Profiling of genes involved in the regeneration of secondary vascular system in poplar

Meng-Zhu Lu, Min-Jie Wang, Shou-Tang Zhao and Jian-Jun Hu

Research Institute of Forestry

Chinese Academy of Forestry
Wood formation

Diagram A: Detailed view of wood structure.

Diagram B: Schematic representation of wood formation:
- Cell division
- Expansion
- Elongation
- Cell wall layers
- Cellulose
- Pectins
- Hemicelluloses
- Lignin
- Monolignols

Phloem sections labeled A-E.
Background

- EST database: over 200,000
- Microarray analysis of gene expression in cambium zone
- Poplar genomic sequence
- Too little data on proteomics
- Thousands of genes expressed in wood forming tissues
- But their function in terms of development?
Establish of the wood regeneration system
Advantage of this system

• Can mimic (within one month)
 – Initiation of cambium
 – Differentiation of cambial cells
 – Development of xylem

• Obtain the materials for analysis by
 – Proteomics
 – Microarray
2-D Electrophoresis

Regeration stages
A: 6 d
B: 10 d
C: 14 d
D: 18 d
E: 22 d
MS Analysis

In total, 258 PMFs obtained

PMF of Spot106 from 22 days after

PMF of Spot108 from 22 days after
Microarray

- Images
 - A: Day10th VS Day 6th, 10G+6R;
 - B: Day10th VS Day 6th, 10R+6G;
 - C: Day10th VS Day 6th, enlarged B;
 - D: Day14th VS Day 12th, 14G+12R;
 - E: Day14th VS Day 12th, 14R+12G;
 - F: Day14th VS Day 12th, enlarged E
Great change of gene expression during the regeneration
Functional classification

A

No hit (39, 17.5%)
Signaling (18, 8.1%)
Transcription factor (16, 7.2%)
Cell wall (25, 11.2%)
Cell cycle (2, 0.9%)
Cytoskeleton (2, 0.9%)
Photosynthesis (4, 1.8%)
Metabolism (23, 10.3%)
Unknown (53, 23.8%)
Other (41, 18.4%)

B

Bar chart showing frequency of different functional classifications.
Expression by real-time PCR
How to identify the key genes?
Arabidopsis “wood”

(Chaffey, 2002)
Arabidopsis Mutants

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10vs6</td>
<td>28</td>
<td>18</td>
<td>16</td>
<td>143</td>
<td>21</td>
<td>19</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>14vs10</td>
<td>32</td>
<td>25</td>
<td>25</td>
<td>222</td>
<td>37</td>
<td>24</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>18vs14</td>
<td>50</td>
<td>39</td>
<td>38</td>
<td>374</td>
<td>59</td>
<td>41</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>22vs18</td>
<td>41</td>
<td>21</td>
<td>20</td>
<td>178</td>
<td>36</td>
<td>20</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Sum</td>
<td>151</td>
<td>103</td>
<td>99</td>
<td>917</td>
<td>153</td>
<td>104</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Phenotypic change of Arabidopsis mutant
Arabidopsis mutants
Mutant

Widetype

SK10
Specific expression in vascular tissues

24 h

36 h
Specific expression in vascular system
Effect on flower development
Effect on the cell wall

5-10 M

5-12 M

5-14 M

5-17 M

WT
Up- and down-regulation of the candidate genes
Auxin related genes

P49678	Auxin-responsive protein	Arabidopsis thaliana	P	
P33077	Auxin-responsive protein IAA4	Arabidopsis thaliana	P	
P49678	Auxin-responsive protein IAA2	Arabidopsis thaliana	P	
Q03663	Auxin-induced protein PGNT35/PCNT111	Nicotiana tabacum	P	
gi	42569975	ARF11 (AUXIN RESPONSE FACTOR 11)	Arabidopsis thaliana	P
gi	45503975	Putative small auxin up RNA	Zea mays	P
gi	46576649	Putative auxin response factor 13	Arabidopsis thaliana	P
gi	52077231	Auxin responsive protein-like	Oryza sativa	P
gi	34909612	Putative auxin response transcription factor	Oryza sativa	P
gi	2462761	Highly similar to auxin-induced protein (aldo/keto reductase family)	Arabidopsis thaliana	P
gi	77551195	Auxin response factor, putative	Oryza sativa	P
gi	8778254	Auxin response factor	Arabidopsis thaliana	P
gi	77552476	Auxin-induced beta-glucosidase, putative	Oryza sativa	P
At4g25570	Auxin induced Protein	Populus trichocarpa	P	
At1g78380	Auxin induced glutathione S-transferase	Populus trichocarpa	P	
At3g15540,	Early auxin-induced protein IAA19	Arabidopsis thaliana	M	
At4g28640,	Auxin-induced protein IAA11	Arabidopsis thaliana	M	
NM_116532	Auxin binding protein 1	Arabidopsis thaliana	M	
In situ RT-PCR
Transformation of poplar with *PtABP1*
Expression of ABP1 in non- and transgenic plants

![Graph showing expression levels of ABP1 in different conditions.](image)
Increased cell size

Decreased cell wall

![Graphs showing increased cell size and decreased cell wall thickness.](image-url)
Early flowing of the over-expression tobacco line
Early initiating SVS development

Control

Transgenic
Early ending the SVS development
Summary

• SVS regeneration system
 – Cambium formation, differentiation and xylem development
• Thousands of genes involved in wood formation
• Candidate genes selected
• Characterization of role of these genes
 – Mutants
 – Transgenic approach
Juan Du
Jun Chen
Hai-Feng Yang
Xiao-Li Qi
Fang Tang

Acknowledgement

National Program for key and Basic Research (973)
National Program for Hi-Tech development (863)
National Science Foundation of China
Thank you!