Isolation of a TIR-NBS-like gene promoter from triploid white poplar and its characterization in transgenic tobacco plants

Ph.D. Student Huiquan Zheng & Prof. Zhiyi Zhang
Email: zhenghuiquan2005@sina.com
Outline

- Background
- Our study
- Future work
Plant improvement for disease resistance

A major goal in plant science is the production of commercial plants with increased and durable resistance to a spectrum of diseases. In the past, two general approaches, including the conventional breeding and chemical treatment methods, have been sought. However, they are present to have several problems.

◆ Conventional breeding: Laborious, time-consuming (especially for the long-lived woody species, e.g. poplars)

◆ Chemical treatment: Expensive, hazardous to the environment
The plant genetic engineering

Genetic engineering has been used to introduce a set of valuable traits, such as pest resistance and herbicide tolerance, into a variety of commercial plants (e.g. Triploid white poplar).

The genetic engineering technology: offering an alternative avenue for the plant improvement with increased disease resistance.

The core genetic element: **transformation-cassette**

One of the pivotal problems for genetic engineering:
How to express the transgenes in the host plants?

- The high, constitutive promoters (e.g. CaMV 35S) ?
- The tissue/cell/organelle-specific promoters ?
- The inducible promoters ?

Overexpression of the defense component in transgenic plants may resulted in a set of problems, such as homology dependent gene silencing, unexpected disease symptoms, altered morphology and reduced size (dwarfish/stunted), especially for the perennial Poplar trees.
Our work

Focusing on the ‘Cloning and testing of the pathogen and/or defense signals inducible, tissue-specific promoters’, which may be promising for the Poplar genetic engineering in disease resistance.
The NBS-type resistance gene analogs (RGA) in triploid white poplar clone ‘L9’

Characterization of the *PtDrl02* gene

The RGA DQ324288

A TIR-NBS-like gene (*PtDrl02*)

Basal expression pattern of the *PtDrl02* gene in 18-month-old triploid white poplar
Inducible expression pattern of the *PtDrl02* gene

4-month-old seedlings

Time-course expression of the *PtDrl02* gene in response to defense-related signals
Isolation and computer analysis of the *PtDrl02* gene promoter

Genome walking

Sequencing of the primary PCR product
Function analysis of the PtDrl02 promoter

Tobacco transformation

<table>
<thead>
<tr>
<th>Transformant</th>
<th>Transgenic lines (n)</th>
<th>GUS staining</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-985</td>
<td>61</td>
<td>High</td>
</tr>
<tr>
<td>P-669</td>
<td>50</td>
<td>Medium</td>
</tr>
<tr>
<td>P-467</td>
<td>45</td>
<td>Low</td>
</tr>
<tr>
<td>P-244</td>
<td>50</td>
<td>Low</td>
</tr>
<tr>
<td>CaMV 35S</td>
<td>60</td>
<td>Strong</td>
</tr>
</tbody>
</table>
• Tissue-specific expression pattern of the *PtDrl02* promoter
Deletion analysis of the \textit{PtDrl02} promoter

P-985 \hspace{1cm} P-669 \hspace{1cm} P-467 \hspace{1cm} P-244

GUS activity (pmol 4-MU mg$^{-1}$ protein min$^{-1}$)

- P-985: GUS-NOS
- P-669: GUS-NOS
- P-467: GUS-NOS
- P-244: GUS-NOS

CaMV 35S \hspace{1cm} TATA \hspace{1cm} GUS-NOS

GUS activity (pmol 4-MU mg$^{-1}$ protein min$^{-1}$)

- CaMV 35S: GUS-NOS
• Activation of the *PtDrl02* promoter

![GUS activity graphs](image)

- [Control](#) vs. [Wound](#) with different treatments:
 - [MeJA](#)
 - [SA](#)

![GUS activity graphs](image)

- [Control](#) vs. [Treatment](#)
 - [Wound](#)
 - [MeJA](#)
 - [SA](#)
Brief summary

<table>
<thead>
<tr>
<th>Regulatory region</th>
<th>Inducers</th>
<th>Potential cis-elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>-985/-669</td>
<td>ABA</td>
<td>ABRE-motif</td>
</tr>
<tr>
<td>-669/-467</td>
<td>Wound, MeJA</td>
<td>W-box</td>
</tr>
<tr>
<td>-467/-244</td>
<td>SA, NaCl</td>
<td>GT-1-motif</td>
</tr>
<tr>
<td>-244/0</td>
<td>Wound, MeJA</td>
<td>W-box</td>
</tr>
</tbody>
</table>
• The PtDrl02 promoter activity is affected by its 5′ UTR

GUS staining of P-985/UTR
Predicted secondary structure of the *PtDrl02 5’ UTR*
Future work

- Analysis of the molecular interaction between *PtDrl02* promoter and its candidate transactivator *PtWRKY1*

- Examination of the orientation of *PtDrl02* promoter/cis-acting regulatory elements

- Testing of the *PtDrl02* promoter activity in the transgenic poplar (*P. tomentosa*) plants
Acknowledgement

Prof. Shanzhi Lin (BJFU)
Dr. Qian Zhang (ZJU)
Master student Yang Lei (BJFU)
Master student Lu Hou (BJFU)

This research was supported by the National TCM Project Application in the 11th Five-Year Plan in China (Grant no. 2006BAD01A15), by the National Project of Transgenic plants and their Application (Grant no. J2002-B-003) and by the National ‘863’ Plan Project (Grant no.2002AA241071).