Español || Français
      AQUASTAT Home        About AQUASTAT     FAO Water    Statistics at FAO

Featured products

Main Database
Dams
Global map of irrigation areas
Irrigation water use
Water and gender
Climate info tool
Institutions

Geographical entities

Countries, regions, river basins

Themes

Water resources
Water uses
Irrigation and drainage
Wastewater
Institutional framework
Other themes

Information type

Datasets
Publications
Summary tables
Maps and spatial data
Glossary

Info for the media

Did you know...?
Visualizations and infographics
SDG Target 6.4
KWIP
UNW Briefs
     

Read the full profile

Zimbabwe

Environment and health

Water access and quality are the main challenges faced by the water sector in Zimbabwe, in addition to water governance as previously mentioned.

Water access

The frequent and periodic droughts have resulted in serious water shortages in both the rural and urban areas. But other factors also explain water shortages:

  • In urban areas, following the disrupted services of water supply systems, there is a rapid increase in groundwater use for domestic purposes, including in Harare. As a result, some boreholes are drying out (GoZ, 2012).
  • In former commercial farms, where resettlement occurred, common infrastructures, such as boreholes, have not always been maintained. In these cases, increased demand on local rivers sometimes lead to drying up of these rivers.
  • In the late 1990s and early 2000s, before the irrigation decline, abstraction for agriculture resulted in low flows in many of Zimbabwe’s rivers, including the Save and Limpopo rivers, which run dry periodically (USAID, 2012).

Erosion also impacts water access as a result of the reduction in storage implied by siltation of dams. Erosion originates from overgrazing, expansion of crop cultivation, deforestation, veld fires and poor soil structures. It is estimated that 10 percent of the soils in Zimbabwe are under high risk of erosion due to the nature of soils, which are sodic (EMA, 2014a). Soil erosion also threatens water quality.

Water quality

Most surface water and groundwater are polluted, limiting the availability of safe water. The contamination of water has various sources, including agricultural activity, discharge of raw municipal sewerage into public streams, as well as industrial activity.

Before the FTLRP, there was a general increase in the use of agrochemicals in the country due to the intensification of crop production. This is however on hold since 2000 with the decline of agricultural production. The decline of maintenance of sewage systems intensified the volume of untreated wastewater discharged into rivers and reservoirs. Food processing, chemical, pulp and paper industries were identified as the major polluters. Despite the fact that most industries treat their effluents, several large- and medium-sized industries do not have adequate treatment facilities (GoZ, 2012). Industries discharge their treated or untreated wastewater into storm drains flowing directly into streams (UNWAIS, 2010).

The most recent concern for water pollution are the illegal artisanal mining activities, which expanded widely since 2000 with around one million persons practising gold panning along the country’s rivers (USAID, 2012). Miners not only clear trees to install camps, destroy stream-bank by digging pits in riverbed and divert river to access minerals in riverbeds, they also discharge toxic chemicals, in particular cyanide and mercury, into rivers. The latter ones contaminate the fish consumed by the population, affecting brain development in children and mental functioning in adults (WB, 2014). Mining also spreads minerals from the soil into rivers. As a result, the fish in Lake Kariba, the largest fishing area of the country, contains high concentration of lead and cadmium. The Yellow Jacket river in Mashonaland Central is “dead” due to heavy pollution from the Iron Duke mine, despite the fact that the mine closed in 2009. Until now, its water is unsuitable for domestic and agricultural uses (EMA, 2014b).

Impacts of water pollution have also resulted in increased eutrophication of water bodies, loss of aquatic biodiversity, proliferation of aquatic invasive alien species in water bodies, such as water hyacinth as a result of excessive eutrophication, increased incidences of water borne diseases including diarrhoea and typhoid, as well as cholera such as in 2008 (GoZ, 2012).

FTLRP impacts

Migration and resettlement resulting from the FTLRP have decreased pressure on the most densely populated agricultural zones of the country since 2000. However, the subsequent economic and food crisis created a wave of uncontrolled harvesting of natural resources as rural poor turned to hunting wildlife, harvesting firewood and panning gold. Pressure will remain as long as the high poverty rate continues. In addition, newly resettled and often inexperienced famers practice unsustainable and inappropriate farming by clearing forests causing erosion, which will limit crop productivity and threaten water supplies stored in reservoirs (USAID, 2012).

Wetlands

Wetlands, floodplains and river banks, providing a natural buffer against flood and water pollution as well as acting as groundwater recharge zone, are degraded across most of the country. They have been put under cultivation by farmers attracted by their moisture and relatively fertile soils.

     
   
   
             

^ go to top ^

       Quote as: FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on [yyyy/mm/dd].
      © FAO, 2016   |   Questions or feedback?    [email protected]
       Your access to AQUASTAT and use of any of its information or data is subject to the terms and conditions laid down in the User Agreement.