South Africa, Sudan, Thailand, Romania, Russian Federation, Uruguay; this list will be continuously updated.

Comments and feedback are welcome. For further information or if you are interested in participating in this process and providing information on insect pests, diseases and mammals affecting forests and the forest sector in your country, please contact:

Gillian Allard
Forestry Officer (Forest Protection and Health)
Forest Resources Development Service
Forest Management Division
Forestry Department
FAO
Viale delle Terme di Caracalla
00153 Rome, Italy
Telephone: +39 06 570 53373
Fax: + 39 06 570 55137
E-mail: gillian.allard@fao.org

All contributions will be fully acknowledged.

Acknowledgements

Information from South Africa was provided and validated by Prof. Jolanda Roux and Mr. Brett Hurley of the DST/NRF Centre of Excellence in Tree Health Biotechnology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria. The information was compiled by G. Maynard and B. Moore.
Introduction
South Africa is reported to have approximately 9.2 million hectares of forests representing 7.6 percent of the total land area and a further 21.4 million hectares of other wooded lands (FAO, 2006). Most of the forest occurs in the humid areas of the country, but in arid regions some forests are found on the banks of rivers or within protected sites. Planted forests cover about 1.4 million hectares, approximately 1.2 percent of the total land area and 15.5 percent of the total forest area (FAO, 2006). Planted forests are mostly comprised of Pinus patula, P. elliottii, P. taeda and Eucalyptus grandis. In colder areas Eucalyptus nitens, E. dunnii, and E. smithii are planted, while Acacia mearnsii is also planted widely in KwaZulu-Natal and Southern Mpumalanga. Pinus spp. are used for pulp and crates with older trees (20-30 year old) being used for construction and furniture veneers. Eucalyptus spp. are used for pulp, mining timber, transmission poles and furniture. Acacia spp. are used for pulp, tannins, and fuel. Acacia chips are also exported and used in the manufacture of higher quality papers.

Fire, weeds, insects and disease cause significant problems in production areas. The area of plantations seriously damaged by weather, diseases, insects, animals and rodents was estimated at 919 ha (FAO, 2005). Weeds include Solanum mauritianum, Rubus cuneifolius, Lantana camara, Setaria megaphylla and Acacia mearnsii. Significant amounts of resources are involved in weed control. Of special note is that although A. mearnsii, like some pine species, is classified as an invasive weed in South Africa, it is also one of the major components of the commercial forest industry and thus very important to this sector.

Forest pests
Naturally regenerating forests
Insects
Indigenous insects
No information was available on indigenous insects in South Africa’s naturally regenerating forests.

Introduced insects
No information was available on introduced insects impacting the naturally regenerating forests of South Africa.

Diseases
Indigenous diseases

Armillaria fuscipes Petch (1909)
Other scientific names:
Basidiomycota: Marasmiaceae
Common names: Armillaria root rot
Host type: broadleaf and conifer
Hosts: Eucalyptus spp.; Pinus spp.

The genus *Armillaria* causes root rot and death to woody plants in both natural and planted forests in boreal, temperate and tropical regions of the world. Armillaria root rot has been described from various parts of Africa on many different hosts. In South Africa, Armillaria root rot has been reported on economically important *Pinus* and *Eucalyptus* species grown in plantations since the early 1900s (Coetzee et al., 2000).

Most reports of Armillaria root rot in South Africa suggest that *A. mellea* is the causal agent. However, it has recently been suggested that the causal species in South Africa is actually *Armillaria fuscipes* (Coetzee et al., 2000; Coetzee et al., 2005).

[Ceratocystis albifundus](http://www.indexfungorum.org/Names/SynSpecies.asp?RecordID=145388)

Ceratocystis albifundus M.J. Wingf., De Beer & M.J. Morris (1996)

Other scientific names:
Ascomycota: Ceratocystidaceae
Common names: Ceratocystis wilt
Host type: broadleaf
Hosts: *Acacia mearnsii*; *A. decurrens*; *A. caffra*; *Burkea africana*; *Combretum molle*; *C. apiculatum*; *C. zeyherii*; *Faurea saligna*; *Ochna pulchra*; *Ozoroa paniculata*; *Protea* spp.; *P. gaguedii*; *Terminalia sericea*

Ceratocystis albifundus causes a serious wilt disease of Australian *Acacia mearnsii* trees in South Africa. It has also been reported infesting *A. mearnsii* trees in Uganda and Kenya (Roux et al., 2001). In addition to exotic tree species, *C. albifundus* has also been reported on native South African trees including *Protea gaguedii*, *Burkea africana*, *Combretum molle*, *C. apiculatum* and *C. zeyherii*, *Terminalia sericea*, *Ochna pulchra*, *Ozoroa paniculata*, *Acacia caffra* and *Faurea saligna* (Roux et al., 2004).

C. albifundus causes considerable damage in plantings of *Acacia mearnsii* and is considered the most important pathogen of these trees in South Africa (Roux and Wingfield, 1997). The disease causes swellings, blisters and lesions on stems, as well as discolouration of the wood, and has been known to kill one year old trees within six weeks after inoculation (Roux et al., 1999). Trees of all ages are affected however, with infection most commonly resulting in rapid wilt and death. The fungus needs wounds to be able to initiate an infection and thus often causes disease after hail wounds, weeding damage and corrective pruning practices. An insect association, although not yet proven, is very likely, as this has been proven for other species in the genus *Ceratocystis*.

It has previously been suggested that *C. albifundus* is native to Southern Africa. This hypothesis was based on the fact that the fungus has been reported only from Africa and that herbarium specimens from a native South African *Protea* sp. contain a fungus resembling *C. albifundus*. Various population diversity studies have supported the hypothesis that *C. albifundus* is native to South Africa (Roux et al., 2001; Roux et al., 2004; Barnes et al., 2005).
Chrysoporthe austroafricana Gryzenhout & M.J. Wingf. sp. nov. (2004)

Other scientific names:
Ascomycota: Chryphonectriaceae
Common names: Chrysoporthe canker
Host type: broadleaf
Hosts: Myrtaceae; Eucalyptus spp.; Tibouchina spp.; Syzygium cordatum; S. guineense

Chrysoporthe canker is one of the most important diseases of Eucalyptus spp. planted in tropical and subtropical regions worldwide. For many years, the disease was reported to be caused by the fungal pathogen Cryphonectria cubensis however recent studies have shown that the fungus in South Africa is not conspecific with C. cubensis and it was recently described as a new genus and species, Chrysoporthe austroafricana (Gryzenhout et al., 2004).

C. austroafricana is known only from Africa, where it causes severe cankers on Eucalyptus spp. and on ornamental Tibouchina trees, both of which have been introduced into South Africa (Wingfield, Swart and Abear, 1989; Conradie, Swart and Wingfield, 1990; Myburg et al., 2002; Wingfield, 2003; Roux et al., 2005; Nakabonge et al., 2006). The origin of Chr. austroafricana is unknown, but it is possible that it expanded its host range from native trees related to Eucalyptus and Tibouchina spp. to these exotic hosts. Subsequent surveys of some indigenous South African Myrtales led to the discovery of C. austroafricana on native Syzygium cordatum and S. guineense (Heath et al., 2006). Pathogenicity trials showed that C. austroafricana is more virulent on exotic Eucalyptus spp. than on native S. cordatum.

Introduced diseases

Phanerochaete salmonicolor (Berk. & Broome) Jülich

Other scientific names: Botryobasidium salmonicolor (Berk. & Broome) Venkatar.; Corticium salmonicolor Berk. & Broome; Erythricium salmonicolor (Berk. & Broome) Burds.; Pellicularia salmonicolor (Berk. & Broome) Dastur; Terana salmonicolor (Berk. & Broome) Kuntze
Basidiomycota: Phanerochaetaceae
Common names: pink disease
Host type: broadleaf
Hosts: Acacia mearnsii; Dais cotonifolia; Ekebergia capensis; Eucalyptus spp.; Maesa lanceolata; Podocarpus henkelli; P. latifolius

Phanerochaete salmonicolor causes a canker and dieback disease, commonly known as pink disease, on many tree species. It is widely distributed in the tropics where it causes branch and stem cankers on a wide variety of woody hosts, primarily hardwoods. Pink disease is potentially important in South Africa because it affects a wide range of native
and exotic tree species. The fungus is able to penetrate intact bark usually through lenticels where it may then kill the cambium or, the cambium may be infected directly through wounds. Small branches or stems may be quickly girdled and distal portions are killed. Epicormic branches may be formed below girdling cankers and keep the tree alive. However, these may be infected and killed in future infection cycles, resulting in eventual death of the tree.

During an investigation of diseases of Podocarpus henkellii and P. latifolius in the Mpumalanga Province of South Africa, typical symptoms of pink disease were observed on the branches of these trees (Roux and Coetzee, 2005). Stem and branch cankers covered with cracked bark and abundant pink mycelial growth were common on the affected trees. In subsequent surveys, the disease was also found on native Dais cotonifolia in the same area, and on native Ekebergia capensis and Maesa lanceolata in the KwaZulu-Natal Midlands. It has also been recorded from exotic Eucalyptus sp. and Acacia mearnsii (Nicol, Kemp and Wingfield, 1993; Crous, Phillips and Baxter, 2000; Roux and Coetzee, 2005).

http://spfnic.fs.fed.us/exfor/data/pestreports.cfm?pestidval=51&langdisplay=english
http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=319725

Phytophthora cinnamomi Rands

Other scientific names:
Oomycota: Pythiaceae
Common names: Phytophthora rot
Host type: broadleaf and conifer
Hosts: Myrtaceae; Proteaceae; Eucalyptus spp.; Pinus spp.; Pinus radiata ss radiata

Phytophthora cinnamomi causes root and collar rot in a broad range of plants including monocots and dicots such as chestnuts, avocados, eucalypts and pines. Myrtaceae and Proteaceae are particularly susceptible to this fungus. P. cinnamomi has been reported from 130 hosts in South Africa, mostly indigenous plants from nurseries, cultivated areas or natural vegetation (Von Broembsen, 1984). The disease causes the roots or collar to rot. If the disease does not kill the trees, then weakened trees frequently lodge. It is usually associated with humid conditions and poorly drained soils. This fungus overwinters as spores or mycelia in the roots or soil and germinates when conditions become favourable.

http://www.indexfungorum.org/Names/SynSpecies.asp?RecordID=260884
http://fabinet.up.ac.za/tpcp/pamphlets/pdf/phytophthora.pdf

Other pests

Indigenous other pests

No information was available on indigenous other pests (i.e. nematodes, mites, mammals, etc.) impacting the naturally regenerating forests of South Africa.

Introduced other pests
No information was available on introduced other pests (i.e. nematodes, mites, mammals, etc.) impacting the naturally regenerating forests of South Africa.

Diebacks and other conditions
No records were available for diebacks and other conditions affecting South Africa’s naturally regenerating forests.

Planted forests

Insects

Indigenous insects
In addition to the pests described below, South Africa’s planted forests are also subject to other indigenous pests of establishment such as white grubs (Coleoptera: Scarabaeidae), cutworms (Lepidoptera: Noctuidae) and Macrotermes termites (Isoptera: Macrotermitidae).

Coryphodema tristis
Other scientific names:
Lepidoptera: Cossidae
Common names: cossid moth; goat moth
Host type: broadleaf
Hosts: *Eucalyptus nitens*; Combretaceae; Malvaceae; Myoporaceae; Myrtaceae; Rosaceae; Scrophulariaceae; Ulmaceae; Vitaceae

Coryphodema tristis is native to South Africa and is a well known pest of fruit trees, vines and some native trees. It is a wood-boring insect with a wide host range including species in the Combretaceae, Malvaceae, Myoporaceae, Rosaceae, Scrophulariaceae, Ulmaceae and Vitaceae.

This species has recently been found feeding on *Eucalyptus nitens* trees in plantations growing in the Lothair/Carolina area in South Africa where it has caused extensive damage (Gebeyehu, Hurley and Wingfield, 2005). This is the first report of the cossid moth feeding on *Eucalyptus* spp. or any other member of the family Myrtaceae. This is of significant concern since intensively managed *Eucalyptus* plantations form an important component of the forest sector. Infestations range from less than 1 percent to nearly 80 percent of stands. The extent of its distribution and whether or not it attacks other eucalypt species is currently unknown.

http://www.fao.org/forestry/foris/webview/common/media.jsp?mediaId=8388&langId=1

Ellimenistes laesicollis Fåhraeus, 1871
Other scientific names:
Coleoptera: Curculionidae
Common names: grey weevil
Host type: broadleaf
Hosts: *Eucalyptus* spp.
Ellimenistes laesicollis feeds on a variety of indigenous plants and eucalypts but mainly feeds on newly planted eucalypts, where the adults feed on the root collar and branches. This species is especially a problem in previous sugarcane areas that have been replanted with eucalypts.

Euproctis terminalis Walker

Other scientific names:
Lepidoptera: Lymantriidae
Common names: pine brown tail moth
Host type: conifer
Hosts: _Pinus_ spp.

Euproctis terminalis is an indigenous species of moth that has been able to move onto introduced host plants. This species causes defoliation of _Pinus_ spp. which sometimes causes economic damage or tree mortality (Govender, 1998). The hairs of the larvae can cause intense irritation to human skin and can therefore be dangerous to the health of forestry workers (Kirsten _et al._, 2000).

Imbrasia cytherea (Fabricius, 1775)

Other scientific names:
Lepidoptera: Saturniidae
Common names: pine emperor moth
Host type: conifer
Hosts: _Pinus_ spp.; _Watsonia_ spp.

This native emperor moth is an indigenous species that has become a pest of exotic pine species. The larvae feed on pine needles, at times causing sufficiently high defoliation such that die back and tree mortality occur. Native hosts include _Watsonia_ spp.

Kotochalia junodi (Heylaerts)

Other scientific names: _Chaliopsis junodi_
Lepidoptera: Psychidae
Common names: wattle bagworm
Host type: broadleaf
Hosts: _Acacia_ spp.; _A. mearnsii_

This bagworm is a significant pest of acacias – both native and planted in South Africa. It has a single generation in a year; however in some areas the population levels can be sufficiently high that whole trees are defoliated. This affects the rate of growth and productivity of the trees in timber and bark production. Outbreaks of these catepillars is usually periodical over five to seven years depending on nutrition, climatic conditions etc. The population levels of this species generally tend to be controlled by a large range of natural enemies (parasites and predators) and diseases.

http://www.worldagroforestry.org/sea/Products/AFDbases/af/asp/SpeciesInfo.asp?SpID=58
Lygidolon laevigatum Reuter, 1907

Other scientific names:
Hemiptera: Miridae
Common names: brown wattle mirid
Host type: broadleaf
Hosts: *Acacia* spp.; *Acacia mearnsii*

This sap-sucking bug feeds on the tips of acacias. It affects the growth rate and productivity of the trees. When the tips of trees are killed, the replacement growth results in a ‘witches broom’ effect with many small, short branches formed. These bugs have a more significant affect on stressed trees than healthy trees; and have a tendency to feed on younger plants. This bug has a short life cycle of 4-6 weeks, and thus has the potential for rapid build up of populations.

Pachypasa capensis (Linnaeus, 1767)

Other scientific names:
Lepidoptera: Lasiocampidae
Common names: brown lappet moth
Host type: broadleaf and conifer
Hosts: *Pinus* spp.; *P. patula*; *Acacia* spp.; *Chrysanthemoides monilifera*

The brown lappet moth is an indigenous species of moth that feeds on introduced conifers. Native hosts of this moth include broadleaf plants such as Bitou bush (*Chrysanthemoides monilifera*) and *Acacia* spp. They are defoliators of *Pinus* spp., with its main host being *P. patula* (Kirsten et al., 2000). The damage caused can be sufficient at times for them to considered pests. They form clusters of fairly large numbers at times.

Introduced insects

Cinara cronartii Tissot & Pepper, 1967

Other scientific names:
Hemiptera: Aphididae
Common names: black pine aphid
Host type: conifer
Hosts: *Pinus* spp.; *P. teada*; *P. patula*; *P. elliottii*

The black pine aphid, *Cinara cronartii* was discovered damaging plantations of *Pinus teada*, *P. patula* and *P. elliottii* in South Africa during the 1970s. The hosts of this aphid are *Pinus* spp. In South Africa it feeds on stems and roots however in its native range, the southeastern USA, it feeds on bark lesions or cankers caused by the fusiform rust *Cronartium quercuum* (Kfir, Kirsten and van Rensburg, 1985; Mills, 1990). The black pine aphid causes significant damage to plantation of pines, particularly when trees are stressed such as during drought. It causes yellowing of crowns, dieback and at times tree mortality. A second problem caused by aphids is the production of honey dew, on which sooty moulds grow. In South Africa a parasitic wasp (*Pauesia* sp.) has been introduced for biological control of this aphid.
Overview of forest pests - South Africa

Gonipterus scutellatus Gyllenhal, 1833
Other scientific names:
Coleoptera: Curculionidae
Common names: eucalyptus weevil; eucalyptus snout beetle; gum tree weevil
Host type: broadleaf
Hosts: Eucalyptus spp.

Gonipterus scutellatus is a leaf-feeding beetle that is a major defoliator of Eucalyptus spp. It is indigenous to Australia but occurs in many countries throughout the world where eucalypt trees are grown. Infestations of this beetle are known to cause serious damage, both in Australia and where it has been introduced. Attack by this beetle can cause tree mortality, reduction in growth, coppicing, and stunting of trees. Some Eucalyptus spp. are more susceptible to damage than others.

The females lay eggs in batches on both surfaces of new leaves; the eggs are covered by excrement to form a capsule. The larvae emerge and feed on fresh foliage and pupate in the soil. Adults also feed on leaves and growing shoots. There is usually more than one generation per year, with females living for about three months and larval development taking between 30 and 80 days. In some places there are continuous generations. Dispersal is by adult flight, adults hitch-hiking on non-plant material, and movement of infested plant material or soil.

Hylastes angustatus (Herbst)
Other scientific names:
Coleoptera: Curculionidae
Common names: pine bark beetle; pine root-infesting bark beetle
Host type: conifer
Hosts: Pinus spp.

Hylastes angustatus is native to Europe and Russia. The beetles feed on the green bark of the roots and root collars of seedlings, killing the seedlings by ring barking. More information on this pest in South Africa can be found in Kirsten et al. (2000).

Hylurgus ligniperda (Fabricius, 1787)
Other scientific names: Hylesinus ligniperda; Hylurgus elongatus; Hylurgus flavipes

http://www.eppo.org/QUARANTINE/insects/Gonipterus_gibberus/DSGONPSP.pdf
http://fabinet.up.ac.za/biennialreport/docs/report1.pdf

http://www.forestryimages.org/browse/subimages.cfm?SUB=4132
Coleoptera: Curculionidae
Common names: bark beetle; golden haired beetle; red haired pine bark beetle
Host type: conifer
Hosts: *Pinus* spp.

Hylurgus ligniperda infests freshly cut stumps, freshly cut branches, logs in contact with soil, and stressed or weakened trees. As well during maturation, adults are known to strip the bark of young seedlings. The females bore through the bark and form galleries under the bark where they lay eggs. Individual females can lay up to 500 eggs. There is usually more than one generation per year, with adults present throughout most of the year. The adults are strong fliers and capable of flying several kilometers to initiate attack on fresh hosts. The other main means of dispersal is the movement of infested material that has not been debarked and contains either immatures or adults.

Damage is caused directly by the beetles creating galleries in the timber as well as indirectly by the introduction of black stain root rot fungi. Hosts are *Pinus* spp. This bark beetle is a vector of several species of root disease fungi in the genus *Leptographium*. This beetle occurs in Africa, Europe Asia, North America, Australia, New Zealand, Uruguay, Brazil and Chile.

http://spfnic.fs.fed.us/exfor/data/pestreports.cfm?pestidval=59&langdisplay=english

Phoracantha recurva Newman, 1840

Other scientific names:
Coleoptera: Cerambycidae
Common names: longicorn beetle
Host type: broadleaf
Hosts: *Eucalyptus* spp.

Native to Australia, *Phoracantha recurva* was reported from Tunisia in 1999 and has also been recorded in Argentina, Brazil, Chile, Greece, Malawi, New Zealand, South Africa, Spain, the United States, Uruguay and Zambia. This insect is a large black and yellow longicorn beetle that lay eggs under loose bark of *Eucalyptus* spp. It is primarily a pest of stressed trees, particularly water stressed trees or freshly felled timber; it rarely attacks healthy trees. The larvae tunnel under the bark and in the cambium layer and effectively ring barks the trees. The larval feeding can rapidly kill the trees or cause significant damage to the timber of affected trees. The adults live for several weeks and the larvae take 2 to 6 months to develop depending on moisture conditions in the logs.

Pathways of introduction include nursery stock, freshly cut timber, and timber and wood with high moisture content. It is suspected that *P. recurva* entered South Africa in freshly-cut railway sleepers imported from Australia. The adults are moderately long lived and are strong fliers that are thus capable of naturally dispersing a fair distance.

http://www.metsla.fi/iufro/iufro95abs/d2pap105.htm
http://www.ipm.ucdavis.edu/PMG/PESTNOTES/pn7425.html
http://www.invasive.org/browse/subject.cfm?sub=394
http://www.eppo.org/QUARANTINE/Alert_List/insects/phoracantha.htm

Phoracantha semipunctata (Fabricius, 1775)
Overview of forest pests - South Africa

Other scientific names:
Coleoptera: Cerambycidae
Common names: common eucalypt longhorn; eucalypt longhorn; eucalyptus longhorned borer; longicorn beetle
Host type: broadleaf
Hosts: Eucalyptus spp.

Native to Australia, Phoracantha semipunctata is a large black and yellow longicorn beetle that lays eggs under loose bark of Eucalyptus spp. This species tends to attack unhealthy or stressed trees (particularly drought stressed trees) or freshly felled timber. The larvae tunnel deep into the trees and form galleries. The larval feeding can girdle trees killing them. They cause significant damage to the timber of affected trees, hence affecting the quality of salvaged materials. The adults live for several weeks and larvae take 2 to 6 months to develop depending on moisture conditions in the logs.

The adults of this species are strong fliers, hence can disperse significant distances. However movement over greater distances occurs in infested timber. It is suspected that P. semipunctata entered South Africa in freshly-cut railway sleepers imported from Australia.

http://www.metla.fi/iufro/iufro95abs/d2pap105.htm
http://www.ipm.ucdavis.edu/PMG/PESTNOTES/pn7425.html
http://www.invasive.org/browse/subject.cfm?sub=394
http://www.eppo.org/QUARANTINE/Alert_List/insects/phoracantha.htm

Pineus pini (Gmelin, 1789)

Other scientific names: Pineus laevis (Maskell, 1885) Börner, 1907; Aphis pini Gmelin, 1790; Kermes pini Macquart, 1819; Anisophleba pini Koch, 1857; Kermaphis pini var. laevis Maskell, 1885; Pineus pini (Macquart, 1819) Börner, 1907; Pineus sylvestris Annand, 1928; Pineus havrylenkoi Blanchard, 1944; Pineus simmondsi Yaseen & Ghani, 1971; Pineus boerneri Annand, 1928

Hemiptera: Adelgidae
Common names: Eurasian pine adelgid; pine woolly aphid; red pine adelgid; common pine aphid; pine adelgid
Host type: conifer
Hosts: Pinus spp.

A pest of Pinus spp., this aphid feeds on shoots at times causing tip dieback. It occurs in Africa, Australia, Europe, New Zealand and North and South America. This aphid was first detected in Kenya in 1969 in pine plantations at the Kenya Forest Research Centre arboretum near Muguga. Attempts to eradicate infestations by destroying infested pines were unsuccessful (Odera, 1974; Odera and Arap Sang, 1975; Odera and Arap Sang, 1980). Control of this pest by biological control is variable - in some areas this method has been highly successful and significantly less so in others. This aphid has been moved into new areas mostly by movement of infested planting stock.

http://www.insectimages.org/browse/subimages.cfm?SUB=8092
http://www.cabicompendium.org/NamesLists/FC/Full/PINEPI.htm
http://www.fzi.uni-freiburg.de/InsectPestKey-long%20version/pineus.htm

Pissodes nemorensis Germar, 1824

Other scientific names: *Pissodes approximatus; Pissodes canadensis; Pissodes deodarae*

Coleoptera: Curculionidae

Common names: eastern pine weevil; northern pine weevil; deodar weevil

Host type: conifer

Hosts: *Pinus* spp.; *Cedrus* spp.; *Picea* spp.

Pissodes nemorensis is a weevil that is polyphagous on conifers such as *Pinus* spp., *Picea* spp. and *Cedrus* spp. The primary damage caused by *P. nemorensis* is the ring-barking of the growing tips of young pine trees causing tip dieback resulting in growth retardation and poor form of the tree. Although it seldom kills the tree, the stress it induces in the tree makes the tree more susceptible to other pests and diseases. It also infests dying and dead trees and logs. The weevils breed in the cambium layer. *Pissodes nemorensis* is also a potential vector of *Fusarium circinatum* when this fungus becomes established in mature pine stands. They disperse by means of flight or transport of infested logs.

This species is native to North America and was discovered in South Africa in 1942 (Gebeyehu and Wingfield, 2003). It has since caused significant damage to local pine plantations. *P. nemorensis* is present throughout all pine-growing areas in the country and is often associated with stressed trees (Gebeyehu and Wingfield, 2003).

http://www.eppo.org/QUARANTINE/insects/Pissodes_nemorensis/PISONE_ds.pdf
http://www.cfl.scf.rncan.gc.ca/collections-cfl/ficheinsecte_e.asp?id=1837
http://www.forestpests.org/southern/deodarweevil.html
http://www.nrf.ac.za/sajs/abnov03h.stm

Scolytus kirschii Skalitzky, 1876

Other scientific names:

Coleoptera: Scolytidae

Common names:

Host type: broadleaf

Hosts: *Ulmus* spp.; *U. procera*

In February 2005, the exotic bark beetle, *Scolytus kirschii*, was detected infesting English elms (*Ulmus procera*) growing on a farm in Stellenbosch, South Africa (Six *et al.*, 2005). This appeared to be the first report of an infestation of *Scolytus* species in this country and it also appeared to be the first account of the establishment of *S. kirschii* outside southern and central Europe, the Mediterranean region, and Central Asia.

The beetle’s presence in South Africa is of considerable concern owing to its ability to kill ornamental elms resulting in considerable economic impact, the potential that it may switch hosts from exotic elms to related indigenous trees, and its potential impact as a vector of the causal agents of Dutch elm disease (DED), *Ophiostoma ulmi* and *O. novo-ulmi* (Six *et al.*, 2005). While none of the attacked trees were infested with DED, the damage to the trees by the beetles alone was sufficient to cause tree death.
Scolytus kirschii is monogamous. Females attack the trees and initiate galleries in the phloem layer just beneath the outer bark, where breeding occurs. Egg galleries are constructed following the grain of the wood and larval galleries extend at right angles away from the egg galleries, typically, but not always, directed against the grain.

Sirex noctilio Fabricius, 1793
Other scientific names: *Sirex melanocerus* Thomson, 1871; *Paururus noctilio*
Hymenoptera: Siricidae
Common names: European wood wasp; sirex; sirex woodwasp; steel-blue horntail
Host type: conifer
Hosts: *Pinus radiata*; *P. taeda*; *P. pinaster*; *P. sylvestris*; *P. nigra*; *P. pinea*; *P. elliottii*; *P. echinata*; *P. palustris*; *P. patula*; *P. caribaea*; *P. kesiya*; *P. strobes*; *Abies* spp.; *Larix* spp.; *Picea* spp.; *Pseudotsuga menziesii*

The European woodwasp is native to Europe and northern Africa, where it infests various species of conifers including *Abies* spp., *Larix* spp., *Picea* spp., *Pinus* spp. and *Pseudotsuga* spp. Adult females lay eggs in stressed or dying trees. Each generation takes between one and two years. When the females lay eggs in trees they also insert a fungus (*Amylostereum areolatum*) and a toxic mucus which usually kill the trees, thus making a suitable habitat for the larvae. The larvae feed on the fungus causing degradation in the quality of timber.

This insect has been accidentally introduced into many Southern Hemisphere countries, including Argentina, Australia, Brazil, Chile, New Zealand, South Africa and Uruguay (Ciesla, 2003). In these countries, the wasp has become a major pest in pine plantations, causing up to 70 and 80 percent mortality in certain areas of Uruguay and Australia respectively. In 1994, *Sirex noctilio* was introduced into South Africa and it is causing considerable damage in the Cape and is now spreading to new areas.
http://spfnic.fs.fed.us/exfor/data/pestreports.cfm?pestidval=33&langdisplay=english
http://www.invasive.org/browse/subimages.cfm?sub=4093
http://www.metla.fi/iufro/iufro95abs/d2pos86.htm
http://www.main.gov/agriculture/pi/pestsurvey/pestinfo/woodwasp.htm

Thaumastocoris peregrinus Carpintero and Dellapé, 2006
Other scientific names:
Hemiptera: Thaumastocoridae
Common names: bronze bug
Host type: broadleaf
Hosts: *Eucalyptus viminalis*; *E. camaldulensis*; *E. grandis*; *E. tereticornis*; *E. smithii*; *E. grandis* x *camaldulensis*; *E. grandis* x *urophylla*
Originating from the eastern regions of Australia, *Thaumastocoris peregrinus* is a gregarious, sap-sucking bug that has become a significant pest in commercially important exotic *Eucalyptus* plantations of South Africa. It poses a major threat to the forest sector by reducing the photosynthetic ability of the tree, resulting in stunted growth and even death of severely infested trees. It infests many eucalypt species and their hybrids, including *Eucalyptus camaldulensis*, *E. grandis*, *E. smithii*, *E. tereticornis*, *E. viminalis*, *E. grandis x camaldulensis* and *E. grandis x urophylla* (Wood Southern Africa and Timber Times, 2007).

After the discovery of *T. peregrinus* in South African plantations, intensive, nationwide surveys were conducted by researchers at the Tree Protection Co-operative Programme (TPCP). The surveys looked at several eucalyptus species, hybrids and their clones and covered various geological and climatic regions. These surveys, along with reports from other researchers in the country, have shown that the bronze bug occurs in all eucalypt growing areas from Tzaneen in the north to Cape Town in the south (Wood Southern Africa and Timber Times, 2007).

This pest was originally identified as *Thaumastocoris australicus* (Jacobs and Nesar, 2005) until Carpintero and Dellapé (2006) described a new species, *T. peregrinus*, which is morphologically very similar to *T. australicus*. They also reported that the *Thaumastocoris* pest in South Africa showed unique morphological characteristics only found on *T. peregrinus*. The identification of the *Thaumastocoris* pest in South Africa as *Thaumastocoris peregrinus* has since been confirmed through genetic testing and in consultation with a taxonomic specialist of the genus *Thaumastocoris* (Nadel, pers. comm.).

http://www.fao.org/forestry/site/26061/en
http://fabinet.up.ac.za/personnel/showperson.php?id=rmadel
http://fabinet.up.ac.za/tpcp/pamphlets/pdf/Thaumastocoris%20symptoms%20photos2.pdf

Diseases

Indigenous diseases

Armillaria fuscipes Petch (1909)

Other scientific names:
Basidiomycota: Marasmiaceae
Common names: Armillaria root rot
Host type: broadleaf and conifer
Hosts: *Eucalyptus* spp.; *Pinus* spp.

The genus *Armillaria* causes root rot and death to woody plants in both natural and planted forests in boreal, temperate and tropical regions of the world. Armillaria root rot has been described from various parts of Africa on many different hosts. In South Africa,
Armillaria root rot has been reported on economically important Pinus and Eucalyptus species grown in plantations since the early 1900s (Coetzee et al., 2000).

Most reports of Armillaria root rot in South Africa suggest that A. mellea is the causal agent. However, it has recently been suggested that the causal species in South Africa is actually Armillaria fuscipes (Coetzee et al., 2000; Coetzee et al., 2005).

http://www.indexfungorum.org/Names/SynSpecies.asp?RecordID=145388

Other scientific names:
Ascomycota: Ceratocystidaceae
Common names: Ceratocystis wilt
Host type: broadleaf
Hosts: Acacia mearnsii; A. decurrens; A. caffra; Burkea africana; Combretum molle; C. apiculatum; C. zeyherii; Faurea saligna; Ochna pulchra; Ozoroa paniculata; Protea spp.; P. gaguedii; Terminalia sericea

Ceratocystis albifundus causes a serious wilt disease of Australian Acacia mearnsii trees in South Africa. It has also been reported infesting A. mearnsii trees in Uganda and Kenya (Roux et al., 2001). In addition to exotic tree species, C. albifundus has also been reported on native South African trees including Protea gaguedii, Burkea africana, Combretum molle, C. apiculatum and C. zeyherii, Terminalia sericea, Ochna pulchra, Ozoroa paniculata, Acacia caffra and Faurea saligna (Roux et al., 2004).

C. albifundus causes considerable damage in plantings of Acacia mearnsii and is considered the most important pathogen of these trees in South Africa (Roux and Wingfield, 1997). The disease causes swellings, blisters and lesions on stems, as well as discoloration of the wood, and has been known to kill one year old trees within six weeks after inoculation (Roux et al., 1999). Trees of all ages are affected however, with infection most commonly resulting in rapid wilt and death. The fungus needs wounds to be able to initiate an infection and thus often causes disease after hail wounds, weeding damage and corrective pruning practices. An insect association, although not yet proven, is very likely, as this has been proven for other species in the genus Ceratocystis.

It has previously been suggested that C. albifundus is native to Southern Africa. This hypothesis was based on the fact that the fungus has been reported only from Africa and that herbarium specimens from a native South African Protea sp. contain a fungus resembling C. albifundus. Various population diversity studies have supported the hypothesis that C. albifundus is native to South Africa (Roux et al., 2001; Roux et al., 2004; Barnes et al., 2005).

http://fabinet.up.ac.za/tpcp/pamphlets/pdf/ceratocystis.pdf
http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=437121

Chrysoporthe austroafricana Gryzenhout & M.J. Wingf. sp. nov. (2004)

Other scientific names:
Ascomycota: Chryphonectriaceae
Common names: Chrysoporthe canker
Host type: broadleaf
Overview of forest pests - South Africa

Hosts: Myrtaceae; Eucalyptus spp.; Tibouchina spp.; Syzygium cordatum; S. guineense

Chrysoporthe canker is one of the most important diseases of Eucalyptus spp. planted in tropical and subtropical regions worldwide. For many years, the disease was reported to be caused by the fungal pathogen Cryphonectria cubensis however recent studies have shown that the fungus in South Africa is not conspecific with C. cubensis and it was recently described as a new genus and species, Chrysoporthe austroafricana (Gryzenhout et al., 2004).

C. austroafricana is known only from Africa, where it causes severe cankers on Eucalyptus spp. and on ornamental Tibouchina trees, both of which have been introduced into South Africa (Wingfield, Swart and Abear, 1989; Conradie, Swart and Wingfield, 1990; Myburg et al., 2002; Wingfield, 2003; Roux et al., 2005; Nakabonge et al., 2006). The origin of Chr. austroafricana is unknown, but it is possible that it expanded its host range from native trees related to Eucalyptus and Tibouchina spp. to these exotic hosts. Subsequent surveys of some indigenous South African Myrtales led to the discovery of C. austroafricana on native Syzygium cordatum and S. guineense (Heath et al., 2006). Pathogenicity trials showed that C. austroafricana is more virulent on exotic Eucalyptus spp. than on native S. cordatum.

Introduced diseases

Botryosphaeria dothidea (Moug.) Ces. & De Not.
Other scientific names: Caumadothis dothidea; Dothiorella mali; Sphaeria dothidea
Ascomycota: Botryosphaeriaceae
Common names: Botryosphaeria canker
Host type: broadleaf
Hosts: Eucalyptus spp.; E. grandis; E. nitens; Acacia mearnsii

Botryosphaeria dothidea causes dieback and canker in Eucalyptus spp. This species was first reported from South Africa in 1994 as the cause of dieback of Acacia mearnsii (Smith, Kemp and Wingfield, 1994). It tends to attack trees that have been stressed by such factors as drought, late frosts, cold winds, hot winds, insect damage or pruning. The infection often leads to discolouration of the wood, which can extend throughout the tree. Infection by this fungus can lead to the development of cankers on stems and branches. The stems and branches often break at the site of the cankers. There is a significant degree of variability in susceptibility to disease amongst Eucalyptus spp. B. dothidea was found to occur as a latent symptomless endophyte in healthy leaves of E. grandis and E. nitens in South Africa (Smith, Wingfield and Pertini, 1996).

The entire taxonomy of the genus Botryosphaeria has undergone major changes in the last few years. (See Crous et al., 2006 for more information).

Other scientific names: *Fusicoccum eucalypticola* Slippers, Crous & M.J. Wingf. sp. nov. (anamorph)
Ascomycota: Botryosphaeriaceae
Common names: Botryosphaeria canker
Host type: broadleaf
Hosts: *Eucalyptus* spp.

Botryosphaeria eucalypticola was recently reported to be common in South Africa (Slippers *et al*., 2004). It infests eucalypt species causing canker and dieback. It is believed that this fungus, as with *B. eucalyptorum*, was introduced into this area with planting stock or seed from Australia which is not surprising given its common occurrence in Australia from where *Eucalyptus* planting material and seed is commonly obtained for plantation development (Slippers *et al*., 2004).

Other scientific names: *Fusicoccum eucalyptorum* Crous, H. Sm. ter & M.J. Wingf. 1998 (anamorph)
Ascomycota: Botryosphaeriaceae
Common names: Botryosphaeria canker
Host type: broadleaf
Hosts: *Eucalyptus* spp.

Botryosphaeria eucalyptorum was first described from South Africa associated with canker and dieback of eucalypts in planted forests (Smith *et al*., 2001). It is believed that this fungus was introduced into this area with planting stock or seed from Australia which is not surprising given its common occurrence in Australia from where *Eucalyptus* planting material and seed is commonly obtained for plantation development (Slippers *et al*., 2004).

Other scientific names: *Holocryphia eucalypti* (previously known as *Cryphonectria gyrosa*) is associated with cankers in the bark of *Eucalyptus* spp. In South Africa the fungus is not considered to be of much economic importance, however, in Western Australia it has been described as the cause of tree mortality.

The fungus *Holocryphia eucalypti* is associated with cankers in the bark of *Eucalyptus* spp. In South Africa the fungus is not considered to be of much economic importance, however, in Western Australia it has been described as the cause of tree mortality.

Finally, *Gibberella circinata* Nirenberg & O'Donnell (1998)
Other scientific names: *Fusarium circinatum* Nirenberg & O'Donnell 1998 (anamorph)
Ascomycota: Nectriaceae
Common names: pine pitch canker
Host type: conifer
Hosts: Pinus spp.; P. patula

Gibberella circinata [anamorph Fusarium circinatum (=F. subglutinans f.sp. pini)] causes serious root and root collar disease in seedlings (Viljoen, Wingfield and Marasas, 1994) and is also the causal agent of pine pitch canker in mature trees. The fungal spores are airborne and the greatest level of dispersal occurs during windy, wet weather. The fungal infections occur via wounds caused by either mechanical damage or insect injury and are higher under conditions of stress.

This fungus was first discovered in South Africa in 1988 causing disease in seedlings and has not yet been found causing pitch canker in mature trees (Viljoen et al., 1995). It was first found in a single nursery and has since rapidly spread to all South African pine nurseries (Wingfield et al., 2002). It has significantly complicated pine propagation and is resulting in substantial losses in plantation establishment. In South Africa, populations of this fungus have been shown to be genetically diverse due to either multiple introductions of genotypes of the fungus or active sexual recombination (Wingfield et al., 1999). One of the vectors (Pissodes nemorensis) of pine pitch canker is already established in South Africa (Viljoen, Wingfield and Marasas, 1994).

http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=444883

Mycosphaerella pini Rostr. (1957)
Other scientific names: Cytosporina septospora; Dothistroma pini; Dothistroma septosporum; Eruptio pini; Mycosphaerella pini; Scirrhia pini; Septoria septospora
Ascomycota: Mycosphaerellaceae
Common names: pine needle blight; Dothistroma needle blight; red band needle blight
Host type: conifer
Hosts: Pinus spp.

Dothistroma needle blight causes premature loss of needles and defoliation apart from the needles at the tips of shoots. Infection of the same trees in successive years can lead to stunting of growth and eventually death of the trees. The fungus is spread by movement of infected plants or rain splash.

http://fabinet.up.ac.za/tpcp/pamphlets/pdf/dothistroma.pdf
http://www.eppo.org/QUARANTINE/fungi/Mycosphaerella_dearnessii/SCIRSP_ds.pdf
http://www.indexfungorum.org/Names/SynSpecies.asp?RecordID=282775

Phanerochaete salmonicolor (Berk. & Broome) Jülich
Other scientific names: Botryobasidium salmonicolor (Berk. & Broome) Venkatar.; Corticium salmonicolor Berk. & Broome; Erythricium salmonicolor (Berk. & Broome) Burds.; Pellicularia salmonicolor (Berk. & Broome) Dastur; Terana salmonicolor (Berk. & Broome) Kuntze
Basidiomycota: Phanerochaetaceae
Common names: pink disease
Phanerochaete salmonicolor causes a canker and dieback disease, commonly known as pink disease, on many tree species. It is widely distributed in the tropics where it causes branch and stem cankers on a wide variety of woody hosts, primarily hardwoods. Pink disease is potentially important in South Africa because it affects a wide range of native and exotic tree species. The fungus is able to penetrate intact bark usually through lenticels where it may then kill the cambium or, the cambium may be infected directly through wounds. Small branches or stems may be quickly girdled and distal portions are killed. Epicormic branches may be formed below girdling cankers and keep the tree alive. However, these may be infected and killed in future infection cycles, resulting in eventual death of the tree.

During an investigation of diseases of Podocarpus henkellii and P. latifolius in the Mpumalanga Province of South Africa, typical symptoms of pink disease were observed on the branches of these trees (Roux and Coetzee, 2005). Stem and branch cankers covered with cracked bark and abundant pink mycelial growth were common on the affected trees. In subsequent surveys, the disease was also found on native Dais cotonifolia in the same area, and on native Ekebergia capensis and Maesa lanceolata in the KwaZulu-Natal Midlands. It has also been recorded from exotic Eucalyptus sp. and Acacia mearnsii.

Phytophthora cinnamomi Rands

Other scientific names:
Oomycota: Pythiaceae
Common names: Phytophthora rot
Host type: broadleaf
Hosts: Myrtaceae; Proteaceae; Eucalyptus spp.

Phytophthora cinnamomi causes root and collar rot in a broad range of plants including monocots and dicots such as chestnuts, avocados and Eucalyptus spp. Myrtaceae and Proteaceae are particularly susceptible to this fungus. P. cinnamomi has been reported from 130 hosts in South Africa, mostly indigenous plants from nurseries, cultivated areas or natural vegetation (Von Broembsen, 1984). The disease causes the roots or collar to rot. If the disease does not kill the trees, then weakened trees frequently lodge. It is usually associated with humid conditions and poorly drained soils. This fungus overwinters as spores or mycelia in the roots or soil and germinates when conditions become favourable.

Phytophthora nicotianae

Other scientific names:
Oomycota: Pythiaceae
Common names: Phytophthora rot
Host type: broadleaf
Hosts: *Eucalyptus* spp.; *E. fastigata*; *E. elata*; *E. smithii*

Phytophthora nicotianae has been recovered from dead and dying *Eucalyptus* spp. including *E. fastigata*, *E. elata* and *E. smithii* (Maseko et al., 2001). It is believed that this is the causative agent in cooler areas of root and collar rot. It has a very wide host range that includes other tree species and crops.

Rhizina undulata Fr.

Other scientific names: *Helvella inflata* Schaeff.; *Rhizina inflata* (Schaeff.) Quél.; *Rhizina inflata* var. *rhizophora* Massee; *Rhizina laevigata* Fr.
Ascomycota: Rhizinaceae
Common names: rhizina root rot
Host type: conifer
Hosts: *Pinus* spp.

Rhizina root rot occurs in commercial pine plantations across South Africa. This fungus colonizes the roots of previously harvested trees and then infects seedlings when they are planted in the same area. Infected seedlings frequently die and the disease is capable of causing death in mature trees. It is spread or exacerbated by insects such as *Hylastes angustatus*.
http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=196051

Sphaeropsis sapinea (Fr.) Dyko & B. Sutton

Other scientific names: *Botryodiplodia pinea*; *Diplodia conigena*; *Diplodia pinastri*; *Diplodia pinea*; *Diplodia sapinea*; *Granulodiplodia pinea*; *Granulodiplodia sapinea*; *Macrophoma pinea*; *Macrophoma sapinea*; *Phoma pinastri*; *Sphaeria pinea*; *Sphaeria sapinea*; *Sphaeropsis ellisii*; *Sphaeropsis pinastri*
Ascomycota: Incertae sedis
Common names:
Host type: conifer
Hosts: *Pinus* spp.

Sphaeropsis sapinea causes a number of different types of diseases and conditions in conifers including dieback of shoots, stem cankers, root diseases and blue stain fungi. It often exists reasonably benignly on healthy mature trees, however if the trees become damaged, stressed or injured, the fungus then causes disease; it is an opportunistic pathogen. It can also infect shoots of young trees that have not been stressed or injured. Hosts of this fungus include *Pinus* spp.
http://fabinet.up.ac.za/tpcp/pamphlets/pdf/sphaeropsis.pdf
http://www.indexfungorum.org/Names/SynSpecies.asp?RecordID=116379
http://www.crem.fct.unl.pt/botryosphaeria_site/diplodia_pinea_2.htm
Other pests

Indigenous other pests

No information was available for indigenous other pests (e.g. mites, nematodes, mammals, etc.) impacting South Africa’s planted forests.

Introduced other pests

No information was available for introduced other pests (e.g. mites, nematodes, mammals, etc.) impacting South Africa’s planted forests.

Diebacks and other conditions

No records were available for diebacks and other conditions affecting South Africa’s planted forests.

Capacity for forest health protection

Government level

At the national level, the Department of Water Affairs and Forestry (DWAF) is responsible for forest sector implementation and coordination. Forestry research is done at several institutes including the Forestry and Agriculture Biotechnology Institute at the University of Pretoria (FABI) and the Institute for Commercial Forestry Research (ICFR) in Pietermaritzburg. The ICFR does not deal with forest diseases. FABI was established in 1997 on the foundation of the highly successful and internationally acclaimed Tree Protection Co-operative Programme (TPCP). This programme, initiated in 1990 has supported South African Forestry for more than a decade and has become an institution of that industry. The TPCP provides the entire forestry industry of South Africa with support in the field of tree health, and more particularly Forest Pathology and Forest Entomology. The group includes projects not only in South Africa, but also in other parts of Africa, South America, South East Asia, Europe, Australia and North America. The Centre of Excellence in Tree Health Biotechnology (CTHB) was established in 2004 to investigate pest and disease problems of native trees (http://www.fabinet.up.ac.za/cthb/index).

Forestry South Africa (FSA) plays a major role in South African forestry.

Monitoring and detection

An important component of the TPCP and CTHB is to monitor disease development in plantations in permanent sampling plots and through countrywide surveys. Data derived from these studies ensure the early discovery of new diseases and also lead to a long-term perspective on the importance of various diseases. They also lead to the evaluation of the impact of diseases and thus their relative importance.

Companies have permanent sampling plots and monitor them. FABI trains them in disease recognition and when they are unsure, do site visits to consult for them. FABI is responsible for research and student training, which has been adapted to provide a service...
to the industry and address some of their problems, however, they are responsible for implementation.

Data management

No reports on diseases and insects affecting indigenous forest are available at national level. However data are available on the area affected by insects, diseases and other damaging agents in forest plantations (FAO, n.d.; FAO, 2004). The TPCP has prepared a number of illustrated leaflets on a number of important diseases to be used as diagnostic aids (http://fabinet.up.ac.za/tpcp/pamphlets/).

Pest management

A variety of tactics are used to reduce losses caused by insects and disease. The introduction of the black pine aphid, *Cinara cronartii*, was addressed by a classic biological control program, which involved the introduction and establishment of a parasitic wasp, *Pauesia bicolor* (Hymenoptera: Braconidae). This caused a collapse of the aphid population (Kfir, Kirsten and van Rensburg, 1985; Mills, 1990). The microbial insecticide, *Bacillus thuringiensis* has been tested for control of native defoliators of pine plantations (Murphy, 1998).

Private landowners

Pest management in industrial forest plantations are carried out by private landowners with technical support from institutes such as FABI.

References

Index

OSN = Other Scientific Name (other names, synonyms, other combinations, etc. that have been used for this species)

<table>
<thead>
<tr>
<th>Abies</th>
<th>Ceratocystis albifundus, 2, 14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aphelochlaena salmonicolor, 3, 18</td>
</tr>
<tr>
<td>Insects</td>
<td></td>
</tr>
<tr>
<td>Sirex noctilio, 12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acacia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Insects</td>
<td>Ceratocystis albifundus, 2, 14</td>
</tr>
<tr>
<td></td>
<td>Phanerochaete salmonicolor, 3, 18</td>
</tr>
<tr>
<td></td>
<td>Kotochalia junodi, 6</td>
</tr>
<tr>
<td></td>
<td>Lygiodol laevigatum, 7</td>
</tr>
<tr>
<td></td>
<td>Adelgidae, 10</td>
</tr>
<tr>
<td></td>
<td>Anisophleba pini<sup>OSN</sup>, 10</td>
</tr>
<tr>
<td></td>
<td>Aphididae, 7</td>
</tr>
<tr>
<td></td>
<td>Aphis pini<sup>OSN</sup>, 10</td>
</tr>
<tr>
<td></td>
<td>Armillaria fuscipes</td>
</tr>
<tr>
<td></td>
<td>Hosts</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus, 1, 13</td>
</tr>
<tr>
<td></td>
<td>Pinus, 1, 13</td>
</tr>
<tr>
<td></td>
<td>Armillaria root rot, 2, 13</td>
</tr>
<tr>
<td></td>
<td>Ascomycota, 2, 3, 14, 15, 16, 17, 19</td>
</tr>
<tr>
<td></td>
<td>Bark beetle, 9</td>
</tr>
<tr>
<td></td>
<td>Basidiomycota, 2, 3, 13, 17</td>
</tr>
<tr>
<td>Acacia caffra</td>
<td></td>
</tr>
<tr>
<td>Diseases</td>
<td>Ceratocystis albifundus, 2, 14</td>
</tr>
<tr>
<td>Acacia decurrens</td>
<td></td>
</tr>
<tr>
<td>Diseases</td>
<td>Ceratocystis albifundus, 2, 14</td>
</tr>
<tr>
<td>Acacia mearnsii</td>
<td></td>
</tr>
<tr>
<td>Diseases</td>
<td>Botryosphaeria dothidea, 15</td>
</tr>
</tbody>
</table>
Black pine aphid, 7
Botryobasidium salmonicolorOSN, 3, 17
Botryodiplodia pineaOSN, 19
Botryosphaeria canker, 15, 16
Botryosphaeria dothidea
Hosts
\quad Acacia mearnsii, 15
\quad Eucalyptus, 15
\quad Eucalyptus grandis, 15
\quad Eucalyptus nitens, 15
Botryosphaeria eucalypticola
Hosts
\quad Eucalyptus, 15
Botryosphaeria eucalyptorum
Hosts
\quad Eucalyptus, 16
Botrysphaeriaceae, 15, 16
Broadleaf
Armillaria fuscipes, 2, 13
Botryosphaeria dothidea, 15
Botryosphaeria eucalyticola, 16
Botryosphaeria eucalyptorum, 16
Ceratocystis albifundus, 2, 14
Chrysoporthe austroafricana, 3, 14
Coryphodema tristis, 5
Ellimenistes laesicollis, 5
Gonipterus scutellatus, 8
Holocryphia eucalypti, 16
Kotochalia junodi, 6
Lygidolon laevigatum, 7
Pachypasa capensis, 7
Phanerochaete salmonicolor, 3, 18
Phoracantha recurva, 9
Phoracantha semipunctata, 10
Phytophthora cinnamomii, 4, 18
Phytophthora nicotianae, 19
Scolytus kirschii, 11
Thaumastocoris peregrinus, 12
Bronze bug, 12
Brown lappet moth, 7
Brown wattle mirid, 7
Burkea africana
Diseases
\quad Ceratocystis albifundus, 2, 14
Caumadothis dothideaOSN, 15
Cedrus
Insects
\quad Pissodes nemorensis, 11
Cerambycidae, 9, 10
Ceratocystidaceae, 2, 14
Ceratocystis albifundus
Hosts
\quad Acacia caffra, 2, 14
\quad Acacia decurrens, 2, 14
\quad Acacia mearnsii, 2, 14
\quad Burkea africana, 2, 14
\quad Combretum apiculatum, 2, 14
\quad Combretum molle, 2, 14
\quad Combretum zeyherii, 2, 14
\quad Faurea saligna, 2, 14
\quad Ochna pulchra, 2, 14
\quad Ozoroa paniculata, 2, 14
\quad Protea, 2, 14
\quad Protea gaguedii, 2, 14
\quad Terminalia sericea, 2, 14
Ceratocystis wilt, 2, 14
Chaliopsis junodiOSN, 6
Chryphonectriaceae, 3, 14
Chrysanthemoides monilifera
Insects
\quad Pachypasa capensis, 7
Chrysoporthe austroafricana
Hosts
\quad Eucalyptus, 3, 14
\quad Syzygium cordatum, 3, 14
\quad Syzygium guineense, 3, 14
\quad Tibouchina, 3, 14
Chrysoporthe canker, 3, 14
Cinara cronartii
Hosts
\quad Pinus, 7
\quad Pinus elliottii, 7
\quad Pinus patula, 7
\quad Pinus teada, 7
Coleoptera, 5, 8, 9, 10, 11
Combretum apiculatum
Diseases
\quad Ceratocystis albifundus, 2, 14
Combretum molle
Diseases
\quad Ceratocystis albifundus, 2, 14
Combretum zeyherii
Overview of forest pests - South Africa

Diseases

- Ceratocystis albifundus, 2, 14
- Common eucalypt longhorn, 10
- Common pine aphid, 10

Conifer

- Armillaria fuscipes, 2, 13
- Cinara cronartii, 7
- Euproctis terminalis, 6
- Gibberella circinata, 17
- Hylastes angustatus, 8
- Hylurgus ligniperda, 9
- Imbrasia cytherea, 6
- Mycosphaerella pini, 17
- Pachypasa capensis, 7
- Phytophthora cinnamomi, 4
- Pineus pini, 10
- Pissodes nemorensis, 11
- Rhizina undulata, 19
- Sirex noctilio, 6
- Mycosphaerella pini, 17
- Corticium salmonicolor, 3, 17
- Coryphodema tristis

Hosts

- Eucalyptus nitens, 5
- Cossid moth, 5
- Cossidae, 5
- Curculionidae, 5, 8, 9, 11
- Cytosporina septospora, 17
- Dais cotonifolia

Diseases

- Phanerochaete salmonicolor, 3, 18

Data management, 21

Deodar weevil, 11

Diebacks and other conditions, 5, 20

- Naturally regenerating forests, 5
- Planted forests, 20
- Diplodia conigena, 19
- Diplodia pinastri, 19
- Diplodia pinea, 19
- Diplodia sapinea, 19

Diseases, 1, 13

- Armillaria fuscipes, 1, 13
- Botryosphaeria eucalypticolata, 15
- Botryosphaeria eucalyptorum, 16
- Caumadothi dothidea, 15
- Ceratocystis albifundus, 2, 14
- Chrysoporthe austroafricana, 3, 14
- Corticium salmonicolor, 3, 17
- Cytosporina septospora, 17
- Diplodia conigena, 19
- Diplodia pinastri, 19
- Diplodia pinea, 19
- Diplodia sapinea, 19
- Dothiorella mali, 15
- Dothistroma pini, 17
- Dothistroma septosporum, 17
- Eruptio pini, 17
- Erythricium salmonicolor, 3, 17
- Fusarium circinatum, 16
- Fusicoccum eucalypticolata, 16
- Fusicoccum eucalyptorum, 16
- Gibberella circinata, 16
- Granulodiplodia pina, 19
- Granulodiplodia sapinea, 19
- Helvella inflata, 19
- Holocryphia eucalypti, 16
- Macrophoma pini, 19
- Macrophoma sapinea, 19
- Mycosphaerella pini, 17
- Mycosphaerella pini, 17
- Naturally regenerating forests, 1
- Pellicularia salmonicolor, 3, 17
- Phanerochaete salmonicolor, 3, 17
- Phoma pinastri, 19
- Phytophthora cinnamomi, 4, 18
- Phytophthora nicotianae, 18
- Planted forests, 13
- Rhizina inflata var. rhizophora, 19
- Rhizina inflata, 19
- Rhizina laevigata, 19
- Rhizina undulata, 19
- Scirrhia pini, 17
- Septoria septospora, 17
- Sphaeria dothidea, 15
- Sphaeria pina, 19
- Sphaeria sapinea, 19
- Sphaeropsis ellisi, 19
- Sphaeropsis pinastri, 19

Scirrhia pini, 19

Corticium salmonicolor, 3, 17
Overview of forest pests - South Africa

Sphaeropsis sapinea, 19

Terana salmonicolor[^OSN], 3, 17

Dothiorella malti[^OSN], 15

Dothistroma needle blight, 17

Dothistroma pini[^OSN], 17

Dothistroma septosporum[^OSN], 17

Eastern pine weevil, 11

Ekebergia capensis

Diseases

Phanerochaete salmonicolor, 3, 18

Ellimenistes laesicollis

Hosts

Eucalyptus, 5

Eruptio pini[^OSN], 17

Erythricium salmonicolor[^OSN], 3, 17

Eucalypt longhorn, 10

Eucalyptus

Diseases

Armillaria fuscipes, 2, 13

Botryosphaeria dothidea, 15

Botryosphaeria eucalypticola, 16

Botryosphaeria eucalyptorum, 16

Chrysoporthe austroafricana, 3, 15

Holocryphia eucalypti, 16

Phanerochaete salmonicolor, 3, 18

Phytophthora cinnamomi, 4, 18

Phytophthora nicotianae, 19

Insects

Ellimenistes laesicollis, 5

Gonipterus scutellatus, 8

Phoracantha recurva, 9

Phoracantha semipunctata, 10

Eucalyptus camaldulensis

Insects

Thaumastocoris peregrinus, 12

Eucalyptus elata

Diseases

Phytophthora nicotianae, 19

Eucalyptus fastigata

Diseases

Phytophthora nicotianae, 19

Eucalyptus grandis

Diseases

Botryosphaeria dothidea, 15

Holocryphia eucalypti, 16

Eucalyptus nitens

Diseases

Botryosphaeria dothidea, 15

Insects

Coryphodema tristis, 5

Eucalyptus smithii

Diseases

Phytophthora nicotianae, 19

Insects

Thaumastocoris peregrinus, 12

Eucalyptus tereticornis

Insects

Thaumastocoris peregrinus, 12

Eucalyptus viminalis

Insects

Thaumastocoris peregrinus, 12

Eucalyptus weevil, 8

Euprocis terminalis

Hosts

Pinus, 6

Eurasian pine adelgid, 10

European wood wasp, 12

Faurea saligna

Diseases

Ceratocystis albifundus, 2, 14

Fusarium circinatum[^OSN], 16

Fusicoccum eucalypticola[^OSN], 16

Fusicoccum eucalyptorum[^OSN], 16

Gibberella circinata

Hosts

Pinus, 16

Pinus patula, 16

Goat moth, 5

Golden haired beetle, 9

Gonipterus scutellatus

Eucalyptus, 8

Government level, 20
Overview of forest pests - South Africa

Granulodiplodia pinea^{OSN}, 19
Granulodiplodia sapinea^{OSN}, 19

Grey weevil, 5
Gum tree weevil, 8

Helvella inflata^{OSN}, 19

Hemiptera, 7, 10, 12

Holocryphia eucalypti

Hosts
- *Eucalyptus*, 16
- *Eucalyptus grandis*, 16

Host type
- Broadleaf, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19
- Conifer, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 17, 19

Hosts
- *Abies*, 12
- Insects
 - *Sirex noctilio*, 12
- *Acacia*, 6, 7
- Insects
 - *Kotochalia junodi*, 6
 - *Lygidolon laevigatum*, 7
 - *Pachypasa capensis*, 7
- *Acacia caffra*, 2, 14
- Diseases
 - *Ceratocystis albifundus*, 2, 14
- *Acacia decurrens*, 2, 14
- Diseases
 - *Ceratocystis albifundus*, 2, 14
- *Acacia mearnsii*, 2, 3, 6, 7, 14, 15, 18
- Diseases
 - *Botryosphaeria dothidea*, 15
 - *Ceratocystis albifundus*, 2, 14
 - *Phanerochaete salmonicolor*, 3, 18
- Insects
 - *Kotochalia junodi*, 6
 - *Lygidolon laevigatum*, 7
- *Burkea africana*, 2, 14
- Diseases
 - *Ceratocystis albifundus*, 2, 14
- *Cedrus*, 11
- Insects
 - *Pissodes nemorensis*, 11
 - *Chrysanthemoides monilifera*, 7
- *Ceratocystis albifundus*, 2, 14
- *Combretum apiculatum*, 2, 14
- Diseases
 - *Ceratocystis albifundus*, 2, 14
- *Combretum molle*, 2, 14
- Diseases
 - *Ceratocystis albifundus*, 2, 14
- *Combretum zeyherii*, 2, 14
- Diseases
 - *Ceratocystis albifundus*, 2, 14
- *Dais cotonifolia*, 3, 18
- Diseases
 - *Phanerochaete salmonicolor*, 3, 18
- *Ekebergia capensis*, 3, 18
- Diseases
 - *Phanerochaete salmonicolor*, 3, 18
- *Eucalyptus*, 2, 3, 4, 5, 8, 9, 10, 13, 15, 16, 18, 19
- Diseases
 - *Armillaria fuscipes*, 2, 13
 - *Botryosphaeria dothidea*, 15
 - *Botryosphaeria eucalypticola*, 16
 - *Botryosphaeria eucalyptorum*, 16
 - *Chrysoporthe austroafricana*, 3, 15
 - *Holocryphia eucalypti*, 16
 - *Phanerochaete salmonicolor*, 3, 18
- *Phytophthora cinnamomi*, 4, 18
- *Phytophthora nicotianae*, 19
- Insects
 - *Ellimenistes laesicollis*, 5
 - *Gonipterus scutellatus*, 8
 - *Phoracantha recurva*, 9
 - *Phoracantha semipunctata*, 10
- *Eucalyptus camaldulensis*, 12
- Insects
 - *Thaumastocoris peregrinus*, 12
- *Eucalyptus elata*, 19
- Diseases
 - *Phytophthora nicotianae*, 19
- *Eucalyptus fastigata*, 19
- Diseases
Overview of forest pests - South Africa

Phytophthora nicotianae, 19
Eucalyptus grandis, 12, 15, 16
Diseases
Botryosphaeria dothidea, 15
Holocryphia eucalypti, 16
Insects
Thaumastocoris peregrinus, 12
Eucalyptus grandis x camaldulensis, 12
Insects
Thaumastocoris peregrinus, 12
Eucalyptus grandis x urophylla, 12
Insects
Thaumastocoris peregrinus, 12
Eucalyptus nitens, 5, 15
Diseases
Botryosphaeria dothidea, 15
Insects
Coryphodema tristis, 5
Eucalyptus smithii, 12, 19
Diseases
Phytophthora nicotianae, 19
Insects
Thaumastocoris peregrinus, 12
Eucalyptus tereticornis, 12
Insects
Thaumastocoris peregrinus, 12
Eucalyptus viminalis, 12
Insects
Thaumastocoris peregrinus, 12
Faurea saligna, 2, 14
Diseases
Ceratocystis albifundus, 2, 14
Larix, 12
Insects
Sirex noctilio, 12
Maesa lanceolata, 3, 18
Diseases
Phanerochaete salmonicolor, 3, 18
Ochna pulchra, 2, 14
Diseases
Ceratocystis albifundus, 2, 14
Ozoroa paniculata, 2, 14
Diseases
Ceratocystis albifundus, 2, 14
Picea, 11, 12
Insects
Pissodes nemorensis, 11
Sirex noctilio, 12
Pinus, 2, 4, 6, 7, 8, 9, 10, 11, 13, 17, 19
Diseases
Armillaria fuscipes, 2, 13
Gibberella circinata, 17
Mycosphaerella pini, 17
Phytophthora cinnamomi, 4
Rhizina undulata, 19
Sphaeropsis sapinea, 19
Insects
Cinara cronartii, 7
Euproctis terminalis, 6
Hylastes angustatus, 8
Hylurgus ligniperda, 9
Imbrasia cytherea, 6
Pachypasa capensis, 7
Pineus pini, 10
Pissodes nemorensis, 11
Pinus caribaea, 12
Insects
Sirex noctilio, 12
Pinus echinata, 12
Insects
Sirex noctilio, 12
Pinus elliottii, 7, 12
Insects
Cinara cronartii, 7
Sirex noctilio, 12
Pinus kesiya, 12
Insects
Sirex noctilio, 12
Pinus nigra, 12
Insects
Sirex noctilio, 12
Pinus palustris, 12
Insects
Sirex noctilio, 12
Pinus patula, 7, 12, 17
Diseases
Gibberella circinata, 17
Insects
Pachypasa capensis, 7
Overview of forest pests - South Africa

Sirex noctilio, 12

Pinus pinaster, 12
Insects
Sirex noctilio, 12

Pinus pinea, 12
Insects
Sirex noctilio, 12

Pinus radiata, 4, 12
Diseases
Phytophthora cinnamomi, 4
Insects
Sirex noctilio, 12

Pinus strobes, 12
Insects
Sirex noctilio, 12

Pinus sylvestris, 12
Insects
Sirex noctilio, 12

Pinus taeda, 12
Insects
Sirex noctilio, 12

Pinus teada, 7
Insects
Cinara cronartii, 7

Podocarpus henkelii, 3, 18
Diseases
Phanerochaete salmonicolor, 3, 18

Podocarpus latifolius, 3, 18
Diseases
Phanerochaete salmonicolor, 3, 18

Protea, 2, 14
Diseases
Ceratocystis albifundus, 2, 14

Protea gagedii, 2, 14
Diseases
Ceratocystis albifundus, 2, 14

Pseudotsuga menziesii, 12

Pseudotsuga menziesii
Insects
Sirex noctilio, 12

Syzygium cordatum, 3, 15
Diseases
Chrysoporethe austroafricana, 3, 15

Syzygium guineense, 3, 15
Diseases
Chrysoporethe austroafricana, 3, 15

Terminalia sericea, 2, 14
Diseases
Ceratocystis albifundus, 2, 14

Tibouchina, 3, 15
Diseases
Chrysoporethe austroafricana, 3, 15

Ulmus, 11
Insects
Scolytus kirschi, 11
Ulmus procera, 11
Insects
Scolytus kirschi, 11

Watsonia, 6
Insects
Imbrasia cytherea, 6

Hylastes angustatus
Hosts
Pinus, 8

*Hylesinus ligniperda*OSN, 8

*Hylurgus elongatus*OSN, 8

*Hylurgus flavipes*OSN, 8

Hylurgus ligniperda
Hosts
Pinus, 8

Hymenoptera, 12

Imbrasia cytherea
Hosts
Pinus, 6
Watsonia, 6

Indigenous diseases, 1, 13
Indigenous insects, 1, 5

Indigenous other pests, 4, 20
Insects, 1, 5

*Anisophleba pini*OSN, 10
*Aphis pini*OSN, 10

*Chaliopsis junodi*OSN, 6
Cinara cronartii, 7
Coryphodema tristis, 5
Ellimenistes laemicollis, 5
Euproctis terminalis, 6
Gonipterus scutellatus, 8
Overview of forest pests - South Africa

Hylastes angustatus, 8
Hylesinus ligniperdaOSN, 8
Hylurgus elongatusOSN, 8
Hylurgus flavipesOSN, 8
Hylurgus ligniperda, 8
Imbrasia cytherea, 6
Kermaphis pini var. laevisOSN, 10
Kermes piniOSN, 10
Kotochalia junodi, 6
Lygidolon laevigatum
Hosts
Acacia, 7
Acacia mearnsii, 7
Lymantriidae, 6
Macrophoma pineaOSN, 19
Macrophoma sapineaOSN, 19
Maesa lanceolata
Diseases
Phanerochaete salmonicolor, 3, 18
Marasmiaceae, 2, 13
Miridae, 7
Monitoring and detection, 20
Mycosphaerella pini
Hosts
Pinus, 17
Mycosphaerella piniOSN, 17
Mycosphaerellaceae, 17
Naturally regenerating forests, 1
Diebacks and other conditions, 5
Diseases, 1
Insects, 1
Other pests, 4
Nectriaceae, 17
Northern pine weevil, 11
Ochna pulchra
Diseases
Ceratocystis albifundus, 2, 14
Oomycota, 4, 18, 19
Other pests, 4, 20
Naturally regenerating forests, 4
Planted forests, 20
Ozoroa paniculata
Diseases
Ceratocystis albifundus, 2, 14
Pachypasa capensis
Hosts
Acacia, 7
Chrysanthemoides monilifera, 7
Pinus, 7
Pinus patula, 7
Paururus noctilioOSN, 12
Pellicularia salmonicolorOSN, 3, 17
Pest management, 21
Phanerochaetaceae, 3, 17
Phanerochaete salmonicolor
Hosts
- Acacia mearnsii, 3, 17
- Dais cotonifolia, 3, 17
- Ekebergia capensis, 3, 17
- Eucalyptus, 3, 17
- Maesa lanceolata, 3, 17
- Podocarpus henkelli, 3, 17
- Podocarpus latifolius, 3, 17

Phoma pinastri^{OSN}, 19
Phoracantha recurva
- Eucalyptus, 9

Phoracantha semipunctata
Hosts
- Eucalyptus, 9

Phytophthora cinnamomi
Hosts
- Eucalyptus, 4, 18
- Pinus, 4
- Pinus radiata, 4

Phytophthora nicotianae
Hosts
- Eucalyptus, 18
- Eucalyptus elata, 18
- Eucalyptus fastigata, 18
- Eucalyptus smithii, 18

Phytophthora rot, 4, 18, 19

Picea
Insects
- Pissodes nemorensis, 11
- Sirex noctilio, 12

Pine adelgid, 10
Pine bark beetle, 8
Pine brown tail moth, 6
Pine emperor moth, 6
Pine needle blight, 17
Pine pitch canker, 17
Pine root-infesting bark beetle, 8
Pine woolly aphid, 10

Pineus boerneri^{OSN}, 10
Pineus havyrenkoi^{OSN}, 10
Pineus laevis^{OSN}, 10
Pineus pini
Hosts
- Pinus, 10
- Pineus pini^{OSN}, 10
- Pineus simmondsi^{OSN}, 10

Pineus sylvestris^{OSN}, 10
Pink disease, 3, 17

Pinus
Diseases
- Armillaria fuscipes, 2, 13
- Gibberella circinata, 17
- Mycosphaerella pini, 17
- Phytophthora cinnamomi, 4
- Rhizina undulata, 19
- Sphaeropsis sapinea, 19

Insects
- Cinara cronartii, 7
- Euproctis terminalis, 6
- Hylastes angustatus, 8
- Hylurgus ligniperda, 9
- Imbrasia cytherea, 6
- Pachypasa capensis, 7
- Pineus pini, 10
- Pissodes nemorensis, 11

Pinus caribaea
Insects
- Sirex noctilio, 12

Pinus echinata
Insects
- Sirex noctilio, 12

Pinus elliottii
Insects
- Sirex noctilio, 12

Pinus kesiya
Insects
- Sirex noctilio, 12

Pinus nigra
Insects
- Sirex noctilio, 12

Pinus palustris
Insects
- Sirex noctilio, 12

Pinus patula
Diseases
- Gibberella circinata, 17

Insects
- Cinara cronartii, 7
- Pachypasa capensis, 7
- Sirex noctilio, 12

Pinus pinaster
Overview of forest pests - South Africa

Insects
 Sirex noctilio, 12

Pinus pinea
 Insects
 Sirex noctilio, 12

Pinus radiata
 Diseases
 Phytophthora cinnamomi, 4
 Insects
 Sirex noctilio, 12

Pinus strobes
 Insects
 Sirex noctilio, 12

Pinus sylvestris
 Insects
 Sirex noctilio, 12

Pinus taeda
 Insects
 Sirex noctilio, 12

Pinus teada
 Insects
 Cinara cronartii, 7

Pissodes approximatus
 OSN, 11

Pissodes canadensis
 OSN, 11

Pissodes deodarae
 OSN, 11

Pissodes nemorensis
 Hosts
 Cedrus, 11
 Picea, 11
 Pinus, 11

Planted forests, 5
 Diebacks and other conditions, 20
 Diseases, 13
 Insects, 5
 Other pests, 20

Podocarpus henkelii
 Diseases
 Phanerochaete salmonicolor, 3, 18

Podocarpus latifolius
 Diseases
 Phanerochaete salmonicolor, 3, 18

Private landowners, 21

Protea
 Diseases
 Ceratocystis albifundus, 2, 14

Protea gaguedii
 Diseases
 Ceratocystis albifundus, 2, 14
 Pseudotsuga menziesii
 Insects
 Sirex noctilio, 12

Psychidae, 6
 Pythiaceae, 4, 18, 19
 Red band needle blight, 17
 Red haired pine bark beetle, 9
 Red pine adelgid, 10
 Rhizina inflata var. rhizophora
 OSN, 19
 Rhizina inflata
 OSN, 19
 Rhizina laevigata
 OSN, 19
 Rhizina root rot, 19
 Rhizina undulata
 Hosts
 Pinus, 19
 Rhizinaceae, 19
 Saturnidae, 6
 Scirrhia pini
 OSN, 17
 Scolytidae, 11
 Scolytus kirschii
 Hosts
 Ulmus, 11
 Ulmus procera, 11
 Septoria septospora
 OSN, 17
 Sirex, 12
 Sirex melanocerus
 OSN, 12
 Sirex noctilio
 Hosts
 Abies, 12
 Larix, 12
 Pinus caribaea, 12
 Pinus echinata, 12
 Pinus elliottii, 12
 Pinus kesiya, 12
 Pinus nigra, 12
 Pinus palustris, 12
 Pinus patula, 12
 Pinus pinaster, 12
 Pinus pinea, 12
 Pinus radiata, 12
 Pinus strobes, 12
 Pinus sylvestris, 12
 Pinus taeda, 12
Overview of forest pests - South Africa

Pseudotsuga menziezii, 12
Sirex wood wasp, 12
Siricidae, 12
Sphaeria dothidea^{OSN}, 15
Sphaeria pinea^{OSN}, 19
Sphaeria sapinea^{OSN}, 19
Sphaeropsis ellisii^{OSN}, 19
Sphaeropsis pinastrii^{OSN}, 19
Sphaeropsis sapinea
 Hosts
 Pinus, 19
Steel-blue horntail, 12
Syzgium cordatum
 Diseases
 Chrysoporthe austroafricana, 3, 15
Syzgium guineense
 Diseases
 Chrysoporthe austroafricana, 3, 15
Terana salmonicolor^{OSN}, 3, 17
Terminalia sericea
 Diseases
 Ceratocystis albifundus, 2, 14
Thaumastocoridae, 12
Thaumastocoris peregrinus

Hosts
Eucalyptus camaldulensis, 12
Eucalyptus grandis, 12
Eucalyptus grandis x camaldulensis, 12
Eucalyptus grandis x urophylla, 12
Eucalyptus smithii, 12
Eucalyptus tereticornis, 12
Eucalyptus viminalis, 12

Tibouchina
 Diseases
 Chrysoporthe austroafricana, 3, 15

Ulmus
 Insects
 Scolytus kirschii, 11
Ulmus procera
 Insects
 Scolytus kirschii, 11
Valsaceae, 16
Watsonia
 Insects
 Imbrasia cytherea, 6
Wattle bagworm, 6